

Notice: Archived Document

The content in this document is provided on the FDA's website for reference purposes only. It was current when produced, but is no longer maintained and may be outdated.

NARMS 2002 Retail Meat Annual Report National Antimicrobial Resistance Monitoring System

ABBREVIATIONS USED IN THE REPORT

AR Antimicrobial Resistance

BAP Blood Agar Plate

CCA Campy-Cefex Agar Plate

CDC Centers for Disease Control and Prevention

CVM Center for Veterinary Medicine
EAP Enterococcosel Agar Plate
EIP Emerging Infections Program

EMB Eosin Methylene Blue

FDA Food and Drug Administration

FDA-CVM Food and Drug Administration-Center for Veterinary Medicine

FoodNet Foodborne Disease Active Surveillance Network

MIC Minimum Inhibitory Concentration

NARMS National Antimicrobial Resistance Monitoring System NCCLS National Committee for Clinical Laboratory Standards

PCR Polymerase Chain Reaction
PFGE Pulsed Field Gel Electrophoresis

PulseNet The National Molecular Subtyping Network for Foodborne Disease

Surveillance

QC Quality Control

RVR10 Rappaport-Vassiliadis

USDA United States Department of Agriculture

XLD Xylose Lysine Deoxycholate

Antimicrobial Abbreviations:

AMC Amoxicillin/Clavulanic Acid Lincomycin LIN Linezolid AMI Amikacin LZD AMP Ampicillin MER Meropenem AXO Ceftriaxone Nalidixic Acid NAL BAC Bacitracin NIT Nitrofurantoin CEP Cephalothin PEN Penicillin

CHL Chloramphenicol QDA Quinupristin/Dalfopristin

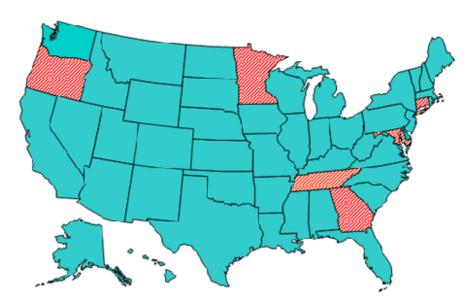
CIP Ciprofloxacin SAL Salinomycin COT Trimethoprim/Sulfamethoxazole Streptomycin STR DOX Doxycycline SMX Sulfamethoxazole ERY Erythromycin TET Tetracycline FLA Flavomycin **Tvlosin** TYL FOX Cefoxitin TIO Ceftiofur GEN Gentamicin VAN Vancomycin

KAN Kanamycin

Meat Types

CB Chicken Breast GT Ground Turkey
GB Ground Beef PC Pork Chop

State Abbreviations:


CT Connecticut MN Minnesota
GA Georgia TN Tennessee
MD Maryland OR Oregon

2002 NARMS Retail Meat Annual Report - Introduction

Background:

Food destined for human consumption, including meat and poultry, are known to harbor enteric bacteria. Antimicrobial resistance among these foodborne bacteria has been documented and may be associated with the use of antimicrobial agents in food animals. These bacteria may include organisms such as *Salmonella*, *Campylobacter*, *E. coli*, and *Enterococcus*. Retail meats represent a point of exposure close to the consumer and, when combined with data from slaughter plants and on-farm studies, provides insight into the prevalence of AR in foodborne pathogens originating from animals. To gain a better understanding of AR among enteric bacteria in the food supply, FoodNet and NARMS monitor antimicrobial susceptibility/resistance phenotypes in bacteria isolated from retail meats.

NARMS retail meat surveillance is an ongoing collaboration between the U.S. Food and Drug Administration (Center for Veterinary Medicine), the Centers for Disease Control and Prevention, and in 2002, six of the 11 current FoodNet laboratories: Connecticut, Georgia, Maryland, Minnesota, Oregon, and Tennessee. The primary purpose of the NARMS retail meat surveillance program is to determine the prevalence of antimicrobial resistance among foodborne pathogens and commensal organisms, in particular, *Salmonella, Campylobacter, Enterococcus* and *E. coli*, recovered from retail foods of animal origin. The results generated by the NARMS retail meat program will establish a reference point for analyzing trends of antimicrobial resistance among these foodborne bacteria. Inferences concerning likelihood of human exposure to various species of bacteria should not be made on the basis of species prevalence for all meat types combined.

Locations of 2002 Retail Food FoodNet laboratories

FoodNet is the principal foodborne disease component of CDC's. It is a collaborative project of the CDC, eleven EIP sites (California, Colorado, Connecticut, Georgia, New York,

Maryland, Minnesota , Oregon , Tennessee , Texas and New Mexico), the U.S. Department of Agriculture (USDA) , and the Food and Drug Administration (FDA). The project consists of active surveillance for foodborne diseases and related epidemiologic studies designed to help public health officials better understand the epidemiology of foodborne diseases in the United States . The NARMS/FoodNet Retail Food Study was developed to monitor the presence of AR among *E. coli* , *Salmonella* , *Campylobacter* , and *Enterococcus* from convenience samples of fresh meat and poultry purchased monthly from grocery stores in the participating States. These isolates were then subjected to standardized antimicrobial susceptibility testing methods in order to determine the prevalence of resistance.

Retail meat sampling:

For calendar year 2002, retail meat sampling started in January of 2002 for five of the six participating FoodNet laboratories, with the exception of Oregon . Oregon did not join the NARMS retail meat program until the last quarter (September to December) of 2002. For each of the FoodNet sites, samples were purchased monthly, with as many different stores as possible visited each month. The object was to purchase as many different brands of fresh (not frozen) meat and poultry as possible. A total of 40 food samples were purchased per month including 10 samples each of chicken breast, ground turkey, ground beef, and pork chops. For each meat and poultry sample, the FoodNet sites recorded the store name, brand name, lot number (if available) sell-by date, purchase date and lab processing date on log sheets (appendix A-5). Additional information with regard to whether or not the meat or poultry was ground or cut in-store was also collected, if possible. Samples were kept cold during transport from the grocery store(s) to the laboratory (appendix A-6).

Microbiological analysis:

In the laboratory, samples were refrigerated at 4 ° C and processed no later than 96 hours after purchase. After microbiological examination, recordings were made on the log sheets whether or not the meat and poultry samples were presumptively positive for *Salmonella*, *Campylobacter*, *E. coli*, and *Enterococcus*. Each laboratory used essentially the same procedure for sample collection (appendix A-6). Retail meat and poultry packages were kept intact until they were aseptically opened in the laboratory at the start of examination. For chicken and pork samples, one piece of meat was examined, whereas, 25 g of ground product was examined for ground beef and ground turkey samples. The analytical portions from each sample were placed in separate sterile plastic bags, 250 mL of buffered peptone water was added to each bag, and the bags were vigorously shaken. Fifty mL of the rinsate from each sample was transferred to separate sterile flasks (or other suitable sterile containers) for isolation and identification of *Salmonella*, *Campylobacter*, *E. coli*, or *Enterococcus* using standard microbiological procedures (appendix A-6). Once isolated and identified, bacterial isolates were sent to FDA's CVM Office of Research for further characterization including species confirmation, antimicrobial susceptibility testing and PFGE analysis (S *almonella* and *Campylobacter* only).

Meat and poultry rinsates were cultured for the presence of *Salmonella* and *Campylobacter* at all six FoodNet sites. Additionally, at four of the six FoodNet laboratories (Georgia, Maryland,

Oregon, and Tennessee), meat and poultry rinsates were cultured for the presence of *E. coli* and *Enterococcus*.

