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ABSTRACT 

With the rapid development of new biomarkers for precision medicine applications, 
there is a critical need for effectively incorporating new technologies into biomarker 
identification, treatment selection, and effect quantification.  However, pushing at the 
boundaries of technological performance necessitates accepting a certain level of error 
rates for biomarkers based on technologies like deep sequencing.  In this presentation, 
we outlined a new strategy in adapting the measurement error model framework to 
investigate the impact of performance characteristics of new technologies on major 
aspects of precision medicine applications and discussed future directions. This 
provides opportunities to map out the general boundaries where certain error rates can 
be tolerated for new biomarkers to still be effective.  It can provide insight on how to 
conduct biomarker related studies at different stages while balancing efficiency and cost 
considerations.  

 

This is a companion to my presentation at PhUSE US Connect 2018. 
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INTRODUCTION  

We are in an era of rapid advancement of precision medicine, which has had wide 
ranging impacts on both patient care and regulatory considerations (Deng and 
Nakamura, 2017; Hyman et al., 2017). Probably the most prominent development is in 
cancer treatment. Since the breakthrough of the use of the kinase inhibitor imatinib for 
the treatment of chronic myelogenous leukemias (CML) that harbor the BCR-ABL1 
balanced chromosomal translocation that greatly improved the outcome of this 
previously lethal form of leukemia (Druker et al., 2006), advancement has been made in 
multiple directions, including therapies targeting HER2, EGFR, and other cancer driver 
genes. Companion tests have become one of the hallmarks of the new generation of 
cancer or anti-viral drugs.  All these developments require accurate and efficient 
identification and utilization of biomarkers, as well as classification of patients into 
meaningful subpopulations, which has been challenging with traditional technology 
(Vargas and Harris, 2016).   

The development of new technologies in this area is equally breathtaking (Sheridian, 
2017), with next generation sequencing (NGS) based approaches being the workhorse 
of precision medicine applications. The NGS technology makes it possible to obtain 
very high sequencing coverages for segments of the genome at a reasonable cost.  It is 
now feasible to identify allele variants at low frequencies, which is often the case for 
somatic mutations. This, coupled with new procedures like liquid biopsy, has the 
potential to revolutionize clinical practices (Krishnamurthy et al., 2017).  However, all 
sequencing platforms have their inherent error rates.  For example, error rate as low as 
0.1% has been reported for Illumina, which still might not be sufficient for some 
applications.  Various new methods based on barcoding and single cell sequencing can 
achieve even better performance (Yang et al., 2017). But since it is desirable in a lot of 
cases to detect harmful mutations as early as possible, especially with highly diluted 
samples like those in liquid biopsy, we will always be pushing the edge of the 
performance limit of these technologies. Moreover, as human ages, the body 
accumulates random somatic mutations due to biological processes and environmental 
insults (Hoang et al., 2016). The variation between experimenters is another factor of 
concern (Torga & Pienta, 2017).  

Some of these challenges have been discussed in the FDA discussion paper titled 
Optimizing FDA’s Regulatory Oversight of Next Generation Sequencing Diagnostic 
Tests—Preliminary Discussion Paper (FDA, 2016).  These include the lack of standard 
performance metrics for NGS based tests, the potential of detecting a very large 
number of variants, the difficulty to obtain valid clinical significance, and the difficulty to 
communicate the information to physicians and consumers. Fortunately, some of these 
issues are being actively addressed by efforts both inside and outside of FDA.  One 
important project in this area is Project SEQC2 led by National Center for Toxicological 
Research with collaboration with other FDA centers and outside researchers (Shi et al., 
2017). SEQC2 aims to develop standard analysis protocols and quality control metrics 
for consistent use of NGS data to enhance regulatory science research and precision 
medicine. Especially, it will provide a much needed evaluation for performance 
characteristics (specificity, sensitivity, reproducibility, optimal procedures) for the 
identification of somatic mutations as well as to assess its dependency on 
bioinformatics and coverage. It includes an extensive study with carefully designed 
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samples based on a number of cell lines that mimic settings for liquid biopsy, thus 
technical performance metrics can be readily derived. Related efforts also exist outside 
of FDA. 

