
Notes from the editors 
Time flies as we are well into the second half of 2022, we continue to adapt to the new normal with 
the evolving COVID-19 pandemic. From what we hear, many of us are able to get back to more in-
person activities and travel. This summer will mark the return of the in person JSM after two years 
in hiatus and in September there will be the Regulatory Industry Statistics Workshop (RISW) in 
Maryland. In the past year or so, we have seen a growing number of “real-world evidence” (RWE) 
guidances from the FDA and other regulatory agencies and research institutions.  Our second issue 
of 2022 will be dedicated to the theme of RWE with featured articles from industry, government, 
and academia.

Under the RWE theme, we open with an update from the ASA BIOP working group on RWE, writ-
ten by Mark Levenson (FDA) and Weili He (Abbvie). Next, we feature an article by Thomas 
Brown (Syapse) and members of the RWE Alliance. They introduce the coalition and elaborate on 
their mission which is to harness RWE to improve the lives of patients. This is followed by an article 
by a cross-industry collaboration. Binbing Yu (AstraZeneca), Qing Li (MorphoSys), and Harry 
Yang (Fate Therapeutics) provide a brief overview of real-world data and RWE in drug develop-
ment from industry perspectives. Next up is a feature article contribution from Xiang Zhang (CSL 
Behring) and Douglas Faries (Eli Lilly), on the topic of the role of statisticians in the RWE era. They 
provide a vision towards improving RWE to inform healthcare decision making. Our fifth and sixth 
feature articles are from NIH grantees of RWE projects. Shu Yang (NCSU) and Xiaofei Wang 
(Duke) outline approaches for real-world data-integrated randomized clinical trial analysis, which is 
the primary focus on their NIHR01 project funded by the NIA. This is followed by an article writ-
ten by Chenqi Fu (Penn State), Herbert Pang (Genentech) and Jiawen Zhu (Genentech), on 
evaluating the impact of different randomization ratios in designing hybrid control trials on their 
NIHU01 project funded by the FDA. After the featured articles, we have a contribution from non-
clinical statistics written by Aili Cheng (Pfizer) and her Pfizer colleagues. They discuss chemistry, 
manufacturing, and control (CMC) statistical support for COVID-19 vaccine development. We would 
like to highlight ASA BIOP’s effort to facilitate the career development of statisticians, data scientists 
and quantitative researchers, and with that we had a fireside chat with Sandeep Menon (Pfizer) on 
leadership development. Sandeep shares a lot of great experiences and advice for us, especially in the 
area of going beyond statistics in your career. Later in this issue, you will find a summary report from 
a virtual discussion organized by the ASA BIOP Statistical Methods in Oncology Scientific Working 
Group, the FDA Oncology Center of Excellence, and LUNGevity Foundation. The topic of discus-
sion is “Time-to-event Endpoints in Cancer Trials in the Presence of Non-Proportional Hazards”. The 
final article is from the CSM/QTL Special Interest Group on “Central Statistical Monitoring – why 
we need to know more” by Tim Rolfe (GSK), Susan Talbot (Amgen), Rakhi Kilaru (PPD), and 
Sharon Love (UCL). The 40th year anniversary of the BioP section will be celebrated in person 
at the 40+1 events taking place at the JSM and the RISW, you may check out the flyer prepared 
by the organizing committee. In the last section, We also share an update of upcoming confer-
ences which may be of interest to the BIOP community. The editors would like to thank all the 
authors and interviewee of the articles for their time and contributions, and wish that every-
one enjoys this second issue of the BIOP Report in 2022.
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ASA BIOP REAL-WORLD EVIDENCE 
SCIENTIFIC WORKING GROUP UPDATE
Mark Levenson (FDA CDER) and Weili He (Abbvie)

As reported in the BIOP report in the summer of 2019, a 
Scientific Working Group (SWG) on real-world evidence 
(RWE) was formed in 2018. The group’s purpose is to 
ensure that statisticians are well-versed in this rapidly 
developing field and the field benefits from statistical 
research and participation. Since the 2019 report, there 
has been many developments in RWE and the SWG has 
made substantial progress. In this issue, we provide some 
updates on recent regulatory guidances in RWE and the 
progress of the SWG. For the background and rationale 
in setting up the SWG along with the SWG specific 
objectives, please see the first report. 

Since the last update of the SWG in the summer of 
2019, we have seen the release of several new draft or final 
guidances from both FDA and EMA, as listed below. 
FDA:

•	 Real-World Data: Assessing Electronic Health 
Records and Medical Claims Data To Support 
Regulatory Decision-Making for Drug and 
Biological Products (September 2021)

•	 Data Standards for Drug and Biological Prod-
uct Submissions Containing Real-World Data 
(October 2021)

•	 Real-World Data: Assessing Registries to Sup-
port Regulatory Decision-Making for Drug and 
Biological Products (November 2021)

•	 Considerations for the Use of Real-World Data 
and Real-World Evidence to Support Regula-
tory Decision-Making for Drug and Biological 
Products (December 2021)

EMA: 
•	 Guideline on Registry-Based Studies (October 

2021)
These guidelines provide additional specificity on 

how to assess fit-for-use RWD sources, data standards, 
and general considerations on the use of RWE and 
RWD for regulatory decisions. 

Our phase 1 effort started in early 2018 and com-
pleted in the summary of 2020. The SWG submitted 

three manuscripts, as shown below, which were all 
accepted and published in the Statistics in Biopharma-
ceutical Research (SBR) journal in early 2021. 

1.	 Biostatistical Considerations When Using RWD 
and RWE in Clinical Studies for Regulatory Pur-
poses: A Landscape Assessment

2.	 The Current Landscape in Biostatistics of Real-
World Data and Evidence: Clinical Study Design 
and Analysis

3.	 The Current Landscape in Biostatistics of Real-
World Data and Evidence: Causal Inference Frame-
works for Study Design and Analysis. 

Our phase 2 effort started after the conclusion of the 
phase 1 effort in the summer of 2020. We divided the 
SWG into three subteams, working on the following 
three topics: 

•	 Team 1: Estimands - From Concepts to Applica-
tions in Real-World Setting

•	 Team 2: Statistical Consideration for Fit-For-Use 
Real-World Data to Support Regulatory Decision 
Making in Drug Development 

•	 Team 3: Examples of Applying Causal Inference 
Roadmap to RWE Clinical Studies

The membership in phase 2 consisted of representa-
tives from regulatory agencies, industry, and universities. 
Additional information on the SWG can be found here. 
The approach in phase 2 followed the same approach in 
phase 1: Each subteam conducted a focused literature 
review to address the following four questions for a given 
topic as appropriate: its regulatory context, a precise 
problem statement, a summary of current approaches, 
and a gap analysis. Each team took turns to report their 
findings during monthly tele-conferences. After nearly 2 
years of work by the SWG, we are happy to report that 
the SWG subteams have prepared three manuscripts, 
submitted or resubmitted to SBR in Q2 2022. 

We are currently planning on the phase 3 effort and 
will target to start that phase of the work in the coming 
months. We want to thank the lead Editor of the BIOP 
Report, Dr. Herb Pang from Genentech, for his invita-
tion for the update. n
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INTRODUCING THE REAL-WORLD EVIDENCE ALLIANCE: 

A COALITION DEDICATED TO 
HARNESSING REAL-WORLD EVIDENCE 
TO IMPROVE THE LIVES OF PATIENTS
Thomas Brown (Syapse), Marni Hall (IQVIA), Tara Isherwood (Syneos Health), Michelle Leavy (OM1), Irene Nunes (Flatiron 
Health), Lowell Schiller (Aetion), Lauren Silvis (Tempus), Aracelis Torres (Verana Health)

Real-world data (RWD) and real-world evidence 
(RWE) have advanced a number of therapeutic options 
for patients over the past several years. RWD can be 
collected from a variety of different sources: electronic 
health records; administrative claims and billing data; 
product and disease registries; and personal devices, 
wearables, and health applications. The curation, trans-
formation, and analysis of these data produce RWE—a 
new source of clinical evidence about a medical prod-
uct’s use, including its benefits and risks, to inform 
decisions made by regulators about these products.

Regulators and policymakers have recognized the 
need for new RWE policies to advance innovation 
crucial for continued improvements in patient care. 
Leading RWD and analytics organizations have come 
together to form a new coalition—the RWE Alliance—
to serve as a unified, expert voice to ongoing policy 
conversations. This article introduces the RWE Alliance 
and provides an overview of our policy priorities.

I.	 Who We Are and What We Do
The RWE Alliance formed in 2021 in response to the 

need to harness the collective insights of leaders in the 
RWD/RWE space to inform policymaking in the rap-
idly evolving area of healthcare and technology related 
to the generation and use of RWE. Congress included 
important language about the role of RWD/RWE in 
regulatory decision making in the 21st Century Cures 
Act (2016) and in the Food and Drug Administration 
Reauthorization Act (FDARA) (2017). The COVID-19 
pandemic further highlighted to the U.S. Food and Drug 
Administration (FDA), Congress, and stakeholders 

across the healthcare sector that RWE has the potential 
to increase knowledge about vaccines, drugs, devices, 
and diagnostics and make a real difference in the lives 
of patients. 

Although various groups and trade associations have 
advocated for policies to advance the use of RWE in 
regulatory decision making, the RWD and analytics 
organizations that generate, transform, and analyze 
RWD had no coordinated expert voice in these policy 
discussions. Thus, five RWD and analytics organiza-
tions—Aetion, Flatiron Health, IQVIA, Syapse, and 
Tempus—joined forces to create the RWE Alliance in 
May 2021. In April 2022, we announced the addition 
of five more organizations—ConcertAI, OM1, Syneos 
Health, Verana Health, and Verily—to the Alliance. 
The RWE Alliance engages with FDA and Congress to 
advocate for policies that benefit patients by advancing 
the use of RWE in regulatory decision making.

II.	 Objectives of the RWE Alliance
The Alliance envisions a future in which data col-

lected in everyday clinical practice will be used to gen-
erate evidence that informs regulatory decision making. 
To advance this goal, we have identified four policy 
priorities to guide our policy work. 

1.	 Advancing FDA’s RWE Framework

We support FDA’s efforts to develop policies to 
advance its RWE Framework.  As part of the 21st Cen-
tury Cures Act, Congress instructed FDA to publish 
a framework on the use of RWE for regulatory deci-
sion making. Since then, FDA has published a draft 

RETURN TO THE TABLE OF CONTENTS



BIOPHARMACEUTICAL REPORT SUMMER 2022	 4

framework and issued guidance on key RWD/RWE 
topics—including, most recently, on data derived from 
electronic health records, medical claims databases, 
and registries; data standards for submitting RWD for 
FDA’s review; and regulatory considerations for using 
RWD/RWE in FDA’s decision making. 

We support the ongoing work at FDA to advance 
the RWE framework and have shared our expertise by  
providing substantial comments on four recent FDA 
RWE guidance publications.  We aim to ensure that 
FDA’s RWE policies promote RWE across therapeutic 
areas and provide clear recommendations on the gen-
eration and use of high-quality RWD/RWE. We also 
believe it is crucial for regulators to remain flexible 
to accommodate technological and methodological 
advancements, given the rapid pace of innovation with 
respect to RWD/RWE.

2.	 Encouraging Use of RWE to  
Better Understand Treatment Effects in 
Underrepresented Populations

We support policies that promote the use of RWE to 
better understand how to treat underrepresented popula-
tions. Clinical trials do not always fully represent rel-
evant patient populations in real-world settings, which 
can exacerbate disparities in healthcare access and treat-
ment for underrepresented groups. RWE is well suited 
to provide FDA, healthcare providers, and patients with 
information on how treatments work for populations 
that clinical trial data do not capture. 

3.	 Enhancing Opportunities for RWE 
Organizations to Consult with FDA

We seek to establish opportunities for RWE organi-
zations to consult with FDA on issues relevant to the 
potential uses of RWE for regulatory decision making. 
As part of that work, we will share insights from the 
RWE industry with FDA and work with the Agency 
to establish opportunities for RWE organizations to 
engage the Agency on ways to improve RWD/RWE 
methodology and applications. 

4.	 Increasing Communication on the 
Generation and Use of RWE

Finally, we aim to solidify best practices for the use of 
RWE for regulatory purposes to encourage widespread 
understanding of RWE’s benefits and applications to 
patient care. We also support FDA’s efforts to provide 
appropriate transparency about the Agency’s review of 
RWE in marketing applications, as these public com-
munications will also help advance best practices with 
respect to RWE for regulatory purposes.

III.	To Learn More About Our Work
The RWE Alliance is excited about the potential that 

RWE has to transform the healthcare ecosystem and 
improve the lives of patients. If you would like to learn 
more about our work, we invite you to visit our website 
at www.rwealliance.org. 

References

1.	 U.S. Food & Drug Administration, Framework for 
FDA’s Real-World Evidence Program, https://www.
fda.gov/media/120060/download.

2 	 RWE Alliance, Policy Developments, https://rweal-
liance.org/rwe-policy-developments/. n
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A BRIEF OVERVIEW OF REAL-WORLD 
DATA AND REAL-WORLD EVIDENCE  
IN DRUG DEVELOPMENT FROM 
INDUSTRY PERSPECTIVES
Binbing Yu (AstraZeneca), Qing Li (MorphoSys), Harry Yang (Fate Therapeutics, Inc.)

 	

RCTs RWE

Outcome of interest Efficacy/safety Effectiveness/safety

Setting Research Real world

Patient population Homogeneous Heterogeneous

Population size Small – moderate Large - huge

Patient follow-up Fixed Variable 

Treatment Fixed Variable 

Attending physician Investigator Practitioner

Costs High Low

Generalizability Low – moderate Moderate - high

Control for bias Design and conduct Analysis

Table 1. Comparison of RCT and RWE1.	 Introduction 
Real world data (RWD) are data pertaining to patient 

health status and/or the delivery of health care collected 
from a variety of sources such as electronic health 
records (EHRs), claims and billing activities, pragmatic 
clinical trials, product and disease registries, patient-
generated data including in home-use settings, mobile 
or wearable devices. Real-world evidence (RWE) is 
the clinical evidence regarding the usage and potential 
benefits or risks of a medical product derived from 
the rigorous analysis of RWD with proper analytical 
methodology (FDA, 2016). Spurred by the 21st Century 
Cures Act in the United States and similar policy efforts 
in other countries, RWD and RWE are transforming the 
drug development process towards a new patient-centric 
paradigm. From an industry perspective, we review how 
biopharmaceutical companies leverage RWD/RWE to 
make informed decisions, and expedite the drug devel-
opment process. Following the drug development life-
cycles, we present how RWD/RWE can complement the 
randomized control trials (RCTs) from drug discovery, 
through exploratory and confirmatory clinical trials, 
regulatory approval, to post-marketing phases. Some 
successful examples are provided. We also discuss the 
challenges and future directions of maximizing the value 
of RWD/RWE in pharmaceutical R&D.

