Building Quality Data

Center for Veterinary Medicine June 4 and 6, 2013

Animal Health Institute

- Karen Bond
- Kate Christmas
- Denni Day
- Eileen Daloia
- Georgette Gawlik
- Cory Herr
- Kristen Khanna
- Christy Kubin
- Beth Norton, co-chair

- Albert Ramudo
- Melissa Hughes Reinert
- Barbara Seibert
- Kim Swisher
- Sam Veluvolu
- Leland Vickers
- Mike Waits
- Bill Zollers

CVM

- Mary Allen
- Eden Bermingham
- Beth Luddy
- Amy Omer
- Junshan Qiu
- Jean Recta

- Marty Schoenemann, co-chair
- Emily Smith
- Laura Stets
- Veronica Taylor
- Vernon Toelle

Data Quality Webinar

- Final workshop of 10 required by Animal Drug User Fee Authorization Act of 2008
- Workshop series has been useful to address issues of mutual concern
 - □ Antimicrobial drugs for companion animals
 - Manufacturing Chemistry QbR process for sterile process validation
 - Medicated Feeds

Why High Quality Data?

- Short answer faster drug approvals
- Each data point is becoming more valuable
 - CVM is working to minimize the number of studies
 - Reducing animal numbers and data collected in the remaining studies
- Smoother review process

Smoother Review Process

- Easily reconstruct the study
- Determine the data were collected appropriately
- Permit efficient analysis of study results
 - Statistical and scientific
- Confirm adherence to 'requirements'
 - □ Laws, regulations, guidance, policies

Webinar Development

- AHI and CVM held a series of meetings to discuss issues related to lifespan of high quality data for target animal safety and clinical effectiveness studies:
 - □ From conceptualization of the need for data to submitting that data to CVM

Results of Those Discussions

- Identified five critical areas where improvements would be most effective
 - ☐ Study protocol development
 - "Prior to Live" and "Live" phases of study conduct
 - □ Reporting of study results
 - Submitting results/data to CVM

Scope of this Webinar

- Is not an exhaustive examination of all possible actions that can improve the quality of data
- Is the identification and discussion of those actions that are most likely to have a noticeable impact on data quality

Thank You!

We believe that putting the actions described during the webinar into routine practice can have a favorable impact on the quality of data submitted to CVM and, thus, the drug approval process

Building Quality Data - Protocol Development

Center for Veterinary Medicine

June 4 and 6, 2013

Protocol Development

- Objective
 - □ Good protocol design aids in collection of accurate, complete, precise and orderly data
 - CVM's standards for quality data
 - Build into protocol
 - Assure appropriate data collected/analyzed
 - Share with industry best practices to assure timely submission review

Topics

- Pre-submissionConference and other meetings
- Sponsor Review
- Overall Study Design
- Randomization
- Masking
- Adverse Events

- Inclusion/Exclusion
- Removal of Animals
- Endpoints-Choice, Measurement, and Timing
- Data Analysis
- Data Capture Forms
- Protocol Training
- SOPs

Protocol Concurrence

 General reminder that protocol concurrence is not required but helps to assure that studies are adequate to support drug approval

Pre-submission Conference (PSC)

- 30+ days beyond receipt of meeting request
- CVM uses time for internal meetings to review meeting materials
- Sponsor should define indication and pivotal endpoints
- Discussion of possible label language

Pre-submission Conference

- Opportunity for sponsor to propose development plan and general pivotal study designs
- Sponsor can provide data summaries to support key protocol designs
- Memorandum of Conference summarizes key points and agreements made during the meeting-contact CVM if have questions

Pre-submission Conference

- Early Information Option
 - □ Sponsor can provide preliminary data, (e.g. pilot studies, PK studies) approximately 100 days prior to the pre-submission conference to allow CVM to review the data and provide more detailed discussion of pivotal studies during meeting
 - □ Goal is for sponsors to submit protocol(s) immediately after pre-submission conference

Protocol Development

- Resources
 - ☐ Guidance For Industry #85, #185, and #215
 - □ Study specific guidances, e.g. species specific anthelmintic guidances
 - □ 21 CFR Part 58 for GLP studies
 - □ AHI Points to Consider- helpful, but has some outdated procedures (e.g. no End Review Amendment or eSubmitter procedures)

Protocol Development Meeting(s)

- Sponsor may request meeting(s) after
 PSC to discuss specific protocol issues in more detail
- Especially important for novel products, indications, or complex study designs
- Allows CVM to provide specific feedback
- May not be necessary if sufficient early information provided prior to PSC

Internal Review of Protocol by Sponsor

- Internal sponsor review of protocols is critical
- Input from statisticians, consultants, investigators, and monitors may improve quality and avoid mistakes
- Quality Assurance (QA) group can help by reviewing protocol as well

Drafting the Protocol

- Identify the data capture forms (DCFs) in the text either by title or number
- Describe procedures consistently from one section to the next, e.g. use the same terminology
- Organize and number sections to help investigator find information quickly

Overall Study Design

- Sponsor shouldn't base protocol only on FOIs because CVM's current thinking may have evolved
- Sponsor should review protocols from third parties to confirm that protocol and DCFs are acceptable
- Specify pivotal and supportive variables to support proposed indication or safety

Overall Study Design

- Describe experimental design e.g. parallel, cross-over, and any blocking or stratification
- Describe treatment groups, e.g. control groups
- Describe sample size for study and treatment allocation, e.g. 1:1, 2:1, etc.

