

Wuxi Hisky Medical Technologies Co., Ltd. % Ray Wang
General Manager
Beijing Believe-Med Technology Service Co., Ltd. 5-402, Building #27, No. 56, LiangXiang East Rd. FangShan District
Beijing, Beijing 102401
CHINA

Re: K200136

Trade/Device Name: Shear Wave Quantificational Ultrasound Diagnostic System

Model(s): FT9000, FT100, Mini800

March 17, 2020

Regulation Number: 21 CFR 892.1560

Regulation Name: Ultrasonic pulsed echo imaging system

Regulatory Class: Class II Product Code: IYO, ITX, IYN Dated: January 17, 2020 Received: January 21, 2020

Dear Ray Wang:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal

K200136 - Ray Wang Page 2

statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to https://www.fda.gov/medical-device-problems.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/training-and-continuing-education/cdrh-learn) and CDRH Learn (https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

For

Thalia T. Mills, Ph.D.

Director

Division of Radiological Health

OHT7: Office of In Vitro Diagnostics

and Radiological Health

Office of Product Evaluation and Quality

Center for Devices and Radiological Health

Enclosure

DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

Indications for Use

510(k) Number (if known)

Form Approved: OMB No. 0910-0120 Expiration Date: 06/30/2020

Expiration Date: 06/30/2020 See PRA Statement below.

K200136
Device Name Shear Wave Quantificational Ultrasound Diagnostic System Model(s): FT9000, FT100, Mini800
Indications for Use (Describe) Shear Wave Quantificational Ultrasound Diagnostic System (Models: FT9000, FT100 and Mini800), Transient Elastography based device, is intended to provide 50Hz shear wave speed measurements and estimates of tissue stiffness as well as Ultrasound Attenuation Parameter (UAP) in internal structures of the body.
Shear Wave Quantificational Ultrasound Diagnostic System (Models: FT9000, FT100 and Mini800), is indicated for noninvasive measurement in the liver of 50 Hz shear wave speed and estimates of stiffness as well as Ultrasound Attenuation Parameter (UAP).
The shear wave speed and stiffness, and UAP may be used as an aid to diagnosis and monitoring of patients with liver disease, as part of an overall assessment of the liver.
Shear Wave Quantificational Ultrasound Diagnostic System (Models: FT9000), is intended for general purpose pulse echoultrasound imaging and Doppler flow analysis of the human body. It can be used in the following applications: Abdominal, including location of the liver.
Type of Use (Select one or both, as applicable)
Prescription Use (Part 21 CFR 801 Subpart D) Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

Tab #7 510(k) Summary

This 510(k) Summary of 510(k) safety and effectiveness information is being submitted in accordance with requirements of SMDA 1990 and Title 21, CFR Section 807.92.

The assigned 510(k) Number: K200136

1. Date of Preparation: 03/09/2020

2. Sponsor

Wuxi Hisky Medical Technologies Co., Ltd.

Room B401, 530 Plaza, University Science Park, Taihu International Science & Technology Park, 214135 Wuxi, Jiangsu Province, PEOPLE'S REPUBLIC OF CHINA

Contact Person: Jinhua Shao Position: General Manager Tel: 86-10-82151572

Fax: 86-10-82151571

Email: shaojh@fibrotouch.com

3. Submission Correspondent

Ray Wang

General Manager

Beijing Believe-Med Technology Service Co., Ltd.

Rm.912, Building #15, XiYueHui, No.5, YiHe North Rd., FangShan District, BeiJing, China 102401

Tel: +86-18910677558 Fax: +86-10-56335780

Email: ray.wang@believe-med.com

Identification of Proposed Device

Trade Name: Shear Wave Quantificational Ultrasound Diagnostic System

Common Name: Diagnostic Ultrasound System with Accessories

Model(s): FT9000, Mini800, FT100

Regulatory Information

Classification Name: 1) Ultrasonic Pulsed Echo Imaging System; 2) Diagnostic Ultrasound

Transducer; 3) Ultrasonic Pulsed Doppler Imaging System;

Classification:II

Product Code: IYO & ITX & IYN

Regulation Number:21 CFR 892.1550 & 21 CFR 892.1560 & 21 CFR 892.1570

Review Panel: Radiology;

Indication For Use Statement:

Shear Wave Quantificational Ultrasound Diagnostic System (Models: FT9000, FT100 and Mini800), Transient Elastography based device, is intended to provide 50Hz shear wave speed measurements and estimates of tissue stiffness as well as Ultrasound Attenuation Parameter (UAP) in internal structures of the body.