RWE consists of information collected during rou-
tine clinical practice whereas randomized control trials 
(RCTs) are conducted in highly selective populations in 
well-controlled settings. RCTs can provide evidence on 
the efficacy and safety of a drug, and have been the gold 
standard for evidence generation supporting regulatory 
approval (Kim et al. 2018). 

There are several major differences between RCT 
and RWE as shown in Table 1. For example, the pri-
mary objective of the RCT is to demonstrate efficacy 
and safety in a controlled environment. In contrast, the 
RWE is principally used to show the effectiveness of 
the treatment in diversified situations in the real-world 
setting. Although RCTs are considered as the gold stan-
dard for drug approval, there are several disadvantages 
of RCTs (Kim et al. 2018; Naidoo et al. 2021). While 
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the RCTs are often conducted in rigorously controlled 
conditions, thus can reduce bias and improve the inter-
nal validity of the analysis results, they also come with 
the drawbacks of high financial costs and long execu-
tion time. Often times, because of restrictive inclu-
sion and exclusion criteria, RCTs do not account for 
the broader patient population encountered in routine 
clinical practice and other specificities, e.g. vulnerable 
populations, ethnic differences, comorbid conditions, 
concomitant drugs, and differences in lifestyles. Fur-
thermore, RCTs are often of limited study duration and 
unable to assess long-term safety and effectiveness and 
the regular follow-up and close monitoring in most 
clinical trials do not reflect routine clinical practice. It 
is clear that RWE would complement traditional clini-
cal trial data, especially in the assessment of safety and 
efficacy in the real-world settings. 

2.	 Use of RWD/RWE in Drug 
Development

2.1.Preclinical and Drug Discovery Phase

In the preclinical and drug discovery phase, RWD 
can be used to depict the burden and epidemiology of 
diseases under study, to characterize the patients with 
unmet medical needs, and to understand the natural dis-
ease history of the target population. For example, the 
population-based cancer incidence, mortality, survival 
and prevalence data from the population-based cancer 
registries, e.g., the Surveillance, Epidemiology, and End 
Results (SEER) Program (NCI, 2022) and European 
Network of Cancer Registries (ENCR), provide authori-
tative and representative information about the burden 
and trends of cancer in the USA and Europe. 

RWD can be used to evaluate the biomarker preva-
lence and discover the target for the development of 
personalized medicine. For example, the whole genomic 
sequencing (WGS) data allows researchers to identify 
variants that differ between the reference population and 
may indicate a higher risk of disease and/or likelihood 
of responding to a specific treatment.  This can help 
prioritize early target discovery and select investigational 
drugs to be tested in the first human trials.  

2.2.	 Clinical Trial Design, Operating and 
Analysis

Historically, RWD has been used to help determine 
the treatment effect and sample sizes for powering 
RCTs. With careful design and patient selection, the 

RWD can be used to emulate the target clinical trials 
(Hernan and Robins, 2016). RWD can be utilized in 
the planning and execution of clinical trials, includ-
ing accelerated patient recruitment by applying trials 
inclusion/exclusion criteria against de-identified patient 
data from EHR databases to determine eligible patients, 
using analytics and selecting fast enrolling sites based 
on past performance such as the number of violations. 
Recently, RWD has been used to assess and enhance the 
inclusion and diversity of the under-represented patient 
population in clinical trials (FDA, 2020), and risk-based 
monitoring to mitigate data quality issues. RWD can 
also help assess the impact of inclusion and exclusion 
criteria on trial feasibility and inform the selection of 
site/country. 

Pragmatic clinical trials (PCTs), conducted in real-
world clinical practice settings, with typical patients and 
by qualified clinicians, can serve as a bridge between 
RWE and RCTs. In PCTs, investigators often relax 
inclusion criteria requirements and accept a broader and 
more representative patient population. However, the 
patients are still randomized to treatment and control 
groups. When properly designed and conducted, PCTs 
can both test the treatment effect and understand the 
differences of treatment effects in different health care 
settings. They can generate evidence to inform both 
regulatory and payer decision-making. For example, 
the DAPA-MI trial was a pioneering registry-based 
PCT that combines the RCT elements with innova-
tive, real-world trial elements (Usman et al. 2022). The 
unique design features led to a higher recruitment rate 
and lower overall costs in comparison to conventional 
clinical trials.

Borrowing from the external data in the real-world 
setting and historical clinical trials has received increas-
ing interest in drug development. Various statistical 
methods, including propensity-score matching, Bayes-
ian dynamic borrowing to form a synthetic control arm 
in single-arm trials or to augment control arms of RCTs 
have been proposed and implemented (Ho et al. 2021). 
For example, the Medical Device Innovation Consor-
tium (MDIC) published an External Evidence Methods 
(EEM) Framework which highlights the potential for 
incorporating data external to a clinical trial into the 
analysis of a medical device. (MDIC, 2022).

2.3.	Registration and Market Application 

RWE can be used to provide critical evidence for 
drug approval (Purpura et al. 2021). For example, FDA 
recently approved Prograf (tacrolimus) in combination 
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with other immunosuppressant drugs for preventing 
organ rejection in adult and pediatric patients receiv-
ing lung transplantation. The approval demonstrates 
that a well-designed, non-interventional (observational) 
study with reliable and relevant RWD, when compared 
to a suitable control, can be considered adequate for 
regulatory approval. As more drugs are approved by 
regulatory authorities either through the FDA orphan 
drug and breakthrough therapy designations or EMA 
Conditional Approval, using RWE to supplement the 
findings in RCTs helps avoid costly post-marketing 
trials and ensures early access. For example, Blina-
tumomab received accelerated approval for the treat-
ment of Philadelphia chromosome-negative relapsed or 
refractory B-cell precursor acute lymphocytic leukemia 
based on a single arm trial. For this effort, historical 
control data for 694 patients were extracted from RWD 
(FDA, 2018). 

2.4 Post Approval and Product Life-Cycle 
Management

RWE was traditionally used in the regulatory process 
through pharmacovigilance programs to understand the 
long-term safety of a drug or device in the real-world 
use. In 2008, the FDA launched the Sentinel Initiative 
to create a national electronic system, the Sentinel Sys-
tem, for medical product safety surveillance (Ball et al. 
2016). The Sentinel System has been used to evaluate 
the risk of stroke after using antipsychotics along with 
other indications.

From the product life cycle management perspec-
tive, effective insights gleaned from RWD bring about 
payer value propositions. RWE can bridge the gaps in 
evidence to guide payer decisions. RWD can provide 
evidence not addressed by RCTs, such as long-term 
effectiveness and safety, head-to-head drug compari-
sons, cost-effectiveness analyses, medication use and 
adherence patterns, identification of relevant responder 
and non-responder patient subpopulations, and patient-
reported outcomes (PROs) (Roberts and Ferguson, 
2021).  For example, the RWD from a retrospective 
cohort study showed promising results in reductions in 
HbA1c, weight, and insulin requirements for patients 
with type 1 diabetes who initiated a SGLT2 inhibitor 
adjunct to insulin. Individuals with higher baseline 
HbA1c and BMI demonstrated higher benefit (Palanca 
et al. 2022)

Last, RWE can be used to aid in the benefit-risk 
assessment of populations that are historically not 
included in RCTs. There have been several success-

ful regulatory approvals for label expansion such as 
broadening the label to include a pediatric population 
or updating approval for chemotherapeutic agents that 
are used in combination with other treatments. Based 
on RWE, the FDA approved Ibrance (palbociclib) for 
the treatment of men with HR+, HER2 metastatic breast 
cancer and the Sapien 3 device for Transcatheter Aortic 
Valve Replacement (TAVR).

3.	 Discussion
With the successes of RWD/RWE in various phases 

of pharmaceutical development, there is increasing 
demand and tremendous enthusiasm to revolutionize 
drug development. However, opportunities of using 
RWE come with a multitude of challenges. If not prop-
erly addressed, these challenges may compromise the 
validity of conclusions drawn from the RWD and the 
confidence in the RWE.

First, it is challenging to frame the clinical questions 
and identify relevant RWD. A team of statisticians, 
clinicians, epidemiologists and data scientists should 
work closely to clearly formulate the research questions 
and utilize appropriate statistical methods for the RWD. 
Second, difficulty getting access to patient level data 
due to platform or privacy restrictions also constrains 
the use of RWD. The legal and ethical requirements for 
data sharing vary widely from region to region. There 
is no clear regulatory and legal framework for integrat-
ing data from multiple sources and maintaining patient 
privacy and information security. Third, the lack of data 
quality standards and common data models also hamper 
the broad use of RWD.; there are still great barriers in 
technology and capabilities before the RWD can be 
fully used. Advances in informatics technology, data 
capturing and analytics are critical for the real-time 
and efficient use of RWD. Fourthly, robust statistical 
methods and data analytical tools are much needed for 
generating reliable RWE. Furthermore, the explosion 
of RWD calls for the increasing demand of qualified 
statisticians and data scientists who have the technical 
knowledge of statistics and programming as well as 
the medical background of the RWD. Last, because of 
the constantly changing landscape, there is not a clear 
regulatory pathway regarding marketing approval based 
on RWE. Recently, FDA (2018) published a framework 
for the RWE Program, which serves as the roadmap for 
more fully incorporating RWD/RWE in the regulatory 
paradigm.  In spite of daunting challenges, RWE has 
made many successful strides in the pharmaceutical 
industry and will continue to be the driving force of 
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medical innovations along with the advances in infor-
mation technology, advanced technology, effective col-
lations and open regulatory environment.

Disclosures: The authors are employees and holding 
stocks of respective companies. This article reflects the 
views of the authors and should not be construed to rep-
resent AstraZeneca, MorphoSys and Fate Therapeutics’ 
views or opinions.  
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STATISTICIANS IN THE RWE ERA – A 
VISION TOWARDS IMPROVING RWE TO 
INFORM HEALTHCARE DECISION MAKING
Xiang Zhang (CSL Behring) and Douglas Faries (Eli Lilly)

Introduction
What’s real-world data (RWD)? According to US 

Food and Drug Administration (FDA; 2018), “Real-
world data are the data relating to patient health status 
and/or the delivery of health care routinely collected 
from a variety of sources.” Each of us likely contributes 
to RWD on a regular basis: we go to the doctor’s office 
for an annual exam or we pick up prescriptions from a 
pharmacy store. Both activities will generate medical 
claims records that will eventually become a portion 
of RWD data sources. Historically, RWD sources were 
either based on a local healthcare system (e.g., a disease 
registry managed by an academic institution) with a 
limited number of subjects or a larger insurance claims 
database that has not collected sufficient information 
necessary for broad based research questions. Those 
limitations – along with the lack of randomization 
in RWD that introduces potential confounding and 
bias - have restricted the use of RWD for scientific 
research, and evidence generated from RWD have 
been considered low quality in the evidence-based 
medicine paradigm. 

With advanced data collection technology, linking 
of health-care claims data with EMRs and survey data, 
large disease registries with the collection of key clini-
cal data, etc., the promise of real-world evidence as a 
key part of medical research is now becoming a reality. 
The fast-growing availability of high-quality RWD – at 
a fraction of the cost of RCTs - presents a promising 
opportunity for health-care researchers to generate 
timely and relevant real-world evidence (RWE) to 
inform physicians, health policy makers, other health-
care decision makers, and to ultimately benefit patients. 
The use of RWE now expands across the whole drug 
development spectrum, from drug discovery and help-
ing in the design and augmentation of clinical trials, 
to phase IV research and value-based agreements with 
health-care payers. An important milestone in this pro-
cess was The 21st Century Cures Act and the efforts 
that followed in using RWE to inform regulatory deci-
sions. The FDA released its framework for RWE and 

also published several draft guidance documents regard-
ing the use of RWE in drug development (FDA 2021a, 
2021b, 2021c, 2021d); EMA published a vision for use 
of real-world evidence (RWE) in EU medicines regula-
tion (Arlett et al. 2022); MHRA published a guidance 
on the use of real-world data in clinical studies to sup-
port regulatory decisions (MHRA 2021); Health Canada 
announced the intention to optimize the use of RWE for 
regulatory decisions in order to improve the extent and 
rate of access to prescription drugs in Canada (Health 
Canada 2019). 

As Charles Dickens once wrote, “It was the best of 
times, it was the worst of times” (A tale of Two Cities). 
With the big data revolution – the spotlight is now shin-
ing on analytics to help realize the value expected from 
RWD. However, the analytical challenges are not trivial 
even with high-quality RWD, and they demand new 
innovation, influence, and strong communications. We 
view this as a great opportunity for statisticians to help 
lead the way to more clear and interpretable evidence 
from RWD. 

We are delighted to see some great steps in this direc-
tion. There are growing interests and initiatives inside 
statistical and other professional societies regarding 
RWD/RWE, which include establishment of cross-indus-
try statistical working groups (e.g. American Statistical 
Association RWE Working Group) that aim to develop 
and educate the field regarding best practices and novel 
statistical methods for analyzing RWD. We have also 
seen a dramatic increase in the number of RWD/RWE 
related sessions in professional statistical conferences 
such as the Joint Statistical Meetings. There are more 
funding opportunities provided by government agencies 
such as FDA. As statisticians working in the RWE field, 
we feel it is our responsibility to relentlessly pursue 
statistical solutions to meet the RWE challenges – and 
we describe below some areas where further work is 
needed. Specifically, we discuss RWD quality and the 
importance of assessing the assumptions behind our 
comparative effectiveness analyses for causal inference.
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Challenges and Opportunities: Quality of 
Real World Data

RWD is not really RWE. RWE is produced by a cross 
functional effort requiring a relevant research question, 
appropriate research design, fit for purpose real world 
data, and analytics aligned with the research question 
(estimand). For such efforts, one big challenge is the 
reliability of the data as RWD records are typically col-
lected for purposes other than research and thus without 
the rigor and quality checks involved with prospective 
RCTs. In fact, the focus of the initial RWE guidance 
documents from the FDA is largely on ensuring one 
establishes that the data is fit for purpose. For instance, 
in health-care claims data we rely on algorithms based 
on diagnostic coding to generate cohorts for research 
– but coding is not necessarily an exact science. We 
observe patients with diabetes diagnosis codes but no 
pharmacy records of anti-diabetic prescriptions - so do 
those patients really have diabetes? Patients may visit 
their doctor because of painful, swollen joints, and the 
doctor was not able to make the deterministic diagnosis 
at this initial visit (“is it rheumatoid arthritis or osteo-
arthritis, or other medical conditions? ”). The doctor 
ordered lab tests and based on those results he/she cor-
rectly diagnosed the condition as rheumatoid arthritis 
(RA). However, the patient’s medical record of the 1st 
visit may have several diagnoses including rheumatoid 
arthritis and osteoarthritis (OsA). Therefore, if the data 
were analyzed, OsA could be viewed as part of this 
patient’s medical history but in fact this patient never 
had OsA. Statisticians could help improve data reli-
ability by improving research on algorithms to detect 
recording errors and improve cohort building in large 
RWD databases as well as providing greater under-
standing of the robustness of the outcome analyses to 
the potential data quality issues. 