NARMS retail meat working group, 2002

U.S. Food and Drug Administration

Jason AbbottSusannah HubertSherry AyersStuart GainesDr. Mary BartholomewShawn McDermottSonya BodeisDr. Patrick McDermott

Peggy Carter David Melka

Patti Cullen Dr. Terry Proescholdt Linda English Sadaf Qaiyumi Sharon Friedman Dr. Ruby Singh Althea Glenn Dr. Linda Tollefson

Althea Glenn
Dr. Linda Tolletson
Dr. Elvira Hall-Robinson
Dr. David Wagner
Dr. Joshua Hayes
Dr. Antoinette Walker
Dr. Robert Walker

Dr. David White Dr. Shaohua Zhao

Centers for Disease Control and Prevention

Dr. Fred Angulo Dr. Tom Chiller Felicita Medella Jennifer Stevenson

NARMS FoodNet Retail Sites

Connecticut Georgia

James HadlerJames BensonRobert HowardPaul Blake

Stacey Kinney
Pat Mshar
Bob Manning
Michael Pascucilla
Mahin Park

Charlie Wells

Maryland

Minnesota

Jonigene Ruark

John Besser Mary Warren

Craig Braymen

Billie Juni Tennessee

Fe Leano

Ana Placencia Nicole Boehm

Kirk Smith Rosalind Cox Narina Stepanova Lydia Case Kevin Vought Allen Craig

Jeannette Dill

Oregon Karen English

Cynthia Graves

Samir Hanna Debbie Bergquist Emilio DeBess Henrietta Hardin Eric Espinosa Evelyn Jones Trisha Hannan Tim Jones Helen Packett Veneda Jordon Larry Stauffer Thresia Pilate **Ivor Thomas** Ruth Ann Spence Tesfaye Yigsaw Robert Vega

Veronica Williams

Acknowledgements

Much thanks to Joanne Kla for editorial assistance, and Deborah Brooks, Michelle Talley and Stephanie Dove for providing outstanding web support to the NARMS program.

Contact: Dr. David G. White, dwhite@cvm.fda.gov

Suggested citation:

U.S. FDA, Center for Veterinary Medicine. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): NARMS Retail Meat Annual Report, 2002. Rockville, MD: U.S. Department of Health and Human Services, FDA, 2004.

Table 1. Antimicrobial Susceptibility Test Methods and Interpretive Criteria: NARMS Retail Meat, 2002

Genus: Campylobacter

Susceptibility Testing Method: Agar dilution

Drug	$\begin{array}{c} \textbf{Susceptible} \\ (\mu g/ml) \end{array}$	Intermediate (µg/ml)	Resistant (μg/ml)
Ciprofloxacin*	≤ 1	2	≥ 4
Doxycycline*	≤ 4	8	≥ 16
Erythromycin*	≤ 0.5	1,2,4	≥ 8
Gentamicin*	≤ 4	8	≥ 16
Meropenem*	≤ 4	8	≥ 16

Genus: Enterococcus

Susceptibility Testing Method: Broth microdilution Sensititre Plate: CMV5ACDC

Drug	$\begin{array}{c} \textbf{Susceptible} \\ (\mu g/ml) \end{array}$	Intermediate (µg/ml)	Resistant (μg/ml)
Bacitracin*	≤ 32	64	≥ 128
Chloramphenicol	≤ 8	16	\geq 32
Ciprofloxacin	≤ 1	2	≥ 4
Erythromycin	≤.5	1,2,4	≥ 8
Flavomycin*	≤8	16	≥ 3
Gentamicin	< 500		≥ 500
Kanamycin*	≤ 128	256	≥ 512
Lincomycin*	≤8	16	≥ 32
Linezolid	≤ 2	4	≥ 8
Nitrofurantoin	≤ 32	64	≥ 128
Penicillin	≤ 8		≥ 16
Salinomycin*	≤ 8	16	≥ 32
Streptomycin*	<1000		≥1000
Quinupristin/Dalfopristin	≤ 1	2	≥ 4
Tetracycline	≤ 4	8	≥ 16
Tylosin*	≤ 8	16	\geq 32
Vancomycin	≤ 4	8,16	\geq 32

 $^{{\}rm *\ No\ NCCLS\ interpretative\ criteria\ for\ this\ bacterium\ /\ antimicrobial\ combination\ currently\ available}$

Genus: Escherichia coli and Salmonella

Susceptibility Testing Method: Broth microdilution Sensititre Plate: CMV7CNCD

Drug	Susceptible (µg/ml)	Intermediate (µg/ml)	Resistant (µg/ml)
Amikacin	≤ 16	32	≥ 64
Amoxicillin/Clavulanic acid	≤ 8/4	16/8	$\geq 32/16$
Ampicillin	≤ 8	16	\geq 32
Cefoxitin	≤ 8	16	≥ 32
Ceftiofur	≤ 2	4	≥ 8
Ceftriaxone	≤ 8	16,32	≥ 64
Cephalothin	≤ 8	16	≥ 32
Chloramphenicol	≤ 8	16	≥ 32
Ciprofloxacin	≤ 1	2	≥ 4
Gentamicin	≤ 4	8	≥ 16
Kanamycin	≤ 16	32	≥ 64
Nalidixic acid	≤ 16		≥ 32
Streptomycin*	≤ 32		≥ 64
Sulfamethoxazole	≤ 256		≥ 512
Tetracycline	≤ 4	8	≥ 16
Trimethoprim/sulfamethoxazole	$\leq 2/38$		$\geq 4/76$

 $^{{\}rm * \ No\ NCCLS\ interpretative\ criteria\ for\ this\ bacterium\ /\ antimicrobial\ combination\ currently\ available}$

Table 2. Number of Retail Meat Samples Tested by Site and Meat Type, 2002

		Meat Type	;		
Site	Chicken Breast	Ground Turkey	Ground Beef	Pork Chop	Total
CT	120	120	120	120	480
GA	120	120	120	120	480
MD	120	120	120	120	480
MN	106	127	123	103	459
OR*	40	40	40	40	160
TN	110	115	119	110	454
Total	616	642	642	613	2513

^{*}Oregon samples reflect September through December 2002 only.

Table 3. Percent Positive Samples by Bacterium and Meat Type, 2002

	Chick	en Breast	Grou	nd Turkey	Grou	nd Beef	Pork Chop		
Bacterium	N	N (%) N (%)		(%)	N	(%)	N	(%)	
Campylobacter	288	(46.8)	4	(0.6)	0	(0.0)	5	(0.8)	
Enterococcus*	381	(97.7)	387	(98.0)	383	(96.0)	369	(94.6)	
Escherichia coli*	282	(72.3)	304	(77.0)	295	(74.2)	184	(47.2)	
Salmonella	60	(9.7)	74	(11.5)	9	(1.4)	10	(1.6)	

^{2513 =} Total number of retail meats tested for Salmonella and Campylobacter

^{616 =} Total Chicken Breast tested

^{642 =}Total Ground Turkey tested

^{642 =} Total Ground Beef tested

^{613 =} Total Pork Chop tested

^{1574 =} Total number of retail meats tested for *Enterococcus* and *Escherichia*

^{390 =} Total Chicken Breast tested

^{395 =}Total Ground Turkey tested

^{399 =} Total Ground Beef tested

^{390 =} Total Pork Chop tested

Table 4. Number of Isolates by Site, Bacterium, and Meat Type, 2002

	Chicken Breast	Ground Beef	Ground Turkey	Pork Chops
Site: CT			-	
Campylobacter	74	0	2	1
Salmonella	17	5	21	1
Site: GA				
Campylobacter	84	0	0	0
Enterococcus	120	118	120	119
Escherichia coli	104	93	103	55
Salmonella	14	2	19	2
Site: MD				
Campylobacter	30	0	0	1
Enterococcus	117	107	113	101
Escherichia coli	107	105	110	66
Salmonella	8	2	9	6
Site: MN				
Campylobacter	33	0	1	0
Salmonella	4	0	7	0
Site: OR *				
Campylobacter	1	0	0	0
Enterococcus	40	40	0	39
Escherichia coli	9	22	17	9
Salmonella	4	0	2	0
Site: TN				
Campylobacter	66	0	1	3
Enterococcus	104	118	114	110
Escherichia coli	62	75	74	54
Salmonella	13	0	16	1

^{*}Oregon samples reflect September through December 2002 only.