However, even with a better understanding of technical performance metrics, a large 
amount of work is still needed to clarify the implication to precision medicine 
applications (biomarker identification and validation, subpopulation identification, 
treatment selection, effect quantification). First, there is a diverse array of new 
technologies with varying performance under different settings. For example, for 
barcoding based NGS alone, there are bottleneck sequencing (BotSeqS), targeted error 
correction sequencing (TEC-Seq), Firefly NGS, and many other variations. Adding to 
this diversity is digital PCR based methods and combinations with protein based 
markers (Cohen et al., 2018). Also, these technologies have been applied in a diverse 
array of clinical settings using both traditional needle biopsy and liquid biopsy.  Liquid 
biopsy itself includes tests focusing on circulating cancer cells and circulating cancer 
DNA (Krishnamurthy et al., 2017).  Recently, tests using urine, saliva, and peritoneal 
fluid have also entered discussion.   In reality, the accuracy in actual applications is 
often quite different from the optimal technical limit and varies significantly across 
different tissue types and ages (Bardelli and Pantel, 2017; Yang et al., 2017). Thus, 
results from standardized technical evaluations need to be put into proper context of 
applications. The understanding of these issues will be necessary to properly evaluate 
deep sequencing based applications in precision medicine. 

In this presentation, we shall outline a strategy to approach the problems mentioned so 
far.  We will discuss resources and methods that are already available and describe 
future directions for adapting existing statistical methods for the special needs in this 
area. 

 

AVAILABLE RESOURCES   

Fortunately, we can leverage significant work that has already been done in related 
areas. Researchers both inside and outside of FDA have some well recognized 
statistical approaches for each step of precision medicine development, including 
biomarker evaluation, subgroup identification, and clinical utility assessment. Excellent 
reviews can be found in Chen et al. (2014, 2015), Ondra et al. (2016), among others. In 
the traditional setting, one would assume that biomarker measurements (genomic 
markers, proteins, metabolites, etc.) for each patient can be obtained error free.  This is 
often reasonable for biomarkers in clinical use previously.  However, in using deep 
sequencing to detect somatic mutations, where we necessarily operate at the edge of 
the performance limit, taking into account of the error rates (and possibly biological 
background mutation rates) would be necessary to provide a precise evaluation for the 
utility of deep sequencing derived biomarkers or tests for applications in precision 
medicine. As mentioned in the FDA discussion paper (FDA, 2016), an important 
regulatory challenge in this area is to assure the safety and clinical validity of any test 
based on new technology while at the same time to allow consumers timely access to 
new tests. Thus while it is unreasonable to require all tests to be as accurate as in the 
traditional setting (essentially 100%), the measurement error issue has to be handled in 
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a disciplined and consistent fashion.  There is a rich literature on measurement error 
problems in various scientific fields (Carroll et al., 2006 ; Yi, 2017). It is widely 
acknowledged that naively ignoring measurement errors can lead to severe bias and 
invalid conclusions. The impact of measurement errors can be quantified and the bias 
can be reduced in certain setting with a number of methods developed for a wide range 
of applications. An example of approaches dealing with measurement errors is the 
simulation extrapolation method (SIMEX; Cook & Stefanski,1994; Carroll et al., 2006), 
which has enjoyed wide applications due to its intuitiveness and easiness for 
implementation. Now, we shall discuss these issues in some detail. 