Shear Wave Quantificational Ultrasound Diagnostic System (Models: FT9000, FT100 and Mini800), is indicated for noninvasive measurement in the liver of 50 Hz shear wave speed and estimates of stiffness as well as Ultrasound Attenuation Parameter (UAP).

The shear wave speed and stiffness, and UAP may be used as an aid to diagnosis and monitoring of patients with liver disease, as part of an overall assessment of the liver.

Shear Wave Quantificational Ultrasound Diagnostic System (Models: FT9000), is intended for general purpose pulse echo ultrasound imaging and Doppler flow analysis of the human body. It can be used in the following applications: Abdominal, including location of the liver.

4. Device Description

The Shear Wave Quantificational Ultrasound Diagnostic System, Models: FT9000, FT100 and Mini800, iLivTouch brand, is a general purpose, mobile, software-controlled, diagnostic ultrasound system. FT9000 is equipped with two probes, a fibrosis scanning probe used in elastography mode and an imaging probe used in imaging mode. The fibrosis scanning probe is used for elasticity measurement while the imaging probe is a convex probe used for ultrasound imaging. But the model FT100 and Mini800 is equipped with only one fibrosis scanning probe.FT100 and Mini800 have the same appearance structure and hardware, but the software is different.

Under elastography mode, the system uses transient elastography to measure shear wave speed non-invasively and estimates of tissue stiffness as well as Ultrasound Attenuation Parameter (UAP) in internal structures of the body. A mechanical vibrator produces low-amplitude shear waves at 50 Hz that travel through the skin and intercostal space into the liver. The propagation speed of the shear wave is measured using ultrasound at 2.5 MHz.

Under imaging mode, the system acquires and displays ultrasound images in B, B/B, B/D, B/C (CFM), B/C/D (CPWD) modes. The system uses convex array probe with a frequency range of 2.1MHz to 5 MHz on abdomen for general purpose pulse echo ultrasound imaging and Doppler flow analysis of the human body. The ultrasonic imaging also helps to find a proper location for the transient elastography examination.

Table 7-1 Accessories List of FT9000

Name Qty.		Usage
Imaging probe	1	To determine the test zone
Fibrosis Scanning probe	1	To test the liver stiffness and UAP
Main unit	1	To calculate the liver stiffness with acquired data
Power Cord	1	To energize the main unit
Footswitch	1	To start the examination
Fuse T3.15 AH250V	2	Overcurrent protection
Protective earth wire	1	To connect the system with the ground

Table 7-2 Accessories List of FT100 and Mini800

Name	Qty.	Usage
Fibrosis scanning probe	1	To test the liver stiffness and UAP
Main unit	1	To calculate the liver stiffness with acquired data
Probe holder	1	To hold the probe
AC/DC adapter	1	To energize the main unit
Foot switch	1	To start the examination
Keyboard (optional)	1	For ease of operate
Mouse (optional)	1	For ease of operate

Product	Transducer	Туре	Frequency	Application
model	Model			
FT9000	FT-2.5D9	Round probe	2.5MHz(deviation≤±15%)	Liver, elasticity measurement
	FT-3.5R65	convex probe	3.5MHz(nominal),	Abdomen, general purpose
			2.1, 2.5, 3.1, 5.0	Pulse echo ultrasound
			(broadband frequency)	imaging and
				Doppler flow analysis
FT100	FT-2.5D9	Round probe	2.5MHz(deviation≤±15%)	Liver, elasticity
				measurement
Mini800	XW-01	Round probe	2.5MHz(deviation≤±15%)	Liver, elasticity
	A W-U1			measurement

Note: The XW- 01 probe for Mini800 is exactly the same as the FT- 2.5D9 probe for FT9000/FT100. And all materials and manufacturing processes to produce final finished form of XW-01 are identical to FT-2.5D9. .

