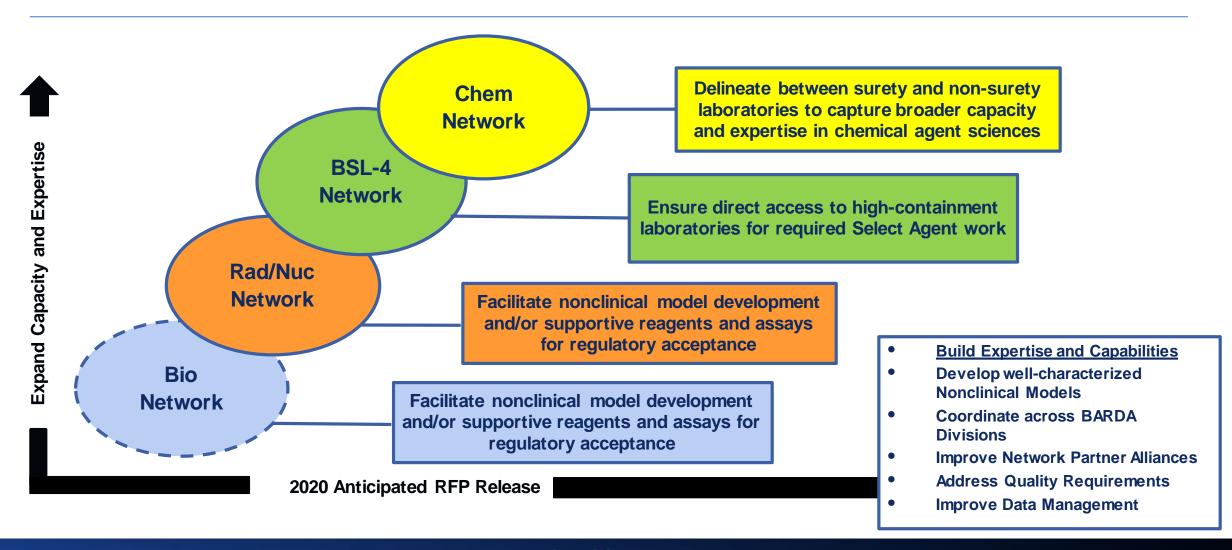


Porcine Animal Model of Ventilator-Associated Bacterial Pneumonia Caused by Pseudomonas aeruginosa or Acinetobacter baumannii


Andrew Phipps, DVM, PhD, DACVM

Contractor in support of the Biomedical Advanced Research and Development Authority

March 5th, 2020

UNCLASSIFIED

BARDA Nonclinical Division

Application of Animal Models in Drug Development

- …"When human efficacy studies are not ethical and field trials are not feasible"
- Well-understood disease mechanism and prevention/reduction by the product
- Action within animal model(s) should be predictive of human response
- Endpoints related to the desired benefit in humans
- PD/PK data for translation of an effective dose to humans

Development of Large Animal Models for Antibacterial Drug Development

Obtain efficacy data from adequately characterized animal model(s)

- Could be supplemented with clinical data from patients with a variety of infections caused by *P. aeruginosa* in one or more descriptive studies
- There are currently no adequately characterized animal models for the indications being considered
- Unlike trials for biothreat agents, it is ethical to conduct human efficacy trials; however, feasibility of conducting such trials is the issue

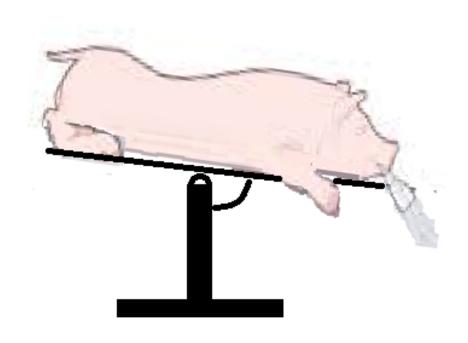
Advantages of Porcine Model

- Anatomical, physiological and biochemical similarities to humans
- Gross and microscopic anatomy of the porcine lung is similar to human lungs
- Similar array of innate immune function in the lungs
- Large size amenable to the use of equipment typically used for humans in critical care scenarios
- Previous VABP studies using swine have also demonstrated that they can be mechanically ventilated for 3-4 days after bacterial inoculation, which allows sufficient time for development of disease, initiation of therapy, and monitoring the response to therapy (LiBassi et al., 2014)

Study Plan

 Create and characterize strains of ceftriaxone-resistant Acinetobacter baumannii and Pseudomonas aeruginosa

- Pilot to establish prolonged ventilation in the porcine model
 - Female Yorkshire-Landrace crossbred juvenile pigs
 - Anesthetized and ventilated for 96 hours
 - Antibiotic treatment to minimize spontaneous pneumonia
- Establish bronchoscopic challenge and dose ranging for each strain
- Characterize the natural history of VABP disease in the porcine model
 - Monitor disease development and progression
 - Establish euthanasia criteria
- Utilize the developed model to evaluate the efficacy of antibacterial drugs to which the strains are susceptible and resistant