Randomization

- Provide enough detail to illustrate the implementation and randomization restrictions such as blocking, stratification, or unequal treatment allocation (e.g. 2:1 treated to placebo)
- Protocol should specify that all details of randomization will be included in the FSR

Randomization

- Describe who will perform the randomization and how it will be implemented at study site, e.g. generated for each site prior to study initiation or generated centrally in real-time
- If the study is masked, the treatment information should not be disclosed on the randomization sheet

- For this webinar, masking includes both masking of treatment and personnel
- Masking is important for reducing observer bias and should be appropriate to the bias control needed for the study

- It is important to maintain separation of function between masked and unmasked personnel throughout the study
- Specify the masking status of all key personnel, e.g. sponsor, study director, monitor, treatment administrator, statistician, or owner

- Ensure that personnel making observations are not aware of the treatments
- Personnel managing real-time data should remain masked throughout the study, e.g. statistician, Clinical Investigator, or Study Director

- Use more labels/codes than the actual number of groups
 - □ In a study with 2 treatment groups with equal allocation, use at least 4 treatment codes (e.g. A/B/C/D).
 - □ In unequal allocation, it is important that you use at least 3 (e.g. A/B/C)

- Specify conditions under which unmasking is allowed (e.g. serious adverse events or human exposure) and how masking will be protected for remaining subjects
- Pay particular attention to protecting study integrity for interim analysis, e.g. a separate statistician to perform interim calculations

Describe timing and process for unmasking the study, e.g. after data locking

Adverse Events (AE)

- AE defined in the GCP guidance, GFI #85
- Serious AE may be defined if protocol states to notify sponsor or monitor in case of SAEs
- Train investigators to report AEs even if appear to be unrelated to treatment or are common diseases for that species or class of animal

Adverse Events

- A list of common terminology for investigators to use makes reporting easier
- State when to report AEs (e.g. specific time frame) and to whom (e.g. monitor)
- Dedicated DCFs make reporting easier

Adverse Events

- Multiple DCFs may be helpful to track progress and resolution of AEs (e.g. follow-up forms)
- DCFs- include date of occurrence, date recorded, animal ID, pen ID, signs, treatment of AE (including concomitant meds), and date of resolution

Adverse Events

- AE DCFs should be designed not to compromise masking unless unmasking is necessary to treat animal
- Monitors should check for AEs in other sources, such as medical records and owners' diaries

Removal of Animals

- The following should be described clearly in the protocol
 - Criteria for removal
 - □ Procedures and documentation
 - Whom to contact in case of removal
 - How removed animals will be accounted for in the effectiveness and safety analyses

Inclusion/Exclusion

- Chosen criteria depend on type of study and pivotal variables
- May include reasonable diagnostics to ensure eligibility
- List exclusionary medications, physiological conditions, and/or diseases

Inclusion/Exclusion

- Consider criteria carefully so they are appropriately restrictive or expansive as necessary to ensure suitable candidates
- Final labeling should be considered

Choice of Variables and Endpoints

- Should be consistent with proposed indication
- Should be measurable in a meaningful way
- Should be discussed during protocol development if new endpoint
- Early information may be beneficial to justify endpoint and when to assess

Measurement of Variables and Endpoints

- Methodology and procedures should be
 - ■Well-defined
 - □ Accurate
 - Reproducible
- If used, equipment must be properly calibrated
- Consider contacting CVM if planning to use a new methodology

Timing of Variables and Endpoints

- Dependent on indication, e.g. early vs. late stages of disease
- Dependent of type of outcome, e.g. complete vs. partial response
- May be dependent on drug levels in some cases, e.g. antimicrobials

Data Analysis

- Include hypothesis to be tested
- Pivotal analysis should match the primary clinical hypothesis
- Describe treatment effect(s) to be estimated
- Specify significance threshold
- Define experimental unit

Data Analysis

- Describe the principal features of the proposed pivotal analysis of the effectiveness variables
 - Statistical model, including fixed/random design factors that reflect any randomization restrictions
 - Analysis details (e.g. covariance structures)
 - Plan for unexpected analysis problems (e.g., missing data, non-convergence issues)

Data Analysis

 Prospectively define outcomes for animals removed prior to final endpoint measurement, e.g. drug-related AE = failure or withdrawals unrelated to treatment = unevaluable

Interim Analysis

- State purpose of interim analysis, e.g. sample size calculations, stopping for futility or remarkable effectiveness
- Describe personnel involved and how study masking will be maintained
- State when the planned analysis will occur, e.g. based on time, number of subjects, etc.