Figure 1a. Percent Positive Samples for Campylobacter & Salmonella by Meat Type and Site, 2002

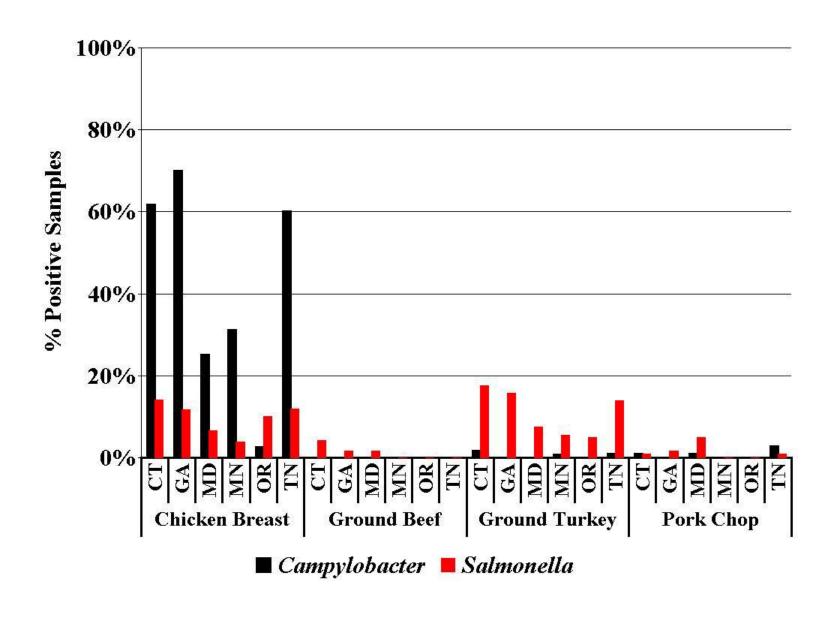


Figure 1b. Percent Positive Samples for Enterococcus & E. coli by Meat Type and Site, 2002

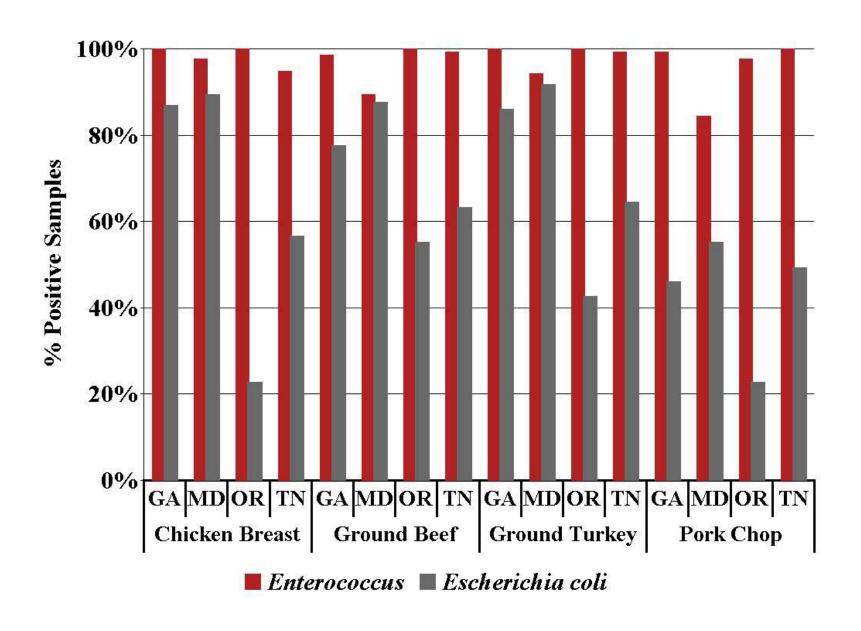


Figure 2a. Percent Positive Samples for Campylobacter & Salmonella by Meat Type for All Sites, 2002

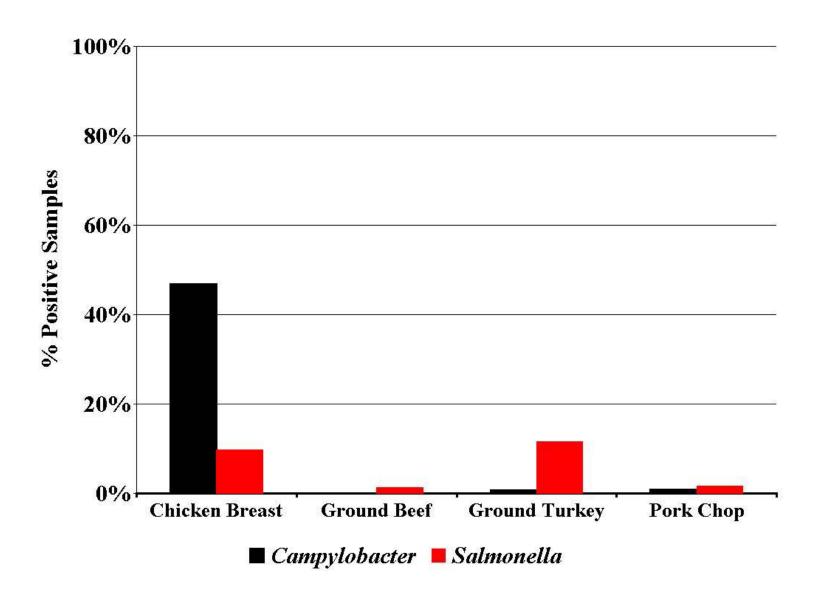


Figure 2b. Percent Positive Samples for Enterococcus & E. coli by Meat Type for All Sites, 2002

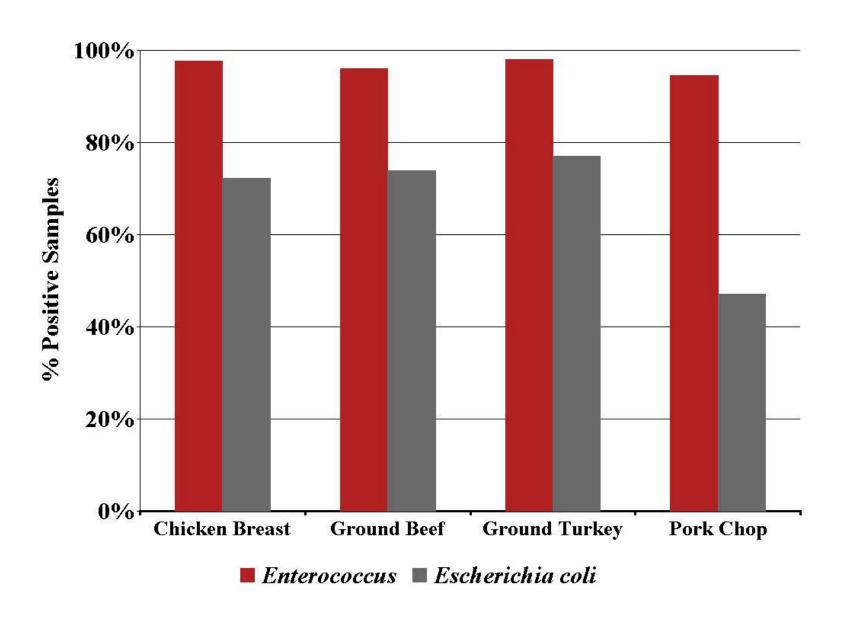


Figure 3a. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type for All Sites, 2002

