Important update: Healthcare facilities
CDC has updated select ways to operate healthcare systems effectively in response to COVID-19 vaccination. Learn more
UPDATE
Given new evidence on the B.1.617.2 (Delta) variant, CDC has updated the guidance for fully vaccinated people. CDC recommends universal indoor masking for all teachers, staff, students, and visitors to K-12 schools, regardless of vaccination status. Children should return to full-time in-person learning in the fall with layered prevention strategies in place.
UPDATE
The White House announced that vaccines will be required for international travelers coming into the United States, with an effective date of November 8, 2021. For purposes of entry into the United States, vaccines accepted will include FDA approved or authorized and WHO Emergency Use Listing vaccines. More information is available here.
UPDATE
Travel requirements to enter the United States are changing, starting November 8, 2021. More information is available here.

Personal Protective Equipment: Questions and Answers

Personal Protective Equipment: Questions and Answers
Updated Apr. 9, 2021
What are you looking for?
×
On This Page

This document is intended to address frequently asked questions about personal protective equipment (PPE).

Gowns

  • CDC’s guidance for Considerations for Selecting Protective Clothing used in Healthcare for Protection against Microorganisms in Blood and Body Fluids outlines the scientific evidence and information on national and international standards, test methods, and specifications for fluid-resistant and impermeable gowns and coveralls used in healthcare.
  • Many organizations have published guidelines for the use of personal protective equipment (PPE) in medical settings. The American National Standards Institute (ANSI) and the Association of the Advancement of Medical Instrumentation (AAMI): ANSI/AAMI PB70:2012 describes the liquid barrier performance and a classification of surgical and isolation gowns for use in health care facilities.
  • As with any type of PPE, the key to proper selection and use of protective clothing is to understand the hazards and the risk of exposure. Some of the factors important to assessing the risk of exposure in health facilities include source, modes of transmission, pressures and types of contact, and duration and type of tasks to be performed by the user of the PPE. (Technical Information Report (TIR) 11 [AAMI 2005]).
  • For gowns, it is important to have sufficient overlap of the fabric so that it wraps around the body to cover the back (ensuring that if the wearer squats or sits down, the gown still protects the back area of the body).

Nonsterile, disposable patient isolation gowns, which are used for routine patient care in healthcare settings, are appropriate for use by patients with suspected or confirmed COVID-19.

  • While the transmissibility of COVID-19 is not fully understood, gowns are available that protect against microorganisms. The choice of gown should be made based on the level of risk of contamination. Certain areas of surgical and isolation gowns are defined as “critical zones” where direct contact with blood, body fluids, and/or other potentially infectious materials is most likely to occur. (ANSI/AAMI PB70).
  • If there is a medium to high risk of contamination and need for a large critical zone, isolation gowns that claim moderate to high barrier protection (ANSI/AAMI PB70 Level 3 or 4) can be used.
  • For healthcare activities with low, medium, or high risk of contamination, surgical gowns (ANSI/AAMI PB70 Levels 1-4), can be used. These gowns are intended to be worn by healthcare personnel during surgical procedures.
  • If the risk of bodily fluid exposure is low or minimal, gowns that claim minimal or low levels of barrier protection (ANSI/AAMI PB70 Level 1 or 2) can be used. These gowns should not be worn during surgical or invasive procedures, or for medium to high risk contamination patient care activities.

  • CDC’s guidance for Considerations for Selecting Protective Clothing used in Healthcare for Protection against Microorganisms in Blood and Body Fluids provides additional comparisons between gowns and coveralls.
  • Gowns are easier to put on and, in particular, to take off. They are generally more familiar to healthcare workers and hence more likely to be used and removed correctly. These factors also facilitate training in their correct use.
  • Coveralls typically provide 360-degree protection because they are designed to cover the whole body, including the back and lower legs, and sometimes the head and feet as well. Surgical/isolation gowns do not provide continuous whole-body protection (e.g., they have possible openings in the back, and typically provide coverage to the mid-calf only).
  • The level of heat stress generated due to the added layer of clothing is also expected to be less for gowns when compared to coveralls due to several factors, such as the openings in the design of gowns and total area covered by the fabric.

  • Check to see if your facility has guidance on how to don and doff PPE.  The procedure to don and doff should be tailored to the specific type of PPE that you have available at your facility.
  • If your facility does not have specific guidance, the CDC has recommended sequences for donning and doffing of PPE.pdf icon
  • It is important for Health Care Providers (HCP) to perform hand hygiene before and after removing PPE. Hand hygiene should be performed by using alcohol-based hand sanitizer that contains 60-95% alcohol or washing hands with soap and water for at least 20 seconds. If hands are visibly soiled, soap and water should be used before returning to alcohol-based hand sanitizer.