Interim Analysis

- Describe the process which includes data freezing, which data will be analyzed, what type of analysis will be performed, and plan for including frozen dataset in final submission
- Describe any implications on final analysis, e.g. alpha adjustment

Data Management

- Describe timing and process for data freeze and data lock (e.g. data audits, QC process)
- Locked database considered electronic raw data
- Any variable transformations or computations, e.g. unit conversion, should be planned for after data lock

Data Management

Entire electronic raw dataset should be included in the submission, not the subset of data that was analyzed

Data Capture Forms (DCFs)

- DCFs that capture primary variable data should be included with protocol for concurrence
- Design DCFs from investigator's perspective to minimize errors
- Understand how the DCFs will be used to ensure that the they accurately capture the critical information

- Some sponsors have DCF databanks where generic forms are modified for specific studies
- Training investigators how to use DCFs is most effective way to minimize errors; consider a "dry run" to test DCFs
- Involve QA in the design and review of DCFs

- Provide enough space for necessary information
- Comments made by laypeople may need more space
- Provide guidance on type of comments to add in allotted space
- Provide signature/initials space for observers and recorders if applicable

- Most DCFs include animal ID, date of documentation, and initials or signatures of study participants
- Be aware of bias concerns; use a different form for each day rather than track data over time on a single form
- Do not include treatment group on forms used by masked personnel

- CVM reviews DCFs to see if they collect appropriate information and preserve masking
- CVM provides comments on DCF deficiencies
- Numbering or titling DCFs and referring to them in the protocol helps the study participants and facilitates protocol review

Data Capture Forms: GLP vs GCP

- Greater variation in DCFs used for field studies
- Sponsor should review DCFs provided by CROs or third party to see if acceptable
- For GLP studies, the site often has its own forms, so may be reluctant to use sponsor's forms

Electronic Data Capture Forms

- Two main types
 - - Toxicology study systems, e.g. Provantis, Xybion systems
 - - Form based system where electronic DCFs mimic paper forms and data collection methods used in field studies

Electronic Data Capture Forms

- Must be 21 CFR Part 11 compliant
- Part 11 issues
 - □ Validation of software
 - Signatures-what are considered valid
 - Inclusion of audit trail to use for monitoring
- Sponsor may want to introduce CVM to proposed software in a presentation

Protocol Training

- Most effective and cost efficient way to minimize errors and maximize consistency
- Gives personnel a chance to point out problems with protocol or DCFs
- Have investigator or personnel complete forms using mock data to debug forms
- Provide principles for rounding numbers when recording data or dosing drug

- For both GLP and GCP studies, SOPs may not be necessary if procedures are described adequately in text
- For both GLP and GCP studies, SOPs critical to the protocol (i.e. pertain to assessment of primary variable) should be submitted with the protocol for review
- Sponsor may wish to discuss which SOPs are considered critical before submitting protocol

■ In some cases (both GLP and GCP studies), procedures such as microbiological assays (or other procedures as appropriate) can be submitted separately for review; sponsors should talk to the review division if they want to do this

GCP studies

□SOPs not required by CFR as part of protocol but may be used to support assessment of primary variable or Part 11 validation

GLP studies

Minimum of 12 critical areas required by 21 CFR Part 58 have to be addressed in SOPs or in the protocol text

GLP studies

- Sponsor should ensure that all sites able to meet SOP requirements
- Some SOPs may be considered proprietary by CRO or electronic data collection vendor, so sponsor can reference a submission outside of the protocol, such as a Veterinary Master File

Summary

- Topics chosen for presentation are the areas where it is important to build quality into the protocol
- The suggestions made today are based on feedback from both CVM reviewers and sponsors
- A well-written protocol decreases the potential for mistakes and increases the chance of a onecycle review

Building Quality Data – Prior to Live and Live Phases

Center for Veterinary Medicine June 4 and 6, 2013

Prior to Live and Live Phase

- Selection of sites and investigators
- Training of personnel
- Implementation of protocol
- Data collection and management

Outline of Topics

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Site Selection

- Selection of Clinical Investigator (GCP) or Study Director (GLP)
- Facility considerations
- Personnel qualifications
- GLP specific concerns

Selection of Clinical Investigator (GCP) or Study Director (GLP)

- Clinical investigator
 - □Sufficient knowledge, scientific training, and experience
 - Inspectional history
 - Able to fulfill responsibilities of protocol and applicable regulations and guidelines