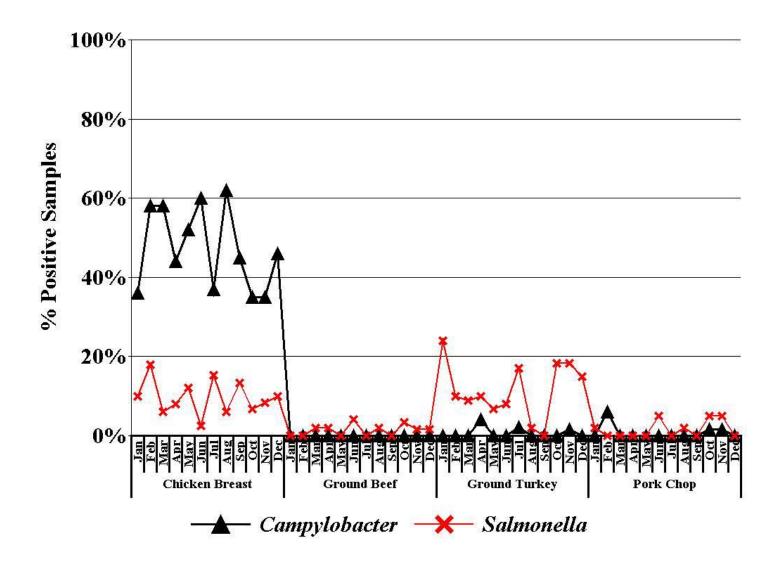


Figure 3b. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type for All Sites, 2002

