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Abstract 
Several epidemiology studies have investigated the impact of maternal exposure to 

methylmercury (MeHg) on childhood development of the central nervous system (CNS).  

In the present report, data from the Iraqi episode that occurred in 1970 from contaminated 

grain are integrated with those from a more recent study of a population with a high fish 

intake in the Seychelles Islands.  The latter study had many more subjects whose mercury 

hair levels that were much lower and more representative of levels typically found in 

consumers whose MeHg exposure is from fish.  The age of onset of talking (AOT), the 

age of onset of walking (AOW) and a combined measure (CM) that integrated the two 

were used as common scales of MeHg effect for the two studies.  The first step of the 

analyses involved the construction of separate two-dimensional cumulative frequency 

tables for each study for different groups spanning the range of hair levels and observed 

effect for each measure.  Models were then fit to the values in the tables that were 

constructed from four components: 1) A dose-effect function that related hair MeHg to 

the effect measure; 2) a frequency distribution describing population variability; 3) 

parameters to represent dose-independent influences on effect; and 4) parameters to 

represent study dependent influences on effect.  When the four submodels were 

assembled, a series of 1092 candidate models resulted which contained 3 to 7 parameters 

(e.g. slope, standard-deviation, dose-independent age of talking) whose value could be 

adjusted to improve the fit.  After optimizing the fit of each model, a weighting algorithm 

that rewards for fit and penalizes for the number of parameters in the model was used to 

identify the best 200 models.  The same algorithm was then used to assign a probability 

to each model in a probability tree.  A two-dimensional Monte-Carlo simulation using the 

resulting function in combination with exposure values typical of U.S. consumers yielded 

predicted delays in AOT, AOW, and CM attributable to fish consumption in a variable 

and uncertain range of 0.000 to 1 day. 
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Introduction 
For many environmental contaminants, The relevant health effects information for a 

public health problem often does not come from a single study.  The consideration of the 

potential harm to a developing fetus that may result from maternal exposure to 

methylmercury is a prime example.  Several epidemiology studies have been directed 

towards ascertaining the impact of maternal exposure to methylmercury on childhood 

development of the central nervous system (CNS).  These studies have used maternal hair 

levels as a marker for exposure to methylmercury, but the observations on health effects 

collected in each study have varied.   

Data 

Sources 

The concern for exposure to mercury is primarily a result of two poisoning epidemics that 

occurred in Japan and Iraq.  The latter epidemic, that occurred after exposure to 

contaminated grain, was the subject of an extensive epidemiological investigation that 

included an effort to relate the magnitude of exposure to methylmercury to health impact 

(Marsh et al, 1987).  Because these were not prospective studies, the reports concerned 

with the Iraqi episode do not reflect the same degree of experimental control as 

subsequent studies. For risk assessment purposes, perhaps the major shortcoming of the 

Iraqi study is the presence of relatively few individuals at low doses.  For instance, 

because there is little data on the extent of normal variation for the observed measures of 

development, it is difficult to discern whether a slightly higher frequency of “abnormal” 

responses (e.g. delayed walking) is attributable to mercury effects or normal variation.  

However, in spite of numerous shortcomings, the Iraqi study has a major advantage over 

more recent reports – there were high-dose health effects that were unequivocally 

attributable to methylmercury exposure.   
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More recent prospective studies have searched for health effects of methylmercury in 

populations consuming whale or fish with much lower levels of exposure than those 

encountered in Iraq (Kjellstrom, et al, 1986; Marsh et al, 1995a , Grandjean et al, 1997).  

For the present analysis, the results of the Iraqi study are combined with a more recent 

study in the Seychelles Islands (Marsh et al, 1995a), where the exposure to 

methylmercury is from the consumption of marine fish.  Data from the Seychelles study 

were used because of the presence of some of the same measurements as those collected 

from Iraq and because the individual subject data was made available to us.  The 

Seychelles study has many more individual subjects and the range of mercury hair levels 

were much lower and more representative of levels typically found in consumers of fish, 

but which are still much higher than those typical of infrequent consumers of fish.  