Selection of Clinical Investigator (GCP) or Study Director (GLP)

- Study Director
 - □ Able to fulfill responsibilities required by GLP regulations (21 CFR 58.33)
 - Responsibilities outlined in 21 CFR 58.33 are separate from those of the test facility management and QA unit
 - □ Appropriate education, training, and experience

Facility Considerations

- Geographic location
- Schedule
- Contract laboratories
- Inspectional history
 - ☐ Has the site been inspected?
 - □ If an FDA Form 483 was issued, were the issues resolved?
- Animal Housing and Handling

Facility Considerations

- Standard operating procedures
 - Protocol specified procedures take precedence
- Equipment
 - Meets needs of protocol
 - Maintenance and calibration
 - Ensure scale checks/scale verifications are performed and recorded properly

Facility Considerations

- Is there appropriate storage available for the drug products?
 - ☐ Storage temperatures
 - □ Security
- Data handling and storage
 - □ Are archiving procedures adequate?
 - □ If electronic data capture used, are they21 CFR Part 11 compliant?

Personnel Qualifications

- Sufficient to ensure compliance with protocol and regulations
- Substantial evidence of effectiveness (21 CFR 514.4)
 - ...studies conducted by experts qualified by scientific training and experience
- GLP: 21 CFR 58.29
 - ... each individual shall have education, training, and experience, or combination.. and testing facility must maintain current summary of training and experience and job description

GLP Questions for Site Selection

- Does the site have the appropriate organizational structure and sufficient personnel?
 - □ Test facility management, study director, QA unit, and other supporting personnel
- Are facilities sufficient to allow for proper study conduct?
 - □21 CFR 58 Subpart C and E

GLP Questions for Site Selection

- Do they have appropriate equipment of adequate capacity; suitably located; maintained and calibrated?
 - □21 CFR 58 Subpart D
- Does the site have adequate Standard Operating Procedures which are kept up to date?
 - Minimum SOPs listed in 21 CFR 58.81

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Personnel Training

- May include training on GCP/GLP
- Overall protocol training
- Protocol procedure specific training
 - Particularly for critical data collection, new or difficult procedures
- Training on data capture forms
 - Training using mock data often helpful
- Documentation of all training is essential

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Test and Control Articles

- Consider timing of study in relation to Chemistry, Manufacturing, and Controls (CMC) technical section
 - Stability testing
 - □ Assay method validation
- Identification and accountability
 - □ Labeling of drug products (e.g. investigational labeling in 21 CFR 511.1)
- Storage

Test and Control Articles

- Ensure proper documentation maintained such as:
 - □ Lot/batch number
 - Expiration/manufacturing dates
 - ☐ Assay results
 - □ Formulation details- final formulation
 - □ Source/Manufacturer

Test and Control Articles

- Manufactured under Good Manufacturing Practices (GMPs) or similar conditions
 - Generally applies to drug batches in pre-approval clinical studies in which the intended final formulation is used (may include GCP and GLP studies)
 - Similar: methods for formulation, manufacturing, and testing in accordance with GMP standard but methods not fully validated or documentation completed
 - CDER's "CGMP Guidance for Phase I Investigational Drugs"

100

Test and Control Articles: Medicated Feeds

- Appropriate assay methods
 - □ Consider risks if not fully validated before study
- Assay results should fall within approved or investigational assay limits
- Avoid contamination with other drugs during mixing process
 - In some cases, testing for last run study drug is appropriate
- Drug accountability very important

Test and Control Article Characterization: GLP Studies (21 CFR 58.105)

- Must <u>determine and document</u> (for each batch) identity, strength, purity, and composition or other characteristics which define the test and control article
- Testing facility or the sponsor must <u>document</u> methods of synthesis, fabrication, or derivation of the test and control articles
- Test facility or sponsor must <u>determine stability</u> of test and control article either before or during study
- Label and store test and control articles properly
- Retain reserve samples from each batch for studies of more than 4 weeks duration

Test and Control Article Characterization: GLP studies (21 CFR 58.105)

- Responsibility for test article characterization and stability testing may be assumed by the facility performing the study or by the study sponsor (CPG Manual 7348.808)
- If performed by the sponsor, transparency and documentation are critical
 - Document appropriate characteristics
 - Sponsor statement provided to test facility
- If performed by test facility or contributing scientist, raw data archived with rest of study data.
 - Appropriate characterization studies conducted and available for review

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Feed and Water

- Ensure personnel understand and implement feeding practices consistent with the protocol
- Ensure data on nutrient content are collected per protocol
- Monitor for feed and water issues that could impact study outcome
 - Example: regional variations in dietary ingredients in production drug studies
 - Manipulations of mineral levels or extreme pH in water could impact drug activity

Feed and Water: GLP Considerations

- 58.45 provides for proper feed storage
- 58.81(b)(2) requires standard operating procedures for animal care (e.g., nutrition)
 - these should be followed during the study