Performance Metrics 

First, we consider the technical performance metrics of deep sequencing based tests. 
These are performance characteristics on known and well characterized standard 
samples under well controlled experimental conditions.  Since the importance of 
performance standard has been long recognized, publications for novel testing methods 
commonly include some characterization of performance metric with clearly defined 
experimental samples. Sensitivity, specificity, accuracy, and some other measures of 
performance are often reported.  One task will be to catalog these technical 
performance measures for important testing methods. An overarching view of major 
technologies in this field will provide the basis for regulatory considerations even when 
new approaches come online.  For this purpose, the SEQC2 project will be immensely 
valuable, which includes detailed evaluation of several important sequencing platforms 
(NextSeq, HiSeq, NovaSeq, Ion Torrent, MiSeq, etc.) with well characterized test 
samples.  Besides synthetic samples with cell lines, it also includes two significant 
collections of trio (parents and child) samples, providing a valuable standard for internal 
verification. A set of neuroblastoma samples will also be used. SEQC2 is evaluating 
different sequencing applications (whole genome sequencing and targeted sequencing), 
coverage levels, and bioinformatics pipelines at multiple research sites.  In addition to 
usual metrics like sensitivity/specificity, SEQC2 especially provides detailed evaluations 
of intra-site and inter-site variability. With SEQC2 results becoming available, it will 
provide important information for the review of technical performance metrics.  Other 
comprehensive studies like that carried out by Association of Biomolecular Resource 
Facilities will also be useful, so are original research publications with performance 
metrics for important approaches.  As these publications are from authors of differing 
backgrounds, the terminology and reporting methods could be quite different and 
sometimes confusing.  So an important part of this exercise is to standardize the diverse 
results that are collected on the common statistical language.   

As mentioned earlier, the technical performance is only one factor for deep sequencing 
based tests in precision medicine applications.  In fact, it can be considered to define 
the upper limit of the performance.  The third focus of the review will be on the 
application-wise performance metrics of various testing approaches. For realistic 
applications, one limitation is the amount of DNA, as both needle biopsy and liquid 
biopsy will only yield a limited amount of sample for analysis. This will put a limit on the 
achievable sequencing depth. Also especially for liquid biopsy, the circulating tumor 
DNA (ctDNA) is overwhelmed by free circulating DNA with normal cell origins. The 
stage of cancer as well as the tissue type also significantly affects the amount of ctDNA. 
Even for studies with high technical performance, the actual sensitivity of detecting 
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ctDNA in the plasma of cancer patient ranges widely from 50% to 95% across cancer 
stages and tissues. Researchers utilize a wide range of technologies in this area and 
sometimes combine sequencing based biomarkers with protein or other clinical 
biomarkers. The recent breakthrough of using other samples like urine and peritoneal 
fluid further complicates the picture. Another issue is regarding normal biological 
mutations that tissues invariably accumulate as people age (Krimmel et al., 2006). 
Though this does not yet pose a problem for the majority of applications so far, it has to 
be taken into consideration as the technology becomes even more sensitive. However, 
as the performance of deep sequencing based tests in a number of recently reported 
studies tend to reside in a common range (50%~95% sensitivity, 80%+ specificity), 
some general trends can already be observed by reviewing current literature.  

Available Statistical Methods 

There is a vast literature for statistical methods regarding biomarker related 
applications, which covers important steps of precision medicine practices: biomarker 
validation, subgroup identification, clinical utility assessment, among others. 
Applications in traditional settings usually cover a single or a small number of 
biomarkers, drawing on various types of regression and classification models as well as 
common inference frameworks.  As the NGS and other high throughput technologies 
have make it possible to obtain a large number of potential biomarkers simultaneously, 
there is a flood of development for methods with a “machine learning” flavor that brings 
a unique set of challenges.  In general most methods assume that the biomarker status 
can be obtained exactly.  This is reasonable in the traditional biomarker setting.  But as 
argued earlier, a certain level of error will be unavoidable for a lot of applications using 
deep sequencing and related technologies, which we want to address here. 