Response Measures 

To combine results from two or more studies in an analysis, it is necessary that there be a 

common measure. For the present analysis, two endpoints that were collected in both the 

Iraqi and Seychelles studies were used as the common measure: 1) Age of Talking (AOT) 

– the age at which the infants started talking, and 2) Age of Walking (AOW) -- the age at 

which the infants became toddlers.  Not only were these measures available from both 

studies, they have the advantage of being simple measures of neurological development.  

In addition, as a measure of a general developmental delay, the measures were averaged 

to produce a third combined measure (CM), which may be thought of as a generalized 

developmental measure. 

Construction of Cumulative Frequency Tables 

The data were used to construct separate (one for each study) two dimensional 

cumulative frequency tables for each study which tabulated frequency for groups 

spanning the range of hair levels and observed response.  These were constructed by 

grouping the subjects from each study by dose, and calculating the frequency at which 

each of series of response levels were exceeded.  Tables were then constructed for AOT, 

AOW, and the combined measure (CM) that averaged the two from each individual.  

Plots of cumulative frequency tables for both the Iraqi and Seychelles studies for each 

endpoint are shown in Figures 2-4. 
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Modeling 

Comparative Modeling 

The analysis presented here is an exercise in comparative modeling where a large number 

of alternative mathematical models are examined with respect to their ability to describe 

historical data.  Analyses of epidemiological data often undertake evaluation that are 

designed to identify which of a number of different parameters (e.g. confounding 

variables or modifying factors) are to be included in a final model.  The present analysis 

differs in two important respects.  First, it evaluates models that are different in form 

rather than just complexity.  Second, rather than concluding the analysis with a final or 

best model, a probability tree that employs probabilities for a set of alternative models to 

characterize the uncertainty associated with an estimation.   

 

To conduct a comparative modeling exercise, the first step is to assemble a list of 

candidate models.  Dose-response models often have multiple sources of theoretical 

uncertainty.  These include the dose-response relationship itself, the influence of factors 

other than dose on the outcome, and the extent of the variability among individual 

subjects.  In addition, when multiple studies are being used to evaluate the models, it may 

be desirable to accommodate differences in the studies within the model.  As a result, 

models were formulated from four submodels, each of which had several theoretical 

alternatives. Each of the four submodels represent a potential source of model 

uncertainty: 1) A dose-response function (relating hair level to AOT, AOW, or CM)); 2) 

a statistical distribution describing population variability; 3) dose-independent factors; 

and 4) study dependent factors.  With several variations of the mathematical form (see 

Table 1) and relative position of each of the submodels (Figure 1), a series of 1092 

candidate models were assembled.  All the models were relatively simple and contained 3 

to 7 adjustable parameters (e.g. slope, standard deviation, dose-independent AOT) which 

could be altered to improve the fit.  
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As an example of what the dose response equations looked like when assembled, a model 

that fit the data well was constructed from a linear dose response function, a background 

response parameter, a background study parameter, and a Weibull distribution to account 

for population variability at position 4.  To predict cumulative frequency as a function of 

dose and response, this yielded the following function: 

 

= 1 – exp((-Response / (Dose*P1 + P3 + P4) / ((log 2) ^ (1/P2))) ^ P2) 

 

To predict response as a function of dose and frequency, the following function was used: 

 

= (Dose*P1 + P3 + P4) / ((log 2) ^ (1/P2)) (log(1/(1- Frequency)]) ^ (1/ P2) 

 

where 

P1 is the dose-response slope 

P2 is the Weibull alpha parameter 

P3 is the background response (i.e. age in months) 

P4 is a study-dependent background term (also age in months) 

Software 

The analysis was conducted in Microsoft Excel using procedures written in Visual Basic 

for Applications, which are available on request. 