Feed and Water: GLP Considerations

- 58.90(g) requires periodic analysis of feed and water for interfering contaminants
- 58.120(a)(7) requires the protocol to contain a description or an identification of the diet, including specifications for acceptable levels of contaminants- ensure these levels are not exceeded

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Concurrent Medications

- Follow pre-defined criteria in protocol
- Discussions with CVM encouraged if questions arise during study
- Record all treatments given before enrollment and during the study

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Test Animals

- Documentation of animal source, history, and processing as appropriate
- Ensure and document inclusion and exclusion based on protocol specified parameters

Test Animals

- Animal Accountability
 - Until end of study or investigational withdrawal time satisfied
 - Important to be able to demonstrate proper frequency of observation, explain missing data points, and follow the study conduct
- Animal Removals
 - Per protocol and exit examinations and/or necropsies performed
 - Ensure appropriate documentation, including reason

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Control of Bias

- Randomization
 - □ Perform per protocol
 - May be performed centrally (by the sponsor for all sites) or individually at each study site
- Masking
 - □ Protect masking
 - □ Plan for unmasking

Protecting Masking: Study Procedures Examples

- Number or letter vials so treatment identification not seen
- Use more labels/codes than actual number of groups
 - □ Example: Study with two treatment groups, may use four codes (A/B/C/D); if unequal allocation, very important to use at least three codes (A/B/C)
- Housing identification for animals should not include any indication of treatment
 - Example: Do not use a group code because will inform observers which animals received same treatment

Protecting Masking: Plan for Unmasking

- Planned unmasking
 - Treatment failures to determine future treatment of condition
 - Pre-planned interim analysis
- Unplanned Unmasking
 - Identification of information in audit reports
- Use protocol specified procedures if masking broken
 - Document date, time, circumstances
 - Confirm for which animals/groups masking is broken
 - Notification of sponsor, CVM if appropriate

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Data Collection and Management

- Ensure Data collection/Management plan is in place before the start of the study
- Train personnel appropriately on data quality and integrity principles
 - Quality = ALCOA (attributable, legible, contemporaneous, original, accurate)
 - □ Integrity = CCC (credible, corroborative, consistent)
- Error correction in accordance with protocol
- Collect all data expected and unexpected

Data Capture Forms

- Signatures: generally include dated observer and recorder signatures/initials if both are involved
- Transfer of all observations on a DCF to same electronic file may decrease errors during data entry

Owner Diaries

- Primary purpose is to collect compliance and adverse event information
- Improving quality of diaries
 - Owner training
 - □ Use of standard terminology
 - Communication through study
- Categorization of adverse events

What is raw data?

- GCP: "...Any original worksheets, calibration data, records, memoranda and notes of first-hand observations and activities of a study that are necessary for the reconstruction and evaluation of the study..."
 - Facsimile transmissions and transcribed data are not considered raw data
- 21 CFR 58.3(k): "...laboratory worksheets, records, memoranda, notes, or exact copies thereof, that are the result of original observations and activities of a nonclinical laboratory study and are necessary for the reconstruction and evaluation of the report of that study..."

Data Quality Principles

The raw data are:

- Attributable- can be traced (signature/initials and date) to the individual(s) observing and recording the data.
- Legible- readable and recorded in a permanent medium. If changes are made to original entries, the changes are made appropriately
- Contemporaneous- recorded at the time of the observation.
- Original- the first recording of the data.
- Accurate- true and complete observations

Data Integrity Principles

- Credible: Based on real and reliable facts
- Corroborative: Backed up by evidence
- Consistent: Demonstrate the required attributes consistently

Units of Measure: Standard International units vs. US units

- Collect data in units consistent with equipment
- Use of units of measure that are familiar to investigator may reduce errors
- Consistency within study or study sites
- For US submissions, talk to CVM prior to submission

Data derivations and conversions

- Should not be performed during data collection/recording
 - □ Potential for computation errors
 - Example: unit conversion or addition of several variables into composite
- Should be completed after the data freezing/lock

Rounding

- Follow protocol specified procedures
- Precision should be recorded in accordance to equipment being used
- Everyone should follow the same process of how to record a number
 - □ Particularly an issue with multi-site studies
- Rounding methods during dose administration
 - □ Should be specified in protocol
 - Primarily injectable drugs, but an issue for other formulations as well (topicals)
 - ☐ Consider animal weight, dose, drug concentration
 - Generally rounding should ensure within 10% of target dose

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Amendments and Deviations

- Protocol amendment: "A written change or modification of the study protocol effected prior to the implementation of the protocol or execution of the changed or modified task." (GCP)
- Protocol deviation: "A departure from the procedures stated in the study protocol." (GCP)
- (GLP)- Any changes in or revisions to the approved protocol must be documented along with the reasoning
- Special considerations for MUMS studies supported by grants