Challenges and Opportunities: Causal 
Inference

One critical analytical challenge is providing causal 
inference from (non-randomized) real world studies 
and hybrid designs (i.e. clinical trials with complete or 
partial real-world control arms). The lack of randomiza-
tion leads to potential bias if factors driving treatment 
choices are related to the outcomes under analysis. 
Statistical methods under Rubin’s Causal Model (RCM) 
such as propensity score matching/stratification and 
Pearl’s Causal Model (PCM) such as direct acyclic 

graph (DAG) approach, have been widely utilized in 
non-randomized studies/hybrid design to infer causal-
ity between interventions of interest and comparison 
groups. For causal inference, such analyses rely on 
assumptions such as strong treatment ignorability, posi-
tivity, and correct statistical modeling. We will address 
each of these assumptions one at a time – with the notion 
that statisticians could play a key role in understanding 
the robustness of any RWE claims through strategic and 
thorough assessment of these analytic assumptions. 

In both RCM and PCM, strong treatment ignorability, 
i.e., the treatment assignment is independent of potential 
outcomes conditioning on a set of measured confound-
ers, is a key assumption and violating this assumption 
could cause significant bias in the estimated treatment 
effect. However, if any unmeasured confounder exists, 
the strong treatment ignorability assumption may no 
longer hold, as the treatment assignment is not indepen-
dent of potential outcomes given all confounders. To 
address this issue, various methods have been proposed 
and applied. For instance, instrumental variable meth-
ods (Angrist et al. 1996) and regression discontinuity 
designs (Cook 2008) are widely applied in economic 
research as the interest there is to investigate the impact 
of a particular policy on economic outcomes; nega-
tive controls (Lipsitch et al. 2010) have been used in 
medical research to test the robustness of estimated 
effect against possible unmeasured confounding. Over 
the past two decades, unmeasured confounding has 
received more and more attention and a plethora of 
novel methods have been developed, such as E-value 
(VanderWeele and Ding 2017) and Bayesian hierarchi-
cal models (McCandless et al. 2007). Several review 
papers (Uddin et al. 2016; Streeter et al. 2017; Zhang 
et al 2018) provide good references for these meth-
ods. Unfortunately, despite the availability of various 
methods, the quantitative evaluation of the potential 
impact of unmeasured confounding in comparative 
observational studies or in hybrid designs are still 
underutilized. This is likely due to lack of familiarity of 
methods, complexity, and the challenges that the appli-
cability of many methods depends on the availability of 
specific information on the unmeasured confounders. 
For instance, methods such as propensity score calibra-
tion require the identification of specific unmeasured 
confounders and the existence of at least a subset of 
patients with data on the confounders. In addition, many 
sensitivity analyses are conducted post-hoc, based on 
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observed data, but not pre-specified in the analysis plan. 
Pre-specification of analysis is accepted as an important 
statistical principle to prevent the potential bias due to 
data dredging – and this should include planning of 
the sensitivity analysis. Understanding the potential 
threat of unmeasured confounding is best addressed in 
the design stage of research – as it is possible that the 
impact of unmeasured confounding could be larger than 
the expected effect size of the intervention under study 
(Girman et al. 2014).

We believe that a structured, pre-specified sensitivity 
analysis plan for unmeasured confounding could lead 
to improved understanding of the quality and strength 
of the observed RWE and provide greater confidence in 
the use of RWE. Zhang et.al. (2020) proposed a struc-
tured approach to assess the impact caused by unmea-
sured confounding, including the recommendation of 
beginning with sensitivity analysis that are broadly 
applicable such as the E-value or rule-out method. 
These methods do not require external information on 
unmeasured confounding or even identification of what 
unmeasured confounders may exist – and thus can be a 
starting point across all causal inference research. 

Rosenbaum and Rubin (1983) established the foun-
dation for analytics for comparative real-world evi-
dence with the development of the propensity score. 
The propensity score for a given patient is simply the 
probability that the patient would receive Treatment A, 
given their set of baseline values (variables available 
at the time of the decision to use Treatment A or Treat-
ment B). They demonstrated how a scalar value like the 
propensity score can provide balance between the treat-
ment groups for multiple baseline covariates and thus 
reduce bias from confounding variables. Further work 
demonstrated how the propensity score could be utilized 
via regression, matching, stratification, and weighting. 
In addition to the assumption of ‘no unmeasured con-
founding’ discussed above, correct inference requires 
that correct models are used. In the case of propensity 
score-based analyses, this means two correct models: 
one model describing the treatment selection mechanism 
and the other model for the outcome measure. Over the 
past 20 years, researchers have proposed enhanced meth-
ods that provide greater robustness against model mis-
specification. This includes a variety of ‘doubly robust’ 
methods – including approaches that combine inverse 
weighting and regression (Lunceford and Davidian 2004) 
through double score matching (Yang and Zhang 2022). 

The attractiveness of such methods is in their robustness 
- they produce causal treatment effect estimates if one 
gets either the treatment selection model OR the outcome 
model correct, but does not require both to be correct. 

More recently, researchers have proposed incorporat-
ing the use of machine learning (ML) techniques into 
comparative effectiveness analyses. For instance, model 
selection can be improved by the use of ML techniques 
for selection of covariates for the propensity or outcome 
model. van der Laan and colleagues (van der Laan and 
Rubin 2006; van der Laan et al. 2007) proposed a Super 
Learner approach to estimate potential outcomes for each 
treatment group within the targeted maximum likeli-
hood estimation (TMLE) method. Rather than selecting 
a single estimation model, the Super Learner approach 
uses a set of potential estimation algorithms and through 
cross validation, arrives at a weighted average of the 
individual model estimates that is more robust than using 
a single method. This approach can be implemented in 
the R-package (Gruber and van der Laan 2012). Zagar et 
al. (2022) proposed the concept of model averaging as a 
tool for comparative real-world analyses. As one does not 
know the true data generating mechanism, they proposed 
incorporating many methods/models (e.g. stratification, 
matching, penalized regression) and used cross valida-
tion techniques to either identify the best method for 
the particular dataset (based on minimizing MSPE) or 
weigh each method according to their ability to predict 
outcomes. The weighted average of the treatment effect 
estimates across all methods entered into the process, with 
weights based on the MSPE from cross validation, is the 
model averaged treatment effect estimate. Simulations 
suggest incorporating ML tools in this manner produces a 
more robust estimate of the treatment effect. Thus, while 
one can never know or expect to arrive at a perfect model, 
recent advances in methodology applied to the com-
parative effectiveness space is allowing for more robust 
approaches to model building and selection.

A third assumption supporting causal inference is 
positivity: the assumption that each patient has a 
positive probability of receiving any treatment under 
consideration in the analysis. Current best practices 
begin by examining the overlap between the propen-
sity score distributions from each of the two treatment 
groups. Imbens and Rubin (2015) note that differences 
in covariate distribution between treatment groups will 
manifest themselves in the propensity score distribu-
tions. Thus, examining the overlapping areas of the 
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propensity distributions, the area of ‘common support’, 
has become standard practice. Trimming approaches to 
protect the positivity assumption include selecting the 
largest interval of overlap between the two propensity 
score distributions. While good practice for ensuring 
causal inference, trimming and even matching methods 
can affect the population of inference for the analyses 
that are conducted. 

A quality process at the design stage of the study 
includes a discussion about the estimand of interest. 
Per the ICH E9 guidance (2017), estimand is a critical 
component of the design and it includes 1) the popula-
tion of interest, 2) the outcome from each patient used 
to measure the question of interest, 3) details of how 
intercurrent events will be addressed, 4) the statisti-
cal summary/approach used to compare the treatment 
groups. While traction has grown for the concept of the 
estimand in RCTs, we believe that such discussions are 
even more critical for real world research. Real world 
data often contain greater level of intercurrent events 
such as medication switching, concomitant medica-
tion, non-adherence, missing data, along with the need 
for trimming the population to preserve positivity. A 
discussion of the estimand of interest will guide how 
each of these real-world data issues is addressed in a 
more strategic fashion. In prospective observational 
research this process is further challenged by the fact 
that one does not have data on positivity until baseline 
data is gathered. Thus, the feasibility of the study data 
to address the estimand of interest may need to be re-
examined after baseline data is gathered. However, the 
concept of ‘outcome free’ evaluation of the feasibility 
assessment – as proposed by Rubin (2007) is impor-
tant to protect the integrity of the study. For further 
discussion of estimands in real world research see 
Lipkovich et al. (2020). A related concept, the target 
trial proposed by Hernan et al. (2016) for designing 
observational research, also guides researchers through 
such decisions during the design phase of the research. 
Similarly, following good practice frameworks, as out-
lined by researchers including the American Statistical 
Association RWE Workgroup (Fang et al. 2020), points 
researchers toward the use of the estimand thinking in 
planning real world designs and analysis. 

Discussion
Analytics for RWE, such as causal inference meth-

odology, has come a long way over the past 40 years. 
However, the field is demanding more. Big data revolu-
tion has brought many changes that we are witnessing. 
First and foremost, data science as a discipline has 
grown tremendously to meet the gap in the analysis 
world, with expertise focusing on big data issues. Next, 
we see the potential that RWE combined with ML/arti-
ficial intelligence techniques can help drive better out-
comes through personalized medicine. The third is that 
we need to increase the quality and confidence from 
RWE analysis for use of the RWE in regulatory decision 
making. Lastly, there is more and more use of RWE/
RWD across the whole drug development process.

In this brief article we have focused on the area of 
comparative analyses based on RWD and establishing 
a strategic quantitative assessment of the core assump-
tions behind comparative RWE (unmeasured confound-
ing, modeling, positivity). While it is easy to limit the 
use of RWE by just noting the inherent potential bias 
with such research, we feel statisticians are well posi-
tioned to inform decision makers when and why RWE 
is more or less relevant to the decision at hand. With 
clearer information about the robustness regarding an 
RWE study finding, healthcare decision makers will 
be better equipped to make optimal use of RWE – with 
more informed decisions regarding approvals, formu-
lary access decisions, and decisions by physicians and 
patients on individual care. Our vision is to see the sta-
tistical field championing in the RWE analytics arena 
and providing the needed methodology and leadership 
driving optimal use of RWE. 
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RWD-INTEGRATED RANDOMIZED 
CLINICAL TRIAL ANALYSIS
Shu Yang (NCSU), Xiaofei Wang (Duke)

Introduction
Approval of pharmaceutical products has almost 

always relied on positive evidence from well-designed 
and well-conducted phase III randomized trials. More 
recently, massive real-world data from routine health 
care delivery are becoming increasingly available. They 
include electronic medical records, claim and billing 
databases, population-based disease and product regis-
tries, data collected from wearable devices and smart-
phone applications, and many others. The 21st Century 
Cures Act (2015) encourages using real-world data and 
real-world evidence in drug evaluation and approval 
to address the questions of the therapeutic and safety 
of new treatments faster and less costly. The enaction 
of the Cures Act, however, flared heated debates. Pro-
ponents of the Cures Act argued that “Patients cannot 
wait,” and using real-world data would speed up the 
process of drug development. On the other hand, real-
world data were not collected for research purposes and 
thus may be subject to various biases due to confound-
ing (Yang and Zhang, 2022), omitted variables (Yang 
and Ding, 2020), missing values (Yang, Wang, and 
Ding, 2019), irregular data patterns (Yang, 2021), and 
so on. As a result, opponents argued that the Cures Act 
would greenlight ineffective drugs entering the market, 
endangering patients.

With the advances in information technologies, par-
allel data of randomized trials and observational stud-
ies on the same treatment exist. Therefore, there is a 
great interest and need to integrate the data on the same 
treatment observed from these multiple data sources 
with complementary features, reconciling the intense 
debates regarding the Cures Act. On the one hand, ran-
domized clinical trials (RCTs) offer the highest level 
of evidence of treatment safety and efficacy as ran-
domization eliminates both measured and unmeasured 
confounders. However, patients enrolled in randomized 
trials are conveniently ascertained and represent a more 
restrictive patient group of the target real-world patient 

population to which the new treatment will be given. 
Therefore, the treatment effects estimated by standard 
methods lack external validity for the target population. 
On the other hand, real-world or observational studies 
often contain a much larger number of patients of the 
same disease and represent either a random sample of 
the target population. However, due to lack of treatment 
randomization, there are always concerns over mea-
sured and unmeasured confounders. Given the comple-
mentarity of RCTs and observational studies, integrated 
analysis approaches are called for to efficiently exploit 
the relative strengths of the data from both RCTs and 
observational studies and carefully address their poten-
tial drawbacks (Colnet et al., 2022).

In this article, we first discuss the common ques-
tions that investigators often have when planning an 
integrated analysis with parallel data from RCTs and 
observational studies. We then review several recent 
methods that exploit the complementary features of 
RCTs and observational studies. These methods allow 
us to answer these questions by providing robust and 
efficient estimates of the average treatment effect (ATE) 
with external validity, offering a pretesting approach 
for elastic poolability of RCT and observational studies 
for better efficiency in estimating the heterogeneity of 
treatment effect over a set of treatment modifiers, and 
learning targeted, optimal, and interpretable individual-
ized treatment regimes.

Questions that can be answered by 
integrated analysis

The motivation of our research can be illustrated by 
a project that evaluates the effect of adjuvant chemo-
therapy in stage 1B resected non-small cell lung cancer 
(NSCLC). Stage 1B NSCLC is the T2N0M0 tumor that 
is greater than 3cm and has not spread to the lymph 
nodes and/or other parts of the body. CALGB 9633 is 
the only phase III randomized trial conducted to evalu-
ate the effect of adjuvant chemotherapy in this patient 
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population (Strauss et al., 2008). Approximately 344 
patients were randomized to adjuvant chemotherapy 
versus observation with equal allocation. In the final 
analysis, the median follow-up was 74 months, and 
155 deaths were observed. The primary endpoint over-
all survival was not significantly different (HR 0.83, 
90%CI 0.64-1.08, p=0.125). Supplementary analysis 
demonstrated a significant survival difference in favor 
of adjuvant chemotherapy for patients with tumors ≥4 
cm (HR 0.69, 90%CI 0.48-0.99, p=0.043). The trial 
had been criticized for being underpowered for trial 
design(Katz and Sadd, 2009). The small trial size also 
forbids a meaningful evaluation about how risk factors, 
e.g., tumor size and age, modify treatment effect. While 
the current guideline for treating stage 1B NSCLC 
is mainly based on its findings, there is a persistent 
scientific interest to know if the benefit of adjuvant 
chemotherapy is generalizable to the general popula-
tion of stage 1B NSCLC patients. The concern over 
a lack of external validity arises from the observation 
that, much like other randomized trials, the patients 
recruited to CALGB 9633 were under-represented in 
both female and the elderly (70 years or older) and in 
patients with larger tumors. These are strong prognostic 
factors for survival, when compared to the general tar-
get patient population in North America. This is nicely 
illustrated by the distribution of the demographic and 
clinical characteristics of stage 1B patients from the 
National Cancer Database (NCDB, Morgenstern et 
al., 2016). The NCDB is a clinical oncology database 
sourced from hospital registry data, and it contains 
more than 70% of newly diagnosed cancer patients in 
North America. Of the 15379 patients from the NCDB 
reported between 2004–2016, 4324 and 11055 stage 1B 
NSCLC patients received adjuvant chemotherapy and 
observation care, respectively. Besides the sheer size 
difference between the two data sources, the baseline 
covariates of the CALGB patients differ from those of 
the NCDB patients, as seen in Table 1. The CALG 9633 

–

Table 1: Covariate and outcome means comparison of the CALGB 9633 trial sample and the 

NCDB sample. 