Goodness-of-Fit 

Fitness was judged by a composite least residual squares measure that gave equal weight 

to residuals for predicted population percentiles (frequency as a function of dose and 

response) and for predicted magnitude of effect (response as a function of frequency).  

The fit for each dose-group was weighted by the original number of observations – which 

gave the values from the Seychelles considerably more weight in the low dose regions. 
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Optimization 

The parameters were adjusted to fit the data (minimize the measure of fit) with Excel 

Solver.  Simple equations were used to assign initial estimates for the parameters – some 

of these used information from the study such as the range of doses and responses.  If an 

obviously poor fit was obtained, different initial estimates were used in order to find a 

better fit – usually by adopting estimates from simpler models with the same parameters 

that produced a better fit. 

Model Weighting and Model Uncertainty 

The models were judged with an algorithm that rewards a model for goodness-of-fit and 

penalizes for the use of extra parameters: 

 

Model Weight = (((1 + n / Pn) ^ O) * ((1 - gof) ^ H) 

 

where 

n = number of observations 

Pn =  Number of Model Parameters 

gof = Goodness-of-Fit 

O = The Parameter Penalty, an arbitrary constant that determines the relative importance 

of model simplicity 

H = The Association factor, an arbitrary constant that determines the relative importance 

of goodness-of-fit. 

 

In the present analysis, values of 0.3 and 100 were used for O and H, respectively.  These 

values were chosen because they appeared to generate a reasonable balance between fit 

and model simplicity (see Carrington, 1996 for further discussion of this approach).  The 

uncertainty associated with the predictions made was represented by weighting the 200 

best models.  The algorithm used for model weighting was also used to select the best 

models.   
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Two of the dose-response models employed have a biochemical heritage – the Mass 

Action model is an equation that is able to describe reversible (ionic) competitive ligand-

receptor binding interactions.  The first order equation is a function that describes 

irreversible (covalent) ligand-receptor interactions.  Evidence that methylmercury acts by 

either of these mechanisms could be construed as an increase in the weight (and 

probability) accorded theories that employ those functions.  However, it should be noted 

that even if a particular biochemical mechanism of action is conclusively established, the 

in vivo reaction will often be vastly more complicated that the in vitro one (Tallarida and 

Jacob, 1979).  As a result, a model reflecting the wrong mechanism, or no mechanism, 

may still describe the data and still make a better prediction.  Although it would be 

possible to include theoretical support for a theory in the calculation of each models 

evidential weight, the biochemical mechanism for methymercury is presently unknown.  

Results 

Age of Talking.  For the AOT endpoint, the best model was comprised of a linear dose-

response relationship, a Weibull population distribution, and a background response 

parameter, and a study-dependent dose parameter (see Figure 1).  The exponential, 

hockey stick, and mass action dose-response relations were also heavily represented 

among the top-rated models (seeTable 2).  The first-order and logistic models tended to 

not fit as well.  The Weibull distribution was clearly the best fitting population 

distribution - regardless of the dose-response function used.  The lognormal distribution 

consistently provided a better fit than the other two distributions.  The poorer fit with 

either the normal or logistic distribution functions is indicative of a skewed distribution.  

All the top rated models included parameters for both dose-independent and study-

dependent effects, reflecting the notions that a) children do not speak at age 0, and that 

there are differences in the Iraqi and Seychelles studies that are not attributable to 

methylmercury. 

 

Age of Walking.  For the AOW endpoint, the best model was comprised of a linear dose-

response relationship, a Weibull population distribution, a background dose and response 

parameters, and a study-dependent dose parameter (see Figure 3).  All the dose-response 
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functions were represented among the top-rated models.  The Weibull and lognormal 

distributions were again the clear favorites for modeling population variability.  All the 

top rated models included two parameters for dose-independent effects, reflecting the 

notion that children do not speak at age 0.  All of the best models also included a study 

dependent parameter, again reflecting differences in the Iraqi and Seychelles populations. 