Deviations

- Ensure all are well-documented and evaluated for their impact on the study with relation to pivotal variables
 - Sponsor should make final assessment
- May be found by monitor
- Should have clear guidelines for notification of sponsor during the study

Outline

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Adverse Events

- GCP: "Any observation in animals that is unfavorable and unintended and occurs after the use of a veterinary product or investigational veterinary product, whether or not considered to be product related."
- Ensure appropriate people are notified (including CVM if necessary, per 21 CFR 511.1(b)(8)(ii))

Adverse Events

- Training of personnel in identification and documentation is important
- Report AEs as recorded, prior to reclassification or categorization

Outline

- Site Selection
- Personnel Training
- Test and Control Articles
- Feed and Water
- Concurrent Medications
- Test Animals

- Control of Bias
- Data Collection and Management
- Amendments and Deviations
- Adverse Events
- Quality Oversight

Quality Oversight

- Independent QA unit required by GLP regulations
- QA including use of a monitor recommended by GCP
- Sponsor ultimately responsible for all the data
 - □ Different ways to accomplish this

Monitoring

- Good monitoring may help sponsors catch issues early
- Should keep records of communication at the site
- Sites with high enrollment or more deviations should be monitored more frequently

Documentation of GLP compliance or non-compliance

- QA unit (21 CFR 58.35)
 - Monitors to assure conformance with the regulations and informs study director and TFM of problems
- Study Director (21 CFR 58.33)
 - Assures all GLP regulations are followed
 - Notes and documents corrective action for unforeseen circumstances that may impact quality and integrity of the data
- TFM (21 CFR 58.31)
 - Assures that deviations from regulations are communicated to study director and corrective action taken and documented

Documentation of GLP compliance or non-compliance

- Pre-planned non-compliance
 - Described and justified in protocol
 - □ Document how GLPs followed in spirit
- Non-compliance identified during study
 - Describe how problem corrected
 - Impact on establishment's operations, study conduct, and data integrity

GLP compliance documentation also useful for:

- Compliance statement (from sponsor) required as described in 21 CFR 514.1
 - Documentation and transparency during the study assists the sponsor in compiling the statement

GLP compliance documentation also useful for:

- Discussions with FDA inspectors
 - □ Not all findings of non-compliance are significant enough to be listed on an FDA 483
 - ☐ Findings should not be listed on the FDA 483 if in the opinion of the field investigator (ref CPG 7348.808):
 - The findings are problems that have been observed and corrected by the firm through its internal procedures.
 - The findings are minor and are one-time occurrences that have no impact on the firm's operations, study conduct, or data integrity.

Summary

- The quality of data is enhanced through careful selection of site and investigator/study director
- Training of personnel is imperative
- Carefully follow the protocol and regulations
- Use good data collection and management practices
- Monitor and document

Building Quality Data - Reporting and Submitting

Center for Veterinary Medicine June 4 and 6, 2013

Reporting and Submitting Data

- Reporting
 - Compiling the data
 - Reviewing the data
 - Preparing the electronic file
 - Analyzing the data
 - □ Preparing the report
- Submitting

Compiling: Reviewing Data

- Sources of raw data include
 - □ Paper records

Typically DCFs, chromatograms, photographs, planned/unexpected observations, adverse events, other information

□ Electronic records

Directly recorded electronic data using a Part 11 compliant system, including data audit trail

Compiling: Reviewing Data

- Raw data are reviewed and verified for correct recording, e.g. signatures, electronic forms
- Data typically reviewed for validity and adherence to ALCOA principles
 - May use any effective method available

- The electronic raw data file (e-File) is the electronic dataset(s) provided to CVM for analysis and review
- The e-File consists of electronic copies of data transcribed from paper records and original electronic records

- Keep file size manageable
 - Maximum permissible file size 100 MB
 - eSubmitter submission requirement
 - "paper" (other) submission strong preference
 - Divide data into multiple files in a logical structure
 - Clinical chemistry, hematology, or reproductive variables, feed related observations from production drug study

- Create self-contained files
 - Permit independent evaluation without need for additional files
 - □ Include identifying variables in each file, e.g. treatment, sex, block, site
 - Inclusion of same variables (except identifying variables) in multiple files is discouraged

- File(s) should contain all recorded data
 - Data can be excluded from analyses using programming
 - □ If corrections need to be made after data file lock-down, those can be made with programming as well

- Follow process detailed in the protocol for freezing and locking data files
 - Freeze: May be performed multiple times and does not indicate data are in the final form. Data are not unmasked.
 - □ Lock: No further changes can be made. Performed after review, query, resolution of questions but before unmasking.

