Approaches to TB Drug Development An Industry Perspective

Charles D. Wells, M.D.

Development Head, Infectious Diseases Therapeutic Area

Sanofi – U.S., Bridgewater, NJ

• The presenter, Charles D. Wells, M.D., works for Sanofi.

Approaches to TB Drug Development

- Approaches taken from industry-based development programs:
 - 2005-2014, onward to future
- Regimens studied and why
- Trial design, endpoints and outcome definitions used
- Nuances of combination drug development, given background therapy (ex. MDR-TB)
- Challenges/barriers in development programs
- Moving through registration/application process
- Path forward

Industry Considerations - Background

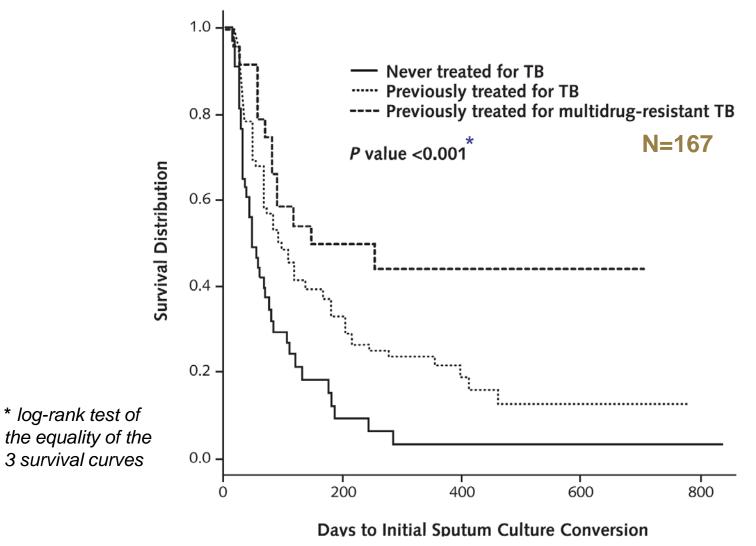
- For industry, expediency clock is ticking
 - Patent protection time-limited (development 10-12 yrs.)
 - Reason-to-believe quick path to/through Proof of Concept (PoC)
- *M. tuberculosis* biology works against expediency
 - Previously with TB trials
 - 6 months (treatment) + 2 years follow-up; relapse as endpoint
 - Sensible from public health perspective; challenge for developers
 - Animal models and EBA (≤ 14 days) early tools, but with limitations
 - Sputum culture conversion (SCC) as surrogate marker
 - Earlier SCC clinically meaningful; important for public health
 - But when? 2 mo vs. later? debate continues
 - Practical considerations slow, contamination, capacity

Target Product Profile: New TB Drug/Regimen Development Pathway to Target Label

Description of	Novel mechanism of action active against current resistant strains
the Mechanism	No cross resistance between drugs in the regimen
of Action	Active on resistant strains to all available treatment
Indications &	Patients with active tuberculosis irrespective of HIV status:
Target	○ Minimum case → 1^{st} line treatment for active M(X)DR TB [†]
population	\circ Base case → 1 st line treatment of DS-TB [‡] , M(X)DR TB
Dosage and administration	Oral fixed dose combination tablet; once daily
Efficacy	 M(X)DR-TB: Superior to SoC / optimized background regimen (OBR)
Lineacy	 DS-TB: Non-inferior to SoC with shortened treatment duration (<< 6 months)
Safety	Safer than SoC/OBR
Galety	Limited QT prolongation
	that () () DD TD - Marking / Externationally Draw Design (and Table and Issue
SANOFI 🎝	[†] M(X)DR-TB – Multidrug/Extensively Drug Resistant Tuberculosis [‡] DS-TB – Drug Susceptible Tuberculosis