 

Combined Measure.  For the combined measure, the best model was comprised of a 

linear dose-response relationship, a Weibull population distribution, and a background 

dose and response parameters, and a study-dependent response parameter (see Figure 4).  

All the dose-response functions were represented among the top-rated models.  The 

Weibull and lognormal distributions were again the clear favorites for modeling 

population variability. All the top rated models included parameters for both dose-

independent and study-dependent effects. 

 

Function Output.  The output of the best model for each of the three endpoints is plotted 

in Figures 2, 3, and 4 -- for both the Iraqi and Seychelles studies.  Probability trees 

comprised of the top 200 models yield an uncertainty distributions when used as a 

predictive tool. Sample output from a function that weights the frequency of use of the 

best 200 models is given in Tables 3-5.  In a two-dimensional Monte-Carlo simulation 

used to simulate both variability and uncertainty, this function will impact the distribution 

in both dimensions. 

 

Because the models contain study-dependent variables, the study for which a prediction 

is required must be specified.  If the resulting models are to be used in a risk assessment, 

this requires a decision about which study population is more representative of the 

population of concern to the assessment.  This decision would revolve around speculation 

about the source of the differences between the studies (e.g. cultural or genetic), and 

would be a source of both variability and uncertainty.  For instance, the population of 

concern may be variable with regard to the percentage of the population for which each 

study is more appropriate, while the extent of that frequency for each may be uncertain.  
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Discussion 

Comparative Modeling and Model Uncertainty 

The present analysis differs from other analyses that have been conducted with the same 

data in several respects.  The most important is that the analysis is designed to be part of  

a decision paradigm that includes scientific uncertainties that are presently unresolvable 

(Evans et al, 1994; Carrington, 1996).  Other analyses of the same data have proceeded 

with a single model (Crump et al, 1995) or have examined two alternatives (Cox et al, 

1995).  In contrast, the present analysis began with over a thousand potential 

mathematical models.   

 

Since the results of an analysis can be highly dependent on model choice, representing 

uncertainty arising from model selection can greatly impact the range of plausible 

interpretation portrayed by the analysis.  Since it is generally not possible to conclude 

from such an analysis that one model must be preferred to the exclusion of all others, a 

probability tree that distributes the use of the models in making uncertain predictions can 

be used to integrate model uncertainty into an analysis.  The present analysis used two 

hundred of the initial candidate models to characterize the range of plausible 

interpretations of the data. 

 

It should be noted that the uncertainties described in this analysis reflect only model 

uncertainty.  Statistical characterizations of uncertainty, such as those used by Cox et al 

(1989; 1995) and Crump et al (1995) reflect error arising from known (e.g. measurement 

error) or presumed (e.g. sampling error) characteristics of a larger sample from which the 

data is drawn. Since it is these presumptions that are often called into question by 

different investigators, an analysis of model uncertainty operates at a more basic level 

that must precede statistical characterization of uncertainty.  Were a description of the 

potential effects of sampling error included in the analysis, it would be expected that the 

distribution of predicted effects would be somewhat broader and less discontinuous.  
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Dose-Response Models 

Another major difference is that the models in the present analysis compared are 

somewhat more complex than those used by either Cox et al (1989; 1995) or Crump et al 

(1995).  First, the models used here describe both the dose-response relationship for an 

individual and population variability.   In contrast, the Cox et al (1989) and benchmark 

dose analyses (e.g. Crump et al, 1995) used models that relate dose to the population 

frequency (variability) for a discrete event.  The analysis of the Iraqi data by Cox et al 

(1989) begins by asserting that walking or talking after a particular age constitutes an 

abnormal response -- with the implicit result that all values above that point are 

equivalent and all values below that point are equivalent.  Similarly, Crump et al (1995) 

define an abnormal response as a two standard deviations from the mean.  In contrast, the 

analysis by Myers et al (1997) examined the relationships for maternal hair mercury 

versus continuous individual measures, but did not model population variability.  Using 

models that maintain both the individual measure and population variability yields more 

information to a decision maker. 