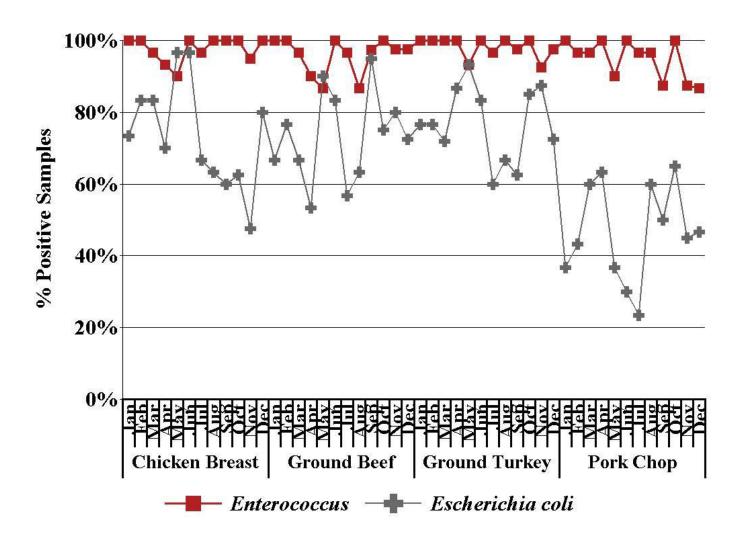


Figure 3c. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Connecticut, 2002

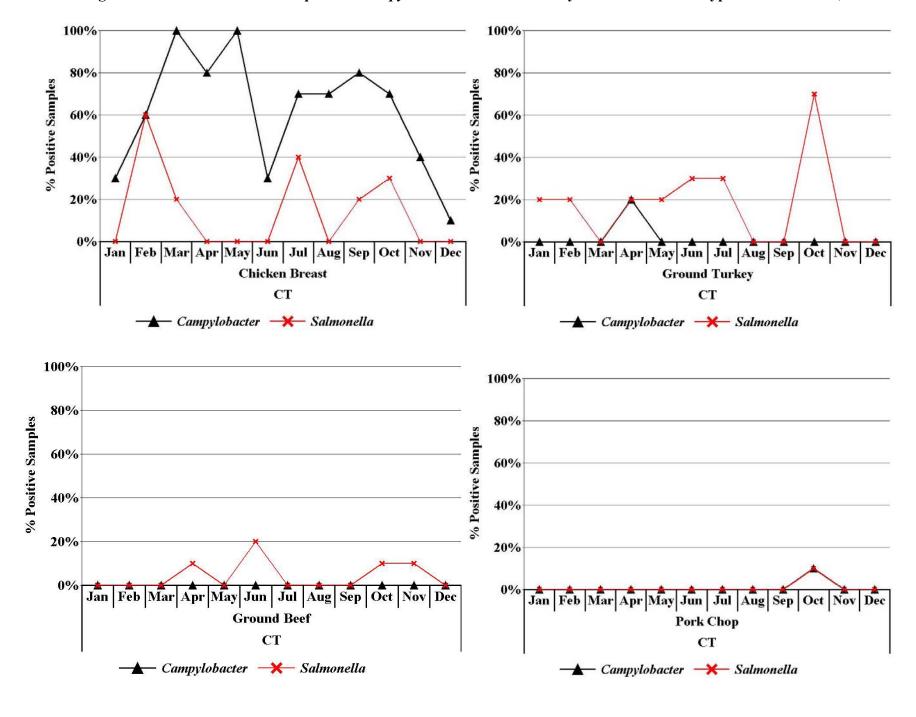


Figure 3d. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Georgia, 2002

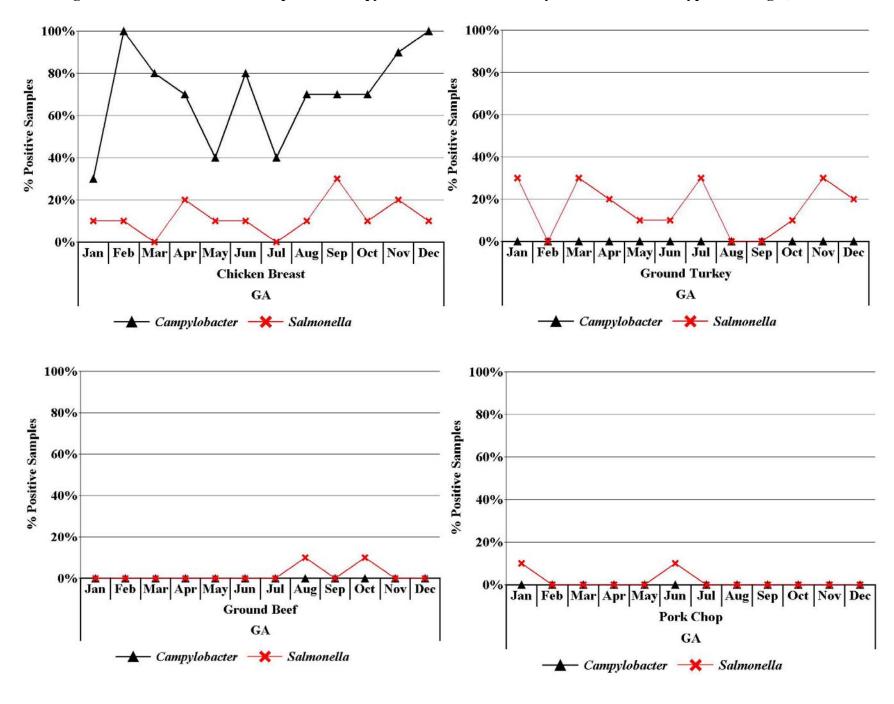


Figure 3e. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Georgia, 2002

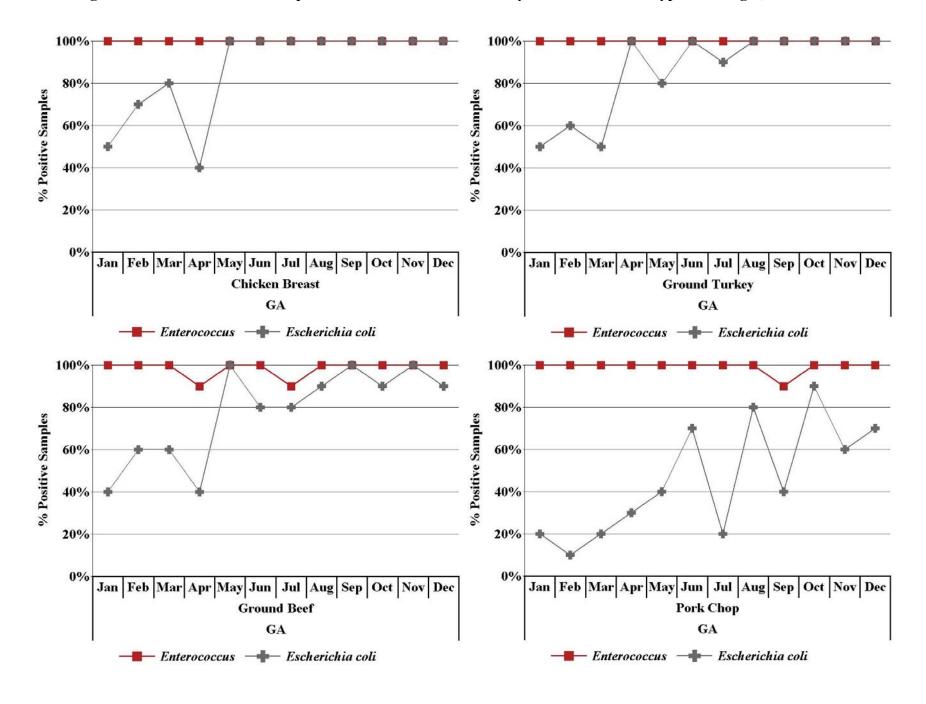


Figure 3f. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Maryland, 2002

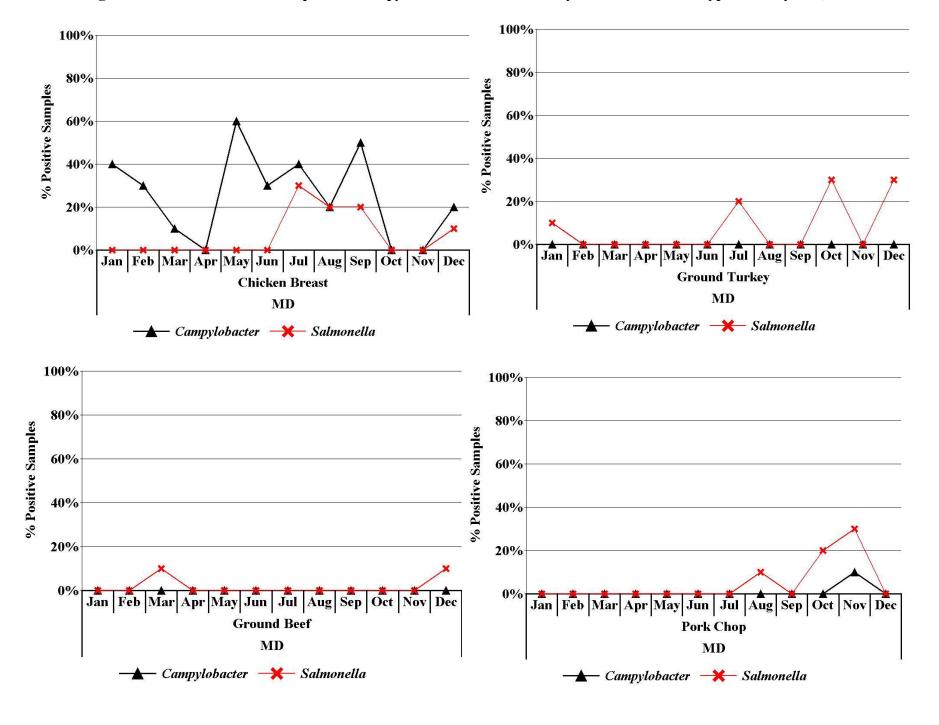


Figure 3g. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Maryland, 2002

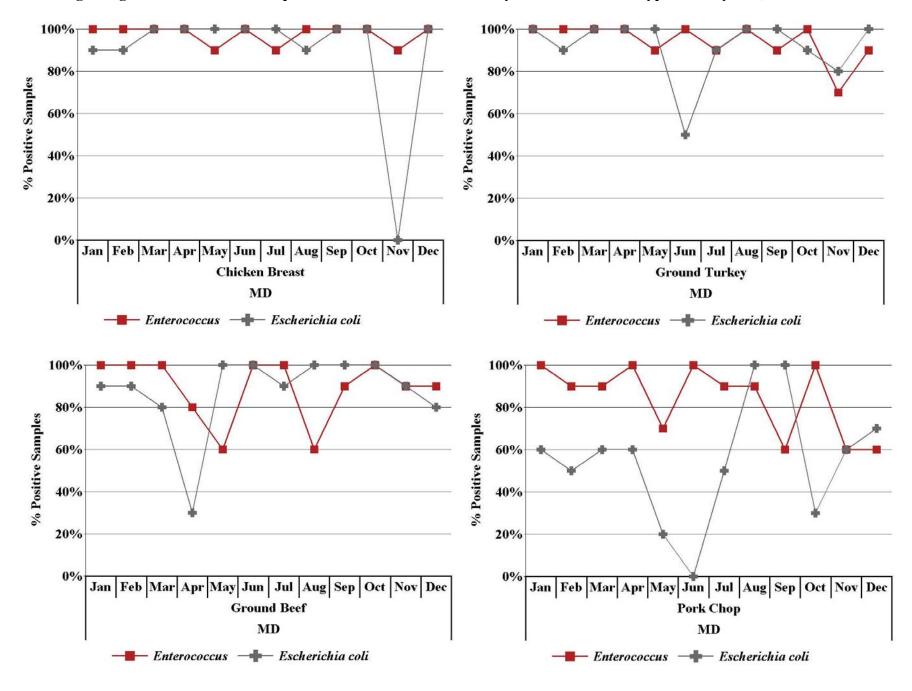


Figure 3h. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Minnesota, 2002

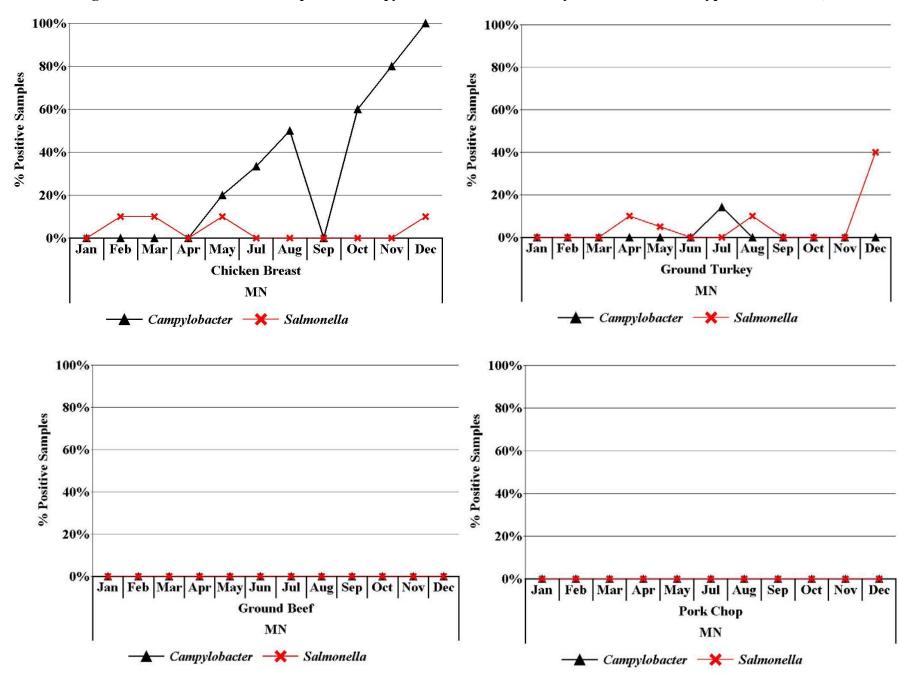


Figure 3i. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Oregon, 2002

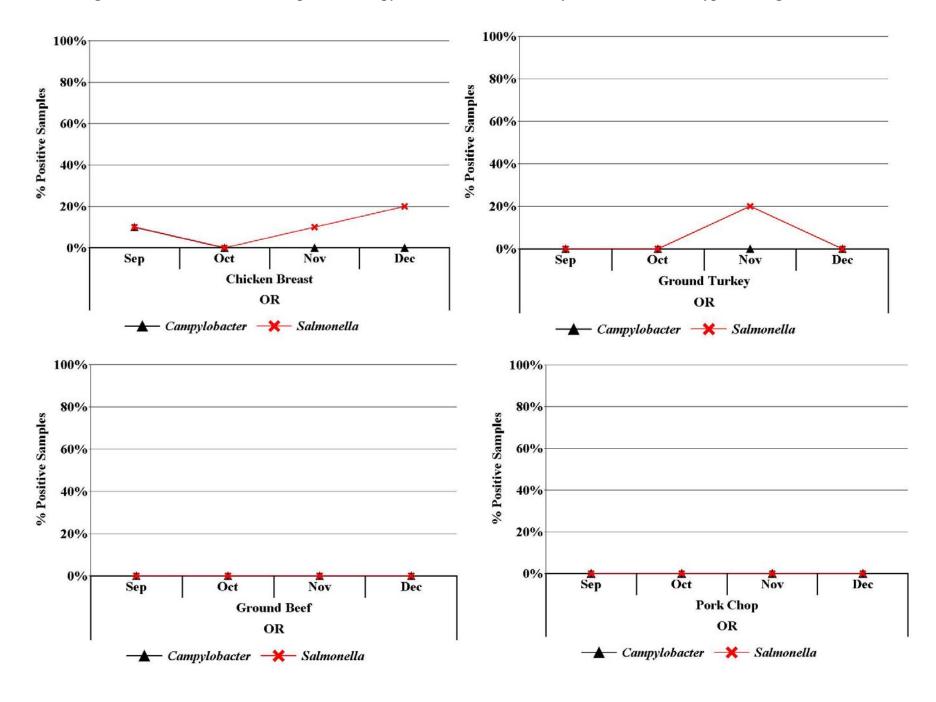


Figure 3j. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Oregon, 2002

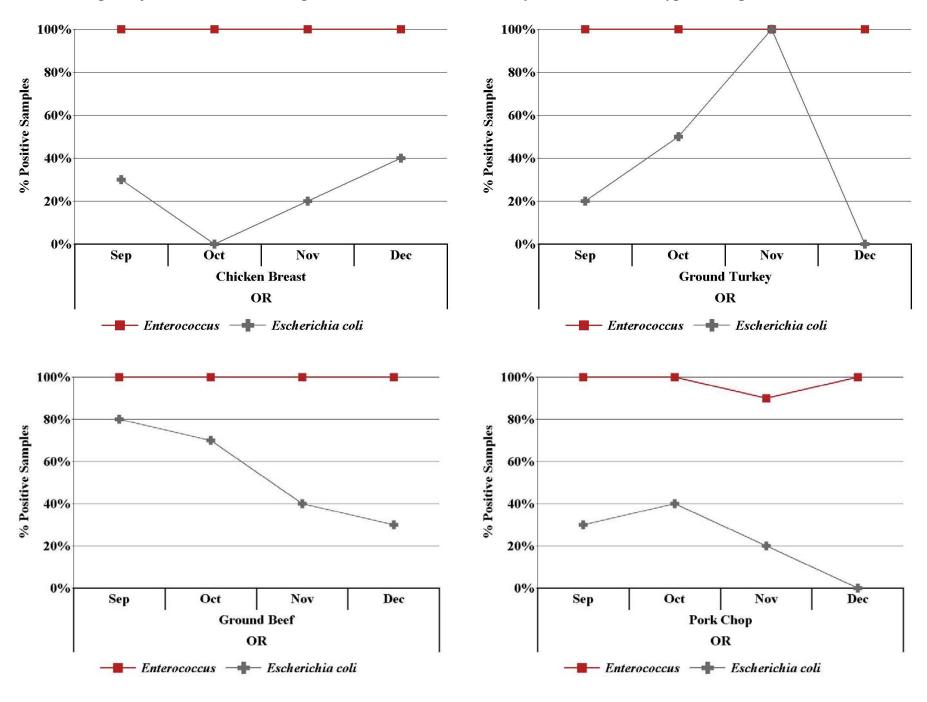


Figure 3k. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Tennessee, 2002

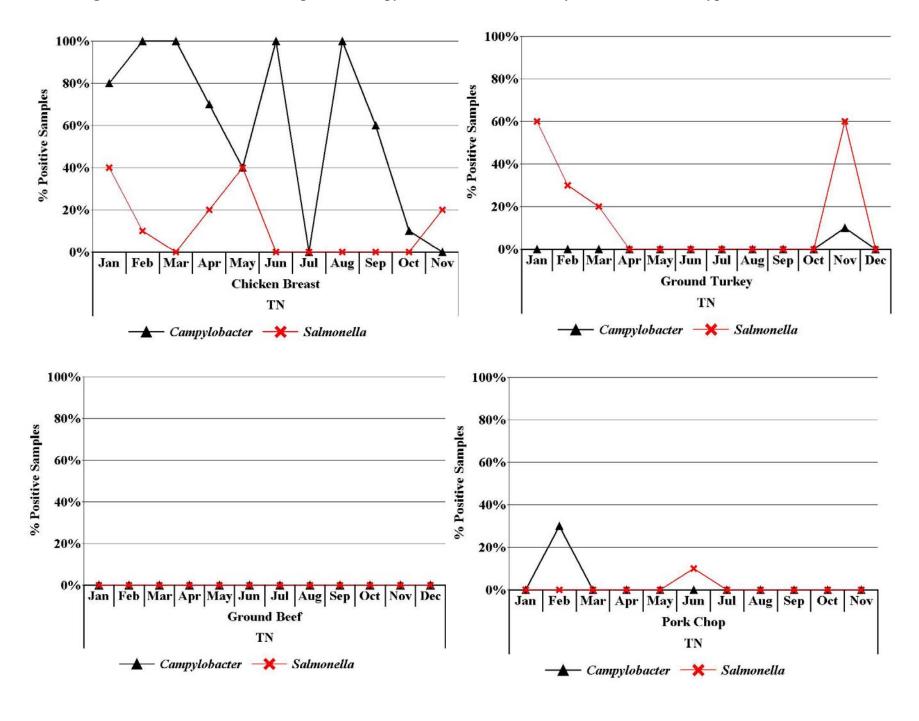


Figure 31. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Tennessee, 2002

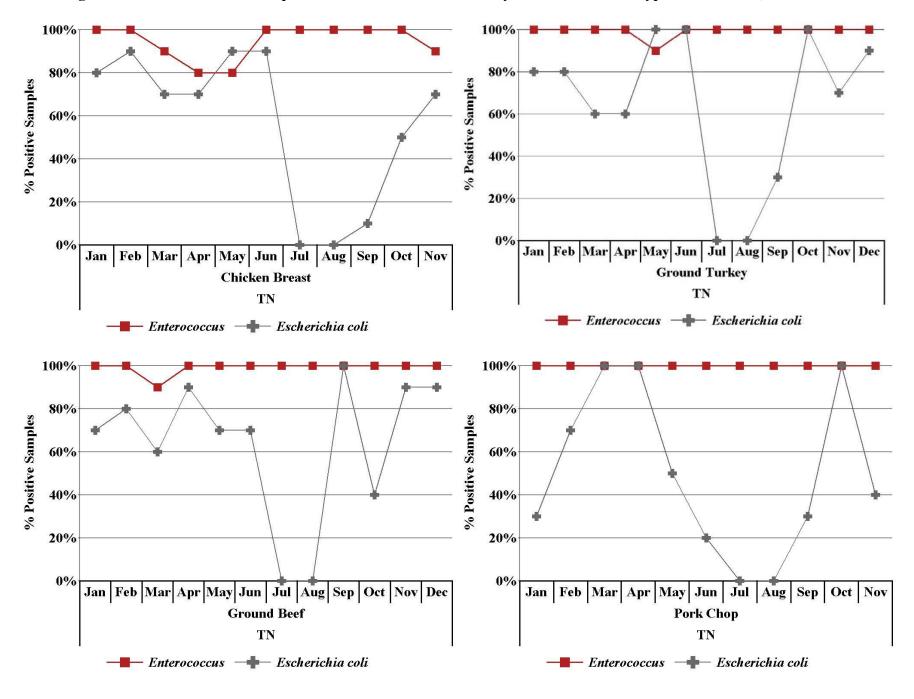


Table 5. Overall Salmonella Serotypes Identified 2002.

	Serotype	n
1.	Heidelberg	35
2.	Saintpaul	17
3.	Typhimurium*	15
4.	Enteritidis	14
5.	Kentucky	13
6.	Hadar	11
7.	Newport	8
8.	Reading	7
9.	SI 4,5,12:i:-	5
10.	Muenster	4
11.	Brandenburg	3
12.	Anatum	2
13.	Bredeney	2
14.	SI 4,12:i:-	4 3 2 2 2 2 2
15.	SI 6,7:k:-	2
16.	Agona	1
17.	Blockley	1
18.	Hvittingfoss	1
19.	Infantis	1
20.	Mbandaka	1
