

Page 2	Page 4
1 A P P E A R A N C S	1 PROCEEDINGS
2	2 DR. JOHN FARLEY: This is John Farley
3 DR. JOHN FARLEY	3 checking audio.
4 DR. SUMATI NAMBIAR	4 COURT REPORTER: Sounds good. We can
5 DR. RADU BOTGROS	5 hear you.
6 DR. ERIN ZEITUNI	6 DR. JOHN FARLEY: Good. Shall I go
7 DR. THOMAS WALSH	7 ahead and start?
8 DR. JASON MOORE	8 COURT REPORTER: Yes, you can start
9 DR. WILLIAM HOPE	9 now.
10 DR. LAURA KOVANDA	10 DR. JOHN FARLEY: Okay. I'm very sorry
11 DR. YULIYA YASINSKAYA	11 for the delay, everyone. This is our first virtual
12 DR. KIEREN MARR	12 workshop here in the Office of Infectious Disease.
13 DR. JOHN REX	13 We've put in lots of preparation and weren't quite
14 MATTHEW SCHUELER	14 counting on doing this in the middle of a tropical
15 DR. PETER PAPPAS	15 storm, but we're hoping that the workshop goes
16 DR. CHERYL DIXON	16 smoothly today. In the event that you do lose
17 DR. AARON DANE	17 Internet, please just log back in and join us.
18 DR. ASPASIA KATRAGKOU	18 I see that Tom Walsh is already losing
19 DR. LUIS OSTROSKY-ZEICHNER	19 connections but rejoining us right now. I want to
20 DR. TOM CHILLER	20 welcome everybody this morning and thank particularly
21 DR. HELEN BOUCHER	21 the speakers for the time that they've invested in
22 DR. BAOYING LIU	22 preparing for this event.
Page 3	Page 5
1 DR. MICHAEL HODGES	1 We're here today to focus on the
2 DR. DAVID ANGULO	2 development of new therapies to address unmet medical
3 DR. TAYLOR SANDISON	3 need for the treatment of infections due to invasive
4 DR. GEORGE THOMPSON	4 molds and Candida auris. Discussions today will
5 DR. DAVID DENNING	5 include the current state and clinical trial design
6 DR. JOHN PERFECT	6 considerations for developing new therapies for these
7 DR. THOMAS PATTERSON	7 infections.
8 DR. KAREN HIGGINS	8 Fungal diseases with unmet need occur
9 DR. JOHN BENNETT	9 in people who live in or travel to certain areas. An
10 DR. SHAWN LOCKHART	10 example of that is Valley Fever, which will be our
11	11 focus tomorrow. And they also commonly affect people
12	12 with weakened immune systems, and an example of that
13	13 is Candida auris, which we'll be focusing on later
14	14 today.
15	15 Similar to antibacterial drugs,
16	16 antifungal resistance can severely limit treatment
17	17 options. The science of preclinical development is
18	18 hard and it's very important to establish feasible
19	19 clinical trial designs that will lead to interpretable
20	20 data.
21	21 Like antibacterial drugs, there are
22	22 significant financial challenges. The key to making

Page 6	ge
1 progress is coming together as a community.	1 disease, resistance to existing therapies or
2 Government staffs, academic researchers, healthcare	2 intolerance to currently available treatments.
3 providers, patients and drug developers to frankly	3 This is certainly very encouraging, but
4 discuss the challenges and ideas for making progress	4 at the same time we do recognize that there are
5 together, and that's our main goal and our focu	5 scientific and practical challenges that need to be
6	6 addressed. We hope that in today's workshop we will
7 Just a bit of housekeeping. We ask	7
8 that folks s	8 hand, and also identify some key areas that we'll need
9 we can stay on time today and have time for some good	9 for the dis
10	10 As John has mentioned, you know, we
11	11 also recognize that there are several economic
12	12 challenges that face the field of anti-infectious drug
13	13 development at large, which includes both anti-
14	14 bacterials and antifungals. Unfortunately, it's not a
15 Sumati is from our group at FDA and heads the Division	15 topic that we can address or cover in today's
	16 workshop.
17 involved with support for antifungal drug development.	17 It's really important to keep in mind
18	18 that general principles for antifungal drug
19	19 development are similar in many aspects to those for
20 DR. SUMATI NAMBIAR: Yeah, thank you,	20 antibacterial drug development. And over the last
21	21 decade and maybe decade and a half, we've made
22 morning and I would like to add my welcome and thank	22 significant progress with antibacterial drug
Page 7	ge 9
1 you all	1 development and have clearly defined in scientificall
2 forward to a productive meeting and hope that today,	2 sound approaches that are feasible for many clini
3 discussions	3 conditions that clinicians see.
4 conversatio	4 This was not an easy task. It was
5 community to advance the field of antifungal dru	5 achieved by engagement with stakeholders. Some of you
6 developmen	6 on the call participated in those discussions. We
$7 \quad$ As John said, Dr. Zeituni from NIAID	7 also engaged in public-private partnerships and
8 and I will co-moderate the first session on the	8 exercised some regulated flexibility, all supported by
9 background of clinical and preclinical concentration	9 good scientific evidence
10	10 There are many important lessons th
11 considerations from an FDA perspective. And then I'll	11 we've learned from completed programs. Unfortunately,
12 also pr	12 many of them also from field programs, which is not
13 Japanese reg	13 what we like to see but I think very important to keep
14 us for the workshop. So, with that, if I can have my	14 in mind that they teach us many important lessons. We
15 slides up?	15 recognize the importance of those selections, the body
16 Over the last few years we've seen som	16 site of infection, and the role animal models of
17 increased intere	17 infection play, particularly in streamlined
18 addition to the standard indications as in Candidiasis	18 development programs that are designed to attract
19	19 unmet medical need.
20 developing antifungal drugs for the less common molds,	20 Presently, there's more work to be
21 and also f	21 done. There is ongoing work in defining or using
22 variously defined either by the presence of refractory	22 novel endpoints. There's also discussion around

Page 10	ge 12
1 designing trials for difficult to study indications	1 that during the course of our discussion today, when
2 an	, 2 we discuss alternate endpoints, I think we should keep
3 including children. All of these certainly h	3 in mind that endpoints that are selected for clinical
4 relevance to antifungal drug develop	4 trial should be well-defined and reliable.
$5 \quad$ And just to make	5 The clinical endpoint should be one
6 the same page, at the very high level, you know, we	6 that measures an effect on how a patient feels,
7 have two regulatory pathways.	7 functions or survives. If it's a surrogate marker
8 approval pathway is generally based on an endpoint	8 surrogate endpoint, it's usually a marker such as a
9 that measure	9 laboratory measurement or a radiographic change that's
10	10 likely to predict clinical benefit but is not in
11 surrogate endpoi	11 itself a measure of clinical benefit.
12 predict clinical benefit or on a clinical endpoin	12 So, today we'll also have a lot of
13 that can be measured earlier than irreversibl	13 discussion about the role of diagnostics and how they
14 morbidity or mortality. It's important to keep in	14 can help us with enrolling patients in clinical
15 mind that ev	15 trials. And we have allowed things f
16 activated approval pathway, the statutory standards	16 candidemia/candidiasis trials, use of non-culture
17 for effectiveness as in traditional approval should	17 based tests for enrollment for aspergillosis drugs
18 still be met	18 We've allowed the use of galactomannan test for
19 So, the statutory	19 patient identification and defining patient
20 effectiveness is substantially evident consisting of	20 populations
21	21
22 antifungal drugs, at least one adequate and well-	22 have to be FDA cleared or FDA approved if they're
Page 11	Page
1 controlled t	1 being used for enrichment purposes, and qualification
2 The supportive evidence from this single	2 of an endpoint is also not a prerequisite for use
3 come from nonclinical studies, in vitro studies,	3 clinical trials.
4 from another indicati	4 The size of the safety database I thin
5 I also wanted to note that for p	5 certainly will depend a lot upon the clinica
6 with orphan designation -- I hope everybody can stil	6 conditions being studied and the attributes of the
7 hear me. So, for products with orphan designation,	7 drug. I think it's important to keep in mind that
8 which many antifungal drugs do get designated	8 based on signals from nonclinical studies, the tria
9 orphan drug product, the statutory standard stil	9 will have to have appropriate safeguards such as
10 needs to be met. So, effectiven	10 monitoring and enrollment of the appropriate trial
11 demonstrated in adequate and well-controlled	11 population.
12	12 We do recognize that particularly for
13 Recent trials for asperg	13 unmet need programs and safety database would be
14 candidemia/invasive candidiasis that have been	14 small. We highly recommend that at the proposed dose
15 submitted to support an indication have used a non-	15 and duration, we get safety data on at least 300
16 inferiority trial design. And for these conditio	16 patients. There might be a requirement for additional
17 there's a large treatment effect, and a justification	17 data if a safety signal has been identified. Also,
18 of the NI ma	18 there might be a need to collect additional safety
19 Commonly used endpoints in antifung	19 data post-marketing, either through post-marketing
20 trials have included all-cause mortality or clinic	20 requirements or enhanced pharmacovigilance
21 success at a fixed time point, which has varied from	21 So, here are some paths moving forward,
22 six to twelve weeks. And I just wanted to point out	22 and a lot of this we hope will come up during our

Page 14	Page 16
1 discussion today. We may not have solutions to all of	1 meet certain criterion.
2 these but it'll hopefully be some food for thought as	2 I'm not going to read through all of
3 we continue to work together	3 them. I've given you the reference. We have a
4 How can we design data packages that	4 guidance, and then there's also certain criteria that
5 are feasible and provide interpretab	5 are included under the Food \& Drug Administration
6 particularly for the more difficult to study fung	6 Reauthorization Act of 2017. And if a PRV is issued
7 infections? And how best do we leverage data from	7 that can be used to obtain priority review designation
8 nonclinical studies to support these small d	8 for a subsequent application, that by itself will not
9 packages?	9 have qualified for priority review.
10 particularly for certain types of fungal infections?	10 So, in addition to the existing list,
11 We're hop	11 Section 524 of the FDA allows us to add by order "any
12 discussion around how we develop oral stepdow	12 other infectious disease for which there is no
13 therapies,	13 significant market in developed nations and that
14 available as an intravenous and an oral combination	14 disproportionately affects poor and marginalized
15 And also talk	15 populations." We have an open docket to which
16 pediatric pop	16 interested parties can submit additional diseases with
17 There are	17 supporting materials and we review them on an ongoing
18 sort of grayed out, not because they're not importan	18 basis. As many of you are aware, cryptococcal
19 but not within the	19 meningitis was added to the list of eligible disease I
20 Developing inhaled antifungal therapies and developin	20 think a couple years ago, and more recently, we made
21 therapies for	21 the decision to not designate coccidioidomycosis.
22 infections. These are topics that we hope to bring to	22 The LPAD pathway, the Limited
Page 15	Page 17
1 a future public meeting.	1 Population Pathway for Antibacterial and Antifungal
2 I just want to switch gears and talk	2 Drugs, became available under the 21st century cures,
3 about some incentives and also about the LPAD approval	3 and it's based on the benefit-risk assessment that
4 pathway. It think many of you are familiar with the	4 more flexibility takes into account the severity
5 Qualified Infectious Disease Product designatio	5 prevalence of the infection. And I understand that
6 that's given to antibacterial and antifungal human	6 this will come up for discussion and is included in a
7 drugs that are intended to treat serious or	7 couple of the other presentations that we will hear
8 threatening infectio	8 today.
9 In addition to fi	9 So, there are three requirements for a
10 additional five years of marketing exclusivity a	10 drug to qualify under the LPAD pathway. First is that
11 priority review for the first application, the	11 it should be intended to treat a serious or life-
12 products are also eligible for fast-track designation	12 threatening infection in a limited population of
13 And so far we've granted QIDP designation to over 200	13 patients with unmet needs. And, very importantly, it
14 antibacterial/antifungal products and 26 of thes	14 does not change our standards for approval
15 designated products have been approved.	15 So, the standards for approval under
16 I understand there's some interest in	16505 or under 351 still need to be met. That does mean
17 the community of the tropical disease priority review	17 to have substantial evidence of effectiveness. And
18 voucher and its applications for antifungal dru	18 the written request has to be submitted from the
19 developmen	19 sponsor that the product be approved as an LPAD drug.
20 developed for the prevention of treatment of a disease	20 There are certain conditions for approval with regard
21 which is on the tropical disease	21 to labeling and promotional materials.
22 for a tropical disease priority review voucher if they	22 Now, so far we've approved two products

Page 18	Page 20
1 under the LPAD pathway: Arikayce, or amikacin, for	1 As I stated early on, we at the agency
2 the treatment of non-tuberculosis mycobacteria	2 recognize the unmet need and also the practical
3 infections, and Pretomanid, as part of a combination	3 challenges in developing these products. It is very
4 regimen for the treatment of certain populations	4 important that all of us work together to find
5 patients with tuberculosis.	5 feasible and scientifically sound solutions to address
6 The approved population for each of	6 patient needs.
7 these products is limited. It's very defined an	7 And there are many important lessons
8 specific. Treatment effect was demonstrated in	8 learned from antibacterial drug development that are
9 least one adequate and well-controlled trial for each	9 relevant to and can certainly guide further
10	10 discussions on antifungal drug development. So, with
11 We considered the benefit-risk profile	11 that, I thank you for your attention and will now
12 of each of these products to be acceptable in the	12 present on behalf of our colleagues in PMDA. So,
13 indicated limited population of patients who have few	13 maybe I can get those slides for that, please? Great.
14 or no treatment options, and limitations of the d	14 Thanks.
15 are reflected	15 I'm just going to go through these
16 And this is just the highlights section	16 slides that the center has by PMDA and Shohko Sekine,
17 of the prescribing information for these two products.	17 who's in the Office of New Drug at PMDA, has written
18 And as required under law, the sentences that a	18 up these slides on the regulatory considerations for
19 highlighted were included in labeling to convey the	19 antifungal drug development, perspective from Japan.
20 limitations of the data	20 So, they note that there are no
21 So, before I conclude, I will ju	21 guidelines currently for development of antifungal
22 touch upon pediatrics. Under the Pediatric Research	22 drugs issued by regulatory authorities in Japan. The
Page 19	Page 21
1 Equity Act, ped	1 development of antifungal agents is not very active
2 requirement is waived, deferred or not applicable	2 currently. In the last five years, they have approved
3 And although antifungal products with orph	3 four products: Two of them were for the treatment of
4 designation are exempt from these requirements, we	4 nail ringworm, one was for the treatment of or
5 encourage sponsors to consider developing products for	5 candida infection, and the other product had both a
6 children. I thin	6 prophylaxis
7 effective therapies are needed for this population	$7 \quad$ Provided as an example of the most
8 And in most instances, it is possible to extrapolate	8 recently approved product in Japan, and that is
9 efficacy from adults to pediatrics. And we're also	9 Naxafil or Posaconazole, both as a tablet and
10 willing to consider issuing a pediatric writte	10 intravenous formulation. The indications include
11 request if there is interest. Sorry, there's an issue	11 prophylaxis of deep mycosis in hematopoietic stem cell
12 with formatting on the slide	12 transplant recipients or patients with hematologic
13 I also wanted to point out that	13 malignancy, and also for the treatment indication that
14 recently issued a guidance on anti-infective dru	14 includes th
15	15 mucormycosis, coccidiodomycosis, chromoblastomycosis
16 principle outlined in the guidance are applicable to	16 and mycetoma.
17 both antibacterial and antifungal drugs.	17 The data package included clinical
18 So, in summary, I've provided a high	18 trial results from outside Japan and these data had
19 level overview	19 been submitted to EMA and FDA. In addition, there was
20 antifungal drug development and reviewed some	20 data available from a trial conducted in Japanese
21 incentives and pathways that are relevant to	21 patients. The sponsor's position was that the foreign
22 antifungal drug development.	22 data could be utilized for evaluation of efficacy in

Page 23
1 Strategy at the European Medicines Agency. So, Radu, 2 thank you.
3 DR. RADU BOTGROS: Thank you very much, 4 Sumati. Can you hear me well? Can you hear me?
5 DR. SUMATI NAMBIAR: Yes, yes. 6 DR. RADU BOTGROS: Very good. Thank 7 you very much and thanks to the FDA for inviting me to 8 this public workshop. My presentation will try to 9 provide you with some important EU Regulatory 10 considerations for developing antifungal medicines.
11 As most of you know, the EMA has a
12 guidance document on the clinical evaluation of
13 antifungal agents for the treatment and prophylaxis of
14 invasive fungal disease. And this guidance has been
15 finalized ten years ago, back in 2010, and is still in
16 force. It reflects the recommendations and
17 categorizations of disease of the European
18 Organization for Research and Treatment of Cancer and
19 the Mycosis Study Group of the NIAID and is a revised
20 version of a 2003 document.
21 And I must say that these guidances
22 have been put together as a response to scientific
advisor requests that were made to the EMA by sponsors
2 that were seeking approval based on nonrandomized
3 studies with or without external or historical
4 controls, often in difficult to treat patients.
5 I would now like to present a few
6 important considerations that the EMA guideline is
7 making which I believe are relevant for the discussion
8 today. And one important aspect is related to the
9 selection of the dose regimen and the use of the PK/PD
10 in the process. And I think it's important to point
11 out that the guideline mentions the fact that the dose
12 selection should be based on nonclinical data, human
13 PK data and exploration of the PK/PD relationship.
14
It's important also to mention that the
15 EMA has a dedicated PK/PD guidance document that also
16 applies when developing an antifungal. So, I think
17 it's good to keep that in mind, and at the same time,
18 you know, to acknowledge that the experience with
$19 \mathrm{PK} / \mathrm{PD}$ of antifungals is accumulating and has
20 accumulated during the last decade.
21 It's important to mention a few
22 recommendations that the guideline on antifungal is
Page 25
making for developers aiming at developing drugs for
2 treating invasive fungal infections produced by either
3 aspergillus or candida.
4 The recommendation is to conduct a
5 prospective randomized active controlled trial in
6 patients confirmed to have proven or probable invasive
7 fungal disease. The preference is to allow a single
8 comparator in the study or at least to restrict
9 choices of the comparator if choosing a single one is
10 not an option.
11 I should also mention the fact that the
12 CHMP, which is the EMA main scientific committee in
13 charge of approval of medicines, has accepted single
14 pivotal trials for these indications.
15 Determination of eligibility and
16 outcome should ideally be made by an independent
17 adjudication committee that is blinded to treatment
18 assignment. And I think it's important to mention the
19 fact that fungaemia should be persistent after removal
20 of catheters and that all primary -- possible primary
21 foci are investigated. And the patients that have
22 persistent fungaemia and/or established primary foci

1 efficacy results versus candida and/or aspergillus
2 plus $\mathrm{PK} / \mathrm{PD}$ analysis using patient PK data.
3 I think it should be bore in mind that 4 this recommendation is made in response to previous
5 proposals of nonrandomized studies in patients with
6 various rare fungal infections, some with historical
7 controls, and which essentially were requesting
8 approval based on data generated from such studies,
9 plus-minus PK/PD to support adequacy of the dose.
10 It's important to highlight that for
11 now, the guideline does not foresee the possibility of
12 approving an antifungal for treatment of rare invasive
13 fungal infections based on a positive candida or
14 aspergillus RCT plus PK/PD. So, there is a need to
15 have a study in rare invasive fungal infections that
16 one should be ideally randomized possibly using
17 unbalanced randomization, and it should compare the
18 candidate medicines with licensed medicines or best
19 available treatment. And in case nothing is approved
20 or considered adequate superiority of the test
21 regimens versus best available treatment should be
22 demonstrated. Separate studies by fungal types are
also the preference here.
A few words on the treatment of
refractory IFD. Here it is important, I think, to
note that clinical studies in these patients should
only be conducted after having shown satisfactory
6 efficacy results in one or more specific types of IFD.
The enrolled patients should have
8 proven IFD that persisted or progressed despite
previous antifungal therapy. The only exception being
invasive aspergillosis, where also probable cases can
be enrolled. The primary objective of such a study
may need to be discussed depending on whether it is or
it is not possible to use an active control.
The prophylaxis part is, of course, not
part of this workshop but I just wanted to mention
very briefly that here the expectation is that
prophylaxis studies are conducted only after showing
8 satisfactory clinical efficacy in a treatment of IFD.
And the fact that it is expected to conduct a
randomized trial with an adequate comparator and to
compare rates for proven or probably IFD during
treatment and for a defined period after cessation of
Page 29
prophylaxis.
The non-inferiority margin and power of
such a study need to be discussed in advance and
4 potential improved indication will likely reflect a
5 generation of evidence for specific fungal types.
Before I finish, since the workshop
discusses development of antifungals for unmet medical
needs, I wanted also to say a few words about how this
concept is described in the EU regulations and about
the use of the term in different regulatory settings.
And I think it's important to mention that there are
regulatory tools in place addressing products which
cover recognized unmet medical needs in Europe.
The first one is, of course, the
conditional marketing authorization, which is a tool
that can be employed for products where the benefit-
risk balance is such that the immediate availability
outweighs the limitations of less comprehensive data
than normally required. And I won't -- I mean, you
see on screen the definition of unmet medical need as
presented in one of the regulations that we have. And
so I think this is one of the tools that can be used

Page 30

1 for such products.
2 And apart from that, there is a
3 possibility -- the other regulatory option that we
4 have for medicines addressing an unmet medical need is
5 the accelerated assessment. Here it's important to
6 mention that these need to be requested by the
7 sponsors and should be accompanied by a justification
8 by the applicant where typically the applicant will
9 argue to support that medicine addresses to a
10 significant extent unmet medical need for maintaining
11 and improving the health of the community.
12 And this concept of unmet medical need
13 is actually considered also in other regulatory areas,
14 notably in the framework of granting orphan
15 designation or in the context of the PRIME program,
16 the priority medicines applications, or in agreeing
17 with the pediatric investigational plans.
18 So, just to summarize, I think it's
19 good to keep in mind that we have an antifungal
20 guidance in force in the EU ; the fact that we had
21 rather few applications for new approvals for
22 antifungal agents, a bit more but also not too many
Page 31
1 for CHMP scientific advice, both for treatment and
2 prevention of invasive fungal infections. The CHMP
3 has been flexible on the primary endpoint for invasive
4 aspergillosis, as I mentioned before, and I think it's
5 worth consulting the guidance of antifungals when
6 developing medicine targeting rare pathogens, in
7 particular the recommendations on first establishing
8 efficacy in candida and aspergillus and use those data
9 to support the results obtained from small RCTs in
10 target rare pathogens with support from PK/PD for the
11 dose regimen. Of course, prophylaxis should be
12 considered and investigated after treatment. And,
13 last but not least, we have the regulatory tools
14 available for products addressing an unmet medical 15 need.

16 With that, I thank you very much. Back
17 to you, Sumati and Erin. Thank you.
18 DR. SUMATI NAMBIAR: Thank you so much,
19 Radu. Our next speaker is Dr. Zeituni from the
20 Preclinical Services Program at the Bacteriology and
21 Mycology Branch at NIAID. Erin's going to talk about
22 the preclinical services for antifungal product

Page 32
1 development at the NIH. Erin, I'll turn it over to you. Thanks.

3
DR. ERIN ZEITUNI: Thank you, Sumati.
4 Just checking that my sound is working?
5
to thank the organizers for giving me the opportunity
8 to tell you all a bit about NIH's preclinical services
9 for antifungal development. And throughout this talk
10 I will be encouraging folks to reach out to my group.
11 So, up front, I'd like to let you know that my email
12 is my first name, dot, my last name @NIH.gov. And I
13 have no disclosures.
14 Because it's all oriented, the mission
15 of the National Institute of Allergy and Infectious
16 Diseases, or NIAID, is to lead research to understand,
17 treat and prevent infectious, immunologic and allergic
18 diseases.
19 Within NIAID, the Division of
20 Microbiology and Infectious Diseases, or DMID, has a
21 broad mandate supporting research for over 300
22 pathogens. Essentially, everything except for HIV,

1 which has its own division.
2 Our support for antifungal product
development spans this full product development arrow
4 shown on the slide, from early basic research through
to clinical research. The support comes in a variety
6 of mechanisms designed to inform and de-risk product
7 development. Folks in the audience will be most
8 familiar with NIAID's grant and contract mechanisms,
9 which are the main drivers of NIAID's support for
10 product development effort.
11 However, we recognize that the path to
12 produce approval is long and can be difficult. And,
13 unfortunately, promising products can be lost across
14 the so-called Valley of Death due to lapses in funding
15 or access to resources. To help stem these losses,
16 DMID has developed free services and resources for the
17 research and development communities to access. Those
18 include our resources for researchers, the Preclinical
Services Program, which will be a main focus of my 20 presentation today, and clinical support.
21 In the interest of time, I will only
briefly touch on NIAID's resources for researchers,

Page 34	Page 36
1 which provide free reagents and services to	1 in a certified lab or to explore their drug spectrum
2 investigators. These successful programs include the	2 of activity if they themselves don't have access to
3 Structural Genomic Centers, which c	3 multiple representative species of yeasts, molds,
4 dimension atomic structures of proteins playing	4 dimorphs or rare fungi.
5 important biological roles in human pathoge	5 More advanced product developers
6 including for eukaryotic pathogens, which will be of	6 utilize our in vitro services to expand our MIC data
7 particular interest to this audience, and also B	7 sets and explore activity against species outside
8 resources, which provide reagents to researchers such	8 their critical path and target indication.
9 as well-characterized funga	9 In vivo efficacy models are also
10 plasmas and more. More informa	10 available for antifungal product developers. Since
11 other programs can be found on our website	11 2015, our contracts at the University of Texas Health
12 NIAID's Preclinical Services are	12 Science Center in San Antonio and at the University of
13 suite of contracts designed to support anti-infectiv	13 Cincinnati have provided in vivo efficacy studies to
14 product development. These free gap-filling services	14 over 25 institutions developing antifungal drugs.
15 are intended to lower the risk and help advance	15 This table lists the various models that we offer by
16 promising discoveries along the product development	16 species and route of inoculation. Most of our models
17 pathway.	17 include two arms: A fungal burden arm to assess the
18 Our mission is to keep product moving	18 impact of treatment on fungal burdens and tissues of
19 forward rather than have them stalled d	19 interest, and a survival arm to assess the impact of
20 intermittent gaps in funding or access to resource	20 treatment on mortality, both with drug on board and
21 Innovators from academia, nonprofit organization	21
22 industry and governments are eligible to apply for	22 Most commonly product developers use
Page 35	Page 37
1 these free services. Both domestic and foreig	1 our in vivo efficacy services for three reasons: The
2 institutions may apply, and applicants to do not need	2 first is to access proof of concept studies to support
3 to have NIH fund	3 a grant application or resubmission; the second is to
4 Because Preclinical Services ar	4 test efficacy against additional strains of a target
5 intended to quickly fill discrete gaps in produ	5 species including alternate resistance profiles; and
6 development programs and keep them moving forward	6 the third is to test their drug against additional
7 there's a simplified request process allowing acces	7 priority pathogens that might not be the target of
8 year round	8 their critical path of the program. We offer these
9 Focusing in on antifungals, I manage	9 services to ensure that promising antifungals at a
10 suite of in vitro and in vivo efficacy	10 variety of development stages, both early and late,
11 provide supportive data to antifungal drug development	11 have a path forward to assess their microbiological
12 programs. To give a flavor of the scale of o	12 activity.
13 services,	13 In the table on the right, the models
14 University of Texas Health Sciences Center in Sa	14 written in black are currently available under open
15 Antonio have performed antifungal MIT testing for over	15 task orders, while the models written in red would
16120 compounds for more than 50 different institutions.	16 require a new task order to be solicited before coming
17 On the right side of this slide you	17 back online. We rely on the product development
18 will see the fungal species against which we currently	18 community to drive which models we have available at
19 offer MIC testing. Our MIC testing services infor	19 any given time, based on the requests that we receive
20 multiple stages of antifun	20 for testing.
21 example, early product developers might utilize our in	21 Requests from product developers serve
22 vitro testing services to confirm antifungal activity	22 a bona fide need for us to solicit new task orders and

Page 38	Page 40
1 I encourage you to reach out to us and tell us about	1 documentation.
2 your antifungal programs and any gaps that you might	2 There are many opportunities for you to
3 h	3 engage w
4 In addition to responding to request	4 want to encourage you again to contact us and start a
5 from product	5 discussion about support mechanisms that we offer
6 p	6 from grants on through to preclinical services. We
7 p	7 would be
8	8 And before closing, I'd like to briefly
9 Candida auris emerged as a pathogen of concern and	9 mention one more area of free services for product
10	10 developers which are our clinical trial units, such as
11	11 our Phase 1 units. These contract provide Phase 1
12	12 trials at no cost to the requester. NIAID sponsors
13	13 the trial and holds the IND. Michovia's VT-1598
14 into our task orders and workflow and later upd	14 novel antifungal compound with activity against
15 our panels to include the CDC, FDA, AR isolate bank	15 toxicity species and through our Phase 1 clinical
16	16 trial unit, VT-1598's single ascending dose study is
17 We then solicited a task order	17 examining the safety of its administration to 48
18 develop and validate a Candida auris infection model.	18 healthy adul
19	19 And in conclusion, I hope that this
20 fluorouracil to induce neutropenia and are inoculated	20 presentation was helpful to provide a clear picture of
21	21
22 Candida auris that is resistant to fluconazole and	22 support antifungal product development. Again, I
Page 39	Page 41
1	1 would encourage you to reach out to us. My email is
2 arms, a fungal burden arm and a survival arm are use	2 located at the top of the slide. And I'd also like to
3 to assess the impact of fluconazole and caspofun	3 acknowledge the team effort that it takes to manage
4 treatments on	4 the portfolios and mechanisms that were described
5 untreated controlled	5 this presen
6 The results of these	6 Listed are members of the branch who
7 efforts were rep	7 support antifungal therapeutic, diagnostic and vaccine
8 transferrab	8
9 Filler and Ashraf Ibrahim at UCLA Harbor. With	9 questions, and I hope to hear from you soon. Thank
10	10 you. With that, I would like to give the rest of my
11 multiple task orders and tested Candida antifunga	11
12	12 Thank you.
13 three publications. This approach is just one examp	13 DR. SUMATI NAMBIAR: Thank you so much,
14	14
15 services to support antifungals across various stag	15 Walsh, the Professor of Medicine, Pediatrics an
16	16 Microbiology at Cornell and an attending physician,
17	17 New York Presbyterian Hospital. So, Dr. Walsh will
18 NIAID's suite of preclinical services also include	18 talk to us about the animal models of fung
19	19 infection. So, Dr. Walsh, I'll turn it over to you
20	20 DR. THOMAS WALSH: Yes, good morning.
21	21 Are you able to hear me?
22 product development planning and assistance with IND	22 DR. SUMATI NAMBIAR: Yes, we can.

Page 42	44
1 Thank you.	1 And then to move into larger animal
2 DR. THOMAS WALSH: Very good. Very	2 model systems, rats, guinea pigs and rabbits, and I
3 good. Well, first, I'd like to thank you so much for	3 will exemplify those as well. Clearly, one needs
4 the opportunity and the invitation to speak on thi	4 complementary systems in order to be able to de-risk
5 very critical ar	5 and to identify potential new compounds -- one needs a
6 infection.	6 complementarity of the different model systems. Many
7 systems in development of new antifungal agent	7 animal models, of course, are also studied in
$8 \quad$ By way of disclosures, my staff and	8 pathogenesis and host defenses, which we will not
9 have collaborated extensively with multiple industri	9 address today.
10 partners as cri	10 What are the characteristics that are
11 translational science from bench to bedside	11 noteworthy for predictive in vivo models for invasive
12 By way of background, animal mod	12 fungal diseases? They should reflect the host
13 systems are a critic	13 response relevant to the fungus. This is actually
14 discovery and development of new antifungal agents for	14 absolutely paramount, for the host response plays a
15 treatment and prevention of invasive fungal disease	15 critical role in outcome, both in the animal model
16 Models of inv	16 systems as well as in our patients. They should have
17 guinea pigs	17 quantifiable outcome variables. At minimal, survi
18 studied for development of new and previous syste	18
19 antifungal ag	19 measure by culture and/or PCR, and a range of
20 We will review today the concep	20 biomarkers including antigen and antibody but also
21 scientific and regulatory framework for utilizing	21 other, for example, inflammatory biomarkers, and then,
22 these models, cite specific examples of their	22 of course, the classical histology.
Page 43	Page 45
1 application and discuss their predictability f	1 What are some of the more widely used
2 clinical trials. I just heard a beep. Are you	2 or studied invasive fungal diseases? Certainly
3 able to hear me?	3 Candida dominates in the field of laboratory animal
4 DR. JOHN FARLEY: Yeah	4 studies. Commonly we use a neutropenic thigh model
5 DR. THOMAS WALSH: All righ	5 but also there are models of disseminated Candidiasis
6 Thank you. Our objectives this morning, therefore	6 to take us a step farther that can mirror acute,
7 are to review the role of laboratory animal mode	7 subacute, chronic and CVC, central venous catheter
8 systems and development of new antifungal agents	8 biofilm studies, hematogenous Candida
9 assess the predictability of these models for	9 meningoencephalitis, the diseases of cutaneous
10 predicting outcome in clinical trials and to identify	10 candidiasis, oropharyngeal and esophageal candidiasis,
11 unmet needs and new directions particularly for	11 cutaneous and vulvovaginal candidiasi
12 biomarkers in preclinical and clinical studie	12 For Aspergillosis, certainly there are
13 So, what is the role for animal models	13 the models of invasive pulmonary aspergillosis, which
14 of invasive fungal diseases? First of all, clearly	14 we see in murine, guinea pig and rabbit systems, and
15 development of new antifung	15 CNS disease, more challenging. But the laboratory
16 sees particularly in industry or in drug discovery	16 for example, of Dr. Stevens has done considerable work
17 laboratories screening of murine models. They're	17 in CNS aspergillosis. In mucorales, we see pulmonary
18 relatively simple, straight	18 mucormycosis and models of disseminated disease.
19 outcome parameters. The next step then will be to	19 Although we will not address, in any
20 explore farther the PK/PD parameters in murine	20 greater detail, the endemic mycoses and Cryptococcus
21 systems, and I'll exemplify those in some of our	21 models, those models certainly are stalwarts of being
22 discussion.	22 able to have a firmer foundation before going into

Page 46	Page 48
1 clinical trials. Emerging and very relevant to the	1 systemic agents and strategies.
2 new compounds under investigation now are hyaline and	2 We then see with the advent of Candida
3 Dematiaceous molds and models including murine and	3 auris, new models emerging of cutaneous Candidiasis.
4 rabbit model systems of fusariosis, scedosporiosi	4 One in particular in the guinea pig, by Dr. Ghannoum
5	5 and his colleagues, demonstrating the efficacy
6 system, for example, the rabbit model exserohilu	6 reflects of ibrexafungerp. This is particularly
7 rostratum CNS infection as an example of CNS	7 important in launching into clinical trials for
8 phaeohyphomyc	8 prevention or decolonization, as the skin serves as a
9 So, if we were to then explore farthe	9 distinctive source for harboring the organism, in a
10 now the applicat	10 sense, and a source for transmission into the
11 look to, for example, to the murine neutropenic thig	11 environment.
12 model for further	12 If we look at different patterns of
13 properties	13 Candidiasis, there are acute, subacute and chronic
14 originally in bacterial PK/PD studies and provide	14 that can be readily modeled both in the murine models
15 early guidance toward developing of dosing and PK/PD	15 but also in our rabbit model system. Typically the
16 parameters.	16 acute representing hemodynamically unstable patients,
17 further exploration, particularly in more advance	17 which is typically rapidly fatal, associated with high
18 models representing differe	18 inoculant and a distinct series of clinical features.
19 and different	19 Subacute is much more commonly used in
20 One of the key components of PK/PD	20 both murine and rabbit systems where one can have
21 modeling	21
22 then allow one to be able to model the system and to	22 hemodynamically stable. And chronic reflects the host
Page 47	Page 49
1 be able to identify, as depicted here, the appropriat	1 patterns of hepatosplenic candidiasis. These systems
2 parameter be it AUC:MIC ratio, peak plasma	2 plus central venous catheter biofilm treatment studies
3 concentration or time above M	3 have been the bulwark supporting the indications of
4 Mucocutaneous Candidiasis is a common	4 ampho B lipid formulations, voriconazole, caspofungin,
5 ubiquitous series of infections, particularl	5 micafungin and anidulafungin for indications in this
6 oropharyngeal and esophageal Candidiasis. Earlier in	6 disease.
7 HIV/AIDS, but now we continue to see this in a wid	7 One of the challenging features,
8 variety of immune deficiencies. Depicted to the left,	8 however, remains in children, particularly children
9 there's a model for fluconazole-resistant esophageal	9 hematogenous Candida meningoencephalitis. And then
10 candidiasis showing the time course of resistanc	10 more commonly, although not exclusively, Candida
11 versus susceptible and a striking	11 endophthalmitis in adults.
12 response as well as histology. And the predictiv	12 So, we do see endophthalmitis in our
13 capability in ec	13 pediatric population as well. That prompted us to
14 Anidulafugin, showing a dose response relationshi	14 move to a distinctive model of experimental model
15 which was hi	5
16 that echniocandin as well as others in clinical tria	16 were able to show with a series of imaging, both in
17 of esophageal Candidiasis	17 vitro and in vivo studies, the capacity for being able
18 There are numerous models	18 to identify disruption of blood brain barrier by
19 vulvovaginal Candidiasis and that has become	19 gadolinium scanning.
20 important area, particularly ever increasin	20 And then leading to the hypothesis, we
21 these unfortunate patients who suffer from refractory	21 were able to bring in echinocandins into a pediatric
22 VVC and for whom there is a dearth of available	22 population that's highly vulnerable to HCME that we

1 So, with that, one has direct

Page 51

1 of echinocandid versus deoxycholate amphotericin B
2 with no breakthrough endophthalmitis and with no
3 evidence of breakthrough of CNS candidiasis.
4 If we switch our attention from Candida
5 models to that now of pulmonary aspergillosis, I'll
6 begin initially with the rabbit model -- the
7 persistently neutropenic rabbit model of invasive
8 aspergillosis, which has been a highly predictive
9 system in identifying new antifungal agents for
10 treatment and prevention of this frequently lethal
11 infection.
12 The animal system has a central
13 silastic venous catheter for atraumatic venous access,
14 Ara-C for profound persistent neutropenia, further
15 modulation with cyclosporine methylpresdnisolone.
16 That alone can also be used to develop a model which
17 we've employed for chronic pulmonary aspergillosis, a
18 very distinctive and tenacious problem encountered
19 ever-increasingly. And then providing intensive
20 supportive care in the profound persistent neutropenia
21 host, similar to that with what we would encounter in
22 our oncology population.

2 endotracheal inoculation, colonization of the
3 tracheobronchial tree. And as immune suppression
4 progresses, colonization to nodular and segmental
5 pneumonia, and then initiation of therapy based upon
6 CT-scan findings. These findings, we believe, very
7 closely mimic and recapitulation the development of
8 invasive pulmonary aspergillosis in our neutropenic
9 and profoundly immunocompromised hosts going out 12-14
10 days therapy. And even to the extent of
11 radiologically demonstrating halo signs and
12 characteristic nodular infiltrates as I've seen in our
13 patient population.
14 So, what has been the impact of the
15 markers that we see? Since the initial development of
16 this model, we've been able to identify dosages, drug
17 disposition, safety, tolerability, efficacy for all of
18 the compounds seen here, laying the clinical
19 foundation for the clinical trials, and predictively
20 identifying outcome, both alone and subsequently, as
21 I'll show you, in combination therapy, in a very
22 robust, very predictive manner over the course of

1 time.
2
If we look at the initial studies of
3 AmBisome, liposomal amphotericin B applied milligram
4 per kilogram per day compared with high dosage of
5 deoxycholate, the AmBisome was found to be more
6 effective and safer, increasing survival, reducing the
7 number of viable organisms, decreasing tissue injury,
8 preventing nephrotoxicity and also showing decreased
9 galactomannan as a therapeutic marker.
10 If we then look to the AmBiLoad
11 clinical trial, those results accurately predicted the
12 outcome that is compared to 10 milligram per kilogram
13 per day, 3 milligram per kilogram was comparable in
14 achieving a favorable survival rate of 72 percent, and
15 an overall response rate of 50 percent. If we take
16 those data from our original comparative studies,
17 we're then in collaboration with Dr. Hope -- we were
18 able to identify a PK/PD model that found near maximum
19 antifungal activity using, for example, galactomannan
20 as well as the other markers at 3-5 milligram per
21 kilogram per day; and found further that with all
22 formulations that we were also able to induce a dose-

Page 54	Page 56
1 dependent reduction of lung injury and circulating	1 ITRA as being superior and lifesaving in prevention of
2 fungal biomarkers.	2 life-threatening invasive aspergillosis and other
3 And the final model demonstrated that a	3 mycosis.
4 clinical dosage of liposomal amphotericin B of	4 To that point, with emerging resistance
5 milligram per kilogram was predicted to cause complete	5 in other pathogens, we further explored in combination
6 suppression of galactomannan in the majority	6 antifungal therapy where we were able to demonstrate
7 patients, which also correlated well with clinical an	7 in this similar model system improvement across all of
8 experimental outcome -- once again, the robustness of	8 the biomarkers using, again, CT-scanning as well as
9 the system and the predictive	9 galactomannan with the combination therapy, in this
10 particular model	10 case voriconazole plus anidulafungin with striking
11 Also reflected in this was that of	11 correlation.
12 further studies of Posaconazole at 2, 6 and 20	12 With the in vitro studies, in this
13 milligram p	13 case, bliss analysis where the curve itself, the
14 deoxycholate	14 three-dimensional curve going positive indicates
15 parameters	15 significant response.
16 weights an	16 And so, with that, moving forward into
17 demonstrate that at the two higher doses, Posaconazole	17 the randomized trial voriconazole plus anidulafungin
18 was superior to that of Itraconazole, also correlating	18 versus vori alone, although the original analysis
19 well with biomarkers of galactomannan, galactomanna	19 primary endpoint was not fulfilled at 0.087 , one post
20 antigenemia, as well as correlating with CT-scanning	20 talk analysis of six-week mortality did demonstrate in
21 volumetric ou	21 the early patients and those with galactomannan
22 Despite both Itra and Posa having	22 positivity a significant improvement in survival.
Page 55	Page 57
1 simila	1 If we change our focus away from the
2 concentrations at the 2, 6 and 20, the data ha	2 rabbit model system, we go now to a PK/PD approach
3 clearly indicated the superiority of posaconazole	3 where here we see dose fractionation being performed
4 this setting, suggesting that MIC may play a critical	4 in the laboratory of Dr. Andes, Dr. Zhao, et al, where
5 role where the MIC was significantly lower f	5 efficacy was assessed by quantitative PCR. But not
6 posaconazole	6 many regressions using the Hill equation demonstrating
7 These findings were predictive of the	7 a 24-hour AUC/MIC ratio that predicted the best PK/PD.
8 externally controlled trial where we were able to	8 And with a stasis and one-hour q
9 that there were significantly greater responses	9 endpoint of 48 and approximately $89 \mathrm{mg} / \mathrm{kg}$ as dosages
10 Salvage study for posaconazole compared to externally	10 achieving status in one long chill. And then with Dr.
11 controlled recipients. 42 percent of posaconazo	11 Patterson's and Vederhold's model, for example in ASP
12 recipients versus 26 percent for our contr	12 9726, a survival rate that demonstrates a dose
13 recipi	13 response relationship and parameters that also reveal
14 We further found that if one evaluated	14 a correlation with clinical response.
15 survival with Kaplan-Meier analysis, that there wa	15 Finally, we see in pulmonary
16 also similar response. Further to the PK/PD of thi	16 mucormyocosis, a very nice correlation with clearance
17 we also found parall	17 in increased uptake in the -- by lipid formulations by
18 1,250 micrograms per ml predicted favorable outcome	18 the laboratory of Dr. Pontionus and in the laboratory
19 compared to the	19 of Dr. Ashraf Ibrahim, liposomal amphotericin B
20 And, finally, our prophylactic	20 showing a favorable dose response relationship all the
21 also, in the system, predicted and laid the found	21 way to 7.5 milligram per kilogram in their murine
22 for the definitive study of posaconazole versus FLU or	22 model of disseminated mucormycosis.

Page 62	Page 64
1 there was difficulty establishing the effectiveness	1 formulations available. As we've been discussing,
2 for micafungin in pediatric patients younger than four	2 there are a wide range of fungal infection severity
3 months. In part, this is due to the fact that	3 from the more ambulatory patients to the patients
4 pediatric patients younger than four months of age	4 perhaps that cannot tolerate oral medication.
5 can't have meningoencephalitis	5 Additionally, within the contex
6 Thus, the assumption that the exposure	6 critically ill patients, it's good to be able to
7 that would affected in the older pediatric patients	7 perform stepdown therapy starting with an intravenous
8 and adults would be -- would also be effective in	8 agent when they cannot tolerate the oral medication
9 pediatric patients under four months, would not be	9 and perhaps switching them to an oral formulation of
10 valid. And, thus, we needed more data in order to b	10 the same agent as their condition improves
11 able to identify a dose regimen, first of all, in thi	11 With that in mind, there have been
12 patient popul	12 concerns with the available antifungal formulations.
13 And that's where the rabbit model of	13 Echinocandins, for instance, are only available
14 hematogenous Candida meningoencephalitis, the one that	14 intravenously. While the (inaudible) antifungals may
15 Dr. Walsh mentioned in the previous talk, came in. It	15 have both oral and intravenous formulations, there
16 was used to identify the dose regimen for further	16 occasionally have been concerns with the oral
17 clinical study	17 formulations in light of variable exposure and
18 However, even with the clinical study,	18 absorption. So it should be a consideration during
19 robust clinical data in the pediatric patients younger	19 development for a candidate antifungal agent.
20 than four months of age were difficult to obtain	20 The next consideration regards the
21 Thus, this model was used again to	21 analysis of exposure-response. It is important to
22 support the labeling information, as you can see in	22 evaluate exposure-response relationships to support
Page 63	Page 65
1 the graphic below. Essentially it indicated that	1 efficacy and safety in clinical trials. They can help
2 seeing that antifungal activity was shown in the model	2 to inform dose regimen selection, such as if one
3 and it included the corresponding human dose regimens	3 identified in Phase 2 is used to further optimize the
4 that were predicted to note comparable exposure to the	4 dose before going into Phase 2 trials. They may also
5 rabbit.	5 indicate the need for therapeutic drug monitoring.
6 Note that this information was included	6 As we see many antifungal agents do
7 in section 8.4 using special population pediatric use	7 include exposure-response data in the labeling,
8 and not section 1, indications and usage, or section	8 there's an example shown there -- and therapeutic drug
9 2, dosage and administration	9 monitoring itself is not mentioned in labeling often.
10 This decision was made in part because	10 However, it is used clinically especially for azole
11 the rabbit ACME model was originally designed to	11 antifungals. And I've lifted an example here from the
12 identify the dose with the anticipation	122016 IDC guidelines for aspergillosis that does
13 confirmation from a clinical trial in patients	13 recommend therapeutic drug monitoring for select azole
14 Additionally, upon review of the	14 antifungals
15 individual animal data, we were able to identify	15 The fourth consideration regards drug-
16 range of dose measurements that were associated with	16 drug interactions. As we've seen, several antifungals
17 antifungal activity but we could not pinpoint a	17 have significant drug-drug interaction liability. The
18 specific dose regimen linked to clinical	18 azole antifungals in particular are substrates and
19 effectiveness.	19 inhibitors which have to do with their mechanism of
20 The next consideration regard	20 antifungal action
21 formulation development. Generally speaking, it's	21 Voriconazole and itraconazole in
22 beneficial to have both intravenous and oral	22 particular have 30 plus listed drug-drug interaction

1 in labeling. This is a concern because many of the
2 patients who will be treated with this agents for
3 invasive fungal infections have severe comorbidities
4 that necessitate treatment by many concomitant
5 medications that may also have drug-drug interaction 6 liability.
$7 \quad$ For instance, in the transplant
8 recipients, they are often treated with the agents
9 that are also CYP 3a4 substrates, so having liability
10 through that pathway, and also need to be maintained
11 within a certain concentration window to optimize
12 efficacy and safety.
13 Additionally, patients with HIV may
14 also be on agents with DDI potential with these
15 agents, such as the protease inhibitors. Thus, it is
16 important to evaluate the drug-drug interaction
17 potential for a candidate antifungal, both in vitro 18 and in vivo, as applicable.
19 For these last three considerations we
20 can use Posaconazole as an example. It was originally 20
21 approved as an oral suspension in 2006 and later as a 22 delayed-release tablet and an IV solution. The

Page 67
1 original suspension had a few concerns related to
2 pharmacokinetics including variable absorption leading
3 to variable exposure. The later approval of the
4 tablet and the solution appeared to increase its
5 clinical utility and allow it to be used in more
6 situations.
7 In terms of drug-drug interactions,
8 like many of the azoles, it can interact with CYP 3a4
9 substrates inducers and inhibitors. Additionally, the
10 (inaudible) formulation can interact with drugs
11 affecting gastrointestinal motility or pH .
12 In terms of the exposure-response
13 relationship, it was assessed specifically for the
14 oral suspension. It was noted that there was an
15 increase in prophylactic efficacy with increases in
16 average concentration. This information was then
17 communicated in labeling. This revealed an
18 opportunity to optimize prophlyaxis despite variable
19 absorption potentially using therapeutic drug
20 monitoring -- which, again, while not in the labeling
21 explicitly, is often used clinically and referenced in
22 the guidelines.

1 With all that in mind, I've highlighted
2 four specific areas for antifungals that relate to
3 clinical pharmacology, but there are other important
4 clinical pharmacology studies that will need to be
5 done during a clinical development cycle, albeit
6 perhaps with not specific considerations for
7 antifungals. Still, these will often inform many of
8 the other studies or areas that we've been discussing.
$9 \quad$ For instance, the in vitro CYP
10 metabolism and transporter studies will help to inform
11 what in vitro and in vivo drug-drug interactions
12 studies need to be done, the food effects,
13 bioequivalence/bioavailability studies will be very
14 important during formulation and development. The
15 mass balance study will help to inform the design of
16 the hepatic impairment and renal impairment studies,
17 which, again, will be important based on the severely
18 ill population that many of these agents will be used 19 in.

With all that in mind, clinical
21 pharmacology drug development for antifungals on its
22 face is similar to other disease states for the most

1 part. There are simply several areas that may require
2 special consideration relative to other therapeutic
3 areas in the arenas of animal models, formulations,
4 exposure response and drug-drug interaction
5 characterization.
6 I would like to thank and acknowledge
7 contributions from my colleagues in the Division of
8 Infectious Disease Pharmacology and the Division of
Anti-Infectives. Thank you all very much, and I will
10 turn it back over to Sumati.
11 DR. SUMATI NAMBIAR: Thank you so much,
12 Jason. William, can we start with your slides? Thank
13 you.
14 DR. WILLIAM HOPE: Good morning,
15 everybody. Sumati, can you hear me?
16 DR. SUMATI NAMBIAR: Yes, we can.
17 Thanks, William.
18 DR. WILLIAM HOPE: So, thank you for
19 the invitation to speak from the chilly north of the
20 United Kingdom, in more ways than one.
21 So, this talk addresses the key steps
22 and ideas to ensure patients receive the right regimen

Page 71
1 fulfill this purpose.
2 Also, it's worth remembering that many
3 invasive fungal diseases are rare and difficult to
4 enroll into clinical studies, and clinical trials are
5 often simply infeasible. And that older antifungal
6 agents, those which we routinely used, were developed
7 -- what may now be considered relatively crudely. So,
8 plasma concentrations that exceed MIC 90 for the
9 proposed dosing interval. And voriconazole and
10 caspofungin were developed in this way -- and Mike
11 Hodges is on the call and would have plenty of
12 experience with this and I'd be interested in his
13 views about that.
14 So, what are the key ideas and
15 challenges for identifying candida regimens for
16 patients? And that's for a new antifungal drug or a
17 new indication for a licensed compound. So, the first
18 is that we do have -- and this was alluded to by Dr.
19 Botgros -- we do have robust pharmacodynamics models
20 that are available to delineate initial PK and PD
21 relationships.
22
These provide early information on the
plan for dosing schedule, and these models are being
2 reviewed extensively by Dr. Walsh and candida models
were used extensively by (inaudible) in the early 2000s.

6 until the early 2000s and then largely developed with
NIH funding. And the endpoint was the problem there,
8 with PCR galactomannan and survival used by different
investigators. And then Cryptococcus models in mice
really making meningoencephalitis also extensively
used by drug developers.
So, generally, these models are robust and I will just site John Perfect in saying that they
14 have never really let us down actually, and they may -
15 -- they enable a clear indication of the relevant
16 pharmacodynamics and therapeutic potential of a new agent.

So, this is something of a revelation
to me in my thinking recently that came after a recent
FDA workshop. And the models that we have can also
serve as adjunctive evidence of clinical efficacy.
But this is on a different part of the spectrum to PK
Page 73
and PD.
2
debate that emerged at the last FDA meeting on the 5th
4 of March of this year on animal models to support
antibacterial development. And it's this idea of
6 separating relatively well-controlled and early models
7 designed to establish PK/PD relationships versus
8 models that might be more faithful mimics of human
disease.
10
11 nicely, and I've given the web link, on the 8th of
12 March of this year. And the rabbit models that you've
heard about from Dr. Walsh I think in many ways have
fulfilled this role. So, the model of invasive
pulmonary aspergillosis, the number of different
rabbit models, the candidate regimens; the CNS candida
model, and the Cryptococcus model in the rabbit
developed by John Perfect all really fulfilled this
role in that they generally have clinically relevant
background immunosuppression, they have comparable
pathogenesis to humans, they have clinically relevant
readouts, and that they're severe in that they usually

Page 7	Page 76
1 are universally lethal.	1 from Dr. Moore. The bridge is pretty straightforwa
2 And so the use of these models to mimic	2 So first-in-human PK providing insight as to whether
3 human disease -- I guess this example's come up on a	3 exposures required
4 number of talks -- but I think that thi	an be modeled using
5 way of thinking about the contribution of preclinic	5 population techniques, and simulation can be used to
6 models to dos	6 come up with the adequacy of proposed regimen
7	$7 \quad$ And the failure at this very early
8 this community. That is, nonclinical data is being	8 stage to achieve drug targets that may be desired or
9 used as adjunctive evidence of clinical efficacy	9
10	10 requirements for more PK studies. And Tom Walsh
11 micafungin or the animal model for the micafung	11 showed you this example of (inaudible). This
12 label. And then some thought needs to be given to the 12 exactly what happened in the neonatal program where	
13 QA issues that are invol	13
14	14 demonstrate linearity and safety of higher dosage
15 to be consi	15 This is an important point. Getting
	16 estimates of variability is key. It's not really the
17 point out th	17 main or median that matters, it's rather t
18 generally used by academic laboratories. That would	18
19	19
20 bacterial world, standardization of models may need to 20 in patients. The coefficient variation for clearance	
21	21
22 So, point number 4, that there's a	22 from healthy volunteers to patients or generally
Page 75	Page
1 general problem that we have of defining study	1 double. It's possible just with early relatively
2 endpoints, and this needs more debate. And by this	2 sanitized Phase 1 data to artificially inflate
3 mean what is the fungal equivalent of stasis?	3 variance in simulators.
4 heard Dr. Walsh use this term. Or a 1 or $2 \log$ drop	4 So, you take the volunteer data, you
5 that's used extensively and is p	5 inflate the variance, and this stresses the candid
6 antibacterial drug	6 regimen in terms of its performance. And by some sort
$7 \quad$ But this is really	7 of prediction as the heterogeneity of patients
8 this is where clinical regi	8 terms of their PK and more variable PK, and th
9 this is where, generally, people will want to put	9 implications for achieving desired drug exposure
10 endpoint. But putting an endpoint where there's near	10 targets.
11	11 There's, of course, progressive
12 generally ta	12 learning and understanding that happens as programs
13 And then there's this other idea that's	13 advance, and so the effect of food, and rena
14 being developed -- and we all do this even if we don't 14 impairment, and hepatic impairment, and other	
15 do it explicitly or benchma	15 idiosyncrasies may be important and relevant. And
16 compounds perform in our models. At least matching	16 also important to consider -- the PK sub-study in an
17 this benchmark endpoint is a way that new compounds17 early cohort of patients. Now, I see that this has	
18 can be developed in the context of what's our existing 18 already come up in a chat for later this afternoon --	
19 knowledge	19 as it may be relevant to make sure that the desired
20	20 exposure to maintaining patients, and it may
21	21 important to co-model those data with volunteer data.
22 course, are pretty standard, and you've heard of those	22 This is another important point.

Page 78	80
1 Number 6, planning for PK and PD sub-studies in Phase	1 using very precise techniques is also possible that
22 and 3. The importance for this community tha	2 need further work. But from a regulatory perspective
3 completes the bench-to-bedside loop -- so we ca	3 and an infrastructure perspective, who's going to pay
4 understand how lab animal models, how particularl	4 for it perspective, and demonstrating clinical
5 they are unless they'	5 benefit, as defined by the FDA also remains
6 But here are the issue	6 challenging
7 hate me, but PK is generally	7 So, in conclusion, the models that we
8 obtained in real world and requires co-modeling w	8 have, the approaches and pathways for antifungal drugs
9 richer data to provide tractab	9 are progressively more mature. I have noticed some
10 exposure	10 differences between FDA and EMA in terms of the way in
11 It's important to also realiz	11 which data from preclinical models especially
12 uninformative PK or just bad PK data results	12 weighted, and some consistency in debate about this
13 imprecise	13 would be he
14	14 And this is the last point and this is
15 pharmacodynamics endpoints may be problematic. So,	15 the second infrastructure that requests were made to
16 galactomannan is being used in in	16 this community. It's not the primary responsibility
17	17 of the FDA or the EMA. It significantly concerns me
18	18 that there does not appear to be a new generation of
19	19 investigators interested in antifungal therapeutics,
20	20
21	21
22 endpoints because they're confounded by disease and	22 Sumati, thank you.
Page 79	age
1 toxicity. So it can be difficult to make linkage	1 DR. SUMATI NAMBIAR: Thank you so
2 But here's the important point. That	2 William. So, that brings us to the end of Session
3 PK/PD sub-study really ensures patients are on top	3 Erin, if there are no comments from you, I think what
the dose-response relationship. So, you should se	4 we can do is take a break. We are running a few
5 if everything has gone properly, all the patients up	5 minutes late, so maybe we can reconvene at, I think,
6 here. So, if you do see the (sound drops) respon	6 11. 5:07 might be hard. So, let's all reconvene
7 relationship, something has gone	711 and, hopefully, we will try to make up some lost
8 generally, so the dose is not right or the regimen	8 time as the day progresses. Erin, would that be okay
9 not right. Either that or the drug is very variab	9 with you? Maybe you have it muted. So, let's
10 and	0 reconvene
11 dose exposure response relationship. This would've	11 thank you to all the presenters in this morning's
12 happened -- it's typical of well-designe	12 session and we'll talk to you soon. Thank you.
13 development programs where you put everybody up,	13 (Break)
14 having adequ	14 DR. LAURA KOVANDA: Thank you,
15	15 everyone. I'd like to welcome everyone to Session 2,
16	16 the Current State of Mold Infections and Antifungal
17 information -	17 Drug Development Consideration. I am Laura Kovanda
18 information related to dose-exposure-respons	18 from Astellas Pharma Global Development, and I'm here
19 relationship can be used for therapeutic dru	19 with my co-chair, Yuliya Yaskinskaya, who is the
20 monitoring and in control. This is sort of embedded	20 Clinical Team Lead in the Division of Anti-Infectives
21	21
22 monitoring for the triazoles, but routine control	22 discussions. We'll start with Kieren Marr, who is the

Page 82	Page 84
1 Professor of Medicine, Vice Chair of Medicine for	1 and we have a unique unmet need, which is to support
2 Innovation in Healthcare Implementation, and the	2 early treatment indications when we're not certain on
3 Director of Transplant and Oncology Infectious	3 the diagnosis. And I'm going to spend some time
4 Diseases at Johns Hopkins	4 outlining this because it is a real clinical problem
5 Her talk today will be on the current	5 and I think an unmet need that hasn't had enough
6 state on invasive fungal infections, ava	6 attention.
7 therapies and unmet needs. Dr. Marr	7 We have many PK/PD limitations that
8 DR. KIEREN MARR: Hi, good morning, can	8 have been discussed to some degree. These include
9 you hear me?	9 limitations in formulations, infeasible dosing
10 DR. LAURA KOVANDA: Yes. Yes, we can.	10 frequency, unpredictable absorption and metabolism and
11 DR. KIEREN MARR: Great. I'll say	11 poor target exposure. And certainly we have
12 the onset, tha	12 widespread and unacceptable safety features associated
13 also want to apologize for hopefully what will not be	13 with toxicities, as well as in the clinical context
14 a problem in th	14 very important drug interactions. And, finally, we
15 severe storm and have lost electricity and Intern	15 have context-specific needs or the situation where
16 connection several times this morning. So, let's see	16 special populations really define the unmet need.
17 if we can get through this and I will try and	17 The first focus on spectrum of activity
18 without slides	18 and the problem of antifungal drug resistance, I think
19 I've been asked to speak of the curr	19 it's very important to outline the importance of very
20 state of invasive fungal infections, and specifically	20 resistant molds or refractory infections. This figure
21 unmet needs from a more clinical perspective. My	21 on the right is a table that I pulled from a recent
22 disclosures are listed publicly on the Internet, I	22 review. And I like it because it basically
Page 83	Page 85
1 believe. And this slide shows the antifungal agen	1 demonstrates in broad strokes categorical issues both
2 that we have available for treatment of Candida and	2 with the drugs according to the infection, and these
3 mold infections and the timeline in which they were	3 are non-aspergillus or less frequent molds that cause
4 approved for use. There's a number	4 disease.
5 learned, which is a relativity paucity of agents of	5 And the important lesson here is that
6 few classes, and enhanced activity after 2000 but not	6
7 very much after 2010. As this illustrates some of the	7 Scedosporium, Lomentospora species that have
8 drugs that we currently have available but not	8 problems with drug resistance across classes and
9 study	9 specific drugs. Importantly also, what you see in
10 When we consider unmet needs, I wanted	10 this table is that there's no one agent that can
11 to frame this talk from a clinical perspective because	11 reliably cover all of the organisms that may be
12 this is the context in which it's not just the drug	12 causing infection. And this is especially important
13 and above issue. We have the host involved, and this	13 in the clinical context when we don't know what is the
14 is a very real issue for treatment of infections as	14 cause of disease. And it's becoming more and more
15 well as prevention, although I'll focus most of the	15 important that we can treat these infections early in
16 talk on treatmen	16 the immunosuppressed host.
17 Certainly the organism antimicrobial	17 Mucorales -- I'm sorry for the typo
18 resistance is a problem in conferring an inadequate	18 here -- can be considered really, in my opinion, a
19 antifungal spectrum for a number of agents.	19 refractory infection. We certainly have a problem
20 very resistant molds that are fortunately less common	20 with the lack of activity with voriconazole when
21 but the outcomes are very poor. We also have failure	21 voriconazole can be a primary choice for lesions in
22 of these drugs because of acquired drug resistance,	22 the lungs that look like aspergillosis. But these

Page 86	Page 88
organisms also suffer in outcomes because they are	1 recently in the United States. I think that you can
2 relatively refractory even when the best polyene-based	d 2 safely conclude that this is a problem that ha
3 therapies are applied. And the unmet needs in these	3 emerged and is now of potentially global concern. And
4 situations can actually potentially be illustrated by	4 that we probably don't understand the overall
5 the need, for instance, for not only new agents but	5 importance of azole resistance currently because not
6 combination therapi	6 many clinical centers are actually measuring azole
7 There are innately resistan	7 resistance as a matter of routine, and this can be
8 Aspergillus species. And that includes classically	8 certainly associated with failure of disease in
9 polyene resistance and aspergillus terreus. But I	9 biomarker defined settings in which the organism is
10 want to highlight, for instance, the infections caused	10 not recovered.
11 by the Aspergillis ustus group of organisms in which	11 This also illustrates again what I'm
12 we have variable or high MICs to multiple different	12 talking about when we put the problem in context.
13 drugs and poor outcomes, such as a larger study that	13 That failure is contact-specific. In fact, the
14 was recently published demonstrated greater than 50	14 discovery and the unmet need of azole resistance,
15 percent mortality at six months. These are very, very	15 either as an acquired trait or as an innate phenotype
16	16 emerges after therapy is applied. And so we currently
17 We also have unusual sibling species or	17 have large populations of people in which the overall
18 what has been called cryptic species. An example is	18 goal is to either prevent or to treat early. And,
19 Aspergillus lentulus. These are organisms that ar	19 historically, we've referred to the early treatment
20 being increasingly studied because they're being	20 category as empirical therapy, previously defined by
21 increasingly	21 fever. We've gotten much better at that and currently
22 They have high MICs to azoles that appear to be 51a	22 our early treatment strategies can better be
Page 87	Page 89
1	1 categorized as syndromic or radiographic evidence
2 echinocandins with very poor clinical responses.	2 disease or even biomarker-guided therapy. And we do
3 fact, these were first identified as breakthroug	3 have unmet needs in identifying the best clinical
4 isolates in azole prophylaxis studies. And so the	4 trial pathway for approval of these patients that have
5 MICs appear to be truly clinically	5 disease that has not been microbially defined
6 And, again, I'm going	6 This is an example of what I'm talking
7 that these are difficult to diagnose and study	7 about. These are people that have early pulmonary
8 low frequency of disease and very poor outcomes. And	8 lesions, either with our without biomarker positivity.
9 inevitably, when we have people with documente	9 Some of our biomarkers that can be used have very good
10 infections caused by organisms such as Aspergillu	10 sensitivity but clearly poor specificity. But in this
11 ustus, they're really pretty far advanced	11 context, we are forced to choose a first line therapy
12 Of course, we also have problem	12 for -- with activity against molds.
13 increasing emerging problems with azole-resista	13 Optimally, we would have a drug that
14	14 has activity without causing undue harm as an early
15 acquired resistance associated with multiple mutations	15 therapy, and that would have a very broad spectrum of
16 in the cyp51A gene. They occur at episodic frequency	16 activity. I think this early treatment category is
17 in different environments, predominantly associate	17 really truly a current unmet need
18 with azole use in the agricultural setting,	18 I'll turn to unmet needs in PK/PD
19 reported in the Netherlands. But when you review the	19 limitations. I think we all agree that we have
20 literature now, they're actually identified in many	20 abundant holes in all mold-active agents. Poleyens
21 different nations all over Europe, South American,	21 and echinocandins lack enteral formulations, which
22 Japan, India, Taiwan, Africa, Australia and more	22 cause problems with regards to our overall strategy,

$\text { Page } 90$	Page 92
e	le 1 an expanding list of agents that complicate our
2 who have long-term needs. And that is especially	2 ability to give azole drugs, both for prevention and
3 important in the context of mold	3 for therapy, early therapy and definitive therapy.
4 Azoles suffer from unpredicta	4 And I'll just say at the onset that
5 absorption and metabolism. And we have poor target	5 this problem is not just solved by not giving the
6 exposure. Some of the biggest problems that are	6 anti-mold drug; the problem is defined by going on and
7 becoming apparent are getting drug into the airway,	7 off of these drugs in settings where these anti-cancer
8 especially into the epith	8 agents can be variably metabolized or even stopped and
9 lung lining fluid in the upper and lower parts of	9 started during regimens that require long-term therapy
10 airwaves. This is critical for airway disease and	10 in a maintenance setting in order to establish
11 treatment in certain special populations, such as lung	11 effective anti-leukemia or anti-lymph activity. And
12 transplant patients and people with chronic lung	12 I've listed some of these here
13 disease for	13 Historically, and the one that we've
14 And this is the setting in which people	14 appreciated the most would be for treatment of people
15 are turning to more inhalational exposure to address	15 with ALL that are receiving Vincristine-based
16 the balance between airway delive	re
17 systemic toxicities. We won't spend a lot of tim	17 many more drugs that have emerged and are increasingly
18 inhalational drug delivery during this day, but it's	18 used in the last several years. This includes the
19 certainly something to consider with regards to the	19 treatment of acute myelogenous leukemia with use of
20 unmet needs of systemically	20 FLT-3 inhibitors, such as midostaurin, BCL-2
21 And this is the reminder to discuss the	21 inhibitors, specifically venetoclax for IDH1 or 2
22 problems that we currently have with safety. There	22 inhibitors listed here. This also includes people
Page 91	Page 93
1 has be	1 with chronic lymphocytic leukemia or those that are
2 been taugh	2 receiving targeted B cell therapies such as ibrutinib,
3 antifungal drugs as	3
4 almost every organ system, especially liver toxicities	4 which we have many more difficulties in administering
5 with azoles and renal toxicities with polye	5 drugs that interfere with cytochrome 450 metabolism.
6 I'll just note that it's very,	6 And there are many other disorders in which these
7 apparent that cumulative exposure to toxicitie	7 drugs are being explored or are increasingly used.
8 multiple organ systems lead directly to poor outcom	8 That is, for CLL, Waldenstroms macroglobulinemia,
9 in complex and vulnerable people, especially in the	9 other lymphomas, severe chronic graft vs. host
10	10 disease, or relapsed/refractory lymphoma.
11 transplant recipi	11 So, in my opinion, there is an
12 And there is a growing problem wit	12 increasing number of special populations that ar
13 regards to drug interactions that define an increasing	13 defined by the optimal therapies in which they should
14 group of people that have unmet needs. Historicall	14 be receiving for treatment of their oncologic
15 we've considered problems with giving azole drugs	15 underlying disease.
16 the anti-reje	16 And there are other context-specific
17 rejection drugs are being administered after a stem	17 needs or special populations that we need to consider
18	18 as unmet needs. Currently, I think, perhaps one of
19 problem has grown with the introduction, especially	19 the most well-established is the lung transplant
20 with antibodies and biologics that can be metabolize	20 recipient. This is a setting in which both candida
21 by the cytochrome p 450 system in which azole drugs are	21 and mold infections are relatively common, especially
22 relatively or absolutely contraindicated. And there's	22 the candida infections early because they develop

Page 94	Page 96
1 anastomotic and pleural space infections and	1 Now, I was asked to also focus on the
2 relatively later, with mold infections	2 post-viral aspergillosis condition that has been
3 Recent studies have shown that the	3 increasingly outlined with the unfortunate emergence
4 prevalence is not small -- 19 out of 100 surgeries was	4 of SARS-CoV-2. And in order to do that, I'm going
5 estimated from a review that was recently published	5 back as a reminder that influenza-associated
6 from Duke. We have a problem with airway clearance,	6 aspergillosis has been studied especially in Europe,
7 and it's because of this that there's a risk for	7 in Canada, as well as in Asia but not necessarily in
8 invasive disease as well as tracheobronchia	8 the United States. And for the past five years, some
9 manifestations. And so that increases the weight of	9 very good cohort studies have estimated the incidence
10 importance of delivering the drug straight into the	10 of aspergillosis subsequent to severe influenza
11 airway itself	11 infection to be ranging from 7-31 percent.
12 And I'll just add that this isn't just	12 The CDC has sponsored a study, a survey
13 a problem with infections, because the activity, the	13 study that documents that it's poorly recognized in
14 established infection, and potentially	14 the U.S. and largely leading to diagnostic bias. But
15 colonization can exacerbate and increase the risk for	15 this certainly is an entity that requires more
16 longer term graft rejection. Because of this proble	16 attention to bring down the mortality associated with
17 that was recognized many years ago, the community has	17 severe influenza infections.
18 turned to inhalational deliv	18 And, unfortunately, we also now have
19 during the early period of time when the patient	19 witnessed the, what I think is a documented emergence
20 within the medical center. But the regimens used are	20 of a secondary complication of COVID involving
21 variable	21 aspergillis in the airway as a cause of airway disease
22 Amphotericin B, as well as lipid formulations ABLC,	22 and invasive disease that has been coined COVID-
Page 95	Page 97
1 liposomal Amphotericin. There are centers that deploy	1 associated pulmonary aspergillosis or CAPA. This
2 early echinocandin therapy, especially during	2 emerged from many smaller case reports and case
3 early peritransplant period to also avoid the candid	3 series, first in Europe. I'll point you to, I think,
4 systemic problems, for instance, in the plural spac	4 what is the definitive evidence of this as a
5 And there are centers that provide routinely prolonged	5 important clinical entity from a reasonably large
6 azole-based preventative therapy. The problems here	6 prospective study in Italy that is in a prepub form in
7 are exacerbations and toxicities, and the rate	7 clinical infectious disease currently.
8 early discontinuation is unacceptably	8 They used biomarkers and cultures on
$9 \quad$ Other special populations that are	9 BAL or other tracheal aspirate fluids to document
10 growing in importance include people with chronic	10 essentially 28 patients that are on mechanical
11 airway disease, necrotizing aspergillosis, and the	11 ventilation after COVID-documented disease have this
12 constellation of manifestations therein. But also the	12 entity. They also applied multivariable modeling to
13 growing indication of antifungal therapy in people	13 identify the significance and it is a predictor of
14 with cystic fibrosis. Increasingly the CF setting	14 death, and there's some indication that therapy can
15 appreciating that antifungal administration for what	15 lead to potentially better outcomes.
16 was historically considered benign colonization may	16 And so this is something that is an
17 have a therapeutic effect at decrease C	17 emerging unfortunate unmet need, I think, both in the
18 exacerbations, much like the classic scenario	18 preventative context as well as for documented
19 treating gram negative organisms such as pseudomonas	19 treatment.
20 with inhaled tobramycin. So, I think this may be, for	20 I like this slide that was given to me
21 instance, an emerging unmet need that has attracted	21 by Cidara in that it illustrates that there are a
22 attention by the Cystic Fibrosis Foundation.	22 number of different manifestations that are

1 potentially of clinical importance here that include
2 not only invasive disease where there's hyphal growth
3 and invasive pneumonia, but this can involve the
4 airways, exacerbating inflammatory conditions and 5 causing an overt tracheobronchitis in which the
6 organism may be very difficult to eradicate, and in
7 which some of the complications can include, for
8 instance, post-obstructive bacterial pneumonia.
9 This slide is very quick. I think that
10 we should consider beyond the molds, although it's not
11 a topic for today -- cryptococcus histo and
12 coccidiodomycosis are certainly important unmet needs.
13 So, I'll summarize here. We do have
14 good drugs but they have a limited spectrum of
15 toxicities and drug interactions. We have broad needs
16 for rare molds that have innate resistance, acquired
17 resistance, and we need to have a drug that we can
18 reliably use for earlier treatment. We have special
19 populations that include lung transplant, people with
20 chronic lung disease and post-viral syndromes. Thank
21 you very much.
22
DR. LAURA KOVANDA: Thank you, Dr.
Page 99
1 Marr. We'll go right into the next session, or next
2 talk, which is from myself, Laura Kovanda. I'd like
3 to thank the organizers from the FDA for asking me to
4 come today and talk about my experiences with
5 antifungal development.
6 To begin, I'll start with the orphan
7 designation that's available when a disease affects
8 less than 200,000 persons per year in the U.S. This is
9 important to today's discussion, as most systemic
10 fungal infections qualify for this designation.
11 The benefits include not only 7-year
12 market exclusivity but other benefits such as tax
13 credits and waivers for user fees. But this comes
14 with some challenges for orphan drug development,
15 namely, a small number of eligible patients and lack
16 of acceptable comparators, to name a few.
17 Which brings me to Cresemba. The
18 clinical development program was initiated by our
19 partner Basilea in 2002, and the Phase 3 program
20 commenced in 2007. In 2010, Astellas (sound drops)
21 license, development rights and assumed sponsorship of
22 the Phase 3 study ongoing. Qualified infectious
disease status as well as orphan drug status was
2 granted by the FDA for both evasive aspergillosis and
mucormycosis, and later invasive candidiasis, which
was not included in the initial submission.
Over the 13 years leading to the market
6 authorization in 2015 in adults, the program included
44 clinical trials, which enrolled more than 2,100
8 subjects, nearly 1,700 of whom received Cresemba.
Importantly, just over 100 -- or, sorry -- 1,100
10 subjects were in the Phase 1 studies alone. 403
11 subjects were in the two Phase 3 trials for invasive
2 aspergillosis and mucormycosis but were in the NDA package in 2014.

