U.S. flag An official website of the United States government
  1. Home
  2. Science & Research
  3. About Science & Research at FDA
  4. Publications Co-authored by FDA on Alternative Methods
  1. About Science & Research at FDA

Publications Co-authored by FDA on Alternative Methods

Current list of FDA co-authored articles on alternative methods

Publications on alternative methods co-authored by FDA scientists
Publications on alternative methods co-authored by FDA scientists

FDA scientists from across the agency have contributed to a growing number of peer-reviewed journals on topics related to advancing alternative methods.  The list below is current and updated regularly. 


Current ecotoxicity testing needs among selected U.S. federal agencies. Regulatory Toxicology and Pharmacology Volume 133, August 2022, 105195. 10.1016/j.yrtph.2022.105195
This review summarizes the ecotoxicity data needs of six U.S. federal agencies and will inform development and implementation of non-animal methods.

Preclinical In Vitro Model to Assess the Changes in Permeability and Cytotoxicity of Polarized Intestinal Epithelial Cells during Exposure Mimicking Oral or Intravenous Routes: An Example of Arsenite Exposure. Parajuli P, Gokulan K, Khare S. International Journal of Molecular Sciences. 2022 May, 23(9), 4851. 10.3390/ijms23094851
Chemicals and drugs can cause different effects on the gut health based on whether they are given by shot in the vein (intravenous exposure) or as a pill that is swallowed (oral exposure). The authors used intestinal cells in culture and found they could assess the difference in the gut barrier function due to the exposure route. This preclinical in vitro model will reduce the use of animals for testing the impact of exposure route.

Quantitative in vitro to in vivo extrapolation for developmental toxicity potency of valproic acid analogues, Chang X, Palmer J, Lumen A, Lee UJ, Ceger P, Mansouri K, Sprankle C, Donley E, Bell S, Knudsen TB, Wambaugh J, Cook B, Allen D, Kleinstreuer N., Birth Defects Res. May 2022;10.1002/bdr2.2019

IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making, Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M., Toxics 2022, 10(5), 232; 10.3390/toxics10050232
This publication is a compilation of ideas and opinions of scientists from different organizations, including regulatory agencies from across the world, on using alternatives to traditional animal research to evaluate the safety of diverse types of chemicals, such as drugs, food substances, and environmental chemicals. It also highlights challenges and offers suggestions to overcome those challenges involved in use of these newer methods.

Harnessing the Biology of Canine Intestinal Organoids to Heighten Understanding of Inflammatory Bowel Disease Pathogenesis and Accelerate Drug Discovery: A One Health Approach, Kopper JJ, Iennarella-Servantez C, Jergens AE, Sahoo DK, Guillot E, Bourgois-Moche A, Martinez MN, Allenspach K and Mochel JP, Frontiers in Toxicology. 2021 Nov; 3:773953. 10.3389/ftox.2021.773953

Microfluidic Separation of Canine Adipose-Derived Mesenchymal Stromal Cells, Liu Z, Screven R, Yu D, Boxer L, Myers MJ, Han J, Devireddy LR. 2021 Tissue Engineering Part C: Methods Vol. 27, No. 8. 10.1089/ten.tec.2021.0082

Impact of Chronic Tetracycline Exposure on Human Intestinal Microbiota in a Continuous Flow Bioreactor Model, Youngbeom A, Jung JY, Kweon O, Veach BT, Khare S, Gokulan K, Pineiro SA, Cerniglia, CE. Antibiotics 2021, 10(8), 886. 10.3390/antibiotics10080886

AI-based language models powering drug discovery and development, Liu Z, Roberts RA, Lal-Nag M, Chen X, Huang R, Tong W. Drug Discovery Today. 2021 Nov; 26(11):2593-2607. 10.1016/j.drudis.2021.06.009

Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients, S. Fitzpatrick. 10.1016/j.yrtph.2021.105026