Analyzing Data

- Data Exclusion Meeting
 - ☐ At the discretion of the sponsor
 - Is not a presubmission conference meeting please request as OO (ONADE other) meeting
 - Held before data are unmasked
 - Discuss exclusion of subject or individual data values
 - No decision is final because all information is not yet available to CVM

Analyzing Data

- Analysis: any assessment of results
 - Whether with or without summaries or statistical tools
- Performed on frozen/locked datasets
- Changes to analysis strategies
 - May discuss with CVM before submission
 - Documented as protocol amendment or deviation

Reporting Data: Tell the Story

- Present the study actions, results, and conclusions in a logical format that best tells the story
 - □ Can CVM reconstruct the study?
 - □ Be expansive in scope
 - Do individual and tabular values trace to raw data?
 - Can be helpful to follow the study protocol

Report Components

- Executive Summary hit the high points
- Material and Methods how did you do it
- Results what did you find
- Conclusions what does it mean

Executive Summary

- Include brief description of study design
 - Treatments, number of animals/sites, drug dosage
- Discuss major results of study
 - Expected and unexpected
- Highlight significant conclusions
 - □ Do results support purpose of study?

Materials and Methods

- Drug administration
 - Dose calculations to confirm correct levels
- Bias control
 - Masking, randomization
- Adverse event documentation
 - □ Use clear standardized terminology for AEs

Materials and Methods

- Description of subjective study processes
 - Define any scoring/coding systems used
 - Pain, depression, success criteria
- Provide equations for calculations and transformations
- Summary of analysis
 - □ Details may be in statistical report

Results - Content Points

- Discuss all of the data
 - □ Brevity/omission leads to unnecessary questions
- Group AEs appropriately
 - Discuss observed trends
 - □ Reflect authors' assessment of causality
 - □ Sponsor has final submission recommendation
 - CVM final assessment determination on evaluation
- Protocol amendments and deviations
 - □ Describe impact on data collection and results

Results – Presentation Points

- Use summaries and statistical analyses to guide discussion of results
- Report appropriate means and associated P-values
 - □ Covariate-adjusted least squares means
- Consider tabular/graphic presentation to aid interpretation
- Make appropriate connections to supporting reports

Conclusions

- Do the results support the hypothesis or purpose of the study?
- Provide a persuasive scientific argument for the conclusions that can be drawn
 - □ Particularly important for multiple studies

Report and Associated Documents

- Final Study Report
- Appendices
 - □ Raw data
 - Contributing scientist reports
 - Study protocol, as amended
 - Important SOPs

Sponsor's GLP Compliance Statement (GCS) – The issue

There has been a long-standing ambiguity, within both CVM and the regulated industry, as to the nature and necessity of seemingly duplicative requirements regarding assessments of the quality of non-clinical studies.

Sponsor's GCS – What is it?

- Statement required of the sponsor for each GLP study submitted to CVM in support of an application
 - "With respect to each nonclinical laboratory study contained in the application, either a statement that the study was conducted in compliance with ... [the GLP regulations]..., or if the study was not conducted in compliance, a brief statement of the reason for the non-compliance." (21 CFR 514.1(b)(12)(iii))

Sponsor's GCS – What is the intent?

- The intent of the regulation is ensure that sponsors are aware of the quality of non-clinical data they are submitting.
- The requirement has existed since the GLP regulations and the associated changes to existing regulations were finalized in 1978.

Sponsor's GCS – What is the intent?

- "... The revisions [of existing regulations] highlight the fact that although studies not conducted in compliance with the regulations may continue to be submitted to FDA, the burden of establishing that the non-compliance did not affect the quality of the data submitted is on the person submitting the noncomplying study."
 - □ From comment #253 in the preamble to the final GLP regulations, 43 FR 60013, 1978

Sponsor's GCS – Is it important?

- Consider the actions that can occur in its absence:
 - □ Is considered an untrue statement in an application (21 CFR 514.15(c))
 - □ Is grounds to refuse to file an application (21 CFR 514.110(b)(8))
 - □ Is grounds to refuse to approve an application (21 CFR 514.111(a)(11))

Sponsor's GCS – Why now?

- CVM has not consistently required, nor have sponsors consistently provided, these statements as part of their submitted applications.
- CVM's flexibility to help sponsors efficiently meet our requirements is increasing.
- There is increasing use of "non-traditional" testing facilities where knowledge of, and experience with, the GLP regulations may not be adequate.

Sponsor's GCS – Why now?

- The current level of ambiguity within CVM and industry, the use of 'inexperienced' testing facilities, and a faster tempo to the drug approval process has created an environment where it is no longer possible to assure that the quality of non-clinical data has not been adversely impacted.
- Returning to the use of the GCS will rightly place the burden of data quality back on the sponsors.

Sponsor's GCS – These aren't it.

- The similar statement required to be included in the final report of a nonclinical study
 - "a description of all circumstances that may affect the quality or integrity of the study." (21 CFR 58.185(a)(9))

Sponsor's GCS – These aren't it.

