

#### Molecular-Based Devices (HEA, HLA, HNA and HPA)

#### **Zhugong "Jason" Liu, PhD** Division of Blood Components and Devices Office of Blood Research and Review CBER June 16, 2019



#### **Overview**

- Molecular Erythrocyte Antigen Typing Devices
  - Previously Approved Devices
  - Format of Modular PMA submissions
  - Major PMA Content
  - Quality Control (QC) Material
  - Modifications to an Approved PMA
- HLA, HPA and HNA Typing Devices

- 510(k) submission content



### Molecular Erythrocyte Antigen Typing Devices

### **Previously Approved Devices**

- Multiplex molecular assays
  - PreciseType<sup>™</sup> HEA Molecular BeadChip Test: 36
    blood group antigen phenotypes and a mutation in the beta-globin gene (hemoglobin S)
  - ID CORE XT<sup>™</sup>: 29 polymorphisms, 53 alleles and 37 antigens
- Submitted as modular PMAs



- Suggested major content for each module
  - Module 1 CMC
  - Module 2 Non-clinical studies
  - Module 3 Software (if applicable)
  - Module 4 (final Module) Clinical studies, labeling
- Address the identified deficiencies before submitting the next module, or address them in the final module

# Format of Modular PMA submissions (2

- Include the following in the first module:
  - Intended Use
  - Instructions for Use
  - Device Description
- For the final module:
  - Notify FDA before submission
  - Include responses to all outstanding deficiencies
  - Provide any additional information required for a complete PMA submission



### **Traditional PMA**

- Submit all PMA data at the same time, regardless of when testing is completed
- PMA review timeline:
  - 320 Days for submissions that require Advisory Committee input (PreciseType - Blood Products Advisory Committee meeting)
  - 180 Days for submissions that do not require Advisory Committee input (ID CORE XT)

### **CMC Information**

- Include the following:
  - Detailed summary of device production
  - Device Master Record (DMR) of the subject device, such as
    - Production process specifications including the final manufacturing procedures (flow diagram)
    - Quality assurance procedures and specifications
    - Packaging and labeling specifications
    - Installation, maintenance, and servicing procedures and methods
  - Description of Facilities and Utilities

### **CMC Information (2)**



#### Validation lots

- At least three distinct validation lots (produced using the final manufacturing procedures)
  - One lot manufactured using raw material near its expiration date

### **CMC Information (3)**



- If the test kit component contains preservatives
  - Preservative effectiveness studies for applicable component
- If microbiologically controlled manufacturing
  - Provide bioburden limit, pre-filtration bioburden level (if applicable)
  - Microbial interference studies
  - In-process or release testing for bioburden
  - Level of microbial contamination in the facility during manufacturing

### **Non-clinical Studies**



- Blood sample storage time before DNA extraction
- DNA sample preparation (DNA extraction methods)
- Purified DNA sample stability
- Assay Limit of Detection (LOD)
- Assay Guard Band
- Carryover/Cross Contamination

### Non-clinical Studies (2)



- Interfering Substances
- Shipping
- Reagent stability including open-vial
- Cross Hybridization Studies
- Lot-to-lot Reproducibility Study
- Accuracy Study
- Submit any other non-clinical studies needed to demonstrate the device's performance

### **Multiplex Assay Considerations**



- Submit information to support the prediction of each phenotype from polymorphism/genotype data
- Samples tested should cover as many primers/probes as possible and different genetic variants
- Determine number of invalid calls used to declare an entire test/sample invalid
- Determine negative control run validity criteria

### **Accuracy Study Considerations**

- Use pre-selected samples to demonstrate that the test can accurately identify the phenotypes listed in the intended use statement
- Describe how the samples were wellcharacterized
  - Characterize antigen phenotypes using FDA-licensed reagents or approved molecular tests if available
  - Otherwise, you may predict phenotypes using bidirectional sequencing

# **Accuracy Study Considerations (2)**



- Include comparison to bidirectional sequencing or an FDA-approved molecular test if reporting polymorphisms/genotypes as final results
- If DNA sequencing is used to characterize samples or to investigate discrepancies
  - Use independently designed and validated primers for sequencing
  - Independently convert the sequencing results to phenotypes

## **Accuracy Study Considerations (3)**



- Internal accuracy study
  - Acceptance criteria:
    - The lower bound of the one-sided 95% confidence interval (CI) should be > 99%
    - For rare phenotypes with fewer than 299 samples – 100% agreement by point estimate
  - Analyze data and apply the criteria to each antigen phenotype (and genotype, if claimed), not to a blood group system

### **DNA Concentration and Quality**

- Submit recommended nominal DNA concentration for assay based on LOD
  - May use the nominal DNA concentration rather than the entire range for performance studies
- DNA quality consideration
  - May accept commonly recommended OD A260/A280 ratios for well-established technologies
  - A much wider range should be supported by adequate data



