

March 1, 2021

Shenzhen LEPU Intelligent Medical Equipment Co., Ltd. % Arthur Goddard
President
FDA Regulatory and Quality Systems Consultant
31853 Cedar Road
Mayfield Heights, Ohio 44124-4445

Re: K202776

Trade/Device Name: Fingertip pulse oximeter

Regulation Number: 21 CFR 870.2700

Regulation Name: Oximeter Regulatory Class: Class II Product Code: DQA Dated: January 8, 2021 Received: January 25, 2021

Dear Arthur Goddard:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal

statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to https://www.fda.gov/medical-device-problems.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance) and CDRH Learn (https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Todd Courtney
Assistant Director
DHT1C: Division of ENT, Sleep Disordered
Breathing, Respiratory and
Anesthesia Devices
OHT1: Office of Ophthalmic, Anesthesia,
Respiratory, ENT and Dental Devices
Office of Product Evaluation and Quality
Center for Devices and Radiological Health

Enclosure

DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

Indications for Use

510(k) Number (if known)

Form Approved: OMB No. 0910-0120

Expiration Date: 06/30/2023 See PRA Statement below.

ded for spot-checking of oxygen saturation of arterial ents in hospitals, hospital-type facilities, and
Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

Section 5: 510(K) Summary

This summary of 510(K) safety and effectiveness information is submitted in accordance with the requirements of SMDA 1900 and 21 CFR 807.92.

The assigned 510(K) Number: K202776

5. **510(K) Summary**

5.1. Date of Preparation: September 11th, 2020

5.2. Sponsor

Shenzhen Lepu Intelligent Medical Equipment Co., Ltd.

North side of floor 3, BLD 9 BaiWangxin High-Tech Industrial Park Songbai Road,

Xili Street, Nanshan District 518055 Shenzhen, Guangdong, CHINA.

Tel: +86-0755-86952278 Fax: +86-0755-86952287

Contact Person: Aaron Lin Position: General Manager

Email: aaron.lin@lepu-medical.com

5.3. Submission Correspondent

Mr. Arthur Goddard

31853 Cedar Road, Ohio, 44124-4445, U.S.A.

Tel: (216) 233-5722

Email: asjgoddard@aol.com

5.4. Subject Device Identification

Subject Device Name: Fingertip pulse oximeter

Model: LOX100A, LOX100B, LOX100C, LOX100D

Common name: Oximeter

Classification Name(s): Oximeter

Product Code: DQA

Regulation Number: 21 CFR 870.2700

Review Panel: Anesthesiology

Classification: II

5.5. Predicate Device

510(k) Number: K161560

Device Name: Fingertip Pulse Oximeter MD300CN310

Manufacturer: Beijing Choice Electronic Technology Co., Ltd.

Page 1 of 10 5-1-A

5.6. Indications for use

The Fingertip pulse oximeter is a handheld non-invasive device intended for spotchecking of oxygen saturation of arterial hemoglobin (SpO2) and Pulse Rate of adult, adolescent and child patients in hospitals, hospital-type facilities, and homecare.

5.7. Device Description

Fingertip pulse oximeter, LOX100A, LOX100B, LOX100C, LOX100D, mainly include of signal acquisition module, signal processing module, prompt module, detector, and emitter LED, display and user interface module, power supply module, the device is used to measure the patient's blood oxygen saturation (SpO2) and pulse rate (PR). The device is mainly composed of main board PCB, lamp panel PCB, sensor, OLED screen, button, silicone gel pad and enclosure.

All the models, LOX100A, LOX100B, LOX100C, LOX100D of proposed device, have difference in appearance, but follow the same design principle and technical specification. The device is a stand-alone device, the device is intended only for spot checking, and the device is reusable and do not need sterilization and re-sterilization.