In silico approaches in organ toxicity hazard assessment: Current status and future needs in predicting liver toxicity, Bassan et al. 10.1016/j.comtox.2021.100187

In silico approaches in organ toxicity hazard assessment: Current status and future needs for predicting heart, kidney and lung toxicities, Bassan et al. 10.1016/j.comtox.2021.100188

Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate), ALTEX - Alternatives to animal experimentation. 10.14573/altex.2112203

Effect of ketamine on gene expression in zebrafish embryos, Gu Q, Kanungo J. J Appl Toxicol. 2021 Dec; 41(12):2083-2089. 10.1002/jat.4199

DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation, Li T, Tong W, Roberts R, Liu Z and Thakkar S; Front. Artif. Intell. 2021 Nov 18; 4:757780. 10.3389/frai.2021.757780

Emerging technologies and their impact on regulatory science, Anklam E, Bahl MI, Ball R, Beger RD, Cohen J, Fitzpatrick S, Girard P, Halamoda-Kenzaoui B, Hinton D, Hirose A, Hoeveler A, Honma M, Hugas M, Ishida S, Kass GE, Kojima H, Krefting I, Liachenko S, Liu Y, Masters S, Marx U, McCarthy T, Mercer T, Patri A, Pelaez C, Pirmohamed M, Platz S, Ribeiro AJ, Rodricks JV, Rusyn I, Salek RM, Schoonjans R, Silva P, Svendsen CN, Sumner S, Sung K, Tagle D, Tong L, Tong W, Eijnden-van-Raaij JVD, Vary N, Wang T, Waterton J, Wang M, Wen H, Wishart D, Yuan Y, Slikker W Jr. Exp Biol Med (Maywood). 2021 Nov 16:15353702211052280.10.1177/15353702211052280

Tox-GAN: An AI Approach Alternative to Animal Studies—a Case Study with Toxicogenomics. Chen X, Roberts R, Tong W, Liu Z. Toxicological Sciences. 2021 Dec 31; kfab157 10.1093/toxsci/kfab157

U.S. federal agency interests and key considerations for new approach methodologies for nanomaterials [published online ahead of print], Petersen et al. 2021; ALTEX. 10.14573/altex.2105041

Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells, Lahiani MH, Gokulan K, Williams K, Khare S. International Journal of Molecular Sciences. 2021; 22(21):11443. 10.3390/ijms222111443

Human transthyretin binding affinity of halogenated thiophenols and halogenated phenols: An in vitro and in silico study, Yang X, Ou W, Zhao S, Wang L, Chen J, Kusko R, Hong H, Liu H. Chemosphere. 2021 Oct; 280:130627. 10.1016/j.chemosphere.2021.130627

Sustainable Management of Synthetic Chemicals, Zhu H, Chen J, Huang R, and Hong H. ACS Sustainable Chemistry & Engineering. 2021; 9(41):13703-13704. 10.1021/acssuschemeng.1c05466

Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose, Wu Y, Zhu J, Fu P, Tong W, Hong H, Chen M. International Journal of Environmental Research and Public Health 18:7139. 10.3390/ijerph18137139

Development, Testing, Parameterisation and Calibration of a Human PBPK Model for the Plasticiser, Di-(2-propylheptyl) Phthalate (DPHP) Using in Silico, in vitro and Human Biomonitoring Data, McNally K, Sams C, Hogg A, Lumen A, Loizou G. Front Pharmacol. 12:692442 10.3389/fphar.2021.692442

Human microphysiological systems for drug development, Adrian Roth and MPS-WS Berlin 2019, Science 17 Sep 2021 Vol 373, Issue 6561 pp. 1304-1306. 10.1126/science.abc3734

A robotic system for real-time analysis of inhaled submicron and microparticles, Luis G.Valerio Jr., iScience, 29 September 2021, 103091

Reevaluation of the embryonic stem cell test, RS (2013) Volume 1: Issue 1 | pages 32-49

Transcriptomic time-series analysis of early development in olive from germinated embryos to juvenile tree, BMC Genomics volume 19, Article number: 824 (2018)

Gene expression profiling of cultured mouse testis fragments treated with ethinylestradiol, J. Toxicol. Sci. Vol.44,No.10,667-679, 2019

Evaluation of Culture Time and Media in an In Vitro Testis Organ Culture System, Birth Defects Res. 2017 Apr 17;109(7):465-474.