21.	Montevideo	1
22.	Muenchen	1
23.	S IIIa 18:z4:z32:-	1
24.	S rough "o"s: i: 1,2	1
25.	Schwarzengrund	1
26.	Senftenberg	1
27.	SI 4,12:r:-	1
28.	Thompson	1
	Total	153

^{*} Includes Typhimurium var. Copenhagen (n=9).

Table 6. Salmonella by Serotype and Meat Type, 2002.

	C	hicken	G	Fround	(Ground	Ī	Pork
Serotype	Ì	Breast	7	Turkey		Beef	(Chop
	n	%	n	%	n	%	n	%
Heidelberg (n=35)	11	31.4%	21	60.0%			3	8.6%
Saintpaul (n=17)			17	100.0%				
Typhimurium (n=15)	9	60.0%	2	13.3%	2	13.3%	2	13.3%
Enteritidis (n=14)	8	57.1%	5	35.7%	1	7.1%		
Kentucky (n=13)	12	92.3%	1	7.7%				
Hadar (n=11)	4	36.4%	7	63.6%				
Newport (n=8)			3	37.5%	3	37.5%	2	25.0%
Reading (n=7)			6	85.7%			1	14.3%
SI 4,5,12:i:- (n=5)	4	80.0%	1	20.0%				
Muenster (n=4)			2	50.0%			2	50.0%
Brandenburg (n=3)	2	66.7%	1	33.3%				
Anatum (n=2)					2	100.0%		
Bredeney (n=2)			2	100.0%				
SI 4,12:i:- (n=2)	1	50.0%	1	50.0%				
SI 6,7:k:- (n=2)	2	100.0%						
Agona (n=1)			1	100.0%				
Blockley (n=1)	1	100.0%						
Hvittingfoss (n=1)	1	100.0%						
Infantis (n=1)	1	100.0%						
Mbandaka (n=1)	1	100.0%						
Montevideo (n=1)					1	100.0%		
Muenchen (n=1)			1	100.0%				
S IIIa 18:z4:z32:- (n=1)			1	100.0%				
S rough "o"s: i: 1,2 (n=1)	1	100.0%						
Schwarzengrund (n=1)			1	100.0%				
Senftenberg (n=1)			1	100.0%				
SI 4,12:r:- (n=1)	1	100.0%						
Thompson (n=1)	1	100.0%						
Total (N=153)	60	39.2%	74	48.4%	9	5.9%	10	6.5%

Table 7. Salmonella Serotype by Site and Meat Type, 2002.

Site	Sanatura		hicken Breast		Ground Turkey	(Ground Beef		Pork Chop
Site	Serotype	n	%	n	%	n	<u>вееј</u>	n	<i>Cnop</i> %
	Heidelberg (n=8)	2	25.0%	6	75.0%	11	/0	11	/0
	Typhimurium (n=8)	4	50.0%	2	25.0%	2	25.0%		