5.8. Predicate Devices and Subject Device Comparison

Table 5-1 Feature Comparison with Predicate Devices

Item	Subject Device	Predicate Device	Remark
	Finger pulse oximeter	K161560	
		Fingertip Pulse Oximeter	
Product Name	Finger Pulse Oximeter	Fingertip Pulse Oximeter	SE
Product Code	DQA	DQA	
Regulation	21 CFR 870.2700	21 CFR 870.2700	
Number			
Classification	Oximeter	Oximeter	
Name(s)			
Classification	II	II	
Indications for	The Fingertip Pulse Oximeter	The Fingertip Pulse	SE
use	is a handheld non-invasive	Oximeter MD300CN310 is a	
	device intended for spot-	handheld non-invasive	
	checking of oxygen saturation	device intended for spot-	
	of arterial hemoglobin (SpO2)	checking of oxygen	
	and Pulse Rate of adult,	saturation of arterial	
	adolescent and child patients	hemoglobin (SpO2) and	
	in hospitals, hospital-type	Pulse Rate of adult,	
	facilities, and homecare.	adolescent and child patients	
		in hospitals, hospital-type	
		facilities, and homecare.	

Page 2 of 10 5-2-A

Item	Subject Device	Predicate Device	Remark
	Finger pulse oximeter	K161560	
		Fingertip Pulse Oximeter	
Intended patient	Adult, adolescent and child	Adult, adolescent and child	SE
population	patients	patients	
Intended	Fingertip	Fingertip	SE
application site			
Basic functions	Spot-checking of oxygen	Spot-checking of oxygen	SE
	saturation of arterial	saturation of arterial	
	hemoglobin (SpO2) and Pulse	hemoglobin (SpO2) and	
	Rate	Pulse Rate	
Components	Detector and emitter LED,	Detector and emitter LED,	Discussion 1
	Analog front-end IC, MCU,	signal amplify unit, CPU,	
	data display unit and power	data display unit and power	
	unit	unit	

Discussion 1:

The device composition of the subject device and the predicate device is different in the signal processing unit, the predicate device is the signal amplify unit, and the target device is the Analog front-end IC. The function of the signal amplify unit is to convert the current signal of the receiving tube into a voltage signal, and then amplify the voltage signal. The voltage signal received by the CPU is the waveform and amplitude recognized after ADC conversion; The function of the Analog front-end IC is to directly amplify the current signal and then convert it into pulse signals of different frequencies. The MCU captures the pulse signal and converts the frequency signal into a waveform and amplitude signal. The essence of the two is the same, they both amplify the signal. In addition, we verify the performance of the subject device through clinical study (See Section 20 for details) and ISO80601-2-61 performance test (See Section 18 for details), and the verification results meet the requirements for device performance. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

Contacting Material

Fingertip pad	Silicone Gel	Silicone Gel	SE
Enclosure	PCTG, PMMA	ABS	Discussion 2

Discussion 2:

The Enclosure of the two devices is made of different materials. The materials used in subject device have excellent performance and safety, and can meet the requirements of the device for the material. The biological safety of all materials has been verified, including cytotoxicity, sensitization, and irritation tests. The test results meet the requirements of the ISO10993 series of standards (See Section 15 for details). So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

Page 3 of 10 5-3-A

Item	Subject Device	Predicate Device	Remark
Item	Finger pulse oximeter	K161560	Kemark
	ringer puise oximeter	Fingertip Pulse Oximeter	
Software Level	Moderate	Moderate	SE
of concern	Wioderate	Wioderate	SE
Working	The measuring principles of	The pulse oximeter works by	Discussion 3
principle	pulse oximeter is based on	applying a sensor to a	Discussion 3
ринетре	Lambert-Beer law. The	pulsating arteriolar vascular	
	emitter LED of oximeter	bed. The sensor contains a	
	contains a dual wavelength	dual light source and photo	
	light source. One wavelength	detector. The one	
	of light source is 660nm,	wavelength of light source is	
	which is red light source. The	660nm, which is red light;	
	other is 905nm, which is near	the other is 905nm, which is	
	infrared light source. The dual	infrared-red light. Skin,	
	wavelength light source	bone, tissue, and venous	
	alternately irradiates the	vessels normally absorb a	
	surface of the finger, and the	constant amount of light over	
	photo diode detector at the	time. The photo detector in	
	other end of the finger will	finger sensor collects and	
	detect the red light and near-	converts the light into	
	infrared signal. In the process	electronic signal which is	
	of pulse beating, with the	proportional to the light	
	increase and decrease of blood	intensity. The arteriolar bed	
	volume, different amplitude of	normally pulsates and	
	light will be absorbed at the	absorbs variable amounts of	
	end of the detector. According	light during systole and	
	to the absorption ratio of two kinds of wavelength light, DC	diastole, as blood volume increases and decreases. The	
	signal and AC signal are	ratio of light absorbed at	
	extracted, and the oxygen	systole and diastole is	
	saturation value and pulse rate	translated into an oxygen	
	value are obtained by the	saturation measurement.	
	above signals.	This measurement is referred	
		to as SpO ₂ .	
Measurement	660±3nm	660±3nm	
wavelength-Red			
light			
Measurement	905±10nm	905±10nm	
wavelength-			
Infrared			