Development Strategies for New TB Agents/Regimens Target Patient Population

- M(X)DR-TB
 - Unmet medical need better efficacy & shorter/easier/safer regimens
 - Superiority design (Sacks LV, Behrman RE. Tuberculosis, 2008):
 - "..exploring efficacy...in setting of drug resistant disease may present certain opportunity"
 - "...possibility of accelerated approval based on a surrogate endpoint"
 - Confers efficiency, but field steadily changing....
- DS-TB
 - RIPE highly efficacious
 - Shortening treatment (profoundly) as essential goal
 - Non-inferiority design


Development of New Tuberculosis Agents Setting Stage for M(X)DR-TB as Pathway, Pre-2005

- Green Light Committee (GLC)[†]/Global Fund launch and expansion, for M(X)DR-TB, 1999-2005:
 - Limited access to treatment
 - Cumulative total: ≤ 20,000 patients worldwide
 - Limited diagnostic/DST capacity
 - Large reservoir of "chronic" patients (previous 2nd-line treatment)
 - Weaker 2nd-line drugs early gen. fluoroquinolones, etc.
 - 24 months for treatment with high toxicity
 - Lack of experience with clinical trials/GCP
- Best programs in early years[‡]:
 - 2-month SCC = 30%
 - Cure: ≤ 65%; mortality: 10%-20%

[†]Gupta R, et al. Trop Med Int Health. 2002 ‡Leimane V, et al. Lancet 2005; Mitnick C, et al. N Engl J Med 2005.

Time to SCC vs. Treatment History in MDR-TB Patients, Latvia, 2000[†] - Previous 2nd-line Treatment with Lower/Later SCC

[†]Holtz TH, et al. Ann Intern Med 2006

Developing New Agents for Tuberculosis, 2005-2014

- M(X)DR-TB as initial target for Bedaquiline and Delamanid
 - GLC sites as network and labs/liquid media;¹⁻³
 - Stringent definitions for SCC/outcomes from WHO
 - SCC as endpoint from FDA & EMA (2009/2010); accelerated pathway
 - Design: optimized background regimen (OBR) + test agent vs. OBR
 - Bedaquiline (N=160): 6-mos. SCC: 79% vs. 58%⁴
 - Delamanid (N=481): 2-mos. SCC: 45% vs. 30%⁵
 - Limited datasets \rightarrow restricted label/patient population
- Drug-drug interaction and treatment optimization trials of new agents have followed^{6,7}
- However, field is steadily transforming.....

¹ Mitnick C, et al. <u>PLoS Med.</u> 2007;²Tupasi T, et al. Bull World Health Organ 2016
³Mycobacteriology Laboratory Manual: <u>http://www.stoptb.org/wg/gli/assets/documents/gli_mycobacteriology_lab_manual_web.pdf</u>
⁴ Gler MT, et al. N Engl J Med 2012; ⁵ Diacon AH, et al. N Engl J Med. 2014.
⁶https://clinicaltrials.gov/ct2/show/NCT02583048?term=Delamanid&draw=1&rank=3
⁷NCT02754765 Evaluating Newly Approved Drugs for Multidrug-resistant TB (endTB)

Field for M(X)DR-TB – Progressive Improvements

- Expanding treatment capacity GLC/Global Fund
 - >100,000 M(X)DR-TB patients treated annually
 - Decreased population of chronic patients
- Better diagnosis from months to days huge impact!
- Better drugs/access
 - Existing: Moxifloxacin, Linezolid, Clofazamine
 - New: Bedaquiline, Delamanid
- Shorter regimens among patients without previous 2nd-line treatment[†]
 - Bangladesh, 9-month regimen; N=206, Cure: 88%
- Greatly improved treatment success...
 - WHO reports overall[‡]: 52%
 - Mature MDR-TB treatment programs: ≥ 80%±; XDR-TB: ≥ 60%

[†]Van Deun A, et al. Am J Respir Crit Care Med 2010 [‡] WHO Global Tuberculosis Report, 2016. [±]JP Cegielski, et al. CID, 2016.

M(X)DR-TB Outcomes from PETTS, 2005-2008^{†‡}

- [†] PETTS Preserving Effective TB Treatment Study
- Multinational prospective cohort study N=1244 patients; 9 countries/26 sites

Patients With Known Treatment Outcomes^a (n = 973)

• Treatment: 5-drug intensive phase (6-8 mos.); total 20-24 mos.