To put this into perspective with
regards to the resources needed to invest in this
program, the Phase 1 program alone cost nearly $\$ 30$
million. The Phase 3 invasive aspergillosis and
8 mucormycosis studies combined cost over $\$ 100$ million.
These finances do not include the development cost for
Basilea prior to licensure or the cost of the
licensure itself and the preclinical development,
including new toxicology, in vitro, in vivo, and
Page 101
manufacturing. As a reminder, Rescemba,
2 isavuconazonium sulfate is a water-soluble prodrug.
The active moiety, isavuconazole, is a broad-spectrum
triazole antifungal. My finger's going...
Important points which have already
6 been discussed, these infections occur in severely
immunocompromised patients which have high
8 comorbidities. The rare infections, aspergillosis
occurring in, approximately, 12,000 cases per year and
10500 cases per year of mucormycosis. They're difficult
11 to diagnose and treat.
12 The development path for invasive
13 aspergillosis was clear as the standard of care for
14 comparison was established with Voriconazole.
However, for mucormycosis the approach had to be
6 different. Treatment paradigms include a multimodal
7 approach including treatment of the underlying
disease, immediate antifungal therapy and surgical
19 debridement. Not treating mucormycosis is associated
20 with nearly 100 percent mortality, and delay in
21 therapy is almost as bad as no treatment.
So, can an active controlled study be

1 conducted in this extremely rare condition? What
2 comparator is available for study? No randomized
3 controlled trials have been conducted for
4 mucormycosis. The only available approved therapy in 5 the U.S. at the time was amphoterici B deoxycholate.
6 And it is only in IV formulation, has high toxicity,
7 and lipid formulations are typically the standard of 8 care, but not approved for mucormycosis.

9 We conducted two Phase 3 studies to
10 support the initial registration. The SECRE study in
11 Invasive Aspergillosis and the VITAL study which
12 included multiple rare invasive fungal infections but
13 focused on the inclusion of mucormycosis.
14 To put the study results for
15 mucormycosis into context, we performed a matched
16 case-control analysis using an invasive fungal disease
17 database called FungiScope out of the University of
18 Cologne. The matching criteria included severe
19 disease, hematologic malignancy and therapeutic
20 debridement. Matching was conducted independently and
21 blinded to outcomes. Up to three controls per
22 Cresemba case were included. All caused mortality was
Page 103
1 analyzed as the endpoint.
2 In the VITAL Astellas trial, 46
3 mucormycosis cases were included in which 21 had
4 primary therapy. The results showed better efficacy
5 relative to untreated historical controls and similar
6 efficacy relative to Amphotericin B from the
7 literature as well as the matched controls.
8 This approach is supported by 24 CFR
9 314.126, which states that "Because historical control
10 populations usually cannot be as well assessed with
11 respect to pertinent variables as can concurrent
12 control populations, historical control designs are
13 usually reserved for special circumstances. Examples
14 include diseases with high and predictable mortality."
15 Now, let's take a quick look at the
16 invasive candidiasis trial for Cresemba. This study
17 compared IV Cresemba to IV Caspofungin with the option
18 to switch to oral therapy after Day 11 in both arms.
19 The study included 450 subjects. The active trial, as
20 we called it, had significant enrollment challenges.
21 It took over 5 and a half years to complete
22 enrollment. If we dissect this a little bit, we see
that the monthly enrollment never exceeded 20 patients
per month. And with 30 countries open to enrollment
through the trial, only 25 countries enrolled at least
one patient. 80 percent of enrollment occurred in
eight countries. With 158 sites open to enrollment,
670 percent enrolled at least one patient. That's
great but we had 43 percent of these enroll two
patients or less. Spreading sites across multiple
countries globally is a huge cost driver for clinical
0 trials and a major resource burden to manage such a
large clinical trial footprint.
We tried many mitigation tactics, such as closed nonperforming sites. We also decreased our 14 sample size by just 100 after reviewing, in a blinded manner, the actual evaluability rate, which was
16 revealed to be 10 percent higher than the original study design function. In the end, the final evaluability rate and power were just over 90 percent. This was a tremendous effort, however,
in the end, the trial did not meet its primary
endpoint. Which is another key point when designing
non-inferiority trials. Study design and endpoints
Page 105
1 are driven by the comparator chosen. To justify the
2 non-inferiority margin, you need a frame of reference.
3 Both the comparator regimen and the placebo for
4 historical untreated population.
For the active trial, the original
6 study design was caspofungin followed by voriconazole
7 with the primary endpoint assessment at two weeks
8 after the end of therapy. This regimen had never been
tested in clinical trials.
So, in order to anchor on the
historical registration trial for caspofungin, we
2 modified the study design and used the available
historical data. Unfortunately, the endpoint of end
of therapy -- IV therapy favors the echinocandin.
My last point brings me to the post-
6 approval stage. Once a drug gets approved, everybody
asks, what's next? Are you ready to study the next
super rare fungal infection? After a large
development program and three Phase 3 clinical trials
0 with one that did not meet its primary endpoint, there
21 are careful considerations of the next set of studies.
First and foremost are the post-approval commitments

Page 106	Page 108
1 that are required by the FDA. I show here the three	1 such as commercial manufacturing and product
2 defined for Cresemba in the U.S. The cost for thes	2 education, etc., are not a sustainable business
3 run in excess of	3 scenario today and weigh heavily on decisions to
$4 \quad$ Our other priority is pe	4 reinvest post-approval.
5 Orphan drug status waives the requirem	5 Emphasizing the need to continue to
6 pediatric development, however, we at Astellas wither	6 introduce new push and pull incentives to continue
7 our partner recognized the significant unmet need	7 investment in new antifungals to address the
8 invasive aspergillosis and mucormyc	8 significant unmet needs of patients. Thank you.
9 Our pediatric program is ongoing b	9 We'll go now to our next speaker, John
10 excess of $\$ 20$ million, which our current program	10 Rex, who is the current CDMO of F2G, Ltd., which is an
11 Finally, the typical life cycle of a	11 antifungal biotech, with more than 30 years of
12 post-approval rate is shown here. The first fiv	12 development focused on antimicrobial agents. Dr. Rex?
13 years approval life cycle is establishing product and	13 DR. JOHN REX: Thank you, Laura. And
14 conducting post-approval commitment, includi	14 am I clear?
15 pediatric studies. For Cresemba this also includ	15 DR. LAURA KOVANDA: Yeah.
16 finishing the invasive candidiasis program at	16 DR. JOHN REX: Wonderful. Thanks. And
17 of more than \$80 mill	17 thanks to the FDA for organizing. This has been a
18 It's typically not until the four	18 great workshop so far. I'm really enjoying the
19	.
20 in order to look for areas of rein	20 So, I wanted to talk at length about
21 on the market condition.	21 push and pull incentives for antimicrobials, but I'm
22 ar	22 going to focus on something much more specific to
Page 107	Page 109
1	1 getting an antifungal developed. And before I can get
2 new activity has to either increase the life cycl	2 to the point I want to make today, I need to give you
3 prior to the loss of exclusivity, increase the margi	3 a little background on the drug that we currently have
4 enough, or at least cover the cost of the investment.	4 in Phase 2. It's called Olorofim. It's a novel
$5 \quad$ For invasive and fungal infectio	5 mechanism candidate antifungal drug that inhibits
6 studies where the typical costs are, approximately	6 pyrimidine biosynthesis.
7 \$125,000 per patient, and where the durations are 3	7 It has broad microbiologic activity but
8 years on average, this is challenging. And similar to	8 it's limited to the ascomycete mold fungi, which means
9 the antibacterial world where the net present value	9 it covers Aspergillus, Lomentospora, Scedosporium
10 calculations are nearly always nega	10 geserium, and all of the dimorphic molds -- histo,
11 So, to conclude, the Crese	11 lesto, coxi. But it does not cover candida, it does
12 development program is not likely to be replicated as	12 not cover crypto, and does not cover mucola.
13 is. Each Phase 3 study costs in excess of \$125,000	13 Dosed by mouth in a 30-milligram
14 per patient; it requires a global footprint and th	14 tablet, it has breakthrough therapy designation based
15 study durat	15 on its preliminary clinical evidence showing
16 randomized clinical trials are available for orphan	16 substantial effects. And it's now in an open label
17 diseases, but generally accompany larger efficacy an	17 Phase 2 study of patients with invasive fungal molds
18 safety trials with another invasive fungal disease.	18 and limited treatment options.
19 The high cost of antifungal dru	19 The key idea here that I want to point
20 development from discovery to the initial marketing	20 out is that endpoints, as was already noted, are a
21 authorization, post-approval commitments, pediatric	21 tricky thing, and I want to point to a specific
22 development topped with the cost of product upkeep	22 problem with endpoints, which is that we have to date

Page 110
1 mostly used endpoints at 42 and 84 days, and all-cause
2 mortality has been a strong tool that we've liked
3 because it's so clear. And it does seem to work
4 pretty well for acute pulmonary aspergillosis. But
5 it's also a blunt tool and get entangled with
6 underlying disease and it -- because patients are
7 dying of leukemias and other things along the way.
8 And it also doesn't work at all for infections that
9 progress more inexorably and slowly.
10 The alternative that we heard about was
11 the EORTC-MSG defined overall global response
12 endpoint, which has three elements: Clinical,
13 radiological and mycological. And logically, success
14 requires improvement on all three sub-elements, and
15 failure, likewise, is going the wrong way.
16 But there is an intermediate space that
17 you see $20-40$ percent of the time in which something's
18 better, something's worse. And this leads to a
19 categorization of stable. And a particular way this
20 occurs is just somebody will be clinical better but
21 the radiology has not yet improved. And when you get
22 scored as stable, stable is lumped with failure. So,
Page 111
1 stable is a failure on the overall clinical response
2 and that has a really big impact.
3 And for pulmonary IFDs it does work but
4 extrapulmonary IFDs can be very slow and even
5 pulmonary IFDs can be very slow. And I was going to
6 say that stable is very definitely the prelude to
7 success. It enables -- staying alive is the way you 8 get this done.
9 So, let's -- coming back to the trial
10 that we're running, we learned this in running our
11 current open label Phase 2 study. To get into the
12 study you have to have a proven invasive fungal
13 infection. Most of our patients are highly
14 immunosuppressed and they all come to us with limited
15 treatment options. That's why they come into the
16 studies because they're in trouble -- they've tried
17 pretty much everything else and it's not working for
18 them. Some of them come to us with months of prior
19 therapy.
20 We advise a main phase duration of 84
21 days, which is adequate for many patients, but
22 extended dosing is provided for complex infections.

Page 112
If you look at the dosing graph to the right, you'll
see there's a block of patients, loosely a third, that
declare that they're done at day 84 . But there's a
pretty good sized group that go on for very extended
5 period. And that X-axis does run out to 500 days.
6
7 at day 84 has been a common finding and a prelude to
8 ultimate success at the end of therapy. So, let me
9 show you a case that highlights this.
10 This is one of the cases that was part
11 of our breakthrough therapy designation request. And
12 it's that of a 49 -year old healthy woman who had
13 breast augmentation surgery. She develops a
14 Lomentospora prolificans infection of the breast
15 implant. Lomentospora is resistant, as we heard
16 earlier to all of the antifungals and her infection
17 spreads through the adjacent cartilage, sternum, 4th,
18 5th and 6th ribs. She tries everything, serially and
19 in combination along with debridement and along with
20 hyperbaric oxygen. The infection remained
21 uncontrolled. And if you look at the picture on the
22 lower left, nine days before she came into our study -
Page 113

- when they were bringing her, they had fungal

2 colonies growing in the base of the wound.
3 Olorofim monotherapy began in November
2018 and 84 days later, she looked better, her wound
was improving and she was a failure because her
6 radiology had not yet improved. Clinically she was
7 responding but she was an EORTC global response of
8 failure at day 90.
$9 \quad$ She goes on to take 322 days of
10 Olorofim. Day 140, nice granulation tissue at the
11 base of the wound. Day 243, closed up. She's now
12 been off-drug for ten months, and as far as we can
13 tell, it's a cure of her infection. Next slide. I
14 have the button.
15 So, here are my conclusions. Day 42
16 all-cause mortality, a useful tool but it has
17 limitations. EORTC-MSG defines an overall response
18 endpoint but, you know, it works okay at day 42 and 84
19 for many pulmonary disease but it does not work well
20 for extrapulmonary infections and sometimes lung
21 infections and anything that takes a long time for the
22 radiology to improve.

1 And my argument is that it is important
2 that stable be defined as success. Language matters.
3 You could argue that it comes out in the wash just to
4 define stable as failure. But this is not consistent
5 with clinical practice, and the word failure when
6 you're reading quickly, it failed. So, 20-40 percent
7 of the patients in recent studies that had a structure
8 kind of like our program have failed at day 84 . No,
9 they haven't failed. They were stable and they were
10 on their way to getting better.
11 So, the scoring of failure sends the
12 wrong message to clinicians and payers, and some of
13 these people had very significant improvements in
14 their quality of life. If you go back to -- I'm not
15 going to go back to the slide, but if you look at the
16 footnote of the slide, we shared another case -- the
17 case I showed you was shared in Egment, or it was
18 shared in the Egment abstract, but there's another
19 case in the Egment abstract book. Same fungus. A
20 lady with leukemia who got many, many months of good
21 quality of life, control for osteomyelitis with
22 Olorofim.
Page 115
1 So, and that quality of life measure, I
2 think, is an important bit that we need to think
3 about. So, the label of stable just is not right
4 anymore, and we developed these endpoints some years
5 ago before we understood some of the consequences of
6 managing more difficult and invasive fungal
7 infections, and it's something I'd like us to
8 reconsider. Thank you very much.
9 DR. LAURA KOVANDA: Thank you, Dr. Rex.
10 Our next speaker is Matthew Schueler. He has a
11 patient perspective. Mr. Schueler is Founder of the
12 Henry Schueler Foundation, which raises money to
13 support its mission to fund critical research into
14 rare subtypes of pediatric leukemia and fungal
15 infections like mucormycosis. Mr. Mueller --
16 Schueler?
17 MATTHEW SCHUELER: Thank you. Can you 18 hear me okay?
19 DR. LAURA KOVANDA: Yeah.
20 MATTHEW SCHUELER: Wonderful. Thank
21 you for having me. And I have been listening to some
22 of the presentations. I'm going to give you a very
different perspective, that from the patient. My son, 2 unfortunately, being a statistic of the unmet needs 3 that exist with the treatment of fungal disease. I'm going to share with you a reflection that I prepared and participated in part at the FDA hearings on 6 Cresemba back in February -- excuse me, January of 2015.

8
only by the sound of my footsteps on the sidewalk.
10 The sky is fading into night, illuminated in our
11 neighborhood by the house and porchlights which turn
12 on. Houselights now ablaze as dinner approaches. I
13 see the homes I know to be filled with families, moms
14 or dads busy in the kitchen, brothers and sisters
15 laughing in the living room, bickering over the TV
16 channel or lost on their phone.
17
"I imagine my own children in the
18 family room -- Henry, Anna and Joe, waiting to eat
19 together as a family. I see myself arriving home.
20 The workday is a bit shorter as summer winds down. I
21 imagine my arrival punctuated only by the over-
22 affectionate greeting that I get from our dog, a warm
Page 117
greeting from my wife Susan, and a greeting shouted to
2 my children in the living room. An unenthusiastic but
normal response in return acknowledging my presence.
4 "We sit down to eat as a family in the
relaxed and sometimes careless fashion that families
6 do, never imagining that we would not be together,
7 taken for granted the warmth and joy of each other's
8 company. Individuals all, yet bound together by
9 sibling and parental ties, conscious of our closeness
10 despite the occasional rudeness that occurs at a
11 dinner table.
12 "And then it returns. That sickly
13 reminder that all is not the way I still imagined.
14 That one of us is absent. My oldest on removed from
15 life by nature. Cruel and unforgiving. His legacy
16 left for us to shape and keep alive. The lights still
17 burn for families intact removed from our reality.
18 For them, the dinner table still awaits. Into the
19 evening darkness I walk.
20
"Although we are now almost 13 years
removed from Hank's death, his loss is felt deeply
every day. No matter what I have done or will do in

1 my life, my greatest accomplishment and blessing is
2 and was to be a father to my three children, Henry,
3 Anna and Joe. Like any parent, you want to protect
4 your children from harm, teaching them the right
5 things to do, encouraging them to think before acting
6 recklessly. Cancer and its many complications,
7 including fungal infections, follow their own rules
8 despite a parent's best efforts.
9 "My oldest son Hank, as he was known,
10 received a diagnosis of acute lymphoblastic leukemia,
11 ALL, the most common of childhood leukemias, in early
12 November of 2006. He was 13-1/2 years old. However,
13 his ALL was a very rare subtype known as hypodiploid
14 ALL, which occurs very rarely, only 1-2 percent of all
15 ALL, and in 2006 had a very low survival rate, 20-30
16 percent with chemotherapy alone.
17 "Because of this prognosis, the
18 unanimous medical recommendation from several medical
19 academic institutions for Hank was that he undergo a
20 bone marrow transplantation immediately after his
21 initial heavy course of chemo at what is now known as
22 Lurie Children's Hospital in Chicago. Neither his
Page 119
1 younger sister Anna or his youngest brother Joe were
2 matches for him. He ultimately received marrow from
3 an anonymous 27-year old donor from Germany and began
4 the transplantation regimen on his 14th birthday, the
5 9th of March, 2007 at Children's Hospital of
6 Wisconsin.
7 "He did quite well. He even returned 8 to graduate with his 8 th grade class at St. Mary of
9 the Woods Grade School on the northwest side of
10 Chicago, and in May to his spot as the captain for his
11 traveling baseball team. He was far from healed but 12 he was back in the game.
13 "Hank had a great summer and was doing 14 well medically. Unfortunately, over Labor Day, after 15 he had just begun high school, he relapsed. His odds 16 of long-term survival decreased to 10 percent. He
17 underwent additional chemotherapy which wiped out his
18 new immune system, and he eventually contracted a rare
19 and deadly invasive fungal infection known as
20 mucormycosis at the end of September.
21 "The doctors told us that the infection
22 present in his lungs and sinuses would likely kill him

Page 120
in a week to ten days. He underwent six surgical
2 sinus debridements in seven days and was given all the
antifungals available to him, including amphotericin
B, which wreaked havoc on his kidneys, and
5 posaconazole, the newest antifungal hope in this small
6 medicine chest of antifungal therapies. And it
7 wreaked havoc on his already weakened body by the
8 intense chemotherapy he had received to stave off the
raging return of his leukemia.
"Yet, he refused to quit, despite
overwhelming odds against survival. By a minor
miracle hasted by the absence of chemo for a few weeks
while he fought against this new infection, his new
immune system began to fight back and he began to show
signs of recovery from the fungal infection. By the
end of October, although still weak, he came back to
his family and neighborhood in Chicago and the giant
trees on his street bearing orange ribbons welcoming him home.
"After receiving another bone marrow transfusion the day after Thanksgiving, 2007 back at
Children's Hospital of Wisconsin, the fungal infection
Page 121
1 returned and reemerged. He had undergone the
2 hyperbaric treatment, he had undergone the
3 amphotericin, he had undergone the posaconazole. The
4 infection now spread through his sinuses into his
5 orbital areas. It slowly took his eyesight. He was
6 placed on a ventilator to breathe to overcome the
respiratory effects of a disease which attacked his
8 lungs -- lungs which had never failed him on an
9 athletic field or a program or wherever a game was
10 being played.
11 "Hank suffered a massive cerebral
12 hemorrhage and died on the 14th of December, 2007.
More than 2,000 people came to his wake. More than
1,000 family, friends and neighbors attended his
funeral. We had to place dark sunglasses on him in
16 the casket to cover the black rings of disease around
his eyes. He loved his then 12-year old sister and 8-
year old brother, who loved him as their big brother
and protector and whom he loved with all his heart.
He left his parents with a broken heart that will never heal.
"Hank was the last kid you would expect

1 to get sick. Though bright in school and multi-sport
2 talent, he was not the best student nor the best
3 athlete in any one sport. Yet, he was an undisputed
4 leader on the field, on the baseball diamond and in
5 our neighborhood. Like so many childhood heroes that
6 we've all been witness to, he withstood the
7 devastating treatment of his outpatient chemo and the
8 barbaric regimen of a bone marrow transplantation
9 without complaint. He accepted what happened and
10 began preparing for the rest of his life.
11 "Because of his death, many of our
12 close friends including several of his former coaches
13 approached us about forming a foundation in his honor
14 to remember him and perhaps provide some hope for
15 other similarly afflicted. Hank had told my wife
16 Susan after he experienced the relapse that he just
17 wanted to grow up and find out why this happened to
18 him so he could prevent it from happening to other
19 kids. Out of this pledge, we formed the Henry
20 Schueler 41 and 9 foundation.
21 "We've sponsored targeted research at
22 St. Jude's Children Hospital on hypodiploid leukemia
Page 123
1 through the work of Dr. Charles Mulligan and the
2 Mulligan Lab, which has drastically enhanced the
3 knowledge of the origins of hypodiploid and altered
4 the treatment regimens for those who are diagnosed
5 with it. The foundation has also proudly sponsored
6 the first United States based international conference
7 on mucromycosis chaired by Dr. Thomas Walsh, who spoke
8 earlier, who proudly serves as the Henry Schueler
9 Scholar on mucromycosis.
10 "His first conference took place in
11 Chicago in January of 2010. Out of this inspired
12 conference came the research that formed the basis for
13 the most comprehensive medical supplement on
14 mucromycosis published as a supplement to the Journal
15 of Infectious Diseases in February of 2012. And just
16 last September -- excuse me, just last November, we
17 sponsored and hosted the second such international
18 conference here in Chicago, where we learned of the
19 advances that science and medicine have made in their
20 fight against fungal disease and learned alarmingly of
21 the greater prevalence of fungal disease throughout
22 the world, and perhaps even more alarmingly, about the
true lack of progress in fighting fungal diseases.
"Hank never quit a game early and he never quit fighting his disease. The family and
friends who comprise our foundation helped instill
that attitude in him when he was on the playing field
6 and we remain determined to carry that fight forward
in his absence.
"We live and, yes, Hank lives to carry
the fight forward in his honor for future children and
0 adults who are also destined to face this nemesis, the
11 nemesis of cancer and fungal infections. Through our
work we assembled some of the foremost experts in the
world who voluntarily came to Hank's hometown to
brainstorm on the best medical approach to a fungal
infection that cruelly and silently attached him like
6 it does other patients, when they are most vulnerable,
and then it took his life.
"December 14th is the day he died.
Nothing will ever change that. It is also the day
that inspired the seeds of a gift of life for others.
Yet, despite our best efforts and the work of so many
researchers and physicians who have supported our
Page 125
cause, we cannot do it alone. The work of this
committee and the many, many contributors today at
this meeting are a vital need to all those persons
facing known and emerging fungal pathogens without the
5 knowledge and medicines to fight back. More
education, more research and funding is needed. New
drugs are needed. Nothing was more devastating in
8 Hank's inspired fight against his leukemia than for
him to contract a deadly fungal infection. And
nothing was more helpless to have such few options to
fight that infection.
"Hank did not die from the rare
leukemia he had; he died from a fungal infection that
cannot only attack immunocompromised patients but also
organ transplant patients, diabetic patients and
traumatically injured persons, including soldiers and
citizens injured in battle or by natural catastrophe.
Fungal diseases can attack a body and cause massive
disfigurement, infection and devastation. No person
should ever experience such an end of life. No parent
or family member should have to witness the ravages of such a disease.

1 "Isoconazole, known as Cresemba,
2 approved by the FDA, made by Astellas -- approved by
3 the FDA was the first antifungal medicine that offers
4 an important option for treatment of some fungal
5 diseases such as aspergillis and mucor. Hank had only
6 one proven medicine, amphotericin B, which was
7 developed over 50 years ago to fight fungal infection.
8 That simply cannot be the best this country can 9 produce.
10 "After more than 50 years of only one 11 medicine for mucormycosis and now Cresemba, we still

12 need new antifungal agents to treat this and other
13 fungal infections and save the lives of future
14 children and adults. Henry wanted to find out why
15 this happened to him so he could prevent it from
16 happening to other kids. I hope and pray the work of
17 this committee will bring this medical and scientific
18 community closer to fulfilling Hank's living wish."
19 Thank you for allowing me to
20 participate.
21
DR. LAURA KOVANDA: Thank you, Mr.
22 Schueler, that was -- always heartbreaking to hear,
Page 127
1 and thank you for bringing us this very important
2 patient perspective.
3 So, in the interest of time, we're
4 going to move quickly to the next presentation and
5 skip the break. Our next presenter is Dr. Peter
6 Pappas. He's going to present the design and conduct
7 of clinical trials for newer antifungal agents. Dr.
8 Pappas is Professor of Medicine, Infectious Diseases
9 Department and a scientist in the Cancer and AIDS
10 Centers at the University of Alabama at Birmingham.
11 Dr. Pappas?
12 DR. PETER PAPPAS: Thank you, Laura.
13 And thank you, the organizers, for asking me to spen
14 a few minutes talking about really what I see as some 1
15 of the challenges. Others have spoken to some of the 15 antifungal resistance is now widely recognized as an
16 obstacles and the challenges, and subsequent speakers 16 emerging problem. It's especially a challenge for
17 will field this as well. So, I'm going to kind of
18 spend the next 10 or 12 minutes talking about some of 18 taken as a whole, the antifungal resistance in Candida
19 the things that I see as obstacles towards the conduct
20 of clinical trials. I'm making certain I can advance
21 this. Let's see... Okay, there we go.
22 My disclosures. There we are. Okay,

17 Candida glabrata among the more common organisms. And
1 my disclosures are listed here. And then I want to
2 just talk in broad terms about the challenges to all
3 antifungal clinical trials. And I would say, you
4 know, a couple of obvious things, that with the
5 exception of invasive candidiasis throughout the world
6 and then cryptococcosis in lower income countries,
7 these are relatively rare infections and enrollment by
8 its nature tends to be very slow. And so numbers are 9 a big deal and we've talked about that already.
10 Delaying diagnosis is also an obstacle.
11 And as Kieren and others have spoken to, it really
12 calls for the need for, you know, rapid, sensitive and
13 specific nonculture-based diagnostics. This seems to
14 be a huge limiting factor. And in the setting of
15 cryptococcosis and certainly aspergillosis, we've
16 largely gotten around the need to culture -- have
17 culture positivity to include a patient into a study.
18 But it's certainly a major challenge for many of the
19 other fungal infections as well.
And determination of anti-fungal
21 resistance, which is a growing problem. It's been
22 spoken to already. But it's slow. And susceptibility
Page 129
1 breakpoints -- what really determines resistance is
2 not clearly established for each organism.
3 And so when one puts all this together,
4 traditional, randomized, controlled, double-blind
5 clinical trials are problematic and they really are
6 only applicable, in my view, to candidiasis,
7 aspergillosis and cryptococcosis. And if one adds to
8 that -- let's say we want to study aspergillosis --
9 I'm sorry, Candida auris, as an example, well, then
10 we've really upped -- we've raised the bar even more
11 because we really don't have a quick way of
12 identifying and enrolling those patients. So, we have
13 to come up with different strategies.
14 Now, for invaive cadid.
Now, for invasive candidiasis,

19 constitutes, you know, maybe 5-25 percent. It varies
20 considerably, depending on the prevalence of glabrata
21 and auris, and if there are epidemic strains in a
22 particular institution. But if one were to choose to

1 study antifungal resistant Candida organisms, you're
2 really biting off quite a challenge.
3 Now, coupled with that, some of the
4 recent observations. If we look at the most recent
5 trials of invasive candidiasis, I think it best -- and
6 we don't have these numbers exactly but our estimates
7 are based on our own experience are about one in ten
8 patients qualify. Even though they have a positive
9 culture there are going to be other things that
10 disqualify these patients and the most common ones are 11 listed here.

12 Too much prior therapy, the patient is
13 too sick, contraindicated drugs, especially in the
14 cases of azole therapy, and then concomitant illness -
15 - preexisting liver or kidney disease or both.
16 Another obstacle is, you know -- well, one of the
17 endpoints has been global response, which includes
18 clinical, mycologic and being able to survive.
19 These clinical endpoints I think are a
20 particular sticking point and I'm going to suggest
21 that maybe we should reconsider this. The clinical
22 endpoints are soft. They include fever and/or
Page 131
1 localized symptoms, and they are a requirement for
2 enrollment into a Phase 3 trial -- not so much a Phase
32 trial. But these are soft in the sense that fever
4 and localized symptoms, etc., can be caused from a
5 multitude of other disorders and not just an invasive 6 Candida infection. And so the reliance on these or
7 the requirement of these for enrollment into a trial
8 become, I think, again, just another obstacle, whereas
9 the mycologic and survival endpoints are pretty hard.
10 We don't yet know how to incorporate
11 for Candida these non-culture based assays. We can
12 use them for screening, we can potentially use them to
13 enroll patients, but then ultimately, at least for
14 Candida, we're left with basing our decision as to how
15 an individual responded based on the result of the
16 culture and its clearance.
17 And so while we have several tools
18 potentially to help us identify candidemia or invasive
19 candidiasis early, it's not clear how to use those
20 once the patient is enrolled and, again, without a
21 positive culture most trials are left with a patient
22 that's essentially unevaluable.

2 This study was published, and I will simply just
underscore the fact that this is a disappointment
because it took five and a half years to complete this
5 trial, it went through a lot of fits and starts, and
6 the study failed for a lot of different reasons. And
Laura showed this slide in graphic form earlier. But
8 we didn't meet the non-inferiority margin. And so
9 Isavuconozole is not an approved agent for treatment
10 of invasive candidiasis.
11
12 failure of this trial, but one of them was that the
13 arm that is caspofungin followed by voriconazole had
4 never been studied. And there were many, many
15 challenges to investigators in putting a patient on
16 this trial.
17
In the recent trial, the rezafungin
18 trial, which is a Phase 2 study, looks at long-acting
19 echinocandin rezafungin given once weekly. And in
20 this Phase 2 trial with a randomized controlled trial,
double-blinded, etc., individuals could be treated
with either rezafungin once weekly or caspofungin
Page 133
followed by fluconazole. A little bit more
traditional perhaps, and there's a lot of leeway in
3 the choice of when to transition to the azole when
that's appropriate. This trial went a little bit
smoother. It's recently been accepted for publication
in CID and all the details are going to be provided
there.
8
the rezafungin trial, that the main obstacle to
enrollment in that study really has to do with the
unique characteristic of rezafungin, and that s to do
with once weekly dosing and how comfortable clinicians
are or subjects, for that matter, being potentially
randomized to a drug that's only given once a week.
Even though there is sufficient pharmacokinetic data,
etc., to show that it makes plenty of sense, it is
17 enough of a departure that I think it presents a bit
18 of an obstacle. But certainly a sound agent. And as
this is studied, the Phase 3 trial comparing
rezafungin to caspo versus flu, which is ongoing, I
think is enrolling slowly in part because of this
perceived obstacle.

1 Now, what about focusing on resistant
2 candida species? Again in the absence of rapid
3 diagnostic that can identify these, you really, I
4 think, are left with having to develop strategies that
5 enrich a population for potentially MDR or drug-
6 resistant candida. And, you know, such as an
7 SICU/MICU or even stem cell transplants where everyone
8 was receiving fluconazole, prior exposure to
9 antifungals, breakthrough infections or recent
10 epidemiologic factors, which could include as a
11 consideration Candida auris.
12 But those are the strategies we're left
13 with. We can't a priori enroll only patients with any
14 fungal-resistant strains at this point in time given
15 the limits of our technology. And so in designing a
16 study like this, one has to really define a population
17 that is enriched for a greater risk of having an
18 antifungal resistant strain. I think that's our
19 reality at this point. And so, for instance, a study
20 that would target Candida auris or Candida glabrata is
21 going to have to include some of these considerations
22 that are listed here.
Page 135
1 Let's see if we can get to the next
2 slide. Okay, we are, I think for the first time,
3 looking at an observational trial of candidemia and
4 echinicandin failure. This is a study that Ostrosky-
5 Zeichner is honchoing and it's an observation
6 retrospective trial. We're going to capture 120
7 patients that have been seen in the U.S. This study is
8 now really being rolled out at this moment. And I
9 think it'll give us a very good look at the isolates.
10 Sort of why individuals fail echinocandins in this
11 retrospective, but we do have the isolates and we do
12 have -- or will have the historical data on these
13 patients and treatment data. So, it should be a very
14 good and, hopefully, current look at some important
15 questions as to potential resistant strains.
16 Ibrexafungerp. This is a compound that
17 has also expansive challenges. Most of you know this
18 agent. It's an oral glucan-synthase inhibitor. A
19 Phase 2 trial was completed. It was an MSG study,
20 MSG10. And this trial, despite the fact that the drug
21 has very good in vitro activity and seems to be well-
22 absorbed, well enough absorbed, for sure it struggled

1 to enroll. And with a target enrollment of 90, we
2 were able to enroll about 27 patients over the course
3 of 18 months. And the problem here was, again, either
4 patients or -- I'm sorry, subjects or investigators'
5 reluctance to step down to an oral therapy,
6 particularly after patients are beginning to feel
better.
8 Now, the FURI study, which has been its
9 follow, follow study, or follow-on study, which is
10 sort of a salvage trial, seems to have done much
better in that it's able to target patients who have
drug-resistant Candida isolate or failing or
intolerant to conventional therapy. But in a
4 standards Phase 2 type of trial which had limited --
which required limited exposure to echinocandin, for
instance, there just seemed to be a resistance to
transitioning to an oral agent, especially after
8 patients were beginning to feel better clinically.
And so it represents an ongoing challenge, even for a
compound which looks really quite good against -- in
an oral formulation against a host of Candida
isolates.
Page 137
1 This is a compound, Fosmangepix, which
2 -- APX study or APX compound, just completed a Phase 2
3 study, enrolled 22 patients. This really focused on
4 Candida glabrata, another azole-resistant Candida
5 species. But, again, even enrolling 22 patients,
6 approximately 10 sites, took about a year and a half
7 to complete this. Success looks very good but there
8 were obstacles to this, again, because the focus was
9 trying to enrich, encapture patients who had more or
10 potentially resistant agents including Candida
11 glabrata.
12 Now, basically, if Candida --
13 candidemia is a challenge, invasive aspergillosis is
14 also a major challenge. It has about a tenth of the
15 frequency of invasive candidiasis. Most cases
16 nowadays are diagnosed with serologic rather than
17 culture-based results or histologic results. There
18 are obvious challenges that I think have been touched
19 on earlier. And I won't go into this in great detail.
But again, I think the biggest challenge and one of
the things that has really saved invasive
aspergillosis is the development of sensitive,

1 reasonably specific non-culture based tests, including
2 galactomannan and PCR especially.
3 And so this, plus the definitions,
4 which have been accepted as reasonable ways to accept
5 a patient have really allowed this disease to be
6 studied. Otherwise, I think we would really be having
7 a major challenge in trying to enroll patients into
8 trials like this.
9 The traditional approaches. I'll just
10 give you some timelines. Voriconazole and
11 posaconazole monotherapy just got completed. It's in
12 its seventh year when it got completed. Kieren and
13 the group actually enrolled, almost in record time,
14 four years to complete a study which enrolled almost
15400 patients. And this is a combination study. There
16 was a lot of enthusiasm for doing this. And then the
17 isavuconazole voriconazole study, also about four
18 years. But remember, what made these studies possible
19 was the fact that we were allowed to use surrogate
20 markers in order to enroll these patients.
Upcoming studies. I'll just mention
22 these. Amplyx, Scynexis potentially, F2G is well on
Page 139
1 its way toward developing a Phase 3 study comparing it
2 to a lipid formulation of invasive aspergillosis. And
3 they're likely to take the traditional approach,
4 requiring the large sample size as well.
5 Now, the exception to this, I think --
6 and I'm going to kind of end with this -- is the
7 combination studies or studies for cryptococcal
8 meningitis. And what really separates these studies
9 from others has been, I think in a word, a surrogate
10 endpoint, and that's the availability of this
11 mycologic endpoint, the CSF EFA, Early Fungicital
12 Activity. This really has allowed us to use a tool to
13 -- that's correlated with clinical improvement,
14 survival as an outcome measure that allows one to
15 easily assess patients based on serial CSF cultures as
16 to whether patients are a success or not using really
17 a laboratory measure.
$18 \quad$ But in doing so, it has really changed
19 the way these studies can be done. And this allowed a
20 number of these trials to be done mostly in the
21 developing world. None of them have been conducted
22 primarily in the U.S. But this is a great example of

Page 140
1 how using a surrogate endpoint has really
revolutionized the ability to do these studies, going
on endpoints that are not based purely on mortality or
4 clinical response.
5 I think the need for better diagnostics
6 is really, really clear her. And if we are going to
7 move forward with better design, more efficient, more
8 rapid and meaningful assays we just have to move to
9 markers that are not so culture based. And I think
10 that if we use the example of what we've seen with
11 cryptococcal meningitis and especially invasive
12 aspergillosis, I think we see a way towards the
13 future. What's lagging behind, of course, is the
14 technology. And the validation -- even if we have the
15 technology -- the validation of some of these markers,
6 the T2, the PCR, etc., that really would make for a
7 more rapid and efficient enrollment into these trials.
18
19 that the future standard model for randomized control
trials targeting antifungal-resistant organisms really
doesn't work all that well, especially for the less
common infections. And I think that enriching these
Page 141
trials so that we target high-risk populations
together with rapid molecular diagnostics really
3 becomes essential if we're going to move into a new phase.

6 about the global population. We have -- certainly in
our antifungal trials, those would be -- we've gone
8 through the MSG, we've had really limited penetrance
into international sites. We have used them but with
10 a great deal of care. And I think that what we have
11 learned over time is that many of these international
sites are terrific. Many of them are highly
motivated, do phenomenal work, but I think those
opportunities are available but it does take
screening, familiarity with the sites, some education.
But there is enormous potential out in the global community.

18
19 you for your attention.
20 DR. LAURA KOVANDA: Thank you, Dr.
21 Pappas. We'll now go right through to the next 22 presentation, which is the statistical considerations.

Page 142	ge
1 We have two speakers for this. We'll start with Dr.	1 For invasive aspergillosis, the
2 Dixon. Cheryl Dixon is a statistical reviewer at the	2 preferred non-inferiority margin is 10 percent when
3 FDA Center for Drug Evaluation and Research in the	3 voriconazole is the control and six-week all-cause
4 Office of Translational Sciences. Dr. Dixon?	4 mortality is the primary endpoint. For candidemi
5 DR. CHERYL DIXON: Hi, yes, go	5 invasive candidiasis, the preferred non-inferiority
6 morning. Are you able to hear me?	6 margin is 10 percent when the control is a regimen
7	7 an
8 DR. CHERYL DIXON: Okay, thank you.	8 azole and 30-day all-cause mortality is the primary
9 W	
10	10 Since there is a fairly wide effective
11 Divis	11 treatment compared to no treatment for these
12 support to the Division of Anti-Infectives. Today I	12 indications, we have been willing to accept
13 want to discuss some general aspects of clinical trial	13 inferiority margins than those just mentioned to
14 designs in cut	14 consider granting a limited use indication if a
15 drug development along with some issues that have	15 product has the potential to address an unmet medical
16 recently been considered	16 need. However, to get a labeled indication without a
17 When it comes to the design of th	17 limited use statement, a trial with a preferred non-
18 clinical trial, our preference is still a randomized	18 inferiority margin will be needed.
19 controlled trial, whenever possible. These trials ca	19 Although we have justified those
20 be designed with a non-inferiority or a superiority	20 margins, we need to keep in mind that they are trial-
21	21 specific in that they depend on factors including the
22 inferiority trial we need to have a data-driven	22 trial design, the control used and the patient
Page	Page 145
rgin. The date	1 population being studied. There are some challenging
2 needed will be a conservative estimate of the	2 situations where the currently justified margins may
3 treatment effect of the active control on the same	3 not be sufficient to interpret non-inferiority without
4 endpoint used for the clinical trial. In this way, we	4 further considerations.
5 can be assured that the new drug is effective by	5 The first situation considers a new
showing the new drug is within this margin to th	6 antifungal that is available only as an ora
7 active control. External or historical controls may	7 formulation. It will be studied for the treatment of
8 also be considered when a randomized control trial	8 candidemia and invasive candidiasis as an ora
9 cannot be conducted	9 stepdown from an IV echinocandin. As I previously
$10 \quad$ For the typical invasive aspergillosi	10 mentioned, the non-inferiority margin we have
11 and candidemia/invasive candidiasis trials, we have	11 justified is based on a regimen containing an
12 justified non-inferiority margins for an endpoint of	12 echinocandin followed by an oral azole. So, the
13 all-cause mortality that allows us to conduc	13 interpretation of non-inferiority with such a control
14 interpretable non-inferiority trials. Although	14 would be in the setting of the regimen containing the
15 endpoint based on a global or overall response has	15 ecinocandin and the new oral antifungal, and not
16 been used in past trials, historical data is typically	16 necessarily an assessment of the efficacy of the new
17 not available for new treatment to allow for a data	17 oral antifungal
18 driven justification of a non-inferiority margin based	18 So, in order to assess the effect of
19 on this endpoint without making many additiona	19 the new oral antifungal and interpret non-inferiority,
20 assumptions. Therefore, all-cause mortality is the	20 we will need to differentiate for the regimen th
21 preferred primary endpoint when a non-inferiority	21 treatment effect of the IV antifungal therapy from
22 trial is proposed.	22 that of the oral stepdown therapy. So, it will be

Page 146	8
1 necessary to determine whether there is data that	1 be found based on autopsy data, ensuring that
2 available that will allow us to make this assessme	2 assessments are made at comparable time points in the
3 The second situation is a study	3 disease process, and the matching process of the
4 the population to be studie	nal controls to study subjects that may be
5 with limit	5 applied. Additionally, pathogen-specific external
6 being the treatment choice	6 controls are recommended when multiple molds are being
7 patien	7 studied under a single protoco
8 antifungal treatment. The non-inferiority margin	8 I've just briefly touched on some of
9 have justified	9 the issues regarding the use of external controls, but
10 subjects. However, the treatment effect of refractory	10 Aaron Dane will further discuss external contr
11	11 his presentation
12 subjects.	12 My next couple of slides you've already
13	13 seen this morning but I have a few additional points
14 which could lead to a smaller treatment effect when	14 to make. As mentioned, commonly used endpoints in
15 it's compared to new treatment; or they might have a	15 antifungal trials have been all-cause mortality or a
16	16 global overall response endpoint, both assessed at a
17 survived long enoug	17 fixed time
18 Thus, this will	18 Whatever endpoint is used, the endpoint
19 interpretation	19 selected should be well-defined and reliable.
20	20 Clinical endpoints are most relevant as they directly
21	21
22 likely a pla	2 patient feels, functions or survives. Additional
Page 147	age 149
1	1
2 today, and unless the new drug is a groundbreake	tory measuremen
3 superiority	3 radiographic image, physical sign or other measure
4 achievable. However, a special case of a superiority	4 that is likely to predict clinical benefit
5 design would be an add-on	5 itself a measure of clinical benefit. These types of
6 antifunga	6 endpoints will need more discussion with the agency
7 antifungal and is compared to the other antifung	7
8 alone	
ay	9 Diagnostics play a large part in the
10 to design a randomized control trial, such as with the	10 antifungal setting and are frequently used in clinic
11 rare molds in Candida auris where most of	11 trials for enrichment purposes. It is important that
12 currently pr	12 the tests adequately detect the disease of interest,
13	13 and this is especially important in non-inferiorit
14 interpreting	14 trials where we need to ensure that the populatio
15 The interpre	15 studied has the disease of interes
16 also be strengthened by the conduct of an adequat	16 For candidemia and invasive candidiasis
17 well-controlle	17 trials we have allowed the use of nonculture-based
18	18 tests for enrollment. However, an accompanying
19 Some issues that need to be considere	19 positive culture taken during the screening period is
20 when proposing the use of an external control are the	20 still needed to be included in the primary analysis
21	21 population.
22 the study population, noting that controls shouldn't	22 For invasive aspergillosis trials we

1 have used the galactomannan test for patient
2 identification as well as inclusion into the primary
3 analysis population. It is acknowledged that there is
4 growing interest in the field to also use these types
5 of diagnostics as endpoints. For example, a decline
6 in galactomannan levels for assessing response to
7 treatment
$8 \quad$ While qualification of an endpoint is
9 not a prerequisite for use in the clinical trials, it
10 will be necessary to understand the relevance of the
11 endpoint for predicting clinical benefit and
12 interpreting the effect of treatment before it would
13 be considered for use as a primary endpoint.
14 I will conclude my presentation with a
15 couple final comments on the global or overall
16 response endpoint. As I previously mentioned, a
17 global overall response endpoint is not recommended as
18 a primary endpoint for non-inferiority trials due to
19 the inability to provide a data-driven justified non-
20 inferiority margin in most cases. However, it is
21 still recommended to be assessed as a secondary
22 endpoint in non-inferiority trials.
Page 151
1 We currently consider treatment success
2 a complete or partial response in order to assess the
3 effect of the new antifungal. However, we understand
4 that for some, a stable response is considered a
5 positive outcome since it allows the patient to be
6 suitable for continued treatment of their underlying
7 disease.
8 We have indicated our willingness to
9 look at additional analyses based on a dichotomy of
10 complete, partial, stable response versus progression
11 or death for assessing a global overall response
12 endpoint. And that the best way to describe the
13 results of treatment response in any future labeling
14 would be determined upon review of the final data.
15 With that, I thank you for your
16 attention and I now turn the presentation back over.
17 DR. LAURA KOVANDA: Thank you, Dr.
18 Dixon. We'll now go to Aaron Dane. Aaron Dane is a
19 Director of DaneStat, is a statistician with over 20
20 years of experience working in clinical development in
21 the pharmaceutical industry. Dr. Dane?
22
DR. AARON DANE: Can you hear me okay?

Page 152

So, hello, everyone. So, as was mentioned, I'm a
statistical consultant for the pharmaceutical and
biotechnology industry, and I'm going to talk through
6 some of the clinical trial design considerations for
antifungal development, particularly focused on areas
8 of rarer molds and more difficult to find patient
populations. So, the two areas I'm going to talk
about today, one is the use of external controls to
supplement clinical trial data and when is it this an
appropriate approach? And also the key points to
consider when that's undertaken. And also the idea of
looking at alternative statistical criteria in a study of rare molds.

So, first of all, I'll go through the
external controls in limited populations. So, the
first key issue here is when using external controls
with a small patient number, is how we do that. So,
it may only be possible to recruit 50-100 patients
with rare molds in a reasonable time period. So, the
choice is between a very small randomized trial or a
Page 153
single-arm trial.
And when this is undertaken, a small
randomized trial gives randomization, so it may give -

- you know, remove any bias from treatment allocation.

But the problem is the heterogeneity may make it
6 difficult to compare treatments because the background
disease may be different in the two treatment groups,
8 which doesn't happen in a large randomized study.
Alternatively, in a non-randomized
study, this would mean comparing with the externally
generated data, so there are still issues to consider
in terms of whether it's reasonable to make that
comparison, and that's what I'll come on to in later slides.

It's also key to say that when patients
have no treatment options, a single-arm study may be
the only option, so in that case, we do need to think
about how we would put any results into context.
So, it's worth saying in all of this
that randomization is generally preferable. But if
there is no clear standard of care or there is a
robust external dataset, it might be that the external

1 data provide more reliable information than a very
2 small randomized study.
3 So, what are the key aspects of using
4 external controls -- is their robustness and their
5 comparability to the randomized data or the clinical
6 trial data. So, contemporary and matched controls are
7 most useful because you'd expect them to be more
8 similar in terms of disease setting and standard of
9 care to the clinical trial that was being conducted.
10 One question -- how contemporary does that control
11 have to be? And this would be something that would be
12 specific to the disease in question or the fungus in
13 question as to how quickly standard of care is changed
14 and how far back you could go.
15 Additionally, considerations would be
16 data validity -- so, can we verify the data that's
17 been used from that external control? And also a very
18 important aspect is the potential for bias or lack of
19 comparability to the randomized trial. So, there are
20 a number of features that would have to be considered
21 and document.
22 So, some of these have been mentioned
Page 155
1 already, which are: Are the patient population and
2 treatment of patients similar? Were the data
3 collected under similar conditions? Are the regions
4 of the study similar? Are the endpoints defined in
5 the same way? And are there differences in the
6 reporting of cases or the identification of patients
7 of the external subgroup? And also another quick
8 question could be is matching possible or necessary
9 and could that help any comparisons be more robust?
10 One of the key elements I've mentioned
11 there is the patient population and patient care. So,
12 some of the things I've just touched on. So, are
13 patients identified in the same way? So, are all
14 available patients with the disease in question
15 included in the external cohort or is this a selected
16 subset? So, this could be important if that external
17 cohort only includes more severely ill patients, and
18 that was why they made their way into that external
19 group -- because that means they could look more
20 severe and that could bias any comparison with the
21 clinical trial data.
22
And, similarly, are the external

1 controls and trial patients identified at the same
2 point in the disease course? So, here it could be
that maybe the external cohort are identified in a
4 more acute phase of the disease, where if this
clinical trial identifies patients after that, then
6 that wouldn't be a meaningful comparison. So, again,
that would be necessary to consider that and be clear
about the groups who were comparable.
Other components are is the patient
prognosis similar? So, this could be are the risk
1 factors consistent between the external cohort and the
clinical trial? Or even are the risk factors
consistent across sites and countries within the external cohort?

And also is there a consistent approach
16 to the management of patients in the external cohort?
17 So, again, this could be even within a country or
18 between countries. Is a standard dose and duration of
19 treatment used and is that appropriate? And is the
20 standard of care for each country or site used
21 sufficient to allow for comparison with the clinical trial?

Page 157
1 So, assuming that all of those features
have been considered and it is reasonable to use an
external control, there are two possible ways that 4 could be done.

Now, the first one could be to actually
6 use that external control data alongside a single-arm
trial. And the aim here -- so, this is an example
8 that was mentioned by Laura earlier, which is -- this
was isuvaconazole and the FungiScope registry. And
10 the idea here is the top row is actually the survival
rates for the new agent.
So, what that shows is that the
survival rate is pretty good, it's 60 percent. And
then there's some uncertainty of the confidence
interval there. And then a registry such as
FungiScope could be used to provide some matched
17 control and show that for a patient who receives an effective therapy, that they show a similar survival rate.

20
21 also be possible to show a matched group who weren't
2 treated and show that there was a big difference and

1 the survival rate was much lower.
2 And, similarly the unmatched survival
3 rates from the literature and from a registry would
4 also provide additional information on treated and
5 untreated patients or patients with inappropriate
6 therapy, again, to show that there's a big benefit and
7 that treated patients tend to see a similar survival 8 rate in those groups.

9 So, the alternative approach, which may
10 require more patients, is using external data
11 alongside a randomized trial. So, an approach here
12 that's possible is a Bayesian-augmented control
13 design.
14 So, as an example, a traditional design
15 may require 700 patients, so that could be 350 per
16 arm. An augmented control design would recruit less
17 patients than that but in a $2: 1$ ratio with more
18 patients receiving the new agents. And then that data
19 would be supplemented with data from an external
20 clinical trial which use the same comparator. So,
21 that information would then be used together in the 22 analysis.

Page 159
1 And provided the control group response
2 rate in the clinical trial is similar to that external
3 clinical trial, the external control rate, this would
4 allow similar Type 1 error and power with fewer
5 patients. So, Kurt Viele has outlined this possible 6 approach and the exact details are case-dependent, but
7 this does have the potential for more efficient trials
8 or being able to actually produce some outputs and
9 results in a more feasible way.
10 The main risk here is that the true
11 control arm is different from the external data. And
12 dependent upon the direction of that, it could lead to
13 reduced power in the analysis or it could lead to an
14 increase in Type 1 error or an increase in incorrectly
15 approving a new product. So, those two things are
16 important and would have to be considered, and that
17 would be part of a detailed consideration of that
18 eternal data in that previous clinical trial, whether
19 it was reasonable to use that alongside the clinical
20 trial data.
21 Okay, so that, hopefully, gives us an
22 idea of some of the points to consider and a potential

1 way that external data could be used when it's not
2 possible to recruit large numbers of patients into a
3 clinical trial. And the other approach is an
4 alternative statistical criteria for an area such as
rare molds.
6 So, this was an approach that I
7 developed in collaboration with Professor Nigel
8 Stallard at Warwick University in the U.K., and also
9 Paul Newell and John Rex have been very helpful in
10 finessing this as we've been working through it.
11
12 Pew Workshop in November last year, and this is an
13 abbreviated version of the talk, which -- because the
14 issues still apply here with the rare molds, and a
15 possible approach that could be used.
16
So, the key aspects we talked with this
17 are that (sound drops) clinical trials has some key
18 areas. So, what we're most interested in is that we
19 want to be confident when we run a trial that we can
20 show an effective treatment works. But we also want
21 to be confident that we're not going to approve
22 ineffective treatments.
Page 161
1 And the question is can we look at the traditional statistical criteria differently for rare
3 molds? So, these patients are very hard to find for 4 clinical trials. And, really, the idea is that it's
better to provide a framework for evidence of effect
in these rare molds rather than having no data at all,
which may well happen if there is no clear path
forward in terms of how these trials are going to be interpreted.

And what we've done with is looked to draw on the ideas used in the orphan drug area. And as I've just mentioned, the idea is that even with the smaller studies we need a framework for decision 14 making so it's clear what study would be classed as successful before that study's undertaken.

So, the aim here is to propose a
17 framework for decision making and sample size where
feasibility is very challenging. And just to clarify
19 that this is not an interim analysis where you look at
20 the data after a small number of patients have been
21 recruited and decide whether to continue. This is about the total design and the total size of that

1 study.
2 I also mentioned this talk focuses on 3 traditional frequentist statistics, but this idea --
4 we also consider this in a Bayesian framework, but the 5 principles are the same which is why we're focused on 6 the frequentist approach.

7 So, firstly, when we were looking at
8 this, one of the key areas we were considering was
9 large versus small trials with rare pathogens. So,
10 clearly a larger trial leads to higher power and more
11 certainty, but the issue is -- in some of these
12 settings, a very large trial is not feasible to do.
13 So, if we're unable to run the study at all, then it
14 deprives patients of this new therapy if no one can
15 see a way forward.
16 But, equally, a trial that's too small
17 may be more feasible but it could lead to a large
18 chance of making the wrong decision and, again, that's
19 something that we want to avoid. And because of that,
20 the common theme through all this is how to work with
21 a smaller dataset and actually balance those two
22 issues. So, how can we make sure we've got a good
Page 163
1 enough chance of bringing through effective treatments
2 without increasing the chance of a wrong decision?
3 So, what are we aiming for when we do
4 this? So, really, in any trial, if a test is worth
5 the control, ever patient randomized to test with in
6 the study risks a worse outcome. Then they key
7 component is if the test is approved, it's probably
8 perpetuated. And this is why we want to minimize the
9 chances of incorrect approval or the Type 1 error.
$10 \quad$ On the other side, if the test is
11 better than control, then ever patient randomized to
12 control risks a worse outcome in a study. But if a
13 test isn't approved, the problem is perpetuated in
14 this case. So, this is why within this small dataset
15 we want to keep the power high to make sure we pull
16 through effective treatments.
17 And, finally, if the test and control
18 are similar, we would still want to make those
19 additional therapies available because there may be a
20 number of reasons why the existing therapies are not
21 good enough and are not going to continue to be
22 effective. So here, again, we'd want to keep the

1 power high.

2 the trial, we don't know which of these situations is 4 true, so we have to understand the Type 1 error and 5 power for a range of scenarios and arrange of sample 6 sizes.

8 finding a sweet spot, which might be a reasonable sample size that's feasible but also manages the risks
appropriate is we need to find a sample size where we
have a good chance of success when a treatment's
effective, a low chance of approval when it's
ineffective, and a reasonable chance of success when
14 it's similar. And another component we can consider,
15 which I'll touch on later, is the expected number of 16 patients benefitting after the trial is maximized.

So, the following plot summarizes this
18 information. And what this is showing -- so, this is
an example which is showing the chances of
demonstrating non-inferiority if you were using an 80
percent confidence interval and a 20 percent non-
inferiority margin. So, the 20 percent NI margin is
Page 165
used -- has commonly been used in areas of unmet need.
And the 80 percent confidence interval is a departure
from the usual 95 percent confidence used.
The left hand plot shows that when the
test agent is performing better than the control, the
6 power would be high for a positive effect so that we'd
have a good chance of bringing forward that treatment.
The middle plot is showing what happens when the
outcome is similar for test and control. And what it
shows is the power is reasonable when you get to about
50-60 patients per arm. I don't know if you can see
on this plot, but what it's showing is that the power
gets to about 80 percent at that point. So, you'd
have a reasonable chance of success for a similar outcome.