Page 4 of 10 5-4-A

Item	Subject Device	Predicate Device	Remark
	Finger pulse oximeter	K161560	
		Fingertip Pulse Oximeter	

Discussion 3:

Though the working principle expressions of the subject device and predicate device are a little different, the working principle is basically the same. Both the ratio of red light and infrared light of different wavelengths are converted into electronic signals through the sensor, thereby calculating the oxygen saturation measurement value. The wavelength of red light is 660nm and the wavelength of infrared light is 905nm. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

Table 5-2 Specification Comparison

Item	Subject Device	Predicate Device	Remark
	Finger pulse oximeter	K161560	
		Fingertip Pulse Oximeter	
Display Type	OLED	OLED	SE
Power supply	2*AAA batteries	2*AAA batteries	SE
Working Time	Approximately 25 hours of continuous operation	Approximately 24 hours of continuous operation	Discussion 4

Discussion 4:

The working time of the subject device and the predicate device are slightly different. The working time of the predicate device is covered by the working time of the subject device. In addition, the working hours of the two devices are sufficient to meet the needs of use. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

Discussion 5:

There are 3 display modes for the subject device and 6 display modes for the predicate device. The difference between them is the display direction. There are 2 display directions for the subject device, which form 3 display modes when combined with bar-graph and plethysmography. There are 4 display directions for the predicate device, which form 6 display modes when combined with bar-graph and plethysmography. The difference is only in display directions, and the display content on the screen is the same. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

Oxygen saturation			
SpO2	70%~100%	70%~100%	SE
Measurement			
Range			
Accuracy	$70\% \sim 100\%$: $\pm 2\%$	70%~100%: ±2%;	Discussion 6

Page 5 of 10 5-5-A

Item	Subject Device	Predicate Device	Remark
	Finger pulse oximeter	K161560	
		Fingertip Pulse Oximeter	
	70%~80%: ±2%	0~69% no definition	
	80%~90%: ±2%		
	90%~100%: ±2%		
	No requirement for 70%		
	below		

Discussion 6:

The SpO2 accuracy of the subject device and the predicate device are described in different ways. The accuracy of SpO2 of the subject device is $\pm 2\%$ at different levels (70%~80%, 80%~90%, 90%~100%, 70%~100%), which meets the requirements of ISO 80601-2-61. The accuracy of the predicate device at different levels is not mentioned. The accuracy of SpO2 of the two devices is 2% within the 70%~100% level. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

•			
Resolution	1%	1%	SE
Low Perfusion	70%~100%: ±2%	Not mentioned	Discussion 7
	$70\% \sim 80\%$: $\pm 2\%$		
	80%~90%: ±2%		
	90%~100%: ±2%		
	No requirement for 70%		
	below		

Discussion 7:

The accuracy of SpO2 at different levels ($70\% \sim 80\%$, $80\% \sim 90\%$, $90\% \sim 100\%$, $70\% \sim 100\%$) of the subject device under low perfusion conditions is $\pm 2\%$, and the accuracy of SpO2 of the predicate device under low perfusion conditions is not mentioned. LEPU Intelligent Medical has verified the accuracy of SpO2 of the subject device under low perfusion conditions, and the results met the requirements of ISO 80601-2-61. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

Pulse rate

Measuring range	30bpm~250bpm	30bpm~250bpm	SE
Accuracy	30bpm~250bpm	30bpm~99bpm, ±2bpm;	Discussion 8
	± 2 bpm or $\pm 2\%$ (which is	100bpm~250bpm, ±2%	
	larger)		