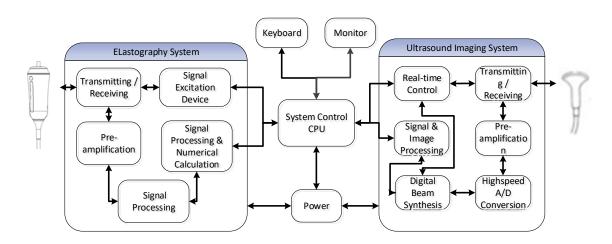


Fig 7-1 Working Frame of (Models: FT9000)

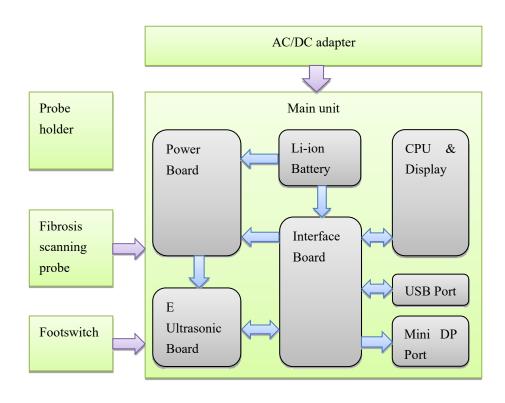


Fig 7-2 Working Frame of (Models: FT100 and Mini800)

5. Identification of Predicate Device

Primary Predicate Device: 510(k) Number: K173595

Product Name: Shear Wave Quantificational Ultrasound Diagnostic System

Manufacturer: Wuxi Hisky Medical Technologies Co., Ltd.

Secondary Predicate Device:

510(k) Number: K181547

Product Name: FibroScan® Family Of Products

Model Name: FibroScan® 502 Touch

Manufacturer: Echosens

The reason we selected the secondary device is that the Indication For Use of subject device covered both primary and secondary predicate device.

6. Non-Clinical Test Conclusion

Non clinical tests were conducted to verify that the proposed device met all design specifications as was Substantially Equivalent (SE) to the predicate device. The test results demonstrated that the proposed device complies with the following standards:

- ➤ IEC 60601-1:2005+A1:2012, Medical Electrical Equipment- Part 1: General requirements for basic safety and essential performance;
- ➤ NEMA UD 2-2004 (R2009), Acoustic Output Measurement Standard For Diagnostic Ultrasound Equipment Revision 3. (Radiology).
- ➤ IEC 60601-1-2:2014, Medical electrical equipment Part 1-2: General requirements for basic safety and essential performance Collateral Standard: Electromagnetic disturbances Requirements and tests
- ➤ ISO 10993-5 Third Edition 2009-06-01, Biological Evaluation Of Medical Devices Part 5: Tests For In Vitro Cytotoxicity. (Biocompatibility)
- ➤ ISO 10993-10 Third Edition 2010-08-01, Biological Evaluation Of Medical Devices Part 10: Tests For Irritation And Skin Sensitization. (Biocompatibility)

7. Clinical Test Conclusion

No clinical study is included in this submission.

8. Substantially Equivalent (SE) Comparison

Table 7-4 Comparison of Technology Characteristics to Primary Predicate Device

Item	Proposed Device(s) Primary Predicate Device (K173595)			
Device name	Models: FT9000, FT100 and Mini800	FT9000 Shear Wave Quantificational	1	
Device name	Shear Wave Quantificational Ultrasound Diagnostic System	Ultrasound Diagnostic System	/	
Classification	1) Ultrasonic Pulsed Echo Imaging System;	1) Ultrasonic Pulsed Echo Imaging System;		
Name	2) Diagnostic Ultrasound Transducer;	2) Diagnostic Ultrasound Transducer;	Same	
Name	3) Ultrasonic Pulsed Doppler Imaging System;	3) Ultrasonic Pulsed Doppler Imaging System;		
	IYO	IYO		
Product Code	ITX	ITX	Same	
	IYN	IYN		
Regulation	892.1550;	892.1550;		
Number	892.1560;	892.1560;	Same	
Number	892.1570;	892.1570;		
	Shear Wave Quantificational Ultrasound Diagnostic System (Models: FT9000,	Shear Wave Quantificational Ultrasound		
	FT100 and Mini800), Transient Elastography based device, is intended to provide	Diagnostic System, Model FT9000, is intended		
	50Hz shear wave speed measurements and estimates of tissue stiffness as well as	to measure the speed of 50Hz shear wave with		
	Ultrasound Attenuation Parameter (UAP) in internal structures of the body.	2.5MHz ultrasound wave in the liver. The shear		
Intended Use	Shear Wave Quantificational Ultrasound Diagnostic System (Models: FT9000,	wave speed may be used as an aid to clinical	Analysis 1	
	FT100 and Mini800), is indicated for noninvasive measurement in the liver of 50	management of patients with liver disease.		
	Hz shear wave speed and estimates of stiffness as well as Ultrasound Attenuation	Shear Wave Quantificational Ultrasound		
	Parameter (UAP).	Diagnostic System, Model FT9000, is intended		
	The shear wave speed and stiffness, and UAP may be used as an aid to diagnosis	for general purpose pulse echo ultrasound		