Characteristic	Successful Outcome, No. (%)	Poor Outcome, No. (%)	<i>P</i> Value	Risk Ratio (95% CI) for Treatment Success	
GLC approval					
Yes	503 (82.9)	104 (17.1)	<.001	1.39 (1.27-1.52)	
No ^f	219 (59.8)	147 (40.2)			
No. of SLDs tested in loca	al laboratory				
0–2	288 (65.7)	150 (34.2)	<.001°	Reference	
3	281 (79.1)	74 (20.8)	<.001	1.20 (1.10-1.31)	
4–7	153 (85.0)	27 (15.0)	<.001	1.29 (1.18–1.42)	
Previous treatment histor	Y				
None	111 (82.8)	23 (17.2)	.002°	Reference	
First-line drugs	525 (74.1)	184 (26.0)	.03	0.89 (.8298)	
SLDs	86 (66.2)	44 (33.9)	.002	0.80 (.69–.93)	

Improvement in M(X)DR-TB Treatment Outcomes, Republic of Korea, 1996 - 2010[†]

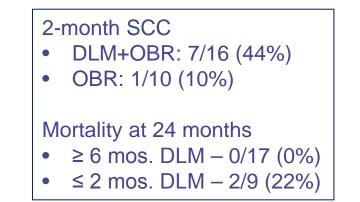
	MDR-TB patients (1996–2000) (n = 86)	MDR-TB patients (2001–2005) (n = 125)	MDR-TB patients (2006–2010) (n = 123)	P value
Treatment success				
Total	46 (53.5)	86 (68.8)	103 (83.7)	< 0.001
Cure	43 (50.0)	64 (51.2)	92 (74.8)	
Completed	3 (3.5)	22 (17.6)	11 (8.9)	
Unfavourable outcomes				
Total	40 (46.5)	39 (31.2)	20 (16.3)	< 0.001
Failure	24 (27.9)	16 (12.8)	7 (5.8)	
Relapse	3 (3.5)	3 (2.4)	2 (1.6)	
Death	9 (10.5)	10 (8.0)	5 (4.1)	
Default	4 (4.6)	10 (8.0)	6 (4.8)	
Relapse rate (cases per 1000 person-years)	10.9	6.9	8.2	0.174

• Improved outcomes with more frequent use of later generation FQs and linezolid

• Linezolid for those refractory to 3-6 months Rx and/or XDR-TB (21%), 2006-2010

SANOFI 🎝

Improving SCC/Outcomes for XDR-TB, 2005-2014


Linezolid for Treatment of Chronic Extensively Drug-Resistant Tuberculosis[†]

	Immediate Start (n=19)	Delayed Start (n=20)	Overall Group
		Iture Conversion	
4-month	15/19 (79%)	7/20 (35%)	
6-month			34/39 (87%)
	Treatme	ent Outcomes	
Cure			27/38 (71%)
Lost to f/u			3/38 (8%)
Failure			4/38 (11%)
Withdrew			4/38 (10%)

Management of Extensively Drug-Resistant Tuberculosis[‡] in Peru: Cure Is Possible

	N	Treatment Success (%)	Death (%)		
XDR vs. MDR (In	dividua	lized treatment)			
XDR	37	18 (49)	8 (22)		
MDR	494	372 (75)	39 (8)		
XDR vs. MDR (Individualized treatment + 2 nd -line DST)					
XDR	14	11 (78)	1 (7)		
MDR	334	264 (79)	26 (8)		

Delamanid for Extensively Drug-Resistant Tuberculosis ±

[†]Lee M, et al. N Engl J Med 2012; Lee M, et al. N Engl J Med 2015

[‡]Bonilla CA, et al. PLoS ONE, 2008; [±]Gupta R., et al. N Engl J Med. 2015

Pathway Forward – New Agent/Regimen Development (1)

