

A Biocompute Object For FDA-ARGOS Reference Genomes

Heike Sichtig, MS/PhD

Subject Matter Expert Principal Investigator

Center for Devices
Division of Microbiology Devices
US Food and Drug Administration

2017 HTS Computational Standards for Regulatory Sciences Workshop Mar 16-17, NIH in Bethesda, MD, USA

Disclaimer

The information in these materials is not a formal dissemination of information by FDA and does not represent agency position or policy.

FDA Tools for ID NGS Dx

FDA-ARGOS Database

:microbial reference genomes for regulatory use

- ✓ New and flexible regulatory pathway
 - Enable In-silico validation
 - Reduce testing burden
- Reference database

Interagency ID NGS Working Group

: team of NGS agency-wide subject matter experts

- ✓ ID NGS Dx Advisory Board
- ✓ Consensus FDA-ARGOS genome vetting
- ✓ Keep current on state of the art
- √ Tackle open questions (i.e. sens/spec)

FDA-ARGOS: Goal and Use

- Public Vetted Resource
- Microbial Reference-Grade Genomes for Regulatory Use
- US-Initiated
- Medical Countermeasures
- Common clinical
- ➤ Near neighbors
- Coverage for US Needs
- ➤ Currently not funded to support

 Needs for Developing World and
 associated Global Standards

FDA-ARGOS Genomes In-Silico Reference Comparator **Database Datasets** for NGS Dx Regulatory Approval

NCBI Project PRJNA231221

Reference Genome Gap: Ebola

Endemic African Diseases

Chikungunya virus

Crimean-Congo

Hemorrhagic Fever virus

Dengue virus serotype 1

Dengue virus serotype 2

Dengue virus serotype 3

Dengue virus serotype 4

Ebola virus

Lassa virus

Marburg virus (Angola)

Marburg virus (Ci67)

Plasmodium falciparum

Rift Valley fever virus

West Nile virus

Yellow fever virus

Zika virus

Standardized Reference Database

Correct Diagnosis:

- True Positives
 - True Negatives

✓ Minimize Misdiagnosis

✓ Evolutionary Change

✓ Rapid Diagnostics

In-Silico Comparator Example

DoD Collaboration

- Sequencing-based diagnostic device
- Generate FDA-ARGOS Reference Genomes
- Datasets for Regulatory Approval
- > Enable In-Silico Data Analysis

Endemic African Diseases

Chikungunya virus

Crimean-Congo Hemorrhagic Fever virus

Dengue virus serotype 1

Dengue virus serotype 2

Dengue virus serotype 3

Dengue virus serotype 4

Ebola virus

Lassa virus

Marburg virus (Angola)

Marburg virus (Ci67)

Plasmodium falciparum

Rift Valley fever virus

West Nile virus

Yellow fever virus

Zika virus

FDA-ARGOS microbial genomes are generated in 3 phases:

Phase 1- collection of a previously identified microbe and nucleic acid extraction

Phase 2- sequencing and de novo assembly at UMD

Phase 3- Vetting and data deposit in NCBI databases

FDA-ARGOS Reference Genome Characteristics:

- High depth of base coverage.
- Placed within a pre-established phylogenetic tree.
- Minimum of 20X over 95 percent of the assembled core genome.
- Sample specific metadata, raw reads, assemblies, annotation and details of the bioinformatics pipeline are available.

Bacteria

Hybrid sequencing approach using Illumina HiSep2000 and the PacBio RSII platform to generate industry standard high quality sequences. Use of multiple assemblers. 3 sets of de novo genome assemblies will be produced 1) Illumina only, 2) PacBio only, and 3) Illumina/PacBio hybrid

Virus

 IGS will use existing and well-established laboratory and bioinformatics pipelines within the Genomic Resource Center. A three-prong Illumina sequencing approach followed by customized assembly

FDA-ARGOS Genome Status

- There are 827 (bacterial, viral) samples currently at various stages within the FDA-ARGOS sequencing pipeline.
- **322** (bacterial, viral) genomes from other efforts (i.e. TTC) to be qualified.
- Goal is to collect and sequence 2000 gap organisms

Overall pipeline

Collaborator -> FDA OSEL -> UMD/IGS -> NCBI/FDA Collaborator -> USAMRIID -> UMD/IGS -> NCBI/FDA

NCBI BioProject 231221

Houses FDA-ARGOS genomes generated with the IGS-UMD Sequencing pipeline

FDA-ARGOS BioCompute Object

- Common language
- Community developed harmonized standard for bioinformatics pipeline
- Considering to use **Biocompute Object** to streamline external genome submission for the FDA ARGOS database

External Genome Submission

External Genome BioCompute Object


```
GW Collaborator provided this JSON-
 "name": "Bordetella pertussis ",
                                                          format BioCompute Object Example
 "authors": [{"name": "Submitter Name"}],
 "description domain":{
"execution domain": {
    "platform": "unix",
    "pipeline_version": "1.0",
    "env parameters": ["64-bit processor","2GB RAM"],
    "driver": "perl5.6",
    "script": "https://github.com/biocomputeobjects//HTSCSRS/tree/master/11 argos/argos.pl",
    "prerequisites": [
      {"name":"Celera","version":"8.2"},
     {"name":"NCBIProkaryoticGenomeAnnotationPipeline","version":"3.1"}
  "io domain": {
    "reference uri": [ "NA"],
    "input uri list": [ "example.fasta" ],
    "output uri list": [ "https://www.ncbi.nlm.nih.gov/biosample/SAMN03996260",
                       "https://www.ncbi.nlm.nih.gov/sra?LinkName=biosample_sra&from_uid=3996260",
                       "https://www.ncbi.nlm.nih.gov/nuccore/991852837" ]
```

Future Consideration

- NGS data submitted as part of regulatory submission
 - BioCompute Object for bioinformatics pipeline