- The statement required to be prepared by the QAU and to be included with the final study report (21 CFR 58.35(b)(7) and 58.185(a)14))
 - □ This statement contains the dates QA inspections were performed and reported to test facility management and the study director.

Sponsor's GCS – Model Statement

Part 1: "I have personally inspected the final study report (including all raw data) and other study-associated information for compliance with the GLP regulations found at 21 CFR part 58. Based on my review, my assessment is that this non clinical laboratory study (was/was not) conducted in full compliance with the regulations found in part 58."

Sponsor's GCS – Model Statement

- Part 2: (Include the following paragraph where non-compliance is noted.) "My review of this information revealed non-compliance with the following sections of the GLP regulations: (provide a list of those section(s) where non-compliance was noted and a brief statement of the reason for the non-compliance)."
- This statement should be signed by the individual performing the review.

Organization of Submission

- Cover letter and Form FDA 356v or eSubmitter responses
- Table of contents for the entire submission
- Regulatory summary
 - Draws conclusions using information from all studies included in submission
- Compliance statements
- Final study report(s) with all appendices

- File type choice critical to CVM
 - □ These files are becoming our official records
 - Selected to provide the greatest chance of being readable or usable in the future with minimal effort
 - Non-proprietary format
 - Less dependent on software version
 - Accessible using free software
 - □ Preserves files for future use by sponsor or CVM

- PDF Portable Document Format
 - □ Used for text and image files
 - Study reports, scanned DCFs, ReadMe files, log and output files
- XML Extensible Markup Language
 - □ Used for data files and program files
 - Non-proprietary (i.e., not Microsoft's) version required
- XPT SAS Transport (XPORT)
 - ☐ Can be used for data files; prefer XML
- CVM Biostatistics can assist in converting data files

- XPT limitations
 - Must use XPORT not CPORT (proprietary) files
 - □ Variable names are limited to 8 characters
 - □ Need SAS Universal Viewer (free software) or SAS software to read files

- XML
 - More generous variable name length
 - □ Files can be read using Excel, Notepad, or other text file readers

Electronic File Specifications

Resource for electronic file creation for both eSubmitter and "paper" (other) submissions:

http://www.fda.gov/downloads/ForIndustry/FDAeSubmitter/UCM332980.pdf

- Electronic (eSubmitter) submissions
 - Only PDF, XML, and XPT files are accepted
- "Paper" (other) submissions
 - CVM strongly recommends the use of PDF, XML, and XPT files
 - Contact CVM if considering other formats

- File names
 - □ Do not use special characters (e.g., #, %)
 - □ Limit path length by limiting the number of subdirectories used
 - □ Indicate data or program file if possible
- Maximum permissible file size is 100 MB

Submit text files as PDF files

- Organize physical files with logical breaks
- Content of each file should be easy to describe
- PDF file must be subjected to optical character recognition (OCR'd) to allow bookmarks and text searches
- Bookmark files

- Submit analysis programs as XML files
 - □ For SAS, simply save/rename files having SAS extensions with the XML extension

SAS code to generate non-proprietary XML files

```
libname in 'file location';
libname out xml 'file location\filename1.xml';
data out.dataset1; set in.filename; run;
```

SAS code to generate XPT files

```
libname in 'file location';
libname out xport 'file location\filename1.xpt';
data out.filename1; set in.filename; run;
```


SAS code to read non-proprietary XML files

```
libname in xml 'file location\filename.xml';
data filename1; set in.dataset1; run;
```

SAS code to read XPT files

```
libname in xport 'file location\filename.xpt';
data filename1; set in.dataset1; run;
```


- Include a "Read Me" text file
 - Identifies all data and analysis program file names
 - □ Describes the purpose of each file

- Include a "Read Me" text file
 - □ For each data file, describe contents
 - Truncated variable name if used (BWT)
 - Complete variable name (body weight)
 - Units of measure (kg)
 - Identify data files used in each analysis program

- Internally document analysis programs sufficiently to explain data manipulation and specialized procedures
 - When excluding data, identify the reason and person directing the exclusion
 - Identify the purpose for inclusion of other program files

- Analysis Programs
 - Because we will be using XPT or XML files to view and analyze your data, we recommend that you do the same
 - □ Include in the submission all sub-programs used to perform statistical tests, file conversions, and summarize data.
 - □ Simple programs are the best.

Summary: Reporting and Submitting

- Verify raw data is captured accurately in efile(s)
- Create complete/accurate final study report
- Include sponsor's GCS for GLP studies
- Submit compliant PDF, XML, and XPT files

Question and Answer Session

Reminder that the questions and answers from this session have been incorporated into the Questions and Answers document.

10/6/2014 **169**

Webinar Closing Remarks

10/6/2014 **170**