And the right hand plot shows that when
it's less effective, so the test is worse than the
control in this case, there would be a 10 percent
chance of incorrectly concluding non-inferiority. So,
this is still a reasonably low chance but the reason
this is highlighted here is because that's a greater
chance than you'd have traditionally with a 95 percent

1 confidence interval where that would be 2.5 percent.
2 And this is where there would be a balance between the
3 unmet need, what was required in terms of new agents,
4 and whether this would be a reasonable risk.
5 So, in addition to this -- so, why use
6 the different statistical criteria? So, in addition
7 to the power and the risk of incorrect approval I've
8 mentioned, there's another consideration which is if
9 the patients -- what they may receive after the study.
10 So, in a trial where one treatment is less effective,
11 many patients will receive this suboptimal therapy.
12 So, as is true with any clinical trial, 50 percent
13 would receive suboptimal therapy with a $1: 1$
14 randomization. But in a limited population, this
15 could be a large proportion of the patient population
16 as a whole that are included in the trial. And as a
17 result, that may be that there's a relatively large
18 portion of the population that are receiving an
19 ineffective medication, which is why you might want to
20 make a decision earlier in that case.
21 So, the size of the trial and how that
22 relates to this expected number of patients beyond the
Page 167
1 trial who might benefit is something that you can look
2 at, and we can look at that graphically. All of that
3 is beyond the scope of this talk, but really the key
4 message here is that a much larger study does not
5 always provide the best outcomes in a limited
6 population because of this feature that actually there
7 may be fewer patients left to receive therapy beyond
8 the clinical trial. So, what that means is that it
9 may be more of a balance to work out which is the best
10 size of study to conduct.
11 So, in terms of considering alternative
12 statistical criteria -- so, really, this is a
13 framework to display tradeoffs when only a small trial
14 is possible. So, the questions are what's reasonable
15 in terms of false positive and false negative rates?
16 And as a community, deciding how to trade these risks
17 when it's impossible to run a large trial. And the
18 idea being to be able to run a trial which has got
19 some statistical criteria and we can agree on what
20 they are, rather than maybe the potential of having no 21 trial at all.

22 And really the idea that data on 100

Page 168
patients with rare molds can be informative, but we
need clear criteria so that they can be agreed and
it's clear what's required of the trial. And then it
will be a case of how to maximize our chances of
approving a more effective drug with, for example, 100
6 patients. But also limiting the risk of approving a
less effective new drug.
So, the summary here is that
considerations of power, chances of incorrect
approval, and the estimated number of patients that
may benefit during and after the trial will be
important and could be used to agree to success
criteria for trials of rare molds.
So, just to finish, my final slide is
just a summary -- studies of rare molds are incredibly
challenging to recruit, and it's not possible to
design studies in a traditional way with traditional
statistical criteria. And two of the possible
approaches could be to use external controls to help
provide robust evidence, but the external rates need
to be robust and comparable to a clinical trial. So,
that's critical with any of this. And also a large
Page 169
treatment effect will be helpful if we're comparing
with untreated controls and been given the difference
in the data source. And also alternative statistical
criteria can be useful for rare molds when there's a
5 high unmet need and could make it feasible to actually
6 conduct a randomized study. Thank you.
DR. LAURA KOVANDA: Thank you, Dr.
8 Dane. Let's go right to our last talk for this
session. Dr. Aspasia Katragkou is currently a fellow
0 in the Transplantation-Oncology Infectious Disease
Program at Weill Cornell, and she'll provide an
overview of pediatric antifungal development
consideration. Aspasia? Are you... There you are.
Okay.
DR. ASPASIA KATRAGKOU: Hello?
DR. LAURA KOVANDA: Yes, we can hear

DR. ASPASIA KATRAGKOU: Hi. I'm
Aspasia Katragkou. Good afternoon from New York. I
would like first to thank the organizers for extending
21 me the invitation to talk about pediatric antifungal
drug development. I have no disclosures. Can you see

1 the slides that I'm changing? Because I'm using my 2 phone.

3 So, this is the outline of my talk.
4 I'm going to talk briefly about the epidemiology of
5 invasive fungal infections in children, about the use
6 of antifungal drugs in pediatrics. I'm going to talk
7 briefly about antifungal agent clinical trials in
8 kids, the pipeline of antifungal agents in kids, and
9 also I'm going to discuss about the challenges in
10 pediatric drug development and what can be done.
11 So, Candida species are the leading
12 cause of invasive fungal infections in children. In
13 children, typically there is a predominance of non-
14 albican species in pediatrics (inaudible)... There
15 are some emerging reports of Candida auris in
16 children. Mostly they come from South American Asia.
17 The risk factors seem to be common for all kinds of 18 species -- like prematurity, surgery and malignancy.

19 And the mortality range is depending on the study from
20 10-30 percent, which seems to be substantially lower
21 compared to adult mortality. The interesting thing is
22 that the incidence of candidemia neonates in infants
Page 171
1 seems to be declining after 2009, while it remains
2 stable after 2012.
3 Regarding mold infection, aspergillosis
4 seems to be the most common with fumigatus and flavus
5 being the most prevalent species. The risk factors
6 here are hematological malignancies, sold organ
7 transplantation and primary immunodeficiencies. The
8 mortality is around 18 percent. And species of the
9 Mucorales family are more rarely mentioned in
10 children, and the risk factors here are hematological
11 malignancies, other malignancies, stem cell
12 transplantation (sound drops) --
13 DR. LAURA KOVANDA: Aspasia, I think
14 we're having trouble hearing you. If you could move
15 closer to the mic, please.
16 DR. ASPASIA KATRAGKOU: Can you hear me
17 now? Hello?
18 DR. LAURA KOVANDA: That's better.
19 That's better.
20 DR. ASPASIA KATRAGKOU: So, the
21 mortality regarding the Mucorales family is higher,
22 like 33 percent.

Page 172

1
2 pediatrics -- there are not many data regarding this
topic. Overall, there seems to be an increased
antifungal use over time as we have seen with
5 respective cohort studies and isolated studies from
6 Children's Hospital.
What is true is it seems to be
8 suboptimal use dosing of antifungal agents in
children. In a point prevalence study that has been
0 done in 2012 from the ARPEC study groups in 226
centers around the world, they found that the most
common indication for antifungal use was prophylaxis
followed by empirical treatment for febrile
neutropenia. The most frequently prescribed agents
were fluconazole and deoxycholate amphotericin B. And
the most interest finding is that almost half the
percent of the cases were receiving suboptimal
therapeutic doses. Something which indicates their
clinical trial designs were not very well regarding
the $\mathrm{PK} / \mathrm{PD}$ data in neonates and in children.
What's been going on with the
antifungal agent trials in children, data from the

United States show overall that the clinical trials in
children are ten times less compared to adults. In a
3 recent search in the clinicaltrials.gov website, I
4 found that the clinical trials in fungal infection in
5 adults are three times more compared to children. And
6 also from a relatively recent registry from October
2007 to 2017, from the 17,500 pediatric clinical
8 trials, less than 1 percent of them involved pediatric
clinical trials. And from these trials, 80 percent
involved antibacterials and only 19 percent
antifungals and just 1 percent both of them. And from
these trials, only 10 percent of antifungal trials
included neonates.
And as you can see to the right of this
slide, to the graph, these are the results from an
online survey done between August and September 2015
where pediatricians replied what are the barriers in
order to implement trials in children. The most
reason causes were difficulty in obtaining research
funds, and training research staff, or raising the
required number of patients. And from the ethical and
regulatory perspective, they were having difficulties

1 preparing all the required regulatory documents,
2 addressing IRB questions, and obtaining patient 3 concern.

4 So, to the next slide, which is taken
5 from an article from the New England Journal of
6 Medicine, children are not little adults. It sounds
7 like a cliché nowadays, but indeed, there are many
8 developmental changes that influence drug disposition
9 in infants, children and adolescents.
10 So, in all of these panels, for
11 example, in Panel A it shows how the activity of many
12 cytochromes in the liver changes over time. In panel
13 B it shows how the body disposition changes over time.
14 Panel C, how the structure and the function of the GI
15 tract changes. Lower, we can see how the tubular
16 secretion and the glomerular filtration rate changes.
17 And at the end we saw how the perfusion and hydration 18 diminishes from infancy to childhood.

19 So, children and adults have also
20 differences in the infections they acquire. For
21 example, the Candida CNS infection is more prevalent
22 in the small babies, less than three-months of age.
Page 175
1 The mortality of candidemia is less in children versus
2 adults. Also, invasive aspergillosis has different
3 imaging findings in children compared to adults. And
4 the tinea capitis in children appear -- seems to be
5 specific for the children as compared to adults.
6 Also, there are differences in the
7 hosts that affect these infections. And in children,
8 the neonates seem to be more susceptible, children
9 with primary immunodeficiencies or they have different
10 rates of comorbidities than children.
11 So, this is a very busy slide which
12 wants to say that (sound drops) --
13 DR. LAURA KOVANDA: We're having
14 trouble hearing you again.
15 DR. ASPASIA KATRAGKOU: Can you hear me 16 now? Can you hear me?
17 DR. LAURA KOVANDA: Yes, that's better.
18 DR. ASPASIA KATRAGKOU: So, the
19 relationship between adult and pediatric doses can be
20 linear or nonlinear and this doesn't seem to be drug
21 class specific dependent.
22
So, for example, for amphotericin, for
all the formulations of amphotericin, the relationship
2 between adult and pediatric doses seems to be linear.
This is not the case for azoles where Voriconazole
seems to be linear but nonlinear for the rest of the
azoles. And the next slide shows the echinocandins,
6 where there is linear also only for anidulafungin but
it's nonlinear for caspofungin or micafungin.
So, I'm moving to the next slide. So
there are specific considerations regarding the
antifungal agents in children. Historically,
pediatric drug dosing has been extrapolated from
adults by use of a linear modeling, namely dividing
3 the adult dose by an average adult weight like 70
kilograms automatically, or more rarely, dividing by
15 the body surface area divided by 1.73 square meters.
16 Nowadays, the antifungal treatment in
17 children has been advanced and studies until now have
8 shown us first that the antifungal pharmacokinetics
and doses differ --
DR. LAURA KOVANDA: Aspasia, I think we
1 lost you again. Can you speak closer to the mic?
DR. ASPASIA KATRAGKOU: Hello? Hello?
Page 177
Hello? Can you hear me? Can you hear me? Hello?
Hello?
WOMAN 1: We can hear you, Aspasia. DR. ASPASIA KATRAGKOU: So, the
conclusions regarding antifungal agent use in children
6 until now is that antifungal pharmacokinetics and
7 dosing differs dramatically between children and
8 adults. Second --
9 DR. LAURA KOVANDA: Aspasia, I think 10 your connection is going in and out.
11
12 Internet connection. It's not probably good because
13 of the storm probably. So, second then in their
individual pharmacokinetics viability increases with
increasing developmental aids. And third, antifungal
drug exposure targets -- varies between young
children, children and adults. All these findings are really important because of how --

DR. LAURA KOVANDA: Aspasia, I think
0 we're going to have to make an adjustment. I don't
know if others cannot hear as well.
DR. ASPASIA KATRAGKOU: Can I call you

Page 178	Page 180
1 back? Hello?	1 antimicrobial resistance. This is obviously important
2 DR. LAURA KOVANDA: Should we stop here	2 for this kind of thing that we're talking about today,
3 and maybe --	3 drug development, as well as other issues that help
4 WOMAN 1: It looks like some people	4 prioritize these organisms in our scope when we're
5 can't hear her.	5 looking to develop both diagnostics, drugs, and
6 DR. LAURA KOVANDA: Yeah. I think	6 measures to control, treat, and contain them
7 either we have to make an adjustment or maybe we take	$7 \quad$ I always like to put this slide in
8 a break now and maybe we can come back to it after	8 there because, really, for all of us, this has been a
9 lunch. Or how should we proceed? I'm not sure if	9 paradigm shift, this new species for candida
10 it's going to g	10 infections. We really have a yeast acting just like a
11 WOMAN 1: I think we probably will need	11 bacteria. Resistance is the norm with this organism
12 to disconnect for lunch.	12 It thrives on skin. It contaminates surfaces, patient
13 DR. LAURA KOVANDA: Yeah. Why don't we	13 rooms, and it spreads, now we know, readily
14 go ahead and take a 30-minute lunch break? I'm sorry,	14 healthcare and even non-healthcare settings; although,
15 Aspasia, I think we're having trouble with	15 most of the documented spread is in healthca
16 connection, maybe because of the storm. So, go ahead	16 settings.
17 and take a 30-minute break. It is one (sound drops)	17 Here's a current look at where we are
18 on the East (sound drops) so, let's come back in 30	18 with cases around the U.S. You can see that the
19 minutes.	19 cases still remain in the three states of Illinois,
20 (Break)	20 New York, New Jersey. We are seeing more cases in
21 DR. LUIS OSTROSKY-ZEICHNER: This is	21 both Florida and California, and you can see here that
22 Luis Ostrosky from Houston, and we're going to start	22 there have been new states that have reported one
Page 179	Page 181
1 the afternoon session, Session 3: Current State of	1 in the recent past.
2 Candida auris and Antifungal Drug Development	2 This gives you a look at our numbers.
3 Considerations. The session is going to be chaired by	3 You can see here we're up to over 1,200 clinical cases
4 Dr. Helen Boucher and myself, and it is my pleasure to	4 and about twice as many cases that we call screening
5 introduce as first speaker, Dr. Tom Chiller	5 cases, where we have gone and looked for, essentially,
6 Dr. Chiller's the Division Chief for	6 colonization in healthcare facilities or in long-term
7 Mycotic Diseases Branch at the CDC and he is going to	7 care facilities. We also have some COVID-related
8 be talking to us and giving us an overview of Candida	8 challenges with this particular organism. We know
9 auris and emer	9 that decreased screening has been going on and so
10 DR. TOM CHILLER: Thanks, Luis, and	10 there are actually less observations as to how much is
11 great to be with everybody. Look forward to giving a	11 spreading with fac
12 very short overview of Candida auris and sort of where	12 We have been doing screening
13 we are. I know many of you, if not all of you, know	13 certainly, in hotspots and that, as you can imagine,
14 about this organism and we've all been hearing about	14 has decreased dramatically. There's also been
15 it for the last s	15 reporting delays and so I think those are just common
16 more on some of the updated information, at leas	16 for many of the things that are happening right now in
17 that we have and then touch on briefly, unfortunately,	17 the -- during this COVID pandemic, unfortunately.
18 other emerging resistant candida what we're starting	18 The other thing that we're concerned
19 to worry about	19 about is some of the changes in patient movement
20 I don't have any disclosures. I thin	20 patterns and these changes have to do with sick
21 many of you saw recently, we put Candida auris on th	21 patients going in from long-term care facilities and
22 urgent threats list from the CDC report on	22 moving into ICUs and back out. Of course, the

1 vulnerable in this population are the exact patients
2 in these long-term care that we've been worried about,
3 MDROs, multidrug resistant organisms in general, but
4 Candida auris specifically.
5 So there's been some concern about
6 that, and then of course, widespread -- even more
7 widespread empiric anti, certainly bacterial use, less
8 so antifungal use, and you can see here from these two
9 graphs that all the colonization levels are down, but
10 we've seen some interesting sharp increases in C.
11 auris when there is culturing done in some of these
12 long-term care facilities, and that's what the graph
13 on the right.
14 So what about the epidemiology of this
15 organism that's been now around for a number of years?
16 You know, we have seen some outbreaks happening in
17 previously well-contained areas of the country like in
18 Southern California and the Mid-Atlantic. We also
19 have seen several cases reported to us without links
20 to any known cases or healthcare abroad, and so
21 understanding how those cases developed or arrived.
22 And then we're seeing -- and we always
Page 183
1 have, but it hasn't been the main source of
2 transmission in acute care hospitals, but we're
3 certainly seeing more of that now as well as just
4 regular skilled nursing facilities, not just the
5 skilled nursing facilities with ventilator care, which
6 has really been the crux of this outbreak occurring in
7 those ventilated patients.
8 Most common specimen sources of the
9 clinical cases that we've detected to date continue to
10 remain about half in blood, but we see a lot, up to a
11 third in urine, which of course are often not
12 identified, as we know, and then less so in wound and
13 in sputum. And then, of course, long-term
14 colonization has been one of the issues we've been
15 battling with and trying to understand, and you can
16 see here from -- this is from data, I think, out of
17 Chicago that was presented last year at SHEA, and just
18 gives you a snapshot of some of the different things
19 we're dealing with.
20 You can see some patients, by the blue
21 diamond, are negative upon screening culture, and they
22 remain negative throughout the duration of their stay
in this long-term facility, despite the fact that
2 their bed -- not bedmates, but their roommates are
positive. And so there's some interesting dynamics
going on here where you can have a positive roommate
and yet you remain negative that entire time.
So we're still trying to understand
that transmission. This also, obviously, points out
that some people can be positive and stay positive for
hundreds of days or they can go positive, negative,
and back to being positive still not understanding
whether that's a reinfection or simply they just
remain colonized. We think it's more of the latter
that they remain colonized, and obviously colonization
testing is not a perfect sensitive way to document, as
we know they can -- that the Candida auris can be
found in multiple different body sites.
So talking briefly about resistance,
8 here's a look at somewhere around 1,600 isolates that
we've tested: 80 percent resistant to azoles, about a
third to the polyenes, and low numbers, which is good,
resistant to echinocandins. You can see about a third
are multidrug resistant, in other words, two or more
Page 185
1 drugs, and we have found pan resistance in two
2 different states, but thankfully, this is still
exceedingly rare in this country.
4 There are, however, major difference by
5 clades. You know that Candida auris has principally
6 four but now five different clades that have been
identified, and this, you can look at some of this
8 resistance that can vary geographically, depending on
where the clade is and this is looking at azole
10 resistance. You can see South Asian clades have
almost all got azole resistance. The African clade,
again, has very high levels; whereas, the South
American clade, which is found principally in
Illinois, has very low levels of azole resistance.
In contrast, you can look at
6 amphotericin B resistance. Again, South Asian around
a third, the African much lower, and the South
American clade even lower amount, and then finally
looking at this sort of with a round-about way of all
three classes of drugs, you can see here that the
different regions and therefore different clades have
different levels of resistance, where echinocandin

1 resistance, again thankfully, remains relatively rare
2 in most of these isolates to date.
3 We have reported, as you all know, on
4 pan-resistant C auris for completely unrelated cases 5 reported with resistance to all three classes: three
6 from New York, one from Maryland. None had
7 international travel or healthcare. All of these were
8 mechanically ventilated and had been in long-term care
9 and all cases initially had Candida auris cultures
10 sensitive to echinocandins but developed resistance
11 while being on echinocandin treatment, which of
12 course, is concerning.
13 Switching back, then, out of Candida
14 auris and into a couple new areas in candida. First,
15 an old area, Candida glabrata, as we know, still
16 making up a large number of our candidemia patients in
17 this country we've got now 12 years of ongoing
18 surveillance in 10 sites with over 2,500 isolates and
19 you can see there that the resistance to fluconazole
20 remains relatively stable. The three-plus
21 echinocandin resistance has climbed over time.
22 You can see among those isolates

1 resistance to flu, around 10 percent are also
2 resistant to echinocandin, so suggesting that these
3 are sort of multidrug clusters, and you can see among
4 the echinocandin resistance, again, 25 percent
5 resistant to flu. So clearly, those that develop
6 resistance are more likely to be multidrug resistant.
7 Some of the familiar candida species, 8 again, that we've seen, Candida parapsilosis, we're
9 seeing resistance approach around 10 percent in the
10 U.S. Certainly, this is higher in some other
11 countries, so it's one thing we've been wondering
12 about is how our parapsilosis will develop resistance
13 over time. Guilliermondii species complex, we've seen
14 some very high fluconazole MICs in our surveillance.
15 And then finally, some new species that
16 we're sort of watching and potentially concerned
17 about. These species are maybe for lack of a better
18 word, cousins or closely potentially related to
19 Candida auris in some way, and in fact, Candida
20 haemulonii, the first species where we do see
21 fluconazole resistance, was often mistaken with some
22 of the older ways to detect species in microlabs as

Page 188
1 Candida haemulonii, not Candida auris.
2 But there is truly Candida haemulonii,
as well, out there, as well as duobushaemulonii, where
we've seen some fluconazole resistance and high
amphotericin B resistance and Candida kefyr, where
6 we've seen a few very high fluconazole MICs. And if
you look here at sort of the Candida haemulonii
8 species complex, you look at whole genome sequencing,
and I know this is very small, but suffice it to say,
these are separate species from Candida auris,
although close, and we've seen now transmission of
haemulonii and duobushaemulonii in Panama in hospitals
there and we're -- are wondering now as whether this
sort of transmission is going to be akin to the kind
of healthcare transmission we're seeing with Candida auris.

And again, concerning, because again,
these are relatively resistant organisms. And
finally, duobushaemulonii. We have recently been in
touch with colleagues in Puerto Rico where you can
see, based on the whole genome sequencing here, we
have a very tight cluster of 12 isolates from 11
Page 189
patients, 10 isolates actually from one facility.
These were collected over about a year-
3 and-a-half from both blood and abscess specimens, and
4 again, this is a very resistant, at least azole
5 resistant organism and we're wondering again is this a
6 newer emerging species that is also going to be
7 transmitted in those healthcare settings, and that's
8 concerning to us.
9
Finally, a few resources for you to see
0 about resistance and Candida auris on our web page,
and I will end there and just thank all the
collaborators that we work with on a daily basis,
especially our state and local health departments and
clinical, academic, and international partners as well
as NIH and the rest of the folks at CDC. So thanks for your time.

DR. HELEN BOUCHER: All right, I'm

going to jump in. This is Helen Boucher from Tufts.
Good afternoon, everybody. I think my mike was
unmuted, Dr. Ostrosky. It's my pleasure to introduce
Dr. Baoying Liu from the NIAID, who's going to speak
to us about funding opportunities on clinical research

Page 190	Page 192
1 at the NIH. Thanks very much.	1 in the pipeline. Clinicians also shared their
2 DR. BAOYING LIU: Can anybody hear me?	2 academic experience in managing Candida auris
3 Hear me okay	3 infection in the United States, United Kingdom, and
4 DR. HELEN BOUCHER: Hear y	4 South Africa. We united a total of 24 speakers
5 DR. BAOYING LIU: Thank you very muc	5 including
6 f	$6 \quad$ Our next slide, I'm trying to capture
7 first I will provide some highlights from the NIAID	7 the major takeaways from the breakout sessions. This
8 Candida auris	8 is very high-level summarization. I could only pick
9 January	9 several topics to share. One of the topics that
10	10
11 Understanding the biology, antifung	11 isolates, especially isolates with sequence data.
12 resistance,	12 During the workshop, attendees also discussed about
13 auris works	13 how much patient metadata we can get without
14 Fishers Lane of Rockville from January 28th throug	14 compromisi
15 29th, 2020	15 After the workshop, based on the
16	16 feedback from participants at the workshop, five new
17	17 isolates were added to the AR isolate bank and are now
18	18 available to the research community, so the link I
19 comptroller, Brendan Jackson and myself were on the	19 provided here is the CDC/FDA AR Isolate Bank. Right
20 organizing committee to put together the worksho	20 now, multiple isolates from each clade are available
21	21 in the collect
22 And through the link on this slide, you	22 A second topic to share is about
Page 191	Page 193
1 can assess the workbook agenda and most speaker	1 decolonization, for example, questions like how to
2 presentation	2 start a decolonization in the real-world setting
3 Objectives of this workshop is to brin	3 What are the facts to focus on? What is the goal of
4 together a diverse group of stakeholders including	4 decolonization in the context of persiste
5 representatives from ac	5 colonization?
6 government agencies to determine what is known about	6 The third topic I wanted to share
7 this organism, what are the most serious knowledge	7 about special considerations for resource limited
8 gaps, and discuss how to best leverage resources	8 settings. For example, we need to first understand
9 combat this unique funga	9 transmission dynamics in this setting, so those
10 The picture on the right is our Fishe	10 patient populations are different and often without
11 Lane NIAID building. We are extremely lucky to have	11 surveillance systems in place
12 this meeting in person just before the pandemic. Our	12 And lastly, we discussed about clinical
13 registration was maxed out with over 100 attending in	13 studies. Currently, there's no treatment (inaudible)
14 person and	14 and there are very limited data to detail disease
15	15 progression, treatment, and the treatment outcome.
16 ambitious a	16 For example, a clinician shared a disconnect between
17 sessions, which are the first five bullet point	17 blood culture clearance and the patient outcome.
18 and the three breakout sessions in this one-and-a-half	18 In other words, so some patients after
19	19 antifungals were given, blood culture were clear but
20 We covered topics from basic biolog	20 patient still died. So the question is, what's th
21	21 treatment that could impact outcome? Is it due to the
22 decolonization, diagnosis, efficacy and therapeutics	22 comorbidity? Maybe not.

Page 194
1 So again, it comes to the same topics
2 that we discussed today, how to design a clinical
3 trial. This one-and-a-half-day workshop allowed the
4 community to work together to define the current
5 status of Candida auris with research and identify
6 that to allow development to move forward.
7 With the speaker's permission, slides
8 have been made available on the website I provided
9 here, I will repeat, you can access the workbook
10 agenda and the speak -- most speakers' presentation
11 through this workshop. So that's that.
12 For the second part of my talk, I will
13 focus on our funding opportunities. NIAID supports
14 basic (inaudible) and clinical research targeting
15 Candida auris. Approximately 50 percent of NIAID's
16 mycology portfolio have this candida species. Many of
17 them are incorporating Candida auris studies into
18 their research. Because this FDA workshop has a
19 clinical team to, today I'm going to focus on our
20 support on clinical research.
21 First, these investigator-initiated
22 clinical trials, which include standard R01, R21, and
Page 195
1 the U01 surveillance mechanisms. All these three
2 mechanism are clinical trial required. R21 and R01
3 grant mechanism do not need to include NIAID staff and 4 are designed for non-high-risk clinical trial.
$5 \quad$ For the high-risk clinical trial, NIAID
6 utilize the U01 mechanism. When I talk about high
7 risk, high risk refers to an unlicensed product or for
8 licensed product for an unapproved indication. NIAID
9 also supports clinical trial planning; it's called
10 R34. This mechanism is to support timely development
11 of all materials required for future clinical trial,
12 for example, to establish a team and to develop
13 clinical protocol.
14 I want to point out here, funding of
15 R34 doesn't guarantee all implied funding of
16 subsequent U01. Budgets are limited to $\$ 150,000$
17 direct costs for up to one year.
18 So NIAID also supports small business
19 to conduct clinical trials. We call this mechanism
20 U 44 . U44 is a very attractive mechanism for small
21 business to conduct clinical trials, so I will briefly
22 introduce U44 at the next slide.

2 mechanism to help conduct Phase I clinical trial. I may already have mentioned that in morning. This
contract mechanism is a clinical service, just like
5 the preclinical services you heard this morning.
6 NIAID is holding the IND and then they sponsor the
7 clinical trial. Of course, it will be the
8 collaborators or partners so use that interest applied entirely.
10 So this slide, I'm trying to provide 11 two examples for the current grant opportunities. For
12 U01, like I mentioned early, it support high risk
13 clinical trials. In addition, if your request equal
14 to or more than $\$ 500,000$ direct cost per year for any
15 year of proposed trial, then a prior consultation with
16 NIAID staff is needed.
17 The purpose of prior consultation is to 18 take into account program priority, visibility,

19 safety, and the cost. It's not scientific review and
20 will not replace peer review process. If you request
21 less than \$500,000 direct cost per year, you don't 2 need to go through this prior consultation process.

Your application will go right to the review.
For U44, like I mentioned, is a small
business, Phase 2 clinical trial implementation grant,
4 just like SBIR small business Phase 2 grant, you can
5 request up to $\$ 1$ million total cost per year for up to
6 three years with waiver topics. You need to
adequately justify why such a budget is required. You
8 can apply a Fast Track Phase 2 if you have a prior
9 Phase 1 or Phase 2B if you don't have a prior Phase 2
10
Here, I want to emphasize for the
11 implementation grant that new one and U44, in your
12 grant application package, you need to include all
13 elements that are necessary to conduct a clinical
14 trial. For example, you need to already have a
15 clinical protocol. You also need to have clinical
16 monitoring plan, data management plan, and they must
17 be used.
18 Finally, for updates on funding
19 opportunities, please consider to subscribe to NIAID
20 Funding News, so I have provided links here. I also
21 suggest you to look for NIAID council-cleared
22 concepts. It shows upcoming potential opportunities.

Page 198
1 These initiatives are something we want to support and
2 we care deeply
3 Again, these are the resources that are
4 available for the community. Please consider to
5 apply. We would like to see more clinical research
6 applications coming in. Please do not hesitate to
7 email me. I would like to help you to navigate this
8 process. With that, I conclude my presentation.
9 Thank you very much.
10 DR. LUIS OSTROSKY-ZEICHNER: Thank you
11 very much, Dr. Liu. We're going to move on with the
12 agenda. The next block is a block where we're going
13 to discuss lessons learned from antifungals for high
14 unmet medical needs, so it's going to be a rapid fire
15 with three speakers. We're going to start off Dr.
16 Michael Hodges, who's currently the Chief Medical
17 Officer at Amplyx. Mike.
18 DR. MICHAEL HODGES: Thanks. Good
19 afternoon everybody. Many thanks for inviting me to
20 speak at what is a timely workshop. I've previously
21 been involved with the development of fluconazole,
22 voriconazole, and anidulafungin, and now fosmanogepix.
Page 199
1 My presentation will focus on two
2 important points highlighted in the FDA's earlier
3 presentation, namely the unmet medical need and
4 practical challenges developing antifungal drugs.
5 Now, the talk is applicable to both the unmet needs in
6 Candida auris, for example -- and also the rare molds.
7 My disclosure information is below, and as Luis said,
8 I'm a full-time equivalent and a Chief Medical Officer
9 at Amplyx Pharmaceuticals.
$10 \quad$ We have fosmanogepix in the clinic and
11 it has a broad-spectrum activity against yeast, molds,
12 and dimorphic fungi. Fosmanogepix has the drug
13 characteristics that have potential to address many of
14 the unmet needs I'm about to tell you, for example,
15 wide tissue distribution to the brain and deep into
16 the gut. Its two formulations, IV and oral, high
17 bioavailability, and no signs of the renal hepatic
18 toxicity that are the Achilles heel of some of the
19 standard of care therapies.
$20 \quad$ On the righthand side of this slide are
21 the Phase 2 trials that we are currently enrolling and
22 setting up.

2 associated with high mortality, despite the treatment
3 and when looking at randomized control trials for
4 invasive candidiasis, day 30 mortality is between 10
and 18 percent. Invasive aspergillosis, the six-week
mortality is 20 percent. When you look at the real-
world picture, it is actually much higher. Invasive
aspergillosis recent review showed 38 to 85 percent
mortality and for Candida auris, 30 to 72 percent mortality.

12 due, in part of course, to the underlying severity
disease, but also the poor diagnostics that we have
4 leading to a delay in treatment, and also the limited
choice of antifungals. As we've heard previously,
there are only three drug classes available: the
17 polyenes, the azoles, and candins.

19 drugs pretty urgently.

21 from Tom in recognition of the increase in drug 2 resistance, and the negative impact on public health,

1 the CDC has included three serious fungal infections
on the CDC Threat List: azole-resistant Aspergillus
fumigatus, drug-resistant candida species, and more
recently, Candida auris which is typically drug
5 resistant.
6 The fluco resistant candida is also
recognized on the WHO Priority List. Coming right up
to date with the SARS-2 pandemic, we see that patients
with viral pneumonia are at high risk for secondary
0 infections, including invasive aspergillosis, and
that's now coined coronavirus-associated pulmonary
aspergillosis. This has an extremely high mortality,
just like with the post-influenza pulmonary
aspergillosis.
Now more than ever, we need new
antifungal drugs. We need antifungal drugs that have
better drug characteristics to address both the unmet
18 -- sorry, to address the antimicrobial resistance, but
I want to really point out that equally important to
antimicrobial resistance, are what terms the drug
deficiencies, for example, the toxicities, the drug
interaction, the lack of available formulation, and

1 the lack of suitable exposure in some tissue
2 compartments.
3 Also as FDA have pointed out, we won't
4 solve the problem of the unmet without better
5 diagnostic tests and we really need to take a one-
6 health approach to tackle this public health crisis.
7 We've heard from the FDA earlier that
8 the antifungal and antibiotic development share
9 similar aspects of drug development and we would agree
10 with this, but we also think that there are unique
11 challenges and I would like to point these out.
12 Antifungal clinical trials have always been difficult
13 to recruit, and they probably are getting harder to
14 recruit patients. We are, in essence, an orphan drug
15 population and this will require a global search for
16 the eligible patients.
17 Clinical trials in invasive fungal
18 infections are extremely complex, take a long time to
19 conduct, and can cost upwards of $\$ 100,000$ to $\$ 200,000$
20 per patient, and I think this was confirmed in an
21 earlier talk by Laura Kovanda.
22
The Phase 3 randomized controlled
Page 203
1 trials in invasive candidiasis have historically
2 required numbers of around 300 to 600 patients;
3 however, recruitment per site is extremely low. These
4 trials have taken many years to conduct and require
5 many sites to be open in the chance that a site will
6 recruit a patient. In reality, many of these sites
7 will not recruit any patients and they will likely
8 screen hundreds of patients but will not enroll. This
9 is both expensive and inefficient.
10 More recently, these trials have been
11 conducted in patients with limited or no treatment
12 options, for good reason; however, it will just
13 increase the scarcity of these patient who might be
14 eligible for the trials, and these practical
15 challenges, along with the scientific and economic
16 challenges, discourages sponsors and investors to
17 develop antifungal drugs.
18 On the next two slides, I provide some
19 examples of the randomized control trials that have
20 been conducted. The trial that I'm most familiar with
21 is the VORI vs AmB/FLUCO trial, and we had 101 sites,
22 my colleagues and I at Pfizer, and 50 percent did not
recruit any patients and it required much more
resources to manage and monitor these sites than other
3 trials that were being conducted at the same time.
4 This study took four-and-a-half years to enroll, and I
think the example presented by Laura Kovanda would be
6 as with fluconazole trial which required twice as many
7 patients, took eight years to conduct.
8 Again, the trial I'm most familiar with
is the Herbrecht study, the VORI vs. AmB, and this,
0 again, was a high resource intensive trial taking
three years to conduct.
So in summary, we think that invasive
fungal infection drug development would benefit from a
new paradigm for demonstrating the statutory
requirements of substantial evidence, similar to other
orphan rare -- drugs to treat life threatening
7 diseases.
Clinical trials, as I've said, have
historically been difficult to conduct and I think
it's going to become harder and this trend will
continue. Drugs to treat life threatening rare orphan
diseases have been approved based on small datasets
Page 205
that support the substantial evidence of effectiveness
2 required for approval of all drugs.
Recently, and FDA are to be
congratulated for this, they have issued the LPAD
pathway guidance document for drugs intended to treat
serious or life-threatening infections in a limited
population, and this would permit the risk-benefit
assessment to be flexible to consider the severity,
the rarity, and the prevalence. However, LPAD pathway
does not alter the overall FDA approval standards.
Two drugs, as listed, have been
approved through the LPAD pathway; however, it is
unclear how far this flexibility might extend in the
approval of new antifungal drugs that address high
unmet medical need of invasive fungal infections.
And I'll pause there and pass over to
my colleague, David.
DR. LUIS OSTROSKY-ZEICHNER: Thank you
very much, Dr. Hodges, and it is a pleasure to
20 introduce Dr. David Angulo, who's the chief medical
21 officer at Scynexis.
22
DR. DAVID ANGULO: Candida auris.

1 Thank you, Dr. Ostrosky. I'm going to focusing my
2 talk in the development considerations for Candida
3 auris specifically, and as a disclosure, I'm a full-
4 time employee of Scynexis.
5 As an outline of what we are doing and
6 as an example for what we are -- we care very deeply
7 about these -- participating in this particular
8 workshop that I think I can praise the agency for
9 organizing and thank you for inviting us. We are
10 developing the ibrexafungerp, which is a novel glucan
11 synthase inhibitor that has a different structure from
12 the enchinocandins, which are the only glucan synthase
13 inhibitors approved today. This different structure
14 allows for oral bioavailability which is, we know, a
15 limitation of the echinocandins at this point, that
16 they're only available intravenously.
17 It also results in a different
18 interaction with glucan synthase that has shown to
19 lower the impact of common FKS mutations that can show
20 resistance to echinocandins. The in vitro and the in
21 vivo activity of the compound includes all kind of
22 relevant species of candida, including Candida auris,
Page 207
1 aspergillus, pneumocystis, and coccidioides. And in
2 particularly interesting attributes of ibrexafungerp
3 is the extensive volume of distribution which allows
4 to achieve high concentrations in most patients.
5 The clinical development with the oral 6 formulation has in progress in several fungal
7 diseases. We have completed two Phase 3 studies in 8 vulvovaginal candidiasis, one study in invasive
9 candidiasis, and we have ongoing studies in patients
10 with the recurrent vulvovaginal candidiasis, invasive
11 aspergillosis, refractory invasive fungal diseases,
12 and infections to Candida auris.
13 Now focusing on, really, the challenges
14 of really one of the aspects that are very relevant
15 for Candida auris development, developing new drug\$
16 for the treatment of Candida auris infections is
17 challenging. And I hope to be able to highlight some
18 of these challenges that would allow the conversation
19 to move forward towards addressing those challenges
20 joining as a scientific, regulatory, and industry
21 community.
22
Let's start by highlighting some of the
regulatory background that may apply to the
development of new drugs for candida. The typical
development program for invasive candidiasis included
a single, randomized controlled trial, Phase 3 , and to
demonstrate noninferiority against the standard of 6 care.

7 This model has been successful for the
8 development of several antifungal agents to date, but
9 we've just heard from previous speakers that these are
10 very challenging studies to conduct, long and
11 expensive. The LPAD pathway may provide a framework
12 for alternative approaches. Based on the scope of the
13 LPAD, I think that we could all agree that Candida
14 auris infections could be subject to an LPAD
15 consideration.
16 They are certainly severe, at least
17 most of them, with low prevalence, very few treatment
18 alternatives. They are life threatening and
19 additional treatments are definitely an unmet medical
20 need. The LPAD allows for a more streamlined clinical
21 development program while keeping in mind that
22 substantial evidence of effectiveness must be
Page 209
1 provided, but allows the acceptance of a greater 2 uncertainty, based on a risk-benefit assessment.
3 I think this provides us an opportunity
4 for the whole community to work together, identifying
5 physical ways to provide substantial evidence of
6 effectiveness for this infection, considering the
7 current unmet needs and limited treatment options.
8 The typical development program for
9 invasive candidiasis includes a Phase 2 study,
10 typically, followed by a Phase 3 study randomized
11 control, power to demonstrate noninferiority to
12 standard of care.
13 And I'm just going to take here as an 14 example the most recent development program 15 implemented for invasive candidiasis which is still 16 ongoing. They estimated a sample size needed for the 17 Phase 3 about 220 patients, which is lower to what is

18 typically needed in a Phase 3 program and with the 19 need to demonstrate noninferiority of the standard of
20 care and they estimated it will take about two years
21 to enroll these number of subject in 64 hospitals
22 worldwide.
$1 \quad$ Any one of us involved in conducting
2 large multicenter clinical trials would recognize this
3 is a very substantial task. So if it takes about two
4 years to enroll 220 subject in 64 centers, for a
5 condition that has a U.S. incidence of about 25 cases
6 a year in the United States and the overall
7 development program here will take about four to five
8 years with a cost easily north of $\$ 60$ million.
9 This particular development path is
10 difficult to be fully applied for very rare organisms
11 like Candida auris.
12 Development. Some of the enrollment
13 challenges for development, specifically challenges
14 for Candida auris is that enrolling patients with
15 Candida auris in clinical trials is difficult. There
16 are a limited number of patients. We're talking about
17 here an incidence of about 500 cases a year in the
18 U.S., and many are heavily treated before they even
19 are identified for potential participation in a
20 clinical trial.
21 They have a high mortality. They are
22 difficult to enroll. You need to identify multiple
Page 211
1 centers in multiple countries in order to really try
2 to get a sufficient number of cases. In this
3 particular case, makes those trials very expensive and
4 long, and then you need to chase the hotspots because
5 those hospitals that were initially identified as
6 potentially good sources for these type of patients
7 into your clinical trials few months on the road, they
8 may not be as good alternative as they look at the
9 beginning.
10 They -- you need to be really chasing
11 countries. You need to be chasing hospitals that
12 really may have that incidence. Clinical evidence
13 from a statistically powered randomized controlled
14 trial in patients with Candida auris will be,
15 obviously, unlikely feasible. So alternative
16 approaches are needed to generate the substantial
17 evidence of effectiveness, and a well-balanced
18 definition of substantial, in light of the unmet
19 medical need, will facilitate and accelerate the
20 availability of new therapies.
21 There are multiple elements that
22 contribute to the evaluation of the effectiveness of a
drug against these multidrug resistant pathogens, and
this is the opportunity to discuss what is the weight
of the contribution that each of these elements can
provide to the overall conclusion, considering that a
large clinical dataset may not be feasible, at least
6 not in a reasonable timeframe. Here, new antifungal
agents that -- sorry. The new antifungal agents will
typically have available a robust set of clinical data
showing interactivity and efficacy in animal models,
and also typically we will have PK/PD analysis showing
or justifying the selected doses.
So there is here the opportunity to
discuss how much weight these particular clinical
assessments can contribute to the evidence of
effectiveness, and this is something that altogether
community, scientific community, regulators, and
industry should be involved with. We should also have
8 sufficient -- obviously, sufficient safety data for
intended doses and duration.
However, the most challenging part is
the demonstration of efficacy in the clinical setting
and following only traditional approaches, may limit
Page 213
the ability of new therapeutics in the future, so we
should be open to discuss how to implement alternative
and more feasible approaches that will still provide
substantial evidence of effectiveness we need with the
acceptance of a greater uncertainty based on the risk-
6 benefit assessment.
Here's some of the options. There's
8 really four opening for discussion. Probably the most
9 common option is a randomized controlled trial in all
) invasive candidiasis, all the species, that is
enriched with candidiasis patients. I think that
nobody would argue that this is invisible alternative
or this is an alternative that has been following the
path; however, it does take about four to five years
to get new products through these paths and certainly
it's multiple millions of dollars.
There should be other alternatives.
For instance, a randomized controlled trial in other
candida or other fungal diseases plus or supplemented
with a small study in Candida auris patients. This
could be there are no randomized comparables to system
that controls external controls or it could be, as it
has been suggested in the past, a randomized
controlled trial but it will not be necessarily

4 these alternatives, I think, is warranted.
$5 \quad$ There are other alternatives, multiple
6 studies, a smaller in different fungal diseases that
are particular relevant to the condition that we're
8 talking here. It could be esophageal candidiasis.
9 Could be other type of candida infection that really
10 together all put the weight of evidence that this
11 particular product does give activity or the product
12 that is being in question has activity against candida 13 infections.

14 So the development opportunities. We
15 need to identify efficient development paths for new
16 therapeutics for these challenging infection that are
17 well defined, streamlined, feasible within a
18 reasonable timeframe, and obviously endorsed by
19 regulatory authorities, scientific community, and
20 executable within the industry framework.
21 They should be supported by funding and
22 funding in this case needs to come from different
Page 215
1 sources. We know that most of us in the industry, we
2 rely upon not necessarily from grants. We rely upon
3 really investors from investment community and they
4 need to really see an opportunity for return of
5 investment for these type of conditions; otherwise,
6 the funding would not come.
7 We also are very appreciative of 8 funding from other -- several institutions, et cetera;
9 however, it needs to be a roundup approach that really
10 enable these particular programs to keep moving
11 forward.
12 Alternative development approaches
13 seems justified bases on the unmet need, the limited
14 number of cases, the high mortality, the high rate of
15 multidrug resistance that we're seeing with these
16 particular pathogen, the transmission potential and
17 the potential public health impact. We need to
18 understand how to really address the fact of permanen
19 colonization that we saw in some of Dr. Chiller's
20 slides and how this impact public health and how we
21 can impact that as well.
22 And we all have advanced the
nonclinical models to really be able to better predict
or at least better estimate what is the treatment
effect of a particular drug. I think that we should
take advantage of those models as well to really help
us moving these development programs forward.
So with this, that is -- I end my
presentation here, really trying to highlight some of
the areas that we consider. We can all work together
to really have better definitions of substantial
10 evidence of effectiveness, particularly for these
11 particular condition that will allow us to find a
clear and physical development path for new
13 therapeutics. Thank you.
14 DR. LUIS OSTROSKY-ZEICHNER: Thank you,
15 Dr. Angulo. And to finish this rapid-fire session,
16 it's my pleasure to introduce Dr. Taylor Sandison
17 who's the Chief Medical Officer at Cidara.
18
DR. TAYLOR SANDISON: Thank you, Luis
19 and appreciate the opportunity to talk, so thanks to
20 the organizers. I'd just start off by saying that
21 David and Michael and I talked and kind of organized
22 our talks so we didn't overlap, so there are some

1 things -- what they have said already, I fully agree
2 with and I think my job here is just to real -- paint
3 a little bit of the lessons learned from our
4 individual trials and then maybe summarize some of the
5 key points of our consolidated talks.
6 So just to kind of paint the picture
7 where I'm coming from, this is rezafungin. It's a
8 novel echinocandin that's once weekly dosing with
9 prolonged PK and the studies that we've conducted,
10 we've done a number of Phase 1 s , but I think the ones
11 we'll be most interested in will be, we have a
12 completed Phage 2 study which had -- numbered 207
13 patients which yielded 183 mITT patients.
14 And then we have an ongoing Phase 3
15 trial similar to that Phase 2 in the treatment of
16 candidemia and invasive candidiasis, and an ongoing
17 Phase 3 trial in prophylaxis of invasive fungal

Page 217
t18 disease in the allogeneic blood and marrow transplant
19 population. And then the proposed indications would
20 be for the treatment of candidemia and invasive
21 candidiasis as well as prophylaxis.
22
So our goals are aligned in that we're

1 trying to enable approval of safe and effective
2 antifungal drugs to improve the options, to improve
3 patient outcomes, but we have a number of challenges
4 and one is the changing environment. I think we've
5 seen over the past few years how Candida auris has
6 changed a little bit how we're looking at fungi and
7 alerted us to the needs for new antifungal options.
8 And of course, even the epidemic with
9 COVID most recently kind of highlights the unexpected
10 nature of these future challenges, and then just the
11 need to expand our antifungal armamentarium so that
12 either new mechanisms of actions or improvements in
13 toxicity or drug-drug interactions, all these things
14 are available for doctors to enable them to improve
15 outcomes for these patients.
16 We've already heard from Dr. Kovanda
17 and Pappas and Hodges and Angulo about the enrollment
18 challenges, so I'm not going to dwell on that except
19 to say that we did experience that in our Phase 2
20 STRIVE study as well with the enrollment below what we
21 expected it to be from past pivotal studies and I
22 think just to give you a frame for that Phase 2, it
Page 219
1 took us for the 183 mITT subjects, we had about 60
2 sites and it took us almost three years.
3 So that kind of gives you an idea of
4 how difficult it can be, and those challenges are
5 multiplied even before COVID came along. There's
6 always issues with decreasing amounts of candida from
7 sites, and then COVID, of course, has increased the
8 complexity and challenges: fewer sites available for
9 clinical research, increased risk of missed visits due
10 to COVID, threatening the study visits for these
11 immunosuppressed patients that are really at risk of
12 getting COVID. We can see why they wouldn't want to
13 come back to the clinic or hospital.
14 So I'm just going to touch on that
15 briefly, but the true magnitude and duration of this
16 impact is still really to be determined, whether it
17 needs to be addressed in terms of our experience for
18 antifungal drug development.
19 The other thing I wanted to discuss
20 briefly was exclusion criteria. So the largest
21 reasons in our STRIVE study in the Phase 2 study for
22 failures were prescreen failures, I should say, were

1 due to 96 hours from randomization for the candida
2 cultures and greater than 48 hours of prior antifungal
3 therapy. As it's already well documented and
4 physicians on the call realize, really, you got to
control the source and early, directed, appropriate
6 antifungal therapy is the way you decrease mortality.
7
8 and so, you know, with these slow-growing cultures,
often greater than two days, antifungal therapy
10 already on board. Another high impact reason for
11 exclusion was the lack of abnormal vital signs, so
12 fever, hypothermia, hypotension, tachycardia,
13 tachypnea, things that are attributable to invasive
14 candidiasis. This was determined to be imperative by
15 the FDA as it's felt to reflect how a patient feels,
16 functions, and survives.
17
18 also understand that means immunosuppressed
19 populations, who are the ones who are at risk of
20 invasive candidiasis, often don't develop the same
21 types of signs of infection that other patients would
2 ordinarily or they would ordinarily, if they weren't
Page 221
in the situation with either some sort of
immunosuppressive disease or drug.
So where does this lead us? I think we
talked about some of the development options in both
5 Michael's slide and David's slides and -- but I think
6 there are still a number of unanswered questions. I
7 think Dr. Kovanda brought up a good one, which is,
8 have we reached the point where large scale Phase 3
9 studies for antifungal agents are no longer feasible?
We have a lot of things to consider.
11 We brought up the fact that the negative MPD
12 associated with these new antifungal agents, in part
13 because of these large randomized global trials leads
14 to decreased interest from big pharma and from
15 investors and things like this.
16
17 studies that go on for three, four, five or more
18 years, you start risking confounding and kind of
19 undermining your trial with the risk of that
20 confounding due to improvements in diagnostics and
21 treatments and standard of care between the beginning
22 of a trial and the end of trial, so that supportive

1 therapy may lead to differences in outcomes.
2 More patients may be surviving later in
3 the trial as compared to the beginning, and if you
4 have any kind of imbalance in the randomization from
5 one to the next, that could potentially confound your
6 study as well. So there are a number of things to
7 consider about this, in addition to whether it's
8 feasible from a business standpoint, but also from a
9 scientific standpoint, does it really make sense.
10 And then under substantial evidence,
11 David talked about this a little bit, but given the
12 recent advances in PK/PD target attainment, can we put
13 more emphasis on that in lieu of a Phase 3 clinical
14 trial powered for inferential statistics, depending on
15 the unmet needs and sort of other categories and
16 things that are part of the assessment of what's
17 required?
18 I think in the past, Dr. Nambiar has
19 brought up a number of places where PK/PD looked good
20 and then the clinical trial, they didn't look so good.
21 So I think you can't just get rid of the clinical
22 trials completely, but maybe some balance between
Page 223
1 those needs to be assessed and certainly there's been
2 a lot of progress made over the past 10 years in that
3 kind of targeted payment assessment.
4 And then given the described
5 challenges, how can we define -- I mean, this seems a
6 bit like a moving target. We don't really know what
7 to aim for in terms of what's substantial evidence of
8 effectiveness. And is that even considered for, like,
9 the full kind of candidemia, invasive candidiasis stud
10 or whether it's a single species development program,
11 like for Candida auris alone or even for a salvage
12 therapy study where considerations have to be made for
13 -- not just for patients that fail but why did they
14 fail.
15 Did they fail for -- because of poor
16 source control or is it really resistance and things
17 like this, so trying to get definitions and some kind 18 of pathway assigned would be extremely helpful in
19 helping to allay some of the concerns and challenges.
20 And then finally, should we consider
21 some leniency in some of the key exclusion criteria,
22 if only to prevent or in -- sorry, increase patient

1 experience with these candida drugs? It may take, for
2 instance, if you take out some of these, like the 48
3 hours or the 96-hour limits for empiric therapy for
4 drug culture -- I'm sorry, candida culture, could you
5 include more patients, then you get more experience
6 and see how the drug works and, of course, there is
7 some concern, obviously, that they get too much of a
8 drug or the candida's been there for too long and
9 maybe it's more of a subacute infection, but there are
10 some things that can be done in terms of
11 stratification and analyses that could also help
12 assess that in a analysis way, rather than just taking 13 them out from the beginning.
14 And then the other option I discussed
15 before is also this idea of including abnormal signs
16 of infection, where -- in a patient where if you have
17 candida growing from a blood culture or another
18 normally sterile site, there's not really a way to say
19 that they're not truly infected and the fact that they
20 don't mount a systemic response with abnormal signs
21 could be because of the steroids they're on or because
22 of their underlying leukemia or something along these
Page 225
1 lines that really limits our ability to test these
2 drugs in the patients that really need them.
So those are just kind a brief summary
4 and a few ideas of what we've seen at Cidara and what
5 we've discussed amongst ourselves from the industry
6 perspective, and so I appreciate the attention and the
7 invitation, and I'll pass it back to the moderators.
8 Thank you.
9
DR. HELEN BOUCHER: Thank you so much.
10 Those were great talks and lots of food for thought
11 for our discussion. For the last speaker of this
session, I'm privileged to introduce Dr. Luis
13 Ostrosky-Zeichner from the University of Texas where
14 he is the Vice Chair of Medicine for Healthcare
15 Quality, the Director of the Laboratory for Mycology
16 Research, and professor in the Division of Infectious
Diseases. Welcome, Luis.
DR. LUIS OSTROSKY-ZEICHNER: Thank you
19 very much, and for the next few minutes, we're going
20 to be discussing some clinical trial design
21 considerations for Candida auris specifically. These
are my disclosures: I've been participating with most

1 of the sponsors in this seminar and I've been involved
2 in antifungal development for the past 20 years.
3 So we are a long way from amphotericin
4 B research. The package insert for amphotericin B has
5 six pages compared to the multiple, multiple pages
6 we're seeing in package inserts right now, and it's
7 very interesting to consider that this is the
8 antifungal that has the widest and broadest indication
9 for most of the mycosis we're treating currently and
10 most of the data are based on in vitro susceptibility
11 testing or anecdotal cases
12 Since then, we've been steadily
13 developing antifungals; 1950s was primarily the
14 polyenes. We have griseofulvin and 5-FC in the 1960 s
15 and '70s. The '80s was the era of the first-
16 generation azoles. We moved on to second-generation
17 azoles and then we go in the lipid formulations, the
18 second-generation triazoles, and the echinocandins in
19 the 2000s. And we're in 2020 and we haven't really
20 released a new antifungal since then.
21
So how do we use antifungals in candida
22 at this point? This is the new sort of continuum of

1 treatment that we've created and for the most part, we
2 are working on the right hand of the slide, which is
3 full-blown disease and sequelae, but where we should
4 be working, because the evidence has shown time after
5 time that by the time we're working with positive
6 culture or histology or invasion, we're probably a
7 little bit too late.
8 We should be working on prophylaxis,
9 preemptive therapy that is based on markers and
10 empirical therapy which is based on high-risk profiles
11 in a setting where we know that our microbiology is
12 less than perfect.
13 We actually have a pretty good sort of
14 pipeline of candida clinical trials, starting with the
15 now classic Rex in 1994, fluconazole. We pretty much
16 use the same mold for any clinical trial trying to
17 bring a candida drug to market, which is -- so you can
18 see here in the slide which is a summary of the AMBIS
19 paper, Meta-Analysis of these Clinical Trials. In
20 general terms, we deal with candidemia, plus/minus
21 signs and symptoms.
22
We have limited representation of
invasive disease, and immunocompromised patients.
We've treated patients for two weeks, usually, from
the first nadir culture and we always work on an
intent to treat population that receive at least one
dose of the antifungal and most of that comes our
6 clinical microbiological success at the end of
therapy.
8
longer works in 2020 and definitely doesn't work for
10 Candida auris for the reasons I'm going to show you
11 coming up ahead. So this is the anatomy of a candida
12 trial and everything starts with screening where you
have a patient that needs to have signs and symptoms.
may or may not have radiological findings.
This is less relevant for candida than
16 (inaudible) infections, and you want to have some
7 evidence of infection. Then there's a couple of days
8 that you get to enroll the patient. At that point,
you need to confirm that your microbiology was
positive back then is still positive, and then we go
into therapy where we monitor signs and symptoms,
again, radiology to a certain extent for candida, more
Page 229
for molds. We continue to get microbiology at the end
of therapy, signs and symptoms, radiology if
available.

4
We look at microbiology outcomes and we
5 look at crude mortality, for the most part. And then
6 there's usually a follow-up visit where, again, we
7 look at signs and symptoms, microbiology, radiology
8 mortality, and this is where we assess for relapses
9 that has always been a concern for any candida
10 therapy.
11
Common pitfalls in the scheme. Well,
12 the first one has always been the disease definitions.
13 And although we just released the revised update to
14 the consensus definitions late last year, we still
15 have a problem with candida definitions because for
16 the most part they focus on a positive culture or
17 possible histology and we sort of still relegated the 18 role of beta-glucan or another biomarker which is T2
19 Candida as evidence for not proven but for probable
20 disease.
21 Another big problem with the
22 definitions is that we actually could not reach

1 consensus for ICU settings regarding risk factors and
2 definitions, so we elected to take out the whole ICU
3 theater so that we could get ahead and publish the
4 definitions and there's a group still working on ICU
5 definitions. So a big problem, specifically, when you
6 deal with candida and Candida auris.
7 The second pitfall we have is that we
8 are dealing with a framework for assessing outcome
9 adjudication that was published 12 years ago. We
10 probably -- we started to work on it two years before,
11 so we're working with definitions that are 14 years
12 old and as I'm going to show you in the next slide, we
13 have learned a lot over those 14 years that have not -
14 - all of the elements that we chose for the framework
15 are applicable or work anymore for fungal infections
16 So again, this is, mea culpa, we need to as a group
17 really sit down and re-look at these outcome
18 definitions and update them, bring them to 2020.
19 Among the pitfalls within the
20 definitions, we have that we require signs and
21 symptoms. And as all of you know that work in
22 mycology clinical trials, signs and symptoms are not
Page 231
1 always present, even in the setting of proven disease.
2 So we used to think that candida could be a
3 contaminant. We used to think that molds could just
4 be present in bronchiolar lavages, but not anymore.
$5 \quad$ At this point in time, we do understand
6 that some of these organisms may be there and may not
7 be giving signs and symptoms acutely. And we still
8 are requiring signs and symptoms as criteria to end
9 treatment to clinical trials, mainly because that's
10 one of the things we follow.
11 However, signs and symptoms, when
12 present, can be multifactorial given the complexity of
13 the patients we're working with in fungal infection
14 and the fever that the patient is having could be
15 related to the patient's underlying disease, other
16 interventions that we're doing to them like several
17 chemotherapeutic agents, and these patients don't
18 exist in a bubble. They can have other infections so
19 this could be the trichomonas infection and not
20 candida that's continuing to give the patient fever.
21 And finally, we've learned to
22 understand that again the signs and symptoms may or
may not correlate with overall clinical improvement
with radiology or with microbiology, so when we're
3 really heavily based on signs and symptoms, we're
4 already working behind the eight ball.
Talking about the eight ball,
6 microbiology. So sort of the natural history of
growing, identifying, and getting susceptibilities of
8 candida and the contemporary microbiology lab usually
takes at minimum three days and at maximum or under
ideal conditions five to seven days. So if we're
11 relying on a process that is going to be taking
anywhere from three to 96 hours, we're immediately
behind the eight ball when we're trying to enroll
patients into clinical trials within a very limited
time window. So again, working with contemporary
16 microbiology, we're automatically narrowing the enrollment window to very critical times.

So once we have a culture that is
growing candida that has been identified as Candida
auris, we probably have eight hours to enroll the
patient in the clinical trial, given the current
constraints of timing that we have been working with.
Page 233
Another problem is that blood cultures have very poor
sensitivity where they do not have specificity and
molecular ID is not mainstream yet throughout the
world.
5 It is relatively well represented here
6 in the United States, but in many of the countries
where we need to be working to enroll Candida auris
8 patients or patients with resistant candida species,
molecular microbiology is not mainstream by any means,
so again, a very big limitation here.
11 Another issue with assessing
microbiology is that it's not always feasible to
resample invasive sites. So for blood cultures, it's
pretty straightforward. We can do as many blood
cultures as we want, but for that hepatic abscess,
it's a big production to go back in and get a
resampling to declare the patient has been a
microbiological success.
Biomarkers and serologies. I think we
can all agree that beta-glucan, T2, and other
biomarkers have been clearly established as an
enrollment criteria for clinical trials. They give us

1 sort of evidence that the patient has a fungal
2 infection. Where we have struggled is to really nail
3 them down as surrogate markers for success of therapy.
4 So despite some publications out there
5 specifically about beta-glucan and to a more limited
6 extent to T2, we do not have the level as yet, but we
7 need to accept them as surrogate markers for outcomes.
8 So this is another big problem with microbiology.
9 Radiology. Radiology has a very, very
10 high sensitivity, but probably the lowest specificity
11 of any diagnostic modality we have. So the problem we
12 have, again, primarily with mold infections but to a
13 certain extent with candida is that radiological
14 findings don't necessarily correlate with clinical
15 improvement.
16 So I'm showing you here a brain
17 abscess. I'm showing you hepatosplenic candidiasis
18 and this -- the brain abscess, of course, is something
19 that you expect to resolve on imaging when the patient
20 is being treated and has a success, but hepatosplenic
21 candidiasis is a much more complicated disease to be
22 evaluating by radiology as changes may last for months
Page 235
1 and months and months, when a patient is probably
2 completely cured.
3 And then, we have to consider a 4 patient's safety and think about the ethics of
5 repeated exposures to radiation if we want to use this 6 end point.
7 Finally, another end point that has 8 been very, very controversial is mortality. This is
9 the classic paper by Dick Wenzel that explored that
10 attributable mortality of candidemia that really gives
11 sort of the piece of information we needed to know
12 that candida was not just a colonizing agent and that
13 it had an impact on mortality and on eventual state,
14 but again since this paper, which is a couple decades
15 old we really haven't made much of an effort in
16 studying attributable mortality for candida and
17 therefore we're stuck with crude mortality, which as
18 all of you know, the population that is likely to
19 experience candida is a population that is likely to
20 die from many, many, many other things, so we're
21 stuck, again, with a very imperfect measure where
22 candida is probably contributing only a percentage of 22
the reason that people are dying.
We don't really know most of the time
if people are dying because of candida or with candida
at any given time. So I was always taught that you
shouldn't bring up problems without bringing solutions
6 and these are my proposed solutions to these problems
that I've just mentioned.
I think we need disease definitions
that are very nimble in a dynamic process. We cannot
0 be taking 10 years to update the ER -- the CMS
definitions anymore. We need to really be addressing
them in a living website with live information, much
like we're trying to do with some of the other
guidelines that we're working on and sort of bringing
this to 2020 where not everything has to be published in a print journal.

17 We need a new panel by experts for
18 really talking about what are the new response outcome
definition looking like. So I think we need to
deemphasize signs and symptoms. We need to really put
some thought on using biomarkers as surrogate
endpoints. I think, again, there's some evidence that
Page 237
we can use them to a certain extent. We need to
definitely deemphasize radiology in outcomes.
I can't tell you how frustrating it is,
not for candida, but in some of the VRCs that I've
participated in to be seeing patients with
6 mucormycosis or other failed mycosins that are alive
7 and well at two, three years out but they still have
8 some imaging changes and we're calling them stable or
failures because of imaging, so we really need to
address radiology in a completely different way.
Again, I think we need to deemphasize
crude mortality and work towards attributable
mortality, and one thing that I think we need to do
away with is composite endpoint. We haven't had much
chance to talk about this here, but we had a few
clinical trials that were amazing, sort of
breakthrough trials, but by using composite endpoints,
we always had kind of a scratch your head reaction
after the clinical trial results came out.
So we need clear, single end points and
try to avoid composite endpoints going forward. I
think immediately, what I think we need to do is

1 expand enrollment and prior antifungal windows,
2 recognizing the way microbiology works currently and
3 the forces out there that are sort of pushing
4 empirical therapy as fast as possible because it is
5 associated with increased mortality and I feel this is
6 what LPAD was created for.
7 This is exactly the setting where we
8 need to be working on an LPAD framework where I think
9 we need small open label trials in high incidence
10 areas both in the United States and EX-U.S. primarily,
11 where we can collect a key series of 20 to 30 very,
12 very well studied cases and compare them to
13 contemporary controls, so I know the Fungiscope
14 database was kind of the big example of semi-
15 contemporary controls, but I think we can be
16 collecting data in a contemporary fashion along with
17 the studies so that we have sort of the data we need
18 to have a control that is relevant to the disease
19 state that we're studying.
20 Again, I think this needs to be paired
21 up with very strong preclinical and safety data and
22 this is a path forward, in my opinion, for Candida
Page 239
1 auris. Again, I just want to emphasize that the space
2 we should be working on now is really the left hand
3 side of the slide, where we need to start thinking not
4 only of the traditional clinical trials that look for
5 a patient with a positive culture and see what happens
6 afterwards, but we need to keep pushing the envelope
7 into prophylaxis, preemptive, and empirical therapy,
8 even for Candida auris where this is going to be a
9 little more difficult.
10 Again, at this point, this kind of
11 information has permeated throughout the United States
12 and worldwide, where we understand that waiting for
13 positive culture is going to double or triple your
14 mortality off the bat and most hospitals in the United
15 States are really working on an empirical framework
16 where we're starting antifungals empirically the day
17 we're culturing the patient, and this is where we need 18 to be going.
19 So next generation clinical trials,
20 this is my forward looking statement here, have to be
21 really grounded upon molecular microbiology and I
22 truly believe that it's just a matter of five to 10
years where we have whole genome sequencing in
clinical laboratories, at least in the United States
and other developing -- developed countries, and we
are going to be working with point of care biomarkers,
so again, all this lateral flow work is really going
6 to bring enrollment and outcome monitoring to the
7 bedside as opposed to working with reference
laboratories, which is what we have to work with right
9 now.