Various approaches have been proposed in a number of scientific fields to deal with 
measurement errors in the data (Carroll et al., 2006; Yi, 2017). In the simple linear 
regression setting, the classical additive error and the Berkson models have been 
extensively studied, and the attenuation effect on naïve estimators of regression 
coefficients is well understood.  However, for multiple linear regression and nonlinear 
models, the effect of measurement errors is more complex, possibly changing the 
magnitude or the signs of the estimate as well as resulting in incorrect coverage 
properties of the confidence interval.  The measurement error effect for high 
dimensional models and machine learning type approaches have just begun to be 
explored in detail. These effects are often difficult to predict other than that it could lead 
to wrong conclusions when measurement errors are ignored.   

For better inference under measurement error conditions, various approaches have 
been developed by many authors.  Main approaches include regression calibration, 
simulation extrapolation (SIMEX), likelihood-based correction methods, unbiased 
estimating function methods, and Bayesian methods.  Though excellent tutorials and 
reviews already exist for these approaches (Gustafson, 2004; Carroll et al., 2006; 
Buonaccorsi, 2010; Yi, 2017), it is still worthwhile to produce a specialized review with 
an eye on applications regarding deep sequencing based biomarkers.  The reason is 
that the amount of literature is huge with methods developed for a wide range of 
scientific problems.  Of these, only a subset would be relevant to the application to 
precision medicine.  For example, for the problem we are interested in, an error free 
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validation sample usually would not be feasible, thus limiting the use of a subset of 
methods utilizing validation samples. 

 

Adaptation of Statistical Methods 

Here we outline a strategy for adapting existing statistical methods for dealing with 
measurement errors in the context of deep sequencing based biomarkers. We shall first 
focus on commonly used basic biomarker identification method (termed Univariate 
Regression by some authors). Methods dealing with a number of biomarkers 
simultaneously will be discussed later. Here "univariate" means either there is only one 
candidate biomarker (based on deep sequencing) to be used to select subpopulations 
at a time, or a composite variable has already been constructed from a biomarker panel 
and is the only variable to be considered to define subpopulations. There are several 
different designs for clinical trials to evaluate biomarkers in this setting, these have been 
discussed in several excellent reviews (Chen et al., 2014, 2015; Ondra et al., 2016). To 
illustrate, we consider a randomized clinical trial to compare a standard of care arm with 
a new treatment arm for a particular disease. Suppose there are two subpopulations 
with respect to the response from a specific drug treatment: the responder subgroup 
and non-responder subgroup. Let 𝑚 be the number of candidate biomarkers (𝑍1, . . . . , 𝑍𝑚) 
investigated and 𝑛 be the total number of patients in the experiments. Let 𝑧𝑖𝑗 denote the 

measurement for the 𝑗-th candidate biomarker in the 𝑖-th patient, and 𝑦𝑖 denote the 
clinical outcome (target variable). The outcome variable can be continuous, binary, or 
time-to-event onset. Here we will assume the following model for the𝑗-th candidate 
biomarker: 

                                                                                                                                      (1) 

where 𝑇 is the treatment indicator and ℎ(𝑦) is a link function. The link function ℎ(𝑦) could 
be the identity function for continuous outcome, the logistic link for binary response, or 
the Cox proportional hazard function for time-to-event variables. Here we follow Freidlin 
and Simon (2005) in omitting the main effect for 𝑧𝑖𝑗 while retaining only the interaction, 

but other variations of model formulation will also be considered as part of the project. 
With Model (1), a significant interaction coefficient 𝑏2𝑗 indicates a difference in the 

outcomes between subgroups due to differences in treatment responses in the variable 
𝑧𝑖𝑗. For candidate biomarkers measured without error, the regression Model (1) is well 

understood. 