Confounding Factors 

In addition to accounting for the dose-response relationship, the models used in the 

present analysis provide a cursory account of dose-independent influences on the 

outcome measure and possible differences between studies.  In contrast, dose-

independent effects are often treated as parameters that must be estimated or presumed 

before the dose-response analysis, rather than as an integral part of the analysis.  The 

analysis was also designed to acknowledge the possibility that there are unknown 

differences between the Iraqi and Seychelles studies that may influence the outcomes 

measured.  This was a problem that arose because the two studies were analyzed together.   

 

However, the population component of the models used in the present analysis are 

relatively simple compared to those commonly used in epidemiological studies that may 

include many potential confounding variables or modifying factors, each of which 

contributes to the overall population variability.  Although epidemiological studies often 

do compare models that differ in the parameters they contain, they usually do not 
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compare models that differ in form.  This is perhaps attributable to the difficulty in 

solving equations that do not presume linear relationships with normally distributed 

variances.  For example, the models employed in the present exercise could perhaps be 

improved by having separate descriptions of the variability contributed by dose-

dependent and dose-independent influences – if the equations could be solved. 

Risk Management 

This analysis is designed to be part of a risk assessment/risk management decision 

paradigm where the goal of the assessment is to make a statement of the present state of 

knowledge – including the attendant uncertainties.  As a result, the analysis does not 

attempt to dictate the impact of the uncertainties on any subsequent decision that may be 

made.  For example, using an outer bound as a criteria for a credible statement can often 

be used in two directions.  First, in some conclusions drawn by Cox et al (1997), the 

emphasis is on whether there is significant support for saying that there is an effect.  On 

the other hand, the benchmark dose calculation (Crump et al;1995) shifts the burden the 

other way by using an outer bound that reflects relative surety that the effect is less than a 

certain value.  However, neither of these approaches relies entirely on an outer bound in 

drawing conclusions -- they also report central values.    

 

The present analysis is more generally applicable because it leaves choices involving 

acceptable degrees of harm, population variability, and uncertainty for a later step in the 

decision process (i.e. risk management).   Comparisons to other analyses may still be 

made by applying similar decision rules. For instance, a benchmark corresponding to a 

5% increase in the frequency of the Iraqi population with an AOT in excess of 24 months 

can be calculated from the functions generated in the present analysis -- the median 

estimate is 39 ppm, with a plausible range (0.05 to 0.95) of 26 to76 ppm.  Similarly, for 

an AOW in excess of 18 months, the median estimate is 30 ppm, with a plausible range 

of 15 to 157 ppm.  

   

The uncertainty described in tables 3-5 and the benchmark calculations above reflect only 

model uncertainty.  Other sources of uncertainty were not included because the analysis 
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is already technically complex, and we preferred to emphasize model uncertainty as it is 

too often neglected.  The most straightforward way to introduce consideration of 

parameter uncertainty would be to use a bootstrapping procedure prior to the generation 

of the cumulative incidence tables.  The bootstraps could also incorporate any a priori 

doubts concerning the accuracy of the measurements.  For instance, there are reasons to 

doubt the accuracy of both the dose and response measurements from the Iraqi study 

(Cox et al, 1989). 

 

A novel aspect of the present analysis is that it includes a ‘study’ variable to account for 

unexplained differences among studies.  This allows some commonality to be found 

among studies without forcing a model to assume that the two populations are entirely 

equivalent.  This does not resolve the problem of having to decide the relevance of each 

of the studies, but it does postpone the decision and allow it to be considered after the 

analysis.  This may be beneficial if the relevance of the study varies with the population 

of concern – it may not be possible to anticipate whether any differences in the studies 

represents variability or uncertainty. 