11 with traditional trials and moving into strategy
trials looking at prophylaxis versus preemptive,
preemptive versus empirical, empirical versus full,
and all the iterations that you see there and that is
really going to move the needle as opposed to just
another sort of licensing clinical trial for an
antifungal.
And finally, I think we are already in
the era of personalized medicine and this is exactly
where we need to be working on, which are uncommon
pathogens, resistant pathogens, taking advantage of
the tools that are coming up right now, really looking
Page 241
at pharmacogenomics and again, a little bit of forward
thinking, genetic risk will really be the key to
3 enrolling some of these patients into the more high-
4 risk and strategy trials.
This is my last slide. I want to
6 really invite you to read this paper that came out of
the MSG annual meeting. This is our blueprint for
8 research that was drafted a couple years ago,
published this year. We are going to be postponing
10 the next MSG meeting due to our friend COVID until
next year, but this is a really good thing to take
home and read and look at where the priorities for
medical mycology are in the next couple years.
Again, I want to thank you for your
attention and I'm going to turn it back to Helen.
DR. HELEN BOUCHER: Thanks very much,
Luis. I think we are now scheduled for a break -- for
a 10-minute break. So guess we should plan to be back
at around $3: 15$ for our panel discussion. Thanks very much.
(Break)
DR. HELEN BOUCHER: Hi, it's Helen

$\text { Page } 242$	Page 244
1 Boucher. We're ready to start the panel discussion.	1 look at the non-neutropenic patients, there's a very
2 Along with Luis Ostrosky-Zeichner, I'm here to guide	2 big difference in outcome.
3 us through some discussion of these six questions over	3 But because the numbers enrolled were
4 the next about hour-and-a-half and the way we're going	4 small, it didn't quite reach statistical significance
5 to manage this is we'll go through each question and	5 but it was about a 30 percent difference in outcome,
6 we'll direct it to one person to start and then	6 which wasn't something that came out of the discussion
7 everyone to join in and just ask you to use the "raise	7 in the paper, probably because of the numbers not
8 your hand" feature on the software and we'll just go	8 quite reaching statistical significance. My theory is
9 through as many	9 the prophylaxis being sort of almost universal in
10 received the question	10 neutropenia, we -- if we want to do invasive
11 So the first question is asking us to	11 aspergillosis studies, we have to move away from that
12 discuss important factors to consider regarding trial	12 population, to a great extent, and that means thinking
13 populations like host factors, length and type	13 about patients who have COPD, influenza, COVID-19,
14 immunosuppression and predisposing condition	14 other types of -- lung transplants, other non
15 including COVID, and to address the question about	15 neutropenic type of patient groups and that, I think,
16 heterogeneity in the trial population, whether that's	16 is going to require working across the definitions of
17 a good thing or whether it raises concerns and how	17 the MSG or RTC because some of them we haven't got
18 that should be handled	18 definitions for.
19 And so we thought we might ask Dr.	19 They didn't work very well and it's
20 Thompson if he wants to kick this one off. G.R.,	20 going to require a different way of thinking about
21 would you	21 outcome because the scans in many of these patients
22 DR. GEORGE THOMPSON: Sorry?	22 are abnormal with their underlying disease, let alone
Page 243	Page 245
DR. HELEN BOUCHER: G.R., would yo	1 their aspergillosis. So I think there's -- I think
2 like to chime in on the first question	2 the answer to your question, yes, there's a lot of
3 DR. GEORGE THOMPSON: My connection's	3 difference in the aspergillosis area.
not very good.	4 DR. HELEN BOUCHER: Great, thanks for
5 DR. HELEN BOUCHER: Okay	5 that. Looks like Kieran Marr has a comment.
6 DR. GEORGE THOMPSON: -- repeat it?	6 DR. KIEREN MARR: Hi, there. Hi, I
7 DR. HELEN BOUCHER: How about Dr.	7 think I can be heard now, I hope.
8 Pappas?	8 DR. HELEN BOUCHER: Hi, Kieren. Go
9 DR. PETER PAPPAS: G.R., we can see	9 ahead.
10 you. Want to	10 DR. KIEREN MARR: Fabulous comment by
11 DR. DAVID DENNING: This is David	11 David about the combination therapy study and the
12 Denning. I'm happy to make one comment on that,	12 heterogeneity in outcomes witnessed within that study.
13 you wish.	13 I'll add that I think that the issue is not that
14 DR. HELEN BOUCHER: Thanks, David. Go	14 there's no heterogeneity with neutropenia. It's that
15 ahead. Can hear you great	15 if you looked very closely at the underlying disease,
16 DR. DAVID DENNING: Well, when you look	16 it's apparent that neutropenia itself is, as John Rex
17 at the combination trial with invasive aspergillosis	17 calls too blunt an instrument.
18 with voriconazole and meningitofungin, if you look at	18 It's a -- it encompasses people that
19 the outcomes in neutropenic patients, there was really	19 have outcomes that are very heterogeneous within and
20 no difference	20 if we looked -- when we looked, actually, at th
21 outcome, and that includes this stem cell transplants,	21 underlying diseases of the population, the populations
22 although there weren't very many of those, but if you	22 that did worse within that are people that had acute

1 leukemia that was relapsed. And this, to me, outlines
2 progressive learning that we continue to experience in
3 that there are ways to understand the outcomes within
4 categories. Neutropenia and non-neutropenia itself
5 are not adequate to actually -- to encompass,
6 actually, the predicted outcomes, especially if you're
7 looking at survival.
8 So I think it's really important to
9 discuss heterogeneity. I agree with David completely
10 and that we need to go deep within the underlying
11 disease and other predictors of outcomes within those.
12 DR. HELEN BOUCHER: Great, thanks very 13 much, Kieren, for that. Dr. Pappas.
14 DR. PETER PAPPAS: Hey, how are you 15 doing?

16 DR. HELEN BOUCHER: Great. Nice to 17 hear your voice.
18 DR. PETER PAPPAS: Good to hear you as
19 well. Something that comes to mind that I guess could
20 be obvious but it needs to be stated, and I think that
21 the -- one of the areas where heterogeneity really
22 does play a role in general, I believe, is in these
Page 247
1 cryptostudies and I guess the day of throwing all
2 these patients together, HIV and non-HIV, really, I
3 think, is over.
4 And within the HIV population itself, I
5 mean, there really kind of four populations -- I mean,
6 within the cryptopopulation itself, there are really
7 four populations. There's the transplant; the HIV;
8 the non-HIV, non-transplant but still compromised
9 patients, patients with renal failure, hepatic
10 failure, steroids, et cetera; and then the normal
11 host.
12 And those are so different in terms of
13 their responses and so forth that a trial that would
14 throw them all together or just divide them into HIV
15 and non-HIV, really I'm not sure that would teach us a
16 lot. And I don't know how many ways you can stratify
17 patients of that nature, so it seems to me that that's
18 a group where same disease but very different
19 populations lead -- could lead to very, very different
20 outcomes.
21 DR. HELEN BOUCHER: Great. Thanks very 22 much. Mike Hodges.

2 couple of comments on the underlying diseases.
think Pete, in one of your papers with the late
Claudio Viscoli, Jack 2009, where you looked to
caspofungin for the treatment of invasive
6 aspergillosis, you found that Karnofsky score and
whether the patient was in remission for leukemia had
8 a big impact on the outcome.
I might also throw in length of
neutropenia or neutropenia recovered or ICU
ventilation as well, high grade graft versus host,
mismatch unrelated transplant, and even a high serum
galactomannan greater than 1.5 may all be big
prognostic factors. That's one point.
I want to make another point about the
randomized controlled trials, the three randomized
controlled trials that have been conducted for
invasive aspergillosis. They tended to be in the
hem/onc population, for example AML, neutropenic GM positive.

And what we're finding is the patients
who are on the ICU who don't have hematological
Page 249
oncology malignancies but have viral pneumonia either
the kappa or the influenza, they have a far greater
3 mortality than the patients who have the underlying
4 disease of hem/oncs and as people around the panel
5 will note better than me, there are people looking to
6 get better definitions for the coronavirus-associated
pulmonary aspergillosis and there are already existing
8 definitions called the AspICU definitions for
pulmonary aspergillosis secondary to influenza.
So two points there, and I'll pause and
hand it back to Helen.
DR. HELEN BOUCHER: Thanks very much,
Mike. Dr. Perfect.
DR. JOHN PERFECT: Hi, thank -- okay,
thank you very much. It's my pleasure today to listen
to this. It's going to cost me about five hours
tonight rounding on the transplant ID service, but
other than that, I wanted to make a statement on
heterogeneity. It is all -- they're all heterogeneous
type situations and what I wanted to do is make some
kind of statement which I think is probably off base,
but I think it's important.

1 In this day and age of computerized --
2 for the amount of information we get today, we should
3 be changing the game completely. We should have
4 centers that actually know what these patients
5 actually do and what happens to these patients. It's
6 unconscionable that we do a candidemia study and we
7 have $50-30$ to 50 patients that can't be put in the
8 study and we get one on the study. That's not right.
$9 \quad$ So what I would say is trying to pick
10 the heterogeneity in this thing is, what's the
11 solution. I think part of the solution would be is
12 you take 10,15 centers throughout the United States
13 or Europe or wherever that's got these type of
14 patients and you dive down. I know things change, but
15 if you dive down in the type of patients that they
16 have and understand what they are and what their
17 outcomes are, we may not need -- and our controlled
18 population is right there.
19 It's right there with us and we can
20 reduce the number of patients we put in the studies
21 and we could control for the heterogeneity.
22
DR. HELEN BOUCHER: Thanks very much,
Page 251
1 John. John Rex, and then we'll turn it to Dr.
2 Ostrosky to go to the next question.
3 DR. JOHN REX: There we go. The little 4 voice said the microphone is on now. Heterogeneity
5 cuts two ways and only -- I think there are two things 6 you want to know about a compound. You want to know,
7 does it work, and then how best can you use it. And
8 the question of does it work needs to be answered as
9 cleanly as possible and I would actually argue that
10 you want the heterogeneity because it reflects the
11 real world, but you also want to bias it towards a
12 greater degree of immune compromise, because that's
13 where the signal efficacy is the sharpest. But then
14 the question how best to use it is something that can
15 take years to study. I know -- Pete, your comment
16 about HIV versus non-HIV, I fully recognize, very
17 different diseases.
18 What I think is probably true, that
19 HIV, cryptococcal meningitis, is a harsher testbed for
20 a new engine. If it works there, probably work
21 elsewhere, but may use it a different way, so I want
22 to just emphasize the idea that getting a drug, you

1 know, goal number one has to be to make the compound
2 get to the place where it actually stays available to
3 us and that means initial approval with an adequate
4 data package to get you started, and then we do the
5 rest -- then we do the next 10 years' worth of work
6 after that.
7 And so heterogeneity early on, I think,
8 you do want to pick up some of it and I think you want
9 to bias it towards the -- bias towards greater degrees
10 of immune compromise.
11
DR. LUIS OSTROSKY-ZEICHNER: Thank you.
12 thank you very much, Dr. Rex. We're going to move on
13 to the second question which is, what are the settings
14 in which external controls and other alternative trial
15 designs need to be used to obtain adequate and
16 interpretable data? Are there gaps in those sources
17 for external controls and what do we need to do to 18 address them?

19 And to start off the discussion, we
20 would like to invite Dr. Patterson to chime in. Tom,
21 are you available?
22
DR. THOMAS PATTERSON: Yes, I sure am.
Page 253
1 Thanks, Luis and Helen. I think that that's a really
2 important area that we do need to explore. Clearly, I
3 think, we've heard the challenges of looking at sort
4 of our standard randomized trials and how it's really
5 become truly almost impossible to do, so that I think
6 we do need to look at these external controls as ways
7 to facilitate enrollment and get results quicker so
8 that we'll have more interest in developing drugs in
9 the field.
10 I think that's been painfully clear
11 from the discussion today, but I hope we can also move
12 to alternative trial designs, specifically using
13 alternative end points. I think we've seen the
14 potential for -- in crypto, where that can happen and
15 be very valid. I think it's been shown pretty well
16 that those alternative measures of, like, declining
17 counts and such have clearly not only been shown
18 initially to be useful, but then validated by large
19 trials which are possible, or were possible at least,
20 in crypto and so I hope that'll happen.
21 I hope that'll be able to happen with
22 other sort of markers that we can use to develop

1 greatly enhanced the capacity for enrolling patients
2 robustly who have a need or the option for receiving a potentially life-saving antimicrobial agent, for example, for Lomentospora prolificans or for
5 mucormycosis and strengthening, therefore, the
6 external control and having the robust database can
7 help immensely.
8
But aligning along with the
9 heterogeneity, which is really also something that
10 would need to be controlled, is the -- if we are
11 having randomized studies, is the need for robust
12 stratification. We're told commonly, well, you can
13 only have two strata.
14 But we know painfully from the DEFEAT
15 study in mucormycosis that if you do not stratify on
16 the key areas of heterogeneity, it can be a disaster
17 and can give you conclusions completely the opposite
18 and those conclusions are going to be -- and the need
19 for having the proper external controls and having the
20 proper stratification with a typical investment become
21 all the more critical with the less common mold and
22 yeast pathogens.

2 much, Tom. I see Kieren has her hand up. Kieren, do 3 you want to make a statement?

DR. KIEREN MARR: Hello, this is
Kieren. Are you talking to me? I didn't have my hand 6 up. That's old.

8 Perfect, you have your hand up. Would you like to make a remark?

DR. JOHN PERFECT: Well, that was an old hand, like Kieren, but I'll make a remark. Yeah, I agree completely with Tom. As I said before, my first talk was -- my first discussion was the question of external control and I think we're missing the complete boat. It's going to take time. It's going to take money. It's going to take effort. But we can extract an awful lot of information on what we already 18 have today and put everything in the context when we study a new drug and I think to use it completely -completely change that way, so I agree completely with

Tom's statement.
I'm sorry, my hand was up for the other
DR. LUIS OSTROSKY-ZEICHNER: -- very

AARON DANE: Hi. Again, following up
from Tom's comment, I think it's right that we've got
0 some good external control data in some of the more
common areas. When we go into the rarer areas, that's
probably where we could derive most benefit and what
it would be worth thinking about is whether we've got
external control databases or whether we need to build
them which are more complete.
So the idea that it should be a
complete case series, for example, rather than a selected subset who -- where there's maybe more interest in reporting a case. So I think that's the important component for some of these rarer molds and these rarer areas where we might need to think about whether we've got a complete external control set or

1 whether it's something we need to think about how we 2 get to that.

3 DR. LUIS OSTROSKY-ZEICHNER: Thank you 4 very much, Aaron. We have Dr. John Rex.

5 DR. JOHN REX: So am I -- can you hear
6 me?
7 DR. LUIS OSTROSKY-ZEICHNER: Yes.
8 DR. JOHN REX: It's hard to know when
9 you're on and off mute. So external controls can
10 definitely be used here and there's an advantage, not
11 for all of the fungal infections but for some of them
12 in that they are relatively chronic. Acute infections
13 do get better sometimes on their own and I'm reminded
14 here of that paper by Fleming and Ellenberg entitled,
15 "Why We Need Randomized Controlled Trials for Ebola."
16 The shorter the duration of the
17 infection to either spontaneous resolution or any
18 other outcome that can be influenced by supportive
19 care, the harder it is to know what it means when you
20 intervene in the course of an ongoing process.
21 On the other hand, somebody's been
22 running along with cryptococcal meningitis for several

1 study anything else, assuming that you had a mold
2 active drug or a yeast active drug. I mean, there are
3 clear indications for rarer infections and I think it
4 would be really helpful for the MAA to consider
5 somebody who had, for example, a mucormycosis only
6 drug and how they would approach that because doing an
7 RCT in that context would be impossible, I think.
8 That's one comment.
9 And then the second, related to that,
10 is that within a population of patients, so you might
11 decide to set out to do an RCT in aspergillosis, but
12 actually your drug has little merit in azole
13 resistance or in rare species such as -- or rarer
14 species such as terreus, which are amphotericin
15 resistant, and you want to be able to take a subset --
16 preplan a subset analysis of those resistant strains
17 with your new drug, that I don't think you'll get
18 enough within an RCT to get that set, so therefore
9 historically controlled parallel group or group
20 collected alongside in other centers with a natural
21 history of what happens in those patients, to me,
22 would be essential to try to get that additional

Page 259
Page 261
1 months; they're not going to get better tomorrow. And 1 indication for not only aspergillosis but azole

2 when you intervene with a new agent and they -- and
3 you bend the shape of the curve of their clinical
4 course, it -- I know the plural anecdote is not data,
5 but when you have diseases that are relatively chronic
6 and that do not remit, that's just what they do in the
7 cancer world.
8 This is what we do in metabolic
9 diseases. We look at relatively small numbers of
10 individuals with progressive inexorable processes and
11 we say, look, they didn't get better today because of
12 magic, so I think that we really -- I think we're
13 underusing it, but we have to use them very
14 selectively. Over.
15 DR. DAVID DENNING: Luis, can I make
16 another point? Or Helen.
DR. HELEN BOUCHER: Sure, go ahead.
DR. DAVID DENNING: The -- I think one
19 of the things that's tricky and I was slightly
20 perturbed about, that is indication from the MMA that
21 in order to take a drug through you have to have an
22 RCT in candida or aspergillus before you could really

2 resistant or resistant aspergillus.
3 So I see multiple ways in which this
4 might be helpful, the rare pathogens and resistant
5 pathogens within a population as the two key areas.
6 DR. LUIS OSTROSKY-ZEICHNER: Thank you
7 very much. Let's see, Karen Higgins.
8 DR. KAREN HIGGINS: Hi. Hi, I'm the
9 statistical team leader working with the Division of
10 Anti-Infectives at FDA and I agree with a lot of the
11 discussion so far. You know, I think there are cases
12 where externally controlled trials can be useful, but
13 I do think we need to keep in mind, they really are
14 weaker trials. They're not able to control for many
factors.
The patients come from different sites
and they're just not the gold standard as randomized
controls, so as Cheryl said in her talk, having a
historically controlled trial be supported by a
randomized controlled trial is certainly helpful and
21 we'd love to see that whenever possible, so we do
understand there are certain circumstances where that

1 would be difficult to do. I just wanted to point that
2 out. Thank you.
3 DR. LUIS OSTROSKY-ZEICHNER: -- much.
4 Let's try Dr. Bennett again.
5 DR. JOHN BENNETT: I had a comment
6 about John Perfect's statement about using data from
7 one's own institution. Looking at my institution, the
8 problem I see is switching from one drug to another
9 and back again, so it's hard to know what each
10 individual drug is doing and in addition, because the
11 data is prerecorded and each patient is different,
12 it's fair to use the same criteria to look across
13 sets.
14 So I think having external data has
15 some value, but if you don't control for it and get
16 the right data and there's some control over drug
17 usage, it's very difficult to interpret the data. I
18 noticed in the mucormycosis approval for
19 isavuconazole, a fair number of the patients were
20 started on the other drug first, salvage therapy if
21 you will. When they were given isavuconazole then
22 switched to another drug, but because an ITT, intent

1 to treat analysis was used, the final outcome was
2 recorded as if they were still on isavuconazole, but
3 they weren't.
$4 \quad$ And I think this just indicates they
5 probably have external data. It's not as clean as if 6 you were trying to control it from the beginning. So
7 that's the end of my comment. Thank you for asking.
8 DR. LUIS OSTROSKY-ZEICHNER: Thank you,
9 Dr. Bennett. Dr. Nambiar.
10 DR. SUMATI NAMBIAR: Hi. I've been
11 muted and unmuted repeatedly. So mine was more with
12 stratification. I think we've heard that there are
13 concerns with using external controls but there, in
14 fact, might be some situations where that might be the
15 only option. We've also heard that the need to
16 collect the data on external control, how do we go
17 about doing it and does anyone have suggestions on how
18 such data can be collected in a systematic manner so
19 that it can be available and applied in a more
20 consistent manner. Thanks.
21 DR. LUIS OSTROSKY-ZEICHNER: Thank you,
22 Dr. Nambiar. I think one of the examples of the way

1 we're collecting contemporary data is the nature study
2 that Dr. Pappas mentioned, where we're actively
3 collecting people that failed antifungals in candida
4 in a way that would be almost ready for a clinical
5 trial, a way -- exactly the same way we collect data
6 for a clinical trial.
7 So I think launching these types of
8 initiatives where we're sort of intentionally
9 collecting contemporary controls in a compliant
10 fashion is going to get us a very long way, so that's
11 what I would like to contribute there.
12 We have Dr. Botgros.
13 DR. RADU BOTGROS: Thank you very much.
14 Can you hear me?
15 DR. LUIS OSTROSKY-ZEICHNER: Yes.
DR. RADU BOTGROS: Yeah, on the
17 external controls, you know, what I wanted to say is
18 of course our view is that they should never be the
19 first choice, but we accept that for instances like
20 rare fungi with high mortality, it might be
21 unavoidable to have this approach. And I was thinking
22 that maybe in view of the fact that matching the

Page 263
1 external control is generally difficult and difficult 2 to interpret sometimes, whether it would not be good 3 to have efforts focused on aiming to construct through 4 BAFF datasets that could be accepted and used in the 5 regulatory process. Thanks.

6 DR. LUIS OSTROSKY-ZEICHNER: -- very
7 much. Back to Aaron Dane. Aaron, do you want to try
to answer Dr. Nambier's...
9 AARON DANE: Yes, so it took me time to
10 come off mute. So when -- yeah, in response to Dr.
11 Nambier's question, I guess similar to the previous
12 comment, it was -- I think one approach that could
13 help would be if there were certain sites which were
14 known to have a particular issue with a particular
15 pathogen, for example, then getting complete cases
16 with patient level data could be a way that we could
17 do that and hear that, so that may be available 18 already in some situations.

That could be a case where you know
20 you've got everybody with that pathogen in question
21 and you know you've got the level of data you need to
22 be able to try and match them up with the clinical

$\text { Page } 266$	Page 268
1 trial population appropriately and that could include	1 That good outcome, if it does correlate
2 prior therapies and the time on those prior therapies	2 well with the clinical -- with one's preclinical
3 as important components of any comparison.	3 research, provides the reassurance in that regard.
4 DR. LUIS OSTROSKY-ZEICHNER: Thank you,	4 For example, with you look at isavuconazole, as Dr.
5 Aaron. Dr. Walsh, do you want to make a comment? Or	5 Bennett said, yes, there were significant limitations,
6 Dr. Pappas?	6 obviously, in that clinical trial design. But we're
7 DR. PETER PAPPAS: Yes. Can you hear	7 talking about a deadly, life-threatening disease for
8 me ?	8 which we really have no other therapeutic options
9 DR. THOMAS WALSH: Are you able -- yes,	9 other than a nephrotoxic agent, which sometimes works.
10 can you hear me? In addition to the very fine points	10 And that is the robustness of the
11 that have been already made, may I suggest please that	11 preclinical data, and one of the reviewers at that
12 we appreciate that we are not working in a clinical	12 time said, yes, I understand the limitations of the
13 trial vacuum. There are two areas where there --	13 clinical dataset but "I am persuaded by the
14 where we could grow tremendously. One is from	14 preclinical data." Our EMA colleagues do take a very
15 national -- from the National Cancer Institut	15 robust approach and quite often a working translation,
16 efforts. There is, for example, the Experimenta	16 we're asking ourselves is this working.
17 Therapeutics Committee for Rare Cancer. There's also	17 Is this working in the dose and in the
18 the Alliance for Clinical Trials in Oncology	18 host in well-developed preclinical models to
19 There are a number of organizations	19 ostensibly be able to interpret limited clinical data,
20 that specifically focus on rare cancers without	20 so I think integrating that into our decision making
21 massive, randomized trials and I would just wonder	21 can help immensely.
22 whether it might be worthwhile addressing to the --	22 DR. LUIS OSTROSKY-ZEICHNER: Thank you,
Page 267	Page 269
1 within the FDA regulatory setting, even potentially a	1 Tom. Pete, you wanted to say something?
2 combined conference as well as perhaps pioneering i	2 DR. PETE PAPPAS: Yeah. Yes. I've
3 deficiencies where clearly there are -- there's little	3 heard what everybody's said and I want to kind of go
4 opportunity, especially for the metabolic diseases, to	4 back to what John said, and I particularly -- I mean,
5 be able to do robust randomized trials to use some of	5 this particularly relates to candidemia. One of the
6 the -- to adapt some of the regulatory and statistical	6 comments that I made during my presentation is rea
7 models that they employ	7 the sheer numbers of patients who are screened but
8 This is not the first time that we're	8 don't get enrolled into candidemia studies.
9 looking at rare diseases and, in that regard, it might	9 In every one of our annual meetings or
10 inform us in terms of subtleties of clinical trial	10 biennial meetings, we have always put as a priority
11 design, and also rationale and president that we	11 and unfunded priority, the -- our capacity but kind of
12 haven't used. That's one.	12 inability to capture what happens to those patients
13 Two is jumping ahead a little bit, but	13 who are screened for but never enrolled into a
14 there -- as proof of concept and working with rare	14 candidemia study
15 molds, rare yeasts, multidrug resistant organism	15 And again, the ratio is, I think on the
16 including auris, if we are working in the context also	16 low end, 1 to 10. On the high end, it may be 1 to 50.
17 of preclinical data, strong preclinical model	17 So for every patient that's enrolled, there are
18 redundant, consistent PK/PD driven model systems that	18 somewhere between 9 and 49 patients who are not
19 are also co-spaced, it provides a reasonabl	19 enrolled for candidemia, for a variety of reasons that
20 underpinning of proof of concept that the results that	20 don't have to do with patient just refusing consent.
21 are being seen in clinical trials are not just random	21 The understanding -- our understanding has been that
22 error.	22 there is tremendous value in really understanding what

1 happens to those patients, particularly at sites that
2 are already participating in a clinical trial.
3 Understanding what Jack Bennett said,
4 too, because there's a lot of heterogeneity in these 5 patients in terms of coming on and off drugs and so

6 forth, but surely we can -- well, again, we won't know
7 until we gather data, but until we gather that data
8 and are incentivized to do it financially and then --
9 and therefore given the capacity to do it, we're
10 really missing just a huge opportunity to find out
11 what happens in the real world and really understand
12 what the outcomes really are in these diseases, and
13 whether it's candidemia or other rare molds doesn't
14 really make any difference, but capturing those
15 patients, the data pertaining to underlying diseases,
16 treatment, and outcome can -- the limiting factor here 17 is not a lack of interest.

18 It's not heterogeneity. It's really
19 nobody gets funded to do that, no companies and no
20 institutions pay for that kind of information, which I
21 think is really a treasure trove and it's something
22 that we're -- we just have always overlooked and I
Page 271
1 think everybody recognizes that we're not really
2 seeing maybe the true picture of candidemia outcomes,
3 et cetera based on our clinical trials alone. That's
4 all.
5 DR. LUIS OSTROSKY-ZEICHNER: Thank you
6 very much, Peter. Before I turn it over to Helen, I'd
7 like to see if Tom Chiller wants to chime in and
8 discuss, is there any databases that the CDC that have
9 sufficient granularity where they could be used as
10 controls?
11 DR. TOM CHILLER: Yeah, thanks.
12 Thanks, Luis, and I'm just here listening to the
13 discussion, I think, more than anything else and
14 learning from all you guys who are out there battling
15 these clinical issues. I think from the CDC's
16 standpoint, we would like to figure out, because this
17 is -- I think as Tom Walsh and others have described,
18 because this is a unique population, a unique bunch of
19 diseases that are quite different, some of which are
20 more rare than others, it just lends to us working
21 together as a community to when things are -- when
22 trials are conducted or tried to be conducted, we
can't try to learn from what's happening with that
2 data, I think just as Pete was alluding to, for
example the 9 to 49 patients with candidemia that
4 never make a trial, someone needs to be looking at
5 that data (sound drops) et cetera.
So I think that's the role for our
group and working with others, is to try to look at
8 that. There are lots of problems with big data, as
you know, and with hospital data, trying to
10 characterize definitions, but I think we continue to
11 try to look at that data to at least be able to inform
you guys on what's out there on risk factors and on
what populations might be worth studying.
And I think one of the things we've
been surprised about in looking at mold surveillance,
and we're only doing this in one site in Atlanta, is
17 that the classic patients that we all describe as
18 getting mold, these transplant patients, these
patients with leukemia, et cetera, are the
overwhelming minority of patients that are coming out
in our surveillance study.
So it's more steroids, chronic lung
Page 273
disease, et cetera. It's -- so a lot of the studies
that we do looking at these infections are done
potentially in a very minor part of those who actually
are getting these infections in our hospitals. I know
you all know that, but it's interesting to see it play
out in pretty rigorous surveillance, albeit in one
site.

8
into harnessing big data because of all the
limitations, but what I do think we ought to be doing
is working together on this and trying to squeeze as
much out of any study, pre-study, et cetera that we do so that we can inform the next one.

DR. LUIS OSTROSKY-ZEICHNER: Thank you
very much, Tom. Two quick more comments before I turn
it over to Helen for the next question. One is from
Mike Hodges.
DR. MICHAEL HODGES: Yeah, just a quick one on the external controls or historical controls.

We want somewhat of an external control. Two drugs
have been approved. Two antifungal drugs have been approved using external controls. One, caspofungin,

1 one isavuconazole. The latter used a database called
2 Fungiscope from University of Cologne, and that
3 database is still up and running and still increasing
4 patients' data into its database as we speak. So it
5 is contemporaneous.
6 DR. LUIS OSTROSKY-ZEICHNER: Thank you.
7 Thank you very much, Mike. And final comment of this 8 question, David Angulo.

9 DR. DAVID ANGULO: Thank you, Dr.
10 Ostrosky. So a provocative question here regarding
11 what could be the right source for this external
12 control and I do wonder, are there regulatory datasets
13 that have been used for approvals previous drugs, a
14 potential source of external controls.
15 Because if those datasets are
16 extraordinarily comprehensive, many of them may be
17 relatively recent and probably regulatory agencies are
18 the ones that have in their hands the largest amount
19 of data about issues of invasive candidiasis and
20 outcomes, risk factors, et cetera, invasive
21 aspergillosis, so is there any possibility to have
22 access in some way, supporting not a specifically
Page 275
1 particular drug, to a particular study, but is there
2 any way that that information that has been collected
3 by multiple sponsors can be leveraged to facilitate
4 the development of other antifungal agents in the
5 future
6 DR. LUIS OSTROSKY-ZEICHNER: All right
7 --
8 DR. DAVID ANGULO: Thank you.
9 DR. LUIS OSTROSKY-ZEICHNER: -- David.
10 I 'm going to turn it back to Helen for the next
11 question.
12 DR. HELEN BOUCHER: Great. Thanks very
13 much, Luis. Great discussion, everybody. We're going
14 to turn our attention now to children and ask about
15 novel approaches and strategies to facilitate
16 development of antifungal therapies for children and I
17 thought we might ask Dr. Tom Walsh to kick off this 18 part of the discussion.
19 DR. TOM WALSH: I want to first ask as
20 to whether Aspasia is available. Aspasia Katragkou is
21 completing her second chief residency now at Queens
22 Hospital in New York Presbyterian Hospital System, but
was also assigned to outpatient today, so Aspasia, are
you on the line? No, hearing not. So I'm then taking
Aspasia's role in trying to address this really
4 important question. Certainly, the strategies that we
have taken previously and I think the overarching
6 effort given the population of newborns, premature
infants, toddlers, children, adolescents is to provide
8 a tangible benefit wherever, whenever possible.
That has been the overarching approach
9
10 that we've taken in 14 different clinical trials,
11 pediatric clinical trials for antifungal therapy. You
12 have to ask, where might that be. Obviously, for
13 defined interactions, that's as possible, but before
14 we do so, we need as Aspasia described, a really solid
15 foundation for the pharmacology and classic safety 16 tolerability PK.

17 And we talk about heterogeneity and
18 nowhere is it really so vitally important as to
19 recognize the different age groups, and so there is a
0 neonatal network that's chaired by Dr. Danny Benjamin,
21 which has certainly been tremendously successful and
that would really be the best place in which to
Page 277
1 characterize new antifungal agents in the newborn
2 population.
3 The timing of that, though, really
4 depends largely upon the findings in the older
5 population, in which case, then you're looking at
6 patients usually between two to 12 years of age and
7 that might include a stratification, then, in the
8 adolescent population. Historically, we've attempted
9 to provide the benefit in pediatric oncology,
10 particularly in a prophylactic or an empirical
11 setting, increasingly would use prophylaxis for ease
12 and practicality and its comparable efficacy, and so
13 in that regard, one can envision a target population
14 in AML, treatment for blastic leukemia, patients where
15 there are already adult data, where we can have
16 specific centers, we'd have our consortium. There are
17 other consortiums as well and with that, collaborating
18 with our industrial partners and a classic dose
19 escalation cohort design.
20
21 efficiently and yield tremendous -- tremendously
22 important data. As Aspasia indicated, there is

1 considerable interpatient variability, for a number of
2 reasons that she articulated. But with that, with 3 proper modeling, one can usually obtain, especially
4 based upon good preclinical data and the preexistent
5 patient population of adult data, in part a dosage
6 that would hit target attainment.
7 The next question, though, now that we
8 know the dosage, in which populations do we aim to
9 show some efficacy? There are different regulatory
10 requirements and I will defer to our colleagues
11 insofar as what those may be, depending upon the
12 requirements of the compound, but nonetheless, we do
13 need that experience in target populations. And with
14 that, we really look toward the networks that have
15 been established both in Europe and U.S., in order
16 that we can identify patients and who might those
17 patients be: certainly, oncology but also primary
18 immune deficiencies, patients with cystic fibrosis,
19 many of the medical and surgical patients who are
20 hospitalized. These are the common conditions that we 21 encounter in typical case series.

Ultimately, it requires an approach

1 that we work way, way and against anticipation as we
2 see new compounds beginning to be approved and not
3 wait for the regulatory approval, but instead already
4 contemplating which patients may benefit and which
5 would be the likely organisms that we should target
6 with a given compound.
7 DR. HELEN BOUCHER: Great, thanks very 8 much. Laura Kovanda.
9 DR. LAURA KOVANDA: Can you hear me?
10 DR. LUIS OSTROSKY-ZEICHNER: Yes.
11 DR. LAURA KOVANDA: Okay.
12 DR. HELEN BOUCHER: Yes.
13 DR. LAURA KOVANDA: So thank you. I
14 just wanted to make a couple of comments, having been
15 through the pediatric development for a couple of
16 different compounds now and through some challenges in
17 this effort. I thought I would just echo one -- what
18 Tom said with regard to the PK/PD and understanding
19 that exposure response relationship in other
20 populations, especially when very good evidence in
21 either animals or in adults to bridge.
22
And the other is the challenges with
regard to enrollment and if I go back to some of our
experiences. Once you're able to establish the PK and
you're able to do that, maybe if you're lucky to do
that, in the setting of a prophylactic population, but
the enrollment can go quite well as Dr. Walsh alluded
6 to, but as we go and we need to explore as we are with
CRESEMBA, in the population that really needs the drug
8 and at a dose that we hope to recommend in the future,
that is in a population that requires therapy.
So now we're talking about a very --
even more rare than in the population that -- adult
population where we already did a randomized
controlled trial so I thought I'd just share maybe an
opportunity that we thought that we at Astellas could
pilot and we're working with the International
Pediatric Fungal Network just more recently to enroll
in our trial and in a way that hopefully can be a
18 little bit more innovative with smaller set of sites
but allow for an expedited startup process.
It sort of requires us to be more
nimble on the sponsor side and work harder to find
patients, but it allows the patients' physicians to
Page 281
sort of come to us almost in a compassionate use sort
of setting where you allow the physician to come to
you versus already having the site set up.
We just started the pilot and we
haven't had anybody knocking on our door, so to speak,
yet. But we're hoping that this could eliminate the
need for a large global trial where we see some of
8 these sites to get 30 patients across the globe, and
hopefully that could be an option in the future,
working closely with these networks.
But I will say, at this point, it's
just a pilot and it requires a lot of -- basically 96
hours from diagnosis to start of the study drug, so it's not a very long time to get the paperwork
involved completed. But I thought I'd share that.
DR. HELEN BOUCHER: Great. Thanks very
much, Laura. Luis, back over to you.
DR. LUIS OSTROSKY-ZEICHNER: Thanks,
Helen. So question four is please discuss if
consideration should be given to pooling different
types of fungal infections or whether there are enough
differences between the species to warrant separate

1 studies. Also discuss if there are important
2 considerations with the body site as seen with
3 antibacterial drugs. And to kick off the discussion,
4 we would like to invite Dr. John Rex.
5 DR. JOHN REX: Is -- sorry for the
6 delay, but my microphone has now been turned on.
7 Thanks, Luis. You know, there are -- so the answer to
8 this is both yes and no. There are times when it is
9 appropriate to think separately if you've got really
10 disease patterns. You know, cryptococcus has got a
11 really different disease pattern from aspergillus.
12 But separating by shape and color also has its limits.
13 I mean, is aspergillosis really different from
14 scedosporiosis? And is that really different from
15 fusariosis? I mean, you know, sometimes, they spread15 of them is so rare. Over.
16 a little bit differently in the body, but at the end
17 of the day, they are filamentous fungi and if you've
18 got -- and it doesn't come down to just, as Paul
19 Ambrose would say, "It's the MIC, dummy."
20 And interesting, if you say -- if you
21 insist on, I want separate data for scedosporium,
22 scopulariopsis, rasamsonia, and name two other rare
Page 283
1 ones, you'll never have anything for anything. I
2 mean, it really is not -- it's not even helpful to
3 say, gee, every fungus has to be studied by itself.
4 There are a few that we can study reasonably well and
5 maybe -- they may really reduce to three: candida,
6 crypto, and aspergillus. Those are the only three
7 that you can study in a large enough scale to fully
8 understand them, I'm just saying, the list may stop.
9 There may have been more chosen, but there aren't many
10 and so the vast majority where we have -- we
11 (inaudible) mucor, no I don't see how you can do a
12 randomized trial there. The (inaudible) common
13 aspergillus, you're not going to do that. And on body
14 sites, I come back to my heterogeneity comment from
15 earlier. I think body sites, they are different. Not
16 going to deny that, but you need to leverage what you
17 know about your compounds and there's actually value 18 in collecting heterogenous patients.
19 Fungi don't stay put. We know
20 aspergillus can involve pretty much any part of the
21 body. And in actually collecting some information in
22 which you've got somebody with osteomyelitis and
we're studying candida. But candida is not actually a
genus. Candida is huge. It's just a group of yeasts
that don't have sets. It's this ginormous
polyphyletic group that includes everything from
4 saccharomyces up to Candida auris and down to these
5 meyerozymas and these pichias and these hortaes and
6 all these really diverse yeasts, and yet we just call
7 them all candida because that's how they're lumped
8 together and we treat them as, okay, this cures
candida.
10 So in a way, we're really already doing
that, but the other argument is if you have a drug
that seems to work good against dematiaceous mold, how
long is it going to take you to find enough
dematiaceous molds, and quite a few of them react the
same way, at least, in vitro to drugs and I think
grouping them in those general ways is about the only
way you're going to do some things.
Do we separate rhizopus and mucoid? I
don't think we can do it and have a trial. It was
hard enough to get 12 cases, so how are you going to
get 24 , if you have one rhizopus in there -- in your
study and one mucor? So I think they have to be at

Page 286	Page 288
1 least roughly grouped.	1 thing to do, but -- medically, but also from a
2 DR. LUIS OSTROSKY-ZEICHNER: Thank you	2 strategic drug development perspective. But
3 very much. Any other comments on this question? We	3 obviously, not everywhere.
$4 \text { have Dr. Da }$	4 DR. LUIS OSTROSKY-ZEICHNER: Thank you
5 DR. DAVID DENNING: Yeah	5 for that comment, David. We have Mike Hodges again.
6 DR.LUIS OSTROSKY-ZEICHNER:	6 DR. MICHAEL HODGES: Yeah, hi.
7 Atlantic	7 Question for the panelists or perhaps George Thompson
8 DR. DAVID DENNING: Yeah, I've got one	8 as well. What about grouping the endemic mycoses?
9 comment. I think there are a couple of situations	9 And also another question, what about grouping
10 where you	10 talaromyces with cryptococcus? Thank you.
11	11 DR. GEORGE THOMPSON: Yeah, hi, this is
12 mycetoma. They're not easy to grow and even more	12 G.R. Can y
13 difficult to identify and -- but the immunological and	13 DR. LUIS OSTROSKY-ZEICHNER: Yes.
14 the histopatholo	14 DR. GEORGE THOMPSON: I do think that
15 distinctive, so you could definitely enroll those and	15 the endemic mycoses really are one of these pathogens
16 then you could look at -- that's happening, of course	16 that really should be grouped together for the
17 with the ravu	17 purposes of study. There's tremendous heterogeneity
18 primarily	18 in these different groups. Some are immunocompetent.
19 I think the same could be true fo	19 Some obviously are not, and then the host immunology
20 chromoblastomycosis, so it, like mycetoma, these	20 is vastly different between these different patients
21 both neglected tropical diseases with the WHO, so I	21 who, for example, a Filipino patient may get just
22 think that would be helpful. I -- if one was to do a	22 severe cocci meningitis whereas other ethnicities
Page 287	Page 289
1 study in mucormycosis, I think it's inevitable	1 handle it different immunologically
2 they're grouped, but -- and the disease patterns, not	2 So it may be very difficult to tease
3 only are the fungi different, but the patterns are	3 those groups apart for purposes of a trial, and we've
4 different, of course, so you have primar	4 been fairly successful grouping these together with --
5 rhinocerebral, but you also have other pattern	5 MSG 15 study is ongoing, doing quite well. There's a
6 disease, particularly pulmonary, but also cutaneous.	6 number of others sort of in discussions for
7 So you're going to mix and match study	7 development, so I do think they really need to be put
8 different patterns of disease, different underlying	8 together for the purposes of these trials, given the
9 diseases such as diabetes or leukemia or whatever,	9 difficulty in not doing that. And then the question
10 well as different pathogens. And I could imagi	10 about crypto and talaromyces, I think the conduct of
11 study where it wouldn't be difficult -- it wouldn't be	11 those studies is actually fairly similar as far as the
12 easy to do, of CNS fungal infections which wou	12 ability to look at CFUs and some of these things as
13 include maybe taking out crypto, but you cout	3 surrogate markers of endpoints, but probably would
14 whole load	14 defer to David or John Perfect for that as well.
15 aspergillus, (inaudible) mucor, (inaudible) and so on,	15 DR. DAVID DENNING: Can I make one more
16 and they can all be grouped together and look at the	16 comment on that? I think one of the challenges is
17 outcome, because that's a difficult diagnosis to get	17 that particular grouping is that most of the patients
18 to fast, and speed of treatment is very important, and	18 are HIV, and we now know that we need to delay ART in
19 then you try and sort out the different pathogens	19 crypto cases, but we don't delay it in talaromycosis
20 later.	20 or histoplasmosis, so I think there might be a very
21 So I can see that there are definitely	21 technical reason for not grouping them there.
22 some indications where I think this would be the right	22 DR. JOHN PERFECT: Yeah, I agree. I --

Page 290	Page 292
DR. LUIS OSTROSKY-ZEICHNER: Go ahead,	1 DR. WILLIAM HOPE: Thank you, Helen.
2 John.	2 I'm not -- this is difficult, isn't it, because we
3 DR. JOHN PERFECT: Sorry. Sorry, that	3 don't really have the preclinical tools that we have
4 thing went off and on on me. Mike, I'm shocked you	4 for candida and aspergillus and cryptococcus, so I
5 said, I thought talaromyces. The pathophysiology, the	5 think at the end of the day, that's all the
6 organism, the	6 preclinical models do offer is, it is supportive and I
7 dramatically differen	7 think that our main tactics still have to be to
8 different and	8 generate deep knowledge in preclinical and early phase
9 talaromyces with -- closely to end endemic mycosis	9 clinical studies in one of those three main diseases,
10 with HIV, but I don't think there's things g	10 not only because they're most important numerically,
11 together, perso	11 but because we have the most robust tools to start
12 DR. LUIS OSTROSKY-ZEICHNER: Thank you,	12 there and then if there are other -- for those rarer
13 John. Pete P	13 diseases and there are some models, but they're much
14 DR. PETER PAPPAS: -- muted	14 less...
15 DR. LUIS OSTROSKY-ZEICHNER: We can	15 DR. HELEN BOUCHER: William, we lost
16 hear you now	16 you. Okay, we'll give William a minute to see if he
17 DR. PETER PAPPAS: Thank you. Thank	17 can reconnect. Erin Zeituni, did you want to add any
18 you. No, I just wanted to agree with G.R. and John.	18 comments in this regard?
19 I think endemic can be studied together. I think they	19 DR. ERIN ZEITUNI: Thank you, Helen. I
20 are rare enough but also similar enough that they can	20 was waiting to be taken off mute. Very excited to
21 be groupe	21 hear all of the comments from this panel. This has
22 out to me that's -- of course, they're all unique, but	22 been excellent. Thank you all so much.
Page 291	Page 293
1 cocci does k	1 I think this is a conversation that's
2 different than -	2 very familiar to a conversation we're having
3 but you can -- you certainly can include paracocci	3 bacterial models for hep and bap for resistant
4 sporo, even some of the newer endemic mycoses	4 bacteria where you have these rare patients to try to
5 I'm not sure that -- I mean, the newe	5 access and the possibility of having preclinical
6 forms of blastomycosis that have been described,	6 models so the supportive data to support those trials,
7 think they're all similar enough at this point th	7 so it's a conversation that we're continuing to have
8 they -- in order to study them, they sort of have	8 there and I'm curious to hear what the panel thinks
9 be grouped.	9 about it in this context.
10 DR. LUIS OSTROSKY-ZEICHNER: Perfect.	10 DR. HELEN BOUCHER: Great, thanks very
11 Thank you ver	11 much. William, were you able to reconnect?
12 Helen for the	12 DR. WILLIAM HOPE: Without problem,
13 DR. HELEN BOUCHER: Great. Thanks very	13 yes.
14 much, Luis. So we've heard some allusions to PK/PD,	14 DR. HELEN BOUCHER: Great, go ahead.
15 and now we're going to get to talk about PK/PD. So	15 DR. WILLIAM HOPE: I'm not -- I didn't
16	16 hear the last contribution, but I don't know whether -
17 preclinical animal models to provide proof of concept	17 - how much you heard. Was I -- sorry, I apologize,
18 that an antifungal agent is active against uncommo	18 speaking to myself for five minutes, but well my main
19 fungal diseases, for example, scedosporium, fusarium,	19 comment was I think that the first models of rarer
20 et cetera.	20 molds have relatively little to offer because (sound
21 And I thought we could ask William Hope	21 drops) than for candida, aspergillus, and
22 to kick this one off.	22 cryptococcus.

Page 294	Page 296
So the majority of the preclinical dose	1 external controls. If they had money and things, they
2 exposure response relationships have been established	2 can suck all that data out. It just takes a little
3 in those very well-validated and characterized model	3 bit of time, but they can see what they're system is
4 systems.	4 and then bring new patients in and have a system set
5 DR. HELEN BOUCHER: Great, thanks very	5 up to actually be pretty facile, be pretty quick on
6 much. Luis, I'll hand it back	6 it.
7 DR. LUIS OSTROSKY-ZEICHNER: Thanks,	7 So without going farther with kind of
8 Hele	8 details with this type of stuff, Ithink that on a
9 networks can facilitate antifungal drug development	9 practical basis, I think having trial networks that
10 and some of the	10 are ready and robust and can do these kind of things
11 networks." First, I'd like the current preside	11 is actually the wave of the future, just as you had
12	12 cancer centers and stuff like that, you have fungal
13 DR. JOHN PERFECT: Okay, Luis thanks	13 centers that have all the abilities, if they're
14	14 supported with an infrastructure, that can move very,
15 network. Actually, the mycosis study group has done	15 very fast on these things.
16 this for m	16 Surely, the patients are there. That's
17	17 not the problem. The problem is actually funding the
18	18 infrastructure and coordinating it.
19 more even	19 DR. LUIS OSTROSKY-ZEICHNER: Thank you
20 Have to realize that what we have here	20 very much, John. We're going to go with Pete Pappas
21 is evolution	21 and then after him, John Rex. Pete, go ahead. Go
22 dealing with the infrastructure of all this, more and	22 ahead.
Page 295	Page 297
1 more regulations, more and more coord	1 DR. PETER PAPPAS: Thank you. Thank
2 things	2 you. I like what John says, and of course, obviously,
3 It's very, very costly and very, very	3 we believe in networks. I think the MSG was the first
4 expensive for many of these systems to actually get up	4 real successful clinical trials network and what
5 and by the time they get up, the study's over or you	5 you're really asking for is administrative support.
6 don't get any patients and stuff like that,	6 That is, if the system that existed and could exist
7 networks that we do today have been kind of ma and pa	7 now includes one where companies can innovate, people
8 operations and stuff like that, and the truth of the	8 can think, peo
9 matter is, the amoun	9 There's a huge incentive now or a
10 incredible today that it can't be ma and pa. They	10 better incentive now to create these new compounds by
11 don't have the resources to be ma and p	11 virtue of the Gain Act and other initiatives, making
12 So I think clinical networks ar	12 it a little bit easier and more profitable to develop
13 extraordinarily important, but I think coming down to	13 these, but you still need -- and I agree with John.
14	14 It doesn't have to be one network. I mean, there
15 take the tim	15 could be multiple international networks, but as it is
16 whether it's in the United States or Europe, a serie	16 right now, certainly within the U.S., I mean, the MSG
17 of places, because there's big places, have tremendous	17 serves a purpose now of consulting with a number of
18 amount of fungal infections and we're not utilizing	18 different companies how to design this particular
19 them very well because the infrastructure is hard to	19 trial, which are the best sites historically that
20 keep up.	20 perform.
21 But I think that antifungal development	21 I mean, these are the sorts of things
22 needs to go into that group, just as I said with	22 that could be enhanced, could be tremendously

1 buttressed, and MSG could not only -- or a clinical
2 trial network, whatever you want to call it -- could
3 be empowered to go out and train sites more than we do
4 instead of simply relying on the same sites, because
5 quite honestly, one of our roles has to be the
6 training of the next generation of clinical mycology
7 experts.
$8 \quad$ Our group is a group that's growing
9 older and there has not been an incredible influx into
10 our discipline, as say, there has been, you know,
11 hepatitis C or HIV. There need to be that kind of
12 investment. I mean, this -- these are collective --
13 collectively, this is a public health issue, a major
14 public health issue.
15 And there's been not a lot of
16 investment on the part, you know, the government in
17 terms of supporting these networks. We have done it
18 mostly on our own and we have, to the extent that we
19 can, gone out and tried to lasso in some of the better
20 international sites, but certainly not all of them.
21 And even not all of the national -- of the U.S. sites.
22
But, I mean, these are the types of
Page 299
1 things that a network can do that can facilitate the
2 conduct of these trials, even run simultaneous trials,
3 give the best advice that can be given to entities,
4 including competing entities. And getting back to
5 another point, we have just a huge, huge denominator
6 of patients who are screened, never enrolled, and then
7 we don't know what really happened to them.
8 The individual investigator pretty much
9 has to do that on their own and there's no collective
10 or community effort to do that because the funding is
11 lacking. So lots of opportunities. Most of them are
12 being missed by -- through really, lack of funding and
13 I agree with John. I think the main issue right now
14 is administrative support, funding, and how to capture
15 those patients in detailed registries that otherwise
16 escape us.
17 DR. LUIS OSTROSKY-ZEICHNER: Thank you
18 very much. Very thoughtful. Dr. Rex.
19 DR. JOHN REX: There we go. My
20 microphone's on. So I want to broaden this just a
21 little bit and go back to some of the things that
22 Laura Kovanda said. She pointed out the cost of

Page 300
developing drugs and from the moment you've got a
2 molecule that actually is looking like it probably is
a drug, you only need another $\$ 100, \$ 150$ million to
get it to initial approval, and then you only need
another few hundred million dollars to keep it on the
6 market, manufacture, do the pharmacovigilance, and do
all the pediatric requirements and so forth that keeps
8 it on the market.
9
10 this whole community to pay attention to is the notion
11 that the antibacterial enterprise has fallen flat on
12 its face because of the economic of antibiotics. Five
13 of the last 15 antibacterials that were approved in
14 the United States, the companies behind them are now
15 bankrupt.
16 Antifungals might have a little bit
17 easier of a path because the unmet need is a little
18 crisper for a period of time, but you get one or two
19 interesting new compounds approved and all of a
20 sudden, there will be no new antifungals because there
21 is no reimbursement for them. And the theme that I
22 would like everybody to start to pay attention to is
Page 301
that the lessons in the antibacterial world about the
need for appropriate polling centers, and that was
briefly mentioned by Laura Kovanda, and let me just decode that.

5 This is the idea that we pay for new
6 antimicrobials in the same way that we pay for fire
extinguishers, fire departments, and life insurance.
8 That is, we don't get up and say, gee, I think I'll
buy a fire extinguisher because my house is on fire.
10 We actually buy on in advance of my house catching on
fire and we're actually pleased to have it, even
though my house doesn't catch on fire.
13 And antibiotics need to be paid for in
14 very much that same way. So when you come down to
15 this idea of funding clinical trial networks, we've
16 looked at that exhaustively. We funded antibacterial
17 networks through the New Drugs 4 Bad Bugs Project in
18 the United States, the ARLG and the -- I'm sorry, the
19 E -- ARLG in the United States.
20 And for a while, you can keep them
21 going, but if they don't have things to work on, the
22 gas runs out of the car and the car comes to a stop.

Page 302	Page 304
1 And the way that you have stuff to work on is you've	1 hard question.
2 got industry able to actually bring products forward	2 It's not with -- such a chronic
3 and get them appropriately reimbursed. So it's a very	3 disease, it's really hard to sort that out, but I
4 deep pocket with -- we've touched a few times in the	4 think with more agents coming along with activity
5 cost of doing	5 against a number of these disease -- in these diseases
6 it's important that we as a community speak clearly	6 we've talked about is really going to be important to
7 and frequently to the need for approp	7 try to sort that out, and I do think that preclinical
8 reimbursement for new antibacterials and antifungals.	8 models can help answer that question to get rid of
9 And I commend to you a variety of	9 some of the heterogeneity, of course.
10 materials on this and I don't mean to be self-serving	10 With cocci, it's harder because there
11 but if you follow the -- my AMR Solutions newslette	11 are not very many groups that work with cocci now
12 you'll learn about this over time. There's some gre	12 because it's really hard, too. It's hard in animals
13 stuff in the Lancet ID recently about this and we wan	13 and so I think those are -- make it more expensive and
14 to pay -- look at the writings of Helen Boucher about	14 more difficult to do, but I think it's still a really
15 New Drugs 4 Bad Bugs, look at the writing	15 important question. G.R. may want to comment.
16 Clancy	16 DR. HELEN BOUCHER: Sure. G.R., do
17 So please pay attention	17 3you want to comment?
18 because otherwise none of this stuff will stay activ	18 DR. SHAWN LOCKHART: So going back to
19 It'll work for a little whil	19 the first question, unfortunately the way the CLSI
20 of steam, so, over. Thank -- sorry about the rant but	20 works, there really aren't going to be any breakpoints
21 thank you for	21 for most bug-drug combinations unless there's outcome
22 DR. LUIS OSTROSKY-ZEICHNER: Thank you	22 data, and I see that as a real problem and one that
Page 303	Page 305
1 very much. I'm going to turn it back to Helen.	1 UCAS seems to have moved past, at least to some
2 There's some qu	2 degree.
3 DR. HELEN BOUCHER: Great. Thanks very	3 But right now, as far as the CLSI is
4 much, Luis. So we thought that was difficult. Now	4 concerned, without outcome data, they are not going to
5 let's talk a little bit about susce	5 establish breakpoints and so we're always going to
6 So the question is, how can we obtain data that ca	6 have relatively few breakpoints and we're always going
7 adequately	7 to be dependent on clinicians' intuition, so to speak
8 interpretive criteria for new antifungal drugs,	8 for deciding whether or not an MIC of 2 to drug X is
9 general? And then	9 going to be efficacious in a particular patient. So
10 interpretive breakpoint in developing drugs for coc	10 that is a handicap of the way that the system works in
11 and what is the impact of that pathogen being BSL-3?	11 the U.S. right now.
12 So two questions in the breakpo	12 As far as cocci testing, in preclinical
13 category that we can put out. And let's see,	13 trials, I think it's a great idea, but it's never
14 nobody raises their hand, Dr. Patterson, do you	14 going to go beyond that. Being a BSL-3 agent,
15 to take a stab at that to kick us off?	15 one's going to do cocci testing in their laboratories
16 DR. THOMAS PATTERSON: -- give that a -	16 in their hospitals or probably not even in most
17 - yeah, so I think that that's a really	17 reference laboratories outside the fungal testing
18	18 laboratory.
19 the study that G.R. led with Nathan. They looked and	19 DR. HELEN BOUCHER: Great, thanks. And
20 showed a number of strains of coccidioides that were -	20 just for the record, that was Shawn Lockhart, and now
21	21 G.R., you're up.
22 our clinical opinion that that's relevant, but it's a	22 DR. GEORGE THOMPSON: Oh, they unmuted

1 me. So I think that cocci is an example of how this
2 investigation has gone backwards. So, you know, we
3 had sort of salvage studies. We have one randomized
4 trial and then we looked to try to explain the results
5 of that ITRA versus FLU study by looking at, you know,
6 large scale susceptibility testing almost 20 years
7 later for all the reasons that Shawn just illustrated.
8 You know, in vitro testing is pretty difficult. You
9 do it in the (inaudible) form rather than the
10 spirulina spore form, so there is some criticism with
11 that as well.
12 But, you know, this week, we found --
13 we think the in vitro results sort of line up with
14 what we found clinically. MIC-50 for flu was 8
15 compared to very low MICs for the mold activate
16 azoles, so -- and we think that explains pretty nicely
17 why ITRA basically beat fluconazole on the animal 18 study.

19 So I do think that this is important.
20 I agree with Shawn, we're probably not going to have
21 outcomes data. I think that as a clinician, I think
22 that's fine. We're forced to do that on a regular
Page 307
1 basis in the care of patients with other fungal
2 infections, too. But I think that this does sort of
3 illustrate the importance of in vitro testing, animal
4 models, and then seeing if we sort of agree with that
5 by just clinical acumen. I'll stop there.
6 DR. HELEN BOUCHER: Great, thanks so
7 much. So Dr. Denning next and then back to Luis.
8 DR. DAVID DENNING: So just a quick
9 comment about the aspergillus world where with the
10 azoles, we now can detect resistance without growing

1 allergic and chronic disease.
$2 \quad$ I suspect it will also be true for
3 invasive disease, but it's harder to generate the
4 data, and if you use a much hard -- larger volume, you
5 get many more cultures and then you can do more
6 susceptibility testing. So there's also a need, I
7 think, for those organizations that approve laboratory
8 methods and care about such things to adopt a much
9 better, more sensitive systems for culture than are 10 there.

11 So it's a call for better culture and
12 it's a call for using non-culture and resistance
13 detection as part of our regulatory approach in the
14 future.
15
DR. LUIS OSTROSKY-ZEICHNER: Thank you
16 very much, David. We have two specific questions from
17 the audience. The first one is, "Can NIAID
18 Preclinical Services provide access to specific
19 antibodies?" I don't know if you want to answer that,
20 Erin?
21 DR. ERIN ZEITUNI: Sure, thank you.
22 And thank you to the individual who submitted that

1 question. So it's a little bit difficult to
2 understand exactly what they're looking for, but as
3 far as access to antibodies, if those antibodies are
4 found in the BIV sources, it would be something that
5 you could have as available.
6 If you're looking for development of
7 antibody program, a biotherapeutic, we do support
8 those programs, but without additional information
9 about exactly which specific antibody they're looking
10 for, I would just encourage that individual to get in 11 any organism at all using either the diagnostic PCR or 11 touch with us and we could very happily discuss it 12 para-sequencing, in our lab, and I think there will be 13 others who can do that.

14 I would really like to see the
15 regulatory team address this issue of non-culture
16 based resistance detection as opposed to depending
17 upon culture, because I think this is a very important
18 new area of development and something that would
19 really accelerate the development of drugs for
20 resistant pathogens. We have just written a --
21 published a paper on high volume cultures for
22 aspergillus in respiratory samples for patients with

1 lot of interest in using survival in laboratory animal
2 models and that's both in antibacterial as well as in
3 antifungal drug development.
4 And in Europe, there's an interest in
5 using complex in vitro systems like (inaudible). So I
6 think the way, just on reflection, that -- and as I've
7 tried to say in my talk, there are two separate but
8 completely complimentary systems, and that is, there's
9 useful information from a PK/PD perspective, trying to
10 understand how the drug is docking with its target.
11 And then there's the more clinically
12 relevant, if I could use that term, model systems, the
13 rabbit model system, for example, where survival
14 actually may be very reasonable and clinically
15 relevant endpoint, so I think that what people are
16 sort of expressing, this range of model readouts, but
17 I -- we had similar model systems and we had so many 18 biomarkers.

19 I do not believe that they delayed
20 quota in terms of one being any better than the other.
21 They should be views as a complimentary package. But
22 the problem, of course, these model systems are
Page 311
1 expensive and they are very time consuming and so if
2 you go down one path with one agency and then get told
3 to do a whole other experiments down another path,
4 that may cost six or 12 or more months and a lot of
5 money, so that -- I think there could be a degree,
6 given that the reliance on these model systems to get
7 them maybe better aligned as has happened in other 8 contexts

9 DR. LUIS OSTROSKY-ZEICHNER: Thank you 10 very much for that answer, William. With three

11 minutes to spare I'm going to turn it back to the FDA.
12 Dr. Yasinskaya's going to do a summary and closing
13 remarks. Thank you very much.
14 DR. YULIYA YASINSKAYA: Thank you very
15 much. Good late afternoon to all of you. This was an
16 amazing discussion, presentations, and very robust
17 discussion today on what development consideration we
18 have for antifungal drug development at -- for the
19 drugs that aim to address unmet medical needs.
20 The major takeaway from today's
21 presentation discussion, you know, given that we had a
22 very ambitious agenda and very loaded questions for
the discussion, that the most immediate unmet medical
2 need is obviously for delayed-resistant factory molds,
3 both that developed acquired resistance and had innate
resistance to antifungal therapies.
These invasive fungal diseases are rare
6 and have high morbidity and mortality (inaudible). We
have issues of adequate antibacterial (inaudible) of
8 activity and also potential difficulties in attaining
efficacious exposure in target organs, have problems
with drug-drug interaction, specifically for azoles,
given their metabolism -- metabolic pathways and also
organ toxicity that eventually result in poor outcomes
both in clinic and on clinical trials.
Obviously, underlying diseases, immune
suppression, site of invasive fungal diseases, as well
as propensity to dissemination affect the management and pose therapeutic challenges.

So we also know that there are a lot of
difficulties now in enrolling even in, you know,
common, in these candidiasis, invasive aspergillosis studies in very efficient manner.
(Inaudible) put strains on the

1 scientific community, investigators alike, and
2 investors as well. So the existing clinical trial
3 framework appears to be time consuming and costly, so
we're looking for more efficient ways to conduct
5 medical trials. And while such standards for approval
6 of antifungals for common and uncommon invasive fungal
7 diseases do not change, regulatory agencies in the
8 U.S. and across the pond are willing to exercise
flexibility in accepting smaller data packages and
additional supportive both clinical and nonclinical data.
stakeholders along with the robust scientific research
and evolving understanding of natural history of
invasive fungal diseases and their response to the
therapies, both in clinical and nonclinical models and these will help inform and more streamline approaches for antifungal development.

We think that alternative clinical
trial design and use of biomarkers to select trial
participants as well as monitor their responses to

1 therapy are critical for future antifungal development
2 for invasive fungal diseases. We know that pediatric
3 population is a therapeutic orphan population and as
4 the diseases -- antifungal diseases, invasive fungal
5 disease are -- generally have orphan designation,
6 pediatric population tends to be left out.
7 We commend Astellas and other companies
8 that take it upon themselves with help of BPC as well
9 to take upon themselves and evaluate pediatric
10 patients with the invasive fungal diseases, both in
11 the randomized controlled setting as well as in
12 investigating nonclinical models and also conducting
13 very thorough PK/PD assessment to inform dosing in
14 pediatric patient, including neonates.
15 So we might consider animal models
16 going forward to inform dosing specifically in
17 neonatal patient population, but that would also need
18 reach PK and safety data. We also need to consider
19 when we're thinking about developing trials --
20 clinical trials for invasive fungal diseases, we need 21 to think about emergent multidrug resistance pathoge
22 with ability to spread extensively in healthcare

Page 315
1 setting and/or complicate viral infection in the many
2 healthy ventilated hosts such as flu or COVID-19.
3 What we have learned today, what --
4 clinical models and their routine and potential
5 notable uses is that of course we use (inaudible)
6 proof of concept studies and also in those (inaudible)
$7 \mathrm{PK} / \mathrm{PD}$ modeling support clinical trial just like the
8 dose and exposure of the target in clinic. We now
9 start thinking about potentially using animal model
10 data to supplement clinical randomized controlled
11 trial. In that, we need to think about suing
12 potentially multiple animal models to complement each 13 other.

