

July 7, 2021

MediLink A/S Cristina Teixeira Director for Regulatory Affairs & Quality Assurance Gammelmosevej 176A Kgs. Lyngby, 2800 Denmark

Re: K201740

Trade/Device Name: Hydrozid

Regulation Number: 21 CFR 878.4350

Regulation Name: Cryosurgical Unit And Accessories

Regulatory Class: Class II

Product Code: GEH Dated: June 8, 2021 Received: June 9, 2021

Dear Cristina Teixeira:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part

801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531 - 542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to https://www.fda.gov/medical-device-problems.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance) and CDRH Learn (https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Long Chen, Ph.D.
Assistant Director
DHT4A: Division of General Surgery Devices
OHT4: Office of Surgical
and Infection Control Devices
Office of Product Evaluation and Quality
Center for Devices and Radiological Health

Enclosure

DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

Indications for Use

510(k) Number (if known)

Form Approved: OMB No. 0910-0120

Expiration Date: 06/30/2020 See PRA Statement below.

K201740			
Device Name Hydrozid			
Indications for Use (Describe) Hydrozid (also known as R134A or 1,1,1,2-tetrafluoroethane or HFC-134a or HFA-134a or fluorocarbon 134a) is to be used for the treatment of verruca (warts) including plantar warts, seborrheic keratosis, actinic keratosis, achrochordon (skin tags), molluscum contagiosum, age spots, dermatofibroma, small keloids, granuloma annulare, porokeratosis plantaris, angiomas, keratoacanthoma, chondrodermatitis, epithelial nevus, leukoplakia, granuloma pyogenicum, and pyogenic granuloma.			
Type of Use (Select one or both, as applicable)			
Prescription Use (Part 21 CFR 801 Subpart D) Over-The-Counter Use (21 CFR 801 Subpart C)			
CONTINUE ON A SEPARATE PAGE IF NEEDED.			

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

Traditional 510(k) Summary- Hydrozid®

In accordance with 21 CFR Part 807, Section 807.92, this information serves as a 510(k) summary for Hydrozid®.

Date Prepared: July 6, 2021

Submitted by: MediLink A/S

Klintehøj Vænge 6 DK-3460 Birkerød

Denmark

+45 30 66 65 02

Contact Person: Cristina Teixeira

Director of Regulatory Affairs & Quality Assurance

ct@medilink.dk

Proprietary Name: Hydrozid®

Common Name: Portable aerosol cryosurgery device **Classification Name:** Unit, Cryosurgical, Accessories

Classification Regulation: 21 CFR 878.4350

Device: Class II

Device Product Code: GEH

Device Panel: General & Plastic Surgery

Predicate Device: Cool Renewal® (K161296)

1. Description of the Device

Hydrozid® is a portable aerosol cryosurgery device intended for the treatment of benign and premalignant skin lesions using a cryogen to freeze cells up to necrosis (cell destruction). The main device component is the aerosol canister containing cryogen spray. The device is provided in a kit containing a canister, application templates and Instructions for Use. The device is used with non-sterile, single-patient application templates which are disposed after use.

The mechanism of action for both Hydrozid® and the predicate device, Cool Renewal®, is based on the principles of cryosurgery (also referred as cryotherapy). Cryosurgery was first described in the 1800s and has since evolved into a well-established therapy within dermatology and other healthcare fields. Cryosurgery is performed using a cryogen to freeze the target tissue temperature to below the level that correlates with cell destruction also known as necrosis. The mechanism of action in cryosurgery are divided into 3 phases: (1) heat transfer, (2) cell death, and (3) inflammation. When the cryogen evaporates, it absorbs heat from its surroundings (heat transfer phase) causing cell destruction (cell death phase) due to:

- Direct effects of freezing on the cells
- · Vascular stasis which develops after thawing.

During cryosurgery, both extracellular and intracellular ice formation occur, with fast freezing in the center of the lesion, and slow freezing on the outside border. The loss of blood supply to the treated area eradicates the likelihood of survival of the cells in the frozen tissue (inflammation phase).

2. Indications for Use Statement

Hydrozid® (also known as R134A or 1,1,1,2-tetrafluoroethane or HFC-134a or HFA-134a or fluorocarbon 134a) is to be used for the treatment of verruca (warts) including plantar warts, seborrheic keratosis, actinic keratosis, achrochordon (skin tags), molluscum contagiosum, age spots, dermatofibroma, small keloids, granuloma annulare, porokeratosis plantaris, angiomas, keratoacanthoma, chondrodermatitis, epithelial nevus, leukoplakia, granuloma pyogenicum, and pyogenic granuloma.

3. Substantial Equivalence Discussion

The Hydrozid® intended use, indications and clinical application as well as the overall technical characteristics are substantially equivalent to the predicate device. The below table (table 5.3-1) compares the Hydrozid® to the predicate device with respect to intended use, technological characteristics and principles of operation. Differences between Hydrozid® and the predicate device are related to minor material and design elements.