	Kentucky (n=5)	5	100.0%		23.070	_	23.070		
	Saintpaul (n=4)	3	100.070	4	100.0%				
	Enteritidis (n=3)	2	66.7%	1	33.3%				
	Anatum (n=2)		00.770	1	33.370	2	100.0%		
	Muenster (n=2)			1	50.0%		100.070	1	50.00%
CT	Reading (n=2)			2	100.0%			1	30.0070
CI	SI 4,12:i:- (n=2)	1	50.0%	1	50.0%				
	SI 4,5,12:i:- (n=2)	1	50.0%	1	50.0%				
	SI 6,7:k:- (n=2)	2	100.0%	1	30.070				
	Muenchen (n=1)		100.070	1	100.0%				
	Newport (n=1)			1	100.070	1	100.0%		
	S IIIa 18:z4:z32:- (n=1)			1	100.0%	1	100.070		
	Senftenberg (n=1)			1	100.0%				
	Total (n=44)	17	38.6%	21	47.7%	5	11.4%	1	2.3%
	Hadar (n=7)	1	14.3%	6	85.7%		11.170	_	2.0 / 0
	Heidelberg (n=7)	2	28.6%	5	71.4%				
	Reading (n=4)	_	20.070	3	75.0%			1	25.0%
	Saintpaul (n=4)			4	100.0%			•	25.070
	SI 4,5,12:i:- (n=3)	3	100.0%		100.070				
	Brandenburg (n=2)	2	100.0%						
	Hvittingfoss (n=1)	1	100.0%						
	Infantis (n=1)	1	100.0%						
GA	Kentucky (n=1)	1	100.0%						
	Mbandaka (n=1)	1	100.0%						
	Montevideo (n=1)					1	100.0%		
	Newport (n=1)					1	100.0%		
	Schwarzengrund (n=1)			1	100.0%				
	SI 4,12:r:- (n=1)	1	100.0%						
	Thompson (n=1)	1	100.0%						
	Typhimurium (n=1)							1	100.0%
	Total (n=37)	14	37.8%	19	51.4%	2	5.4%	2	5.4%
	Enteritidis (n=7)	2	28.6%	4	57.1%	1	14.3%		
	Heidelberg (n=5)			2	40.0%			3	60.0%
	Newport (n=4)			1	25.0%	1	25.0%	2	50.0%
	Typhimurium (n=4)	3	75.0%					1	25.0%
MD	Brandenburg (n=1)			1	100.0%				
	Hadar (n=1)	1	100.0%						
	Kentucky (n=1)	1	100.0%						
	Muenster (n=1)			1	100.0%				
	S rough "o"s: i: 1,2 (n=1)	1	100.0%						
	Total (n=25)	8	32.0%	9	36.0%	2	8.0%	6	24.0%

Table 7 (cont'd). Salmonella Serotype by Site and Meat Type, 2002.