14 We approach both quantitative outcomes
15 and qualitative outcome which is, you know, user
16 biomarkers, burden reduction, humane endpoints, and so
17 on. And the more animal data we have, specifically if
18 we have individual animal data that the regulatory
19 agencies can review and how it correlates with
20 available clinical trial outcome data, that will
21 obviously alleviate some uncertainties of what --
22 certainly not clinical, not a clinical trial endpoint
might mean in this particular scenario.
And the animal model data might be very
helpful also to be used in support of clinical trials
for difficult to study mycosis, such as multidrug
resistant fungal infections, invasive aspergillosis,
6 and mold. Also, there was the discussion about
potentially using nonclinical model for informing rate
points for fungal pathogens.
9 With regards to clinical trials, there
10 was a lot of discussion with regards to how to vet and
11 develop the clinical trials to streamline them to
(inaudible) more efficiency potentially enrolling
patients with infections in multiple body sites at the
14 extremes of age with different underlying
15 comorbidities, understanding that that will bring
6 significant heterogeneity in the outcomes.
Also there were thoughts of potentially
8 combining and pooling across different fungal species
as it relates to crude grouping, like for example
20 MUCORALES rhizopus, as well as endemic mycosis
together. And although they're potentially different
-- the (inaudible) to a particular drug study, these
Page 317
data would definitely enrich the clinical concepts
generated and might be helpful and formative for
clinicians.
What do we? We got to multidrug
resistance fungal infections, whether we need enrich
6 patient population, that is something for us to
7 consider going forward and designing clinical trials
8 for invasive fungal diseases.
9
So additional endpoint that -- the
10 point that had been brought up on multiple occasions
during today's presentations and discussion was the
12 use of point of care diagnostics to improve trial
efficiency in both enrollment and obtaining treatment
response and particular targeting high risk for fungal
infections. That might be concerns in delay of
treatment and also improve speed of enrollment and
17 shortened duration of clinical trials as well.
We had discussed that stable outcome
18
19 potentially to be considered to be included to figure
20 in the success for outcome assessment in clinical
21 trial due to length of time in changing that stable
2 outcome into success over time. Again, because we

$\text { Page } 318$	$\text { Page } 320$
1 want to make the trial more efficient. And a lot o	1 obviously, the questions remain with regards to margin
2 discussion in regard to trial networks.	2 justification. We know that the margin justification
3 We want them to be more robust	3 ties to a particular comparator for which we have data
4 understanding that they're very expensive and we need 4 relative to placebo and therefore there might be some	
5 administrative and governmental support, to support	5 uncertainties with regards to the margin and therefore
6 the evolution, also, and the maintenance of the	6 that does impact the tria
7 infrastructure as well as putting money and feeding	7 Also, there were discussions about
8 the development of new clinical scientific	8 expanding, potentially, enrollment criteria in order
9 investiga	9 to simplify antifungal trials, but we need to keep in
10 Going forward, we still have a lot of	10 mind that extending the duration of the trial
11 gaps, uncertainties, and remaining challenges in	11 antifungal therapies might drive the trial --
12 of honing into very straightforward p	12 noninferiority trial physically towards a
13 antifungal drug development. We're not sure that	13 noninferiori
14 animal mod	So we do expect regulatory flexibility
15 fungal dise	15 in accepting certain smaller packages with additional
16 support regulatory actions or labeling; however, we're 16 support data were from -- made in nonrandomized	
17 seeing already a lot of discussion and actually	17 clinical trials but also from nonclinical data. We
18 evaluation of data submitted for animal models that	18 need to define more what that flexibility actually is
19 being inclu	19 and what kind of uncertainty we're willing to accept
20 particular in Section 12.4 Microbiology, to provide	20 for particular indic
21	21 We understood that there's some
22 might not necessarily result in the indication and	22 questions about feasibility of using (inaudible)
ge 319	Page 321
1 specific dosing recommendation, but it will provide	1 mortality, the fact that this endpoint is particularly
2 them with additional information that they can use	2 noisy, whether we can start moving towards an outcome
3 deciding what type of therapy and at what particular	3 that's described by actual simple mortality, and also
4 dosing range will be effective for their patients	4 potentially using biomarkers, but we need
5 hand.	5 understand that in order for a biomarker to be
6 We do lack randomized controlled trials	6 considered to be a primary endpoint, we need to know,
7 in pediatric patients and neonates, understandably	7 particularly for accelerated approval, that it's
8 that we're able to slide some PK/PD data from adult	8 predict the clinically meaningful outcome.
9 and older patients and with some supplementa	$9 \quad$ As we talked about heterogeneity
10 information from animal models, we potentially might10 outcomes related to underlying disease and risk	
11 be able to reach some certainty of the dosing regimen	11 factors, there was understanding that different
12 that -- be appropriate for this patient population.	12 groups, neutropenic versus non-neutropenic, might
There was a lot of discussion on	13 potentially have different outcomes and -- or HIV
14 external control data sources and availability. We	14 positive versus non-HIV patients for cryptococcosis,
15 would like to have a current matched external controls 15 for example, and therefore that that needs to be	
16 with -- where patients would be readily identified	16 thought through when the trials are designed. We
17 with risk factors characterized and sufficiently	17 heard pros and cons of having heterogenic population
18 adjusted and matched for stages of invasive fungal	18 in the study.
19 disease.	19 And there was a point brought up about
20 We also would like to see patient	20 nonculture basis in testing for endemic and nonendemic
21 level data to make -- to assure data validity for the	21 fungi, whether this needs to be considered going
22 external controls. And for noninferiority studies,	

Page 322	Page 324
1 culture-based testing is better and more sensitive	1 obtaining very robust PK data using physiologically
2 relative to what we know about the cultures and that	2 based PK and clinical trial simulation for study
3 obviously will have help with regulators as well	3 design optimization in order to achieve appropriate
4 the clinicians at the beds	4 dose finding in this patient population.
5 We see multiple ways	5 We need to achieve consensus on design
6 discussion, this presentation forward into designin	6 definition, outcome adjudication, using signs and
7 more efficient clinical trials and the fact that w	7 symptoms versus clinical improvement as endpoints and
8 will continue engagement with the stakeholders w	8 utilizing biomarkers as endpoint in clinical trials.
9 the industry, with the public	9 So lots of work has been done in the
10 and reviewing the data presented today and the	10 past (inaudible) and a lot of work to be done going
11 presented during continued discussion with the agencyl1 forward, but I think we're in that sweet spot where we	
12 of what type of flexibility we can exercise and how	12 can -- if we'll be probably able to change outcome for
13 that will be sup	13 the new antifungal in the works and thank you very
14 Again,	14 much.
15 closely at the nonclinical model data to suppo	15 DR. SUMATI NAMBIAR: Hi, Yuliya, can
16 smaller data packages as Dr. Walsh had presen	16 you hear me?
17 today. We are	17 DR. YULIYA YASINSKAYA: Yeah.
18 consistent animal models and that defining that PK/PD	
19 driven. We're going to be looking more closely at the 19 Sumati. Thank you very much, Yuliya, for that 20 novel endpoints and looking justification for those 20 excellent summary and we're coming to close this 21 endpoints and predicting clinically relevant outcomes. 21 workshop and on behalf of everybody at the FDA I would	
22 Also was interesting, fascinating,	22 really like to thank all the speakers and panelists
Page 323	Page 325
1 innovative trial desig	1 for joining us and for your contributions to the
2 Aaron Dane with data augmented controls and randomize	2 discussion today.
3 control setting	3 Special thanks to Mr. Schueler for
4 trying to find that sweet sp	4 joining us and sharing his story. We want to assure
5 potentially using 80 percent confidence intervals with	5 you that we're all in this together and we hope to
6 a 20 percent noninferiority margin for some of the	6 work together to find safe and effective therapies for
7 harder to study fung	7 patients. I think that clearly is our intent.
8 And natural history clinical	8 Also, many thanks to all the
9 with contemporary best available therapy or -- yeah,	9 participants for calling in. I know it's been a long
10 best available	10 day, but certainly very fruitful and as I said at the
11	11 beginning of the day, hopefully one of a series of
12 it's most important for rare invasive fungal disea	12 discussions that we will have on this topic
13 and molds and then endpoint was brought up with	13 So I know many of you will be joining
14	14 us tomorrow when we'll talk about drug treatment for
15 able to be enrolled in the clinical trials, outcomes	15 cocci and I look forward to that discussion. Those of
16 of these patients also will potentially	16 you that would not be joining us, again, many thanks
17 internal control data	17 for participating in today's workshop and really
18 And then we discussed the pediatri	18 appreciate everybody's input. Have a good evening and
19 data	19 back online tomorrow. Thank you.
20 trial works are extremely helpful and the (inaudible)	20
21 sampling and ext	21
22 helpful as well. Again, we need to do microdosing,	22

\&	12 50:12 121:17	135:19 136:14	2017 16:6 173:7
\& 16:5	127:18 186:17	137:2 197:3,4,8,9	2018 113:4
0	188:22 230:9	199:21 201:8	2020 1:9 190:15
$0.087 \quad 56: 19$	277:6 285:20	209:9 217:12,15	226:19 228:9
0.087 56:19	311:4	218:19,22 219:21	230:18 236:15
1	12,000 101:9	305:8	207 217:12
1 6:18 40:11,11,15	12-14 52:9	2,000 121:13	20903 1:12
63:8 70:15 75:4	12.4 318:20	2,100 $100: 7$	21 103:3
77:2 81:2 100:10	120 35:16 135:6	$\mathbf{2 , 5 0 0} 186: 18$	21st 17:2
100:16 159:4,14	$12151327: 14$	$2.5166: 1$	22 137:3,5
163:9 164:4 173:8	125,000 107:7,13	20 54:12 55:2	220 209:17 210:4
173:11 177:3	13 100:5 117:20	104:1 106:10	226 172:10
178:4,11 197:5,9	13-1/2 118:12	151:19 164:21,22	24 57:7 103:8
269:16,16	14 230:11,13	200:6 226:2	192:4 285:21
1,000 121:14	276:10	238:11 306:6	243 113:11
1,100 100:9	$140 \quad 113: 10$	323:6	25 36:14 104:3
1,200 181:3	14644 326:17	20-30 118:15	187:4 210:5
1,250 55:18	14th 119:4 121:12	20-40 110:17	26 15:14 55:12
1,600 184:18	124:18	114:6	27 119:3 136:2
1,700 100:8	15 58:4 250:12	200 15:13	28 97:10
1-2 $1118: 14$	289:5 300:13	200,000 99:8	28th 190:14
1.5 248:13	150 300:3	202:19	29th 190:15
1.73 176:15	150,000 195:16	2000 83:6	2:1 158:17
10 26:5 53:12	158 104:5	2000s 72:4,6	2b 197:9
104:16 106:3	1598 40:13	226:19	3
119:16 127:18	1598's 40:16	2002 99:19	3 53:13 54:4 78:2
137:6 144:2,6	17,500 173:7	2003 23:20	78:18 92:20 99:19
165:18 173:12	18 136:3 171:8	2005 61:21	99:22 100:11,17
186:18 187:1,9	200:5	2006 66:21 118:12	102:9 105:19
189:1 200:4 223:2	18-45 40:18	118:15	107:13 131:2
236:10 239:22	183 217:13 219:1	2007 99:20 119:5	133:19 139:1
241:18 250:12	19 94:4 173:10	120:21 121:12	179:1 202:22
252:5 269:16	244:13 315:2	173:7	207:7 208:4
10-15 70:10	1950s 226:13	2009 171:1 248:4	209:10,17,18
10-30 170:20	1960s 226:14	2010 23:15 83:7	217:14,17 221:8
100 94:4 100:9,18	1994 227:15 1s 217:10	99:20 $123: 11$ $\mathbf{2 0 1 2}$ $123: 15$ $171: 2$	222:13 303:11
101:20 104:14	1s 217:10	2012 123:15 171:2	305:14
167:22 168:5	2	172:10	3-5 53:20 107:7
191:13,14 300:3	2 54:12 55:2 63:9	2014 100:13	30 65:22 100:16
100,000 202:19	65:3,4 75:4 78:2	2015 35:13 36:11	104:2 108:11
101 203:21	78:18,20 81:10,15	100:6 116:7	109:13 144:8
11 81:6,7,10	92:20,21 96:4	173:16	178:14,17,18
103:18 188:22	109:4,17 111:11	2016 38:10 65:12	200:4,9 238:11
	131:3 132:18,20		244:5 250:7 281:8

accompanied 30:7	actions 218:12	additional 13:16	adjunctive 72:21
accompany	18:16	13:18 15:10 16:16	74
107:17	tivate	37:4,6 119:17	adjusted
companying	activated 10:16	48:13	adjustment
149:18	active 21:1 $22: 8$	151:9 158:4	177:20 178:7
ccomplishment	5:5 28:13 89:20	163:19 208:19	admet 39:21
118:1	1:3,22 103:19	260:22 309:8	administered
ccount 17:4	5:5 143:3,7	313:10 317:9	91:17
196:18	147:3 260:2,2	319	administe
u	$8302: 1$	additionally 63:14	3:4
20	ac	64:5 66:13 67:9	administration
ccumul	activities 106:2	148:5 154:15	1:2 16:5 40:17
4.19	activity 35:22 36:2	address 1:65	63:9 95:15
ccurate 326:9	36:7 37:12 40:14	8:15 20:5 44:9	administrative
. 5	53:19 63:2,17	45:19 90:15 108:7	297:5 299:14
curatel	75:11 83:6 84:17	144:15 199:13	318:5
achievable 76:3	85:20 89:12,14,16	201:17,18 205:14	adolescent 277:8
- 4	92:11 94:13 107:2	215:18 237:10	adolescents 174:9
chieve 50:12 76:8	109:7 135:21	242:15 252:18	276:7
$7: 4324: 3$	139:12	254:7 276:3	adopt 308:8
eved	199:11 206:21	307:15 311:19	adult 170:21
achieving 5	214:11,12 30	addressed 8:6	175:19 176:2,13
57:1077:9	312:8	219:	176:13 277:15
achilles 199:	actu	addresses 30:9	278:5 280:11
acknowledge	321:3	69:21	319:8
:18 41:3 59:10	actuality	addressing 29:12	adults 19:9 40:18
69:6	acumen	30:4 31:14 174:2	49:11 50:4 61:21
acknowledged	acute 45:648:13	207:19 236:11	62:8 100:6 124:10
150:3	48:16 92:19 110:4	266:22	126:14 173:2,5
acknowledging	118:10 156:4	add	174:6,19 175:2,3
117:3	183:2 245:22	adequacy	175:5 176:12
acme 63:1	258:12	76:6	177:8,17 279:21
acquire 174:20	acutely	adequate 10:21,22	advance 7:5 29:3
acquired 76:4	adapt 267:6	11:11 18:9 27:20	34:15 77:13
83:22 87:15 88:15	add 6:22 16:11	28:20 79:14	127:20 301:10
98:16 312:3	94:12 147:5	111:21 147:16	advanced 36:5
act 16:6 19:1	245:13 292:	246:5 252:3,15	46:17 87:11
297:11	added	312:7	176:17 215:22
acting 118:5	192:17 221:16	adequately 61:	advances 123:19
132:18 180:10	addition 7:18 15:9	149:12 197:7	222:12
action 65:20	16:10 21:19 38:4	257:5 303:7	advancing 42:10
326:12,16 327:8	39:17 166:5,6	adjacent 112:1	advantage 216:4
327:12	$196: 13222: 7$	adjudication	240:21 258:10
	262:10 266:10	25:17 230:9 324:6	

advent 48:2	83:19 86:5 89:20	al 57:4	alluding 272:2
31:1 299:3	92:1,8 108:12	alabama 127:10	allusions 291:14
vise 111:20	126:12 127:7	alarmingly 123:20	alongside 157:6
sor 24:1	137:10 158:18	123:22	158:11 159:19
affect 5:11 175:7	166:3 170:8 172:1	albeit 58:8 68:5	260:20
12:16	172:8,14 176:10	273:6	alter 205:10
affectionate	208:8 212:7,7	albican 170:14	altered 123:3
116:22	221:9,12 231:17	alert 38:10	alternate 12:2
afflicted	275:4 277:1 304:4	rte	37:5
africa 87:22 192:4	ago 16:20 23:15	algorithm	alternative 107:15
african 185:11,17	94:17 115:5 126:7	aligned 217:22	110:10 152:14
afternoon 77:18	230:9 241:8	311:7	158:9 160:4
142:9 169:19	agree 89:19	aligning 255:	167:11 169:3
79:1 189:19	167:19 168:12	alike 313:1	208:12 211:8,15
198:19 311:15	202:9 208:13	alive 111:7 117:16	213:2,12,13
age 61:22 62:4,20	217:1 233:20	237:6	215:12 252:14
174:22 250:1	246:9 256:12,20	allay 223:1	253:12,13,16
276:19 277:6	257:1 261:10	allergic 32:17	313:20
316:14	289:22 290:18	308:1	alternatively
aged 40:18	297:13	allergy	153:9
agencies 59:17	306:20 307:4	alleviate 315:	alternatives
191:6 274:17	agreed	alliance 266:18	208:18 213:17
313:7 315:19	agreeing 30:1	allocation 153	214:4,5
agency 20:1 23:1	agricultural 87:18	allogeneic 217:18	altogether 212:15
149:6 206:8 311:2	ahead 4:7 178:14	allow 25:7 46:22	amazing 237:16
322:11	178:16 228:11	67:5 143:17 146:2	311:16
agenda 190:21	230:3 243:1	156:21 159:4	amb 203:21 204:9
191:1,16 194:10	245:9 259:17	194:6 207:18	ambiload 53:10
198:12 311:22	267:13	216:11 280:19	ambis 227:18
agent $64: 8,10,19$	293:14 296:21,22	281:2	ambisome 53:3,5
70:1 72:17 85:10	aids 47:7 127:9	allowed 12:15,18	ambitious 191:16
132:9 133:18	177	38:5,19 139:12	311:22
135:18 136:17	$\boldsymbol{\operatorname { a i m }} 157: 7161: 16$	139:19 149:17	ambrose 282:19
157:11 165:5	223:7 27	194:3	ambulatory 64:3
170:7 172:22	311:19	allowing 35:7	american 87:21
177:5 235:12	aiming 25:1 163:3	126:19	170:16 185:13,18
255:3 259:2 268:9	265:3	allows 1	amikacin 18:1
291:18 305:14	airwaves	139:14 143:13	aml 248:19 277:14
agents 21:1 23:13	airway 90:7,10,16	151:5 206:14	amount 185:18
30:22 38:7 42:7	94:6,11 95:11	207:3 208:20	250:2 274:18
42:14,19 43:8,15	96:21,2	209:1 280:22	295:9,18
48:1 51:9 59:6	airways 98:4	alluded 71:18	amounts 219:6
65:6 66:2,8,14,15	akin 188:14	280:5	ampho 49:4
68:18 71:6 83:1,5			

amphoterici 102:5	61:12,15,17 63:15	antifungal 1:5	205:14 208:8
amphotericin 51:1	69:3 73:4 74:11	5:16 6:17 7:5,17	212:6,7 218:2,7
53:3 54:4,14	78:4 212:9 291:17	7:20 8:18 10:4,22	218:11 219:18
57:19 58:4 94:22	306:17 307:3	11:8,19 14:20	220:2,6,9 221:9
95:1 103:6 120:3	310:1 314:15	15:6,14,18 17:1	221:12 226:2,8,20
121:3 126:6	315:9,12,17,18	19:3,17,20,22	228:5 238:1
172:15 175:22	316:2 318:14,18	20:10,19,21 21:1	240:17 273:21
176:1 185:16	319:10 322:18	23:10,13 24:16,22	275:4,16 276:11
188:5 226:3,4	animals 279:21	27:12 28:9 30:19	277:1 291:18
260:14	304:12	30:22 31:22 32:9	294:9 295:21
amplyx 138:22	anna 116:18 118:3	33:2 35:11,15,20	303:8 310:3
198:17 199:9	119:1	35:22 36:10,14	311:18 312:4
amr 60:11 302	annual 241:7	38:2 40:3,14,22	313:19 314:1,4
analyses 151	269	41:7 42:7,14,19	318:13 320:9,11
224:11	anonymous	43:8,15 51:9	324:13
analysis 26:1 27:2	answer 245:2	53:19 56:6 58:11	antifungals 8:14
55:15 56:13,18,20	265:8 282:7 304:8	58:16 59:6,21	24:19 29:7 31:5
64:21 102:16	308:19 311:10	60:5,18 61:13	35:9 37:9 39:11
149:20 150:3	answered 251:8	63:2,17 64:12,19	39:15 61:4 64:14
158:22 159:13	anti 6:16 8:12,13	65:6,20 66:17	65:11,14,16,18
161:19 212:10	19:14 34:13 69:9	71:5,16 80:8,19	68:2,7,21 108:7
224:12 227:19	81:20 91:16,16	81:16 83:1,19	112:16 120:3
260:16 263	92:6,7,11,11	84:18 91:3 95:13	134:9 173:11
analyzed 103:1	128:20 142:12	95:15 99:5 101:4	193:19 198:13
anastomotic 94:1	182:7 261:10	101:18 107:19	200:15 226:13,21
anatomy 228:11	antibacterial	108:11 109:1,5	239:16 264:3
anchor 105:10	5:21 8:20,22 15:6	120:5,6 126:3,12	300:16,20 302:8
andes 57:4	15:14 17:1 19:17	127:7 128:3	313:6
anecdotal 226	20:8 73:575:6	129:15,18 130:1	antigen 44:20
anecdote 259:	107:9 282:3	134:18 140:20	antigenemia 54:20
angulo 3:2 205:20	300:11 301:1,16	141:7 142:14	antimicrobial
205:22 216:15	310:2 312:7	145:6,15,17,19,21	83:17 108:12
218:17 274:8,9	antibacterials	146:8 147:6,7,7	180:1 201:18,20
275:8	173:10 300:13	148:15 149:10	255:3
anidulafugin	302:8	151:3 152:7	antimicrobials
	antibiotic	169:12,21 170:6	108:21 301:6
anidulafungi	antibiotics 300:12	170:8 172:1,4,8	antonio 35:15
49:5 56:10,17	30	172:12,22 173:12	36:12
176:6 198:22	antibodies 91:20	176:10,16,18	anybody 190:2
animal 9:16 41:1	308:19 309:3,3	177:5,6,15 179:2	281:5
42:5,12 43:7,13	antibody 44:20	182:8 190:11	anymore 115:4
44:1,7,15 45:3	309:7,9	199:4 200:18	230:15 231:4
50:19 51:12 58:12	anticipation 63:12	201:16,16 202:8	236:11
59:4 61:6,10,11	279:1	202:12 203:17	

t 30:2 2	264:21 265:12	105:16 126:2,2	armamentarium
apologize $82: 13$	68:15 276:9	163:7,13	218:1
93:17	278:22 308:13	204:22 205:12	arms 36:17 39:
apparent 90:7	315:14	206:13 273:21,22	103:18
:7245	ap	279:2 300:13,19	arpec 172:10
a		approving 27:12	arrange 164:5
86:22 87:5 175:4	approaches	159:15 168:5,6	arrival 116:21
appeared	16:12 138	approximately	rived 182:21
appears 313:3	168:19 208:12	57:9 101:9 107:6	arriving 116:19
applicable 19:2	211:16 212:22	137:6 194:15	arrow 33:3
66:18 129:6 199:5	213:3 215:12	apx 137:2,2	art 289:18
15	275:15 313:18	ar	icle 174:5
applicant $30: 8,8$	appropriate	192:19	ticulated 278:2
applicants 35:2	13:10 47:1 61:17	ara	tificially 77:2
application 15:11	133:4 152:12	area 40:9 42:5	ascending 40:16
16:8 37:3 43:1	156:19 164:10	47:20 160:4	ascomycete 109:8
46:10 197:1,12	220:5 282:9 30	161:11 176:1	ashraf 39:9 57:19
applications 15:18	302:7 319:12	186:15 245:3	asia 96:7 170:16
15:19 30:16,21	324:3	253:2 307:18	asian 185:10,16
198:6	app	areas 5:9 8:8	asked 82:19 96
applied 53:3 86:3	266:1 302:3	30:13 61:6 68:	asking 99:3
88:16 97:12 148:5	approval 10:8,10	69:1,3 70:3	127:13 242:11
196:8 210:10	10:16,17 15:3	106:20,22,22	263:7 268:16
263:19	17:14,15,20 22:8	121:5 152:7,9	297:5
applies 24:1661:	24:2 25:13 27:8	160:18 162:8	asks 105:17
apply 34:22 35:2	33:12 67:3 89:4	165:1 182:17	asp 57:11
160:14 197:8	105:16,22 106:12	186:14 216:8	aspasia 2:18 169:9
198:5 208:1	106:13,14 107:21	238:10 246:21	169:13,15,18,19
appreciate 216:19	108:4 149:8 163:9	255:16 257:11,	171:13,16,20
225:6 266:12	164:12 166:7	257:21 261:5	175:15,18 176:20
325:18	168:10 205:2,10	266:13	176:22 177:3,4,9
appreciated 92:14	205:14 218:	arena	177:11,19,22
appreciating	252:3 262:18	argue 30:9 114	178:15 275:20,20
95:15	279:3 300:4 313	133:8 213:12	276:1,14 277:22
appreciative	32	25	aspasia's 276
215:7	approvals 30:21	argument 114:1	aspect $24: 8154: 18$
approach 39:13	2	285:11	aspects 8:1961:5
57:2 101:15,17	approve 160:21	arikayce 18	142:13 154:3
103:8 124:14	308:7	arlg 301:18,19	160:16 202:9
139:3 152:12	approved 10:15	arm 36:17,19 39	207:14
156:15 158:9,11	12:22 15:15 17:19	39:2 132:13	aspergillis 86:11
159:6 160:3,6,15	17:22 18:6 21:2,8	147:12 153:1,16	96:21 126:5
162:6 187:9 202:6	27:19 61:20 66:21	157:6 158:16	aspergillosis 7:19
215:9 260:6	83:4 102:4,8	159:11 165:11	11:13 12:17 22:10

22:13 28:10 31:4	148:16 150:21	atomic 34:4	129:9,21 134:11
45:12,13,17 51:5	223:1	atraumatic 51:13	134:20 147:11
51:8,17 52:8 56:2	assessing 58:2	attached 124:15	170:15 179:2,9,12
65:12 73:15 78:17	150:6 151:11	attack 125:14,18	179:21 182:4,11
85:22 95:11 96:2	230:8 233:11	attacked 121:7	184:15 185:5
96:6,10 97:1	assessment 17:3	attaining 312:8	186:4,9,14 187:19
100:2,12,17 101:8	22:12 30:5 105:7	attainment 222:12	188:1,10,16
101:13 102:11	145:16 146:2	278:6	189:10 190:8,13
106:8 110:4	205:8 209:2 213:6	attempted 277:8	192:2 194:5,15,17
128:15 129:7,8	222:16 223:3	attended 121:14	199:6 200:9 201:4
137:13,22 139:2	314:13 317:20	attendees 191:14	205:22 206:3,22
140:12 143:10	assessments 22:14	192:12	207:12,15,16
144:1 149:22	39:17 148:2	attending 41:16	208:14 210:11,14
171:3 175:2 200:5	212:14	191:13	210:15 211:14
200:8 201:10,12	assigned 223:18	attention 20:11	213:20 218:5
201:14 207:11	276:1	51:4 84:6 95:22	223:11 225:21
243:17 244:11	assignment 25:18	96:16 141:19	228:10 230:6
245:1,3 248:6,18	assistance 39:22	151:16 225:6	232:20 233:7
249:7,9 260:11	associated 48:17	241:15 275:14	239:1,8 267:16
261:1 274:21	63:16 84:12 87:14	300:10,22 302:17	285:4
282:13 312:20	87:15,17 88:8	attitude 124:5	australia 87:22
316:5	96:5,16 97:1	attorney 326:14	authorities 20:22
aspergillus 25:3	101:19 200:2	327:10	214:19
26:19 27:1,14	201:11 221:12	attract 9:18	authorization
31:8 72:5 85:3	238:5 249:6	attracted 95:21	29:15 100:6
86:8,9,19 87:10	assumed 99:21	attractive 195:20	107:21
87:14 109:9 201:2	assuming 157:1	attributable	automatically
207:1 259:22	260:1	220:13 235:10,16	176:14 232:16
261:2 282:11	assumption 62:6	237:12	autopsy 148:1
283:6,13,20	assumptions	attributes 13:6	availability 29:17
287:15 292:4	143:20	207:2	139:10 147:21
293:21 307:9,22	assure 319:21	auc 47:2 5	211:20 319:14
aspicu 249:8	325:4	57:776:21	available 6:11 8:2
aspirate 97:9	assured 143:5	audience 6:10	14:14 17:2 21:20
assays 131:11	astellas 81:18	33:7 34:7 308:17	27:19,21 31:14
140:8	99:20 103:2 106:6	audio 4:3 326:8	36:10 37:14,18
assembled 124:12	126:2 280:14	327:4	39:10 47:22 64:1
assess 36:17,19	314:7	augmentation	64:12,13 71:20
37:11 39:3 43:9	athlete 122:3	112:13	72:5 82:6 83:2,8
139:15 145:18	athletic 121:9	augmented 158:12	99:7 102:2,4
151:2 191:1	atlanta 272:16	158:16 323:2	105:12 107:16
224:12 229:8	atlantic 182:18	august 1:9 173:16	120:3 141:14
assessed 22:12	286:7	auris 5:4,13 38:9	143:17 145:6
57:5 67:13 103:10		38:13,18,22 48:3	146:2 155:14

163:19 192:18,20	69:10 87:6 96:5	bankrupt 300:15	307:1 321:20
194:8 198:4	111:9 114:14,15	baoying 2:22	bat 239:14
200:16 201:22	116:6 119:12	189:21 190:2,5	battle 125:17
206:16 212:8	120:14,16,21	bap 293:3	battling 183:15
218:14 219:8	125:5 151:16	bar 129:10	271:14
229:3 252:2,21	154:14 178:1,8,18	barbaric 122:8	bayesian 158:12
263:19 265:17	181:22 184:10	barrier 49:18	162:4
275:20 309:5	186:13 190:8	barriers 173:17	bcl $92: 20$
315:20 323:9,10	219:13 225:7	294:10	bearing 120:18
average 67:16	228:20 233:16	base 113:2,11	beat 306:17
107:8 176:13	241:15,18 249:11	249:21	becoming 85:14
avoid 95:3 162:19	262:9 265:7 269:4	baseball 119:11	90:7
237:21	275:10 280:1	122:4	bed 184:2
avoidance 90:16	281:17 283:14	based 10:8,10	bedmates 184:2
awaits 117:18	291:11 294:6	12:17 13:8 17:3	bedside 42:11
aware 16:18	299:4,21 303:1	24:2,12 27:8,13	78:3 240:7 322:4
awareness 26:9	304:18 307:7	37:19 52:5 68:17	beep 43:2
awful 256:17	311:11 325:19	78:5 86:2 92:15	began 113:3 119:3
axis 112:5	background 7:9	95:6 109:14 123:6	120:14,14 122:10
azole 65:10,13,18	42:12 73:20 109:3	128:13 130:7	beginning 136:6
87:4,13,18 88:5,6	153:6 208:1	131:11,15 137:17	136:18 211:9
88:14 91:15,21	backwards 306:2	138:1 139:15	221:21 222:3
92:2 95:6 130:14	bacteria 180:11	140:3,9 143:15,18	224:13 263:6
133:3 137:4 144:8	293:4	145:11 146:9	279:2 325:11
145:12 146:5	bacterial 34:9	148:1 149:17	begun 119:15
185:9,11,14 189:4	46:14 74:20 98:8	151:9 188:21	behalf 7:12 20:12
201:2 260:12	182:7 293:3	192:15 204:22	324:21
261:1	bacterials 8:14	208:12 209:2	bei 34:7
azoles 67:8 86:22	bacteriology	213:5 226:10	believe 24:7 52:6
90:4 91:5 176:3,5	31:20	227:9,10 232:3	61:15 83:1 239:22
184:19 200:17	bad 78:12 101:21	271:3 278:4	246:22 294:18
226:16,17 306:16	301:17 302:15	307:16 322:1	297:3 310:19
307:10 312:10	badly 79:7	324:2	bench 42:11 78:3
b	baff 265:4	bases 215:13	benchmark 75:17
b 49:4 51:1 53:3	ba	basic 33:4 191:20	benchmarking
54:4,14 57:19	balance	194:14	75:15 323:11
58:4 93:2 94:22	68:15 90:16	basically 84:22	bend 259:3
102:5 103:6 120:4	162:21 166:2	137:12 281:12	beneficial 63:22
126:6 172:15	167:9 222:22	306:17	benefit 10:12
174:13 185:16	balanced 211:17	basilea 99:19	12:10,11 17:3
188:5 226:4,4	ball 232:4,5,13	100:20	18:11 29:16 59:8
babies 174:22	bank 38:15 192:17	basing 131:14	80:5 149:4,5
back 4:17 23:15	192:19	basis 16:18 123:12	150:11 158:6
31:16 37:17 41:11		189:12 296:9	167:1 168:11

204:13 205:7	155:20 251:11	birmingham	176:15 184:16
209:2 213:6	252:9,9	127:10	282:2,16 283:13
257:12 276:8	bickering 116:15	birthday 119:4	283:15,21 284:6
277:9 279:4	biennial 269:10	bit 6:7 30:22 32:8	316:13
benefits 99:11,12	big 111:2 121:18	41:11 103:22	bona 37:22
benefitting 164:16	128:9 157:22	115:2 116:20	bone 118:20
benign 95:16	158:6 221:14	133:1,4,17 217:3	120:20 122:8
benjamin 276:20	229:21 230:5	218:6 222:11	book 114:19
bennett 3:9 262:4	233:10,16 234:8	223:6 227:7 241:1	bore 27:3
262:5 263:9 268:5	238:14 244:2	267:13 280:18	botgros 2:5 22:20
270:3	248:8,13 272:8	282:16 296:3	23:3,6 71:19
best $14: 7$ 27:18,21	273:9 295:14,17	297:12 299:21	264:12,13,16
57:7 86:2 89:3	300:9	300:16 303:5	boucher 2:21
118:8 122:2,2	biggest 90:6	309:1	179:4 189:17,18
124:14,21 126:8	137:20	biting 130:2	190:4 225:9
130:5 151:12	bioavailability	biv 309:4	241:16,22 242:1
167:5,9 191:8	68:13 199:17	black 37:14	243:1,5,7,14
251:7,14 276:22	206:14	121:16	245:4,8 246:12,16
297:19 299:3	bioequivalence	blastic 277:14	247:21 249:12
323:9,10 326:9	68:13	blastomycosis	250:22 259:17
327:6	biofilm 45:8 49:2	291:6	275:12 279:7,12
beta 229:18	biological 22:22	blessing 118:1	281:16 291:13
233:20 234:5	34:5	blind 129:4	292:15 293:10,14
better 88:21,22	biologics 91:20	blinded 25:17	294:5 302:14
97:15 103:4	biology 190:11	102:21 104:14	303:3 304:16
110:18,20 113:4	191:20	132:21	305:19 307:6
114:10 136:7,11	biomarker 88:9	bliss 56:13	bound 117:8
136:18 140:5,7	89:2,8 229:18	block 112:2	bpe $314: 8$
161:5 163:11	321:5	198:12,12	brain 49:18 50:2
165:5 171:18,19	biomarkers 43:12	blood 49:18	199:15 234:16,18
175:17 178:10	44:20,21 54:2,19	183:10 189:3	284:1
187:17 201:17	56:8 58:18 89:9	193:17,19 217:18	brainstorm
202:4 216:1,2,9	97:8 233:19,21	224:17 233:1,13	124:14
249:5,6 254:22	236:21 240:4	233:14	branch 31:21 41:6
258:13 259:1,11	310:18 313:21	blown 227:3	179:7
284:13 297:10	315:16 321:4	blue 183:20	break 81:4,13
298:19 308:9,11	324:8	blueprint 241:7	127:5 178:8,14,17
310:20 311:7	biometrics 142:11	blunt 110:5	178:20 241:17,18
322:1	biosynthesis 109:6	245:17	241:21
beyond 75:12	biotech 108:11	board 36:20	breakout 191:18
98:10 166:22	biotechnology	220:10	192:7
167:3,7 305:14	152:5	boat 256:15	breakpoint
bias 78:13 96:14	biotherapeutic	body 9:15 120:7	303:10,12
153:4 154:18	309:7	125:18 174:13	

breakpoints 129:1	brothers 116:14	109:4 195:9 249:8	219:6 220:1
304:20 305:5,6	brought 221:7,11	274:1	223:11 224:1,4,17
breakthrough	222:19 317:10	calling 237:8	225:21 226:21
51:2,3 87:3	321:19 323:13	325:9	227:14,17 228:10
109:14 112:11	bsl 303:11 305:14	calls 128:12	228:11,15,22
134:9 237:17	bubble 231:18	245:17	229:9,15,19 230:6
breakthroughs	budget 197:7	canada 96:7	230:6 231:2,20
50:5	budgets 195:16	cancer 23:18 92:7	232:8,19,19 233:7
breast 112:13,14	bug 304:21	118:6 124:11	233:8 234:13
breathe 121:6	bugs 301:17	127:9 259:7	235:12,16,19,22
brendan 190:19	302:15	266:15,17 296:12	236:3,3 237:4
bridge 76:1	build 70:2 257:14	cancers 266:20	238:22 239:8
279:21	building 191:11	candida 5:4,13	259:22 264:3
bridging 70:9	bullet 191:17	21:5 25:3 26:19	283:5 284:22,22
brief 225:3	bulwark 49:3	27:1,13 31:8 38:9	285:1,4,7,9 292:4
briefly $28: 16$	bunch 271:18	38:13,18,22 39:11	293:21
33:22 40:8 148:8	burden 36:17 39:2	45:3,8 48:2 49:9	candida's 224:8
170:4,7 179:17	44:18 78:17	49:10 51:4 62:14	candidate 27:18
184:17 195:21	104:10 315:16	71:15 72:2 73:16	59:5 64:19 66:17
219:15,20 301:3	burdens 36:18	83:2 93:20,22	70:7 73:16 77:5
bright 122:1	burn 117:17	95:3 109:11 129:9	109:5
bring 14:22 49:21	business 74:19	129:17,18 130:1	candidemia 11:14
50:18 96:16	108:2 195:18,21	131:6,11,14 134:2	12:16 48:21
126:17 191:3	197:3,4 222:8	134:6,11,20,20	131:18 135:3
227:17 230:18	busy 116:14	136:12,21 137:4,4	137:13 143:11
236:5 240:6 296:4	175:11 190:16	137:10,12 147:11	144:4 145:8
302:2 316:15	button 113:14	170:11,15 174:21	149:16 170:22
bringing 113:1	buttressed 298:1	179:2,8,9,12,18	175:1 186:16
127:1 163:1 165:7	buy 301:9,10	179:21 180:9	217:16,20 223:9
236:5,14	c	182:4 184:15	227:20 235:10
brings 81:2 99:17	c $2: 14: 15$	185:5 186:9,13,14	250:6 254:10
105:15	174:14 182:10	186:15 187:7,8,19	269:5,8,14,19
broad 32:21 85:1	186:4 298:11	187:19 188:1,1,2	270:13 271:2
89:15 98:15 101:3	calculation	188:5,7,10,15	272:3
109:7 128:2	07:10	189:10 190:8,12	candidiasis 7:18
199:11	californi	192:2 194:5,15,16	11:14 12:16 45:5
broaden 299:20	82:18	194:17 199:6	45:10,10,11 47:4
broadest 226:8	$\text { call } 9: 671: 1174: 7$	200:9 201:3,4,6	47:6,10,17,19
broken 116:8	78:6 79:16 177:22	205:22 206:2,22	48:3,13 49:1 51:3
121:20	181:4 195:19	206:22 207:12,15	61:21 100:3
bronchiolar 231:4	$220: 4 \text { 285:6 298:2 }$	207:16 208:2,13	103:16 106:16
brother 119:1	12	210:11,14,15	128:5 129:6,14
121:18,18	called 33.14	211:14 213:19,20	130:5 131:19
	102:17 103:20	214:9,12 218:5	132:10 137:15

:11 144:5	102:16,22 112:9	category 88:20	66:11 84:2 90:11
145:8 149:16	114:16,17,19	89:16 303:13	27:20 228:22
200:4 203:1 207:8	147:4 153:17	catheter 45:7 49:2	34:13 237:1
207:9,10 208:3	159:6 163:14	51:13	61:22 265:13
209:9,15 213:10	165:18 166:20	catheters 25:20	320:15
213:11 214:8	168:4 176:3	cause 11:20 26:12	certainly 8:3 10:3
217:16,21 220:14	180:22 211:3	54:5 78:20 85:3	13:5 20:9 45:2,12
220:20 223:9	214:22 257:17,19	85:14 89:22 96:21	45:21 83:17 84:11
234:17,21 274:19	265:19 277:5	10:1 113:16	85:19 88:8 90:19
2:20	278:	125:1,18 143:1	6:15 98:
candins 200	cases 26:7	143:20 144:3,8	28:15,18 133:18
can't 62:5 134:13	101:9,10 103:3	148:15 170:12	41:6 181:13
178:5	112:10 130:1	200:11 286:11	183
capa 97:1	37:15 150:2	caused 86:10	87:10 208:
capability 47:13	155:6 172:17	87:10 102:22	13:15 223:
capacity 49:17	180:18,19,20	131:4	61:20 276
54:9 255:1 269:11	181:3,4,5 182:19	causes 173:19	78:17 291:3
270:9	182:20,21 183:9	causing 85:12	297:16 298:20
capitis 175:4	6:4,9 210:5,17	89:14 98:5	5:22 32
captain 119:10	211:2 215:14	cdc 38:10,15	certainty 162:11
capture 135:6	8:	96:12 179:7	319:1
192:6 269:12	261:11 265:15	189:15 190:18	certificate 326:1
299:14	284:11 285:20	192:19 201:1,2	327:1
capturing	9 :19	4:1	rtified 36:
car 301:22,22	casket	cdc's	certify 326:3
care 51:20 101:13	caspo 133:20	cdmo	327:2
8 141:10	caspofungin 39:1	cell 21:11 91:1	cessation 28:2
153:21 154:9,13	39:3 49:4 71:10	93:2 134:7 171:11	cetera 215:8
155:11 156:20	103:17 105:6,11	243:21	247:10 271:
181:7,21 182:2,12	132:13,22 176:7	center 20:16 35:14	72:5,19 273:1,
183:2,5 186:8	248:5 273:22	36:12 94:20 142:3	274:20 291:20
8:2 199:19		0 :	cf $95: 14,17$
206:6 208:6	125:1	ter	03:
209:12,20 221:21	ca	5:1,5 127:10	cfus 289:1
240:4 258:19	catching	2:11 210:4	chair 60:108
284:4 307:1 308:8	categorical 85:1	11:1 250:4,12	82:1225
317:12	categories 222:15	0:20 277:16	chaired 123:7
careful		296:12,13 301:2	3276
careless 117:5	categorization	ntral	challenge 128:18
carry		1:12	129:16 130:2
tilage 112:17	categoriz	century 17:2	7:13,
cascade 38:12	:17	cerebral 121	38
case 27:19 47:13	categorized 89:1	certain 5:9 14	254:12
56:10,13 97:2,2		16:1,4 17:20	

ngers 61:15	characteristic	170:13,16 171:10	ncinnati 36:13
challenges 5:22	52:12 133:11	9,20,22 173:2	rculating 54:1
6:4 8:5,12 20:3	characteristics	173:5,18 174:6,9	circumstances
71:15 99:14	44:10 199:13	174:19 175:1,3,4	103:13 261:22
103:20 127:15,16	201:17 286:14	175:5,7,8,10	cite 42:22
128:2 132:15	characterizatio	176:10,17 177:5,7	citizens 125:17
135:17 137:18	69:5	177:17,17 275:14	clade 185:9,11,13
170:9 181:8 199:4	characterize 34:3	275:16 276:7	185:18 192:20
202:11 203:15,16	272:10 277:1	children's 118:22	clades 185:5,6,10
207:13,18,19	characterized	119:5 120:22	185:21
210:13,13 218:3	34:9 294:3 319:17	172:6	clancy 302:16
218:10,18 219:4,8	charge 25:13	ch	clarify 161:18
223:5,19 253:3	arles 123:1	chiller 2:20 179:5	class 119:8 175:21
254:14 279:16,22	chase	179:10 271:7,11	classed 161:14
289:16 312:17	chasing 211:	chiller's 179:6	classes 83:685:8
318:11	chat 77:18	215:19	185:20 186:5
challenging 45:15	checking 4:3 32:4	ch	200:16
9:7 80:6 107:8	chemistry 39:19	chim	classic 95:18
145:1 161:18	chemo	243:2 252:20	227:15 235:9
168:16 207:17	120	271:7	272:17 276:15
208:10 212:20	chemothe	chmp 25:1231:1,2	277:18
214:16	231:17	choice 85:21 133:3	classical 44:22
chance 162:18	chemothe	146:6 152:22	classically $86: 8$
163:1,2 164:11,12	92:1	00:15 264:	claudio 248:4
164:13 165:7,14	che	choices 25:9	clean 263:5
165:19,20,22	:16 119:1	choose 89:11	cleanly 251:9
203:5 237:15	120:8	129:22	clear 32:540:20
chances 163:9	cherish 313:12	choosing 25:9	72:15 101:13
164:19 168:4,9	cheryl 2:16 142:2	chos	108:14 110:3
change 12:9 17:14	142:5,8 261:18	chosen	131:19 140:6
:1 124:19	chest	05:1 283 :	153:21 156:7
250:14 256:20	chicago 118:2	chromoblastom	61:7,14 168:2,3
313:7 324:12	119:10 120:17	21:15 286:20	193:19 216:12
changed 139:18	123:11,18 183:17	chronic 22:13	237:20 253:10
54:13 218:6	chief 179:6 198:16	45:7 48:13,22	260:3
changes 174:8,12	99:8 205:20	51:17 90:12 93:	clearance 57:16
174:13,15,16	216:17 275:21	93:9 95:10 98:20	76:20 94:6 131:16
181:19,20 234:22	childhood 118:11	258:12 259:5	193:17
237:8	122:5 174:18	72:22 304:2	cleared 12:22
changing 170:1	children 10:3 19:6	308	197:21
18:4 250:3	49:8,8 116:17	cid	clearly 6:89
17:21	18:2,	cidar	43:14 44:3 55:3
channel 116:16	12	216:17 225:4	89:10 129
	126:14 170:5,12		162:10 187:5

3:21 253:2,17	152:6,11 154:5,9	317:1,7,17,20	05:12, 15 306:1
254:18 267:3	155:21 156:5,12	318:8 320:17	325:15
302:6 325:7	156:21 158:20	322:7 323:3,8,15	coccidiodomyco...
cliché 174:7	159:2,3,18,19	323:19 324:2,7,8	21:15 98:12
climbed 186:21	160:3,17 161:4	clinically $65: 10$	coccidioides 207:1
clinic 75:20	166:12 167:8	67:21 73:19,21	303:20
9:10 219:13	168:21 170:7	76:9 87:5 113:6	ccidi
312:13 315:8	172:19 173:1,4,7	136:18 306:14	16:21
clinical 5:5,19 7:9	173:9 181:3 183:9	310:11,14 321:8	coefficient 76:20
9:2 10:12,12	189:14,22 190:10	322:21	chort 50:21
11:20 12:3,5,10	190:12 192:10	clinicaltrials.gov	77:17 96:9 155:15
12:11,14 13:3,5	193:12 194:2,14	173:3	155:17 156:3,11
21:17 22:2,7,11	194:19,20,22	clinician 193:16	56:14,16 172:5
22:14 23:12 26:4	195:2,4,5,9,11,13	306:21 318:21	277:19
26:14,18 28:4,18	195:19,21 196:2,4	clinicians 9:3	coined 96:22
33:5,20 38:10,13	196:7,13 197:3,13	114:12 133:12	201:11
38:21 40:10,15	197:15,15 198:5	192:1 305:7 317:3	collaborated 42:9
43:2,10,12 46:1	202:12,17 204:18	322:4	collaborating
47:15,16 48:7,18	207:5 208:20	cll 93:8	277:17
50:18 52:18,19	210:2,15,20 211:7	close 122:12	collaboration 50:8
53:11 54:4,7	211:12 212:5,8,13	188:11 324:20	53:17 59:13 160:7
57:14 58:19 59:2	212:21 219:9	closed 104:13	collaborations
59:8,13 60:4,7	222:13,20,21	113:11	59:11,13,17
61:1,3,16 62:17	225:20 227:14	closely 52:7	collaborative
62:18,19 63:13,18	227:19 228:6	187:18 245:15	313:12
65:1 67:5 68:3,4,5	230:22 231:9	281:10 290:9	collaborators
68:20 70:20 71:4	232:1,	322:15,19	189:12 196:8
71:4 72:21 74:9	233:22 234:14	closeness 117:	colleague 190:16
75:8 76:13 78:21	237:16,19 239:4	closer 41:11	205:17
79:12 80:4 81:20	239:19 240:2,16	126:18 171:1	colleagues 7:12
82:21 83:11 84:4	259:3 264:4,6	176:21	20:12 48:5 69:7
84:13 85:13 87:2	265:22 266:12,18	closing 40:8	203:22
88:6 89:3 97:5,7	267:10,21 268:2,6	311:12	268:14 278:10
98:1 99:18 100:7	268:13,19 270:2	clsi 304:19 305:3	collect 13:18
104:9,11 105:9,19	271:3,15 276:10	cluster 188:22	238:11 263:16
107:16 109:15	276:11 292:9	clusters 187:3	264:5 284:11
110:12,20 111:1	294:8,14,19	cms 236:10	collected 155:3
114:5 127:7,20	295:12,15 297:4	cns 45:15,17 46:7	89:2 260:20
128:3 129:5	298:1,6 301:15	46:7 51:3 73:16	3:18 275:2
130:18,19,21	303:22 307:5	174:21 287:12	collecting 238:16
139:13 140:4	312:13 313:2,10	coaches 122:12	264:1,3,9 283:18
142:13,18 143:4	313:17,20 314:20	cocci 288:22	283:21
148:20 149:4,5,10	315:4,7,10,20,22	290:21 291:	collection 192:21
150:9,11 151:20	315:22 316:3,9,11	303:10 304:10,11	

collective 284:13	comfortable	254:13 255:21	comparator 25:8
298:12 299:9	133:12	257:11 278:20	25:9 28:20 102:2
collectively	coming 6:1,12	283:12 312:20	105:1,3 158:20
298:13	37:16 111:9 198:6	313:6	320:3
cologne 102:18	201:7 217:7	commonly 5:11	comparators
274:2	228:11 240:22	11:19 36:22 43:15	99:16
colonies 113:2	270:5 272:20	45:4 48:19 49:10	compare 27:17
colonization 52:2	295:13 304:4	148:14 165:1	28:21 153:6
52:4 94:15 95:16	324:20	255:12	238:12
181:6 182:9	commenced 99:20	communicated	compared 53:4,12
183:14 184:13	commend 302:9	67:17	55:10,19 103:17
193:5 215:19	314:7	communities	144:11 146:15
colonized 184:12	comment 243:12	33:17	147:7 170:21
184:13	245:5,10 251:15	community 6:1	173:2,5 175:3,5
colonizing 235	257:9 260:8 262:5	7:5 15:17 30:11	222:3 226:5
color 282:12	263:7 265:12	37:18 74:8,15	306:15
combat 191:9	266:5 274:7	78:2 80:16 94:17	comparing 133:19
combination	283:14 284:18	126:18 141:17	139:1 153:10
14:14 18:3 52:21	286:9 288:5	167:16 192:18	169:1
56:5,9 86:6	289:16 293:19	194:4 198	comparison 39:4
112:19 138:15	304:15,17 307:9	207:21 209:4	101:14 153:13
139:7 147:6	comments 81:3	212:16,16 214:19	155:20 156:6,21
243:17 245:11	150:15 248:2	215:3 271:21	266:3
combinations	269:6 273:15	299:10 300:10	comparisons
304:21	279:14 286:3	302:6313:1	155:9
combined 100:18	29	comorbidities	compartments
267:2	commercial 108:1	66:3 101:8 175:10	202:2
combining 316:18	commitment	316:1	compassionate
come 11:3 13:22	106:14	comorbidity	281:1
17:6 74:3 76:6	commitments	193:22	competing 299:4
77:18 99:4 111:14	105:22 107:21	companies 270:19	complaint 122:9
111:15,18 129:13	committee 25:1	297:7,18 300:14	complement
153:13 170:16	25:17 125:2	314:7	315:12
178:8,18 214:22	126:17 190:20	company 117:	complementarity
215:6 219:13	266:17	comparability	44:6
261:16 265:10	common 7:20 47:4	154:5,19	complementary
281:1,2 282:18	83:20 93:21 112:7	comparable 53:13	44:4 59:3
283:14 301:14	118:11 129:17	58:3 63:4 73:20	complete 54:5
comes 26:16 33:5	130:10 140:22	148:2 156:8	103:21 132:4
99:13 114:3	147:17 162:20	168:21 277:12	137:7 138:14
142:17 194:1	170:17 171:4	comparables	151:2,10 256:15
228:5 246:19	172:12 181:15	213:21	257:15,17,22
301:22	183:8 206:19	comparative	265:15
	213:9 229:11	53:16	

completed 9:11	52:18 59:21 75:16	150:14 198:8	conferring 83:18
135:19 137:2	75:17 279:2,16	concluding 165:19	confidence 157:14
138:11,12 207:7	283:17 297:8,10	conclusion 40:19	164:21 165:2,3
217:12 281:15	300:19	80:7 212:4	166:1 323:5
completely 186:4	comprehensive	conclusions	confident 160:19
222:22 235:2	29:18 123:13	113:15 177:5	160:21
237:10 246:9	274:16	255:17,18	confirm 35:22
250:3 255:17	comprise 124:4	concomitant 66:4	228:19
256:12,19,20,20	compromise	130:14	confirmation
310:8	251:12 252:10	concurrent	63:13
completes 78:3	compromised	103:11	confirmed 25:6
completing 275:21	247:8	condition 64:10	202:20
complex 91:9	compromising	96:2 102:1 106:21	confound 222:5
111:22 187:13	192:14	210:5 214:7	confounded 78:22
188:8 202:18	comptroller	216:11	confounding
310:5	190:19	conditional 29:15	221:18,20
complexity 219:8	computerized	conditions 9:3	congratulated
231:12	250:1	11:16 13:6 17:20	205:4
compliant 264:9	concentration	98:4 155:3 215:5	connection 82:16
complicate 92:1	47:3 66:11 67:16	232:10 242:14	177:10,12 178:16
315:1	concentrations	278:20	connection's
complicated	7:9 55:2,19 71:8	conduct 25:4	243:3
234:21	207:4	28:19 127:6,19	connections 4:19
complication	concept 29:9	143:13 147:16	cons 214:3 321:17
96:20	30:12 37:2 61:14	167:10 169:6	conscious 117:9
complications	267:14,20 291:17	195:19,21 196:2	consensus 229:14
98:7 118:6	315:6	197:13 202:19	230:1 324:5
complimentary	concepts 70:2	203:4 204:7,11,19	consent 269:20
310:8,21	197:22 317:1	208:10 289:10	consequences
component 42:13	conceptual 42:20	299:2 313:4	115:5
163:7 164:2,14	concern 38:9 66:1	conducted 11:1	consequently
257:20	88:3 174:3 182:5	21:20 22:7 26:20	200:18
components 46:20	224:7 229:9	28:5,17 102:1,3,9	conservative
156:9 266:3	concerned 181:18	102:20 139:21	143:2
composite 22:11	187:16 305:4	143:9 154:9	consider 19:5,10
237:14,17,21	concerning	203:11,20 204:3	77:16 83:10 90:19
compound 40:14	186:12 188:17	217:9 248:17	93:17 98:10 107:1
50:3 70:13 71:17	189:8	271:22,22	144:14 151:1
135:16 136:20	concerns 64:12,16	conducting	152:13 153:11
137:1,2 206:21	67:1 80:17 223:19	106:14 210:1	156:7 159:22
251:6 252:1	242:17 263:13	314:12	162:4 164:14
278:12 279:6	317:15	conference 123:6	197:19 198:4
compounds 35:16	conclude 18:21	123:10,12,18	205:8 216:8
44:5 46:2 50:16	59:1 88:2 107:11	190:13 267:2	221:10 222:7

223:20 226:7	322:18	84:13,15 85:13	144:3,6,22 145:13
235:3 242:12	consistently	88:12 89:11 90:3	146:22 147:3,10
260:4 314:15,18	192:10	93:16 97:18	147:13,20 154:10
317:7	consisting 10:20	102:15 153:18	154:17 157:3,6,17
considerable	consolidated	193:4 256:18	158:12,16 159:1,3
45:16 278:1	217:5	260:7 267:16	159:11 163:5,11
considerably	consortium	293:9	163:12,17 165:5,9
129:20	277:16	contexts 311:8	165:18 180:6
consideration	consortiums	continue 7:4 14:3	200:3 203:19
60:5 61:9 63:20	277:17	47:7 108:5,6	209:11 220:5
64:18,20 65:15	constellation	161:21 163:21	223:16 238:18
69:2 81:17 134:11	95:12	183:9 204:21	250:21 254:21
159:17 166:8	constitutes 129:19	229:1 246:2	255:6 256:14
169:13 208:15	constraints	272:10 322:8	257:2,2,10,14,22
281:20 311:17	232:22	continued 151:6	261:14 262:15,16
considerations 1:5	construct 265:3	322:11	263:6,16 265:1
5:67:11 19:19	consultant 152:4	continuing 231:20	273:20 274:12
20:18 23:10 24:6	consultation	293:7	319:14 323:3,11
60:18 61:3 66:19	196:15,17,22	continuum 226:22	323:17
68:6 105:21	consulting 31:5	contract 33:8	controlled 10:21
134:21 141:22	297:17	40:11 125:9 196:1	11:1,11 18:9 22:8
145:4 152:6	consuming 311:1	196:4	25:5 26:3 39:5
154:15 168:9	313:3	contracted 119:18	55:8,11 73:6
176:9 179:3 193:7	contact 40:4 88:13	contractors 35:13	101:22 102:3
206:2 223:12	contain 180:6	contracts 34:13	129:4 132:20
225:21 282:2	contained 60:21	36:11 38:6	142:19 147:17
considered 18:11	182:17	contraindicated	202:22 208:4
27:20 30:13 31:12	containing 145:11	91:22 130:13	211:13 213:9,18
71:7 74:15,21	145:14	contrast 185:15	214:2 248:16,17
85:18 91:15 95:16	contaminant	contribute 211:22	250:17 255:10
142:16 143:8	231:3	212:14 264:11	258:15 260:19
146:18,22 147:19	contaminates	contributing	261:12,19,20
150:13 151:4	180:12	235:22	280:13 314:11
154:20 157:2	contemplating	contribution 74:5	315:10 319:6
159:16 223:8	279:4	212:3 293:16	controlling 254:9
317:19 321:6,21	contemporaneous	contributions	controls 14:9 24:4
considering 147:1	274:5	69:7 325:1	27:7 102:21 103:5
162:8 167:11	contemporary	contributors	103:7 143:7
209:6 212:4	154:6,10 232:8,15	125:2	147:22 148:4,6,9
considers 145:5	238:13,15,16	control 28:13	148:10 152:10,17
consistency 80:12	264:1,9 323:9	55:12 79:20,22	152:18 154:4,6
consistent 114:4	content 108:19	102:16 103:9,12	156:1 168:19
156:11,13,15	context 30:15 64:5	103:12 114:21	169:2 213:22,22
263:20 267:18	70:17 75:18 83:12	140:19 143:3,7,8	238:13,15 252:14

252:17 253:6	costly 58:10 295:3	court 4:4,8	314:1
255:19 258:9	313:3	cousins 187:18	critically 64:6
261:18 263:13	costs 107:6,13	cov 96:4	criticism 306:10
264:9,17 271:10	195:17 302:5	cover 7:10 8:15	crude 78:21 229:5
273:19,19,22	couldn't 7:13	29:13 85:11 107:4	235:17 237:12
274:14 296:1	council 197:21	109:11,12,12	316:19
319:15,22 323:2	counsel 326:10,13	121:16	crudely 71:7
controversial	327:7,10	covered 191:15,20	cruel 117:15
235:8	counted 26:1	covers 109:9	cruelly 124:15
conventional	counting 4:14	covid 96:20,22	crux 183:6
94:21 136:13	39:12	97:11 181:7,17	cryptic 86:18
conversation	countries 22:3	218:9 219:5,7,10	crypto 109:12
207:18 293:1,2,7	104:2,3,5,9 128:6	219:12 241:10	253:14,20 283:6
conversations 7:4	156:13,18 187:11	242:15 244:13	287:13 289:10,19
convey 18:19	211:1,11 233:6	315:2	290:6
coordinating	240:3	coxi 109:11	cryptococcal
296:18	country 126:8	create 297:8,10	16:18 78:19 139:7
coordination	156:17,20 182:17	created 227:1	140:11 251:19
295:1	185:3 186:17	238:6	258:22
copd 244:13	counts 253:17	credits 99:13	cryptococcosis
cornell 41:16	couple 16:20 17:7	cresemba 99:17	128:6,15 129:7
169:11	128:4 148:12	100:8 102:22	321:14
coronavirus	150:15 186:14	103:16,17 106:2	cryptococcus
201:11 249:6	228:17 235:14	106:15 107:11	45:20 72:9 73:17
correlate 232:1	241:8,13 248:2	116:6 126:1,11	98:11 282:10
234:14 268:1	279:14,15 286:9	280:7	288:10 292:4
correlated 54:7	coupled 130:3	crisis 202:6	293:22
139:13	course 12:1 28:14	crisper 300:18	cryptopopulation
correlates 315:19	29:14 31:11 44:7	criteria 16:4 58:19	247:6
correlating 54:18	44:22 47:10 52:22	102:18 152:14	cryptostudies
54:20	70:11 75:22 77:11	160:4 161:2 166:6	247:1
correlation 56:11	87:12 118:21	167:12,19 168:2	cs3856635 1:22
57:14,16	136:2 140:13	168:13,18 169:4	csf 139:11,15
corresponding	146:20 156:2	219:20 223:21	ct 52:6 54:20 56:8
63:3	181:22 182:6	231:8 233:22	culpa 230:16
cost 40:12 100:16	183:11,13 186:12	262:12 303:8	culture 12:16
100:18,19,20	196:7 200:12	320:8	44:19 128:16,17
104:9 106:2,16	218:8 219:7 224:6	criterion 16:1	130:9 131:11,16
107:4,19,22	234:18 258:20	critical 36:8 37:8	131:21 137:17
196:14,19,21	259:4 264:18	42:5,6,10,13	138:1 140:9
197:5 202:19	286:16 287:4	44:15 55:4 58:1	149:19 183:21
210:8 249:16	290:22 297:2	60:17 61:18 90:10	193:17,19 224:4,4
299:22 302:5	304:9 310:22	115:13 168:22	224:17 227:6
311:4	315:5	232:17 255:21	228:3 229:16

8239:5,13	cyp 66:9	160:1 161:6,20	201:8 208:8
307:15,17 308:9	cyp51a 87:16	167:22 169:3	david 3:2,5 205:17
308:11,12 322:1	cystic 95:14,22	172:2,20,22	205:20,22 216:21
cultures	278:18	183:16 192:11	2:11 243:11,11
139:15 186:9	cytochrome 91:21	193:14 197:16	243:14,16 245:11
0:2,8 233:1,13	93:5	212:8,18 226:10,	246:9 259:15,18
233:15 307:21	cytochr	238:16,17,21	274:8,9 275:8,9
308:5 322:2	174:12	252:4,16 257:	286:4,5,8 288:5
culturing 182:	d	259:4 262:6,11,14	89:14,15 307
239:17		262:16,17 263:5	308:16
cumulative 91:7		263:16,18 264:1,5	david's 221
26:4 113:13	daily 189.12	265:16,21 267:17	dav
cured 235:2		268:11,14,19	day $22: 12,15$
285:8	dane $2: 17$	270:7,7,15 27	26:13,13 53:4,13
ious	151:18,18,21,22	272:5,8,9,	:21 58:5 81:8
current 5:5 81:16	1:18,18,21,22	273:9 274:4,19	:18 103:1818
82:5,19 89:17		277:15,22 278:4,5	112:3,7 113:8,10
106:10 108:10		284:13	3:11,15,18
111:11 135	stat	293:6 296:2 303:6	114:8 117:22
146:7 179:1	danny 276	304:22 305:4	19:14 120:21
180:17		306:21 308:4	4:18,19 144:8
196:11 209:7	darkness	309:16 313:9,11	191:19 194:3
232:21 294:11	data 5:20 13:15,17	314:18 315:10,17	00:4 239:16
31		315:1	247:1 250:1
currently 8:2		317:1 318:18,21	282:17 292:5
20:21 21:2 35:18		9:8	5:10,
37:14 83:8 88:5		320:3,16,17	days 6:12 52:10
88:16,21 90:22		321:22 322:10,10	110:1 111:21
93:1897	58:16 55:2 58:19	322:15,16 323:	2:5,22 113:
142:14 1		323:11,17,19	20:1,2 184:9
147:12 151:		324:1	0:9 22
169:9 193	$: 2,4$	database 13:4,	232:9,10
198:16 199:2		102:17 238:14	ddi 66:14
226:9 238:2		255:6 274:1,	$3: 644$
curve 56:13,		databas	deadly 119:1
		271:8	125:9 268:7
cutaneous 45:9,11		dataset 153:	deal 86:16 128
48:3 287:6	$147: 21148$	62:21 163:14	14:10 227
ts		212:5 268:1	230:6
cve 45:7	153:1	84	dealing 183:19
cle 68:5 10		datasets	230:8 294
.13 107.2		265:4 274:12,15	dearth 47:22
		date 1:9 109:22	death 33:14 97:14
51:15	159:11,18,20	143:1 183:9 186:2	17:21 122

151:11	deemphasize	230:20 236:8,11	286:8 289:15
debate 73:3 75:2	236:20 237:2,11	244:16,18 249:6,8	307:7,8
80:12	deep 21:11 22:9	249:8 272:10	denominator
debridement	48:21 199:15	definitive 55:22	299:5
101:19 102:20	246:10 292:8	92:3 97:4	deny 283:16
112:19	302:4	degree $84: 8$	deoxycholate 51:1
debridements	deeply 117:21	251:12 305:2	53:5 54:14 94:21
20:2	198:2 206:6	311:5	102:5 172:15
decade 8:21,21	defeat 255:14	degrees 252:9	department 127:9
24:20	defense 58:9	delay 4:11 101:20	departments
decades 59:14	defenses 44:8	200:14 282:6	189:13 301:7
235:14	defer 278:10	289:18,19 317:15	departure 133:17
december 121:12	289:14	delayed 66:22	165:2
24:18	deferred 1	310:19 312:2	depend 13:5
decide 161:21	deficiencies 47:8	delaying 128:10	144:21
260:11	201:21 267:3	delays 181:15	dependent 54:1
deciding 167:16	278:18	delineate 70:20	159:6,12 175:21
305:8 319:3	define 84:16 91:13	71:20	305:7
decision 16:21	114:4 134:16	delivered 90:20	depending 28:12
59:1 63:10 131:14	194:4 223:5	delivering 94:10	129:20 170:19
161:13,17 162:18	320:18	delivery 90:16,18	185:8 222:14
163:2 166:20	defined 7:22 9:1	94:18	278:11 307:16
268:20	12:4 18:7 28:22	demands 295:9	depends 106:20
decisions 108:3	75:8 80:5 88:9,20	dematiaceous	277:4
declare 112:3	89:5 92:6 93:13	46:3,5 285:12,14	depicted 47:1,8
233:17	106:2 110:11	287:14	deploy 95:1
decline 78:17	114:2 148:19	demonstrate	deprives 162:14
150:5	155:4 214:17	54:17 56:6,20	depth 257:2
declining 171:1	276:13	61:13 76:14 208:5	derive 257:12
253:16	defines 113:17	209:11,19	derived 26:6
decode 301:4	defining 9:21	demonstrated	describe 151:12
decolonization	12:19 75:1 322:18	11:11 18:8 27:22	272:17
48:8 191:22 193:1	definitely 111:6	50:10 54:3 86:14	described 29:9
193:2,4	208:19 228:9	demonstrates	41:4 223:4 271:17
decrease 95:17	237:2 258:10	57:12 85:1	276:14 291:6
220:6	286:15 287:21	demonstrating	321:3
decreased 53:8	317:1	48:5 52:11 57:6	design 5:5 11:16
104:13 119:16	definition 29:20	80:4 164:20	14:4 59:7 68:15
181:9,14 221:14	211:18 236:19	204:14	70:19 104:17,22
decreasing 53:7	324:6	demonstration	105:6,12 127:6
219:6	definitions 138:3	212:21	140:7 142:17,21
dedicated 24:15	216:9 223:17	denning 3:5	144:22 147:5,10
deemed 76:9	229:12,14,15,22	243:11,12,16	152:6 158:13,14
	230:2,4,5,11,18	259:15,18 286:4,5	158:16 161:22