Unlike patient care in the controlled environment of a healthcare facility, care and transport by EMS present unique challenges because of the nature of the setting. Coveralls are an acceptable alternative to gowns when caring for and transporting suspect COVID-19 patients.  While no clinical studies have been done to compare gowns and coveralls, both have been used effectively by healthcare workers in clinical settings during patient care. CDC’s Considerations for Selecting Protective Clothing used in Healthcare for Protection against Microorganisms in Blood and Body Fluids guidance provides a comparison between gowns and coveralls, including test methods and performance requirements. Coveralls typically provide 360-degree protection because they are designed to cover the whole body, including the back and lower legs, and sometimes the head and feet as well.  This added coverage may be necessary for some work tasks involved in medical transport. However, coveralls may lead to increased heat stress compared to gowns due to the total area covered by the fabric. Training on how to properly remove (doff) a coverall is important to prevent self-contamination. Comparatively, gowns are easier to put on and, in particular, to take off.

Gloves

Nonsterile disposable patient examination gloves, which are used for routine patient care in healthcare settings, are appropriate for the care of patients with suspected or confirmed COVID-19.

  • The American Society for Testing and Materials (ASTM)external icon has developed standards for patient examination gloves.
  • Standard specifications for nitrile gloves, natural rubber gloves, and polychloroprene gloves indicate higher minimum tensile strength and elongation requirements compared to vinyl gloves.1,2,3,4
  • The ASTM has developed standards for patient examination gloves. Length requirements for patient exam gloves must be a minimum of 220mm-230mm depending on glove size and material type.1,2,3,4

CDC Guidance does not recommend double gloves when providing care to suspected or confirmed 2019-COVID patients.

According to CDC Guidance, extended length gloves are not necessary when providing care to suspected or confirmed COVID-19 patients. Extended length gloves can be used, but CDC is not specifically recommending them at this time.

  • Check to see if your facility has guidance on how to don and doff PPE. The procedure to don and doff should be tailored to the specific type of PPE that you have available at your facility.
  • If your facility does not have specific guidance, the CDC has recommended sequences for donning and doffing of PPEpdf icon.
  • It is important for HCP to perform hand hygiene after removing PPE. Hand hygiene should be performed by using an alcohol-based hand sanitizer that contains 60-95% alcohol or washing hands with soap and water for at least 20 seconds.  If hands are visibly soiled, soap and water should be used before returning to alcohol-based hand sanitizer.

Respirators

Most often, spread of respiratory viruses from person-to-person happens among close contacts (within 6 feet). Recent studies indicate that people who are infected but do not have symptoms likely also play a role in the spread of COVID-19. CDC recommends everyday preventive actions to prevent the spread of respiratory viruses, such as avoiding people who are sick, avoiding touching your eyes or nose, and covering your cough or sneeze with a tissue. People who are sick should stay home and not go into crowded public places or visit people in hospitals. Workers who are sick should follow CDC guidelines and stay home when they are sick.

A respirator is a personal protective device that is worn on the face or head and covers at least the nose and mouth. A respirator is used to reduce the wearer’s risk of inhaling hazardous airborne particles (including infectious agents), gases or vapors. Respirators, including those intended for use in healthcare settings, are certified by the CDC/NIOSH.

An N95 FFR is a type of respirator which removes particles from the air that are breathed through it. These respirators filter out at least 95% of very small (0.3 micron) particles. N95 FFRs are capable of filtering out all types of particles, including bacteria and viruses.

  • Infographic: Understanding the difference between surgical masks and N95 respiratorspdf icon
  • N95 respirators reduce the wearer’s exposure to airborne particles, from small particle aerosols to large droplets. N95 respirators are tight-fitting respirators that filter out at least 95% of particles in the air, including large and small particles.
  • Not everyone is able to wear a respirator due to medical conditions that may be made worse when breathing through a respirator. Before using a respirator or getting fit-tested, workers must have a medical evaluation to make sure that they are able to wear a respirator safely.
  • Achieving an adequate seal to the face is essential. United States regulations require that workers undergo an annual fit test and conduct a user seal check each time the respirator is used. Workers must pass a fit test to confirm a proper seal before using a respirator in the workplace.
  • When properly fitted and worn, minimal leakage occurs around edges of the respirator when the user inhales. This means almost all of the air is directed through the filter media.
  • Unlike NIOSH-approved N95s, facemasks are loose-fitting and provide only barrier protection against droplets, including large respiratory particles. No fit testing or seal check is necessary with facemasks. Most facemasks do not effectively filter small particles from the air and do not prevent leakage around the edge of the mask when the user inhales.
  • The role of facemasks is for patient source control, to prevent contamination of the surrounding area when a person coughs or sneezes.  Patients with confirmed or suspected COVID-19 should wear a facemask until they are isolated in a hospital or at home. The patient does not need to wear a facemask while isolated.