Gender (X1) Age (X2) Histology(X3) Tumor size(X4) Alive at 3 years (Y)

CALGB 9633 0.64 60.83 0.40 4.60 0.25
NCDB 0.55 67.87 0.39 4.94 0.33

Table 1: Covariate and outcome means comparison of the CALGB 9633 trial sample and the NCDB sample.

sample has disproportionately high percentages of male 
and younger patients with smaller tumor sizes.

Given that the RCT sample represents a healthier 
sample than the NCDB sample, the estimates based 
on CALGB 9633 sample would be biased for the true 
effect of adjuvant chemotherapy on the target popula-
tion of stage 1B NSCLC patients. One important clini-
cal question is whether adjuvant chemotherapy benefits 
the general stage IB NSCLC population. For clinicians, 
a reasonable representation for the general stage IB 
NSCLC population can be the NCDB patients who meet 
the same eligibility criteria of CALGB 9633. Besides 
lack of generalizability, RCTs often face another limita-
tion: the sample size is too small to provide sufficient 
power to assess the heterogeneity of treatment effects. 
An accurate estimation of conditional average treatment 
effect varying over one or more treatment modifiers, 
e.g., tumor size and age in our motivation example, 
will allow clinicians to individualize treatment accord-
ing to the patient’s characteristics. On the other hand, 
the observational NCDB study collection mechanism 
provides a large and diverse sample typically represen-
tative of the target real-world population. In summary, 
below are three questions that statisticians often want 
to answer through an integrated analysis of RCTs and 
observational studies.

•	Generalizability: Whether the findings of an 
RCT can be generalized to a target population 
represented by one or more observational studies 
or a population-based registry.

•	Heterogeneity of treatment effect and 
poolability: Can the observational studies data 
be used to improve estimation efficiency of treat-
ment effect heterogeneity, which is defined as 
conditional average treatment effect as a function 
of a treatment effect modifier, e.g., tumor size?

RETURN TO THE TABLE OF CONTENTS



BIOPHARMACEUTICAL REPORT SUMMER 2022	 17

•	Heterogeneity of treatment effect and con-
founding function: Whether the data from the 
BIASED observational studies can be used to 
improve the assessment of treatment heterogeneity?

•	Targeted, optimal individualized treatment 
regimens: How to assign treatment based on a 
patient’s characteristics to maximize the average 
benefit over a real-world patient population?

While the new approach for integrating data from 
large observational studies to estimate treatment effects 
is very appealing, unfortunately it is also confounded 
due to lack of treatment randomization. Methods that 
effectively integrate RCT and observational studies are 
needed but are largely under-developed. Our research 
group has received an National Institute of Aging R01 
grant (NIA 1R01AG066883) to develop new statistical 
methods in this area. These methods utilize comple-
mentary features of RCTs and large population-based 
observational studies to leverage the advantages of 
both data sources to develop accurate and robust treat-
ment effect evaluations for a target patient population 
routinely seen in large population-based observational 
studies or an underrepresented population (e.g., elderly 
patients or minority groups). Our framework channels 
an integrative analysis toolkit to empower clinical trial 
analysis by harnessing large real-world data and pro-
viding more generalizable (Lee et al., 2021; Lee et al., 
2022, Wu and Yang, 2022a, Chu et al., 2022), efficient 
(Yang, Kim, and Song, 2020; Yang and Ding, 2020), 
and robust (Yang, Zeng, and Wang, 2020a; Yang, Zeng, 
and Wang, 2020b; Wu and Yang, 2022) inference of 
treatment effects for a target patient population. The 
rest of the article summarizes some progress we made 

in developing these new methods. We will present more 
details on methods for generalizability but summaries 
for other methods.

Generalizability
Data structure

Let X be the p-dimensional vector of covariates, A 
be the treatment assignment with two levels {0,1}, and 
Y be the outcome of interest. We adopt the potential 
outcomes framework to formulate the generalizability 
problem. Following the Stable Unit Treatment Value 
Assumption (SUTVA) (see, Imbens and Rubin, 2015), 
we assume that each subject in the target population 
has a potential outcome Y(a),a ∈{0,1}, representing 
the outcome had the subject been given the treatment 
a. The conditional average treatment effect (CATE) is 
defined as τ (X)=E{Y(1) – Y(0) | X}. We are interested 
in estimating the population ATE τ0 = E{τ (X)}, where 
the expectation is taken with respect to the distribu-
tion of the target population. Let δ = 1 denote RCT 
participation, and let δ ̃ = 1 denote the observational 
study participation. Also, define the sampling score as  
π δ (X)= pr (δ=1 | X), the design weight for the obser-
vational sample as d=1/P (δ ̃=1 | X), and the conditional 
outcome mean function as μa,δ (X)=E(Y |X,A=a,δ) for 
a,δ ∈{0,1}. As seen in Figure 1, to generalize find-
ings to the future patient population, one may con-
sider a super-population framework that describes the 
distribution of all patients with a certain disease to 
whom the new treatment is intended to be given. The 
RCT is a sample from the target population with an 
unknown sampling mechanism, and the observational 
sample is a sample from the target population with a 
known sampling mechanism.

Figure 1: Illustrative data structure for integrated analysis of data from RCTs and large 

observational studies. 

Methods 

𝜋𝜋𝛿𝛿(𝑋𝑋)

Figure 1: Illustrative 
data structure for 
integrated analysis of 
data from RCTs and 
large observational 
studies.
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Methods
The problems of extending findings from RCTs to a 
target population has been termed as generalizability or 
transportability (e.g., Cole and Stuart, 2010; Pearl and 
Bareinboim, 2011, Dahabreh et al., 2019). Most exist-
ing methods rely on direct modeling of the sampling 
score π_δ (X), the sampling analog of the propensity 
score. The subsequent sampling score adjustments 
include inverse probability of sampling weighting 
(IPSW, Cole and Stuart, 2010, Dahabreh et al., 2019). 
Most sampling score adjustment approaches require the 
sampling score model to be correctly specified. More-
over, weighting estimators are unstable if the sampling 
score is too extreme. In addition, these methods often 
assume the observational study sample to be a simple 
random sample from the target population and implic-
itly require either the population size or all the baseline 
information of the population to be available.

In contrast to the approaches that focus on predicting 
sample selection probabilities, Lee et al. (2021) pro-
posed to estimate the sampling score weights directly 
by calibrating covariates balance between the RCT 
sample and the design-weighted observational sample 
to address the selection bias of the RCT sample. A simi-
lar method has been studied by Hainmueller (2012) for 
causal inference with treatment selection bias. In par-
ticular, we estimate the calibration weights {ωi:δi =1} 
by solving min ∑ n i =1ωi logωi) subject to the balancing 
constraint and ωi ≥ 0 for all i, ∑ n i =1ωi=1. The balancing 
constraint is, 
where g(X) is vector-valued function and often chosen 
to be the moment functions of X, i.e. {X, X 2,  X 3,…}. The 
calibration weighting (CW) estimator is given by

{𝜔𝜔𝑖𝑖: 𝛿𝛿𝑖𝑖 = 1} min∑ 𝜔𝜔𝑖𝑖
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where π Ai  is the known treatment assignment pro-
pensity in the RCT. Under the standard identification 
assumptions in causal inference, we show that when 
either of the following two assumptions holds: 

for some η0, the CW estimator is consistent and follows 
an asymptotic normal distribution. We further proposed 
an augmented CW (ACW) estimator that is doubly 
robust and also achieves the semiparametric efficiency 
bound when both nuisance models are correctly speci-
fied.  It is known that the parametric approach is prone 
to model misspecification, especially when τ(X) and 
πδ (X) are complex. To cope with model misspecifica-
tion, we adopted the method of sieves, which allows 
flexible data-adaptive estimation of the nuisance func-
tions, while the ACW estimator retains the usual root-n 
consistency under regularity conditions. We conducted 
extensive simulation studies to evaluate the finite sam-
ple performances of the proposed estimators. It is con-
cluded that the ACW estimator is shown to be doubly 
robust and more efficient than the IPSW estimator and 
the CW estimator. When both outcome and sampling 
score models are misspecified, the ACW(S) estimator, 
a variant of ACW estimator using the sieve method, is 
still unbiased and efficient. The variance estimators can 
be calculated empirically using bootstrap. The empiri-
cal coverage rates for the unbiased ACW estimators are 
close to the nominal level.

Data application
We apply the proposed estimators to evaluate the effect 
of adjuvant chemotherapy for stage 1B NSCLC. The 
outcome is the indicator of remaining alive within three 
years after the surgery. i.e., Y=1 if alive at 3 years after 
surgery and Y=0 otherwise. As seen in Table 1, the 
CALGB 9633 sample has a significantly higher per-
centage of male and younger (< 70 years old) patients 
with smaller tumor size. It remains an important ques-
tion whether adjuvant chemotherapy benefits the general 
NSCLC patient population represented by NCDB, with 
a higher percentage of female and older age and larger 
tumor size. Table 2 gives a summary of the proposed 
methods and other methods to generalize the estimated 
treatment effect to the target population represented by 
the NCDB sample. ACW-t is the ACW estimator with the 
nuisance functions μa (X,1) are estimated based on the 

𝜇𝜇𝑎𝑎(𝑋𝑋, 1)

–

Table 2: Point estimate, standard error and 95% Wald confidence interval of the causal risk 

difference between adjuvant chemotherapy and observation based on the CALGB 9633 sample 

and the NCDB sample. 

−0.083 0.048 (−0.177, 0.011) −0.104 0.060 (−0.221, 0.013)

−0.088 0.052 (−0.190, 0.014) −0.138 0.286 (−0.699, 0.422)

−0.106 0.065 (−0.234, 0.021) −0.106 0.069 (−0.241, 0.029)

−0.088 0.052 (−0.191, 0.014) −0.153 0.057 (−0.265, −0.041)

Elastic Poolability based on Pretesting 

Table 2: Point estimate, standard error and 95% Wald confidence interval of the causal risk difference between 
adjuvant chemotherapy and observation based on the CALGB 9633 sample and the NCDB sample.
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trial sample. ACW-t(S) is the sieve variant of the ACW-t 
estimator using the method of sieves for sampling score 
and outcome models. ACT-b is the ACW estimator with 
the nuisance functions μa (X,1) is estimated based on 
both RCT and observational study samples and ACW-
b(S) is its sieve variant. The results indicate that in the 
RCT sample there is an 8.3% decrease in the risk of 
death within 3 years for adjuvant chemotherapy over 
observation. The IPSW, AIPSW (an augmented vari-
ant of IPSW), ACW-t and ACW-t(S) estimators, which 
utilized the covariate information of the NCDB sample, 
show an 8.8–13.8% decrease in the risk of death within 
3 years. However, the causal effect is not significant 
according to the 95% confidence interval. By lever-
aging the predictive power of the NCDB sample, the 
ACW-b(S) estimator give an estimate of 15.3% risk 
decrease, which is significant at the 0.05 level.

Elastic Poolability based on Pretesting
The heterogeneity of treatment effect lies at the heart 
of precision medicine. Randomized controlled trials are 
gold-standard for treatment effect estimation but are 
typically underpowered for heterogeneous effects. In 
contrast, large observational studies have high predic-
tive power but are often confounded due to a lack of 
randomization of treatment. To tackle the second ques-
tion for integrated analysis of RCTs and observational 
studies, Yang et al. (2020a) proposed a test-based elastic 
integrative analysis of the RCT and large observational 
studies to estimate treatment effect heterogeneity with 
a vector of known treatment effect modifiers. When 
the observational studies data are not biased, this 
approach combines the trial and observational stud-
ies data for efficient estimation. Due to the possible 
incomparability of the observational study with the 
RCT (e.g., unmeasured confounding, time concurrency, 
and measurement errors), direct integration may lead to 
biases. Utilizing the trial design, we constructed a test 
to decide whether or not to use the observational study 
in an integrative analysis with the RCT. Post-selection 
is notoriously difficult. We characterized the asymp-
totic distribution of the test-based estimator under local 
alternatives. We provided a data-adaptive procedure to 
select the test threshold that promises the smallest mean 
square error and an elastic confidence interval with an 
excellent finite-sample coverage property.

Confounding function modeling 
To address the third question, Yang et al. (2020b) 
showed that the observational study, even subject to 
hidden confounding, may empower trials in estimating 
the heterogeneity of treatment effect using the notion 
of confounding function. The confounding function 
summarizes the impact of unmeasured confounders 
on the difference in the potential outcomes between 
the treated and untreated groups accounting for the 
observed covariates, which is unidentifiable based only 
on the observational study. Coupling the RCT  and 
observational studies, we showed that the heterogene-
ity of treatment effect and confounding function are 
nonparametrically identifiable. We derived the semi-
parametric efficient scores and the rate-doubly robust 
integrative estimators of the heterogeneity of treatment 
effect and confounding function under parametric struc-
tural models. Furthermore, we clarified the conditions 
under which the integrative estimator of the treatment 
effect heterogeneity is strictly more efficient than the 
RCT estimator. Building upon these concepts, Wu and 
Yang (2022) further proposed an integrative R-learner 
that accommodates modern, flexible machine learning 
methods for the heterogeneity of treatment effect and 
confounding function.

Targeted, Optimal, and Interpretable 
Individualized Treatment Regimes
Personalized decision-making, aiming to derive optimal 
individualized treatment rules (ITRs) based on indi-
vidual characteristics, has attracted increasing attention. 
Interpretable ITRs are desirable for clinicians or policy-
makers due to their intuitive appeal and transparency. 
The gold-standard approach to estimating the ITRs is 
conducting an RCT, where subjects are randomized to 
different treatment groups, and the bias is minimized 
to the extent possible. However, RCTs are limited in 
external validity because of their selection restrictions 
and therefore are not representative of the target real-
world population. Conventional learning methods of 
optimal interpretable ITRs for a target population based 
only on RCTs are biased. To learn the generalizable 
optimal interpretable ITRs, Wu and Yang (2020) pro-
posed an integrative transfer learning method based on 
weighting schemes to calibrate the covariate distribu-
tion of the experiment to that of the large observational 
studies. Moreover, due to privacy and confidentiality 
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concerns, comprehensive individual-level data is often 
prohibited from sharing with researchers. In contrast, 
summary statistics of patient characteristics of the target 
population are often available and can be easily shared 
for research purposes. Chu et al. (2022) proposed a 
calibrated AIPW estimator of the value function using 
summary statistics from the target population and then 
searched for the optimal ITR for the target population 
by maximizing the calibrated AIPW value estimator 
over a pre-specified class of ITRs. The resulting ITRs 
are targeted, optimal, and interpretable.