Data and Measures 

The present analysis integrates results from the Iraqi or Seychelles studies.  It would 

perhaps be better still to include other studies in the analysis as well.  In particular, there 

are other studies of maternal exposure to mercury and childhood development that have 

been conducted since the Iraqi episode in Canada (McKeown-Eyssen et al., 1983), New 

Zealand (Kjellstrom et al., 1986), Peru (Marsh et al, 1995b) and the Faroe Islands 

(Grandjean et al., 1997).  There are two obstacles that must be overcome to accomplish 

this. The first is to accumulate the data from all the individual investigators.  The 

availability of the data was a major influence on the choice of studies used in the present 

analysis. 

 

A second obstacle is to devise a common measure that would allow all the studies to be 

placed on the same scale.  Although there is considerable overlap in the tests conducted 

in each of the studies, there are differences as well.  The biggest difference, however, is 
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between the Iraqi study and the more recent studies.  To some extent the studies aren't 

comparable because the simply aren't measuring the same thing.  Nonetheless, at the very 

least it should be possible to devise a scale that reflects some abstract notion, like 

"development time" that incorporates whatever information is provided by a particular 

study.  Like the measure of intelligence with the IQ, such a measure would not precisely 

gauge every aspect of neurological and behavioral development that anyone may care 

about.  But, as it can serve as the basis for further discussion, any measure is preferable to 

none.  Should it become apparent that a measure is combining two very different 

phenomena, a more refined measure could be devised.   For example, separate scales for 

motor and sensory development might be preferable. 

 

Conclusions 

If an analysis is defined by the context in which the analysis is to be used, there are no 

limits to how studies may be combined.  If there is reason to believe that a particular 

study has some bearing on a particular inference such as a dose-response relationship 

then the model used to draw the inference may be altered to reflect this.  The main 

obstacle in accomplishing may not lie in devising the model.  Rather, the problem may be 

that there are numerous models that may reasonably be employed for the purpose.  Our 

solution to this problem is to examine as many of the alternatives as we can, using the 

evidence provided by the data to discount as many as we can.  Since we cannot show that 

a single theory is clearly preferable to all the others, the range of predictions yielded by 

the plausible remainder constitutes our uncertainty about the inference of a dose-response 

relationship. 

 

Taken as a whole, the predictions made by the models suggest a small effect on the AOT, 

AOW, and CM that is a very small percentage of the normal variation in these measures.  

Based on this analysis, the magnitude of the effect would be expected to be undetectable 

in even a large prospective epidemiology study.  Whether or not the effect is large 

enough to merit some consideration in regulating personal or institutional behavior is 

another matter, that we leave to be discussed elsewhere. 
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Figure 1: Model Assembly from Four Components  

 

General structure of the models used to integrate the results from the Iraqi and Seychelles studies.  The 

central component is the dose-response function that relates dose to the magnitude of an individual 

outcome (i.e. AOT, AOW, or CM).  The background and study functions add parameters to account for 

dose-independent influences that are study-independent or study-dependent.  The population submodel 

converts the individual model into a population model by introducing a statistical distribution at one of 

four positions in the individual model. 
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Figure 2: Age of Talking, Data and a Model 

 

The charts at the top reflect the cumulative incidence tables constructed from the raw data (Age of 

Talking) from the Iraqi (left) and Seychelles (right).  The charts at the bottom reflect a common model 

fit to both data sets. The Z-axis reflects the percent of the population in each dose group (Y-axis) with a 

AOT above the X-axis value.  The X-axis values are chosen to represent the range of value encountered 

in the studies, and therefore do not necessarily generate incidences of 0 or 1 at all dose groups 
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Figure 3: Age of Walking, Data and a Model 

 The charts at the top reflect the cumulative incidence tables constructed from the raw data (Age 

of Walking) from the Iraqi (left) and Seychelles (right).  The charts at the bottom reflect a 

common model fit to both data sets. The Z-axis reflects the percent of the population in each 

dose group (Y-axis) with a AOW above the X-axis value.  The X-axis values are chosen to 

represent the range of value encountered in the studies, and therefore do not necessarily generate 

incidences of  0 or 1 at all dose groups. 
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Figure 4: Combined measure, Data and a Model 