	and monitoring	of patients with liver disease, as part of an overall assessment of the	imaging and Doppler flow analysis of the	
	liver.		human body. It can be used in the following	
	Shear Wave Qu	nantificational Ultrasound Diagnostic System (Models: FT9000), is	applications: Abdominal.	
	intended for ge	neral purpose pulse echo ultrasound imaging and Doppler flow		
	analysis of the	human body. It can be used in the following applications:		
	Abdominal, inc	cluding location of the liver.		
	FT9000	Fibrosis scanning probe FT-2.5D9		
	F19000	an imaging probe FT-3.5R65	Fibrosis scanning probe FT-2.5D9	Same
Probe Types	FT100	Fibrosis scanning probe FT-2.5D9	an imaging probe FT-3.5R65	
	Mini800 Fibrosis scanning probe XW-01		8 81	Analysis 1
	Fibrosis scanni	ng probe (FT-2.5D9):2.5MHz	Fibrosis scanning probe (FT-2.5D9):2.5MHz	
Probe frequency	an imaging pro	be FT-3.5R65: 3.5 MHz	an imaging probe FT-3.5R65: 3.5 MHz	Same
	Fibrosis scanni	ng probe XW-01 Probe (2.5 MHz)		
Modes of	M-mode		M-mode	G
Operation	A-mode		A-mode	Same
Applied Standar	ds:			
Biocompatibility	ISO10993-5&I	SO10993-10	ISO10993-5&ISO10993-10	Same
Electrical Safety	IEC60601-1		IEC60601-1	Same
EMC	IEC60601-1-2		IEC60601-1-2	Same
Performance	UD2		UD2	Same

Analysis 1:

The Proposed Device(s) is similar to the predicate devices, the difference is very slight, and only in the indications for use (adding UAP functions) and probe models,

- a, for the added UAP function, the proposed devices has passed the related performance test (eg UD2 test);
- by The Proposed Device Mini800 use the different probe, but the probe frequency is same with the Predicate Device, the proposed devices has passed the related

performance test and safety test (eg UD2 test ,IEC60601-1 test ,IEC60601-1-2 test);

So the safety and performance of the product can be ensured, so the proposed device is determined to be substantially equivalency with predicate device.

Table 7-5 Comparison of Technology Characteristics to Secondary Predicate Device

T4	Proposed Device(s)			Secondary Predicate Device	1-	
Item	FT9000	FT100	Mini800	(K181547)	remark	
Di	Models: FT9000, FT100 and Mini800			FibroScan® 502 Touch	,	
Device name	Shear Wave Quantificational Ultrasound Diagnostic System			(Predicate)	/	
Classification	1) Ultrasonic Pulsed Echo Imaging System;			1) Ultrasonic Pulsed Echo Imaging System;		
Name	2) Diagnostic Ultrasound Tra	nsducer;		2) Diagnostic Ultrasound Transducer;	Same	
Name	3) Ultrasonic Pulsed Doppler	Imaging System;				
		IYO		IYO		
Product Code	ITX IYN			ITX	Same	
Regulation	892.1550; 892.1560; 892.1570;			892.1560;		
Number				892.1570;	Same	
Number				672.1370,		
	Shear Wave Quantificational	Ultrasound Diagnos	tic System	The FibroScan® Family of Products (Models: 502 Touch) is		
	(Models: FT9000, FT100 and	d Mini800), Transien	t Elastography	intended to provide 50Hz shear wave speed measurements and		
Intended Use	based device, is intended to provide 50Hz shear wave speed			estimates of tissue stiffness as well as 3.5 MHz ultrasound	Same	
michaed Osc	measurements and estimates of tissue stiffness as well as Ultrasound			coefficient of attenuation (CAP: Controlled Attenuation	Same	
	Attenuation Parameter (UAP) in internal structures of the body.		res of the body.	Parameter) in internal structures of the body.		
	Shear Wave Quantificational	l Ultrasound Diagnostic System		FibroScan® Family of Products (Models: 502 Touch) is		