Conclusion
RCTs have been regarded as the gold standard for 
treatment effect evaluation due to randomization of 
treatment, which may lack external validity and are 
underpowered to detect treatment effect heterogeneity 
due to sampling bias and sample size limitations. Large 
observational studies contain rich information on how 
patients respond to treatment in real-world settings, but 
standard treatment effect estimates may be confounded. 
We have reviewed several new methods for robust 
and efficient estimation of average treatment effects, 
conditional average treatment effects, and individual-
ized treatment rules, including calibration, test-based 
integrative analysis, and confounding function model-
ing. These methods exploit the complementing features 
of RCTs and observational studies. The outcome can 
be general, including binary, continuous, or survival 
outcomes. For example, Lee et al. (2022) extended the 
method of generalizability for time-to-event endpoint, 
for which the average treatment effect is defined as a 
function of treatment-specific survival curves, and this 
estimand has the difference in survival rates at a land-
mark time and the difference or ratio of restricted mean 
survival times as special cases. 

Interestingly, combining probability and nonproba-
bility samples has received much attention in the survey 
methodology (Yang, Kim, and Song, 2020; Yang and 
Kim, 2021; Yang, Kim, Hwang 2021). Probability sam-
ples are considered the gold standard approach for finite 
population inference, selected under known sampling 
designs, representing the target population. However, 
many practical challenges arise in collecting and ana-
lyzing probability sample data, such as data collection 
costs, timely issues, and increasing non-response rates. 
On the other hand, with advances in technology, non-
probability samples have become increasingly available 
for research purposes, such as remote sensing data and 

web-based volunteer samples. Nonprobability samples 
provide rich information about the target population 
and can be potentially helpful for finite population 
inference; however, they may not represent the target 
population due to the unknown sampling mechanisms. 
The complementarity of probability and nonprobability 
samples makes combining the information gathered 
from these data sources a promising avenue for finite 
population inference. Given the similarity, it would be 
helpful to exchange ideas between different fields to 
spark new ideas. 

Lastly, we would like to acknowledge the NIA R01 
grant support and our students’ and collaborators’ tre-
mendous contribution to developing these new methods. 
We are excited about the new paradigm of evidence-
based medicine and look forward to its bright future.
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Evaluating the impact of different 
randomization ratios in designing hybrid 
control trials 
Chenqi Fu (Penn State), Herbert Pang (Genentech), Jiawen Zhu (Genentech) 

Introduction 
 

Randomized controlled trials (RCTs) are the gold standard for evaluating the efficacy and 

safety of experimental treatments. While the adequately conducted RCTs have irresistible 

strengths, the availability of data sources and well-developed methodologies to utilize the 

external information bring new possibilities to successfully and thoroughly investigate the 

experimental intervention (Pocock, 1976; Lewis et al., 2019). Appropriate borrowing 

existing control data can increase the efficiencies of clinical trials by reducing RCT control 

arm patient enrollment and study duration. By incorporating external controls, more 

recruited patients are saved from an internal control arm of a typical RCT and can have 

a higher chance to be assigned to the treatment arm. The augmented RCT with proper 

study design is also able to provide high-quality evidence similar as traditional RCTs for 

statistical and clinical inferences (Lin et al., 2018, 2019). 

  

Methods have been proposed and investigated to use external evidence to 

augment RCTs.  Viele et al. reviewed and summarized several prevailing approaches to 

borrowing external control subjects, including pooling, test-then-pool, and dynamic 

EVALUATING THE IMPACT OF 
DIFFERENT RANDOMIZATION RATIOS IN 
DESIGNING HYBRID CONTROL TRIALS
Chenqi Fu (Penn State), Herbert Pang (Genentech), Jiawen Zhu (Genentech)

Introduction
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borrowing (Viele et al., 2014). Among them, Bayesian methods enjoy an exceptional 

advantage of dynamic borrowing which provide flexible and objective approaches to 

automatically down-weigh external control subjects according to the degree of 

heterogeneity they introduce. Therefore, Bayesian dynamic borrowing methods can 

reduce the confounding introduced by incorporating external control and simultaneously 

optimize the effective sample size which provides essential information (Dron et al., 2019). 

Several Bayesian dynamic borrowing methods have been developed, including the power 

prior introduced by Ibrahim and Chen, the commensurate prior model developed by 

Hobbs et al., and the meta-analytic-predictive approach proposed by Neuenschwander 

et al. (B. Hobbs et al., 2011; Ibrahim & Chen, 2000; Neuenschwander et al., 2016). The 

implementation of dynamic borrowing methods has evolved recently as well. In this paper, 

we focus on the evaluation of the commensurate prior model and use the psborrow R 

package to conduct simulation studies (Lu et al., 2021). 

When external controls are incorporated in an RCT, serving as a supplement to 

the concurrent control group, the randomization ratio of treatment to concurrent control 

should be adjusted accordingly. Since the external controls provide additional information, 

fewer subjects will be needed in the concurrent control arm so that the randomization 

ratio can be higher than 1:1 to achieve the target power. 

In this article, we conducted a simulation study to assess the sensitivity of the 

commensurate prior method to various sample sizes and randomization ratios for a target 

power. We empirically evaluated the performance of dynamic borrowing under various 

scenarios with different degrees of heterogeneity based on different sample sizes and 

randomization ratios of RCTs.  
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Method 
 

Let 𝑡𝑡𝑖𝑖  denote the time-to-event variable and 𝑋𝑋𝑖𝑖 denote the vector of observed 

covariates for patient 𝑖𝑖. 𝛽𝛽 denotes the coefficients of the corresponding covariates. We 

denote 𝑧𝑧𝑖𝑖  as the indicator of the treatment that 𝑧𝑧𝑖𝑖 =1 if the patient 𝑖𝑖  is enrolled in the 

experimental arm of RCT and 𝑧𝑧𝑖𝑖=0 if the patient is either included in the RCT control arm 

or external control arm. Let 𝑘𝑘𝑖𝑖 denote the trial indicator that 𝑘𝑘𝑖𝑖 = 1 if the patient 𝑖𝑖 is an 

external control subject and otherwise, 𝑘𝑘𝑖𝑖 = 0 . The hazard function for patient 𝑖𝑖 is 

assumed to be  

ℎ𝑖𝑖(𝑡𝑡𝑖𝑖|𝜆𝜆, 𝛽𝛽, 𝛾𝛾, 𝛿𝛿) = ℎ0(𝑡𝑡𝑖𝑖|𝜆𝜆) exp(𝑋𝑋𝑖𝑖𝛽𝛽 + 𝑧𝑧𝑖𝑖𝛾𝛾 + 𝑘𝑘𝑖𝑖𝛿𝛿) , (1) 

where 𝛾𝛾 is the log hazard ratio reflecting the treatment effect and 𝛿𝛿 models the between-

trial heterogeneity among the concurrent and external control subjects. We assume that 

the baseline hazard ℎ0(𝑡𝑡𝑖𝑖) follows a Weibull distribution with the shape parameter having 

a prior distribution of exp(0.0001) and the scale parameter following a prior distribution of 

lognormal(0,10000). We specify a hyperprior distribution for 𝛿𝛿  as N(0,1/𝜏𝜏 ), and the 

precision parameter 𝜏𝜏 is assumed to follow a half-Cauchy prior with location parameter 0 

and scale 0.2 and non-informative priors for 𝛽𝛽 and 𝛾𝛾 as N(0,10000) (Gelman A, et al 2006). 

 

Simulation 
 

Method

Simulation

We conduct simulation studies to investigate the sensitivity of the proposed 

method for borrowing external controls with respect to different randomization ratios, 

sample sizes and degree of bias from the external control data source, given a fixed 

number of external control subjects to guild possible future clinical study designs when 

utilizing a known external control dataset.  

 

Our simulation setup is motivated by a lung cancer trial with 3 variables x1, x2, 

and x3, where x1 is a continuous variable and both x2 and x3 are binary variables. The 

survival outcomes for RCT subjects were simulated according to  

ℎ𝑖𝑖(𝑡𝑡𝑖𝑖|𝜆𝜆, 𝛽𝛽, 𝛾𝛾, 𝛿𝛿) = 𝜆𝜆 exp(𝑥𝑥𝑖𝑖1𝛽𝛽1 + 𝑥𝑥𝑖𝑖2𝛽𝛽2 + 𝑧𝑧𝑖𝑖𝛾𝛾) , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒  𝑘𝑘𝑖𝑖 = 0 (2) 

while the time-to-event for external control subjects was generated from the hazard 

function 

ℎ𝑖𝑖(𝑡𝑡𝑖𝑖|𝜆𝜆, 𝛽𝛽, 𝛿𝛿) = 𝜆𝜆 exp(𝑥𝑥𝑖𝑖1𝛽𝛽1 + 𝑥𝑥𝑖𝑖2𝛽𝛽2 + 𝑥𝑥𝑖𝑖3𝛽𝛽3) , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑘𝑘𝑖𝑖 = 1 (3) 

𝛽𝛽1, 𝛽𝛽2 , 𝜆𝜆 and 𝛾𝛾 are parameters estimated from the lung cancer trial. Note that 𝑥𝑥𝑖𝑖3 are 

equal to 0 for all the RCT subjects, but it is not the case for the external control subjects. 

Thus when 𝛽𝛽3 = 0, the external control and RCT control subjects are homogenous, while 

when 𝛽𝛽3 ≠ 0, there is a between-trial heterogeneity.  

  
Prior to investigating the impact of different randomization ratios in the presence 

of bias introduced by external controls, we select several sample sizes and randomization 

ratios for concurrent RCT, which achieve a target power without between-trial 

heterogeneity and are comparable when introducing bias. We specifically assume that 

there are 200 subjects available from a historical control arm. We search the 

combinations of the sample size of RCT arms that each arm could have 100, 200, 300, 
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We conduct simulation studies to investigate the sensitivity of the proposed 

method for borrowing external controls with respect to different randomization ratios, 

sample sizes and degree of bias from the external control data source, given a fixed 

number of external control subjects to guild possible future clinical study designs when 

utilizing a known external control dataset.  

 

Our simulation setup is motivated by a lung cancer trial with 3 variables x1, x2, 

and x3, where x1 is a continuous variable and both x2 and x3 are binary variables. The 

survival outcomes for RCT subjects were simulated according to  

ℎ𝑖𝑖(𝑡𝑡𝑖𝑖|𝜆𝜆, 𝛽𝛽, 𝛾𝛾, 𝛿𝛿) = 𝜆𝜆 exp(𝑥𝑥𝑖𝑖1𝛽𝛽1 + 𝑥𝑥𝑖𝑖2𝛽𝛽2 + 𝑧𝑧𝑖𝑖𝛾𝛾) , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒  𝑘𝑘𝑖𝑖 = 0 (2) 

while the time-to-event for external control subjects was generated from the hazard 

function 

ℎ𝑖𝑖(𝑡𝑡𝑖𝑖|𝜆𝜆, 𝛽𝛽, 𝛿𝛿) = 𝜆𝜆 exp(𝑥𝑥𝑖𝑖1𝛽𝛽1 + 𝑥𝑥𝑖𝑖2𝛽𝛽2 + 𝑥𝑥𝑖𝑖3𝛽𝛽3) , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑘𝑘𝑖𝑖 = 1 (3) 

𝛽𝛽1, 𝛽𝛽2 , 𝜆𝜆 and 𝛾𝛾 are parameters estimated from the lung cancer trial. Note that 𝑥𝑥𝑖𝑖3 are 

equal to 0 for all the RCT subjects, but it is not the case for the external control subjects. 

Thus when 𝛽𝛽3 = 0, the external control and RCT control subjects are homogenous, while 

when 𝛽𝛽3 ≠ 0, there is a between-trial heterogeneity.  

  
Prior to investigating the impact of different randomization ratios in the presence 

of bias introduced by external controls, we select several sample sizes and randomization 

ratios for concurrent RCT, which achieve a target power without between-trial 

heterogeneity and are comparable when introducing bias. We specifically assume that 

there are 200 subjects available from a historical control arm. We search the 

combinations of the sample size of RCT arms that each arm could have 100, 200, 300, 
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or 400 subjects. We aim to determine RCT scenarios that have similar target power 

assuming the external control is homogenous to the RCT control subjects, i.e. 𝛽𝛽3 = 0 (Fig 

1). Our simulation study was based on 2000 simulated datasets/trials for each pair of 

sample sizes. 

 

 

Fig.1 Sample size grid search. (A) power and (B) type I error for different pairs of the sample 

size of RCT treatment and control arms using the dynamic borrowing method to incorporate 200 

external control subjects. Different colors represent different sample sizes of the RCT treatment 

arm. 

 

Given 200 external control subjects, all pairs of the sample size of treatment and 

control arms in RCT yield overall good type I errors in the absence of between-trial 

heterogeneity. 4 scenarios of sample size and randomization ratio for RCT are selected 
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for 0.76 - 0.83 power after the sample size grid search, such as (200, 200), (300, 150), 

(400, 130) and (400,100) for RCT treatment and control arms, respectively (Table 1). 

 

Table 1  Sample size grid search result. 

RCT treatment RCT control RCT sample size Ratio Power 

200 200 400 1:1 0.773 

300 150 450 2:1 0.811 

400 130 530 3:1 0.833 

400 100 500 4:1 0.766 

Note. 4 selected scenarios of sample size and randomization ratios. 

 

To further evaluate the performance of the commensurate prior method with the 

commensurability parameter 𝜏𝜏 following a half-Cauchy prior accounting for the between-

trial heterogeneity, we allow 𝛽𝛽3 to vary from (-log(2), log(2)). When 𝛽𝛽3 ≠ 0, the hazards 

ratio of RCT control to external control will range from 0.5 to 2. The treatment effect 

estimated was adjusted for x1 and x2. We use 4 selected pairs of the sample size from 

the previous step. 
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Fig.2 Comparison of randomization ratios. (A) power and (B) type I error for different 

randomization ratios given 200 external control subjects when using the dynamic borrowing 

method. Different color represents different scenarios of randomization ratio. 

 

Figure 2 demonstrated the power and type I error for 4 randomization ratios (RR) 

with respect to various degrees of between-trial heterogeneity. In general, both power 

and type I error increase as the 𝛽𝛽3 increases, in which the difference between RCT 

treatment and external control becomes large and exaggerates the true treatment effect. 