168:17 194:2	determination	8:13,19,20 9:1,18	develops 112:13
225:20 267:11	25:15 128:20	10:4 15:19 19:15	diabetes 287:9
268:6 277:19	determine 146:1	19:20,22 20:8,10	diabetic 125:15
297:18 313:21	191:6	20:19,21 21:1	diagnose 87:7
320:6 324:3,5	determined 124:6	29:7 32:1,9 33:3,3	101:11
designate 16:21	151:14 219:16	33:7,10,17 34:14	diagnosed 123:4
designated 11:8	220:14	34:16 35:6,11,20	137:16
15:15	determines 129:1	37:10,17 38:7	diagnosis 84:3
designation 11:6,7	devastating 122:7	39:6,16,22 40:22	118:10 128:10
15:5,12,13 16:7	125:7	42:7,14,18 43:8	191:22 281:13
19:4 30:15 99:7	devastation	43:15 52:7,15	287:17
99:10 109:14	125:19	58:16,20 60:6,19	diagnostic 12:21
112:11 314:5	develop 10:2	61:7,13 63:21	41:7 96:14 134:3
designed 9:18	14:12 38:18 39:14	64:19 68:5,14,21	202:5 234:11
33:6 34:13 63:11	51:16 93:22 134:4	73:5 75:6 79:13	307:11
73:7 79:12 142:20	180:5 187:5,12	81:17,18 91:2	diagnostics 12:13
195:4 321:16	195:12 203:17	99:5,14,18,21	128:13 140:5
designing 10:1	220:20 253:22	100:19,21 101:12	141:2 149:9 150:5
104:21 134:15	297:12 316:11	105:19 106:6	180:5 200:13
317:7 322:6	developed 15:20	107:12,20,22	221:20 317:12
designs 5:19	16:13 33:16 42:17	108:12 137:22	diamond 122:4
103:12 142:14	71:6,10 72:6	142:15 151:20	183:21
172:19 252:15	73:18 75:14,18	152:7 169:12,22	dichotomy 151:9
253:12 323:1	109:1 115:4 126:7	170:10 179:2	dick 235:9
desired 76:8 77:9	160:7 182:21	180:3 194:6	didn't 132:8
77:19	186:10 240:3	195:10 198:21	die 125:12 235:20
despite 26:8 28:8	254:20 268:18	202:8,9 204:13	died 121:12
54:22 67:18	312:3	206:2 207:5,15	124:18 125:13
117:10 118:8	developers 6:3	208:2,3,8,21	193:20
120:10 124:21	25:1 35:21 36:5	209:8,14 210:7,9	differ 176:19
135:20 184:1	36:10,22 37:21	210:12,13 214:14	difference 47:11
200:2 234:4	38:5 40:10 72:11	214:15 215:12	157:22 169:2
destined 124:10	developing 5:6	216:5,12 219:18	185:4 243:20
detail 45:20	7:20 14:15,20,20	221:4 223:10	244:2,5 245:3
137:19 193:14	19:5 20:3 23:10	226:2 275:4,16	270:14
detailed 159:17	24:16 25:1 31:6	279:15 288:2	differences 22:1
299:15	36:14 46:15 59:20	289:7 294:9	80:10 155:5
details 133:6	139:1,21 199:4	295:21 307:18,19	174:20 175:6
159:6 296:8	206:10 207:15	309:6 310:3	222:1 281:22
detect 149:12	226:13 240:3	311:17,18 313:19	309:15
187:22 307:10	253:8 300:1	314:1 318:8,13	different 22:5
detected 183:9	303:10 314:19	developmental	29:10 35:16 44:6
detection 307:16	development 1:5	174:8 177:15	46:18,19 48:12
308:13	5:2,17 6:17 7:6,17		72:8,22 73:15

86:12 87:17,21	difficulties 93:4	discrete 35:5	16:12,19 22:20
90:13 97:22	173:22 312:8,19	discuss 6:4 12:2	23:14,17 25:7
101:16 116:1	difficulty $62: 1$	43:1 60:3 61:2	26:17,19 45:15,18
129:13 132:6	173:19 289:9	70:10 90:21	49:6 60:8 61:18
153:7 159:11	digital 326:8	142:13 148:10	68:22 69:8 73:9
166:6 175:2,9	327:3	170:9 191:8	74:3 78:22 85:4
183:18 184:16	dimension 34:4	198:13 212:2,13	85:14 87:8 88:8
185:2,6,21,21,22	dimensional 56:14	213:2 219:19	89:2,5 90:10,13
193:10 206:11,13	diminishes 174:18	242:12 246:9	93:10,15 94:8
206:17 214:6,22	dimorphic 109:10	271:8 281:19	95:11 96:21,22
237:10 244:20	199:12	282:1 294:8	97:7,11 98:2,20
247:12,18,19	dimorphs 36:4	309:11	99:7 100:1 101:18
251:17,21 261:16	dinner 116:12	discussed 28:12	102:16,19 107:18
262:11 271:19	117:11,18	29:3 84:8 101:6	110:6 113:19
276:10,19 278:9	direct 52:1 195:17	192:12 193:12	116:3 121:7,16
279:16 281:20	196:14,21 242:6	194:2 224:14	123:20,21 124:3
282:11,13,14	directed 220:5	225:5 317:18	125:22 130:15
283:15 287:3,4,8	direction 159:12	323:18	138:5 148:3
287:8,10,14,19	directions 43:11	discusses 29:7	149:12,15 151:7
288:18,20,20	directly 91:8	discussing 60:17	153:7 154:8,12
289:1 290:7,8	148:20	64:1 68:8 225:20	155:14 156:2,4
291:2 297:18	director 82:3	discussion 6:10	169:10 193:14
316:14,18,21	151:19 225:15	8:9 9:22 12:1,13	200:13 217:18
321:11,13	disappointment	14:1,12 17:6 24:7	221:2 227:3 228:1
differentiate	132:3	40:5 43:22 60:3	229:12,20 231:1
145:20	disaster 255:16	61:1 70:3 99:9	231:15 234:21
differently 161:2	discipline 298:10	149:6 213:8 214:3	236:8 238:18
282:16	disclaimer 60:20	225:11 241:19	244:22 245:15
differs 177:7	disclosure 199:7	242:1,3 244:6	246:11 247:18
difficult 10:1 14:6	206:3	252:19 253:11	249:4 268:7 273:1
24:4 33:12 62:20	disclosures 32:13	256:13 261:11	282:10,11 284:5
71:3 79:1 86:16	42:8 82:22 127:22	271:13 275:13,18	287:2,6,8 304:3,5
87:7 98:6 101:10	128:1 169:22	282:3 309:17	308:1,3 314:5
115:6 147:9 152:8	179:20 225:22	311:16,17,21	318:15 319:19
153:6 202:12	disconnect 178:12	312:1 316:6,10	321:10 323:12
204:19 210:10,15	193:16	317:11 318:2,17	diseases 5:8 16:16
210:22 219:4	discontinuation	319:13 322:6,11	32:16,18,20 38:8
239:9 262:1,17	95:8	325:2,15	42:15,16 43:14
265:1,1 286:13	discourages	discussions 5:4	44:12 45:2,9
287:11,17 289:2	203:16	7:3 9:6 20:10	70:18 71:3 82:4
292:2 303:4	discoveries 34:16	81:22 289:6 320:7	103:14 107:17
304:14 306:8	discovery 42:14	325:12	123:15 124:1
309:1 316:4	43:16 58:11 88:14	disease 4:12 8:1	125:18 126:5
	107:20	15:5,17,20,21,22	127:8 179:7

204:17,22 207:7	142:11,12 179:6	door 281:5	45:16 48:4 50:8
207:11 213:19	225:16 261:9	dorsophila 58:14	53:17 57:4,4,10
214:6 225:17	dixon 2:16 142:2,2	dosage 46:16 53:4	57:18,19 59:14,15
245:21 248:2	142:4,5,8 151:18	54:4 63:9 278:5,8	59:15,15,22 60:1
251:17 259:5,9	dmid 32:20 33:16	dosages 52:16	60:6,9,10,13,15
267:4,9 270:12,15	docket 16:15	57:9 76:14	60:16 62:15 69:11
271:19 286:21	docking 310:10	dose 13:14 24:9,11	69:14,16,18 71:18
287:9 291:19	doctors 119:21	26:21 27:9 31:11	72:2 73:13 74:10
292:9,13 304:5	218:14 220:17	40:16 47:14 50:11	75:4 76:1 81:1,14
312:5,14,15 313:7	document 23:12	50:21 53:22 57:3	82:7,8,10,11
313:16 314:2,4,4	23:20 24:15 97:9	57:12,20 62:11,16	98:22,22 108:12
314:10,20 317:8	154:21 184:14	63:3,12,16,18	108:13,15,16
disfigurement	205:5	65:2,4 70:7,20	115:9,9,19 123:1
125:19	documentation	74:6 79:4,8,11,18	123:7 126:21
disorders 93:6	40:1	156:18 176:13	127:5,7,11,12
131:5	documented 87:9	228:5 268:17	141:20,20 142:1,4
display 167:13	96:19 97:11,18	277:18 280:8	142:5,7,8 151:17
disposition 52:17	180:15 220:3	294:1 315:8 324:4	151:17,21,22
174:8,13	documents 96:13	dosed 109:13	152:1,2 169:7,7,9
disproportionately	174:1	doses 54:17	169:15,16,18
16:14	doesn't 110:8	172:18 175:19	171:13,16,18,20
disqualify 130:10	140:21 153:8	176:2,19 212:11	175:13,15,17,18
disruption 49:18	175:20	212:19	176:20,22 177:4,9
dissect 103:22	dog 116:22	dosing 46:15,21	177:11,19,22
disseminated 45:5	doing 4:14 119:13	71:9 72:1 84:9	178:2,6,13,21
45:18 57:22	138:16 139:18	111:22 112:1	179:4,5,6,10
dissemination	181:12 206:5	133:12 172:8	189:17,20,21
312:16	231:16 240:10	176:11 177:7	190:2,4,5 198:10
distinct 48:18	246:15 260:6	217:8 314:13,16	198:11,15,18
distinctive 48:9	262:10 263:17	319:1,4,11	205:18,19,20,22
49:14 51:18	272:16 273:10	dot 32:12	206:1 215:19
286:15	285:10 289:5,9	double 76:21 77:1	216:14,15,16,18
distribution	294:17 302:5	129:4 132:21	218:16 221:7
199:15 207:3	dollars 213:16	239:13	222:18 225:9,12
dive 250:14,15	300:5	dr $2: 3,4,5,6,7,8,9$	225:18 241:16,22
diverse 191:4	domestic 35:1	2:10,11,12,13,15	242:19,22 243:1,3
284:11,14 285:6	dominates 45:3	2:16,17,18,19,20	243:5,6,7,7,9,11
divide 247:14	dona 190:16	2:21,22 3:1,2,3,4	243:14,16 245:4,6
divided 176:15	donor 119:3	3:5,6,7,8,9,10 4:2	245:8,10 246:12
dividing 176:12	don't 36:2 75:14	4:6,10 6:20 7:7	246:13,14,16,18
176:14	85:13 88:4 129:11	22:20 23:3,5,6	247:21 248:1
division 6:15	130:6 131:10	31:18,19 32:3,5,6	249:12,13,14
32:19 33:1 60:8	164:3 165:11	41:13,14,17,19,20	250:22 251:1,3
69:7,8 81:20	177:20 178:13	41:22 42:2 43:4,5	252:11,12,20,22

254:2,4,5,6 256:1	driven 105:1	168:5,7 169:22	307:19 311:19
256:4,7,10 257:6	142:22 143:18	170:10 174:8	due 5:3 26:19
258:3,4,5,7,8	150:19 267:18	175:20 176:11	33:14 34:19 61:16
259:15,17,18	322:19	177:16 179:2	62:3 146:5 150:18
261:6,8 262:3,4,5	driver 104:9	180:3 199:12	193:21 200:12
263:8,9,9,10,21	drivers 33:9	200:16,21 201:3,4	219:9 220:1
263:22 264:2,12	drop 75:4	201:17,20,21	221:20 241:10
264:13,15,16	drops 11:12 79:6	202:9,14 204:13	317:21
265:6,8,10 266:4	99:20 160:17	212:1 216:3	duke 94:6
266:5,6,7,9 268:4	171:12 175:12	218:13,13 219:18	duly 326:5
268:22 269:2	178:17,18 254:1	221:2 224:4,6,8	dummy 282:19
271:5,11 273:14	272:5 293:21	227:17 251:22	duobushaemulo...
273:18 274:6,9,9	drs 50:9 59:12	256:19 259:21	188:3,12,19
275:6,8,9,12,17	drug 1:2 6:3,17	260:2,2,6,12,17	duration 13:15
275:19 276:20	7:5,17 8:12,18,20	262:8,10,16,20,22	111:20 156:18
279:7,9,10,11,12	8:22 10:4 11:9	275:1 280:7	183:22 212:19
279:13 280:5	13:7 15:18 16:5	281:13 285:11	219:15 258:16
281:16,18 282:4,5	17:10,19 19:14,20	288:2 294:9 300:3	317:17 320:10
284:16,17,19	19:22 20:8,10,17	304:21 305:8	durations 107:7
286:2,4,5,6,8	20:19 35:11 36:1	310:3,10 311:18	107:15
288:4,6,11,13,14	36:20 37:6 43:16	312:10,10 316:22	dwell 218:18
289:15,22 290:1,3	52:16 58:11,16	318:13 325:14	dying 110:7 236:1
290:12,14,15,17	60:5,18 61:8,8,13	drugs 1:5 5:15,21	236:3
291:10,13 292:1	65:5,8,13,15,16	7:20 10:2,22 11:8	dynamic 236:9
292:15,19 293:10	65:17,17,22,22	12:17 15:7 17:2	dynamics 184:3
293:12,14,15	66:5,5,16,16 67:7	19:17 20:22 25:1	193:9
294:5,7,13 296:19	67:7,19 68:11,11	36:14 67:10 80:8	e
297:1 299:17,18	68:21 69:4,4 70:8	83:8,22 85:2,9	e $2: 1,14: 1,1$
299:19 302:22	71:16 72:11 75:6	86:13 90:1,20	$301: 19$
303:3,14,16	75:12 76:8,21	91:3,15,17,21	earlier 10:13 47:6
304:16,18 305:19	77:9 78:9,13 79:9	92:2,7,17 93:5,7	98:18 112:16
305:22 307:6,7,8	79:14,19,21 81:17	98:14 125:7	123:8 132:7
308:15,21 309:13	83:12,22 84:14,18	130:13 170:6	137:19 157:8
309:18 311:9,12	85:8 89:13 90:7	180:5 185:1,20	166:20 199:2
311:14 322:16	90:18 91:13 92:6	199:4 200:19	202:7,21 283:15
324:15,17,18	94:10 98:15,17	201:16,16 203:17	$\text { early 20:1 } 33: 4$
drafted 241:8	99:14 100:1	204:16,21 205:2,5	35:21 37:10 46:15
dramatically	105:16 106:5	205:11,14 207:15	56:21 58:15 71:22
177:7 181:14	107:19 109:3,5	208:2 218:2 224:1	72:3,6 73:6 76:7
254:16 290:7	113:12 133:14	225:2 253:8 270:5	77:1,17 84:2
drastically 123:2	134:5 135:20	273:20,21 274:13	85:15 88:18,19,22
draw 161:11	136:12 142:3,15	282:3 285:15	89:7,14,16 92:3
drive 37:18	143:5,6 147:2	300:1 301:17	93:22 94:19 95:2
320:11	148:21 161:11	302:15 303:8,10	95:3,8 118:11

124:2 131:19	161:5 165:6 169:1	effort 33:10 41:3,8	emergence 96:3
139:11 196:12	216:3	59:11 104:19	96:19
220:5 252:7 292:8	effective 19:750:4	235:15 256:16	emergent 314:21
ease 277:11	53:6 62:8 92:11	276:6 279:17	emerges 88:16
easier 297:12	143:5 144:10	295:15 299:10	emerging 38:8
300:17	157:18 160:20	efforts 39:7 59:16	46:1 48:3 56:4
easily 139:15	163:1,16,22	118:8 124:21	58:20 87:13 95:21
210:8	164:12 165:17	265:3 266:16	97:17 125:4
east 178:18	166:10 168:5,7	313:12	129:16 170:15
easy 9:4 286:12	218:1 294:17	egment 114:17,18	179:9,18 189:6
287:12	319:4 325:6	114:19	emphasis 222:13
eat 116:18 117:4	effectively 50:2	eight 39:12 104:5	emphasize 197:10
ebola 258:15	effectiveness	204:7 232:4,5,13	239:1 251:22
echinicandin	10:17,20 11:10	232:20	emphasizing
135:4	17:17 61:16 62:1	either 7:22 13:19	108:5
echinocandid 51:1	63:19 205:1	25:2 79:9 88:15	empiric 182:7
echinocandin	208:22 209:6	88:18 89:8 107:2	224:3
47:13 95:2 105:14	211:17,22 212:15	132:22 136:3	empirical 88:20
132:19 136:15	213:4 216:10	178:7 218:12	172:13 227:10
144:7 145:9,12	223:8	221:1 249:1	238:4 239:7,15
185:22 186:11,21	effects 68:12	258:17 279:21	240:13,13 277:10
187:2,4 217:8	109:16 121:7	307:11	empirically
echinocandins	efficacious 305:9	elaborate 309:15	239:16
49:21 50:1 64:13	312:9	elected 230:2	employ 267:7
87:2 89:21 135:10	efficacy 19:9	electricity $82: 15$	employed 29:16
176:5 184:21	21:22 22:10 26:12	elements 42:10	51:17 326:11,14
186:10 206:15,20	27:1 28:6,18 31:8	110:12,14 155:10	327:8,11
226:18	35:10 36:9,13	197:13 211:21	employee 206:4
echniocandin	37:1,4 39:17 48:5	212:3 230:14	326:13 327:10
47:16	52:17 57:5 58:2	eligibility $25: 15$	empowered 298:3
echo 279:17	65:1 66:12 67:15	eligible 15:12,21	enable 72:15
ecinocandin	72:21 74:9 76:3	16:19 34:22 99:15	215:10 218:1,14
145:15	103:4,6 107:17	202:16 203:14	enables 111:7
economic 8:11	145:16 191:22	eliminate 281:6	encapture 137:9
203:15 300:12	212:9,21 251:13	ellenberg 258:14	enchinocandins
education 108:2	277:12 278:9	ema 21:19 23:11	206:12
125:6 141:15	efficiency 316:12	24:1,6,15 25:12	encompass 246:5
efa 139:11	317:13	80:10,17 268:14	encompasses
effect 11:17 12:6	efficient 140:7,17	309:15	245:18
18:8 50:11 77:13	159:7 214:15	email 32:11 41:1	encounter 51:21
95:17 143:3	312:21 313:4	198:7	278:21
145:18,21 146:10	318:1 322:7	embedded 79:20	encountered
146:14 148:21	efficiently 277:21	emerged 38:9 73:3	51:18
150:12 151:3		88:3 92:17 97:2	

encourage 19:5	289:13 315:16	$104: 1,2,4,5 \quad 128: 7$	equal 196:13
38:1 40:4 41:1	322:20,21 324:7	31:2,7 133:10	equally 162:16
99:10	ends 36:21	36:1 140:1	201:19
encouraging 8:3	engage	149:18 210:12	equation 57:6
32:10 118:5	engaged 9:7	218:17,20 232:17	equity 19:1
endemic 45:20	engagement 9:5	233:22 238:1	equivalent 75:3
288:8,15 290:9,19	313:13 322:8	240:6 253:7 280:1	199:8
91:4 316:20	engin	280:5 317:13,16	r 236:10
21:20	england	320:8	9
endophthal	enhanced 13:20	ensure 37:9 5	radicate 98:6
49:11,12 50:5	83:6 123:2 255:1	69:22 70:12	erin 2:6 6:14,16
51:2	297:22	149:14	31:17 32:1,3,6
orsed	enjoying	ensures	41:14 81:3,8
heal 52:2	enormous	ensuring	92:17,19 308:20
endpoint 10:8	enrich	entangled 110	308:21
10:12 12:5,8 13:2	137:9 317:1,	enter 50:20	erin's 31:21
22:10 26:2,12	323:10	enteral 89:2	error 159:4,
31:3 56:19 57:9	enriched 134:17	enterprise 300:11	163:9 164:4
58:19 72:7 75:10	213:11	thusiasm	267:22
75:10,17 78:19	enriching	138:16	es 326:4
103:1 104:21	enrichment 13:1	tire	escalation 50:21
105:7,13,20	149:11	entirel	277:19
110:12 113:18	enroll	tities 299:3	escape 299:16
139:10,11 140:1	131:13 134:13	entitled 258:14	esophageal 45:10
143:4,12,15,19,21	136:1,2 138:7,20	entity 96:1597	47:6,9,17 214:8
144:4,9 148:16,18	203:8 204:4	97:12	especially 65:10
148:18 150:8,11	209:21 210:4,	envelope 239:6	80:11 85:12 90:1
150:13,16,17,18	228:18 232:13,20	environment 22:3	90:2,8 91:4,9,19
150:22 151:12	233:7 280:16	48:11 218:	93:21 95:2 96:6
237:14 310:15	286:15	environments	129:16 130:13
315:22 317:9	enrolled 28:7,11	87:17	136:17 138:2
321:1,6 323:13	100:7 104:3,6	envision 277:13	140:11,21 149:13
324:8	131:20 137:3	eortc 110:11 113	189:13 192:11
endpoints 9:22	138:13,14 244:3	113:17	246:6 267:4 278:3
11:19 12:2,3	269:8,13,17,19	epidemic 129:21	279:20
44:18 75:2 78:15	299:6 323:15	218:8	essence 202:14
78:22 104:22	enrolling 12:14	epidemiol	essential 141:3
109:20,22 110:1	129:12 133:21	34:10	260:22
115:4 130:17,19	137:5 199:21	epidemiology	essentially 27:7
130:22 131:9	210:14 241:3	170:4 182:14	32:22 63:1 97:10
140:3 142:14	255:1 312:19	191:	131:22 181:5
148:14,20 149:1,1	316:12	episodic 87:16	establish 5:18
149:6 150:5 155:4	enrollment 12:17	epithelial 90:8	60:22 61:16 73:7
236:22 237:17,21	13:10 103:20,22		92:10 195:12

280:2 305:5	event 4:16,22	examining 40:17	excuse 116:6
established 25:22	eventual 235:13	example 5:10,12	123:16
93:19 94:14	eventually 119:18	21:7 35:21 38:8	executable 214:20
101:14 129:2	312:12	39:13 44:21 45:16	exemplify $43: 21$
233:21 278:15	everybody 4:20	46:6,7,11 53:19	44:3
294:2	6:21 11:6 69:15	57:11 58:13 61:19	exempt 19:4
establishing 31:7	79:13 105:16	65:8,11 66:20	exercise 313:8
62:1 106:13	179:11 189:19	76:11 86:18 89:6	322:12
294:10	198:19 265:20	129:9 139:22	exercised 9:8
estimate 143:2	271:1 275:13	140:10 150:5	exhaustively
216:2	300:22 324:21	157:7 158:14	301:16
estimated 94:5	everybody's 269:3	164:19 168:5	exist 116:3 231:18
96:9 168:10	325:18	174:11,21 175:22	297:6
209:16,20	evidence 9:9 11:2	193:1,8,16 195:12	existed 297:6
estimates 76:16	17:17 29:5 51:3	197:14 199:6,14	existing 8:1 16:10
78:9,13 130:6	72:21 74:9 89:1	201:21 204:5	75:18 163:20
et 57:4 215:8	97:4 109:15 161:5	206:6 209:14	249:7 313:2
247:10 271:3	168:20 204:15	238:14 248:19	expand 36:6
272:5,19 273:1,12	205:1 208:22	255:4 257:17	218:11 238:1
274:20 291:20	209:5 211:12,17	260:5 265:15	expanding 92:1
eternal 159:18	212:14 213:4	266:16 268:4	254:20 320:8
ethical 173:21	214:10 216:10	272:3 286:11	expansive 135:17
ethics 235:4	222:10 223:7	288:21 291:19	expect 121:22
ethnicities 288:22	227:4 228:17	306:1 310:13	154:7 234:19
eu 23:9 26:3 29:9	229:19 234:1	316:19 321:15	320:14
30:20	236:22 279:20	examples 42:22	expectation 28:16
eukaryotic 34:6	322:13	103:13 196:11	expected 28:19
europe 29:13	evident 10:20	203:19 263:22	164:15 166:22
87:21 96:6 97:3	evolution 294:21	example's 74:3	218:21
250:13 278:15	318:6	exceed 71:8	expedited 280:19
295:16 310:4	evolving 313:15	exceeded 104:1	expensive 203:9
european 23:1,17	ex 238:10	exceedingly 185:3	208:11 211:3
evaluability	exacerbate 94:15	excellent 292:22	295:4 304:13
104:15,18	exacerbating 98:4	324:20	311:1 318:4
evaluate 64:22	exacerbation	exception 28:9	experience 24:18
66:16 314:9	95:7,18	128:5 139:5	71:12 125:20
evaluated 55:14	exact 159:6 182:1	excess 106:3,10	130:7 151:20
evaluating 234:22	exactly 76:12	107:13	192:2 218:19
evaluation 21:22	130:6 238:7	excited 292:20	219:17 224:1,5
23:12 142:3	240:19 264:5	exclusion 219:20	235:19 246:2
211:22 318:18	309:2,	220:11 223:21	278:1
evasive 100:2	exaggerated	exclusively 49:10	experienced
evening 116:8	254:16	exclusivity $15: 10$	122:16
117:19 325:18		99:12 107:3	

experiences 99:4	extensively $42: 9$	extrapulmonary	factory 312:2
280:2	72:2,3,10 75:5	111:4 113:20	facts 193:3
experimental	78:18 314:22	extremely 102:1	fading 116:10
49:14,15 54:8	extent 30:10 52:10	191:11 201:12	fail 135:10 $223: 13$
266:16	228:22 234:6,13	202:18 203:3	223:14,15
experiment	237:1 244:12	223:18 323:20	failed 114:6,8,9
311:3	298:18	extremes 316:1	121:8 132:6 237:6
experts 124:12	external 14:9 24:3	eye 50:2	264:3
236:17 298:7	143:7 147:13,20	eyes 121:17	failing 136:12
explain 306:4	148:4,5,9,10	eyesight 121:5	failure 76:7 83:21
explains 306:16	152:10,17,18	f	88:8,13 110:15,22
explicitly 67:21	153:22,22 154:4		111:1 113:5,8
75:15	154:17 155:7,15	fabulous 245:10	114:4,5,11 132:12
exploration 24:13	155:16,18,22	face $8: 1268: 22$	135:4 247:9,10
46:17	156:3,11,14,16	124:10 300:12	failures 219:22,22
explore 36:1,7	157:3,6 158:10,19	facile $296: 5$	237:9
43:20 46:9 253:2	159:2,3,11 160:1	facilitate 211:19	fair 262:12,19
280:6	168:19,20 213:22	253:7 275:3,15	fairly 144:10
explored 56:5	252:14,17 253:6	94:9 299:1	286:14 289:4,11
93:7 235:9	254:21 255:6,19	facilities	faithful 73:8
exposure 61:7	256:14 257:2,10	$181: 11,21182: 12$	fallen 300:11
62:6 63:4 64:17	257:14,22 258:9	181.11,21 182.12	false $167: 15,15$
64:21,22 65:7	262:14 263:5,13	facility $184: 1$	familiar 15:4 33:8
67:3,12 69:4	263:16 264:17	$189: 1$	187:7 203:20
70:21 76:21 77:9	265:1 273:19,20	facing	204:8 293:2
77:20 78:10,13	273:22 274:11,14	fact $24: 1125: 11$	familiarity $141: 15$
79:11,14,18 84:11	296:1 319:14,15	25:19 26:9 28:19	families 116:13
90:6,15 91:7	319:22 323:1	30:20 62:3 87:3	117:5,17
134:8 136:15	externally 55:8,10	$88: 13132: 3$	family 116:18,19
177:16 202:1	153:10 261:12	$135: 20 \quad 138: 19$	117:4 120:17
279:19 294:2	extinguisher	184:1 187:19	121:14 124:3
312:9 315:8	301:9	$215: 18221$	125:21 171:9,21
exposures 76:3	extinguishers	$24: 19263: 14$	far 15:13 17:22
235:5	301:7	264:22 284:5	26:8 87:11 108:18
expressing 310:16	extract	321:1 322:7	113:12 119:11
exserohilum 46:6	extraordinarily	factor $128: 14$	154:14 205:13
extend 205:13	74:16 274:16	$270: 16$	249:2 261:11
extended 111:22	295:13	factors	289:11 305:3,12
112:4 254:12	extrapolate 19:8	$144: 21$	309:3
extending 169:20	extrapolated	170:17 171:5,10	farley $2: 3$ 4:2,2,6
320:10	176:11	$230: 1242: 12,13$	4:10 32:5 43:4
extensive 59:16	extrapolation	$248: 14261: 15$	142:7 152:1
74:16 207:3	323:21	$272: 12 \text { 274:20 }$	farther 43:20 45:6
		319:17 321:11	46:9 296:7

fascinating 322:22	feedback 192:16	163:17 185:18	152:16,18 157:5
fashion 117:5	feeding 318:7	187:15 188:19	169:20 176:18
238:16 264:10	feel 136:6,18	189:9 197:18	179:5 186:14
fast 15:12 197:8	238:5	223:20 231:21	187:20 190:7
238:4 287:18	feels 10:9 12:6	235:7 240:18	191:17 193:8
296:15	148:22 220:15	finances 100:19	194:21 226:15
fatal $48: 17$	fees	financial 5:22	228:3 229:12
father 118:2	fellow	financially 270	242:11 243:2
favorable 53:14	felt 117:21	326:15 327:11	254:8 256:13,13
55:18 57:20	fever 5:10 88:2	financials 107:1	262:20 264:19
favors 105:14	130:22 131:3	find 20:4 55:8	267:8 275:19
fc $226: 14$	220:12 231:14,20	122:17 126:14	293:19 294:11
fda 6:15 7:11	fewer 159:4 167:7	152:8 161:3	297:3 304:19
12:22,22 16:1	219:8	164:10 216:11	308:17
21:19 23:7 38:15	fibrosis 9	220:7 270:10	firstly 162
60:9 72:20 73:3	278:18	280:21 285:13	fishers 190:14
80:5,10,17 81:21	fide 37:22	323:4 325:6	191:10
99:3 100:2 106:1	field 7:5 8:12 9:12	finding 112:7	fit 70:12
108:17 116:5	45:3 121:9 122:	164:8 172:16	fits 132:5
126:2,3 142:3	124:5 127:17	248:21 324:4	five 15:9,10 $21: 2$
160:11 192:19	150:4 253:9	findings 50:18	38:19 96:8 106:12
194:18 202:3,7	fifth 106:19	52:6,6 55:7 175	132:4 185:6
205:3,10 220:15	fight 120:14	177:17 228:14	191:16,17 192:16
261:10 267:1	123:20 124:6,9	234:14 277:4	210:7 213:14
309:15 311:11	125:5,8,11 126:7	fine 266:10 306:22	221:17 232:10
324:21	fighting 124:1,3	finessing 160:10	239:22 249:16
fda's 199:2	figure 84:20	finger's 101:4	254:18 293:18
feasibility 161:18	271:16 317:19	finish 29:6 168:14	300:12
320:22	filamentous	216:15	fixed 11:21 148:17
feasible 5:18 9:2	282:17	finishing 106:16	fks 206:19
14:5 20:5 159:9	filipino 2	fire 198:14 216:15	flat 300:11
162:12,17 164:9	fill 35:5	301:6,7,9,9,11,12	flavor 35:12
169:5 211:15	filled 116:	firmer 45:22	flavus 171:4
212:5 213:3	filler 39:9	first 4:117:8,10	fleming 258:14
214:17 221:9	filling 34:14 39:14	15:11 17:10 29:14	flexibility 9:8 17:4
222:8 233:12	filtration 174:16	31:7 32:12 37:2	205:13 313:9
feature 167:6	final 54:3 104:17	38:12 42:3 43:14	320:14,18 322:12
242:8	150:15 151:14	60:7 61:9 62:11	flexible 31:3 205:8
features 48:18	168:14 263:1	70:1,5 71:17 74:7	florida 180:21
49:7 84:12 154:20	274:7 309:14	75:21 76:2 84:17	flow 240:5
157:1	finalized 23:15	87:3,18 89:11	flt 92:20
febrile 172:13	finally 55:20	97:3 105:22	flu 55:22 133:20
february 116:6	57:15 58:12 84:1	106:12 123:6,10	187:1,5 306:5,14
123:15	106:11 141:5	126:3 135:2 145:5	315:2

fluco 201:6 203:21	footnote 114:16	162:15 165:7	167:13 208:11
fluconazole 38:22	footprint 104:11	179:11 194:6	214:20 230:8,14
39:3 47:9 133:1	107:14	207:19 215:11	238:8 239:15
134:8 172:15	footsteps 116:9	216:5 237:21	313:3
186:19 187:14,21	force 23:16 30:20	238:22 239:20	frankly 6:3
188:4,6 198:21	forced 89:11	241:1 302:2	free 33:16 34:1,14
204:6 227:15	306:22	314:16 317:7	35:1 40:9
303:21 306:17	forces 238:3	318:10 320:6	frequency $84: 10$
fluid 90:8,9	forefront 50:10	321:22 322:6	87:8,16 137:15
fluids 97:9	foregoing 326:3,	324:11 325:1	frequent 85:3
fluorouracil 38:20	327:4	fosmangepix	frequentist 162:3
foci $25: 21,22$	foreign 21:21 22:3	137:1	162:6
focus 5:1,11 6:5	35:1	fosmanogepix	frequently 51:10
33:19 57:1 83:15	foremost 105:22	198:22 199:10,12	149:10 172:14
84:17 96:1 108:22	24:12	fought 120:13	302:7
137:8 179:15	foresee	found $34: 1153: 5$	friend 241:10
190:9 193:3	form 97:6 132:7	53:18,21 55:14,17	friends 121:14
194:13,19 199:1	306:9,10	86:21 148:1	122:12 124:4
229:16 266:20	ive	17	front 32:11
focused 102:13	formatting 19:12	184:16 185:1,13	ruitful 325:10
108:12 137:3	formed 122:19	248:6 306:12,14	frustrating 237:3
152:7 162:5 26	123:12	309:4	fulfill 71:1
focuses 162:2	former	foundation 45:22	fulfilled 56:19
focusing 5:13 35:9	forming 122:13	50:19 52:19 55:21	73:14,18
134:1 206:1	forms 291:6	95:22 115:12	fulfilling 126:18
207:13	formulation	122:13,20 123:5	full $33: 3199: 8$
folks 6:8 32:10	1:7 63:21 64:9	124:4 276:15	206:3 223:9 227:3
33:7 189:15	67:10 68:14 10	foundations 59	240:13
follow 118:7 136:9	136:21 139:2	founder 115:11	fully 210:10 $217: 1$
136:9,9 229:6	145:7 201:22	four 21:3 61:22	251:16 283:7
231:10 302	207:6	62:2,4,9,20 68:2	fumigatus 87:14
followed 105:6	formulations	138:14,17 185:6	171:4 201:3
132:13 133:1	3:22 57:17 64:1	204:4 210:7 213:8	function 104:17
145:12 172:13	64:12,15,17 69:3	213:14 221:17	174:14
209:10	84:9 89:21 94:22	247:5,7 281:19	functions 10:9
following 21:14	102:7 176:1	fourth 65:15	12:7 148:22
164:17 212:22	199:16 226:17	106:18	220:16
213:13 257:8	forth 247:13 270:6	fractionation 57:3	fund 115:13
folsom 1:13 326:2	300:7	fractionized 46:21	funded 270:19
326:18	fortunately 83	frame 83:11 105:2	301:16
food 1:2 14:2 16:5	forward 7:2 13:21	218:22	funding 33:14
68:12 77:13	22:18 34:19 35:6	framework 30:14	34:20 35:3 72:7
225:10	37:11 56:16 124:6	42:21 60:22 161:5	125:6 189:22
	124:9 140:7 161:8	161:13,17 162:4	190:9 194:13

197:18	20	Olinium 49:19	genome 188:8,21
7:20 214:21,22	316:5,8,18 317:5	gain 297:11	240:1
215:6,8 296:17	317:8,14 318:15	galactomannan	genomic 34:3
10,12,14	319:18 323:7,12	12:18 53:9,19	enus 285:1
301:15	fungi 36:4 109:8	54:6,19,19 56:	eographically
funds 173:20	199:12 218:6	56:21 72:8 78:16	185:8
funeral 121:15	4:20 282:17	8:2 15	corge
fungaemia 25:19	283:19 284:14	248:13	243:3,6 288:7,11
25:22	286:11 287:3,1	game 119:12	88:14 305:22
fungal 5:8 14:6,10	321:21	121:9 124:2	rmany 119:3
14:21 23:14 25:2	fungicital	ganella 58:13	geserium 109:10
25:7 26:17,19,20	fungiscope 102:17	gap 34:14 39:14	getting 76:15 90:7
26:21 27:6,13,15	157:9,16 238:13	gaps 34:20 35:5	109:1 114:10
27:22 29:5 31:2	274:2	38:2 107:1 191:8	202:13 219:12
34:9 35:18 36:17	fungus	252:16 318:11	232:7 251:22
36:18 39:2 41:18	114:19	gas 301:22	5 272:18
42:5,15,16 43:14	33:3 284:6	gastrointestin	273:4 299
44:12,18 45:2	303:181		ghannou
54	furi	gather	gi 174:14
70:18 71:3 75:3	further 20:9	gears 15:2	giant 120:17
78	6:175	gee 283:3 3	gift 124:20
99:10 102:12,16	:12 55:14,16	gene 87:16	ginormous 285:2
105:18 107:5,18	56:5 61:1 62:16	general 8:18 12:21	give 35:12 41:10
109:17	65:3 74:21 76:13	75:1 142:13 182:3	92:2 109:2 115:22
113:1 115:6,14	80:2 145:4 148:10	227:20 246:22	135:9 138:10
116:3 118:7	326:12 327:9	284:21 285:16	53:3 214:11
119:19 120:15,2	fusariosi	303:9 309	218:22 231:20
123:20,21 124:1	46:4 282:15	generally 10:8	233:22 243:10
124:11,14 125:4,9	fusarium 85:6	63:21 72:12 73:19	92:16
125:13,18 126:4,7	291:19	4:17,18 75:9,12	299:3 303:16
126:13 128:19,20	future 7:3	6:19,22 78:7	given 15:6 16:3
134:14 170:5,12	58:17 124:9	:8 107:17	37:19 50:15 58:4
173:4 191:9 200:1	126:13 140:13,	153:20 265:	73:11 74:12 97:20
201:1 202:17	151:13 195:11	314:5	120:2 132:19
204:13 205:15		generate 211	13
207:6,11 213:19	275:5 280:8 281	292:8 308:3	147:6 169:2
214:6 217:17	296:11 308	generated 27:8	193:19 222:11
230:15 231:13		1	
23	g	neration 29:5	232:21 236:4
280:16 281:21		:18 226:16,16	262:21 270:9
287	$\begin{aligned} & \mathbf{g} 4: 1 \\ & \text { g.r. } \end{aligned}$	26:18 239:19	276:6 279:6
295:18 296:12	$243: 9288: 1$	298:6	281:20 289:8
305:17 307:1	290:18 303:1	genetic 241:2	299:3 311:6,21
312:5,15 313:6,16	304:15,16 305:21		312:1

gives 153:3 159:21	280:1,5,6 290:1	275:10,13 283:13	grade 119:8,9
181:2 183:18	290:10 293:14	283:16 285:13,17	248:11
219:3 235:10	295:22 296:20,21	285:20 287:7	graduate 119:8
giving 32:7 91:15	296:21 298:3	291:11,15 295:14	graft 93:9 94:16
92:5 179:8,11	299:19,21 305:14	296:7,20 301:21	248:11
231:7	311:2	303:1 304:6,18,20	gram 95:19
glabrata 129:17	goal 6:588:18	305:4,5,6,9,14,15	grant 33:8 37:3
129:20 134:20	193:3 252:1	306:20 309:21	195:3 196:11
137:4,11 186:15	goals 217:22	311:11,12 314:16	197:3,4,11,12
global 26:4,14	goes 4:15 112:6	317:7 318:10	granted 15:13
81:18 88:3 107:14	113:9	320:6 321:21	100:2 117:7
110:11 113:7	going 6:13 16:2	322:14,19 324:10	254:10
130:17 141:6,16	20:15 31:21 45:22	gold 261:17	granting 30:14
143:15 148:16	52:9 56:14 65:4	good 4:4,6 6:9,21	144:14
150:15,17 151:11	70:1,9 80:3 81:21	9:9 23:6 24:17	grants 40:6 215:2
202:15 221:13	84:3 87:6 92:6	30:19 41:20 42:2	granularity 271:9
281:7	96:4 101:4 108:22	42:3 43:5 64:6	granulation
globally 104:9	110:15 111:5	69:14 82:8 89:9	113:10
globe 281:8	114:15 115:22	96:9 98:14 112:4	graph 112:1
glomerular	116:4 127:4,6,17	114:20 135:9,14	173:15 182:12
174:16	130:9,20 133:6	135:21 136:20	graphic 63:1
glp 74:17	134:21 135:6	137:7 142:5,9	132:7
glucan 135:18	139:6 140:2,6	157:13 162:22	graphically 167:2
206:10,12,18	141:3 152:5,9	163:21 164:11	graphs 182:9
229:18 233:20	160:21 161:8	165:7 169:19	grayed 14:18
234:5	163:21 170:4,6,9	177:12 184:20	great 20:13 61:11
gm 248:19	172:21 177:10,20	189:19 198:18	82:11 104:7
gmp 39:19	178:10,22 179:3,7	203:12 211:6,8	108:18 119:13
go 4:6 20:15 57:2	181:9,21 184:4	221:7 222:19,20	137:19 139:22
81:21 82:17 99:1	188:14 189:6,18	227:13 241:11	141:10 152:2
108:9 112:4	189:21 194:19	242:17 243:4	179:11 225:10
114:14,15 127:21	198:11,12,14,15	246:18 257:10	243:15 244:12
137:19 141:21	204:20 206:1	265:2 268:1 278:4	245:4 246:12,16
151:18 152:16	209:13 218:18	279:20 285:12	247:21 273:8
154:14 169:8	219:14 225:19	311:15 325:18	275:12,13 279:7
178:14,16 184:9	228:10 230:12	gotten 88:21	281:16 291:13
196:22 197:1	232:11 237:21	128:16	293:10,14 294:5
200:20 221:17	239:8,13,18 240:4	government 6:2	302:12 303:3
226:17 228:20	240:5,15 241:9,15	191:6 298:16	305:13,19 307:6
233:16 242:5,8	242:4 244:16,20	governmental	greater 45:20 55:9
243:14 245:8	249:16 252:12	318:5	86:14 123:21
246:10 251:2,3	254:11,15 255:18	governments	134:17 165:21
257:11 259:17	256:15,15,16	34:22	209:1 213:5 220:2
263:16 269:3	259:1 264:10		220:9 248:13

253:3 254:14	255:7 265:13	here's 79:2	201:9,12 204:10
263:12,15 269:3	268:21 304:8	heroes 122:5	205:14 207:4
291:14 293:17	313:18 314:8	hesitate 198:6	210:21 215:14,14
321:17	322:3 323:10	heterogeneity	220:10 227:10
hearing 171:14	helped 124:4	77:7 153:5 242:16	234:10 238:9
175:14 179:14	helpful 40:20	245:12,14 246:9	241:3 248:11,12
276:2	80:13 160:9 169:1	246:21 249:19	264:20 269:16
hearings 116:5	223:18 260:4	250:10,21 251:4	307:21 312:6
heart 121:19,20	261:4,20 283:2	251:10 252:7	317:14 318:15
heartbreaking	284:2 286:22	254:9 255:9,16	higher 54:17
126:22	316:3 317:2	270:4,18 276:17	76:14,19 104:16
heavily 108:3	323:20,22	283:14 288:17	146:13 162:10
210:18 232:3	helping 223:19	304:9 316:16	171:21 187:10
heavy 118:21	helpless 125:10	321:9	200:7 303:21
heel 199:18	helplessness 91:1	heterogeneous	highlight $27: 10$
held 190:13	hem 248:19 249:4	245:19 249:19	86:10 207:17
helen 2:21 179:4	hematogenous	heterogenic	216:7
189:17,18 190:4	45:8 49:9,15	321:17	highlighted 18:19
225:9 241:15,16	62:14	heterogenous	68:1 165:21 199:2
241:22,22 243:1,5	hematologic 21:12	283:18	highlighting
243:7,14 245:4,8	102:19	hey 246:14	207:22
246:12,16 247:21	hematological	he's 127:6	highlights 18:16
249:11,12 250:22	171:6,10 248:22	hi 82:8 142:5	112:9 190:7 218:9
253:1 259:16,17	hematopoietic	169:18 241:22	highly 13:14 47:15
271:6 273:16	21:11	245:6,6,8 249:14	49:22 51:8 111:13
275:10,12 279:7	hemodynamically	254:6 257:8 261:8	141:12
279:12 281:16,19	48:16,22	261:8 263:10	hill 57:6
291:12,13 292:1	hemorrhage	288:6,11 324:15	histo 98:11 109:10
292:15,19 293:10	121:12	324:18	histologic 137:17
293:14 294:5,8	henry 115:12	higgins 3:8 261:7	histology 44:22
302:14 303:1,3	116:18 118:2	261:8	47:12 227:6
304:16 305:19	122:19 123:8	high 10:6 19:18	229:17
307:6	126:14	48:17 53:4 61:2	histopathological
hello 142:6 152:3	hep 293:3	86:12,22 87:1	286:14
169:15 171:17	hepatic 68:16	95:8 101:7 102:6	histoplasmosis
176:22,22 177:1,1	77:14 199:17	103:14 106:22	289:20
177:2 178:1 254:4	233:15 247:9	107:19 119:15	historical 24:3
256:4	hepatitis 298:11	141:1 163:15	27:6 70:17 103:5
help 12:14 33:15	hepatosplenic	164:1 165:6 169:5	103:9,12 105:4,11
34:15 65:1 68:10	49:1 234:17,20	185:12 187:14	105:13 135:12
68:15 131:18	herbrecht 204:9	188:4,6 192:8	143:7,16 273:19
155:9 168:19	hereto 326:14	195:4,5,6,7	historically 88:19
180:3 196:2 198:7	327:11	196:12 198:13	91:14 92:13 95:16
216:4 224:11		199:16 200:2	176:10 203:1

204:19 260:19	159:21 280:17	human 15:6 24:12	ideal 232:10
261:19 277:8	281:9 325:11	34:5 44:18 61:18	ideally 25:16
297:19	hoping 4:15 14:11	63:3 73:8 74:3	27:16
history 232:6	60:2 281:6	76:2	ideas 6:4 60:3
260:21 313:15	hopkins 82:4	humane 315:16	69:22 71:14
323:8	hortaes 285:5	humans 73:21	161:11 225:4
hit 278:6	hospital 41:17	76:4	idelalisib 93:3
hiv 32:22 47:7	118:22 119:5	hundred 300:5	identification
66:13 247:2,2,4,7	120:22 122:22	hundreds 184:9	12:19 70:6 74:6
247:8,14,15	172:6 219:13	203:8	150:2 155:6
251:16,16,19	272:9 275:22,22	hyaline 46:2	identified 13:17
289:18 290:10	hospitalized	hyde 327:2,15	65:3 87:3,20
298:11 321:13,14	278:20	hydration 174:17	155:13 156:1,3
hodges 3:171:11	hospitals 183:2	hyperbaric	183:12 185:7
198:16,18 205:19	188:12 209:21	112:20 121:2	210:19 211:5
218:17 247:22	211:5,11 239:14	hyphal 98:2	232:19 319:16
248:1 273:17,18	273:4 305:16	hypodiploid	identifies 46:16
288:5,6	host 44:8,12,14	118:13 122:22	156:5
holding 196:6	46:19 48:22 51:21	123:3	identify 8:7,8
holds 40:13	58:9 83:13 85:16	hypotension	43:10 44:5 47:1
holes 89:20	93:9 136:21	220:12	49:18 52:16 53:18
home 116:19	242:13 247:11	hypothermia	61:14 62:11,16
120:19 241:12	248:11 268:18	220:12	63:12,15 97:13
homes 116:13	288:19	hypothesis 49:20	131:18 134:3
hometown 124:13	hosted 123:	1	194:5 210:22
honchoing 135:5	hosts 52:9 175:7	ibrahim 39:9	214:15 278:16
honestly 298:5	315:2	$57: 19$	286:13
honing 318:12	hotspots 181:13	ibrexafunger	identifying 51:9
honor 122:13	211:4	$48: 6135: 16$	52:20 71:15 89:3
124:9	hour 57:7,8 224:3	206:10 207	129:12 209:4
hope 2:9 6:21 7:2	242:4	ibrutinib 93:2	232:7
8:6 11:6 13:22	hours 220:1,2	icr 38:19	idh1 92:21
14:22 40:19 41:9	224:3 232:12,20	$\text { icu } 91: 10230: 1$	idiosyncrasies
50:8 53:17 59:15	249:16 281:13	$230: 4 \text { 248:10. }$	77:15
60:9,10 69:14,18	house 116:11	icus 181:22	ifd 28:3,6,8,18,21
120:5 122:14	301:9,10,12	idc 65:12	ifds 111:3,4,5
126:16 207:17	housekeeping 6:7	idea 73:575:13	illinois 180:19
245:7 253:11,20	houselights	$109: 19152: 13$	185:14
253:21 280:8	116:12	157:10 159:22	illness 130:14
291:21 292:1	houston 178:22	$161: 4,12162: 3$	illuminated
293:12,15 309:17	huge 104:9 128:14	$164: 7167: 18.22$	116:10
309:18 325:5	270:10 285:1	$219: 3224: 15$	illustrate 307:3
hopefully 14:2	297:9 299:5,5	$251: 22 \text { 257:16 }$	illustrated 86:4
81:7 82:13 135:14		$301: 5,15305: 13$	306:7

ustrates 83:7	S...	99:9 101:5 114:1	inaudible 64:14
197:21	1:2	5:2 126:4 127:1	67:10 72:3 76:11
mage 149:3	impact 36:18,19	135:14 149:11,13	170:14 193:13
magine 116:17,21	39:3 52:14 111:2	154:18 155:16	194:14 228:16
181:13 287:10	49:7 193:21	159:16 168:12	254:11 283:11,12
imagined 117:13	200:22 206:19	177:18 180:1	287:15,15 306:9
imaging 49:16	215:17,20,21	199:2 201:19	310:5 312:6,7,22
175:3 234:19	19:16 220:10	242:12 246:8	315:5,6 316:12,22
237:8,9	5:13 248:8	9:22 253:2	20:22 323:20
magining 117:6	303:11 320:6	266:3	324:10
mbalance 222:4	impairment 68:16	276:4,18 277:2	incentive 297:9,10
immediate 29:17	68:16 77:14,14	282:1 287:18	incentives 15:3
101:18 312:1	imperative	295:13	19:21 108:6,21
immediately	imperfect 235:21	3:1	incentivized 270:8
118:20 232:12	implant 112:15	304:6,15 306:19	incidence 96:9
237:22	implement 173:18	307:17 323:12	170:22 210:5,17
immensely 255:7	213:2	importantly 17:13	211:12 238:9
268:21	impleme	85:9 100:9	include 5:5 21:10
immune 5:12 47:8	18 82:2 197:3	impossible 167:17	33:18 34:2 36:17
119:18	197:11	253:5 260:7	38:15 65:7 84:8
:14 251:12	implemen	imprecise 78:13	94:21 95:10 98:
10 278:18	209:15	improve 113:22	98:7,19 99:11
312:14	implications 77:9	218:2,2,14 317:12	100:19 101:16
munoc	90:12	317:16	103:14 128:17
288:18	implied 1	improved 29:4	130:22 134:10,21
immunocompro...	importance 9:15	10:21 113:6	149:1 194:22
52:9 101:7 125:1	8:2 84:19 88:5	improvement 56:7	95:3 197:1
228:1	94:10 95:10 98:1	56:22 110:14	224:5 266:1 277:7
immunodeficien...	307:3	139:13 232:1	287:13 291:3
:7 175:	important	234:15 324:7	cluded 11:20
immunologic	17 9:10,13,14	improvements	16:5 17:6 18:19
32:17	0:14 13:7 14:18	114:13 218:12	21:17 63:3,6
immunolo	0:4,7 23:9 24:6,8	221:20	100:4,6 102:12,18
286:13	24:10,14,21 25:18	improves 64:10	102:22 103:3,19
immunolog	26:11 27:10 28:3	improving 30:11	106:15 149:20
3:1	$9: 11$ 30:5 34:5	113:5	155:15 166:16
immunology	0:6	inability 150:19	173:13 201:1
191:21 288:19	59:20 64:21 66:16	269:12	208:3 317:19
immunosuppres...	68:3,14,17 75:7	inadequate 83:	318:19
16 111:14	76:15 77:15,16,21	inadvertently	includes 8:13
19:11 220:18	77:22 78:11 79:2	79:10	21:14 39:18 86:8
immunosuppres...	79:17 84:14,19	inappropriate	92:18,22 130
73:20 242:14	85:5,12,15 87:5	158:5	46:6 155:
	90:3 97:5 98:12		191:16 206:21

209:9 243:21	increasingly 47:20	inducers 67:9	284:1,2 290:7
285:3 297:7	51:19 58:8 86:20	induction 92:16	315:1
including 10:3	86:21 92:17 93:7	industrial 42:9	infections 5:3,7
14:16 34:6 37:5	95:14 96:3 277:11	59:19 277:18	14:7,10,16,22
39:19 44:20 46:3	incredible 295:10	industry 34:22	15:8 18:3 25:2
46:5 59:14 67:2	298:9	43:16 151:21	27:6,13,15 31:2
100:22 101:17	incredibly 168:15	152:5 191:5	47:5 66:3 70:18
106:14 118:7	ind 39:22 40:13	207:20 212:17	70:19 81:16 82:6
120:3 122:12	196:6	214:20 215:1	82:20 83:3,14
125:16 137:10	independent	225:5 302:2 322:9	84:20 85:15 86:10
138:1 144:21	25:16	ineffective 160:22	86:16 87:10 90:3
191:4 192:5	independently	164:13 166:19	93:21,22 94:1,2
201:10 206:22	102:20	inefficient 203:9	94:13 96:17 99:10
224:15 242:15	india 87:22	inevitable 287:1	101:6,8 102:12
267:16 299:4	indicate 65:5	inevitably 87:9	110:8 111:22
314:14	indicated 18:13	inexorable 259:10	113:20,21 115:7
inclusion 102:13	55:3 63:1 151:8	inexorably 110:9	115:15 118:7
150:2	277:22	infancy 174:18	124:11 126:13
income 128:6	indicates 56:14	infant 50:22	128:7,19 134:9
incorporate	172:18 263:4	infants 170:22	140:22 170:5,12
131:10	indication 11:1	174:9 276:7	174:20 175:7
incorporated	11:15 21:6,13	infeasible 71:5	180:10 200:1
38:12	29:4 36:8 71:17	84:9	201:1,10 202:18
incorporating	72:15 95:13 97:14	infected 224:19	205:6,15 207:12
38:11 194:17	144:14,16 172:12	infection 9:16,17	207:16 208:14
incorrect 163:9	195:8 226:8	17:5,12 21:5	214:13 228:16
166:7 168:9	259:20 261:1	38:18 41:19 42:6	230:15 231:18
incorrectly 159:14	318:22	46:7,18 48:21	234:12 258:11,12
165:19	indications 7:18	50:6 51:11 64:2	260:3 273:2,4
increase 67:4,15	10:1 21:10 25:14	85:2,12,19 94:14	281:21 287:12
94:15 107:2,3	49:3,5 63:8 84:2	96:11 105:18	295:18 307:2
159:14,14 200:21	144:12 147:1	107:5 111:13	316:5,13 317:5,15
203:13 223:22	217:19 260:3	112:14,16,20	323:7
increased 7:17	287:22 320:20	113:13 119:19,21	infectious 4:12
57:17 172:3 219:7	individual 63:15	120:13,15,22	8:12 15:5 16:12
219:9 238:5	131:15 177:14	121:4 124:15	22:20 32:15,17,20
increases 67:15	217:4 262:10	125:9,11,13,19	38:8 60:8 69:8
94:9 177:14	299:8 308:22	126:7 131:6 171:3	82:3 97:7 99:22
182:10	309:10 315:18	173:4 174:21	123:15 127:8
increasing 53:6	individuals 117:8	192:3 204:13	169:10 225:16
87:13 91:13 93:12	132:21 135:10	209:6 214:9,16	infective 19:14
163:2 177:15	259:10	220:21 224:9,16	34:13
274:3	induce 38:20	228:17 231:13,19	infectives 6:16
	53:22	234:2 258:17	69:9 81:20 142:12

$\begin{array}{\|cc\|} \hline \text { 261:10 } \\ \text { inferential } & 222: 14 \end{array}$	$\begin{aligned} & \hline \text { 318:7 } \\ & \text { inhalational } \quad 90: 15 \end{aligned}$	insist 282:21 insofar 278:11	218:13 276:13 interactivity
inferiority 11:16	90:18 94:18	inspired 123:11	212:9
26:5 29:2 104:22	inhaled 14:20	124:20 125:8	interest 7:17,19
105:2 132:8	95:20	instance 64:13	15:16 19:11 33:21
142:20,22 143:1	inhibitor 135:18	66:7 68:9 86:5,10	34:7 36:19 127:3
143:12,14,18,21	206:11	95:4,21 98:8	149:12,15 150:4
144:2,5,13,18	inhibitors 65:19	134:19 136:16	172:16 196:8
145:3,10,13,19	66:15 67:9 92:20	213:18 224:2	221:14 253:8
146:8,19 149:13	92:21,22 206:13	instances 19:8	257:19 270:17
150:18,20,22	inhibits 109:5	264:19	310:1,4
164:20,22 165:19	initial 52:15 53:2	instill 124:4	interested 16:16
infiltrates 52:12	70:6 71:20 100:4	institute 32:15	71:12 80:19
inflammatory	102:10 107:20	266:15	160:18 217:11
44:21 98:4	118:21 252:3	institution 129:22	326:15 327:12
inflate 77:2,5	300:4	262:7,7	interesting 73:2
influence 174:8	initially 51:6	institutions 35:2	170:21 182:10
influenced 258:18	146:11 186:9	35:16 36:14 39:12	184:3 207:2 226:7
influenza 96:5,10	211:5 253:18	118:19 215:8	273:5 282:20
96:17 201:13	initiated 99:18	270:20	300:19 322:22
244:13 249:2,9	194:21	instrument 245:17	interfere 93:5
influx 54:15 298:9	initiation 52:5	insurance 301:7	interim 161:19
inform 33:6 35:19	initiatives 198:1	intact 117:17	intermediate
65:2 68:7,10,15	264:8 297:11	integrating	110:16
267:10 272:11	injured 125:16,17	268:20	intermittent 34:20
273:13 313:18	injury 53:7 54:1	integration 58:21	internal 323:17
314:13,16 323:16	innate 88:15 98:16	intended 15:7	international
information 18:17	312:3	17:11 34:15 35:5	123:6,17 141:9,11
34:10 60:1 62:22	innately 86:7	205:5 212:19	186:7 189:14
63:6 67:16 71:22	innovate 297:7	intense 120:8	192:5 280:15
79:17,18 154:1	innovation 82:2	intensive 51:19	297:15 298:20
158:4,21 164:18	innovative 280:18	204:10	internet 4:17
179:16 199:7	323:1	intent	82:15,22 177:12
235:11 236:12	innovators 34:21	262:22 325:7	interpatient 278:1
239:11 250:2	inoculant 48:18	intentionally	interpret 142:21
256:17 270:20	inoculated 38:20	264:8	145:3,19 262:17
275:2 283:21	inoculation 36:16	interact 67:8,10	265:2 268:19
309:8 310:9 319:2	52:2	interaction 61:8	interpretable 5:19
319:10	input 325:18	65:17,22 66:5,16	14:5 143:14
informative 168:1	insert 226:4	69:4 201:22	252:16
informing 316:7	inserts 226:6	206:18 312:10	interpretation
infrastructure	318:19	interactions 65:16	145:13 146:19
$\begin{aligned} & 80: 3,15 \text { 294:22 } \\ & 295: 19 \text { 296:14.18 } \end{aligned}$	insight 76:2 273:8	67:7 68:11 84:14 91:13 98:15	147:15
295:19 296:14,18		91:13 98:15	

interpreted 161:9	102:16 103:16	investigators 34:2	isolated 172:5
interpreting	106:8,16 107:5,18	72:9 80:19 132:15	isolates 34:9 38:13
147:14 150:12	109:17 111:12	190:17 313:1	87:4 135:9,11
interpretive 303:8	115:6 119:19	318:9	136:22 184:18
303:10	128:5 129:14	investigators'	186:2,18,22
interval 71:9	130:5 131:5,18	136:4	188:22 189:1
157:15 164:21	132:10 137:13,15	investment 107:4	192:11,11,17,20
165:2 166:1	137:21 139:2	108:7 215:3,5	issue 19:11 83:13
intervals 323:5	140:11 143:10,11	255:20 298:12,16	83:14 87:6 152:18
intervene 258:20	144:1,5 145:8	investors 203:16	162:11 221:16
259:2	149:16,22 170:5	215:3 221:15	233:11 245:13
interventions	170:12 175:2	313:2	265:14 298:13,14
231:16	200:1,4,5,7	invisible 213:12	299:13 307:15
intolerance 8:2	201:10 202:17	invitation 42:4	issued 16:6 19:14
intolerant 136:13	203:1 204:12	69:19 82:12	20:22 205:4
intra 54:13	205:15 207:8,10	169:21 225:7	issues 8:774:13
intramural 190:17	207:11 208:3	invite 22:19 241:6	78:6 85:1 142:15
intravenous 14:14	209:9,15 213:10	242:6 252:20	147:19 148:9
21:10 63:22 64:7	217:16,17,20	282:4 309:16	153:11 160:14
64:15	220:13,20 223:9	inviting 23:7	162:22 180:3
intravenously	228:1 233:13	198:19 206:9	183:14 219:6
64:14 206:16	243:17 244:10	involve 98:3	271:15 274:19
introduce 108:6	248:5,18 274:19	283:20	312:7
179:5 189:20	274:20 308:3	involved 6:17	issuing 19:10
195:22 205:20	312:5,15,20 313:6	74:13 83:13 173:8	isuvaconazole
216:16 225:12	313:16 314:2,4,10	173:10 198:21	157:9
introduction	314:20 316:5	210:1 212:17	it'll 302:19,19
91:19	317:8 318:14	226:1 281:15	italy 97:6
intuition 305:7	319:18 323:12	involving 96:20	iterations 240:14
invadable 78:16	invest 100:15	irb 174:2	itra 54:22 55:6
invasion 227:6	invested 4:21	irreversible 10:13	56:1 306:5,17
invasive 5:37:19	investigated 25:21	isavuconazole	itraconazole
11:14 14:21 22:10	31:12	58:2 101:3 138:17	54:18 65:21
23:14 25:2,6	investigating	262:19,21 263:2	itt 262:22
26:17,18 27:12,15	314:12	268:4 274:1	it'll 14:2 79:15
28:10 31:2,3	investigation 46:2	isavuconazonium	135:9
42:15,16 43:14	59:5 306:2	101:2	it's 5:18 8:14,17
44:11 45:2,13	investigational	isavuconozole	10:14 12:7,8 13:7
51:7 52:8 56:2	30:17	132:9	17:3 18:7 24:10
66:3 70:18 71:3	investigations	isn't 94:12 163:13	24:14,17,21 25:18
73:14 82:6,20	10:21	isoconazole 126:1	27:10 29:11 30:5
94:8 96:22 98:2,3	investigator	isolate 22:2 38:15	30:18 31:4 32:14
100:3,11,17	194:21 299:8	38:21 136:12	63:21 64:6 70:1
101:12 102:11,12		192:17,19	70:19 71:2 73:5

76:16,17 77:1	116:3 127:17,20	297:2,13 299:13	keeping 208:21
78:11,19 79:12	129:9 130:20	299:19	keeps 300:7
80:16 83:12 84:19	136:4 139:6 152:3	johns 82:4	kefyr 188:5
85:14 90:18 91:6	152:5,9 169:18	join 4:17 7:13	key 5:22 8:8 19:19
94:7 96:13 98:10	170:1,1,4,6,9	242:7	46:20 69:21 70:3
106:18 109:4,4,8	176:8 178:9,14	joining 7:1 207:20	71:14 76:16,18
109:16 110:3,5	i've 14:17 16:3	325:1,4,13,16	104:21 109:19
111:17 112:12	19:18 52:12 59:18	journal 123:14	152:12,18 153:15
113:13 115:7	65:11 68:1 73:11	174:5 236:16	154:3 155:10
128:18,21,22	82:19 92:12 148:8	joy 117:7	160:16,17 162:8
129:16 131:19	155:10,12 161:12	jude's 122:22	163:6 164:2 167:3
133:5 135:5,18	166:7	julia 190:18	217:5 223:21
136:11 138:11	j	jump 189:18	238:11 241:2
140:18 142:9	jack 248:4 270:3	jumping 267:13	255:16 261:5
146:15 153:12,15	jackson 190:19	justification 11:17	kg 57:9
153:19 157:13	janel 1:13 326:2	30:7 143:1,18	kick 242:20
160:1 161:4,14	$326: 18$	320:2,2 322:20	275:17 282:3
163:7 164:12,14		justified 26:22	291:22 303:15
165:12,17 167:17		143:12 144:19	kid 121:22
168:3,16 176:7	pan 20:19,22	145:2,11 146:9	kidney 130:15
177:11,12 178:10	$21: 8,1822: 3$	150:19 215:13	kidneys 120:4
241:22	21:8,18 $87: 22$	justify 105:1	kids 122:19
iv 66:22 102:6	japanese 7:13	197:7	$\begin{aligned} & 126: 16 \text { 170:8,8 } \\ & 323.21 \end{aligned}$
	21:20 22:1,5,5,6	justifying	
14	2:17	k	kieran 24
i'd $32: 6$	jason 2:8 60:6,12	kaplan 55:15	$\begin{gathered} \text { kieren } 2: 1281: 2 \\ 82: 8,11 \quad 128: 11 \end{gathered}$
I $41: 242: 371: 12$	60:13,16 69:12	kappa 249:	138:12 245:6,8,10
81:15 99:2 115:7	jersey 180:20	karen 3:8 261:7,8	246:13 256:2,2,4
i'll $7: 10,10,1132: 1$	job 1:22 217:2	karnofsky	256:5,11
41:19 43:21 51:5			kill 119:22
52:21 60:12,17	john 2:3,13 3:6,9	$171: 16.20 \text { 175:15 }$	kilogram 50:13
79:15 82:11 83:15	John $4: 2,2,6,106: 21$	175:18 176:22	53:4,12,13,21
89:18 91:6 92:4	$8: 1032: 543: 4$	177:4,11,22	54:5,13 57:21
94:12 97:3 98:13	$1373: 10$	$\begin{aligned} & 171: 4,1 \\ & 275: 20 \end{aligned}$	58:5
99:6 138:9,21	$3: 9,13,$		kilograms 176:14
152:16 153:13	$152: 1$	$10: 141$	kind 114:8 127:17
164:15	245:		139:6 180:2
i'm 4:10 6:13 16:2	245:16 249:14 1,3 256:7	35:6 117:16	188:14 206:21
20:15 60:2 81:18	251:1,1,3 256:7	144:20 163:15,22	216:21 217:6
82:14 84:3 85:17	262:5,6	$\begin{aligned} & 144: 20105: 15 \\ & 215: 10239: 6 \end{aligned}$	218:9 219:3
87:6 88:11 89:6		$261: 13 \text { 295:20 }$	221:18 222:4
96:4 108:18,21		$300: 5301: 20$	223:3,9,17 225:3
114:14 115:22	294:13 296:20,21	309:20 320:9	237:18 238:14