Challenges and Considerations

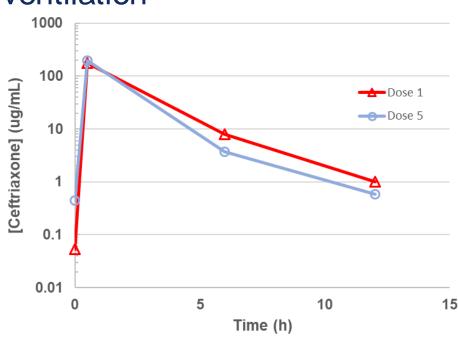
- Catheterization
 - Venous & arterial
 - Urinary
- Intubation
 - Endotracheal tube
 - Mechanical ventilation
- Maintenance & Support
 - Continuous rate infusion anesthesia
 - IV fluids
 - Vital sign monitoring
 - Hematology, clinical chemistry
- Euthanasia
 - Necropsy
 - Bacteriology

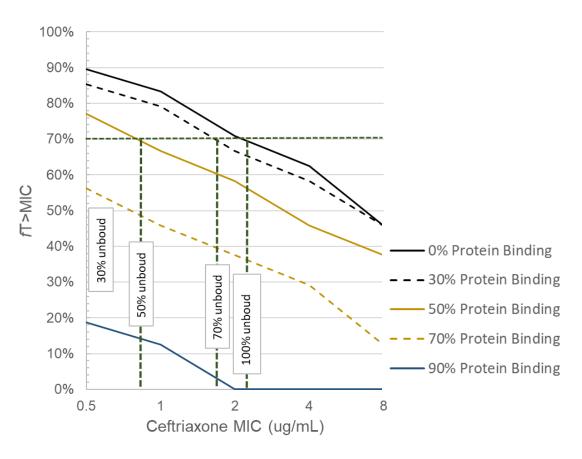
Positioning

- Trendelenburg position at -15 degree angle relative to the horizontal plane
 - Ventral Recumbency
 - Restraints
 - Foam padding
- Pressure sores
 - Sternum
 - Hind limbs
 - Forelimbs

Monitoring

- Heart rate
- Mean arterial pressure (MAP)
- Core body temperature
- SpO₂ (pulse oximeter)
- ECG
- Urine output
- Arterial blood gas
- Respiratory rate
- Spontaneous respiration rate


- Total minute volume
- End tidal CO₂
- FiO₂
- P_{aw} plateau
- Peak inspiratory pressure
- Compliance
- Resistance
- PO₂/FiO₂ (calculated)
- ETT Cuff Pressure


- Tracheal secretion quantity (estimated)
- Tracheal secretion quality
- Hematology (every 24 hours)
- Clinical chemistry (every 24 hours)
- Porcine CRP
- Porcine procalcitonin

Ceftriaxone

- Intravenous dose of 50 mg/kg q12h
- 30 minute infusion
- Start within two hours of mechanical ventilation

Note: If we assume that the unbound fraction is between 50-60%, then a dose of 50 mg/kg q12h should provide coverage for organisms with a ceftriaxone MIC \leq 2 ug/mL

Bacteriology

- Blood culture at time of euthanasia
 - Ideally 100 mL
- Culture of lung tissue samples (quantitative)
 - Ideally 8 to 10 samples with a pre-specified tissue sampling plan
- Identification (MALDI-TOF)
- Antibiotic susceptibility testing

Proposed Euthanasia Criteria

Parameter

- Technical
- Severe Hypoxia
- Mean Arterial Blood Pressure
- Electrocardiography

Potential Humane Endpoint

- Any adverse mechanical event that cannot be remedied
- < 40 mm of PaO₂ twice, 5 minutes apart with FiO₂ of 100%
- Persistent hypotension, < 30 mm Hg for > 30 minutes
- Asystole for > 3 minutes

Necropsy

- Gross necropsy findings
- Sterile collection of tissues for bacteriology
- Collection of lung samples for histopathology
- Grading of pathologic lesions (Marquette, 1999)
- Collection of a limited set of tissues for histopathology

Conclusions

- Pilot studies demonstrate feasibility of mechanical ventilation for 96h in the Yorkshire-Landrace pigs
- Large animal model is amenable to physiologic and microbiologic characterization of the natural history of disease
- Large animal studies are challenging to establish and conduct

How to Contact BARDA

phe.gov/BARDA

Program description, information, news, announcements, connect to TechWatch

medicalcountermeasures.

gov

Portal to BARDA: Register to request a TechWatch meeting!

beta.sam.gov/

Official announcements and info for all government contract solicitations

drive.hhs.gov

Learn about DRIVe, including our Accelerator Network and FZ BAA

www.usajobs.gov

Join the team!