Table 5.3-1: Substantial Equivalence Summary

Device Trade	Hydrozid®	Cool Renewal®	Significant
Name			Differences
Manufacturer	MediLink A/S	Cool Renewal LCC	N/A
Common Name	Portable aerosol	Portable aerosol	Same
	cryosurgery device	cryosurgery device	
Classification	Unit, Cryosurgical,	Unit, Cryosurgical,	Same
name	Accessories	Accessories	Game
Regulation	21 CFR 878.4350	21 CFR 878.4350	Same
number			Guine
Class	II	II	Same
Device Product	GEH	GEH	Same
Code			Game
Device Panel	General & Plastic	General & Plastic	Same
Device Pallei	Surgery.	Surgery.	Same
Sterile	No	No	Same
	Hydrozid® (also	1,1,1,2-	
	known as R134A or	tetrafluoroethane,	
	1,1,1,2-	Pentafluoroethane,	
	tetrafluoroethane or	and 1,1,1-	
	HFC-134a or HFA-	trifluoroethane is to	
	134a or	be used for the	
Indications for	fluorocarbon 134a)	treatment of verruca	Same
Use	is to be used for the	(warts) including	
	treatment of verruca	plantar warts,	
	(warts) including	seborrheic keratosis,	
	plantar warts,	actinic keratosis,	
	seborrheic	achrochordon (skin	
	keratosis, actinic	tags), molluscum	
	keratosis,	contagiosum, age	
	achrochordon (skin	spots,	

	tags), molluscum	dermatofibroma,	
	contagiosum, age	small keloids,	
	spots,	granuloma annulare,	
	dermatofibroma,	porokeratosis	
	small keloids,	plantaris, angiomas,	
	granuloma	keratoacanthoma,	
	annulare,	chondrodermatitis,	
	porokeratosis	epithelial nevus,	
	plantaris, angiomas,	leukoplakia,	
	keratoacanthoma,	granuloma	
	chondrodermatitis,	pyogenicum, and	
	epithelial nevus,	pyogenic	
	leukoplakia,	granuloma.	
	granuloma		
	pyogenicum, and		
	pyogenic		
	granuloma.		
Intended Users	For professional	For professional use	Same
mionada Goorg	use only.	only	Came
	Cryosurgery: freeze	Cryosurgery: freeze	
	the target tissue	the target tissue	
	temperature to	temperature to	
	below the level that	below the level that	
	correlates with cell	correlates with cell	
Mechanism of	destruction	destruction	
Action	(necrosis). When	(necrosis). When the	Same
	the cryogen	cryogen evaporates,	
	evaporates, it	it absorbs heat from	
	absorbs heat from	its surroundings	
	its surroundings	causing cell	
	causing cell	destruction due to:	
	destruction due to:		

	Direct effects of	- Direct offert of	
		Direct effects of	
	freezing on the	freezing on the	
	cells	cells	
	Vascular stasis	 Vascular stasis 	
	which develops	which develops	
	after thawing.	after thawing.	
	The mechanism of	The mechanism of	
	action in	action in cryosurgery	
	cryosurgery are	are divided into 3	
	divided into 3	phases: (1) heat	
	phases: (1) heat	transfer, (2) Cell	
	transfer, (2) Cell	death, and (3)	
	death, and (3)	inflammation.	
	inflammation.		
	R134A: 1,1,1,2-	R404A: 1,1,1,2-	Similar.
	tetrafluoroethane	tetrafluoroethane	Hydrozid®
	(CAS 354-33-6).	(CAS 354-33-6);	contains only 1
		Pentafluoroethane	cryogen which
		(CAS	is also part of
		420-46-2);	the Cool
		1,1,1- trifluoroethane	Renewal®
		(CAS 811-97-2)	mixture. The
			cryogen is
Cryogen			already used in
			the predicate
			device as well
			as well-
			established in
			other medical
			application
			(e.g., asthma
			inhalers and

			skin applications). Furthermore, performance data show Hydrozid® achieves a thermal profile comparable to the predicate device. Hence, no new safety or efficacy concerns are raised.
Freezing time	Transient use; < 1 minute. Specific freeze time determined by the type, size and location of the lesion being treated	Transient use; <1 minute. Specific freeze time determined by the type, size and location of the lesion being treated	Same.
Applicator	Application Templates	Foam Tipped Applicator Plastic Isolation Funnel Foam Tipped Skin Tag Tweezer	Similar. Both devices are supplied with accessories that allow the application for the cryogen

	directly into the
	patient's skin.

Testing and argumentation rationale were provided to support the equivalence of the Hydrozid® and shows that no new questions of safety and effectiveness have been introduced with this device. The safety and effectiveness of the Hydrozid® are adequately supported by the testing rationale, substantial equivalence information, materials information, and comparison of technical characteristics provided within this premarket notification.

4. Non-Clinical Performance Data

As part of demonstrating safety and effectiveness of Hydrozid®, and substantial equivalence to the predicate device, a bench test was performed to analyze the thermal profile (surface temperature, duration of the surface temperature and iceball geometry and size) of the cryogen R134A and the predicate device cryogen. The bench test determined that Hydrozid® cryogen performed equivalently to the cryogen of the predicate device.

A second temperature testing performed on Hydrozid® confirmed that the cryogen R134A could reach the minimum desired temperature for cell destruction and vascular stasis in both the minimum and maximum treatment time.

5. Clinical Performance Data

There was no clinical testing required to support the medical device as the indications for use are equivalent to those of the predicate devices. Portable aerosol cryosurgery devices have been on the market for decades and their clinical safety and efficacy has been established. The non-clinical testing detailed in this submission supports the substantial equivalence of the device.

6. Statement of Substantial Equivalence

By definition, a device is substantially equivalent when the device has the same intended use and the same technological characteristics as the previously cleared

predicate device. While there are minor differences between the Hydrozid® and its predicate device, such differences do not affect the principle of operation or mode of action of the Hydrozid®. Existing differences do not raise new questions regarding safety and effectiveness as compared to the predicate device.

It has been shown in these 510(k) submissions that the minor differences between the Hydrozid® and the predicate device do not raise any questions regarding its safety and effectiveness. The Hydrozid® device is determined to be substantially equivalent to the predicate device, Cool Renewal®.

7. Conclusion

The Hydrozid® device, based on comparison test to the predicate, is substantially equivalent to the predicate device, Cool Renewal®.