239:10 247:5	303:18 306:2,5,8	labor 119:14	lasso 298:19
249:21 257:1	306:12 308:19	laboratories 43:17	lastly 193:12
269:3,11 270:20	311:21 312:18,19	70:15 74:18 240:2	196:1
284:3 290:21	314:2 315:15	240:8 305:15,17	late 37:10 81:5
291:1 295:7 296:7	318:21 320:2	laboratory 12:9	227:7 229:14
296:10 298:11	321:6 322:2 325:9	43:7 45:3,15 50:7	248:3 311:15
303:21 320:19	325:13	50:9 57:4,18,18	lateral 38:21
kinds 170:17	knowing 50:3	59:2 139:17 149:2	240:5
kinetics 50:15	knowledge 75:19	225:15 305:18	laughing 116:15
kingdom 69:20	123:3 125:5 191:7	308:7 310:1	launching 48:7
192:3	292:8 326:9 327:6	lack 85:20 89:21	264:7
kitchen 116:14	known 118:9,13	99:15 124:1	laura 2:10 81:14
knocking 281:5	118:21 119:19	154:18 187:17	81:17 82:10 98:22
know 8:10 10:6	125:4 126:1	201:22 202:1	99:2 108:13,15
23:11 24:18 32:11	182:20 191:6	220:11 270:17	115:9,19 126:21
50:1 79:16 85:13	265:14	299:12 319:6	127:12 132:7
113:18 116:13	kovanda 2:10	lacking 299:11	141:20 151:17
128:4,12 129:19	81:14,17 82:10	lady 114:20	157:8 169:7,16
130:16 131:10	98:22 99:2 108:15	lagging 140:13	171:13,18 175:13
134:6 135:17	115:9,19 126:21	laid 55:21	175:17 176:20
140:18 153:4	141:20 151:17	lancet 302:13	177:9,19 178:2,6
164:3 165:11	169:7,16 171:13	lane 190:14	178:13 202:21
177:21 179:13,13	171:18 175:13,17	191:11	204:5 279:8,9,11
180:13 181:8	176:20 177:9,19	language 114:2	279:13 281:17
182:16 183:12	178:2,6,13 202:21	lapses 33:14	299:22 301:3
184:15 185:5	204:5 218:16	large 8:13 11:17	laura's 132:1
186:3,15 188:9	221:7 279:8,9,11	88:17 97:5 104:11	lavages 231:4
206:14 215:1	279:13 299:22	105:18 139:4	law 18:18
220:8 223:6	301:3	149:9 153:8 160:2	laying 50:19 52:18
227:11 230:21	kurt 159:5	162:9,12,17	lead 5:19 32:16
235:11,18 236:2	1	166:15,17 167:17	81:20 91:8 97:15
238:13 247:16	lab 36:178	168:22 186:16	146:14 159:12,13
250:4,14 251:6,6	$123: 2232: 8$	210:2 212:5 221:8	162:17 221:3
251:15 252:1	307:12	221:13 253:18	222:1 247:19,19
255:14 257:3		281:7 283:7 306:6	leader 122:4 261:9
258:8,19 259:4	$109: 16 \text { 111:11 }$	largely 70:8 72:6	leading 49:20 67:2
261:11 262:9	109.16111 .11	96:14 128:16	96:14 100:5
264:17 265:19,21	,12	277:4	170:11 200:14
270:6 272:9 273:4		larger 44:1 86:13	leads 110:18
273:5 278:8 282:7	labeling 17:21	107:17 162:10	162:10 221:13
282:10,15 283:17	$18: 15.19$	167:4 308:4	learn 272:1
283:19 284:4	65:7.9 66:1 67:17	largest 219:20	302:12
289:18 293:16		274:18	learned 9:11 20:8
298:10,16 299:7	151:13 318:16		83:5 91:1 111:10

123:18,20 141:11	leukemias 110:7	268:5,12 273:10	92:22 128:1
198:13 217:3	118:11	limited 16:22	130:11 134:22
230:13 231:21	level 10:6 19:19	17:12 18:7,13	205:11
315:3	61:3 147:21 192:8	98:14 109:8,18	listen 249:15
learning 77:12	234:6 265:16,21	111:14 136:14,15	listening 115:21
246:2 271:14	319:21	141:8 144:14,17	271:12 302:21
led 39:8 303:19	levels 150:6 182:9	146:5 152:17	lists 36:15
ledanski 327:2,15	185:12,14,22	166:14 167:5	literature 87:20
leeway 133:2	leverage 14:7	193:7,14 195:16	103:7 158:3
left 47:8 112:22	191:8 283:16	200:14 203:11	little 41:11 103:22
117:16 121:20	leveraged 275:3	205:6 209:7	109:3 133:1,4
131:14,21 134:4	leveraging 40:21	210:16 215:13	174:6 217:3 218:6
134:12 165:4	lexicon 75:6	227:22 232:14	222:11 227:7
167:7 239:2 314:6	liability 65:17	234:5 268:19	239:9 241:1 251:3
legacy 117:15	66:6,9	limiting 128:14	260:12 267:3,13
lends 271:20	license 75:15	168:6 270:16	280:18 282:16
length 108:20	99:21	limits 134:15	293:20 296:2
242:13 248:9	licensed 27:18	224:3 225:1	297:12 299:21
317:21	71:17 195:8	282:12	300:16,17 302:19
leniency 223:21	licensing 240:16	line 89:11 276:2	303:5 309:1
lentulus 86:19	licensure 100:20	306:13	liu 2:22 189:21
lesion 54:16	100:21	linear 175:20	190:2,5 198:11
lesions 85:21 89:8	lieu 222:13	176:2,4,6,12	live 5:9 124:8
lesson 85:5	life 15:717:11	linearity 76:14	236:12
lessons 9:10,14	56:2 106:11,13	lines 61:6225:1	liver 91:4 130:15
20:7 83:4 198:13	107:2 114:14,21	lining 90:8,9	174:12
217:3 301:1	115:1 117:15	link 73:11 190:22	liverpool 60:11
lesto 109:11	118:1 122:10	192:18	lives 124:8 126:13
lethal 51:10 70:18	124:17,20 125:20	linkages 79:1	living 116:15
74:1	204:16,21 205:6	linked 63:18	117:2 126:18
let's 81:6,9 82:16	208:18 255:3	links 182:19	236:12
103:15 111:9	268:7 301:7	197:20	load 287:14
127:21 129:8	lifesaving 56:1	lionakis 190:18	loaded 311:22
135:1 169:8	lifted 65:11	lipid 49:4 57:17	local 189:13
178:18	light 64:17 211:18	94:22 102:7 139:2	localized 131:1,4
leukemia 92:11,19	lights 117:16	226:17	located 41:2
93:1114:20	liked 110:2	liposomal 53:3	location 1:11
115:14 118:10	likewise 110:15	54:4 57:19 58:3	lockhart 3:10
120:9 122:22	limit 5:16 212:22	95:1	284:17,19 304:18
125:8,13 224:22	limitation 206:15	list 15:21 16:10,19	305:20
246:1 248:7	233:10	92:1 147:1 179:22	$\boldsymbol{\operatorname { l o g }} 4: 1775: 4$
272:19 277:14	limitations 18:14	201:2,7 283:8	logically 110:13
287:9	18:20 29:18 84:7	listed 41:6 59:18	lomentospora
	84:9 89:19 113:17	65:22 82:22 92:12	85:7 109:9 112:14

112:15 255:4	162:7 180:5 185:9	low 87:8 118:15	lumped 110:22
long 33:12 57:10	185:19 200:3	164:12 165:20	285:7
90:2 92:9 107:15	218:6 236:19	184:20 185:14	lunch 178:9,12,14
112:6 113:21	239:20 240:12,22	203:3 208:17	lung 54:1,15 90:9
119:16 132:18	246:7 249:5 253:3	269:16 306:15	90:11,12 93:19
146:17 181:6,21	262:7 267:9 272:4	lower 34:15 55:5	98:19,20 113:20
182:2,12 183:13	272:15 273:2	55:19 90:9 112:22	244:14 272:22
184:1 186:8	277:5 300:2 306:5	128:6 146:16	lungs 85:22
202:18 208:10	309:2,6,9 313:4	158:1 170:20	119:22 121:8,8
211:4 224:8 226:3	322:14,17,19,20	174:15 185:17,18	lurie 118:22
264:10 281:14	looks 132:18	206:19 209:17	lymph 92:11
285:13 325:9	136:20 137:7	lowest 234:10	lymphoblastic
longer 94:16	178:4 245:5	lpad 15:3 16:22	118:10
221:9 228:9	loop 78:3	17:10,19 18:1	lymphocytic 93:1
look 7:1 46:11	loosely 112:2	205:4,9,12 208:11	lymphoma 93:10
48:12 53:2,10	lose 4:16	208:13,14,20	lymphomas 93:9
58:7,17 85:22	losing 4:18	238:6,8	m
103:15 106:20,21	loss 107:3 117:21	lucky 191:11	ma 295:7,10,11
112:1,21 114:15	losses 33:15	280:3	$\text { maa } 260: 4$
130:4 135:9,14	lost 33:13 81:7	luis 2:19 178:21	macroglobu
151:9 155:19	82:15 116:16	178:22 179:10	93:8
161:1,19 167:1,2	176:21 292:15	198:10 199:7	magic 259:12
179:11 180:17	lot 12:12 13:5,22	205:18 216:14,18	magnitude 219:15
181:2 184:18	60:1 90:17 132:5	225:12,17,18	main 6:5 25:12
185:7,15 188:7,8	132:6,11 133:2	241:17 242:2	33:9,19 76:17
197:21 200:6	138:16 183:10	252:11 253:1	111:20 133:9
211:8 222:20	221:10 223:2	254:2,5 256:1,7	159:10 183:1
229:4,5,7 230:17	230:13 245:2	257:6 258:3,7	292:7,9 293:18
239:4 241:12	247:16 256:17	259:15 261:6	299:13
243:16,18 244:1	261:10 270:4	262:3 263:8,21	mainstream 233:3
253:6 259:9,11	273:1 281:12	264:15 265:6	233:9
262:12 268:4	286:11 298:15	266:4 268:22	maintained 66
272:7,11 278:14	310:1 311:4	271:5,12 273:14	maintaining 30:10
284:7 286:16	312:18 316:10	274:6 275:6,9,13	77:20
287:16 289:12	318:1,10,17	279:10 281:17,18	maintenance
302:14,15 325:15	319:13 324:10	282:7 284:16	92:10 318:6
looked 113:4	lots 4:13 225:10	286:2,6 288:4,13	$\text { major } 104: 10$
161:10 181:5	272:8 299:11	290:1,12,15	128:18 137:14
222:19 245:15,20	324:9	291:10,14 294:6,7	138:7 180:18
245:20 248:4	loud 32:5	294:13 296:19	185:4 192:7
301:16 303:19	love 190:16	299:17 302:22	298:13 311:20
306:4	261:21	303:4 307:7	majority 54:6
looking 58:17	loved 121:17,18	308:15 309:13,18	283:10 294:1
135:3 152:14	121:19	311:9	283.10294 .1

making 5:22 6:4	146:8	matters 76:17	mechanically
24:7 25:1 72:10	marker 12:7,8	14:2	186:8
127:20 143:19	53:9 149:2	matthew 2:14	mechanism 65:19
161:14,17 162:18	markers 52:15	115:10,17,20	109:5 191:21
186:16 268:20	53:20 138:20	mature 80:9	195:2,3,6,10,19
297:11	140:9,15 227:9	maxed 191:13	195:20 196:2,4
malignancies	234:3,7 253:22	maximal 75:11	mechanisms 33:6
171:6,11,11 249:1	289:13	maximize 168:4	33:8 40:5,21 41:4
malignancy $21: 13$	market 16:13	maximized 164:16	195:1 218:12
102:19 170:18	99:12 100:5	maximum 53:18	median 76:17
manage 35:9 41:3	106:21 227:17	232:9	mediated 87:1
104:10 204:2	300:6,8	md $1: 11,12$	medical 1:65:2
242:5	marketing 13:19	mdr 134:5	9:19 22:3 29:7,13
management	13:19 15:10 29:15	mdros 182:3	29:20 30:4,10,12
156:16 197:16	107:20	mea 230:16	31:14 94:20
312:16	marr 2:12 81:22	mean 17:16 29:19	118:18,18 123:13
manages 164:9	82:7,8,11 99:1	75:3 153:10 223:5	124:14 126:17
managing 115:6	245:5,6,10 256:4	247:5,5 260:2	144:15 198:14,16
192:2	marrow 118:20	269:4 282:13,15	199:3,8 205:15,20
mandate 32:21	119:2 120:20	283:2 284:21	208:19 211:19
manifestations	122:8 217:18	291:5 297:14,16	216:17 241:13
94:9 95:12 97:22	mary 119:8	297:21 298:12,22	278:19 311:19
manner 52:22	maryland 186:6	302:10 316:1	312:1 313:5
104:15 263:18,20	326:20	meaningful 140:8	318:14
312:21	mass 68:15	156:6 321:8	medically 119:14
manufacture	massive 121:11	means 109:8	288:1
300:6	125:18 266:21	155:19 167:8	medication 64:4,8
manufacturing	master 323:19	220:18 233:9	166:19
39:19,20 101:1	match 265:22	244:12 252:3	medications 66:5
108:1	287:7	258:19	medicine 30:9
march 73:4,12	matched 102:15	measure 12:11	31:6 41:15 82:1,1
119:5	103:7 154:6	44:19 115:1	120:6 123:19
margin 11:18 26:5	157:16,21 319:15	139:14,17 148:21	126:3,6,11 127:8
29:2 75:12 105:2	319:18	149:3,5 235:21	174:6 225:14
106:19 107:3	matches 119:2	measured 10:13	240:19
132:8 143:1,6,18	matching 75:16	measurement	medicines 23:1,10
144:2,6,18 145:10	102:18,20 148:3	12:9 149:2	25:13 27:18,18
146:19 150:20	155:8 264:22	measurements	30:4,16 125:5
164:22,22 320:1,2	materials 16:17	63:16	meet 16:1 104:20
320:5 323:6	17:21 195:11	measures 10:9	105:20 132:8
marginalized	302:10	2:6 180:6 253:16	meeting 7:2 15:1
16:14	matter 88:7	measuring 88:6	73:3 125:3 191:12
margins 143:12	117:22 133:13	mechanical 97:10	241:7,10
144:13,20 145:2	239:22 295:9		

ngs 269:9,10	methods 308:8	microphone's	178:19 225:19
ier 55:15	methylpresdniso...	299:20	293:18 311:11
r		22 87:1	miracle 120:12
mbers 41:6	ticulous	87:5 187:14 188:6	mirror 45:6
eningitis 16:19	meyerozymas	303:21 306:15	mismatch 248:12
19 139:8	285:5	micu 134:7	missed 219:9
:11 251:19	mg 57:9	mid 182:18	299:12
258:22 288	mic 35:19,19	14 165:8	missing 256:14
meningitofungin	38:12 47:2,3 55:4	midostaurin 92:20	270:10
243:18	55:5 57:7 71:8	mihalis 190:18	mission 32:14
meningoence	171:15 176:21	mike 71:10 189:19	34:18 115:13
45:9 49:9,15 62:5	282:19 305:8	198:17 247:22	mistaken 187:21
62:14 72:10	306:14	249:13 273:17	mit 35:15
mention 24:1	micafungin	274:7 288:5 290:4	mitigation 104:12
5:11,18 28:15	61:20,20 62:	milligram 50:12	mitt 217:13 219:1
29:11 30:6 40:9	74:11,11 176:7	53:3,12,13,20	mix $287: 7$
138:21	mice 38:19 58:7	54:5,13 57:21	ml 55:18
mentioned 8	72:9	58:4 109:13	mma 259:20
1:4 60:17 62:15	ichael	million 100:17,18	modality $234: 11$
65:9 144:13	198:16,18 216	106:3,10,17 197:5	model 38:18,19
145:10 148:14	248:1 273:18	210:8 300:3,5	39:1,6,10 42:12
150:16 152:3	288:6	millions 213:16	43:7 44:2,6,15
154:22 155:10	michael's 2	mimic 52:7 74:2	45:4 46:4,6,12,13
157:8 161:12	michovia's	mimics 73:8	46:22 47:9 48:15
162:2 166:8 171	microbial	mind $8: 179: 1$	49:14,14 50:13
196:3,12 197:2	microbiologic	10:15 12:3 13:7	51:6,7,16 52:16
236:7 264:2 301	109:7	24:17 27:3 30:19	53:18 54:3,10
mentions 24:11	microbiolog	64:11 68:1,20	55:17 56:7 57:2
merit 260:12	37:11 228:6	144:20 208:21	57:11,22 58:1,13
message 114:12	233:	246:19 261:13	59:4,7 61:10,17
167:4	micr	320:1	62:13,21 63:2,11
met 10:18 11:10	32:20 41:16	mine	73:14,17,17 74:11
17:16	227:11 228:19	minimal 43:18	75:11 77:21
meta	229:1,4,7 232:2	44:17	140:19 208:7
metabolic 259	232:8,16 233:9,12	minimize 163:8	267:18 294:3
267:4 312:11	234:8 238:2	minimum 232:9	310:12,13,16,17
metabolism 68:10	239:21 318:20	minor 120:11	310:22 311:6
84:10 90:5 93:5	microdos	273:3	315:9 316:2,7
312:	3:	minority	318:14 322:15
metabolized 91:20	micrograms 55:18	minus 27:9 227:20	modeled 48:14
92:8	microlabs 187:22	minute 178:14,17	76:4
metadata 192:	microphone 251:4	241:18 292:	modeling 46:21
meters 176:15	282:6	minutes	78:8 97:12 176:12
		81:5 127:14,18	278:3 315:7

models 9:16 36:9	199:6,11 229:1	86:15 96:16	$\text { msg10 } \quad 135: 20$
36:15,16 37:13,15	231:3 257:20	101:20 102:22	mucocutaneous
37:18 41:18 42:5	267:15 270:13	103:14 110:2	47:4
42:16,22 43:9,13	285:14 293:20	113:16 140:3	mucoid 285:18
43:17 44:7,11	312:2 323:13	143:13,20 144:4,8	mucola 109:12
45:5,13,18,21,21	molecular 141:2	146:13,16 148:15	mucor 126:5
46:3,10,18 47:18	233:3,9 239:21	170:19,21 171:8	283:11 285:22
48:3,14 51:5 58:6	molecule 300:2	171:21 175:1	287:15
58:20,21 61:7,11	moment 135:8	200:2,4,6,9,10,11	mucorales 45:17
61:12,15 69:3	300:1	201:12 210:21	85:17 171:9,21
70:9 71:19 72:1,2	moms 116:13	215:14 220:6	316:20
72:5,9,12,20 73:4	money 115:12	229:5,8 235:8,10	mucormycosis
73:6,8,12,16 74:2	256:16 295:14	235:13,16,17	21:15 22:11 45:18
74:6,20 75:16	296:1 311:5 318:7	237:12,13 238:5	57:22 100:3,12,18
78:4 80:7,11	monitor 204:2	239:14 249:3	101:10,15,19
212:9 216:1,4	228:21 313:22	264:20 312:6	102:4,8,13,15
267:7,17 268:18	monitoring 13:10	321:1,3	103:3 106:8
291:17 292:6,13	65:5,9,13 67:20	motility 67:11	115:15 119:20
293:3,6,19 304:8	79:20,22 197:16	motivated 141:13	126:11 237:6
307:4 310:2	240:6	mount 224:20	255:5,15 260:5
313:17 314:12,15	monotherapy	mouth 109:13	262:18 287:1
315:4,12 318:18	113:3 138:11	move 44:1 49:14	mucormyocosis
319:10 322:18	month 104:2	58:6 59:1 76:21	57:16
moderate 7:8	monthly 104:1	127:4 140:7,8	mucromycosis
moderators 225:7	months 61:22 62:3	141:3 171:14	123:7,9,14
modified 105:12	62:4,9,20 86:15	194:6 198:11	mueller 115:15
modulation 51:15	111:18 113:12	207:19 240:15	mulligan 123:1,2
moiety 101:3	114:20 136:3	244:11 252:12	multi 122:1
mold 81:16 83:3	174:22 211:7	253:11 296:14	multicenter 210:2
89:20 90:3 92:6	234:22 235:1,1	moved 78:18	multidrug 182:3
93:21 94:2 109:8	259:1 311:4	226:16 305:1	184:22 187:3,6
171:3 227:16	moore 2:8 60:6,13	movement 181:19	212:1 215:15
234:12 254:13	60:16 74:10 76:1	moving 13:21	267:15 314:21
255:21 260:1	morbidity 10:14	22:18 34:18 35:6	316:4 317:4
272:15,18 285:12	312:6	56:16 176:8	multifactorial
306:15 316:6	morning 4:20 6:22	181:22 215:10	231:12
molds 5:4 7:20	41:20 43:6 69:14	216:5 223:6	multimodal
36:3 46:3,5 83:20	70:3,4 82:8,16	240:11 321:2	101:16
84:20 85:3 89:12	142:6 148:13	mpd 221:11	multiple 35:20
98:10,16 109:10	196:3,5	msg 110:11	36:3 39:11 42:9
109:17 147:11,17	morning's 81:11	113:17 135:19	86:12,21 87:15
148:6 152:8,15,21	mortality $10: 14$	141:8 241:7,10	91:8 102:12 104:8
160:5,14 161:3,6	11:20 26:6,13	244:17 289:5	148:6 184:16
168:1,13,15 169:4	36:20 56:20 78:20	297:3,16 298:1	192:20 210:22

211:1,21 213:16	mycotic 179:7	156:7 197:13	40:20 246:10
6:5,5	oge	6:4	250:17 252:15,17
261:3 275:3		necrotizing 95:11	53:2,6 255:2,10
7:15 315:12	n	need 1:6 5:3,8	255:11,18 257:14
17:	n 2:1 4:1	7:21 8:5,8 9:19	57:21 258:1,15
$2: 5$		13:13,18 17:16	61:13 263:15
multiplied 2		20:2 27:14 28:12	65:21 276:14
multitude 131:5	nail	9:3,20 30:4,6,10	78:13 280:6
multivariable		30:12 31:15 35:2	81:7 283:16
97:12	41:13,22 59:22	37:22 50:1 65:5	289:7,18 297:13
murine 42:16		66:10 68:4,12	298:11 300:3,4,17
43:17,20 45:14	263:9	74:14,20 80:2	01:2,13 302:7
46:3,11 48:14,20	$53: 10,22324: 15$	82:18 84:1,5,16	08:6 312:2
57:21	$24: 18$	8:14 89:17	14:17,18,20
mutations 87:15		93:17 95:21 97:17	315:11 317:5
06:19		98:17 105:2 106:7	318:4,14 320:9,18
mute		106:22 107:1	321:4,6,22 323:22
292:20		108:5 109:2 115:2	324:5
m		125:3 126:12	needed 19:7 62:10
263:11 290:14		128:12,16 140:5	100:15 125:6,7
mutually 59:4		142:22 144:16,20	143:2 144:18
		145:20 146:18	$7: 131$
mycetom		147:19 149:6,14	196:16 209:16,18
286:10,12,20		153:17 161:13	1:16 235:11
mycobacterial	$87: 21$	164	need
:2		166:3 168:2,2	needs 11:10,10
mycologi		8,11	17:13 20:6 29:8
:9	323:	193:8 195:3	29:13 38:7 43:11
mycologi		196:22 197:6,	44:3,5 74:12 75:2
110:13	ure 117.15	19	82:7,21 83:10
mycology 22:12		200:18 201:15,16	84:15 86:3 89:3
:21 190:16		202:5 205:15	8:18 90:2,20
:15		208:20 209:1	91:14 93:17,18
:22 241:13	afi	210:22 211:4,10	98:12,15 108:8
298:6		211:11,19 213:	6:2 198:14
mycoses 21:14	near 53.18	214:15 215:4,1	199:5,14 209
45:20 288:8,15		215:17 218:11	214:22 21
291:4		225:2 228	18:7 219:17
mycosins 237:6		230	222:15 223:
mycosis 21:11		234:7 236:8,11,17	228:13 238:20
22:9 23:19 56:3	$5: 22$	236:19,20 237:	246:20 251
226:9 29		237:11,13,20,22	272
294:12,15 316:		238:8,9,17 239:3	94:18 295:22
316:20	150:10 155:8	239:6,17 240:10	311:19 321:15,21

negative 95:19	121:21 124:2,3	newborn 277:1	145:3,10,13,19
107:10 167:15	132:14 264:18	newborns 276:6	146:8,19 149:13
183:21,22 184:5,9	269:13 272:4	newell 160:9	150:18,19,22
200:22 221:11	283:1 299:6	newer 127:7 189:6	153:9 164:20,21
neglected 286:21	305:13	291:4,5	165:19 170:13
neighborhood	new 5:2,6 20:17	newest 120:5	180:14 195:4
116:11 120:17	30:21 37:16,22	news 197:20	244:1,14 246:4
122:5	41:17 42:7,14,18	newsletter 302:11	247:2,8,8,15
neighbors 121:14	43:8,11,15 44:5	ni 11:18 164:22	251:16 307:15
neil 302:15	46:2 48:3 51:9	niaid 7:7 23:19	308:12 321:12,14
neither 118:22	58:20 70:7 71:16	31:21 32:16,19	321:22
326:10 327:7	71:17 72:16 75:17	38:5 40:12,21	nonclinical 11:3
nemesis 124:10,11	80:18 86:5 100:22	189:21 190:7,13	13:8 14:8 24:12
neonatal 14:16	107:2 108:6,7	190:15 191:11	70:21 74:8 216:1
76:12 276:20	119:18 120:13,13	194:13 195:3,5,8	313:10,17 314:12
314:17	125:6 126:12	195:18 196:1,6,16	316:7 320:17
neonates 170:22	141:3 143:5,6,17	197:19,21 308:17	322:15
172:20 173:13	145:5,15,16,19	niaid's 194:15	nonculture 128:13
175:8 314:14	146:15 147:2,5	niaid's 33:8,9,22	149:17 321:20
319:7	151:3 157:11	34:12 39:18	nonendemic
nephrotoxic 268:9	158:18 159:15	nice 57:16 113:10	321:20
nephrotoxicity	162:14 166:3	246:16	noninferiority
53:8	168:7 169:19	nicely 50:11,16	208:5 209:11,19
net 107:9	174:5 180:9,20,20	73:11 306:16	319:22 320:12,13
netherlands 87:19	180:22 186:6,14	nigel 160:7	323:6
network 276:20	187:15 192:16	night 116:10	nonlinear 175:20
280:16 294:15,19	197:11 200:18	nih 6:16 32:1 35:3	176:4,7
297:4,14 298:2	201:15 204:14	72:7 189:15 190:1	nonperforming
299:1	205:14 207:15	190:17	104:13
networks 278:14	208:2 211:20	nih.gov. 32:12	nonprofit 34:21
281:10 294:9,11	212:6,7 213:1,15	nih's 32:8	nonrandomized
295:7,12 296:9	214:15 216:12	nimble 236:9	24:2 27:5 320:16
297:3,15 298:17	218:7,12 221:12	280:21	norm 180:11
301:15,17 318:2	226:20,22 236:17	nine 112:22	normal 117:3
neutropenia 38:20	236:18 251:20	nodular 52:4,12	247:10
51:14,20 172:14	256:19 259:2	noisy 78:21 321:2	normally $29: 19$
244:10 245:14,16	260:17 275:22	non 11:15 12:16	224:18
246:4,4 248:10,10	277:1 279:2 296:4	18:2 22:5 26:4	north 69:19 210:8
neutropenic 45:4	297:8,10 300:19	29:2 58:12 85:3	northwest 119:9
46:11 51:7 52:8	300:20 301:5,17	104:22 105:2	notable 315:5
243:19 244:1,15	302:8,15 303:8	131:11 132:8	notably 30:14
248:19 321:12,12	307:18 318:8	138:1 142:20,21	58:1
never 72:14 104:1	324:13	143:1,12,14,18,21	notary 1:13 326:1
105:8 117:6 121:8		144:2,5,12,17	326:19

190:10 209:3	291:8 320:8 321:5	oropharyngeal	193:17,21 230:8
212:2,12 215:4	324:3	45:10 47:6	230:17 236:18
216:19 267:4	orders 37:15,22	orphan 11:6,7,9	240:6 243:21
270:10 280:14	38:14 39:11	19:3 30:14 99:6	244:2,5,21 248:8
294:14	ordinarily 220:22	99:14 100:1 106:5	258:18 263:1
opposed 240:7,15	220:22	107:16 161:11	268:1 270:16
307:16	organ 91:4,8,18	202:14 204:16,21	287:17 304:21
opposite 255:17	125:15 171:6	314:3,5	305:4 315:15,20
optimal 93:13	312:12	ostensibly 268:19	317:18,20,22
optimally $89: 13$	organism 48:9	osteomyelitis	321:2,8 324:6,12
optimization	83:17 88:9 98:6	114:21 283:22	326:15 327:12
324:3	129:2 179:14	ostrosky 2:19	outcomes 39:4
optimize 59:765:3	180:11 181:8	135:4 178:21,22	83:21 86:1,13
66:11 67:18	182:15 189:5	189:20 198:10	87:8 91:8 97:15
option 25:10 30:3	191:7 290:6	205:18 206:1	102:21 167:5
103:17 126:4	307:11	216:14 225:13,18	218:3,15 222:1
153:17 213:9	organisms 53:7	242:2 251:2	229:4 234:7 237:2
224:14 255:2	85:11 86:1,11,19	252:11 254:2,5	243:19 245:12,19
263:15 281:9	87:10 95:19	256:1,7 257:6	246:3,6,11 247:20
options 5:17 18:14	129:17 130:1	258:3,7 261:6	250:17 270:12
107:15 109:18	140:20 180:4	262:3 263:8,21	271:2 274:20
111:15 125:10	182:3 188:18	264:15 265:6	306:21 312:12
146:5 153:16	210:10 231:6	266:4 268:22	315:14 316:16
203:12 209:7	267:15 279:5	271:5 273:14	321:10,13 322:21
213:7 218:2,7	organization	274:6,10 275:6,9	323:15
221:4 268:8	23:18	279:10 281:18	outline 84:19
oral 14:12,14 21:4	organizations	284:16 286:2,6	170:3 206:5
63:22 64:4,8,9,15	34:21 266:19	288:4,13 290:1,12	outlined 19:16
64:16 66:21 67:14	308:7	290:15 291:10	96:3 159:5
103:18 135:18	organized 216:21	294:7 296:19	outlines 246:1
136:5,17,21 144:7	organizers 32:7	299:17 302:22	outlining 84:4
145:6,8,12,15,17	99:3 127:13	308:15 309:13	outpatient 122:7
145:19,22 199:16	169:20 216:20	311:9	276:1
206:14 207:5	organizing 108:17	other's 117:7	outputs 159:8
orange 120:18	190:20 206:9	ought 273:10	outside 21:18 36:7
orbital 121:5	organs 312:9	outbreak 183:6	305:17
order 16:11 37:16	oriented 32:14	outbreaks 182:16	outstanding 59:12
38:17 44:4 62:10	original 53:16	outcome 25:16	outweighs 29:18
92:10 96:4 105:10	56:18 67:1 104:16	43:10,19 44:15,17	overall 53:15 88:4
106:20 138:20	105:5	47:15 52:20 53:12	88:17 89:22
142:21 145:18	originally $46: 14$	54:8,21 55:18	110:11 111:1
151:2 173:18	61:20 63:11 66:20	58:22 139:14	113:17 143:15
211:1 242:9	origins 46:13	151:5 163:6,12	148:16 150:15,17
259:21 278:15	123:3	165:9,15 193:15	151:11 172:3

173:1 205:10	panels 38:15	222:16 227:1	partner 99:19
210:6 212:4 232:1	174:10	29:5,16 250:11	106:7
overarching 276:5	paper 227:19	273:3 275:18	partners 42:10
76:9	235:9,14 241:6	78:5 283:20	59:19 189:14
vercome	244:7 258:14	298:16 308:13	196:8 277:18
overlap 216:22	307:21	partial 151:2,10	partnerships 9:7
rlooked	p	partici	313:13 322:9
270:22	p	2:16 313:22	arts 86:2
overt 98:5		325:9	pass 205:16 225:7
overview 19:19	pappas 2:15 127:6	participate 126:20	path 33:11 36:8
169:12 179:8,12	127:8,11,12	participated 9:6	37:8,11 101:12
overwhelming	141:21 218:1	116:5 237:5	161:7 210:9
120:11 272:20	243:8,9 246:13	participating	213:14 216:12
oxygen 112:20	246:18 264:2	206:7 225:22	238:22 300:17
p	266:6,7 269:2	270:2 325:17	311:2,3 318:12
	290:13,14,17	pa	pathogen 26:21,22
p450	296:20 297:1		:9,11 148
		pa	191:9 215:1
package 21:17	paracocc	48:4	65:15,20 303:
100:13 197:12	paradigm 180:9	65:18,22 110:19	14:21
4,6 252:4	204:14	129:22 130:2	pathogenesis 44:8
$\text { : } 21 \text { 318:19: }$	paradigms	181:8 206:7 210:9	58:9 73:21
ackages	parallel 26:20	211:3 212:13	pathogens 31:6,10
313:9 320:	55:17 260:19	214:7,11 215:10	32:22 34:5,6 37:7
$322: 16$	parameter	215:16 216:3,1	56:5 58:20 125:4
	parameters 43:19	265:14,14 275:1,1	162:9 212:1
es	43:20 46:16,16	289:17 297:18	240:21,21 254:
d $301 \cdot 13$	54:15 57:13	305:9 316:1,2	55:22 261:4,
nfully	paramount 44:14	317:14 318:20	87:10,19 288:15
	parapsilosis 187:8	319:3 320:3,20	307:20 316:8
paint 2	187:12	particularly 4:20	pathophysiology
red	pa	$3 \cdot 1214$	90:
	25	,13 43:11,16	paths 13:2
ama	parental	47:5,20	13:15 214:15
emic	parents 121:20	48:6 49:8 59:11	pathway $10: 8,16$
191:12 201:8	parent's 118:8	78:4 136:6 152:7	15:4 16:22 17:1
	part 18:3 28:14,15	207:2 216:	7:10 18:1 34:17
	61:16 62:3 63:10	269:4,5 270:	66:10 89:4 205:5
$6: 17241: 19$	69:1 72:22 75:5	$77: 10287$	205:9,12 208:11
2:1 249:4	94:18 112:10	321:1,7 323:1	223:18
$\begin{aligned} & 2: 1249: 4 \\ & 2: 21293: 8 \end{aligned}$	116:5 133:21	parties 16:16	pathways 10
lists 288:	149:9 159:17	326:11,14 327:8	19:21 80:8 312:11
$324: 22$	194:12 200:12	327:11	patient 10:9 12:6
324.22	212:20 221:12		12:19,19 20:6

$27: 252: 1362: 12$	$79: 3,5,1089: 4$	$250: 14,15,20$	$71: 2073: 1,778: 1$
$94: 19104: 4,6$	$90: 1297: 1099: 15$	$255: 1257: 3,4$	$79: 384: 789: 18$
$107: 7,14115: 11$	$101: 7104: 1,8$	$260: 10,21261: 16$	$172: 20212: 10$
$116: 1127: 2$	$108: 8109: 17$	$262: 19269: 7,12$	$222: 12,19267: 18$
$128: 17130: 12$	$110: 6111: 13,21$	$269: 18270: 1,5,15$	$279: 18291: 14,15$
$131: 20,21132: 15$	$112: 2114: 7$	$272: 3,17,18,19,20$	$310: 9314: 13$
$138: 5144: 22$	$124: 16125: 14,15$	$274: 4277: 6,14$	$315: 7319: 8$
$147: 21148: 22$	$125: 15129: 12$	$278: 16,17,18,19$	$322: 18$
$150: 1151: 5152: 8$	$130: 8,10131: 13$	$279: 4280: 22,22$	peak $47: 2$
$152: 19155: 1,11$	$134: 13135: 7,13$	$281: 8283: 18$	pediatric $14: 16$
$155: 11156: 9$	$136: 2,4,6,11,18$	$284: 4288: 20$	$18: 2219: 1,10,15$
$157: 17163: 5,11$	$137: 3,5,9138: 7$	$289: 17293: 4$	$30: 1749: 13,21$
$166: 15174: 2$	$138: 15,20139: 15$	$295: 6296: 4,16$	$50: 17,2261: 21$
$180: 12181: 19$	$139: 16146: 7$	$299: 6,15307: 1,22$	$62: 2,4,7,9,1963: 7$
$192: 13193: 10,17$	$152: 20153: 15$	$314: 10316: 13$	$106: 6,9,15107: 21$
$193: 20202: 20$	$155: 2,6,13,14,17$	$319: 4,7,9,16,20$	$115: 14169: 12,21$
$203: 6,13218: 3$	$156: 1,5,16158: 5$	$321: 14323: 16$	$170: 10173: 7,8$
$220: 15223: 22$	$158: 5,7,10,15,17$	$325: 7$	$175: 19176: 2,11$
$224: 16228: 13,18$	$158: 18159: 5$	pattern $282: 11$	$276: 11277: 9$
$231: 14,20232: 21$	$160: 2161: 3,20$	patterns $46: 18$	$279: 15280: 16$
$233: 17234: 1,19$	$162: 14164: 16$	$48: 1249: 1181: 20$	$300: 7314: 2,6,9$
$235: 1239: 5,17$	$165: 11166: 9,11$	$282: 10287: 2,3,5$	$314: 14319: 7$
$244: 15248: 7$	$166: 22167: 7$	$287: 8$	$323: 18$
$262: 11265: 16$	$168: 1,6,10173: 21$	patterson $3: 7$	pediatricians
$269: 17,20278: 5$	$181: 21182: 1$	$252: 20,22303: 14$	$173: 17$
$284: 6,8288: 21$	$183: 7,20186: 16$	$303: 16$	pediatrics $18: 22$
$305: 9314: 14,17$	$189: 1192: 14$	patterson's $57: 11$	$19: 941: 15106: 4$
$317: 6319: 12$	$193: 18201: 8$	paucity $83: 5$	$106: 8170: 6,14$
$323: 14324: 4$	$202: 14,16203: 2,7$	paul $160: 9282: 18$	$172: 2$
patient's $231: 15$	$203: 8,11204: 1,7$	pause $205: 16$	peer $196: 20$
$235: 4$	$207: 4,9209: 17$	$249: 10$	penetrance $141: 8$
patients $6: 312: 14$	$210: 14,16211: 6$	pay $80: 3270: 20$	people $5: 9,1175: 9$
$13: 1617: 1318: 5$	$211: 14213: 11,20$	$300: 10,22301: 5,6$	$87: 988: 1789: 7$
$18: 1321: 12,21$	$217: 13,13218: 15$	$302: 14,17$	$90: 1,12,1491: 9$
$22: 1,9,1724: 4$	$219: 11220: 21$	payers $114: 12$	$91: 1492: 14,22$
$25: 6,2127: 528: 4$	$222: 2223: 13$	payment $223: 3$	$95: 10,1398: 19$
$28: 744: 1647: 21$	$224: 5225: 2228: 1$	pcr $44: 1957: 5$	$114: 13121: 13$
$48: 1650: 1754: 7$	$228: 2231: 13,17$	$72: 8138: 2140: 16$	$178: 4184: 8236: 1$
$56: 2159: 961: 22$	$232: 14233: 8,8$	$307: 11$	$236: 3245: 18,22$
$62: 2,4,7,9,19$	$237: 5241: 3$	pd $24: 9,13,15,19$	$249: 4,5264: 3$
$63: 1364: 3,3,6$	$243: 19,20244: 1$	$27: 2,9,1431: 10$	$297: 7,8310: 15$
$66: 2,1369: 22$	$244: 13,21247: 2,9$	$43: 2046: 12,14,15$	perceived $133: 22$
$70: 1471: 1676: 20$	$247: 9,17248: 21$	$46: 2053: 1855: 16$	percent $26: 6$
$76: 2277: 7,17,20$	$249: 3250: 4,5,7$	$57: 2,770: 9,22$	$50: 1253: 14,15$

55:11,12 86:15	persisted 28:8	pharmaceutical	physical 149:3
96:11 101:20	persistent 25:19	151:21 152	209:5 216:12
104:4,6,7,16,18	25:22 51:14,20	pharmaceuticals	physically 320:12
110:17 114:6	193:4	199:9	physician 41:16
118:14,16 119:16	persistently 51:7	pharmacodynam...	281:2
129:19 144:2,6	person 125:19	71:19 72:16 78:15	physicians 124:22
157:13 164:21,21	191:12,14 242:6	pharmacogeno...	220:4 280:22
164:22 165:2,3,13	personalized	241:1	physiologically
165:18,22 166:1	240:19	pharmacokinetic	324:1
166:12 170:20	personally 290:11	22:4 133:15	pichias 285:5
171:8,22 172:17	persons 99:8	pharmacokinetics	pick 192:8 250:9
173:8,9,10,11,12	125:3,16	39:20,21 67:2	252:8
184:19 187:1,4,9	perspective 7:11	176:18 177:6,14	picture 40:20
194:15 200:5,6,8	20:19 60:19 80:2	pharmacology	112:21 191:10
200:9 203:22	80:3,4 82:21	60:5,7,9,18 61:2,3	200:7 217:6 271:2
244:5 323:5,6	83:11 100:14	68:3,4,21 69:8	piece 235:11
percentage 235:22	115:11 116:1	276:15	pig 45:14 48:4
perfect 3:672:13	127:2 173:22	pharmacovigila...	pigs 42:17 44:2
73:18 184:14	225:6 288:2 310:9	13:20 300:6	58:7
227:12 249:13,14	persuaded 268:13	phase $40: 11,11,15$	pilot 280:15 281:4
256:8,10 289:14	pertaining 270:15	65:3,4 70:15 77:2	281:12
289:22 290:3	pertains 61:9	78:1,18,20 99:19	pinpoint 63:17
291:10 294:13	pertinent 103:11	99:22 100:10,11	pioneering 267:2
perfect's 262:6	perturbed 259:20	100:16,17 102:9	pipeline 170:8
perform 64:7	pete $248: 3$ 251:15	105:19 107:13	192:1 227:14
75:16 297:20	269:1,2 272:2	109:4,17 111:11	pitfall 230:7
performance 77:6	290:13 296:20,21	111:20 131:2,2	pitfalls 229:11
performed 35:15	peter 2:15 127:5	132:18,20 133:19	230:19
57:3 102:15	127:12 243:9	135:19 136:14	pivot 38:6
performing 165:5	246:14,18 266:7	137:2 139:1 141:4	pivotal 25:14
perfusion 174:17	271:6 290:14,17	156:4 196:2 197:3	218:21
period 28:22	297:1	197:4,8,9,9,9	pk 24:9,13,13,15
36:21 60:2 94:19	petraitiene 50:9	199:21 202:22	24:19 27:2,2,9,14
95:3 112:5 149:19	59:12	207:7 208:4 209:9	31:10 43:20 46:12
152:21 300:18	petraitis 50:9	209:10,17,18	46:14,15,20 53:18
peritransplant	59:12	217:10,14,15,17	55:16 57:2,7 70:9
95:3	pew 160:12	218:19,22 219:21	70:22 71:20 72:22
perlin 59:15	pfizer 203:22	221:8 222:13	73:7 76:2,10,13
permanent 215:18	ph 67:11	292:8	76:19 77:8,8,16
permeated 239:11	phaeohyphomyc...	phenomenal	78:1,7,12,12 79:3
permission 194:7	46:8	141:13	84:7 89:18 172:20
permit 205:7	phage 217:12	phenotype 88:15	212:10 217:9
perpetuated 163:8	pharma 81:18	phone 82:18	222:12,19 267:18
163:13	221:14	116:16 170:2	276:16 279:18

280:2 291:14,15	plus 27:2,9,14	polling 301:2	324:4
310:9 314:13,18	49:2 56:10,17	polyene 86:2,9	populations 10:2
315:7 319:8	65:22 138:3	polyenes 87:191:5	12:20 16:15 18:4
322:18 324:1,2	186:20 213:19	184:20 200:17	26:10 70:14 84:16
place 29:12	227:20	226:14	88:17 90:11 93:12
121:15 123:10	pmda 7:12 20:12	polyphyletic	93:17 95:9 98:19
190:8 193:11	20:16,17	285:3	103:10,12 141:1
252:2 276:22	pneumocystis	pond 313:8	152:9,17 193:10
placebo 105:3	207:1	pontionus 57:18	220:19 242:13
146:22 320:4	pneumonia 52:5	pooling 281:20	245:21 247:5,7,19
placed 121:6	98:3,8 201:9	316:18	272:13 278:8,13
places 222:19	249:1	poor 16:14 78:7	279:20
295:17,17	pocket 302:4	83:21 84:11 86:13	porchlights
plan 72:1 197:16	point 6:13,18	87:2,8 89:10 90:5	116:11
197:16 241:18	11:21,22 19:13	91:8 200:13	portfolio 59:3
planning 38:11	24:10 56:4 74:17	223:15 233:1	194:16
39:22 78:1 195:9	74:22 76:15 77:22	312:12	portfolios 41:4
plans 30:17	79:2,15,17 80:14	poorly 96:13	portion 166:18
plasma 47:2 55:1	97:3 104:21	population 7:21	posa 54:22
71:8	105:15 109:2,19	13:11 14:16 17:1	posaconazole 21:9
plasmas 34:10	109:21 130:20	17:12 18:6,13	54:12,17 55:3,6
play 9:17 55:4	134:14,19 148:17	19:7,15 49:13,22	55:10,11,22 66:20
149:9 246:22	156:2 165:13	50:22 51:22 52:13	120:5 121:3
273:5	172:9 195:14	62:12 63:7 68:18	138:11
played 121:10	201:19 202:11	76:5 105:4 134:5	pose 312:17
playing 34:4 124:5	206:15 221:8	134:16 141:6	position 21:21
plays 44:14	226:22 228:18	145:1 146:4	positive 27:13
please 4:17 20:13	231:5 235:6,7	147:22 149:14,21	56:14 130:8
41:8 171:15	239:10 240:4	150:3 155:1,11	131:21 149:19
197:19 198:4,6	248:14,15 259:16	166:14,15,18	151:5 165:6
266:11 281:19	262:1 281:11	167:6 182:1	167:15 184:3,4,8
302:17 309:14	291:7 299:5	202:15 205:7	184:8,9,10 227:5
pleased 301:11	317:10,12 321:19	217:19 228:4	228:20,20 229:16
pleasure 179:4	pointed 202:3	235:18,19 242:16	239:5,13 248:20
189:20 205:19	299:22	244:12 245:21	321:14
216:16 249:15	points 75:21 101:5	247:4 248:19	positivity 56:22
pledge 122:19	148:2,13 152:12	250:18 260:10	89:8 128:17
plenty 71:11	159:22 184:7	261:5 266:1	possibility 27:11
133:16	191:17 199:2	271:18 276:6	30:3 274:21 293:5
pleural 94:1	217:5 237:20	277:2,5,8,13	possible 11:18
plot 164:17 165:4	249:10 253:13	278:5 280:4,7,9	19:8 25:20 28:13
165:8,12,16	266:10 316:8	280:11,12 314:3,3	77:1 80:1 138:18
plural 95:4 259:4	poleyens 89:20	314:6,17 317:6	142:19 144:7
		319:12 321:17	146:12 152:20

155:8 157:3,20,21	practical 8:5 20:2	59:6	prescribing 18:17
158:12 159:5	199:4 203:14	predictively 50:20	presence 7:22
160:2,15 167:14	296:9	52:19	117:3
168:16,18 229:17	practicality	predictor 97:13	present 7:12 20:12
238:4 251:9	277:12	predictors 246:11	24:5 107:9 119:22
253:19,19 261:21	practice 114:5	predisposing	127:6 190:6 231:1
276:8,13	praise 206:8	242:14	231:4,12
possibly 27:16	pray 126:16	predominance	presentation 23:8
146:6	pre 273:12	170:13	33:20 40:20 41:5
post $13: 19,19$	precise 80:1	predominantly	60:21 127:4
56:19 96:2 98:8	preclinical 5:17	87:17	141:22 148:11
98:20 105:15,22	7:9 31:20,22 32:8	preemptive 227:9	150:14 151:16
106:12,14 107:21	33:18 34:12 35:4	239:7 240:12,13	191:2 194:10
108:4 201:13	38:6 39:18 40:6	preexistent 278:4	198:8 199:1,3
postponing 241:9	43:12 58:18 59:4	preexisting	216:7 269:6
potential 29:4	59:5 70:8,22 74:5	130:15	311:21 322:6
44:5 66:14,17	80:11 100:21	preferable 153:20	presentations
72:16 135:15	196:5 238:21	preference 25:7	17:7 115:22
141:16 144:15	267:17,17 268:2	28:1 142:18	311:16 317:11
154:18 159:7,22	268:11,14,18	preferred 26:3	presented 29:21
167:20 197:22	278:4 291:17	143:21 144:2,5,17	183:17 204:5
199:13 210:19	292:3,6,8 293:5	preliminary	322:10,11,16
215:16,17 253:14	294:1 304:7	109:15	323:1
274:14 312:8	305:12 308:18	prelude 111:6	presenter 22:20
315:4	309:16	112:7	127:5
potentially 58:14	predefined 26:12	premature 276:6	presenters 81:11
67:19 86:4,6 88:3	predicated 59:3	prematurity	presently 9:20
94:14 97:15 98:1	predict 10:12	170:18	presents 133:17
131:12,18 133:13	12:10 149:4 216:1	preparation 4:13	284:6
134:5 137:10	321:8	prepared 116:4	president 267:11
138:22 187:16,18	predictability	327:3	294:11
211:6 222:5 255:3	43:1,9	preparing 4:22	pretomanid 18:3
267:1 273:3 315:9	predictable	122:10 174:1	pretty 75:22 76:1
315:12 316:7,12	103:14	preplan 260:16	82:14 87:11 110:4
316:17,21 317:19	predicted 53:11	prepub 97:6	111:17 112:4
319:10 320:8	54:5 55:18,21	prerecorded	131:9 157:13
321:4,13 323:5,16	57:7 63:4 246:6	262:11	200:19 227:13,15
power 29:2 104:18	predicting 43:10	prerequisite 13:2	233:14 253:15
159:4,13 162:10	58:22 150:11	150:9	273:6 283:20
163:15 164:1,5	322:21	presbyterian	290:6 296:5,5
165:6,10,12 166:7	prediction 77:7	41:17 275:22	299:8 306:8,16
168:9 209:11	predictive 44:11	prescreen 219:22	prevalence 17:5
powered 211:13	47:12,15 51:8	prescribed 172:14	94:4 123:21
214:3 222:14	52:22 54:9 55:7		129:20 172:9

205:9 208:17	130:12 134:8	296:17,17 304:22	18:7,12,17 19:3,5
prevalent 171:5	196:15,17,22	310:22	20:3 21:3 29:12
174:21	197:8,9 220:2	problematic 78:15	29:16 30:1 31:14
prevent 32:17	238:1 266:2,2	129:5	33:13 213:15
88:18 122:18	326:5	problems 85:8	302:2
126:15 223:22	priori 134:13	87:12,13 89:22	professor 41:15
preventative 95:6	priorities 241:12	90:6,22 91:15	82:1 127:8 160:7
97:18	prioritize 180:4	95:4,6 236:5,6	225:16
preventing 53:8	priority 15:11,17	254:15 272:8	profile 18:11 22:4
prevention 15:20	15:22 16:7,9	312:9	profiles 37:5
31:2 42:15 48:8	30:16 37:7 106:4	proceed 178:9	227:10
51:10 56:1 83:15	196:18 201:7	proceeding 1:11	profitable 297:12
92:2	269:10,11	327:4	profound 51:14
previous 27:4 28:9	privacy 192:14	proceedings 326:3	51:20
42:18 62:15	private 9:7 313:13	326:4,6,8 327:6	profoundly 52:9
159:18 208:9	322:9	process 24:10 35:7	prognosis 118:17
265:11 274:13	privileged 225:12	42:13 148:3,3	156:10
previously 88:20	probable 25:6	196:20,22 198:8	prognostic 248:14
145:9 150:16	26:7 28:10 229:19	232:11 236:9	program 6:14
182:17 198:20	probably 28:21	258:20 265:5	30:15 31:20 33:19
200:15 276:5	88:4 163:7 177:12	280:19	37:8 76:12 99:18
primarily 139:22	177:13 178:11	processes 259:10	99:19 100:6,16,16
226:13 234:12	202:13 213:8	prodrug 101:2	105:19 106:9,10
238:10 286:18	227:6 230:10	produce 33:12	106:16 107:12
primary 22:9	232:20 234:10	126:9 159:8	114:8 121:9
25:20,20,22 26:1	235:1,22 244:7	produced 25:2	169:11 190:16
26:2,12 28:11	249:21 251:18,20	product 11:9	196:18 208:3,21
31:3 56:19 78:19	257:12 263:5	14:13 15:5 17:19	209:8,14,18 210:7
80:16 85:21 103:4	274:17 289:13	18:10,15 21:5,8	223:10 309:7
104:20 105:7,20	300:2 305:16	31:22 33:2,3,6,10	programs 9:11,12
143:21 144:4,8	306:20 324:12	34:14,16,18 35:5	9:18 13:13 22:18
149:20 150:2,13	problem 51:18	35:21 36:5,10,22	34:2,11 35:6,12
150:18 171:7	72:7 75:178:14	37:17,21 38:5,7	38:2 40:3 77:12
175:9 278:17	82:14 83:18 84:4	39:22 40:9,22	79:13 215:10
287:4 321:6	84:18 85:19 88:2	106:13 107:22	216:5 309:8
prime 30:15	88:12 91:12,19	108:1 144:15	progress 6:1,4
principally 185:5	92:5,6 94:6,13,16	159:15 195:7,8	8:22 110:9 124:1
185:13	109:22 128:21	214:11,11	207:6 223:2
principle 19:16	129:16 136:3	production	progressed 28:8
principles 8:18	153:5 163:13	233:16	progresses 52:4
162:5	202:4 228:8	productive 7:2	81:8
print 236:16	229:15,21 230:5	products 10:15	progression
prior 100:20	233:1 234:8,11	11:5,7 14:15	151:10 193:15
107:3 111:18	262:8 293:12	15:12,14,15 17:22	

progressive 77:11	pros 214:3 321:17	prv 16:6	put 4:13 23:22
246:2 259:10	prospective 25:5	pseudomonas	74:19 75:9 79:13
progressively 80:9	97:6	95:19	88:12 100:14
project 50:14	protease 66:15	public 1:4,13 6:12	102:14 153:18
301:17	protect 118:3	9:7 15:1 23:8	179:21 180:7
prolificans 112:14	protector 121:19	200:22 202:6	190:20 214:10
255:4	proteins 34:4	215:17,20 254:17	222:12 236:20
prolonged 95:5	protocol 39:7	298:13,14 313:13	250:7,20 256:18
217:9	148:7 195:13	322:9 326:1,19	269:10 283:19
promising 33:13	197:15 323:19	publication 133:5	289:7 290:8
34:16 37:9	proudly 123:5,8	publications	303:13 312:22
promotional	provable 26:7	39:13 234:4	puts 129:3
7:21	proven 25:6 26:7	284:13	putting 75:10
prompted 49:13	28:8,21 39:7	publicly 82:22	132:15 318:7
proof 37:2 61:13	111:12 126:6	publish 230:3	pyrimidine 109:6
267:14,20 291:17	229:19 231:1	published 38:16	q
315:6	provide 14:5 23:9	86:14 94:5 123:14	qa 74:13
propensity 312:16	34:1,8 35:11	132:2 230:9	qidp 15:13
proper 255:19,20	39:14 40:11,20	236:15 241:9	qualification 13:1
278:3	71:22 78:9 95:5	307:21	150:8
properly 79:5	122:14 150:19	puerto 188:20	qualified 15:5
properties 46:13	154:1 157:16	pull 108:6,21	16:9 99:22 326:7
prophlyaxis 14:21	158:4 161:5 167:5	163:15	qualify $17: 10$
67:18	168:20 169:11	pulled 84:21	qualify 99:10 130:8
prophylactic	190:7 196:10	pulmonary 22:13	qualitative 3
55:20 67:15	203:18 208:11	45:13,17 51:5,17	quality $78: 7$
277:10 280:4	209:5 212:4 213:3	52:8 54:15,16	114:14,21 115:1
prophylaxis 21:6	276:7 277:9	57:15 73:15 89:7	225:15 318:15
21:11 23:13 28:14	291:17 308:18	97:1 110:4 111:3	quantifiable 44:17
28:17 29:1 31:11	318:20 319:1	111:5 113:19	quantitative 57:5
87:4 172:12	provided 19:18	201:11,13 249:7,9	$315: 14$
217:17,21 227:8	21:7 26:14 36:13	284:2 287:6	queens 275:21
239:7 240:12	111:22 133:6	punctuated	question 154:10
244:9 277:11	159:1 192:19	116:21	154:12,13 155:8
proportion 166:15	194:8 197:20	purely 140:3	155:14 161:1
proposals 27:5	209:	purpose 70:12	193:20 214:12
propose 161:16	providers 6:3	71:1 196:17	242:5,11,15 243:2
proposed 13:14	provides 46:14	297:17	245:2 251:2,8,14
71:9 76:6 143:22	142:11 209:3	purposes 13:1	252:13 254:8,9
146:4,21 147:12	267:19 268:3	149:11 288:17	$256: 13 \text { 265:11,20 }$
196:15 217:19	providing 51:19	289:3,8	273:16 274:8,10
236:6	76:2	push 108:6,21	$275: 11276: 4$
proposing 147:20	provocative	pushing 238:3	$278: 7 \text { 281:19 }$
	274:10	239:6	286:3 288:7,9

289:9 291:12,16	radiological	315:10 319:6	rat 42:16
294:8 303:6,18	110:13 228:14	323:2	rate 53:14,15
304:1,8,15,19	234:13	range 44:19 63:16	57:12 95:7 104:15
309:1,14	radiologically	64:2 164:5 170:19	104:18 106:12
questioned 26:10	52:11	310:16 319:4	118:15 146:13
questions 41:9	radiology 110:21	ranging 96:11	157:13,19 158:1,8
135:15 167:14	113:6,22 228:22	rant 302:20	159:2,3 174:16
174:2 193:1 221:6	229:2,7 232:2	rapid 39:20	215:14 316:7
242:3,10 303:2,12	234:9,9,22 237:2	128:12 134:2	rates 26:14 28:21
308:16 311:22	237:10	140:8,17 141:2	157:11 158:3
320:1,22	radu 2:5 23:1,3,6	198:14 216:15	167:15 168:20
quick 98:9 103:15	31:19 264:13,16	rapidly 48:17	175:10
129:11 155:7	raging 120:9	rare $26: 16,20,21$	ratio 47:2 57:7
273:15,18 296:5	raise 242:7	27:6,12,15 31:6	158:17 269:15
307:8	raised 129:10	31:10 36:4 71:3	rationale 267:11
quicker 253:7	raises 115:12	98:16 101:8 102:1	rats 44:2 58:7
quickly 35:5 114:6	242:17 303:14	102:12 105:18	ravages 125:21
127:4 154:13	raising 173:20	115:14 118:13	ravuconazole
quit 120:10 124:2	random 267:21	119:18 125:12	286:17
124:3	randomization	128:7 147:11	ret 27:14 259:22
quite 4:13 119:7	27:17 148:17	152:15,21 160:5	260:7,11,18
130:2 136:20	153:3,20 166:14	160:14 161:2,6	rets 31:9
244:4,8 268:15	220:1 222:4	162:9 168:1,13,15	reach 32:10 38:1
271:19 280:5	randomized 25:5	169:4 185:3 186:1	41:1,8 229:22
285:14 286:11	26:2,18 27:16	199:6 204:16,21	244:4 314:18
289:5 298:5	28:20 50:22 56:17	210:10 260:13	319:11
quota 310:20	102:2 107:16	261:4 264:20	reached 221:8
r	129:4 132:20	266:17,20 267:9	reaching 244:8
r 2:14:1	133:14 140:19	267:14,15 270:13	react 285:14
r01 194:22 195:2	142:18 143:8	271:20 280:11	reaction 237:18
r21 194:22 195:2	147:10 152:22	282:22 284:15	read 16:2 241:6
r34 195:10,15	153:3,8,9 154:2,5	290:20 293:4	241:12
rabbit 45:14 46:4	154:19 158:11	312:5 318:14	readily 48:14
46:6 48:15	163:5,11 169:6	323:12	180:13 319:16
50:13 5	200:3 202:22	rarely 118:14	reading 114:6
$55: 17 \text { 57:2 } 6$	203:19 208:4	171:9 176:14	readouts 73:22
63:5,11	209:10 211:13	rarer 152:8	310:16
73:17 310:13	213:9,18,21 214:1	257:11,20,21	ready $105: 17$
rabbits 42:17 44:2	221:13 248:16,16	260:3,13 292:12	242:1 264:4
50:17 58:7	253:4 255:11	293:19	296:10
diation 23	258:15 261:17,20	rarity 205:9	reagents 34:1,8
radiographic 12:9	266:21 267:5	rasamsonia	real 70:15 78:8
22:12,14 89:1	280:12 283:12	282:22	83:14 84:4 193:2
149:3	306:3 314:11		200:6 217:2

251:11 254:12	269:6,22 270:10	167:7 228:4	record 138:13
270:11 297:4	270:11,12,14,18	received 100:8	305:20 326:9
304:22	270:21 271:1	118:10 119:2	327:5
reality 78:5	276:3,14,18,22	120:8 242:10	recorded 263:2
117:17 134:19	277:3 278:14	receives 157:17	326:6
203:6	280:7 282:9,11,13	receiving 92:15	recording 326:8
realize 78:11	282:14 283:2,5	93:2,14 120:20	327:4
220:4 294:20	284:20 285:6,10	134:8 158:18	recordings 6:11
really $8: 1772: 10$	288:15,16 289:7	166:18 172:17	recovered 88:10
72:14 73:18 75:7	292:3 294:21	255:2	248:10
76:16 79:3 84:16	297:5 299:7,12	recipient 93:20	recovery 120:15
85:18 87:11 89:17	303:17 304:3,6,12	recipients 21:12	recruit 152:20
108:18 111:2	304:14,20 307:14	55:11,12,13 66:8	158:16 160:2
127:14 128:11	307:19 318:15	91:11	168:16 202:13,14
129:1,5,10,11	322:17 324:22	recklessly 118:6	203:6,7 204:1
130:2 133:10	325:17	recognition	recruited 161:21
134:3,16 135:8	reason 165:20	200:21	recruitment 203:3
136:20 137:3,21	173:19 203:12	recognize 8:4,11	recurrent 207:10
138:5,6 139:8,12	220:10 236:1	9:15 13:12 19:6	red 37:15
139:16,18 140:1,6	289:21	20:2 33:11 210:2	reduce 250:20
140:6,16,20 141:2	reasonable 70:19	251:16 276:19	283:5
141:8 161:4 163:4	138:4 152:21	recognized 29:13	reduced 159:13
167:3,12,22	153:12 157:2	94:17 96:13 106:7	326:6
177:18 180:8,10	159:19 164:8,13	129:15 201:7	reducing 53:6
183:6 201:19	165:10,14 166:4	recognizes 271:1	reduction 54:1
202:5 207:13,14	167:14 212:6	recognizing 238:2	315:16
211:1,10,12 213:8	214:18 267:19	recommend 13:14	redundant 267:18
214:9 215:3,4,9	310:14	65:13 280:8	322:17
215:18 216:1,4,7	reasonably $10: 11$	recommendation	reemerged 121:1
216:9 219:11,16	97:5 138:1 165:20	22:17 25:4 27:4	reference 16:3
220:4 222:9 223:6	283:4	118:18 319:1	105:2 240:7
223:16 224:18	reasons 37:1	recommendations	305:17
225:1,2 226:19	90:13 132:6,11	23:16 24:22 31:7	referenced 67:21
230:17 232:3	163:20 219:21	recommended	referred 88:19
234:2 235:10,15	228:10 269:19	148:6 150:17,21	refers 195:7
236:2,11,18,20	278:2 306:7	recommends	refinement 254:22
237:9 239:2,15,21	reassurance 268:3	26:17	reflect 29:4 44:12
240:5,15,22 241:2	reauthorization	reconnect 292:17	220:15
241:6,11 243:19	16:6	293:11	reflected 18:15
246:8,21 247:2,5	recap 164:7	reconsider 115:8	50:16 54:11
247:6,15 253:1,4	recapitulation	130:21	reflection 116:4
255:9 257:3	52:7	reconvene 81:5,6	310:6
259:12,22 260:4	receive $37: 19$	81:10	reflects 23:16 48:6
261:13 268:8	69:22 166:9,11,13		48:22 61:18