#### **Assay Guard Band Studies**

- Comprehensively validate assay parameters outlined in the Instructions for Use
  - May test together with the assay QC material to demonstrate the QC material is sensitive to anticipated analytical variables



#### Shipping, Drop Test and Stability Studies

- Use actual packaging configurations
- Challenge the worst case shipping conditions
- Show functionality of the kits, not just visual inspection of the kits

### Software



- Complete all development and software testing before submitting the PMA software module
- Delineate limitations of the software in the User Manual
- Recommend that no results are provided for invalid runs or invalid test samples

# Software (2)



- Guidance for Industry and FDA Staff, Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices issued May 11, 2005
- General Principles of Software Validation issued January 11, 2002
- Guidance for Industry and Food and Drug Administration Staff Design Considerations and Premarket Submission Recommendations for Interoperable Medical Devices issued September 6, 2017
- Guidance for Industry and FDA Staff, Guidance for the Content of Premarket Submissions for Management of Cybersecurity in Medical Devices issued October 2, 2014

### **Clinical Comparison Studies**

- At least three sites representing US population
- Test random samples
  - Could be leftover de-identified samples
  - Collected from donors and patients
- Use at least two reagent lots
- Compare to phenotype results for antigens if FDAlicensed regents or approved molecular tests are available; otherwise, compare to phenotype results predicted from bidirectional sequencing
- For genotype results, compare to results from FDA approved test or bidirectional sequencing

### **Clinical Comparison Studies (2)**



- Investigate and report any discrepancies
- Conduct the study in accordance with the study protocol; report any study protocol deviations
- Calculate all agreement using initial test results prior to discrepancy resolution
- Apply acceptance criteria to each antigen phenotype (and genotype, if applicable)

# Precision Study (Reproducibility and FDA Repeatability)

- Test panel of well-characterized DNA samples
  - The samples should cover different types of genetic variants targeted by the assay, and most, if not all, phenotypes
- Use at least three sites
- Capture possible sources of variation including within run, run-to-run, lot-to-lot, day-to-day, operator-tooperator, instrument-to-instrument and site-to-site variation
- Lot-to-lot study can be performed at an internal site
- Investigate and report any disagreement

### Labeling



- 21 CFR 809.10 for labeling requirements
  - Intended Use include the polymorphisms, alleles and antigens that the device interrogates and reports as final results
  - Limitations of the procedure discuss the genetic variants that are not targeted by the test but known to affect phenotype prediction
- Include labeling of other components such as user manuals
- Subject to the requirements of the Unique Device Identification (UDI) Rule (21 CFR 801.20)

### **Quality Control Material**



- If not human gDNA (e.g., plasmid DNA)
  - Demonstrate the QC material is as sensitive as actual human gDNA to anticipated analytical variables
- Limitation: Not intended to monitor the DNA extraction
- FDA guidance: Assayed and Unassayed Quality Control Material

https://www.fda.gov/media/71538/download

# Device Modifications After Initial PMA Approval

• FDA guidance: *Modifications to Devices* Subject to Premarket Approval (PMA) - The PMA Supplement Decision-Making Process

https://www.fda.gov/media/81431/download

- Traditional PMA
- 180 Day supplement
- 30-Day Notice

- Panel-Track supplement
- Real-Time supplement
- Special supplement/CBE
- See 21 CFR 814.39
- Annual Report: changes that do not affect device's safety or effectiveness

# FDA

# **Device Modifications: New Molecular Variants**

- Manufacturers may become aware of new molecular variants after approval for example, through feedback from customers or review of literature
- Applicable package insert changes should be incorporated
- New molecular variants or markers should be evaluated through the design and development process, and potentially incorporated into the device following FDA review and approval



### HLA, HPA and HNA Typing Devices



### HLA, HPA and HNA Typing Devices

- Require 510(k) submission
- General recommendations for HLA 510(k) submission are in FDA guidance
  - Recommendations for Premarket Notification (510(k))
    Submissions for Nucleic Acid-Based Human Leukocyte
    Antigen (HLA) Test Kits Used for Matching of Donors and
    Recipients in Transfusion and Transplantation
    https://www.fda.gov/media/87197/download
- Some recommendations in the HLA device guidance may apply to HPA and HNA assays

### **HLA Genotyping Tests**

- Submit an internal accuracy study tested with nationally or internationally recognized wellcharacterized samples
  - For ambiguous typing results, concordance is determined if one pair alleles is the same as the known result
- For precision study, the list of ambiguities (if any) should be compared
- Submit a traditional 510(k) for a new test kit locus

#### **Summary**



- Molecular erythrocyte antigen typing test: modular PMA or traditional PMA
- Major content of PMA: CMC, non-clinical studies, software, clinical studies and labeling
- QC material: sensitive to anticipated analytical variables
- Monitor new variants and make changes to an approved test as needed
- HLA, HNA and HPA typing devices: 510(k)



#### **Thanks!**

Zhugong "Jason" Liu zhugong.liu@fda.hhs.gov