The scenario that RR=4 (in purple) has the lowest power among the four scenarios and 

the type I error inflated the most when there is a large between-trial heterogeneity 

(𝛽𝛽3=log(2)). The scenarios that RR=2 (in green) and RR=3 (in blue) have comparable 

power and similar type I error. The scenario that RR=1 has higher power than the other 
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scenarios when 𝛽𝛽3 <0 and a slightly lower power than RR=2 and RR=3 when 𝛽𝛽3>0. The 

type I error is better controlled when RR=1.  

 

Fig.3 Comparison to not borrowing. (A) power and (B) type I error for different randomization 

ratios given 200 external control subjects using dynamic borrowing method compared to not 

borrowing scenarios. Solid lines show dynamic borrowing results. Dashed lines show no 

borrowing case. Different color represents different scenarios of randomization ratio. 

 

We select scenarios with RR=1 and RR=2 for further investigation. The scenarios 

with RR=2 and RR=3 have similar performance. Considering that the total sample size of 

the scenarios with RR=2 is smaller than the scenario with RR=3, the scenario with RR=2 

was selected. Figure 3 shows the comparison between dynamic borrowing external 

control subjects using the commensurate prior method and not borrowing any external 

control information. In general, borrowing external control gains power when 𝛽𝛽3 > 0, in 

which the between-trial difference exaggerates the treatment effect. Though both 
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scenarios have type I error inflation, the scenario with RR=1 has just slightly higher type 

I errors than not borrowing. 

 

Discussion 

In this study, we evaluate the performance of the commensurate prior method in 

hybrid control trials using different sample sizes and randomization ratios with a given 

power. Incorporating a fixed number of external controls, our results suggest assigning 

more patients to an experimental treatment when there is no between-trial heterogeneity 

among the concurrent and external control subjects (the external controls subjects are 

unbiased). To further evaluate the sensitivity, we proceed with 4 selected pairs of the 

sample size for the treatment and control arms that provide a target power. In the 

presence of non-negligible between-trial heterogeneity, when the randomization ratio is 

1:1, the commensurate prior method has a good overall performance at various 

heterogeneity levels and has the lowest total sample size required among all 

randomization ratios investigated. When there is no strong evidence for a substantial 

between-trial heterogeneity, randomization ratios of 2:1 and 3:1 increase the efficiency of 

trials without a high risk of biased estimation (Hobbs et al., 2013).  

 

Through simulations, we found that different randomization ratios demonstrate 

degree of sensitivity to varied between-trial heterogeneity. In general, the hybrid trial has 

more consistent power and more stable type I error control when the ratio of the treatment 

to the control of the RCT is smaller. The scenarios with RR=2 and RR=3 have comparable 

scenarios have type I error inflation, the scenario with RR=1 has just slightly higher type 

I errors than not borrowing. 

 

Discussion 

In this study, we evaluate the performance of the commensurate prior method in 

hybrid control trials using different sample sizes and randomization ratios with a given 

power. Incorporating a fixed number of external controls, our results suggest assigning 

more patients to an experimental treatment when there is no between-trial heterogeneity 

among the concurrent and external control subjects (the external controls subjects are 

unbiased). To further evaluate the sensitivity, we proceed with 4 selected pairs of the 

sample size for the treatment and control arms that provide a target power. In the 

presence of non-negligible between-trial heterogeneity, when the randomization ratio is 

1:1, the commensurate prior method has a good overall performance at various 

heterogeneity levels and has the lowest total sample size required among all 

randomization ratios investigated. When there is no strong evidence for a substantial 

between-trial heterogeneity, randomization ratios of 2:1 and 3:1 increase the efficiency of 

trials without a high risk of biased estimation (Hobbs et al., 2013).  

 

Through simulations, we found that different randomization ratios demonstrate 

degree of sensitivity to varied between-trial heterogeneity. In general, the hybrid trial has 

more consistent power and more stable type I error control when the ratio of the treatment 

to the control of the RCT is smaller. The scenarios with RR=2 and RR=3 have comparable 

Discussion
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performance, which may result from different total sample sizes. It suggests that the ratio 

of the sample size of RCT internal control to external control is another factor that jointly 

impacts the operating characteristics of hybrid trials. The degree of heterogeneity plays 

a role in determining the effective sample size of external controls. The higher the 

effective sample size in the external control group, the fewer concurrent subjects needed 

in the RCTs (Hobbs et al., 2013). 

 

In this study, we conducted retrospective analyses to estimate the treatment effect 

with a set of fixed randomization ratios of an RCT. Researchers have investigated the 

usage of external controls in adaptive trials to prospectively adjust the randomization ratio. 

Hobbs et al. proposed a design which assesses the between-trial heterogeneity at interim 

analyses and accordingly adjust allocation probability to achieve a balance of total 

information (concurrent and external) among treatment arms (Hobbs et al., 2013). Both 

retrospective and prospective analyses confirm that when incorporating external controls, 

adapting the randomization ratio enhances the efficiency of hybrid control trials. 

Evaluating the randomization ratio in the presence of multiple sources of external controls 

and historical treatment subjects is a natural extension of interest for future investigations. 

While further operational and practical considerations should be taken into account, our 

study provides valuable guidance to determine the randomization ratio of hybrid control 

trials in practice. 
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CMC STATISTICAL SUPPORT FOR 
COVID-19 VACCINE DEVELOPMENT:
GOING THE EXTRA MILE!  
Aili Cheng (Pfizer), Brad Evans (Pfizer), Jia Liu (Pfizer), Heliang Shi (Pfizer), Peili Wang (Pfizer), Ke Wang (Pfizer),  
Xiaoman Zhai (Pfizer)

The Covid-19 pandemic has caused dramatic global dis-
ruption. At the same time, it also became a driving force 
of miracles. One of the miracles is the very first COVID-
19 vaccine, developed by Pfizer and BioNTech. It is not 
only the first approved COVID-19 vaccine, but also 
the first messenger RNA (mRNA) vaccine approved 
in the US. Pfizer CEO, Dr. Albert Bourla, called this 
achievement a “moonshot” (Bourla, 2022). It took 
only two hundred and forty-eight days from the time 
Pfizer and BioNtech announced the collaboration to the 
emergency use authorization (EUA) submission. About 
eight months later, the biological license application 
(BLA) was approved by the FDA (Figure 1). It took a 

highly collaborative and dedicated “army” to make this 
miracle happen. Many colleagues worked day and night 
on the development of this vaccine including our CMC 
(chemistry manufacturing and control) statistical team. 
The challenges were unprecedented, but the resilience 
and excellence the team has demonstrated were amaz-
ing. The stories shared below are just a quick snapshot 
of what the Pfizer CMC statistical team accomplished 
during this special journey; hopefully these stories will 
inspire others to operate at “light-speed” in bringing 
important new medicines to patients around the world 
to dare to achieve more in the future. 

 

Figure 1. The key milestones of Covid vaccine development. The web links to the above milestones are listed as follows: 

March 17, 2020 https://www.globenewswire.com/news-release/2020/03/17/2001593/0/en/Pfizer-and-BioNTech-to-
Co-develop-Potential-COVID-19-Vaccine.html 

April 29, 2020 
https://www.globenewswire.com/news-release/2020/04/29/2023929/0/en/BioNTech-and-Pfizer-
announce-completion-of-dosing-for-first-cohort-of-Phase-1-2-trial-of-COVID-19-vaccine-candidates-
in-Germany.html 

December 11, 2020 https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-
19-issuing-emergency-use-authorization-first-covid-19 

August 23, 2021 https://www.fda.gov/media/151710/download 

 

COVID-19 vaccine was categorized as our “light-speed” project. Such a high-speed project, and the 

ongoing pandemic, came with unparalleled challenges especially in manufacturing. As our CEO Dr. 

Albert Bourla said, ““In order to ensure that every country can have access to our COVID-19 vaccine 

two conditions had to be met: a price that anyone can afford and reliable manufacturing of enough 

vaccine for all…Meeting the second condition was much more challenging” (Bourla, 2021). For CMC 

statisticians, the challenge was mainly reflected in five areas:   

1. mRNA was a new vaccine modality and there was limited prior manufacturing and development 

experience which posed significant challenges in process development, scale-up, trouble 

shooting, and specification setting. 

Figure 1. The key milestones of Covid vaccine development. The web links to the above milestones are listed as follows:

March 17, 2020	 https://www.globenewswire.com/news-release/2020/03/17/2001593/0/en/Pfizer-and-BioNTech-
to-Co-develop-Potential-COVID-19-Vaccine.html

April 29, 2020	 https://www.globenewswire.com/news-release/2020/04/29/2023929/0/en/BioNTech-and-Pfizer-
announce-completion-of-dosing-for-first-cohort-of-Phase-1-2-trial-of-COVID-19-vaccine-candidates-in-Germany.html

December 11, 2020	 https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-
against-covid-19-issuing-emergency-use-authorization-first-covid-19

August 23, 2021	 https://www.fda.gov/media/151710/download
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COVID-19 vaccine was categorized as our “light-
speed” project. Such a high-speed project, and the 
ongoing pandemic, came with unparalleled challenges 
especially in manufacturing. As our CEO Dr. Albert 
Bourla said, ““In order to ensure that every country can 
have access to our COVID-19 vaccine two conditions 
had to be met: a price that anyone can afford and reli-
able manufacturing of enough vaccine for all…Meet-
ing the second condition was much more challenging” 
(Bourla, 2021). For CMC statisticians, the challenge 
was mainly reflected in five areas:  

1.	 mRNA was a new vaccine modality and there 
was limited prior manufacturing and devel-
opment experience which posed significant 
challenges in process development, scale-up, 
trouble shooting, and specification setting.

2.	 To accelerate the development and manufac-
turing, two companies with multiple sites and 
organizations across many different time zones 
worked together 24 hours a day and 7 days a 
week. It was almost impossible to find a com-
mon slot for meetings. To better accommodate 
our scientists’ lab schedule, the CMC statisti-
cians had to constantly re-arrange personal 
schedules to attend the meetings.

3.	 Accelerating does not mean cutting corners. 
Instead, a lot of activities were running in 
parallel which required more work and posed 
significant challenge in decision making. 
Objective assessment using statistics became 
even more critical in this situation.

4.	 Working on site and exchanging ideas and 
thoughts in the hallway with scientists used 
to be part of CMC statisticians’ routine life. 
However, since the start of Covid pandemic, 
we had to work from home and used digital 
devices (like Microsoft Teams chat or phone 
call) to get hold of our busy colleagues to get 
the job done. Quite often this meant weekend 
and late-night meetings.

5.	 EUA filing was new to most of us. Although our 
scientist partners were working very hard, get-
ting last minute urgent requests became routine 
for the COVID-19 vaccine project. As a result, 
we constantly adjusted the delivery plans of 
other projects to accommodate the need of the 
COVID-19 vaccine project.

Despite all these challenges, our delivery time for 
the COVID-19 vaccine related tasks ranged from hours 
to just a few days. How did we do that with just a few 
statisticians and still maintain consistent support for 
other projects? As demonstrated in the examples below, 
collaboration, innovation, and commitment all played 
significant roles in our success. 
Example 1: Innovative Design of Experiment (DoE) to 
improve the mRNA transcription 

mRNA, the active ingredient of the COVID-19 
vaccine, is synthesized from plasmid DNA via the In 
Vitro Transcription (IVT) step. A statistical design was 
needed to determine which factors to modify to increase 
the RNA integrity in this step. Three factors were con-
sidered. The typical design for this type of study is a 
central composite design (CCD) with 16-18 runs, which 
allows us to build a full response model including main 
effects, 2FI and quadratic terms for curvature if any. 
However, only up to 7 runs/block and no more than 2 
blocks could be run in this case. In other words, 14 was 
the maximum number of experiments that our scientists 
could do, and it must be done in up to 2 blocks. Due to 
the special constraints, the typical CCD was not appro-
priate anymore. Instead, our statistician decided to use 
a hybrid design (Roquemore,1976). The hybrid design 
allows us to start with a two-input central composite 
circumscribed (CCC) design and embed a third fac-
tor to it. As a result, this design accommodated all the 
restrictions and still allowed for full response surface 
model fit. 
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Not only was it our first time applying the hybrid 
design to biological process development, it was also 
one of the first two studies that benefited from the Auto-
reporting tool that was recently developed in RShiny to 
automate the reporting process (Figure 2). With literally 

five button clicks, a draft DOE report could be gener-
ated in minutes; this reporting step used to take days 
to weeks to accomplish. The RShiny tool significantly 
increased the report consistency and flexibility as well. 
It now becomes a daily tool for DoE reports.

 

Figure 2. The interface of RShiny tool for DoE report automation 

Example 2: DoE for the lipids 

COVID-19 vaccine is mRNA encapsulated in lipid nanoparticles (LNP) formed by four different 

types of lipids. These lipids are essential for the mRNA protection and transfection. They also play an 

important role in decreasing the immunogenicity and improving biodistribution (Swingle, Hamilton, 

Mitchell, 2021). However, they are not easy to manufacture. Pfizer statisticians worked closely with 

scientists, designed two DoEs and built more than 40 models to understand the functional relationship 

between process parameters and the quality of lipids. The work was used in the delivery of a robust 

manufacturing process.  

Example 3: In-vitro Expression (IVE) assay acceptance criteria  

Figure 2. The interface of RShiny tool for DoE report automation

Example 2: DoE for the lipids

COVID-19 vaccine is mRNA encapsulated in lipid 
nanoparticles (LNP) formed by four different types of 
lipids. These lipids are essential for the mRNA pro-
tection and transfection. They also play an important 
role in decreasing the immunogenicity and improving 
biodistribution (Swingle, Hamilton, Mitchell, 2021). 
However, they are not easy to manufacture. Pfizer stat-
isticians worked closely with scientists, designed two 

DoEs and built more than 40 models to understand the 
functional relationship between process parameters and 
the quality of lipids. The work was used in the delivery 
of a robust manufacturing process. 
Example 3: In-vitro Expression (IVE) assay acceptance criteria 

The quality of the vaccine is tested both during the 
processing and right before being released to the market. 
A series of tests need to be done which take multiple days 
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could be stored at 2-8°C for up to 31 days. This was 
then quickly approved by global regulatory authorities 
and almost instantly, this result got to the news: NPR 
reported “Pfizer Vaccine Can Stay Longer At Warmer 
Temperatures Before Being Discarded” (Greenhalgh, 
2021).  CNN said “FDA: Pfizer vaccine can now be 
stored at standard refrigeration temperatures for up to a 
month” (Sealy, 2021). Global Alliance for Vaccines and 
Immunizations (GAVI) announced that “The vaccine 
can be stored at higher temperatures in Gavi-supported 
countries too.”(Geddes, 2021). This was probably the 
first time CMC statistical work so quickly made news 
headlines. It took only 30 days from the time we got the 
data to the FDA approval, which is also record-breaking.