  • A surgical N95 (also referred as a medical respirator) is recommended only for use by healthcare personnel (HCP) who need protection from both airborne and fluid hazards (e.g., splashes, sprays). These respirators are not used or needed outside of healthcare settings. In times of shortage, only HCP who are working in a sterile field or who may be exposed to high velocity splashes, sprays, or splatters of blood or body fluids should wear these respirators, such as in operative or procedural settings. Most HCP caring for confirmed or suspected COVID-19 patients should not need to use surgical N95 respirators and can use standard N95 respirators.
  • If a surgical N95 is not available for use in operative or procedural settings, then an unvalved N95 respirator may be used with a faceshield to help block high velocity streams of blood and body fluids.

The requirements for surgical N95 respirators that make them resistant to high velocity streams of body fluids and help protect the sterile field can result in a design that has a higher breathing resistance (makes it more difficult to breath) than a typical N95 respirator. Also, surgical N95 respirators are designed without exhalation valves which are sometimes perceived as warmer inside the mask than typical N95 respirators. If you are receiving complaints, you may consider having employees who are not doing surgery, not working in a sterile field, or not potentially exposed to high velocity streams of body fluids wear a standard N95 with an exhalation valve.

Yes, an N95 filtering facepiece respirator will protect you and provide source control to protect others. A NIOSH-approved N95 filtering facepiece respirator with an exhalation valve offers the same protection to the wearer as one that does not have a valve. As source control, findings from NIOSH research suggest that, even without covering the valve, N95 respirators with exhalation valves provide the same or better source control than surgical masks, procedure masks, cloth masks, or fabric coverings. In general, people wearing NIOSH-approved N95s with an exhalation valve should not be asked to use one without an exhalation valve or to cover it with a face covering or mask. However, an N95 filtering facepiece respirator with a valve may not provide the same level of source control as an N95 without a valve. To make an N95 have similar source control to one without a valve, follow the manufacturer’s instructions to cover the valve.

Note that NIOSH-approved N95 respirators with an exhalation valve are not fluid resistant. Therefore, in situations where a fluid resistant respirator is indicated (e.g., in surgical settings), people should wear a surgical N95 or, if a surgical N95 is not available, cover their respirator with a surgical mask or a face shield.  Be careful not to compromise the fit of the respirator when placing a facemask over the respirator.

Until more is understood on exhalation valves, elastomeric respirators with unfiltered exhalation valves should not be used as source control in surgical and other healthcare settings due to concerns that air coming out of the exhalation valve may contaminate the sterile field. The NIOSH Certified Equipment List identifies the elastomeric respirators without exhalation valves or with filtered exhalation valves that may be used in surgical settings.

The NIOSH approval number and approval label are key to identifying NIOSH-approved respirators. The  NIOSH approval label can be found on or within the packaging of the respirator or sometimes on the respirator itself. The required labeling of NIOSH-Approved N95 filtering facepiece respiratorspdf icon  includes the NIOSH name, the approval number, filter designations, lot number, and model number to be printed on the respirator. You can verify that your respirator approvals are valid by checking the NIOSH Certified Equipment List (CEL).

When NIOSH becomes aware of counterfeit respirators or those misrepresenting NIOSH approval on the market, these respirators are posted on the Counterfeit Respirators / Misrepresentation of NIOSH-Approval webpage to alert users, purchasers, and manufacturers.

NIOSH does not require approved N95 filtering facepiece respirators (FFRs) be marked with an expiration date. If an FFR does not have an assigned expiration date, you should refer to the user instructions or seek guidance from the specific manufacturer on whether time and storage conditions (such as temperature or humidity) are expected to have an effect on the respirator’s performance and if the respirators are nearing the end of their shelf life.

In times of increased demand and decreased supply, consideration can be made to use N95 respirators past their intended shelf life. However, the potential exists that the respirator will not perform to the requirements for which it was certified. Over time, components such as the strap and nose bridge may degrade, which can affect the quality of the fit and seal. Prior to use of N95 respirators, the HCP should inspect the respirator and perform a seal check. Additionally, expired respirators may potentially no longer meet the certification requirements set by NIOSH. For further guidance, visit Release of Stockpiled N95 Filtering Facepiece Respirators Beyond the Manufacturer-Designated Shelf Life: Considerations for the COVID-19 Response.

Monitoring PPE supply inventory and maintaining control over PPE supplies may help prevent unintentional product losses that may occur due to theft, damage, or accidental loss. Inventory systems should be employed to track daily usage and identify areas of higher than expected use.  This information can be used to implement additional conservation strategies tailored to specific patient care areas such as hospital units or outpatient facilities.  Inventory tracking within a health system may also assist in confirming PPE deliveries and optimizing distribution of PPE supplies to specific facilities.

Footnotes

1ASTM D6319-Standard Specification for Nitrile Examination Gloves for Medical Applications

2ASTM D3578 Standard Specification for Rubber Examination Gloves

3ASTM D5250 Standard Specification for Poly(vinyl chloride) Gloves for Medical Application

4ASTMD 6977 Standard Specification for Polychloroprene Examination Gloves for Medical Application