Discussion 8:

The pulse rate accuracy of the subject device and the predicate device are described in different ways. The detail comparison is shown in the table below:

Pulse rate range	Subject device	Predicate device	Conclusion

Page 6 of 10 5-6-A

Item	Subject Device	Predicate Dev	ice Remark
	Finger pulse oximeter	K161560	
		Fingertip Pulse Ox	kimeter
30bpm~99bpm	±2bpm (±2bpm is	± 2 bpm	SE
	larger than ±2%)		
100bpm~250bpm	±2% (±2% is larger	±2%	SE
	than ±2bpm)		

So, the accuracy of pulse rate of the subject device and the predicate device are the same.

Resolution 1bpm 19	1%	Discussion 9
--------------------	----	--------------

Discussion 9:

There is a difference between the resolution of the subject device and the predicate device. The display value of the pulse rate can only be an integer. Therefore, the minimum resolution setting is 1bpm. According to the requirement of the pulse rate unit in ISO 80601-2-61, it is the number of pulses per minute. The pulse rate resolution of the subject device is set to 1bpm to meet the requirements of ISO 80601-2-61 and actual use. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

Low perfusion	30bpm~250bpm	Not mentioned	Discussion
	± 2 bpm or $\pm 2\%$ (which is		10
	larger)		

Discussion 10:

The accuracy of Pulse rate of the subject device under low perfusion conditions is \pm 2bpm or \pm 2% (which is larger within 30bpm~250bpm), and the accuracy of Pulse rate of the predicate device under low perfusion conditions is not mentioned. LEPU Intelligent Medical has verified the accuracy of Pulse rate of the subject device under low perfusion conditions, and the results met the requirements of ISO 80601-2-61. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

Environment requir	rement		
Operating	5°C~40°C	5°C~40°C	Discussion
Temperature			11
Storage/Transport	-20°C~55°C	-25°C~70°C	
temperature			
Relative	≤80%; No condensation in	15%~93% no condensation	
Humidity	working status	in operation;	
	≤93%; No condensation in	≤93% no condensation in	
	storage status	storage/transport	
Atmospheric	70kPa-106 kPa	70kPa-106 kPa	
pressure			
Discussion 11:			

Page 7 of 10 5-7-A

Item	Subject Device	Predicate Device	Remark
	Finger pulse oximeter	K161560	
		Fingertip Pulse Oximeter	

The subject device and the predicate device are different in storage/transportation temperature and relative humidity. LEPU Intelligent Medical has verified the environmental requirements of the device in accordance with the requirements in ISO 80601-2-61, and the results meet the requirements. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

Table 5-3 Performance and Safety Comparison

Item	Subject Device	Predicate Device	Remark
	Finger pulse oximeter	K161560	
		Fingertip Pulse Oximeter	
Particular requirements for basic safety and essential performance	Meeting the requirements of ISO 80601-2-61	Meeting the requirements of ISO 80601-2-61	SE
Electrical Safety	Meeting the requirements of IEC 60601-1 and IEC 60601-1-11	Meeting the requirements of IEC 60601-1 and IEC 60601-1-11	SE
Electromagnetic Compatibility	Meeting the requirements of IEC 60601-1-2	Meeting the requirements of IEC 60601-1-2	SE
Biocompatibility	Meeting the requirements of ISO 10993-1, ISO 10993-5, ISO 10993-10	Not mentioned	Discussion 12
Clinical study	Meeting the requirements of Annex EE of ISO 80601-2-61	Meeting the requirements of Annex EE of ISO 80601-2-61	SE

Discussion 12: The fingertip pad and enclose of the subject device are in direct contact with the patient's tissue. According to the requirements of ISO10993 series standard and FDA Guidance: Pulse Oximeters - Premarket Notification Submissions [510(k)s], LEPU Intelligent Medical conducted the cytotoxicity test, irritation test and sensitization test on the device, and the test results met the requirements. So, the difference does not raise any new issues of safety or efficacy. The subject device can be considered to be substantially equivalent to that of the predicate device.