Summary
High speed does not mean “skip steps/process”. To 

achieve the aggressive timelines, a lot of work must be 
done in parallel, which often resulted in more work. Just 
working longer hours was not enough. Innovation, stan-
dardization, and automation (ISA) are also critical to 
success. Besides regular project support, ISA has been 
the focus of Pfizer CMC statistics team for many years. 
Besides the innovative DoE and RShiny tool mentioned 
in the examples, we have standardized and automated 
many other common practices. The previous time and 
effort clearly paid off in the COVID-19 vaccine project. 

The entire development journey was like a relay 
race from one function to another. Every single second 
was used without getting a break. “Working around the 
clock” is probably the best phrase to describe everyone 
on the Covid project. Although most worked remotely, 
we have never worked so closely before. Also, with 
so many people watching and waiting, we were all 
fully committed to getting the work done no matter the 
circumstances. It is the high level of collaboration and 
commitment that has led to the success of the vaccine. 

COVID-19 vaccine development is also a very 
rewarding journey. Our work progress has been reported 
in TV, newspaper, and websites. As Pfizer employees, 
we constantly received thanks and appreciation from 
relatives, neighbors, and friends. People even came to 
our working site to thank us in person (Sokolow, A., 
2021). All this attention and appreciation made us feel 
honored and humbled at the same time. We could not be 
more grateful and proud to be part of this journey.

to complete. IVE is one of the critical assays which is 
used to confirm the presence and the in-vitro expression 
of the vaccine. 

An acceptance criterion (i.e., the minimum expression 
level) needed to be determined before this assay could 
be used for batch release; a batch can only be released to 
the market if it meets this criterion, otherwise, it would 
be rejected. IVE is measured using a cell-based assay, 
which are generally more variable than biochemical and 
biophysical assays. The assay was validated at the time, 
but there was a very limited number of batches and ana-
lytical data prior to the EUA submission.

The typical strategy for situations like this is to wait 
until more batch data are available to better quantify the 
process variability and analytical variability. However, 
the COVID-19 vaccine could not wait. Instead, all the 
relevant analytical data were employed in decision 
making, along with the batch data. Also, various analy-
ses were performed to understand in vivo and in vitro 
correlation, the impact of increasing the number of test 
replicates, and the feasibility to further refine assay 
acceptance criteria. The final decision was made based 
on the expected assay precision assuming the recom-
mended replication strategy would work as intended 
and assuming all the planned method optimization 
actions would improve method precision. The resultant 
criterion was quite stringent and could potentially lead 
to high out of specification (OOS) rate if any of these 
expectations was not met. Fortunately, the method 
performance improved, as expected. We not only set a 
specification limit, but also reduced the method vari-
ability by optimizing the assay replication strategy.
Example 4: 2-8°C Storage Time Extension

When the COVID-19 vaccine was first released in 
December 2020, the recommendation was that it could 
only be left in the refrigerator for no more than 5 days. 
This was because there was not enough stability data to 
support a longer storage time. To add more convenience 
to the Pharmacy and make the vaccine more readily 
available, thorough analyses were performed as soon 
as new stability data became available. To expedite the 
process, the statisticians prepared the analysis method, 
code, display plots, and report template prior to receipt 
of the data.  When the data finally arrived on a Sunday 
night, the statistical results together with the report were 
done right away. The analysis showed that the vaccine 
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INTERVIEW WITH SANDEEP MENON 
(PFIZER) ON LEADERSHIP
Ling Wang, Associate Editor at ASA BioP Report

years. I then came to the US and obtained my Ph.D 
in Biostatistics from Boston University as I’ve always 
been interested in applied mathematics. As I continue 
to grow in my professional career in both the pharma-
ceutical industry and academia, I realized that I have a 
great passion to keep learning, and teaching is one of 
the best ways to learn. When I started my career here 
at Pfizer in late 2010, I was already an adjunct faculty 
member at Boston University School of Public Health.  
I continued to teach part time at various institutions 
over the years, including applied mathematics/statistics, 
computing courses, machine learning, and courses that 
blend precision medicine and quantitative sciences. In 
addition, I’ve been teaching in management schools, 
mostly on quantitative leadership. I believe my fascina-
tion with the evolving components of sciences, passion 
to teach and remain a “curious student” has helped me 
tremendously in my journey. 

Whether it’s in academia, government, or industry, 
visionary leadership is a much sought-after quality in 
today’s workplace. It is the vision that you can grow 
overtime, and that can differentiate oneself from others 
and provide you with a fulfilling career path. In June 
2022, I sat down with Sandeep Menon, Chief Scientific 
Officer, Artificial Intelligence and Digital Sciences, and 
SVP, Head of Early Clinical Development at Pfizer, 
to have him share his leadership experience and jour-
ney with his fellow ASA Biopharmaceutical Section 
members. Sandeep’s responsibilities include overseeing 
many areas in drug development, such as Clinical Sci-
ence, Biostatistics, AI in Clinical Sciences, Clinical and 
Quantitative Systems Pharmacology, Precision Medi-
cine and Digital Medicine. He is an elected fellow of the 
ASA and adjunct faculty at Boston University School of 
Public Health, Tufts University School of Medicine and 
the Indian Institute of Management. You can find his 
detailed bio at the end of the interview. But first things 
first, here is the transcript of our conversation. 

Ling Wang: Hi Sandeep, it’s such a great plea-
sure to see you virtually again, and for our chat on 
leadership for the ASA Biopharmaceutical report. 
To get us started, can you tell us a little bit about 
yourself, especially your journey from completing 
medical school and practicing medicine and then 
expanding your skills into Applied Mathematics and 
Biostatistics to growing into a senior leadership role 
at Pfizer? 

Sandeep Menon: Thank you so much Ling. I am 
honored and excited to be here. I started my journey 
as a medical student at University of Karnataka in 
India (now University of Bangalore) where I received 
my medical degree and practiced medicine for two 

Sandeep Menon
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Ling Wang: Your responsibilities encompass sev-
eral other areas beyond Biostatistics, such as clinical 
sciences, Precision Medicine, Clinical Pharmacology 
and Quantitative System Pharmacology, AI in clini-
cal, digital medicine and translational imaging, and 
overseeing the Pfizer Innovation and Reasearch Lab 
(PfIRE). What learnings from your journey can you 
share for quantitative scientists to take to become 
impactful leaders?

Sandeep Menon:  It is clear today that quantita-
tive science is one of the fastest growing fields.  Every 
industry wants to hire talent with applied mathematics 
and statistics backgrounds. We are very fortunate that 
our skills are so marketable.  However, if we want to 
stand out as an innovator and make an impact, there are 
few areas that I would recommend we keep working on.  
I would start again with being a curious and continuous 
learner and making sure we are upskilling ourselves. I 
would say, “stay curious and even naïve at times.” For 
example, in my early career when I studied medicine, 
there was not a lot of precision medicine or genomics 
in the curriculum, but now we cannot survive without 
knowing about it.  We bridge the gap by continuous learn-
ing – taking courses or learning on the job. The second 
piece I have learned is that it is important to be “brave and 
authentic” and build an envoirnment where we can make 
mistakes. We learn from our mistakes even more than 
our successes.  If we mean it, say it, and be authentic and 
humble on what we can and cannot do.  The third one is 
developing communication skills which includes listening. 
I feel that I learn more from listening to others than listen-
ing to myself. Leaders who listen are more influential than 
leaders who want to dominate the discussion and want to 
be heard.  Finally, it is about enjoying the journey, being 
patient and serving the organization and colleagues whom 
we work with. As I was moving up the career ladder, one 
of my mentors gave me an excellent advice which has 
stayed with me, “ask the question: how can I help my orga-
nization, my colleagues, and our patients whom we serve, 
instead of what can I get from the organization.” When we 
have this mindset and attitude, success follows. 

Ling Wang: Thank you so much for sharing that. 
During the years of your career, there may be chal-
lenges that you have experienced. Could you share 
a few examples of how did you overcome these 
challenges?

Sandeep Menon: Good question. In my journey, 
what I have learned in the past 10 years working at 
Pfizer, and about 15-16 years in the industry, especially 
as an applied mathematician with a medical back-
ground, is that the biggest challenge has been trying to 
make sure that we are able to talk in a similar language 
as other non-statistical, or non-mathematical colleagues. 
That has been a challenge, at the same time, an opportu-
nity for being able to learn their domain, communicate 
and educate them in quantitative sciences. I’ve often 
felt this has been a challenge for many of the applied 
mathematicians and statisticians in general. Another 
challenge, or I would call it an opportunity, is the 
importance of keeping up with the science. In my cur-
rent role at Pfizer, one of my responsibilities is to over-
see Precision medicine and Digital medicine. We have a 
lab called the PfIRe lab (Pfizer innovation research lab), 
which leverages state of the art technology and enables 
dynamic and remote monitoring of human behaviors to 
develop meaningful and quantitative digital endpoints. 
The only way to succeed is to educate ourselves and 
educate the people around us about Precision medicine 
and Digital medicine. The third challenge is that, often-
times when we bring in something new, there’s always 
going to be some resistance for adoption. For example, 
when Adaptive designs and Bayesian designs in clini-
cal trials came in the mid to late 2000s, like 2008-2009, 
there was a lot of resistance from colleagues to not 
have an interim analysis, or just stop a futile clinical 
research project. We learned that it takes time to get 
new methods off the ground, adopted and embraced. 
Innovation comes eventually and we need to be patient 
and persistent with it. 

Ling Wang: Absolutely. I think your story on the 
Adaptive and Bayesian designs will be very help-
ful for quantitative scientists. You touched upon 
the topic of communication. How can we become 
better communicators, in terms of working with 
Physicians, Biologists, Chemists, Scientists, and 
Engineers, in addition to just improving the com-
munication skills?

Sandeep Menon:  My disclaimer here is that I am 
also still learning, I am far from being a great commu-
nicator. ASA Biopharm has been a great platform, and 
I personally have benefited greatly from the work ASA 
Biopharm has done for the quantitative disciplines to 
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grow a culture of communication. Even though we call 
ourselves American Statistical Association, technically 
it is much broader than that. It is a lot of data scientists, 
data engineers, machine learning experts and others 
coming under this big umbrella.  A few pieces of advice 
I’ll give on communication and goals is to be focused, 
which means that instead of chasing 15 consolation 
prizes, focus on 3-4 gold medals that have impact. For 
technical experts, you need to go very deep into what 
you know. Go 100 feet deeper in your field, know your 
stuff extremely well. At the same time, when you are 
collaborating, you should dive at least 5 feet deep into 
how does the Biology and the Science work, how does 
the Engineering Technology work, how does the Medi-
cal Information work. This will make you an invaluable 
communicator because you are able to meet your col-
laborators at common ground.

Ling Wang: What are the actions statisticians 
who are well-versed in our technical field can take 
to better develop their business acumen, and on the 
other side of the coin, do you have any suggestions 
for those who have experience and business sense, 
but having less time to keep up with all of the new 
methodology developments and technology? 

Sandeep Menon: I’m far from an expert on this, 
but I must mention that the more you know, the better; 
information is an asset. It is great to specialize in certain 
areas, but to be successful you need to understand the 
bigger picture. Take the time to learn about your orga-
nization, about your company or your university to find 
out how it operates and get familiar with the basics. If 
you’re in the industry, even getting familiar with the 
financial statements, customer life cycle, physician 
perspective and the patient journey is very valuable. 
If you know nothing about an area, go out for a coffee 
with a colleague and have them walk you through what 
they are trying to do. In any role, we should never stop 
asking questions. Every person that we interact with is 
someone we can learn from. 

Ling Wang: What advice would you give to 
young statisticians/data scientists/applied math-

Sandeep Menon is the Chief Scientific Officer of AI and 
Digital Science and SVP, Head of Early Clinical Develop-
ment at Pfizer Inc., and holds Adjunct faculty positions at 
Boston University School of Public Health, Tufts University 
School of Medicine and the Indian Institute of Management. 
At Pfizer, he is in the Worldwide Research, Development 
and Medical Leadership Team and leads a multi-functional 
global team which includes experts in Clinical Sciences, 
Biostatistics and Bioinformatics, Clinical Pharmacology, 
Quantitative Systems Pharmacology, Precision Medicine 
including labs, Digital Medicine which includes Pfizer 
Research and Innovation (PfIRE) lab, Translational Imaging 
and Early Scientific Planning and Operations. His respon-
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Inflammation and Immunology, Oncology, Rare Disease, 
Anti-Infectives and Cardiovascular and Metabolism. He 
also leads PfIRe (Pfizer Innovation and Research) lab with 
a remit to leverage state of the art technology to enable 
dynamic and remote monitoring of human behaviors to 
develop meaningful novel quantitative digital endpoints. 
During his years at Pfizer Sandeep has held leadership posi-
tions of increasing responsibility, from Discovery through 
Pivotal Studies. Prior to joining Pfizer, he held late-phase 
leadership roles at Biogen Idec and Aptiv Solutions (now 
ICON). Before joining the industry, he practiced family 
medicine in Mumbai and was Resident Medical Officer.
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the International Indian Statistical Association, received 
the Statistical Excellence Award in Pharmaceutical Indus-
try by Royal Statistical Society, UK and recently received 
the Distinguished Alumni Award from Boston University 
School of Public Health. He received his medical degree 
from Bangalore (Karnataka) University, India, and later 
completed his Masters in Epidemiology and Biostatistics 
and Ph.D. in Biostatistics at Boston University and research 
assistantship at Harvard Clinical Research Institute. He is 
on the advisory board for the M.S. program at Boston 
University.  Sandeep served as an associate editor of the 
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ematicians who just started their career journey? 
What about those leaders in statistics and data 
science who are looking to further develop their 
career beyond statistics?

Sandeep Menon: First, I would also like to con-
gratulate them for beginning such a great and fulfilling 
career. When you are starting your career, always be 
curious and keep learning. If you are just starting out 
in the industry, I would encourage you to join organiza-
tions such as ASA Biopharm to find not only mentors, 
but peers starting out in the industry. It is also vital in 
the first few years of your career to deepen your inter-
ests as they could lead to new skills. For more seasoned 
quantitative scientists, I’d encourage continuing your 
education because it’s very important to keep learning. 
Even for me at this point of my career, I take some 
courses, I talk to a lot of junior colleagues who are just 
out of school and who tutor me on new methodologies 
and new science that I can learn every day. That is a 
commitment we make for ourselves and we owe it to 
our organizations.

For leaders aiming to grow their career beyond statis-
tics, for example, I can give you an industry example. If 
you are in drug development, tell yourself, ‘I’m a drug 
developer first, Statistician/Mathematician next.’ If you 
come to every table as a statistician, and not a drug 
developer, you may be successful statistician, but you 
will not be able to influence your colleagues beyond 
your line. You need to understand drug development, 
understand the biologist, basics of chemistry, transla-
tional pharmacology, medical practice and competitive 
landscape. We need to stay rigorous about statistical 
methodology and authentic about statistics and math-
ematics, but at the same time, we need to start wearing 
the bigger picture hat and have a holistic approach.