- Advances in non-clinical realm to improve translational accuracy for selection/development of new regimens[†]
 - Models "Of Mice (Kramnik), Marmosets and Men" + hollow fiber infection
 - Better details on drug synergy/antagonism, cross resistance, differential and complementary PK, etc.
- Patient population given better diagnosis, new agents and evolving standards
 - Pre-XDR/XDR-TB superiority, but which comparator(s) regimens with linezolid, bedaquiline, delamanid +/- clofazamine?
 - MDR-TB shortened (9-month) regimen if no resistance to fluoroquinolones/injectables
 - DS-TB non-inferiority trials with RIPE as comparator treatment shortening

Pathway Forward – New Agent/Regimen Development (2) Measuring Treatment Effect/Endpoints - Challenges

- Culture-based endpoints remain obstacle limitations/inefficiencies
 - Slow results solid medium, 4-6 weeks; MGIT, 42 days
 - Quanititative cultures
 - Most reliable method to determine bacillus number
 - High workload \rightarrow serial dilutions, limited labs with capacity
 - Liquid medium MGIT Time to Detection (TTD) semi-quantitative
 - Correlation between agar CFU/TTD changes during treatment^{†‡}
 - Likely reflecting recovery of TB bacilli from exposure to TB drugs during treatment
- EBA (14-day) proof of activity; but with limitations
 - Some drugs, limited EBA (PZA, LZD) but robust treatment effect
- Early SCC for M(X)DR-TB easier to achieve with new agents...

[†]Bowness, et al.J Antimicrob Chemotherapy, 2015. [‡]Liu Y. [†]http://www.resisttb.org/wp-content/uploads/2017/06/Otsuka-LAM-test_Resist-TB-Webinar_06-22-2017.pdf

Pathway Forward – New Agent/Regimen Development (3) Measuring Treatment Effect/Endpoints – Potential New Tools

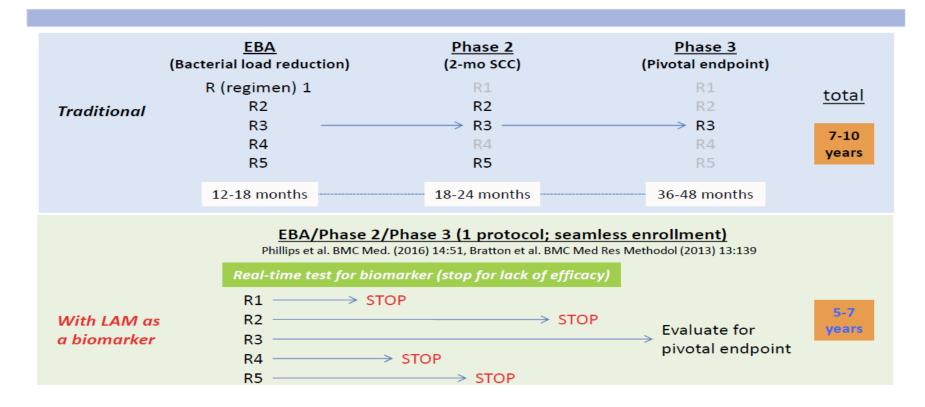
- Combination rules for TB regimen development¹
 - Demonstrating contribution of each drug in combination to extent possible (not sufficiently from existing data)
 - Requires regimen EBA +/- regimen SCC studies factorial design
 - Time and resource intensive more limited # of regimens evaluated
- Better tools for measuring treatment effect/endpoints
 - PET/CT imaging: early quantitative measure of anti-TB drug efficacy²
 - Sputum Lipoarabinomannan (LAM)
 - Quantitative (vs. MGIT/TTD)
 - Potential pharmacodynamic biomarker
 - Immunoassay to measure concentration with "real time" read going through qualification process for drug development tool²
 - Completed trial^{3;} NextGen Trial (NCT02371681)⁴