251:10	173:6	relationship 24:13	reliance 131:6
refractory 7:22	regressions 57:6	47:14 50:11 57:13	311:6
28:3 47:21 84:20	regular 183:4	57:20 67:13 70:21	reluctance 136:5
85:19 86:2 93:10	306:22	79:4,7,11,19	rely 37:17 215:2,2
146:7,10,17	regulated 7:10 9:8	175:19 176:1	relying 232:11
207:11	regulations 29:9	279:19	298:4
refused 120:10	29:21 295:1	relationships	remain 124:6
refusing 269:20	regulators 7:13	64:22 71:21 73:7	180:19 183:10,22
regard 17:20	212:16 322:3	294:2	184:5,12,13 320:1
267:9 268:3	regulatory 10:7	relative 61:5 69:2	remained 112:20
277:13 279:18	20:18,22 23:9	103:5,6 320:4	remaining 318:11
280:1 292:18	29:10,12 30:3,13	322:2 326:13	remains 49:8
318:2	31:13 42:21 60:19	327:10	70:12 80:5 171:1
regarding 148:9	80:2 173:22 174:1	relatively 43:18	186:1,20
149:7 171:3,21	207:20 208:1	58:3 71:7 73:6	remark 256:9,11
172:2,19 176:9	214:19 265:5	77:1 78:21 86:2	257:7
177:5 230:1	267:1,6 274:12,17	91:22 93:21 94:2	remarks 311:13
242:12 274:10	278:9 279:3	128:7 166:17	remember 122:14
regards 63:20	307:15 308:13	173:6 186:1,20	138:18
64:20 65:15 89:22	313:7 315:18	188:18 233:5	remembering
90:19 91:13	318:16 320:14	258:12 259:5,9	71:2
100:15 316:9,10	reimbursed 302:3	274:17 277:20	reminded 258:13
320:1,5	reimbursement	293:20 305:6	reminder 90:21
regimen 18:4 24:9	300:21 302:8	relativity 83:5	96:5 101:1 117:13
31:11 62:11,16	reinfection 184:1	relaxed 117:5	remission 92:16
63:18 65:2 69:22	reinvest 108:4	release 66:22	248:7
70:6,11 77:6 79:8	reinvestment	released 226:20	remit 259:6
105:3,8 119:4	106:20	229:13	remote 1:11
122:8 144:6	reiterate 61:10	relegated 229:17	191:14
145:11,14,20	rejection 91:16,17	relevance $10: 4$	removal 25:19
319:11	94:16	26:9 149:7 150:10	remove 153:4
regimens 27:21	rejoining 4:19	relevant 19:21	removed 117:14
61:14 63:3 71:15	relapse 122:16	20:9 24:7 44:13	117:17,21
73:16 75:8 76:6	relapsed 93:10	46:1 61:4 72:15	renal 68:1677:13
92:9 94:20 123:4	119:15 246:1	73:19,21 76:9	91:5 199:17 247:9
regions 155:3	relapses 229:8	77:15,19 148:20	repeat 194:9
185:21	relate 68:2	206:22 207:14	243:6
registration	related 24:8 67:1	214:7 228:15	repeated 235:5
102:10 105:11	79:18 181:7	238:18 303:22	repeatedly $263: 11$
191:13	187:18 231:15	310:12,15 322:21	replace 196:20
registries 254:19	260:9 321:10	reliable 12:4	replicated 107:12
299:15	326:11 327:7	148:19 154:1	replied 173:17
registry 157:9,15	relates 166:22	reliably 85:11	report 179:22
157:20 158:3	269:5 316:19	98:18	

reported 1:13	requirement	129:1,15,18	responded 131:15
87:19 180:22	13:16 19:2 22:18	136:16 180:1,11	responding 38:4
182:19 186:3,5	106:5 131:1,7	184:17 185:1,8,10	113:7
reporter 4:4,8	requirements	185:11,14,16,22	response 23:22
reporting 155:6	13:20 17:9 19:4	186:1,5,10,19,21	26:4,14 27:4
181:15 257:19	76:10 204:15	187:1,4,6,9,12,21	44:13,14 47:12,14
reports 97:2	278:10,12 300:7	188:4,5 189:10	50:11 53:15 55:16
170:15	requires 78:8	190:12 200:22	56:15 57:13,14,20
repositories 74:14	96:15 107:14	201:18,20 206:20	58:19 61:7 64:21
represent 284:12	110:14 278:22	215:15 223:16	64:22 65:7 67:12
representation	280:9,20 281:12	260:13 307:10,16	69:4 70:21 78:21
227:22	requiring 139:4	308:12 312:3,4	79:4,6,11,18
representative	231:8	314:21 317:5	110:11 111:1
36:3	resample 233:13	resistant 38:22	113:7,17 117:3
representatives	resampling	47:9 83:20 84:20	130:17 140:4
191:5	233:17	86:7 87:13 112:15	143:15 148:16
represented 233:5	rescemba 101:1	130:1 134:1,6,14	150:6,16,17 151:2
representing	research 18:22	134:18 135:15	151:4,10,11,13
46:18 48:16	23:18 32:16,21	136:12 137:4,10	159:1 224:20
represents 136:19	33:4,5,17 59:13	140:20 179:9,18	236:18 265:10
reproducible 39:7	60:11 115:13	182:3 184:19,21	279:19 294:2
request 17:18	122:21 123:12	184:22 186:4	313:16 317:14
19:11 35:7 112:11	125:6 142:3	187:2,5,6 188:18	responses 55:9
196:13,20 197:5	173:19,20 189:22	189:4,5 191:21	87:2 247:13
requested 30:6	190:10 192:18	201:2,3,5,6 212:1	313:22
requester 40:12	194:5,14,18,20	233:8 240:21	responsibility
requesting 27:7	198:5 219:9	260:15,16 261:2,2	80:16
requests 24:1	225:16 226:4	261:4 267:15	rest 41:10 122:10
37:19,21 38:4	241:8 268:3	293:3 307:20	176:4 189:15
80:15	313:14	312:2 316:5	252:5
require 37:16 69:1	researchers 6:2	resolution 258:17	restrict 25:8
92:9 158:10,15	33:18,22 34:8	resolve 234:19	resubmission 37:3
202:15 203:4	124:22	resource 104:10	result 131:15
230:20 244:16,20	reserve 303:2	193:7 204:10	166:17 312:12
required 18:18	reserved 103:13	resources 33:15	318:22
19:1 29:19 76:3	residency 275:21	33:16,18,22 34:8	resulting 39:12
76:13 106:1	residual 44:18	34:20 100:15	results 21:18 27:1
136:15 166:3	200:11	189:9 191:8 198:3	28:6 31:9 39:6
168:3 173:21	resistance 5:16	204:2 295:11	53:11 78:12
174:1 195:2,11	8:1 37:5 47:10	respect 103:11	102:14 103:4
197:7 203:2 204:1	56:4 83:18,22	respective 172:5	137:17,17 142:21
204:6 205:2	84:18 85:8 86:9	respiratory 121:7	147:14 151:13
222:17	87:15 88:5,7,14	307:22	153:18 159:9
	98:16,17 128:21		173:15 206:17

237:19 253:7	rhizopus 285:18	risking 221:18	row 157:10
267:20 306:4,13	285:21 316:20	risks 163:6,12	rtc 244:17
retrospective	ribbons 120:18	164:9 167:16	rudeness 117:10
135:6,11	ribs 112:18	254:18	rules 118:7
return 117:3	richer 78:9	road 211:7	run 106:3,9 112:5
120:9 215:4	rico 188:20	robust 52:22 59:6	160:19 162:13
returned 119:7	rid 222:21 304:8	62:19 71:19 72:12	164:2 167:17,18
121:1	right 4:1935:17	153:22 155:9	299:2 302:19
returns 117:12	37:13 43:5 69:22	168:20,21 212:8	running 81:4
reveal 57:13	79:8,9 84:21 99:1	255:6,11 267:5	111:10,10 258:22
revealed 67:17	112:1 115:3 118:4	268:15 292:11	274:3
104:16	141:21 165:16	294:19 296:10	runs 301:22
revelation 72:18	169:8 173:14	311:16 313:14	S
review 15:11,17	178:10 181:16	318:3 324:1	S 2:14:1 133:11
15:22 16:7,9,17	182:13 189:17	robustly $255: 2$	saccharomyces
42:20 43:7 63:14	191:10 192:19	robustness 54:8	285:4
84:22 87:19 94:5	197:1 201:7 226:6	154:4 268:10	safe 19:6 218:1
151:14 196:19,20	227:2 240:8,22	rockville 190:14	325:6
197:1 200:8	250:8,18,19 257:9	roilides 59:15	safeguards 13:9
315:19	262:16 274:11	role 9:16 12:13	safely 50:2 88:2
reviewed 19:20	275:6 287:22	14:9 43:7,13	$\begin{array}{ll}\text { safer } & 53: 6\end{array}$
72:2	297:16 299:13	44:15 55:5 58:13	safety saler a
reviewer 60:8	305:3,11	73:14,19 229:18	13:17,18 40:17
142:2,10	righthand 199:20	246:22 272:6	52:17 65:1 66:12
reviewers 268:11	rights 99:21	276:3 291:16	75:12 76:14 84:12
reviewing 104:14	rigorous 273:	303:9	90:22 107:18
322:10	rings 121:16	roles 34:5 298:5	196:19 212:18
revised 23:19	ringworm 21:4	rolled 135:8	235:4 238:21
229:13	risk 17:3 18:11	room 116:15,18	276:15 314:18
revolutionized	29:17 33:6 34:15	117:2	sally 60:10
140:2	44:4 59:7 94:7,15	roommate 184:4	salvage 55:10
rex 2:13 73:10	134:17 141:1	roommates 184:2	$136: 10223: 11$
108:10,12,13,16	156:10,12 159:10	rooms 180:13	262:20 306:3
115:9 160:9	166:4,7 168:6	rostratum 46:7	sample 104:14
227:15 245:16	170:17 171:5,10	roughly 286:1	139:4 161:17
251:1,3 252:12	195:4,5,7,7	round 35:8 185:19	$164: 5,9,10209: 16$
258:4,5,8 282:4,5	196:12 201:9	rounding 249:17	323:4
296:21 299:18,19	205:7 209:2 213:5	roundup 215:9	samples 307:22
rezafungin 132:17	219:9,11 220:19	route $36: 16$	sampling 323:21
132:19,22 133:9	221:19 227:10	routine 79:22 88:7	san 35:14 36:12
133:11,20 217:7	230:1 241:2,4	315:4	sandison 3:3
rhinocerebral	272:12 274:20	routinely 71:6	$216: 16,18$
287:5	$\begin{aligned} & 317: 14319: 17 \\ & 321: 10 \end{aligned}$	95:5	sanitized 77:2

sars 96:4 201:8	scientific 8:5 9:9	secre 102:10	226:6 237:5 271:2
satisfactory 28:5	22:21 23:22 25:12	secretion 174:16	307:4 318:17
28:18	31:1 42:21 126:17	section 16:11	seeking 24:2
126:13	191:16 196:19	18:16 63:7,8,8	seen 7:16 52:12,18
aved 137:21	203:15 207:20	318:20	61:12 65:16 135:7
saving 255:3	212:16 214:19	secure 74:14	140:10 148:13
saw 174:17 179:21	222:9 313:1,14	see 4:18 9:3,13	172:4 182:10,16
215:19	318:8 322:13	29:20 35:18 45:14	182:19 187:8,13
saying	scientifically $9: 1$	45:17 47:7 48:2	188:4,6,11 218:5
153:19 216:20	20:5	49:12 52:15 57:3	225:4 253:13
283:8	scientist 127:9	57:15 58:13,14	267:21 282:2
says 2	scope 14:19 167:3	62:22 65:6 77:17	sees 43:16
sbir	180:4 208:12	79:4,6 82:16 85:9	segmental 52:4
scale 35:12 2	scopu	103:22 110:17	segre 190:18
283:7 306:6	282:22	112:2 116:13,19	sekine 20:16
can 52:6	score	127:14,19,21	select 65:13
scanning 49:19	scored 110:22	135:1 140:12	313:21
54:20 56:8	scoring 114:1	158:7 162:15	selected 12:3
cans	SC	165:11 169:22	148:19 155:15
ity	h	173:14 174:15	212:11 257:18
scedosporiosis	screen 29:20	180:18,21 181:3	selection 24:9,12
46:4 282:14	203:8	182:8 183:10,16	61:17 65:2 70:7
scedosporium	screened 269:7,13	183:20 184:21	selections 9:15
85:7 109:9 282:21	299:6 323:14	185:10,20 186:19	selectively 259:14
291:19	screening 39:21	186:22 187:3,20	self 302:10
scenario 95:	43:17 58:10,15	188:21 189:9	semi 238:14
108:3 316:1	131:12 141:15	198:5 201:8 215:4	seminar 226:1
narios 164	149:19 181:4,9,12	219:12 224:6	sends 114:11
chedule 70:7 72:1	183:21 228:12	227:18 239:5	sense 48:10 131:3
cheduled 241:17	scynexis 138:22	240:14 $243: 9$	133:16 222:9
scheme 2	205:21 2	254:3,17 256:2	sensitive 39:1
scholar 123:9	search 173:3	261:3,7,21 262:8	128:12 137:22
school 119:9,15	202:15	271:7 273:5 279:2	184:14 186:10
122:1	second	281:7 283:11	308:9 309:19
schueler 2:14	80:15 123:17	287:21 292:16	322:1
115:10,11,12,16	146:3 177:8,13	296:3 303:13	sensitivity 89:10
115:17,20 122:20	192:22 194:12	304:22 307:14	233:2 234:10
123:8 126:22	226:16,18 230:7	319:20 321:22	sentences 18:18
325:3	252:13 254:8	322:5	separate 27:22
science 5:17 36:12	260:9 275:21	seeds 124:20	188:10 281:22
42:11 123:1	303:9	seeing 50:5 63:2	282:21 285:18
sciences 35:14	secondary 96:20	180:20 182:22	310:7
142:4	150:21 201:9	183:3 187:	separately 282:9
	249:9	188:15 215:15	

separates 139:8	set 7:3 105:21	shared 114:16,17	206:18 227:4
separating 73:6	212:8 257:22	114:18 192:1	253:15,17
282:12	260:11,18 280:18	193:16	shows 83:1 157:12
separation 106:19	281:3 295:15	sharing 325:4	165:4,10,16
september 119:20	296:4	sharp 182:10	174:11,13 176:5
123:16 173:16	sets 26:736:7	sharpest $251: 1$	197:22
sequelae 227:3	262:13 285:2	shawn 3:10	shudder 79:16
sequence 192:11	setting 55:4 87:18	284:17,19 304:18	sibling 86:17
sequencing 188:8	90:14 91:10,10,16	305:20 306:7,20	117:9
188:21 240:1	92:10 93:20 95:14	shea 183:17	sick 122:1 130:13
307:12	128:14 145:14	sheer 269:7	181:20
serial 139:15	149:10 154:8	she'll 169:11	sickly 117:12
serially 112:18	193:2,9 199:22	she's 113:11	sicu 134:7
series 47:548:18	212:21 227:11	shift 180:9	side 35:17 119:9
49:16 50:21 59:6	231:1 238:7 267:1	shocked 290:4	163:10 199:20
81:21 97:3 238:11	277:11 280:4	shohko 20:16	239:3 280:21
257:17 278:21	281:2 314:11	short 60:2 179:12	sidewalk 116:9
295:16 325:11	315:1 323:3	shortened 317:17	sign 149:3
serious 15:7 17:11	settings 29:10	shorter 116:20	signal 13:17
191:7 201:1 205:6	70:16 88:9 92:7	258:16	251:13
302:5	93:3 162:12	shot 243:10	signals 13:8
serologic 137:16	180:14,16 189:7	shouldn't 147:22	signature 326:17
serologies 233:19	193:8 230:1	shouted 117:1	327:14
serum 248:12	252:13	show 49:16 52:21	significance 97:13
serve 37:21 72:21	seven 120:2	106:1 112:9	244:4,8
serves 48:8 123:8	232:10	120:14 133:16	significant 5:22
297:17	seventh 138:1	157:17,18,21,22	8:22 16:13 30:10
service 42:6196:4	severe 66:3 73:22	158:6 160:20	56:15,22 65:17
249:17	82:15 93:9 96:10	173:1 206:19	80:20 103:20
services 31:20,22	96:17 102:18	228:10 230:12	106:7 108:8
32:8 33:16,19	155:20 208:16	278:9	114:13 268:5
34:1,12,14 35:1,4	288:22	showed 76:11	316:16
35:10,13,19,22	severely 5:16	103:4 114:17	significantly 55:5
36:6 37:1,9 38:6	68:17 101:6	132:7 200:8	55:9 80:17
39:15,18,21 40:6	155:17	303:20	signs 52:11 120:15
40:9 196:5 308:18	severity 17:4 64:2	showing 28:17	199:17 220:11,21
serving 302:10	200:12 205:8	47:10,14 53:8	224:15,20 227:21
session 6:18 7:8	shame 80:20	57:20 109:15	228:13,21 229:2,7
41:14 60:4 81:2	shape 117:16	143:6 164:18,19	230:20,22 231:7,8
81:10,12,15 99:1	259:3 282:12	165:8,12 212:9,10	231:11,22 232:3
169:9 179:1,1,3	share 116:4 192:9	234:16,17	236:20 324:6
216:15 225:12	192:22 193:6	shown 28:5 33:4	silastic 51:13
sessions 191:17,18	202:8 280:13	63:2 65:8 94:3	silence 116:8
192:7	281:15	106:12 176:18	

silently 124:15	224:18 272:16	114:15,16 132:7	software 242:8
silver 1:12	273:7 281:3 282:2	135:2 168:14	sold 171:6
similar 5:15 8:19	284:7 312:15	173:15 174:4	soldiers 125:16
51:21 55:1,16	sites 104:5,8,13	175:11 176:5,8	solicit 37:22
56:7 68:22 103:5	137:6 141:9,12,15	180:7 190:22	solicited 37:16
107:8 154:8 155:2	156:13 184:16	192:6 195:22	38:17 39:10
155:3,4 156:10	186:18 203:5,6,21	196:10 199:20	solid 91:18 276:14
157:18 158:7	204:2 219:2,7,8	200:20 221:5	soluble 101:2
159:2,4 163:18	220:7 233:13	227:2,18 230:12	solution 66:22
164:14 165:9,14	261:16 265:13	239:3 241:5 319:8	67:4 250:11,11
202:9 204:15	270:1 280:18	slides 6:10 7:15	solutions 8:7 14:1
217:15 265:11	281:8 283:14,15	20:13,16,18 69:12	20:5 236:5,6
289:11 290:20	290:7 297:19	82:18 148:12	302:11
291:7 310:17	298:3,4,20,21	153:14 170:1	solve 202:4
similarity 147:21	316:13	194:7 203:18	solved 92:5
similarly 122:15	sitting 82:14	215:20 221:5	somebody 110:20
155:22 158:2	situation 84:15	slightly 259:19	260:5 283:22
simple 43:18	145:5 146:3,20	309:19	284:1,1 295:14
321:3	221:1	slipped 79:10	somebody's
simplified 35:7	situations 67:6	slow 111:4,5 128:8	258:21
simplify 320:9	86:4 145:2 147:9	128:22 220:8	something's
simply 69:171:5	164:3 249:20	slowly 110:9	110:17,18
126:8 132:2	263:14 265:18	121:5 133:21	somewhat 273:20
184:11 298:4	286:9	small 13:14 14:8	son 116:1 118:9
simulation 76:5	six 11:22 56:20	31:9 94:4 99:15	sonya 327:2,15
324:2	86:15 120:1 144:3	120:5 152:19,22	soon 41:9 81:12
simulators 77:3	146:16 200:5	153:2 154:2	sorry 4:10 19:11
simultaneous	226:5 242:3 294:8	161:20 162:9,16	85:17 100:9 129:9
299:2	311:4	163:14 167:13	136:4 178:14
single 11:2 25:7,9	size 13:4 104:14	174:22 188:9	201:18 212:7
25:13 40:16	139:4 161:17,22	195:18,20 197:2,4	223:22 224:4
147:12 148:7	164:9,10 166:21	204:22 213:20	242:22 256:22
153:1,16 157:6	167:10 209:16	238:9 244:4 259:9	282:5 284:8 290:3
208:4 223:10	323:4	smaller 97:2	290:3 293:17
237:20	sized 112:	146:14 161:13	301:18 302:20
sinus 120:2	sizes 164:6	162:21 214:6	sort 14:18 77:6
sinuses 119:22	skilled 183:4,5	280:18 313:9	78:5 79:20 135:10
121:4	skills 326:10 327:6	320:15 322:16	136:10 179:12
sister 119:1	skin 48:8 180:12	323:3	185:19 187:3,16
121:17	skip 127:5	smoother 133:5	188:7,14 221:1
sisters 116:14	sky 116:10	smoothly 4:16	222:15 226:22
sit 117:4 230:17	slide 19:12 33:4	snapshot 183:18	227:13 229:17
site 9:1672:13	35:17 41:2 83:1	soft 130:22 131:3	232:6 234:1
156:20 203:3,5	97:20 98:9 113:13		235:11 236:14

237:16 238:3,17	225:11	206:3 210:13	spreading 104:8
240:16 244:9	speaker's 194:7	225:21 230:5	181:11
253:3,22 264:8	speakers 4:21	234:5 253:12	spreads 112:17
280:20 281:1,1	60:6 127:16 142:1	266:20 274:22	180:13
287:19 289:6	191:1 192:4,5	312:10 314:16	spring 1:12
291:8 304:3,7	194:10 198:15	315:17	sputum 183:13
306:3,13 307:2,4	208:9 324:22	specificity 89:10	square 176:15
310:16 318:11	speaking 63:21	233:2 234:10	squeeze 273:11
sorts 297:21	293:18	specimen 183:8	st 119:8 122:22
sound 9:2 11:11	spearheaded	specimens 189:3	stab 303:15
20:5 32:4 79:6	59:19	spectrum 36:1	stable 48:22
99:20 116:9	special 10:2 63:7	72:22 83:19 84:17	110:19,22,22
133:18 160:17	69:2 70:14 84:16	89:15 98:14 101:3	111:1,6 112:6
171:12 175:12	90:11 93:12,17	199:11	114:2,4,9 115:3
178:17,18 254:1	95:9 98:18 103:13	speed 287:18	151:4,10 171:2
272:5 293:20	147:4 193:7 325:3	317:16	186:20 237:8
sounds 4:4 174:6	specialist 22:21	spend 84:3 90:17	317:18,21
source 48:9,10	species 35:18 36:3	127:13,18	staff 42:8173:20
169:3 183:1 220:5	36:7,16 37:5	spirulina 306:10	195:3 196:16
223:16 274:11,14	40:15 85:6,6,7	split 290:8	staffs 6:2
sources 183:8	86:8,17,18 134:2	spoke 123:7	stage 7:3 76:8
211:6 215:1	137:5 170:11,14	spoken 127:15	105:16
252:16 309:4	170:18 171:5,8	128:11,22	stages 35:20 37:10
319:14	180:9 187:7,13,15	sponsor 17:19	39:15 58:15
south 87:21	187:17,20,22	196:6 280:21	319:18
170:16 185:10,12	188:8,10 189:6	sponsored 96:12	stakeholders 9:5
185:16,17 192:4	194:16 201:3	122:21 123:5,17	191:4 313:14
southern 182:18	206:22 213:10	190:15	322:8
space 94:1 95:4	223:10 233:8	sponsors 19:5	stallard 160:8
110:16 239:1	260:13,14 281:22	24:1 30:7 40:12	stalled 34:19
spaced 267:19	316:18	203:16 226:1	stalwarts 45:21
span 59:14	specific 18:8 28:6	275:3	stand 291:1
spans 33:3	29:5 42:22 61:5	sponsorship 99:21	standard 7:18
spare 311:11	63:18 68:2,6	sponsor's 21:21	10:19 11:9 75:22
speak 6:8 42:4	84:15 85:9 88:13	spontaneous	101:13 102:7
69:19 82:12,19	93:16 108:22	258:17	140:19 153:21
176:21 189:21	109:21 128:13	spore 306:10	154:8,13 156:18
194:10 198:20	138:1 144:21	sporo 291:4	156:20 194:22
274:4 281:5 302:6	148:5 154:12	sport 122:1,3	199:19 208:5
305:7	175:5,21 176:9	spot 119:10 164:8	209:12,19 221:21
speaker 6:10	277:16 308:16,18	323:4 324:11	253:4 261:17
31:19 41:14 60:7	309:9 319:1	spread 121:4	standardization
60:10 108:9	specifically 67:13	180:15 282:15	74:20
115:10 179:5	82:20 92:21 182:4	314:22	

standards $\quad 10: 16$
17:14,15 136:14
205:10 $313: 5$
standpoint $222: 8$
222:9 271:16
stands 290:21
start 4:7,8 6:18
7:10 40:4 69:12
81:10,22 99:6
142:1 178:22
193:2 198:15
207:22 216:20
221:18 239:3
242:1,6 252:19
281:13 292:11
300:22 309:17
315:9 321:2
started 38:11 92:9
230:10 252:4
262:20 281:4
starting 64:7
179:18 227:14
239:16
starts 132:5
228:12
startup 280:19
stasis 57:8 75:3
state 5:5 81:16 82:6,20 179:1 189:13 235:13 238:19 326:20
stated 20:1 142:10 246:20
statement 144:17 239:20 249:18,21 256:3,21 262:6
states 1:1 68:22
88:1 96:8 103:9
123:6 173:1
180:19,22 185:2
192:3 210:6 233:6
238:10 239:11,15
240:2 250:12
295:16 300:14
$301: 18,19$
statistic $116: 2$
statistical 141:22
142:2,10,11 152:4 152:14 160:4 161:2 166:6 167:12,19 168:18 169:3 244:4,8 254:22 261:9 267:6
statistically
211:13
statistician 151:19
statistics 162:3
222:14
status 57:10 100:1 100:1 106:5 194:5
statutory 10:16,19 11:9 204:14
stave 120:8
stay 6:9 183:22
184:8 283:19
302:18
staying 111:7
stays 252:2
steadily 226:12
steam 302:20
stem 21:11 33:15
91:17 134:7
171:11 243:21
step 43:19 45:6 136:5
stepdown 14:12 64:7 90:1 145:9 145:22
steps 69:21 75:21
sterile 224:18
sternum 112:17
steroids 224:21
247:10 272:22
stevens 45:16
stick 6:8
sticking 130:20
stop $80: 21141: 18$
178:2 283:8
301:22 307:5
stopped 92:8
storm 4:15 82:15
177:13 178:16
story $325: 4$
straight 94:10
straightforward
43:18 76:1 233:14
318:12
strain 134:18
strains 37:4
129:21 134:14
135:15 260:16
303:20 312:22
strata 255:13
strategic 288:2
strategies 48:1 88:22 129:13 134:4,12 254:22 275:15 276:4
strategy $23: 1$
89:22 240:11
241:4
stratification
224:11 255:12,20 263:12 277:7
stratify $247: 16$ 255:15
streamline 313:18 316:11
streamlined 9:17 208:20 214:17
street 120:18
strengthened 147:16
strengthening 254:21 255:5
stresses 77:5
striking 47:11 56:10
strive $39: 14$ 218:20 219:21
strokes 85:1
strong 110:2
238:21 267:17
structural 34:3
structure 114:7
174:14 206:11,13
structures 34:4
struggled 135:22 234:2
stuck 235:17,21
stud 223:9
student 122:2
studied 13:642:18
44:7 45:2 86:20
96:6 132:14
133:19 138:6
145:1,7 146:4
148:7 149:15
238:12 283:3
290:19
studies 11:3,3
13:8 14:8 19:1
24:3 26:22 27:5,8
27:22 28:4,17
36:13 37:2 43:12
45:4,8 46:14,21
49:2,17 50:19,21
53:2,16 54:12
55:20 56:12 68:4
68:8,10,12,13,16
70:20,22,22 71:4
76:10,13 78:1,14
78:20 87:4 94:3
96:9 100:10,18
102:9 105:21
106:15 107:6
111:16 114:7
138:18,21 139:7,7
139:8,19 140:2
161:13 168:15,17
172:5,5 176:17
193:13 194:17
207:7,9 208:10
214:6 217:9

218:21 221:9,17	223:12 245:11,12	subscribe 197:19	271:9
238:17 244:11	250:6,8,8 251:15	subsequent 16:8	sufficiently 291:1
250:20 255:11	255:15 256:19	96:10 127:16	319:17
269:8 273:1	257:1 260:1 264:1	195:16	suggest 130:20
277:20 282:1	269:14 272:21	subsequently	197:21 266:11
289:11 292:9	273:12,12 275:1	52:20	suggested 214:1
306:3 312:21	281:13 283:4,7	subset 155:16	suggesting 55:4
315:6 319:22	285:22 286:17	257:18 260:15,16	187:2
323:8	287:1,7,11 288:17	substantial 17:17	suggestions
study 10:1 14:6	289:5 291:2,8	109:16 204:15	263:17
22:7,16 23:19	294:12,15 303:19	205:1 208:22	suing 315:11
25:8 26:10,21	306:5,18 316:4,22	209:5 210:3	suitable 151:6
27:15 28:11 29:3	321:18 323:7	211:16,18 213:4	202:1
39:1 40:16 55:10	324:2	216:9 222:10	suite 34:13 35:10
55:22 59:7 62:17	study's 295:5	223:7	39:18
62:18 68:15 75:1	studying 235:16	substantially	sulfate 101:2
77:16 79:3 83:9	238:19 272:13	10:20 170:20	sumati 2:4 6:14,15
86:13 87:7 96:12	284:22	substrates 65:18	6:20 23:4,5 31:17
96:13 97:6 99:22	study's 161:15	66:9 67:9	31:18 32:3 41:13
101:22 102:2,10	stuff 284:3 295:6	subtleties 267:10	41:22 59:22 60:14
102:11,14 103:16	295:8 296:8,12	subtype 118:13	60:15,17 69:10,11
103:19 104:17,22	302:1,13,18	subtypes 115:14	69:15,16 80:22
105:6,12,17	sub 77:1678:1	success 11:21	81:1 263:10
107:13,15 109:17	79:3 110:14	110:13 111:7	324:15,18,19
111:11,12 112:22	subacute 45:7	112:8 114:2 137:7	summarization
128:17 129:8	48:13,19 224:9	139:16 151:1	192:8
130:1 132:2,6,18	subcontracting	164:11,13 165:14	summarize 30:18
133:10 134:16,19	39:8	168:12 228:6	98:13 217:4
135:4,7,19 136:8	subgroup 155:7	233:18 234:3,20	summarized
136:9,9 137:2,3	subject 208:14	317:20,22	73:10
138:14,15,17	209:21 210:4	successful 34:2	summarizes
139:1 146:3	subjects 100:8,10	161:15 208:7	164:17
147:22 148:4	100:11 103:19	254:10 276:21	summary 19:18
152:14 153:8,10	133:13 136:4	289:4 297:4	22:6 168:8,15
153:16 154:2	146:10,11,12,12	suck 296:2	204:12 225:3
155:4 161:14	148:4 219:1	sudan 286:18	227:18 311:12
162:1,13 163:6,12	submission 100:4	sudden 300:20	324:20
166:9 167:4,10	submit 16:16	suffer 47:21 86:1	summer 116:20
169:6 170:19	submitted 11:15	90:4	119:13
172:9,10 204:4,9	17:18 21:19	suffered 121:11	sunglasses 121:15
207:8 209:9,10	308:22 318:18	suffice 188:9	super 105:18
213:20 217:12	suboptimal	sufficient 133:15	superimposable
218:20 219:10,21	166:11,13 172:8	145:3 156:21	55:1
219:21 222:6	172:17	211:2 212:18,18	

superior 54:18	suppression 52:3	surviving 222:2	systematic 58:21
56:1	54:6 312:15	susan 117:	263:18
superiority 27:20	sure 10:577:19	122:16	systemic 22:9
55:3 142:20	135:22 162:22	susceptibiliti	42:18 48:1 90:17
146:21 147:3,	163:15 178:9	232:7	95:4 99:9 224:20
supplement	247:15 252:22	susceptibility 22:2	systemically 90:20
123:13,14 152	259:17 291:5	128:22 226:10	systems 5:12 42:7
315:10	304:16 308:2	303:5,7 306:6	42:13 43:8,21
supplemen	318:13	308:6	44:2,4,6,16 45:14
319	sur	susceptible 47:11	46:4 48:20 49:1
supp	6	175:8	58:13 59:4,7 91:8
158:19 21	surface	su	193:11 267:18
support 6:17	surfaces 180:12	suspension 66:21	294:4 295:4 308:9
11:15 14:822	surgeries	67:1,14	310:5,8,12,17,22
27:9 30:9 31:9,10	surgery 112:13	sustainable 108:2	311:6
33:2,5,9,20 34:13	170:18	sweet 164:8 323	t
37:2 38:6 39:15	su	324:11	
40:5,22 41:7	:1 278:19	switch	
59:17 62:22 64:22	surprised	103:18 144:7	. 20
73:4 84:1 102:10	surrogate	switched 262:22	84:21 85:10
115:13 142:12	12:7,8 138:19	switching 64:9	7:1
194:20 195:10	139:9 140:1 1	:13 262:8	
196:12 198:1	:3,7 236:21	sworn 326:5	
205:1 293:6 297:5	289:13	sym	
299:14 303:7	sur	4 131:1,4	
309:7 315:7 316:3	66:18 187:1	8:13,21	
318:5,5,16 320:16	193:11 195:1	229:2,7 230:21,22	
322:15	272:15,21 273	231:7,8,11,22	
supported	survey	232:3 236:20	
103:8 124:22	173:16	324:	
214:21 261:19	survival	syndromes 98:20	taiwan 87:22
291:16 296:14	:2 44:17 53:6	syndromic 89:1	take 4
322:13	53:14 54:15 55:15	synthase 135:18	
supporting 16:17	56:22 57:12 72:8	206:11,12,18	103:15 113:9
32:21 49:3 274:22	118:15 119:16	system 46:6,13,22	
298:17	120:11 131:9	48:15 50:13 51:9	
supportive 11:2	139:14 157:10,13	51:12 54:9 55:17	86:18 202:5,18
26:15 35:11 51:20	157:18 158:1,2,7	55:21 56:7 57:2	206.18 202.5,18
221:22 258:18	246:7 310:1,	91:4,21 119:18	13:
292:6 293:6	survive 130:18	120:14 213:21	
313:10	survived 146:17	228:8	$241: 11250: 12$
supports 194:13	survives 10:10	296:3,4 297:6	.11
195:9,18	12:7 148:22	305:10 310:13	556:16 259:21
	220:16		260:15 268:14

285:13 295:15	210:16 214:8	tell 32:8 38:1	306:6,8 307:3
303:15 314:8,9	232:5 236:18	113:13 199:14	308:6 321:20
takeaway 311:20	256:5 268:7	237:3	322:1
takeaways 192:7	280:10	ten 23:15 113:12	tests 12:17,21
taken 117:7	talks 74:4 216:22	120:1 130:7 173:2	138:1 149:12,18
129:18 149:19	217:5 225:10	tenacious 51:18	202:5
174:4 203:4 276:5	294:21	tend 158:7	texas 35:14 36:11
276:10 292:20	tangible 59:8	tended 248:18	225:13
326:3,12 327:9	276:8	tends 128:8 314:6	thank 4:20 6:20
takes 17:4 41:3	target 31:10 36:8	tenth 137:14	6:22 7:15 20:11
113:21 210:3	37:4,7 84:11 90:5	term 29:10 75:4	23:2,3,6 31:16,17
232:9 296:2	134:20 136:1,11	90:2 92:9 94:16	31:18 32:3,6,7
talaromyces	141:1 222:12	119:16 181:6,21	41:9,12,13 42:1,3
288:10 289:10	223:6 277:13	182:2,12 183:13	43:6 59:21,22
290:5,9	278:6,13 279:5	184:1 186:8	60:12,13,15,16
talaromycosis	310:10 312:9	310:12	69:6,9,11,12,18
289:19	315:8	terms 67:7,12	80:22 81:1,11,12
talent 122:2	targeted 93:2	70:17 77:6,8	81:14 82:12 98:20
talk 7:10 14:15	122:21 223:3	80:10 128:2	98:22 99:3 108:8
15:2 31:21 32:9	targeting 31:6	153:12 154:8	108:13 115:8,9,17
41:18 56:20 60:22	38:7 140:20	161:8 166:3	115:20 126:19,21
61:11 62:15 69:21	194:14 317:14	167:11,15 201:20	127:1,12,13
81:12 82:5 83:11	targets 76:877:10	219:17 223:7	141:18,20 142:8
83:16 99:2,4	177:16	224:10 227:20	151:15,17 152:2
108:20 128:2	task 9:4 37:15,16	247:12 267:10	169:6,7,20 189:11
152:5,9 160:11,13	37:22 38:14,17	270:5 298:17	190:5 198:9,10
162:2 167:3 169:8	39:11 210:3	310:20	205:18 206:1,9
169:21 170:3,4,6	taught 91:2 236:4	terreus 86:9	216:13,14,18
190:6 194:12	tax 99:12	260:14	225:8,9,18 241:14
195:6 199:5	taylor 3:3 216:16	terrific 141:12	248:1 249:14,15
202:21 206:2	216:18	test 12:18 26:4	252:11,12 254:2,3
216:19 237:15	teach 9:14 247:15	27:20 37:4,6	258:3 261:6 262:2
256:13 261:18	teaching 118:4	150:1 163:4,5,7	263:7,8,21 264:13
276:17 291:15	team 41:3 81:20	163:10,13,17	266:4 268:22
294:14 303:5	119:11 194:19	165:5,9,17 225:1	271:5 273:14
309:21 310:7	195:12 261:9	testbed 251:19	274:6,7,9 275:8
325:14	307:15	tested 39:11 105:9	279:13 284:16
talked 128:9 132:1	tease 289:2	184:19	286:2 288:4,10
160:16 216:21	technical 289:21	testifying 326:5	290:12,17,17
221:4 222:11	techniques 70:9	testing 35:15,19	291:11 292:1,19
304:6 321:9	76:5 80:1	35:19,22 37:20	292:22 296:19
talking 88:12 89:6	technology 134:15	38:12,13 184:14	297:1,1 299:17
127:14,18 179:8	140:14,15	226:11 303:5,7,18	302:20,21,22
180:2 184:17		305:12,15,17	308:15,21,22

309:13,18 311:9	148:21 172:18	75:10,13 77:11	25:18 27:3 28:3
311:13,14 324:13	268:8 312:17	83:4 85:10 91:22	29:11,22 30:18
324:19,22 325:19	314:3	94:7 97:14 98:2	31:4 73:13 74:4
thankfully 185:2	therapeutics 58:9	112:2,3 114:18	80:13 81:3,5 84:5
186:1	80:19 191:22	133:2 157:14	84:18 88:1 89:16
thanks 6:19 20:14	213:1 214:16	158:6 166:8,17	89:19 93:18 95:20
23:7 32:2 69:17	216:13 266:17	169:4	96:19 97:3,17
108:16,17 179:10	therapies 5:2,6	they're 12:22	98:9 115:2,2
189:15 190:1	8:1 14:13,20,21	14:18 43:17 73:22	118:5 130:5,19
198:18,19 216:19	19:7 82:7 86:3,6	74:15 78:5,22	131:8 133:17,21
241:16,19 243:14	93:2,13 120:6	86:20 87:11,20	134:4,18 135:2,9
245:4 246:12	163:19,20 199:19	101:10 111:16	137:18,20 138:6
247:21 249:12	211:20 266:2,2	112:3 139:3	139:5,9 140:5,9
250:22 253:1	275:16 312:4	they've 4:21	140:12,18,22
263:20 265:5	313:17 320:11	111:16 146:16	141:10,13 153:17
271:11,12 275:12	325:6	thigh 45:4 46:11	171:13 176:20
279:7 281:16,18	therapy 28:9	thing 109:21	177:9,11,19 178:6
282:7 291:13	36:21 52:5,10,21	170:21 180:2	178:11,15 179:20
293:10 294:5,7,13	56:6,9 64:7 88:16	181:18 187:11	181:15 183:16
303:3 305:19	88:20 89:2,11,15	219:19 237:13	184:12 189:19
307:6 325:3,8,16	92:3,3,3,9 95:2,6	241:11 242:17	202:10,20 204:5
thanksgiving	95:13 97:14	250:10 288:1	204:12,19 206:8
120:21	101:18,21 102:4	290:4	208:13 209:3
that's 6:5 12:9	103:4,18 105:8,14	things 12:15 110:7	213:11 214:4
15:6 49:22 62:13	105:14 109:14	118:5 127:19	216:3 217:2,10
70:6,8 71:16 75:5	111:19 112:8,11	128:4 130:9	218:4,22 220:17
75:13 76:4,18	130:12,14 136:5	137:21 155:12	221:3,5,7 222:18
99:7 104:6 111:15	136:13 145:21,22	159:15 181:16	222:21 231:2,3
131:22 133:4,14	157:18 158:6	183:18 217:1	233:19 235:4
134:18 139:10,13	162:14 166:11,13	218:13 220:13	236:8,19,22
152:13 153:13	167:7 220:3,6,9	221:10,15 222:6	237:11,13,22,22
154:16 158:12	222:1 223:12	222:16 223:16	238:8,15,20
162:16,18 164:9	224:3 227:9,10	224:10 231:10	240:10,18 241:17
165:21 168:22	228:7,21 229:2,10	235:20 250:14	244:15 245:1,1,7
171:18,19 175:17	234:3 238:4 239:7	251:5 259:19	245:13 246:8,20
theater 230:3	245:11 262:20	271:21 272:14	247:3 248:3
theme 162:20	276:11 280:9	285:17 289:12	249:21,22 250:11
300:9,21	314:1 319:3 323:9	290:10 294:18	251:5,18 252:7,8
theory 244:8	323:10	295:2 296:1,10,15	253:1,3,5,10,13
therapeutic 41:7	there'll 14:11	297:21 299:1,21	253:15 256:14,19
53:9 61:5 65:5,8	there's 7:19 9:20	301:21 308:8	257:9,19,21 258:1
65:13 67:19 69:2	9:22 11:17 15:16	think 9:13 12:2	259:12,12,18
72:16 79:19,21	16:4 19:11 35:7	13:4,7 15:4 16:20	260:3,7,17 261:11
95:17 102:19	47:9 65:8 74:22	19:6 24:10,16	261:13 262:14

263:4,12,22 264:7	thompson 3:4	ties 117:9 254:7	tissues 36:18
265:12 268:20	242:20,22 243:3,6	320:3	tobramycin 95:20
269:15 270:21	288:7,11,14	tight 188:22	today 4:16 5:1,4
271:1,13,15,17	305:22	time 1:10 4:21 6:8	5:14 6:6,9 12:1,12
272:2,6,10,14	thorough 314:13	6:9,9 8:4 11:21	14:1 17:8 24:8
273:10 276:5	thought 14:2	24:17 33:21 37:19	33:20 42:20 44:9
282:9 283:15	74:12 225:10	41:11,11 47:3,10	82:5 98:11 99:4
284:2,10,11	236:21 242:19	53:1 60:2 70:1	108:3 109:2 125:2
285:15,19,22	275:17 279:17	81:8 84:3 90:17	142:12 147:2
286:9,19,22 287:1	280:13,14 281:15	94:19 102:5	152:10 180:2
287:22 288:14	290:5 291:21	110:17 113:21	194:2,19 206:13
289:7,10,16,20	303:4 321:16	127:3 134:14	249:15 250:2
290:10,19,19	thoughtful 299:18	135:2 138:13	253:11 256:18
291:7 292:5,7	thoughts 316:17	141:11 148:2,17	259:11 276:1
293:1,19 294:16	threat 80:20 201:2	152:21 172:4	295:7,10 311:17
294:17 295:12,13	threatening 15:8	174:12,13 184:5	315:3 322:10,17
295:21 296:8,9	17:12 56:2 204:16	186:21 187:13	325:2
297:3,8 299:13	204:21 205:6	189:16 199:8	today's 190:6
301:8 303:17	208:18 219:10	202:18 204:3	311:20 317:11
304:4,7,13,14	268:7	206:4 227:4,5,5	325:17
305:13 306:1,13	threats 22:22	231:5 232:15	today's 7:1,2 8:6
306:16,19,21,21	179:22	236:2,4 254:12	8:15 14:19 99:9
307:2,12,17 308:7	three 17:9 34:3	256:15 265:9	toddlers 276:7
309:20,22 310:6	37:1 39:13 56:14	266:2 267:8	told 74:10 119:21
310:15 311:5	59:14 66:19	268:12 281:14	122:15 255:12
313:20 314:21	102:21 105:19	295:5,15 296:3	311:2
315:11 324:11	106:1 110:12,14	300:18 302:12	tolerability 52:17
325:7	118:2 173:5	311:1 313:3	276:16
thinking 72:19	174:22 180:19	317:21,22	tolerate 64:4,8
74:5 79:21 239:3	185:20 186:5,5,20	timeframe 212:6	tom 2:20 4:18
241:2 244:12,20	191:18 195:1	214:18	76:10 179:5,9,10
257:13 264:21	197:6 198:15	timeline 83:3	200:21 252:20
314:19 315:9	200:16 201:1	timelines 138:10	254:3,6,7 256:2
thinks 293:8	204:11 219:2	timely 195:10	256:12 269:1
third 37:6 112:2	221:17 232:9,12	198:20	271:7,11,17
177:15 183:11	237:7 248:16	times 82:16 173:2	273:15 275:17,19
184:20,21 185:17	283:5,6 292:9	173:5 232:17	279:18
193:6	311:10	282:8 302:4	tom's 256:21
thomas 2:7 3:7	thrives 180:12	timing 232:22	257:9
41:20 42:2 43:5	throw 247:14	277:3	tomorrow 5:11
123:7 252:22	248:9	tinea 175	259:1 325:14,19
254:3,4,6 266:9	throwing 247:1	tissue 48:21 53:7	tonight 249:17
303:16	thursday $1: 9$	113:10 199:15	tool 29:15 58:10
		202:1	110:2,5 113:16

$\begin{aligned} & \text { 139:12 } \\ & \text { tools } 29: 12,22 \end{aligned}$	$\begin{aligned} & \text { 158:14 161:2 } \\ & \text { 162:3 168:17,17 } \end{aligned}$	transporter 68:10 traumatically	$\begin{aligned} & 153: 7,16155: 2 \\ & 156: 19 \text { 160:20 } \end{aligned}$
31:13 58:15	212:22 239:4	125:16	165:7 166:10
131:17 240:22	240:11	travel 5:9 186:7	169:1 172:13
292:3,11	traditionally	traveling 119:11	176:16 186:11
top 41:279:3	165:22	treasure 270:21	193:13,15,15,21
157:10	train 298:3	treat 15:7 17:11	200:2,14 203:11
topic 8:15 98:11	training 173:20	24:4 32:17 85:15	207:16 208:17
172:3 192:22	298:6	88:18 101:11	209:7 216:2
193:6 325:12	trait 88:15	126:12 180:6	217:15,20 227:1
topics 14:17,22	transcriber 327:1	204:16,21 205:5	231:9 248:5
191:20 192:9,9	transcript 327:3,5	228:4 263:1 284:8	270:16 277:14
194:1 197:6	transcriptionist	285:8	287:18 317:13,16
topped 107:22	326:7	treated 38:19 66:2	325:14
total 161:22,22	transcripts 6:11	66:8 132:21 146:9	treatments 8:2
192:4 197:5	transferrable 39:8	146:11 157:22	39:4 153:6 160:22
touch 18:22 33:22	transfusion	158:4,7 210:18	163:1,16 208:19
164:15 179:17	120:21	228:2 234:20	221:21
188:20 219:14	transition 75:20	treating 25:2 50:4	treatment's
309:11	133:3	95:19 101:19	164:11
touched 137:18	transitioning	226:9	tree 52:3
148:8 155:12	136:17	treatment 5:3,16	trees 120:18
302:4	transitions 70:13	11:17 15:20 18:2	tremendous 59:10
toxicities 84:13	translation 268:15	18:4,8,14 21:3,4,6	104:19 269:22
90:17 91:3,4,5,7	translational	21:13 22:4 23:13	277:21 288:17
95:7 98:15 201:21	42:11 142:4	23:18 25:17 26:16	295:17
toxicity 40:15 79:1	transmission	27:12,19,21 28:2	tremendously
102:6 199:18	48:10 183:2 184:7	28:18,22 31:1,12	266:14 276:21
218:13 312:12	188:11,14,15	36:18,20 42:15	277:21 297:22
toxicology 39:20	193:9 215:16	49:2 51:10 66:4	trend 204:20
100:22	transmitted 189:7	83:2,14,16 84:2	trial 5:5,19 11:1,2
tracheal 97:9	transplant 21:12	88:19,22 89:16	11:16 12:4 13:8
tracheobronchial	66:7 82:3 90:12	90:11 92:14,19	13:10 18:9 21:18
52:3 94:8	91:11,18,18 93:19	93:14 97:19 98:18	21:20 22:8 25:5
tracheobronchitis	98:19 125:15	101:16,17,21	26:18 28:20 40:10
98:5	217:18 247:7,8	109:18 111:15	40:13,16 50:18,22
track 15:12 197:8	248:12 249:17	116:3 121:2 122:7	53:11 55:8 56:17
tract 174:15	272:18	123:4 126:4 132:9	63:13 89:4 103:2
tractable 78:9	transplantation	135:13 143:3,17	103:16,19 104:3
trade 167:16	118:20 119:4	144:11,11 145:7	104:11,20 105:5
tradeoffs 167:13	122:8 169:10	145:21 146:5,6,8	105:11 111:9
traditional 10:7	171:7,12	146:10,13,14,15	131:2,3,7 132:5
10:17 58:6 129:4	transplants 134:7	146:17 150:7,12	132:12,16,17,18
133:2 138:9 139:3	243:21 244:14	151:1,6,13 153:4	132:20,20 133:4,9

$133: 19135: 3,6,19$	$320: 6,10,11,12$	$276: 10,11289: 8$	$272: 1,7,11287: 19$
$135: 20136: 10,14$	$323: 1,20324: 2$	$293: 6295: 15$	$293: 4304: 7306: 4$
$142: 13,18,19,22$	trials $10: 111: 13$	$297: 4299: 2,2$	$309: 20$
$143: 4,8,22144: 17$	$11: 2012: 15,16$	$305: 13312: 13$	trying $137: 9138: 7$
$144: 20,22146: 21$	$13: 325: 1426: 3$	$313: 5314: 19,20$	$183: 15184: 6$
$147: 5,10,17152: 6$	$40: 1243: 2,10$	$316: 3,9,11317: 7$	$192: 6196: 10$
$152: 11,22153: 1,3$	$46: 147: 1648: 7$	$317: 17319: 6$	$216: 7218: 1$
$154: 6,9,19155: 21$	$52: 1959: 2,865: 1$	$320: 9,17321: 16$	$223: 17227: 16$
$156: 1,5,12,22$	$65: 471: 4100: 7$	$322: 7323: 3,15$	$232: 13236: 13$
$157: 7158: 11,20$	$100: 11102: 3$	$324: 8$	$250: 9263: 6272: 9$
$159: 2,3,18,20$	$104: 10,22105: 9$	triazole $101: 4$	$273: 11276: 3$
$160: 3,19162: 10$	$105: 19107: 16,18$	triazoles $79: 22$	$284: 10310: 9$
$162: 12,16163: 4$	$127: 7,20128: 3$	$226: 18$	$323: 4$
$164: 3,16166: 10$	$129: 5130: 5$	trichomonas	tuberculosis $18: 2$
$166: 12,16,21$	$131: 21138: 8$	$231: 19$	$18: 5$
$167: 1,8,13,17,18$	$139: 20140: 17,20$	tricky $109: 21$	tubular $174: 15$
$167: 21168: 3,11$	$141: 1,7142: 19$	$259: 19$	tufts $189: 18$
$168: 21172: 19$	$143: 11,14,16$	tried $104: 12$	turn $6: 1332: 1$
$194: 3195: 2,4,5,9$	$147: 12,13,14,15$	$111: 16271: 22$	$41: 1961: 1969: 10$
$195: 11196: 2,7,15$	$148: 15149: 11,14$	$298: 19310: 7$	$89: 18116: 11$
$197: 3,14203: 20$	$149: 17,22150: 9$	tries $112: 18$	$1518: 16241: 15$
$203: 21204: 6,8,10$	$150: 18,22159: 7$	trigger $76: 9$	$251: 1271: 6$
$208: 4210: 20$	$160: 17161: 4,8$	triple $239: 13$	$273: 15275: 10,14$
$211: 14213: 9,18$	$162: 9168: 13$	tropical $4: 14$	$291: 11303: 1$
$214: 2217: 15,17$	$170: 7172: 22$	$15: 17,21,22$	$311: 11$
$221: 19,22,22$	$173: 1,4,8,9,9,12$	$286: 21$	turned $94: 18$
$222: 3,14,20$	$173: 12,18194: 22$	trouble $111: 16$	$282: 6$
$225: 20227: 16$	$195: 19,21196: 13$	$171: 14175: 14$	turning $90: 15$
$228: 12232: 21$	$199: 21200: 3$	$178: 15$	tv $116: 15$
$237: 19240: 16$	$202: 12,17203: 1,4$	trove $270: 21$	twelve $11: 22$
$242: 12,16243: 17$	$203: 10,14,19$	true $124: 1159: 10$	twice $181: 4204: 6$
$247: 13252: 14$	$204: 3,18210: 2,15$	$164: 4166: 12$	two $10: 714: 17$
$253: 12261: 19,20$	$211: 3,7217: 4$	$172: 7219: 15$	$17: 2218: 1721: 3$
$264: 5,6266: 1,13$	$221: 13222: 22$	$251: 18254: 17$	$36: 1739: 154: 17$
$267: 10268: 6$	$227: 14,19230: 22$	$271: 2286: 19$	$60: 670: 3100: 11$
$270: 2272: 4$	$231: 9232: 14$	$308: 2326: 9327: 5$	$102: 9104: 7105: 7$
$280: 13,17281: 7$	$233: 22237: 16,17$	truly $87: 589: 17$	$142: 1152: 9153: 7$
$283: 12285: 19$	$238: 9239: 4,19$	$188: 2224: 19$	$157: 3159: 15$
$289: 3294: 8,14,19$	$240: 11,12241: 4$	$239: 22253: 5$	$162: 21168: 18$
$296: 9297: 19$	$248: 16,17253: 4$	truth $295: 8$	$182: 8184: 22$
$298: 2301: 15$	$253: 19254: 11$	try $23: 881: 7$	$185: 1196: 11$
$306: 4313: 2,21,21$	$258: 15261: 12,14$	$82: 17211: 1$	$199: 1,16203: 18$
$315: 7,11,20,22$	$266: 18,21267: 5$	$237: 21260: 22$	$205: 11207: 7$
$317: 12,21318: 1,2$	$267: 21271: 3,22$	$262: 4265: 7,22$	$209: 20210: 3$

220:9 228:2	u01 195:1,6,16	246:10 248:2	unethical 146:22
230:10 237:7	196:12	249:3 270:15	unevaluable
249:10 251:5,5	u44 195:20,20,22	287:8 312:14	131:22
255:13 261:5	197:2,11	316:14 321:10	unexpected 218:9
266:13 267:13	ubiquitous 47:5	undermining	unforgiving
273:15,20,21	ucas 305:1	221:19	117:15
277:6 282:22	ucla 39:9	underpinning	unfortunate 47:21
300:18 303:12	ultimate 112:8	267:20	96:3 97:17
308:16 310:7	ultimately 50:20	underscore 132:3	unfortunately
type 136:14 149:7	119:2 131:13	understand 15:16	7:13 8:14 9:11
159:4,14 163:9	278:22	17:5 32:16 78:4	33:13 96:18
164:4 211:6 214:9	unable 162:13	88:4 150:10 151:3	105:13 116:2
215:5 242:13	unacceptable	164:4 183:15	119:14 179:17
244:15 249:20	84:12	184:6 193:8	181:17 254:11
250:13,15 296:8	unacceptably 95:8	215:18 220:18	304:19
319:3 322:12	unanimous 118:18	231:5,22 239:12	unfunded 269:11
types 14:10 27:22	unanswered 221:6	246:3 250:16	uninformative
28:6 29:5 149:1,5	unapproved 195:8	261:22 268:12	78:12
150:4 220:21	unavoidable	270:11 283:8	unique 61:5 84:1
244:14 264:7	264:21	309:2 310:10	133:11 191:9
281:21 298:22	unbalanced 27:17	321:5 323:19	202:10 271:18,18
typewriting 326:7	uncertainties	understandably	290:22
typical 79:12	315:21 318:11	319:7	unit 40:16
106:11 107:6	320:5	understanding	united 1:1 69:20
143:10 208:2	uncertainty	46:12 77:12	88:1 96:8 123:6
209:8 255:20	157:14 209:2	182:21 184:10	173:1 192:3,3,4
278:21	213:5 320:19	190:11 269:21,21	210:6 233:6
typically 30:8	unclear 205:13	269:22 270:3	238:10 239:11,14
48:15,17 102:7	uncommon	279:18 313:15	240:2 250:12
106:18 143:16	240:20 291:18	316:15 318:4	295:16 300:14
170:13 201:4	313:6	321:11	301:18,19
209:10,18 212:8	unconscionable	understood 115:5	units 40:10,11
212:10	250:	320:2	70:15
typo 85:17	uncontrolled	undertaken	universal 244:9
u	112:21 147:12,14	152:13 153:2	universally 74:1
u.k. 60:12 160:8	147:15	61:1	university 35:14
u.s. 96:14 99:8	undergo 118:19	underusin	36:11,12 60:11
102:5 106:2 135:7	undergone 121:1	259:13	102:17 127:10
139:22 180:18	121:2,3	underwent 119:17	160:8 225:13
187:10 210:5,18	underlying 93:15	120:1	274:2
238:10 278:15	101:17 110:6	undisputed 122:3	unlicensed 195:7
297:16 298:21	151:6 200:12	undue 89:	unmatched 158:2
305:11 309:22	224:22 231:15	unenthusiastic	unmet 1:6 5:2,8
313:8 318:19	244:22 245:15,21	117:2	7:21 9:19 13:13

viscoli 248:4	vulvovaginal	282:21 292:17	256:20 263:22
visibility 196:18	45:11 47:19 207:8	298:2 299:20	264:4,5,5,10
229.6	207:10	202:13 303:14	265:16 274:22
,10	vve 47:22	308:	75:2 279:1,1
al 102:11 103:2	W	318:1,3 325:4	280:17 285:10,15
220:11	wait 220:7 279:3	wanted 11:5,22	285:17 301:6,14
vitally 276:18	waiting	:15 29:8	302:1 304:19
vitro 11:3 35:10		83:10 108:20	305:10 310:6
49:		122:17 126:14	ways
56:12 66:17 68:9		193:6 219:19	138:4 157:3
68:11 100:22		249:18,20 262:	187:22 209:5
135:21 206:20		264:17 269:1	246:3 247:16
26:10 285:15		279:14 290:18	251:5 253:6 261:3
6:8,13 307		29	285:16 313:4
10:5		w	322:5
vivo 35:10 36:9,13	w	wants	we've 179:14
37:1 44:11 49:17		242:20 257	182:2,10 183:9,14
18 68:11		271:7	184:19 186:17
00:22 206:21	41:15,17,19,20	16	87:8,11,13 188:4
voice 246:17 251:4	42:2 43:5 60:1	warmth 117	188:6,11 200:15
volume 207:3	3	warrant 281	202:7 208:9 217:9
7:21 308:4	:7	warranted 214:4	217:10 218:4,16
54:21	254:4,6,7 266:5,9	warwick 160:8	225:4,5 226:12
,		wash	227:1 228:2
		washout 36:21	231:21 253:3,13
volunteer 77:4,21	w	watching	254:10,14 257:9
volunteers 70:13	wan	water 101:2	257:13,22 263:12
22	21 82:13 86:10	wave 296:11	263:15 272:14
vori 5		way $38: 1042: 8,12$	276:10 277:8
204:9		57:21 70:15 71:10	289:3 291:14
voriconazole 4		74:5 75:17 80:10	301:15 302:4
56:10,17 65:21		110:7,15,19 111:7	304:6
:9 85:20,21	19	114:10 117:13	weak 120:16
101:14 105:6	$5: 14197$	129:11 139:1,19	weakened 5:12
132:13 138:10,	198:1 201:19	140:12 143:4	120:7
4:3 176:3		151:12 155:5,13	weaker 261:14
8:22 243:18		155:18 159:	web 73:11 189:10
18,2		160:1 162:15	webpage 6:12
vrcs	243:10 244:10	168:17 184:14	website 34:11
vs 93:9 203:21	243.10244 .10	185:19 187:19	173:3 194:8
		220:6 224:12,	236:12
vt $40: 13,16$		226:3 237:10	week 56:20 120:1
vulnerable 49:22		238:2 242:4	133:14 144:3
91:9 124:16 182:1	$273: 20 \text { 275:19 }$	244:20 251:21	146:16 200:5

306:12	129:10,10 140:10	wonder 266:21	240:20 244:16
weekly $132: 19,22$	141:7,8 160:10	274:12	261:9 266:12
133:12 217:8	161:10 162:22	wonderful 108:16	267:14,16 268:15
weeks 11:22 105:7	what's 75:18	115:20	268:16,17 271:20
120:12 228:2	105:17 140:13	wondering 187:11	272:7 273:11
weigh 108:3	167:14 168:3	188:13 189:5	280:15 281:10
weighing 309:15	172:21	won't 29:19 90:17	works 113:18
weight 94:9	who's 20:17 60:7	137:19	160:20 224:6
176:13 212:2,13	80:3	woods 119:9	228:9 238:2
214:10	wide 47:7 64:2	word 114:5 139:9	251:20 268:9
weighted 80:12	144:10 199:15	187:18 295:14	304:20 305:10
weights 54:16	widely 45:1	words 28:2 29:8	323:20 324:13
weill 169:11	129:15	184:22 193:18	workshop 1:4
welcome 4:20 6:22	wider 144:12	work 7:4 9:20,21	4:12,15 7:1,14 8:6
81:15 225:17	widespread 84:12	14:3 20:4 45:16	8:16 14:19 23:8
welcoming 120:18	182:6,7	50:10 59:20 80:2	28:15 29:6 72:20
went 132:5 133:4	widest 226:8	110:3,8 111:3	108:18 160:12
290:4	wife 117:1 122:15	113:19 123:1	190:8,13,15,20
wenzel 235:9	william 2:9 69:12	124:12,21 125:1	191:2,3,15 192:12
weren't 4:13	69:14,17,18 81:2	126:16 140:21	192:15,16 194:3
157:21	291:21 292:1,15	141:13 162:20	194:11,18 198:20
we'd 163:22 165:6	292:16 293:11,12	167:9 189:12	206:8 324:21
we'll 5:13 6:18 8:8	293:15 309:16,18	194:4 209:4 216:8	325:17
12:12 81:10,12,22	311:10	228:3,9 230:10,15	world 70:15 74:20
99:1 108:9 141:21	willing 19:10	230:21 237:12	78:8 80:21 86:21
142:1 151:18	144:12 313:8	240:5,8 244:19	107:9 123:22
we're $4: 155: 1$	320:19	251:7,8,20 252:5	124:13 128:5
10:5 14:11 19:9	willingness 151:8	279:1 280:21	139:21 172:11
53:17 58:17 70:9	window 66:11	285:12 301:21	193:2 200:7 233:4
81:21 84:2 111:10	232:15,17	302:1,5,19 304:11	251:11 259:7
127:3 131:14	windows 238:1	324:9,10 325:6	270:11 301:1
134:12 135:6	winds 116:20	workbook 191:1	307:9
141:3 160:18,21	wiped 119:17	194:9	worldwide 209:22
162:5,13 169:1	wisconsin 119:6	workday 116:20	239:12
171:14 175:13	120:22	worked 50:8	worried 182:2
177:20 178:15	wish 126:18	workflow 38:14	worry 179:19
we've 4:137:16	243:13	working 22:21	worse 110:18
8:21 9:11 12:18	withstood 122:6	32:4 111:17	163:6,12 165:17
15:13 17:22 51:17	witness 122:6	151:20 160:10	245:22
52:16 59:11 61:12	125:21 326:4	227:2,4,5,8 230:4	worth 31:571:2
64:1 65:16 68:8	witnessed 96:19	230:11 231:13	153:19 163:4
88:19,21 91:1,3	245:12 309:22	232:4,15,22 233:7	252:5 257:13
91:15 92:13 110:2	woman 112:12	236:14 238:8	272:13
122:6,21 128:9,15	177:3 178:4,11	239:2,15 240:4,7	

$$	$\begin{gathered} 229: 14241: 9,11 \\ \text { years } 7: 1615: 9,10 \\ 16: 2021: 223: 15 \\ 40: 18 \text { 92:18 94:17 } \\ 96: 8100: 5103: 21 \end{gathered}$	$\begin{gathered} \text { you've } 70: 273: 12 \\ 75: 22148: 12 \\ \text { yuliya } 2: 1181: 19 \\ 311: 14 \quad 324: 15,17 \\ 324: 19 \end{gathered}$
183:12	106:13 107:8	Z
wreaked 120:4,7	108:11 115:4	zebrafish 58:8
writings 302:14	117:20 118:12	zeichner 2:19
302:15	126:7,10 132:4	135:5 178:21
written 17:18	138:14,18 151:20	198:10 205:18
19:10 20:17 37:14	179:15 182:15	216:14 225:13,18
37:15 307:20	186:17 197:6	$242: 2252: 11$
wrong 79:7	203:4 204:4,7,11	$254: 2,5256: 1,7$
110:15 114:12	209:20 210:4,8	$257: 6258: 3,7$
162:18 163:2	213:14 218:5	261:6 262:3 263:8
x	219:2 221:18	263:21 264:15
x 112:5305:8		265:6 266:4
y	236:10 237:7	268:22 271:5
yasinskaya 2:11	240:1 241:8,13	$\begin{aligned} & \text { 273:14 274:6 } \\ & 275: 6,9 \text { 279:10 } \end{aligned}$
311:14 324:17	251:15 252:5	$281: 18 \text { 284:16 }$
yasinskaya's	254:18 277:6	286:2,6 288:4,13
311:12	294:16 306:6	$290: 1,12,15$
yaskinskaya	yeast 180:10	291:10 294:7
	199:11 254:13	296:19 299:17
yeah 6:20 43:4 108:15 115:19	255:22 260:2 yeasts $36 \cdot 3147 \cdot 18$	302:22 308:15
152:1 178:6,13	yeasts 36:3 147:18 267:15 285:1,6	309:13 311:9
256:11 264:16	yield 277:21	$\text { zeituni } 2: 66: 14$
265:10 269:2	yielded 217:13	7:7 31:19 32:3,6 292:17,19 308:21
271:11 273:8,18	york 41:17 169:19	$\begin{aligned} & \text { 292:17,19 } 308: 21 \\ & \text { zhao } 57: 4 \end{aligned}$
284:19 286:5,8	180:20 186:6	
288:6,11 289:22	275:22	
303:17 323:9	young 177:16	
324:17	younger 62:2,4,19	
year 35:8 73:4,12	119:1	
99:8,11 101:9,10	youngest 119:1	
106:19 112:12	youth 91:2	
119:3 121:17,18	you'd 154:7	
137:6 138:12	165:13,22	
160:12 183:17	you'll 112:1	
189:2 195:17	you're 114:6	
196:14,15,21	130:1	
197:5 210:6,17		