Evaluation of an in vitro mouse testis organ culture system for assessing male reproductive toxicity, Birth Defects Res. 2019 Jan 15;111(2):70-77

Metabolomics‐based pathway changes in testis fragments treated with ethinylestradiol in vitro, Birth Defects Res. 26 July 2019

Evaluation of pyrrolizidine alkaloid-induced genotoxicity using metabolically competent TK6 cell lines, Food and Chemical Toxicology, Volume 145, November 2020, 111662

Development and Application of TK6-derived Cells Expressing Human Cytochrome P450s for Genotoxicity Testing, Toxicological Sciences, Volume 175, Issue 2, June 2020, Pages 251–265

An FDA/CDER perspective on nonclinical testing strategies: Classical toxicology approaches and new approach methodologies (NAMs), Regul Toxicol Pharmacol. 2020 Jul;114:104662.

Opportunities for use of one species for longer-term toxicology testing during drug development: A cross-industry evaluation, Regul Toxicol Pharmacol. 2020 Jun;113:104624.

Strategies for Rapid Risk Assessment of Color Additives Used in Medical Devices, Toxicol Sci. 2019 Aug 6;kfz179.

An In Vitro Blood Flow Loop System for Evaluating the Thrombogenicity of Medical Devices and Biomaterials, ASAIO J. 2020 Feb;66(2):183-189.

Simultaneous UHPLC-MS/MS Method of Estradiol Metabolites to Support the Evaluation of Phase-2 Metabolic Activity of Induced Pluripotent Stem Cell Derived Hepatocytes, Journal of Chromatography B, Volumes 1126–1127, 15 September 2019, 121765

Liver Microphysiological Systems for Predicting and Evaluating Drug Effects, Clin Pharmacol Ther. 2019 Jul; 106(1): 139–147.

Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes, Front Pharmacol. 2019; 10: 934.

Use of high-throughput enzyme-based assay with xenobiotic metabolic capability to evaluate the inhibition of acetylcholinesterase activity by organophosphorous pesticides, Toxicol In Vitro. 2019 Apr;56:93-100.

Assessment of Intestinal absorption of 3-MCPD by Caco-2 cells, Toxicology in Vitro, Volume 67, September 2020, 104887

Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development, ALTEX. 2020;37(3):365-394.

Quantifying drug-induced structural toxicity in hepatocytes and cardiomyocytes derived from hiPSCs using a deep learning method, Journal of Pharmacological and Toxicological Methods, Volume 105, September 2020, 106895

Utilization of a model hepatotoxic compound, diglycolic acid, to evaluate liver Organ-Chip performance and in vitro to in vivo concordance, Food and Chemical Toxicology, Volume 146, December 2020, 111850

In vitro and in silico genetic toxicity screening of flavor compounds and other ingredients in tobacco products with emphasis on ENDS,Journal of Applied Toxicology, First published: 13 July 2020

Predicting the mutagenic potential of chemicals in tobacco products using in silico toxicology tools, Toxicology Mechanisms and Methods Volume 30, 2020 - Issue 9, Pages 672-678.

Accelerating Innovation and Commercialization Through Standardization of Microfluidic-Based Medical Devices, Lab on a Chip, Issue 1, 2021

Assessment of Flow through Microchannels for Inertia-Based Sorting: Steps toward Microfluidic Medical Devices, Micromachines (Basel). 2020 Oct; 11(10): 886.