 
 

The charts at the top reflect the cumulative incidence tables constructed from the raw data (Combined 

Measure) from the Iraqi (left) and Seychelles (right).  The charts at the bottom reflect a common model 

fit to both data sets.  The Z-axis reflects the percent of the population in each dose group (Y-axis) with a 

Development score above the X-axis value.  The X-axis values are chosen to represent the range of 

value encountered in the studies, and therefore do not necessarily generate incidences of  0 or 1 at all 

dose groups 
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Table 1: Functions Used to Construct Models of Methylmercury Effects  

Submodel Functions 

Dose vs Individual Response Linear, Hockey Stick, Mass Action, First 

Order, Exponential, Logistic 

Population Variability Normal, Lognormal, Weibull, Logistic 

Dose Independent Factors None, Background Dose, Background Effect, 

Background Dose and Background Effect 

Study Factors None, Study Dose, Study Effect, Study Dose 

and Study Effect 
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Table 2: The Top Twenty Models for the Age of Talking Endpoint 

Response 

Submodel 

Population 

Submodel 

Position Background 

Submodel 

Study  

Submodel 

Fit n Weight Map Value 

Linear Weibull 4 Response Dose 0.0078 4 1.3951 0.0064 

Linear Weibull 3 Response Response 0.0078 4 1.3951 0.0128 

Exponential Weibull 4 Response Dose 0.0074 5 1.3642 0.0191 

Exponential Weibull 3 Response Response 0.0075 5 1.3480 0.0253 

Exponential Weibull 3 dose and 

response 

Dose 0.0071 6 1.3250 0.0314 

Hockey Stick Weibull 3 dose and 

response 

Dose 0.0072 6 1.3165 0.0374 

Exponential Weibull 3 Dose Dose 0.0078 5 1.3094 0.0434 

Hockey Stick Weibull 4 Response Response 0.0078 5 1.3072 0.0494 

Hockey Stick Weibull 4 Response Dose 0.0078 5 1.3072 0.0554 

Linear Weibull 4 Response dose and 

response 

0.0078 5 1.3072 0.0614 

Hockey Stick Weibull 4 Dose Response 0.0078 5 1.3072 0.0674 

Linear Weibull 4 dose and 

response 

Response 0.0078 5 1.3072 0.0734 

First Order Weibull 3 Response Response 0.0078 5 1.3043 0.0794 

Linear Weibull 4 dose and 

response 

Dose 0.0078 5 1.3035 0.0854 

Mass Action Weibull 3 Response Response 0.0078 5 1.3012 0.0914 

Mass Action Weibull 4 Response Dose 0.0079 5 1.2966 0.0974 

First Order Weibull 4 Response Dose 0.0079 5 1.2944 0.1033 

Mass Action Weibull 4 Dose Response 0.0079 5 1.2870 0.1092 

Exponential Weibull 4 Response dose and 

response 

0.0074 6 1.2844 0.1151 

Hockey Stick Weibull 3 Dose Dose 0.0080 5 1.2823 0.1210 
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Table 3: Sample Output for Maternal Hair MeHg (ppm) vs. Child AOT (months)  

Dose 

(ppm in Hair) 

Population 

Frequency 

Study  

Average 

Uncertainty 

Median 

 

0.95 

1 0.5 Seychelles 10.42 10.46 10.52 

1 0.95 Seychelles 15.33 15.06 16.23 

10 0.5 Seychelles 10.74 10.79 10.87 

10 0.95 Seychelles 15.77 15.38 16.70 

100 0.5 Seychelles 13.88 13.91 15.11 

100 0.95 Seychelles 20.15 19.63 23.28 

10 vs. 1 0.5 Seychelles 0.32 0.31 0.47 

10 vs. 1 0.95 Seychelles 0.45 0.43 0.73 

1 0.5 Iraq 16.82 16.93 17.91 

1 0.95 Iraq 23.55 23.66 27.36 

10 0.5 Iraq 17.13 17.25 18.00 

10 0.95 Iraq 23.98 24.11 27.76 

100 0.5 Iraq 20.23 20.39 20.95 

100 0.95 Iraq 28.28 28.67 32.23 

10 vs. 1 0.5 Iraq 0.31 0.31 0.42 

10 vs. 1 0.95 Iraq 0.44 0.43 0.63 

 