ed for noninvasive	indicated for noninvasive measurement in the liver of 50 Hz	
ed and estimates		
	shear wave speed and estimates of stiffness as well as 3.5 MHz	
meter (UAP).	ultrasound coefficient of attenuation (CAP: Controlled	
be used as an aid	Attenuation Parameter).	
disease, as part of	The shear wave speed and stiffness, and CAP may be used as	
	an aid to diagnosis and monitoring of adult patients with liver	
ic System	disease, as part of an overall assessment of the liver.	
pulse echo	Shear wave speed and stiffness may be used as an aid to	
he human body. It	clinical management of pediatric patients with liver disease.	
nal, including		
	A-mode	
	M-mode	<u> </u>
	Transient Elastography /	Same
	Shear Wave	
	Piezoelectric ultrasound source	G F
		Same E
XW-01 Probe	S+ Probe (5 MHz)	
(2.5 MHz)	(single element ultrasound transducer)	Analysis 2
	Vibration-controlled Transient	G F
	ElastographyTM	Same E
	External electromechanical	
	Vibrator	Same
	Post-processing	_
	, ,	Same
i : 1	disease, as part of ac System pulse echo he human body. It mal, including	The shear wave speed and stiffness, and CAP may be used as an aid to diagnosis and monitoring of adult patients with liver disease, as part of an overall assessment of the liver. Shear wave speed and stiffness may be used as an aid to clinical management of pediatric patients with liver disease. A-mode M-mode Transient Elastography / Shear Wave Piezoelectric ultrasound source XW-01 Probe (2.5 MHz) S+ Probe (5 MHz) (single element ultrasound transducer) Vibration-controlled Transient ElastographyTM External electromechanical Vibrator

510(k) Summary

Determination					
TE mode	Shear wave speed measurements and tissue stiffness			Shear wave speed measurements and tissue stiffness	Same
TE display	Shear w	ave speed (0.8-5.2 m/s)	Shear wave speed (0.8-5.0 m/s)	
	Stif	fness (2.0-80 kPa)		Stiffness (2.0-75 kPa)	Analysis 2
	Interquartile ran	ge (IQR) and IQR/med	dian ratio	Interquartile range (IQR) and IQR/median ratio	
Bias	(-4.7%) - (2.4%)	(-2.1%) – (3.5%)	(-5.3%)– (1.2%)	(-14.3%) - (3.6%)	Analysis 2
Precision	(0.0%) – (1.6%)	(0.0%) - (3.8%)	(0.0%) – (1.8%)	(0.2%) - (1.9%)	Analysis 2
CAP/UAP	UA	AP (90-450 dB/m)		CAP (100-400 dB/m)	A 1 2
display	Interquartile ran	ge (IQR) and IQR/med	dian ratio	Interquartile range (IQR) and IQR/median ratio	Analysis 2
Bias	(-3.3%) – (2.0%)	(-1.6%) – (6.5%)	(-6.9%) - (4.8%)	(0.0%) - (10.0%)	Analysis 2
Precision	(0.2%) – (1.5%)	(0.3%) – (2.0%)	(0.2%) – (2.0%)	(0.0%) - (1.0%)	Analysis 2
Applied Standar	·ds:	·			·
Biocompatibilit	ISO10002 5 % ISO10002 1	0		ISO10993-5&ISO10993-10	Same
у	ISO10993-5&ISO10993-10			15010993-3&15010993-10	Same
Electrical	ECCOCOL 1			IEC60601-1	Same
Safety	IEC60601-1			1EC00001-1	Same
EMC	IEC60601-1-2			IEC60601-1-2	Same
Danfarmanaa	IEC 60601-2-37			IEC60601-2-37	Sama
Performance	UD2			UD2	Same

Analysis 2:

The Proposed Device(s) is similar to the predicate devices, the difference is very slight, and only in the probe frequency, the related parameters of TE mode and CAP/UAP display, but the proposed devices has passed the related performance test and safety test (eg UD2 test, IEC60601-1 test, IEC60601-1-2 test, measurement accuracy by accuracy testing and software validation), the safety and performance of the product can be ensured, so the

proposed device is determined to be substantially equivalency with predicate device.

9. Substantially Equivalent (SE) Conclusion

Based on the comparison and analysis above, the proposed device is determined to be Substantially Equivalent (SE) to the predicate device.

.