Ling Wang: Lastly a fun question - I remember 
in one of the meetings you mentioned the movie “3 
Idiots”. Can you tell us a little bit why is this your 
favorite movie and what you have learned from it 
that is relevant to your career?

Sandeep Menon: Great memory Ling! It has been 
several years. For me, that was my best Bollywood 
movie. Sorry I will be bragging a bit here. That is 
because I related myself with one of the lead roles. 
Growing up, for my entire academic career including 
medical school, I never used to worry about grades. It 
was always about what can I learn, and I studied with a 
lot of passion. Even today a few of my classmates tell 
me that they think of me when watching that movie.  
By the time I was in the second year in medical school, 
I remember helping first year students and even my 
classmates, on physiology, pathology, and some general 
medicine. When we were in the final year, some of our 
professors actually delegated me to assist teaching  few 
courses regularly. In late 1990’s / early 2000’s there was 
little access to internet, I would just read myself or go 
and talk to other physicians or my seniors and learn. 
Eventually, it paid off with my grades as well as I aced 
every year which was not easy in India especially given 
the competition and the volume of students every year 
taking the board exams. The experience and the lesson 
for me from that movie is ‘Follow your passion with 
excellence and success will follow.’   

Ling Wang: This is really great, thank you so 
much Sandeep for your time, advice and comments.  
This was great fun.  n
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On September 16, 2021, and March 17, 2022, the 
American Statistical Association (ASA) Biopharmaceuti-
cal Section (BIOP) and LUNGevity Foundation hosted 
open discussions with biostatisticians, clinicians, and 
regulators regarding impacts of non-proportional hazards 
as part of a series of discussions conducted for the US 
FDA Oncology Center of Excellence’s initiative, Project 
SignifiCanT (Statistics in Cancer Trials). The goal of Proj-
ect SignifiCanT is to advance cancer drug development 
through collaboration and engagement among stakehold-
ers in the design and analysis of cancer clinical trials. 
Organized jointly by the ASA BIOP Statistical Methods in 
Oncology Scientific Working Group, LUNGevity Foun-
dation, and the FDA Oncology Center of Excellence, the 
overarching theme for these two meetings was how best 
to evaluate and summarize results when non-proportional 
hazards are observed in randomized cancer clinical trials 
with time-to-event endpoints. 

SUMMARY OF ASA BIOP SECTION’S 
VIRTUAL DISCUSSION WITH REGULATORS 
ON TIME-TO-EVENT ENDPOINTS IN 
CANCER TRIALS IN THE PRESENCE OF 
NON-PROPORTIONAL HAZARDS
Rajeshwari Sridhara (FDA), Olga Marchenko (Bayer), Qi Jiang (Seagen), Elizabeth Barksdale (LUNGevity), Richard Pazdur 
(FDA), Marc Theoret (FDA)

The speakers/panelists* for the discussion included 
members of the BIOP Statistical Methods in Oncology 
Scientific Working Group representing pharmaceutical 
companies, representatives from International Regulatory 
Agencies (FDA, EMA, HC, MHRA, SMC, TGA, Bra-
zil), academicians, patient advocates and expert statisti-
cal consultants. In addition, over 100 members attended 
the virtual meetings including representatives from other 
International Regulatory Agencies (e.g., from Japan, Israel, 
Singapore). The discussions were moderated by the BIOP 
Statistical Methods in Oncology Scientific Working Group 
co-chairs, Dr. Qi Jiang from Seagen and Dr. Olga March-
enko from Bayer, Dr Elizabeth Barksdale from LUNGev-
ity Foundation, and Dr. Rajeshwari Sridhara, contractor 
from Oncology Center of Excellence, FDA.

In many randomized cancer clinical trials where a time-
to-event outcome (e.g.: overall survival) is the primary 
outcome of interest, non-proportional hazards (NPH) are 
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observed. The limitations of the use of Cox-proportional 
Hazards Regression Model in estimating treatment effect 
in such scenarios are widely understood. Comparisons 
between different rank-based tests and combination tests 
have been reported in literature. While the most used log-
rank (LR) test may suffer from loss of power when NPH 
is present, in general, the LR test is relatively robust and 
can detect significant differences between survival curves. 
However, summarizing and reporting the treatment effect 
remains a challenge as the hazard ratio is difficult to inter-
pret when NPH exists. 

The September 2021 forum focused on ‘Summarizing 
treatment effect when comparing time-to-event outcomes 
in cancer trials in the presence of non-proportional haz-
ards.’ While different rank-based tests and combination 
tests have been reported in literature, there are merits and 
drawbacks to each of these alternative methods. The dis-
cussion in September of 2021 among multi-disciplinary 
experts explored optimal summary measures that can 
describe the average treatment effect under various NPH 
conditions. The March 2022 forum discussion among 
multi-disciplinary experts was a continuation of the discus-
sion held in September of 2021 and focused on ‘Statistical 
methods for evaluating treatment effects of time-to-event 
outcomes in cancer trials in the presence of non-propor-
tional hazards.’ The discussion in March of 2022 explored 
how best to design a cancer trial and pre-specify analysis 
methods when NPH is a possibility. 

In September 2021, an introductory presentation noting 
the different types of NPH was followed by presentations 
by a cross-pharma working group representative and an 
academician. While estimated medians and hazard ratio 
using Cox-proportional model are not ideal, there are sev-
eral options to summarize observed data albeit there are 
limitations with each measure such as weighted hazard 

ratio, hazard ratio over time, milestone survival, and 
restricted mean survival time. A few suggestions by 
the presenters included use of parametric models and 
use of simultaneous confidence bands for difference of 
survival functions. 

The panel discussion that followed focused on what 
summary measures are suitable (and clinically interpre-
table) alternatives to hazard ratio and estimated medians 
when NPH are observed in randomized cancer clinical 
trials. The panelists opined the following. The concept of 
NPH came to forefront especially with anti-PD1 drugs. 
Understanding why NPH are observed is important. The 
clinical context, such as, available subsequent therapies, 
a subgroup effect, mechanism of action of the drug, trial 
design, and others, needs to be examined before interpret-
ing the results. Among the observed NPH, delay in treat-
ment effect with observed late separation of the survival 
curves is generally not as challenging to interpret as cross-
ing survival curves. From a patient’s perspective, hazard 
ratio and log-rank test or other statistical tests are often 
difficult to understand. Generally, patients do not read the 
product labels and expect the treating physicians to explain 
the risks and benefits of the treatment. The important thing 
is to provide the most useful information for the physi-
cians and patients to make their decisions. A single sum-
mary measure may not be adequate when treatment effect 
changes over time and multiple pre-specified summary 
measures may be needed. Kaplan-Meier curves with con-
fidence bands can summarize the totality of information 
on treatment effect. 

The March 2022, an introduction to the scope of the 
discussion was followed by presentations by a represen-
tative from a FDA biostatistician and a representative of 
the cross-Pharma working group. The regulatory repre-
sentative presented an evaluation (Shen Y et.al. 2022)) 
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of MaxCombo test (Lin R.S. et.al. 2020) originally 
proposed by the cross-pharma working group, using 
a few examples from applications submitted to FDA. 
The evaluation suggests that undesirable properties of 
the test include rejecting the null hypothesis in favor of 
both the experimental treatment and control treatment, 
as well as difficulty in interpreting the results when the 
survival curves cross in the evaluation of treatment effect 
from randomized studies. The industry presentation high-
lighted that the primary analysis method must be pre-
specified as per the ICH E9 guideline requirement and 
that, of the available methods, the modified MaxCombo 
test is robust and agnostic to the types of NPH which can 
be prespecified. The industry representative proposed a 
group sequential strategy based on log-rank and Max-
Combo test when planning interim analyses.

The panel discussion that followed these presenta-
tions addressed the challenges of pre-specification, how 
to choose an appropriate statistical method, and how the 
results are interpreted when NPH is observed in cancer 
clinical trials that are intended for regulatory decision 
making. The panelists indicated that a majority of cancer 
trials are designed assuming proportional hazards and use 
log-rank test as the primary analysis method to test the 
hypothesis of treatment effect. When NPH is observed in 
such trials, there is often post-hoc examination of the rea-
sons for non-proportionality on a case-by-case situation. 
Only if a statistically significant treatment effect is estab-
lished using the pre-specified primary analysis could one 
consider alternate summary measures to estimated median 
and hazard ratio. For certain drug classes, the possibility 
of NPH may be known before conducting Phase III trials 
and such information should be utilized in their design. 
Adequate follow-up and number of events are critical in 
establishing treatment effect when NPH is observed. At 
the design stage, weighted log-rank test and MaxCombo 
test are potential alternative options to log-rank test; how-
ever, both tests have limitations. This in-depth discussion 
highlighted the uncertainties at the design stage and the 
difficulty in pre-specifying a robust primary method of 
analysis to evaluate the treatment effect.

This forum, similar to previous ones, provided an 
opportunity to have open scientific discussions among 
diverse stakeholders focused on emerging statistical 
issues in cancer drug development. We plan to continue 
with similar multi-disciplinary open forum discus-
sions in the future on a variety of important topics that 
include statistical aspects in cancer drug development 
with various stakeholders.
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CENTRAL STATISTICAL MONITORING – 
WHY WE NEED TO KNOW MORE
Tim Rolfe (GSK), Susan Talbot (Amgen), Rakhi Kilaru (PPD), Sharon Love (UCL)

Central monitoring is the most efficient way to ensure 
patient safety, trial integrity and data quality in multicen-
tre clinical trials 1-4. and its use is recommended by both 
FDA & EMEA and in the ICH-E6(R2) Good Clinical 
Practice guidelines 5-7.  However, early implementation 
of Central Monitoring models focussed primarily on Key 
Risk Indicators (KRIs) as a simple, implementable solu-
tion for identifying site to site variation 8-9.  However, 
a more holistic approach to assessing data quality using 
complex statistical analytics, rather than simple univariate 
assessment of KRIs, can aid detection of systemic issues, 
data irregularities and potential fraud with the greatest 
potential for jeopardizing the validity of study results. 

Although it might seem reasonable to assume that the 
incidence of misconduct or fraud in science in general and 
in clinical trials, in particular, is low; the true incidence is 
difficult to estimate 3.  However, in 2021 Richard Smith, 
former editor of the BMJ concluded that the problem of 
fraud in medical research “is huge” 11.

Kirkwood et al 10 brought together the thinking on 
central statistical monitoring methodology (CSM) and 
published R-programs for others to use.  They classi-
fied individual participant-level monitoring and site-level 
monitoring that was required and gave methods to look 
for recording and entry errors, procedural errors and 
fraud.  They envisioned a time in the future when these 
checks would be automated and routinely carried out.  
Almost a decade later, trial sponsors have interpreted 
which checks to run and how and when to run them and 
many have extended the methodologies. However, lim-
ited information is available on the methods used and the 
results of any checks are not routinely reported.

PSI, along with EFSPI and ASA-BIOP have set up a 
group to create a forum for collaboration and discussion 
of CSM strategies and methodologies, including quality 
tolerance limits (QTLs). Quality tolerance limits7 are 
used to proactively control systematic risks to factors 
critical to quality. QTLs combined with statistical moni-
toring techniques can reduce spending on inefficient on-

site monitoring practices potentially resulting in diverting 
resources to increase sample size or conduct more trials

The goal is to review current available methods 
described in the central statistical monitoring literature 
and recommend best practices for the broader statistical 
community on how robust central statistical monitoring 
can be achieved. Once current practices are summarised 
the special interest group plans to look to risk/issue detec-
tion methods from other industries where practices are 
potentially more advanced e.g., financial and gambling 
and the field of data science to evaluate new methodolo-
gies and enhancements in statistical monitoring.

On behalf of the CSM/QTL Special Interest Group 
(SIG), a joint collaboration including PSI, ASA BIOP 
& EFSPI (https://psiweb.org/sigs-special-interest-groups/
csm-qtl-sig)

For further information, or to join the CSM/QTL SIG, 
please contact the co-chairs:

Susan Talbot (Amgen), sshepher@amgen.com
Tim Rolfe (GSK), timothy.e.rolfe@gsk.com
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HAPPY BIRTHDAY BIOPHARM! 

In 2021 we celebrated the 40th anniversary of our Biopharmaceutical Section virtually. This year, IN 
PERSON, let’s connect and celebrate the 40+1 anniversary of our Section!

At JSM, we’ll celebrate during our Biopharmaceutical Section Business Meeting and Mixer. Mark your 
calendars for Tuesday, August 9 starting at 5:30pm in the Marriot Marquis Liberty L reception.  

At RISW, we’ll celebrate during the 40+1 BIOP Section Celebratory Reception on Wednesday, Sep-
tember 21 starting at 5:45pm.

Reminisce with current and past colleagues, former classmates and new acquaintances!  

Prepare for the mixer by catching up on last year’s Biopharmaceutical Report. Each issue  
https://community.amstat.org/biop/biopharmreport featured an article summarizing each decade of our 
Section’s history.

Special thanks to the 40th Anniversary Committee!  
Meg Gamalo, Jennifer Gauvin, Veronica Bubb, Lisa Lupinacci, Meijing Wu, Richard Zink 
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UPCOMING 
CONFERENCES

2022 ASA Biopharmaceutical Section 
Regulatory-Industry Statistics Workshop

The ASA Biopharmaceutical Section Regulatory-
Industry Statistics Workshop is sponsored by the ASA 
Biopharmaceutical Section in cooperation with the 
FDA Statistical Association. The conference lasts three 
days (September 20, 2022 –September 22, 2022), with 
invited sessions co-chaired by statisticians from indus-
try, academia, and the FDA and short courses on related 
topics offered on the first day of the workshop. To 
find out more visit: https://ww2.amstat.org/meetings/
biop/2022/

Early Conference Registration Closes:  
August 17, 2022 
Hotel Reservations Deadline 
August 29, 2022 

Women in Statistics and Data Science 
Conference

The 2022 Women in Statistics and Data Science 
Conference in St. Louis, Missouri from October 6, 2022 
– October 8, 2022, aims to bring together hundreds of 
statistical practitioners and data scientists. WSDS 2022 
will highlight the achievements and career interests of 
women in statistics and data science. 

To register visit here: https://ww2.amstat.org/ 
meetings/wsds/2022/conferenceinfo.cfm 

Early Registration Ends: August 25, 2022
Housing Deadline: September 3, 2022
Regular Registration: October 8, 2022

ASQ Fall Technical Conference - Mining for 
Quality with Statistics and Data Science

This meeting will be held between October 12, 2022 
and October 14, 2022. It is organized by the ASQ and 
ASA Section on Physical and Engineering Sciences 
and Section on Quality & Productivity. The goal of this 
conference is to engage researchers and practitioners in 
a dialogue that leads to more effective use of statistics to 
improve quality and foster innovation. Attendees should 
have a desire to participate, network, and discover new 
techniques to solve real-world problems!

To register visit here:  
https://falltechnicalconference.org/
Early registration ends:  
September 12, 2022  
Last day to book group rates for hotel:  
September 12, 2022. n
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