Tronolone, J. J., Lam, J., Agrawal, A. & Sung, K. Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens. Biomed Microdevices 23, 25 (2021).

Ronald L.Wange, Paul C.Brown, Karen L.Davis-Bruno, Implementation of the principles of the 3Rs of animal testing at CDER: Past, present and future, Regulatory Toxicology and Pharmacology, Volume 123, July 2021, 104953

Brian J Kwee and Kyung E Sung, Engineering microenvironments for manufacturing therapeutic cells, Experimental Biology and Medicine 2021; 0: 1–12. DOI: 10.1177/15353702211026922

Knudsen TB, Fitzpatrick SC, De Abrew, et al. Predictive Toxicology for Healthy Children. Toxicol Sci 2021 Apr 12;180(2):198-211.

Richard AM, Huang R, Waidyanatha S, Shinn P, et al. The Tox21 compound library: collaborative chemistry advancing toxicology. Chem Res Toxicol. 2021 Feb 15;34(2):189-216.

Choksi N, Lebrun S, Nguyen M, et al. Validation of the OptiSafe™ eye irritation test. Cutan Ocul Toxicol. 2020 Sep;39(3):180-192.

Kleinstreuer NC, Tong W, et al. Tetko, I V. Computational toxicology. Chem. Res. Toxicol. 2020, 33, 3, 687–688.

CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity by Mansouri K, Kleinstreuer N, Abdelaziz AM, et al. Environ Health Perspect 128(2),7 February 2020:027002

An evaluation framework for new approach methodologies (NAMs) for human health safety assessment by Parish ST, Aschner M, Casey W, Corvaro M, Embry MR, Fitzpatrick S, et al. Regul Toxicol Pharmacol. 2020 Apr;112:104592.

Prior H, Baldrick P, Beken S, Booler S, Bower N, Brooker P, Brown P, et al. Opportunities for use of one species for longer-term toxicology testing during drug development: A cross-industry evaluation. Reg Toxicol Pharmacol 113, June 2020:104624.

Rovida C, Barton-Maclaren T, Benfenati E, Caloni F, Chandrasekera C, Chesne C, Cronin MTD, De Knecht J, Dietrich DR, Escher SE, Fitzpatrick S, et al. Internationalization of read-across as a validation new approach method (NAM) for regulatory toxicology. ALTEX. 2020;37(4):579-606.

Choksi NY, Truax J, Layton A, Matheson J, Mattie D, Varney T, Tao J, Yozzo K, McDougal AJ, Merrill J, Lowther D, et al. United States regulatory requirements for skin and eye irritation testing. Cutan Ocul Toxicol. 2019 Jun;38(2):141-155.

Patlewicz G, Lizarraga L, Rua D, Allen DG, Daniel A, Fitzpatrick SC, et al. Exploring current read-across applications and needs among selected U.S. federal agencies. Regul Toxicol Pharmacol. 2019 Aug;106:197-209.

Poston R, Hill R, Allen C, Casey W, Gatewood D, Levis R, et al. Achieving scientific and regulatory success in implementing non-animal approaches to human and veterinary rabies vaccine testing: A NICEATM and IABS workshop report. Biologicals 60, July 2019:8-14.

Strickland J, Daniel AB, Allen D, Aguila C, Ahir S, Bancos S, Craig E, Germolec D, Ghosh C, Hudson NL, Jacobs A, et al. Skin sensitization testing needs and data uses by U.S. regulatory and research agencies. Arch Toxicol. 2019 Feb;93(2):273-291.

Wei Z, Sakamuru S, Zhang L et al. Identification and profiling of environmental chemicals that inhibit the TGFβ/SMAD signaling pathway. Chem. Res. Toxicol. 2019, 32, 12, 2433–2444.

Resources for You

Advancing Alternative Methods at FDA

FDA's Predictive Toxicology Roadmap

Back to Top