The average, median, and 95th percentiles for predicted AOT is given for various combinations of dose, 

population frequency, study population, and likelihood.  The values for the doses "10 vs 1" represent the 

net difference in expected AOT with maternal concentrations of methylmercury in hair at 10 ppm vs 1 

ppm. 
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Table 4: Sample Output for Maternal Hair MeHg (ppm) vs. Child AOW (months)  

Dose 

(ppm in Hair) 

Population 

Frequency 

Study  

Average 

Uncertainty 

Median 

 

0.95 

1 0.5 Seychelles 9.95 9.96 10.23 

1 0.95 Seychelles 14.43 14.33 15.10 

10 0.5 Seychelles 10.32 10.38 10.58 

10 0.95 Seychelles 15.21 14.94 16.33 

100 0.5 Seychelles 14.11 14.35 15.17 

100 0.95 Seychelles 22.99 21.45 28.64 

10 vs. 1 0.5 Seychelles 0.38 0.39 0.48 

10 vs. 1 0.95 Seychelles 0.78 0.64 1.29 

1 0.5 Iraq 11.09 11.53 12.31 

1 0.95 Iraq 16.39 16.10 20.99 

10 0.5 Iraq 11.47 11.90 12.72 

10 0.95 Iraq 17.17 16.69 22.09 

100 0.5 Iraq 15.25 15.41 16.74 

100 0.95 Iraq 24.93 23.57 33.13 

10 vs. 1 0.5 Iraq 0.38 0.39 0.48 

10 vs. 1 0.95 Iraq 0.78 0.64 1.29 

The average, median, and 95th percentiles for predicted AOW is given for various combinations of dose, 

population frequency, study population, and likelihood.  The values for the doses "10 vs 1" represent the 

net difference in expected AOW with maternal concentrations of methylmercury in hair at 10 ppm vs 1 

ppm. 
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Table 5: Sample Output for Maternal Hair MeHg (ppm) vs Child CM (months)  

Dose 

(ppm in Hair) 

Population 

Frequency 

Study  

Average 

Uncertainty 

Median 

 

0.95 

1 0.5 Seychelles 10.23 10.23 10.56 

1 0.95 Seychelles 13.37 13.43 14.41 

10 0.5 Seychelles 10.56 10.58 10.73 

10 0.95 Seychelles 14.04 13.88 15.53 

100 0.5 Seychelles 13.73 14.08 15.05 

100 0.95 Seychelles 20.27 18.53 26.66 

10 vs. 1 0.5 Seychelles 0.33 0.34 0.52 

10 vs. 1 0.95 Seychelles 0.67 0.47 1.30 

1 0.5 Iraq 14.53 15.14 15.97 

1 0.95 Iraq 19.40 18.92 29.37 

10 0.5 Iraq 14.86 15.52 15.98 

10 0.95 Iraq 20.07 19.58 30.12 

100 0.5 Iraq 18.13 18.84 19.78 

100 0.95 Iraq 26.36 25.03 37.67 

10 vs. 1 0.5 Iraq 0.33 0.34 0.44 

10 vs. 1 0.95 Iraq 0.66 0.47 1.16 

The average, median, and 95th percentiles for predicted CM is given for various combinations of dose, 

population frequency, study population, and likelihood.  The values for the doses "10 vs 1" represent the 

net difference in expected CM with maternal concentrations of methylmercury in hair at 10 ppm vs 1 

ppm. 
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