However, as discussed in the previous section, for applications like liquid biopsy, it will 
be common that 𝑍𝑖𝑗 is measured with a significant error rate (say from 50% to 98% for 

sensitivity). Then the question arises to (1) whether the conclusion is still valid regarding 
the predictive property of 𝑍𝑖𝑗 if measurement errors are ignored, and (2) whether it will 

be helpful to apply a measurement error model to alleviate the problem. A simple 
answer is not expected. As discussed earlier, the measurement error for deep 
sequencing has a pretty wide range depending on the technology, patient age, tissue 
origin, tumor type and stages. Thus, a detailed study over the range of measurement 
error scenarios will give guidance on when a candidate biomarker has a reasonable 
chance to be successful, what statistical methods could be used, and what type of 
applications should be attempted. 
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Consider the first question, whether the naive approach (simply ignoring the 
measurement error) can still provide acceptable conclusions. In principle, the naive 
hypothesis test regarding 𝑏2𝑗 = 0 will still be valid under the null hypothesis for the simple 

setting considered in Model (1) (see Carroll et al., 2006). However, the power of the test 
and related sample size considerations could be severely affected. On the other hand, 
the p-value alone is inadequate to evaluate the candidate biomarker, a good estimate 
for 𝑏2𝑗 is a must. Even in simple linear regression, the naive estimate can result in 

severe bias (the attenuation effect). For link functions other than identity and with other 
clinical variables, the situation is more complex, including potentially changing the 
magnitude of the estimate or reversing signs for the regression coefficient. Other than 
linear models, it can be difficult to derive analytical results for the effect that 
measurement errors have on the estimate. Thus, Monte Carlo simulation need be used 
for this purpose.  

Now we look at a simple model for survival data to illustrate the approach. Consider 
proportional hazards model with data from the treatment arm only regarding a single 
biomarker, the conditional hazard function for survival time 𝑌𝑖 given {𝑋𝑖 , 𝑍𝑖} is 

𝜆(𝑦|𝑋𝑖 , 𝑍𝑖) = 𝜆0(𝑦)exp(𝛽𝑥
𝑇𝑋𝑖 + 𝛽𝑧

𝑇𝑍𝑖), 

where 𝑋𝑖 is the biomarker state and 𝑍𝑖 represents other variables for the 𝑖th patient. We 
assume 𝑋𝑖 to be categorical, which should be applicable to most biomarkers based on 
deep sequencing in our context. The likelihood is ℓ = ∑ ℓ𝑖

𝑛
𝑖=1 , where 

ℓ𝑖 = 𝛿𝑖{log𝜆0(𝑦𝑖) + 𝛽𝑥
𝑇𝑋𝑖 + 𝛽𝑧

𝑇𝑍𝑖} − exp(𝛽𝑥
𝑇𝑋𝑖 + 𝛽𝑧

𝑇𝑍𝑖)∫ 𝜆0
𝑦𝑖
0

(𝑣)𝑑𝑣. 

Here 𝑋 is the true biomarker state, but in reality only the observed state 𝑋∗ is available 
through deep sequencing and is subject to error (misclassification). There are two ways 
to describe the misclassification probability: 

𝜋𝑖𝑙𝑘 = 𝑃(𝑋∗ = 𝑥(𝑙)|𝑋𝑖 = 𝑥(𝑘), 𝑍𝑖) or �̃�𝑖𝑙𝑘 = 𝑃(𝑋 = 𝑥(𝑙)|𝑋𝑖
∗ = 𝑥(𝑘), 𝑍𝑖). 

The range of 𝜋 or �̃� can be inferred from our review in the previous section. If the deep 
sequencing based biomarker 𝑋∗ is used without any correction for measurement errors, 
let 

  

                                                                                                                                     (2) 

We have 

 

                                                                                                                                       (3) 

 

 

This can be used to study the bias for the estimate for 𝛽 as well as the effect on 
inference. At the same time, a series of measurement error rates covering the range 
from the SEQC2  and other sources can be used in simulation studies.  
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Figure 1. An illustration of the MC-SIMEX approach with a simulated data set.  The proportional hazard 
model is outlined above. In the simulation, data on 300 patients are generated for biomarker positive and 
negative groups respectively, the true coefficient for Cox regression is -0.4.  The estimate for the 
regression coefficient is calculated for λ values from 0 to 2.0 (triangles in the plot). Note that  λ=0 
corresponds to the naïve estimator without error correction. The red curve is the resulted quadratic curve 
fitted to the estimates with different amount of misclassification.  The blue square indicates the estimate 
based extrapolation to λ=-1, which is much closer to the true coefficient value of -0.4.   