¹Guidance for Industry – Codevelopment of Two or More investigational Drugs for use in Combination; US DHSS FDA CDER 2013; ²Coleman MT, et al. Science Translational Medicine, 2017;⁴ClinicalTrials.gov: NCT02371681; NextGen EBA; ³Liu Y. [†]http://www.resisttb.org/wp-content/uploads/2017/06/Otsuka-LAM-test_Resist-TB-Webinar_06-22-2017.pdf Pathway Forward – New Agent/Regimen Development (3) Trial Design Options

- Conventional design (up to 10 years)
 - SAD/MAD + PoC (EBA of combinations + 2-month combinations)
 - Phase 3 with fixed/balanced randomization
- Adaptive trial designs \rightarrow greater efficiency
 - Bayesian (vs. balanced) adaptive design (i.e. endTB).
 - Multi-arm multi-stage (MAMS) design (i.e. PANACEA)
 - Both use information (i.e. SCC) to 'adapt' trial
 - Bayesian adaptive more efficient if >1 effective regimen
 - MAMS more efficient if only 1 effective regimen
- Key choice for strategy, thresholds, reliance on markers (LAM, EBA):
 - Relaxing standards \rightarrow high % of candidates go through; false +'s
 - Calibrate screening → no false +'s; exclude viable treatments

Bayesian Response-Adaptive Trial in MDR-TB: endTB Trial[†]

• Phase 3 non-inferiority trial of MDR-TB treatment using Bayesian adaptive randomization to examine 5 new shorter experimental regimens:[‡]


ŧ	Bdq	Dlm	Cfz	Lzd	FQ	Z
I	Bdq			Lzd	Mfx	Z
2	Bdq		Cfz	Lzd	Lfx	Z
3	Bdq	Dlm		Lzd	Lfx	Z
4		Dlm	Cfz	Lzd	Lfx	Z
5		Dlm	Cfz		Lfx	Z
6	Conventional	control, composed ac	cording to WHO Gui	delines, including the p	oossible use of delama	nid or bedaguiline

- Reduced trial size (< 1,000 pts.) and duration with multiple superior regimens potentially identified; from simulation:
 - 27% fewer than balanced randomization
 - 80% power to detect up to 2 novel regimens non-inferior (margin 12%) to control (70% efficacy) at 73 weeks post randomization.
 - Up to 25% more participants would receive non-inferior regimens.

SANOFI 🌍

[†]ClinicalTrials.gov Identifier: NCT02754765 Evaluating Newly Approved Drugs for Multidrug-resistant TB. [‡]Cellamare M, et al. Clinical Trials, 2017. Envisioned Impact of Adaptive Trial Design + "Real Time" LAM: Potentially Shortens Development Time by 2-3 Years[†]

- Phase 1: SAD/DDI; MAD to include target population (EBA)
- Seamless Phase 2/3 trial with adaptive design of combinations

[†]http://www.resisttb.org/wp-content/uploads/2017/06/Otsuka-LAM-test_Resist-TB-Webinar_06-22-2017.pdf

Broader Considerations in Moving Forward To Registration

- Early engagement of authorities seek critical feedback on design of programs/trials in face of steadily evolving field <u>and pay attention!</u>
 - Patient population, comparator arm, endpoints, follow-up
 - Trial design special protocol assessments
 - Combination rules[†] in vivo models + EBA for individual agents sufficient?
- Regulatory Harmonization across authorities essential to making new treatments available to broader swath of patients, sooner
 - EMA, PMDA, and FDA met in Vienna in April 2017; agreement to align certain data requirements to stimulate development to fight antimicrobial resistance (AMR) and protect global public health.
- TB is "priority pathogen" in fight against AMR
 - Push/pull mechanisms to encourage and support new TB drug/regimen development are crucial

SANOFI SA

Acknowledgements

- Sanofi: Laurent Fraisse, Sophie Lagrange, Francois Bompart, Brigitte Demers, Mike Macalush, John Cook, Abdel Oualim, Rita Merino
- Rajesh Gupta
- Jeff Hafkin
- Larry Geiter
- Yongge Liu
- Carole Mitnick