5.9. Performance Tests Summary

Bench test were conducted to verify that the subject device met all design specifications, as was Substantially Equivalent (SE) to the predicate device.

Biocompatibility Testing

The Fingertip pulse oximeter was assessed against the International Standard ISO

Page 8 of 10 5-8-A

10993-1, "Biological evaluation of medical devices. Part 1. Guidance on selection of tests." The subject device would be classified as a Surface Medical Device in contact with the intact skin for a Limited Duration (<24 hours). The following test were performed for any user contacting material:

Test	Standard	Results
Cytotoxicity Study using	ISO 10993-5	Under the conditions of this study, the MEM
MTT Method		extracts of test article would be considered no
		cytotoxicity potential. The negative controls,
		blank controls, and the positive controls
		performed as anticipated.
Skin Sensitization Study	ISO 10993-10	Under the condition of this study, the test
Guinea Pig Maximization		article extracts showed no evidence of
Test		causing delayed dermal contact sensitization
		in the guinea pig. The test article was not
		considered a sensitizer in the guinea pig
		maximization test.
Skin Irritation Study	ISO 10993-10	Under the conditions of this study, the
		irritation response category of the test article
		is classified as Negligible for polar extract and
		Negligible for non-polar extract.

> Non-clinical Tests

The Fingertip pulse oximeter is tested per the following standard, to evaluate its performance. The test results demonstrated that the proposed device comply with the standard requirements.

IEC 60601-1: 2005+AMD1:2012 Medical electrical equipment - Part 1: General requirements for basic safety and essential performance.

IEC 60601-1-2:2014 Medical Electrical Equipment Part 1-2: General Requirements for Basic Safety and Essential Performance Collateral Standard: Electromagnetic disturbances - Requirements and tests.

IEC 60601-1-11 Edition 2.0:2015-01 Medical Electrical Equipment Part 1-11: General requirements for basic safety and essential performance-Collateral Standard: Requirements for medical electrical equipment and medical electrical systems used in the home healthcare environment.

ISO 80601-2-61 Second Edition 2017-12 Medical Electrical Equipment Part 2-61: Particular requirements for basic safety and essential performance of pulse oximeter equipment.

Clinical data

A clinical study was conducted per the requirement of Annex EE of ISO 80601-2-61 to validate the SpO2 accuracy of Fingertip pulse oximeter. The purpose of the clinical

Page 9 of 10 5-9-A

study was to evaluate the SpO2 accuracy performance of the Fingertip pulse oximeter during stationary (non-motion) conditions over a wide range of arterial blood oxygen saturation levels as compared to arterial blood co-oximeter. 12 healthy adult volunteer subjects (ages 18-50yr, with light to dark pigmentation, include male and female) were included in the study conducted to evaluate the SpO2 accuracy performance of proposed devices. Each system was evaluated during steady state/non-motion conditions with various levels of induced hypoxia resulting in stable oxygen saturation levels between 100% and 70% SaO2. Arterial blood samples were drawn during simultaneous data collection from the test devices. The blood was immediately analyzed on reference co-oximeter providing functional SaO2 for the basis of the SpO2 accuracy comparison. The SpO2 accuracy performance results showed the Fingertip pulse oximeter to have an Arms of 1.52% during steady state conditions over the range of 70-100%.

> Software

The software embedded in Fingertip pulse oximeter has been developed, documented, and validated in accordance with industry standards (IEC 62304 – Medical device software – Software life cycle processes) and FDA guidance (GUIDANCE FOR THE CONTENT OF PRE-MARKET SUBMISSIONS FOR SOFTWARE CONTAINED IN DEVICES). The software is of Moderate Level of Concern

> Cleaning and disinfection validation

The Fingertip pulse oximeter is reusable, and Shenzhen LEPU Intelligent Medical Equipment Co., Ltd. has verified the cleaning and disinfection process of the device. The Cleaning and disinfection Validation is compliance with FDA Guidance to Compliance with FDA Guidance for the Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling.

5.10. Substantially Equivalent Conclusion

The subject device and the predicate device have the same intended use, and the technological differences do not raise different questions of safety and effectiveness. The subject device, Fingertip pulse oximeter, is determined to be Substantially Equivalent (SE) to the predicate device.