 

For the second question, there are multiple approaches.  To set the stage, we will 
continue to use the survival model introduced above and discuss two methods that are 
of potential interest. The first method is Misclassification Simulation Extrapolation (MC-
SIMEX; Küchenhoff et al., 2006). SIMEX method is widely used to handle measurement 
error problems in various disciplines due to its simplicity and versatility. MC-SIMEX is a 
variation suited for categorical variables measured with error. With known 
misclassification rate matrix 𝛱𝑖 = [𝜋𝑖𝑘𝑙]𝑟×𝑟, we can generate a series of misclassification 
matrix with larger error rate. Briefly, for a sequence of λ≥0, let 𝛱𝜆 = 𝐸𝛬𝜆𝐸−1, where 𝛬 is 
the diagonal matrix of eigen values and E is the corresponding matrix of eigen vectors. 
Then given 𝑋∗, we can simulate the biomarker variable with the misclassification rate 
matrix 𝛱1+𝜆. The corresponding estimate for regression coefficient �̂� can be computed 
for each 𝜆. With the corresponding �̂� and 𝜆 values, we can extrapolate to 𝜆 = −1 
(corresponding to no measurement error) to obtain the MC-SIMEX estimator for 𝛽. 
Küchenhoff et al. (2006) gives detailed description of the method. The SIMEX method in 
general has been successfully applied to a variety of problems and is appreciated for its 
intuitiveness and easiness for implementation. In this case, it is also very attractive in 
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that it will naturally generate a graphical display for how bias will change with the 
amount of measurement error or misclassification. This is valuable for practical 
considerations. As a lower error rate can often be achieved with more expensive 
technology or by only focusing on late stage tumors, a description of the relationship 
can be useful for planning subsequent trials. 

To illustrate the range of methods that we will consider, we will briefly outline another 
method, the insertion correction method (Hu et al., 1998; Dupuy, 2005). Follow the 
notation for our proportional hazards model. Let 

ℓ𝑖
∗ = 𝛿𝑖{log𝜆0(𝑦𝑖) +∑𝜋𝑖𝑙𝑘

𝑟

𝑘=1

𝛽𝑥
𝑇𝑥(𝑘) + 𝛽𝑧

𝑇𝑍𝑖} −∑𝜋𝑖𝑙𝑘

𝑟

𝑘=1

exp(𝛽𝑥
𝑇𝑥(𝑘) + 𝛽𝑧

𝑇𝑍𝑖)∫ 𝜆0

𝑦𝑖

0

(𝑣)𝑑𝑣. 

Then we have 𝐸(ℓ𝑖
∗|𝑋𝑖 , 𝑍𝑖) = ℓ𝑖. It can be used to derive corrected estimator for 𝛽 and carry 

out inference. The large sample distribution can be straightforwardly derived. This 
necessitates a model for the baseline hazard either parametrically or 
semiparametrically. It is also possible to work with likelihood or partial likelihood score 
functions. Both SIMEX and the insertion correction methods can be implemented for 
binary responses or other settings.  

 

CONCLUSION 

Though the NGS technology has tremendous potential in revolutionizing various 
aspects of precision medicine, its unique characteristics do pose significant challenges 
for properly analyzing and interpreting the experimental data. In this presentation, we 
outlined a measurement error based approach for the evaluation of deep sequencing 
based biomarkers. It provides a reasonable strategy in striking a balance between 
rigorous regulatory requirements and the need to make effective therapies available to 
patients in an expeditious manner. Though a huge amount of work need be done to 
bring this approach in practice, some preliminary results have confirmed the validity of 
the proposed strategy (Figure 1). More detailed investigation for the utility of this 
approach will be communicated in the future. 
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