Site	Serotype	_	hicken Breast	_	Fround Furkey	_	round Beef		Pork Chop
		n	%	n	%	n	%	n	%
	Heidelberg (n=5)	1	20.0%	4	80.0%				
	Kentucky (n=2)	1	50.0%	1	50.0%				
MAN	Blockley (n=1)	1	100.0%						
MN	Hadar (n=1)			1	100.0%				
	Reading (n=1)			1	100.0%				
	Typhimurium (n=1)	1	100.0%						
	Total (n=11)	4	36.4%	7	63.6%	0	0.0%	0	0.0%
	Hadar (n=2)	2	100.0%						
OR	Heidelberg (n=2)	2	100.0%						
	Saintpaul (n=2)			2	100.0%				
	Total (n=6)	4	66.7%	2	53.3%	0	0.0%	0	0.0%
	Heidelberg (n=8)	4	50.0%	4	50.0%				
	Saintpaul (n=7)			7	100.0%				
	Enteritidis (n=4)	4	100.0%						
	Kentucky (n=4)	4	100.0%						
TN	Bredeney (n=2)			2	100.0%				
	Newport (n=2)			2	100.0%				
	Agona (n=1)			1	100.0%				
	Muenster (n=1)							1	100.0%
	Typhimurium (n=1)	1	100.0%						
	Total (n=30)	13	43.3%	16	53.3%	0	0.0%	1	3.3%

Table 8. Salmonella Isolates by Month for All Sites, 2002.

Month	n	%
January	18	11.8%
February	14	9.2%
March	8	5.2%
April	10	6.5%
May	10	6.5%
June	9	5.9%
July	15	9.8%
August	6	3.9%
September	8	5.2%
October	20	13.1%
November	20	13.1%
December	15	9.8%
Total	153	100.0%

Table 9. Salmonella Serotypes by Meat Type and Month for All Sites, 2002.

Meat	Serotype*	Jan.			Feb.		Mar.		Apr.		May		Jun.		Jul.		Aug.		Sept.		Oct.		Nov.		Dec.
Type	Serviype	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
	Kentucky (n=12)			5	41.7%			1	8.3%			1	8.33%					2	16.7%			2	16.7%	1	8.3%
	Heidelberg (n=11)					1	9.1%	1	9.1%	5	45.5%							2	18.2%	1	9.1%			1	9.1%
	Typhimurium (n=9)							1	11.1%	1	11.1%			6	66.7%									1	11.1%
	Enteritidis (n=8)	4	50.0%	1	12.5%	1	12.5%									2	25.0%								
	Hadar (n=4)	1	25.0%															1	25.0%	1	25.0%	1	25.0%		
	SI 4,5,12:i:- (n=4)			1	25.0%													2	50.0%					1	25.0%
	Brandenburg (n=2)			1	50.0%																	1	50.0%		
Chicken	SI 6,7:k:- (n=2)																			2	100.0%				
Breast	Blockley (n=1)			1	100.0%																				
Dicust	Hvittingfoss (n=1)							1	100.0%																
	Infantis (n=1)																							1	100.0%
	Mbandaka (n=1)																					1	100.0%		
	S rough "o"s:i: 1,2													1	100.0%										
	(n=1)						100.00/							1	100.070										
	SI 4,12:i:- (n=1)					I	100.0%																		
	SI 4,12:r:- (n=1)																	1	100.0%						
	Thompson (n=1)											ļ				1	100.0%								
	Total (n=60)	5	8.3%	9	15.0%	3	5.0%	4	6.7%	6	10.0%	1	1.7%	7	11.7%	3	5.0%	8	13.3%	4	6.7%	5	8.3%	5	8.3%

Meat Type	Serotype*		Jan.		Feb.		Mar.		Apr.		May		Jun.		Jul.		Aug.		Sept.		Oct.		Nov.		Dec.	
		n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	
	Heidelberg (n=21)	5	23.8%			1	4.8%					1	4.8%	4	19.1%					4	19.1%	2	9.5%	4	19.1%	
	Saintpaul (n=17)	2	11.8%	3	17.7%			1	5.9%					1	5.9%					3	17.7%	6	35.3%	1	5.9%	
	Hadar (n=7)					1	14.3%	3	42.9%					2	28.6%									1	14.3%	
	Reading (n=6)					1	16.7%			3	50.0%	1	16.7%			1	16.7%									
	Enteritidis (n=5)			1	20.0%															1	20.0%			3	60.0%	
Ground	Newport (n=3)																			1	33.3%	2	66.7%			
	Bredeney (n=2)	2	100.0%																							
	Muenster (n=2)	2	100.0%																							
	Typhimurium (n=2)																			2	100.0%					
	Agona (n=1)					1	100.0%																			
Turkey	Brandenburg (n=1)													1	100.0%											
	Kentucky (n=1)									1	100.0%															
	Muenchen (n=1)			1	100.0%																					
	S IIIa 18:z4:z32:- (n=1)							1	100.0%																	
	Schwarzengrund (n=1)																					1	100.0%			
	Senftenberg (n=1)	1	100.0%																							
	SI 4,12:i:- (n=1)											1	100.0%													
	SI 4,5,12:i:- (n=1)											1	100.0%													
	Total (n=74)	12	16.2%	5	6.8%	4	5.4%	5	6.8%	4	5.4%	4	5.4%	8	10.8%	1	1.4%	0	0.0%	11	14.9%	11	14.9%	9	12.2%	

Meat Type	Serotype*		Jan.		Feb.		Mar.		Apr.		May		Jun.		Jul.		Aug.		Sept.		Oct.		Nov.		Dec.	
			%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	
Ground Beef	Newport (n=3)															1	33.3%					1	33.3%	1	33.3%	
	Anatum (n=2)											2	100.0%													
	Typhimurium (n=2)							1	50.0%											1	50.0%					
	Enteritidis (n=1)					1	100.0%																			
	Montevideo (n=1)																			1	100.0%					
	Total (n=9)	0	0.0%	0	0.0%	1	11.1%	1	11.1%	0	0.0%	2	22.2%	0	0.0%	1	11.1%	0	0.0%	2	22.2%	1	11.1%	1	11.1%	
Pork Chop	Heidelberg (n=3)																					3	100.0%			
	Muenster (n=2)											1	50.0%							1	50.0%					
	Newport (n=2)																			2	100.0%					
	Typhimurium (n=2)	1	50.0%													1	50.0%									
	Reading (n=1)											1	100.0													
	Total (n=10)	1	10.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	2	20.0%	0	0.0%	1	10.0%	0	0.0%	3	30.0%	3	30.0%	0	0.0%	

* Serotypes listed by prevalence within meat type.

Table 10. Antimicrobial Resistance (%R) among Salmonella Isolates (N=153), 2002.

Antimicrobial Agent	n	%R
Tetracycline	70	45.8%
Streptomycin	54	35.3%
Sulfamethoxazole	34	22.2%
Ampicillin	28	18.3%
Cephalothin	23	15.0%
Gentamicin	20	13.1%
Amoxicillin/Clavulanic Acid	19	12.4%
Kanamycin	19	12.4%
Cefoxitin	16	10.5%
Ceftiofur	16	10.5%
Chlorampenicol	7	4.6%
Nalidixic Acid	6	3.9%
Trimethoprim/Sulfamethoxazole	3	2.0%
Amikacin	0	0.0%
Ciprofloxacin	0	0.0%
Ceftriaxone	0	0.0%

Figure 4. Antimicrobial Resistance among Salmonella Isolates (N=153), 2002.

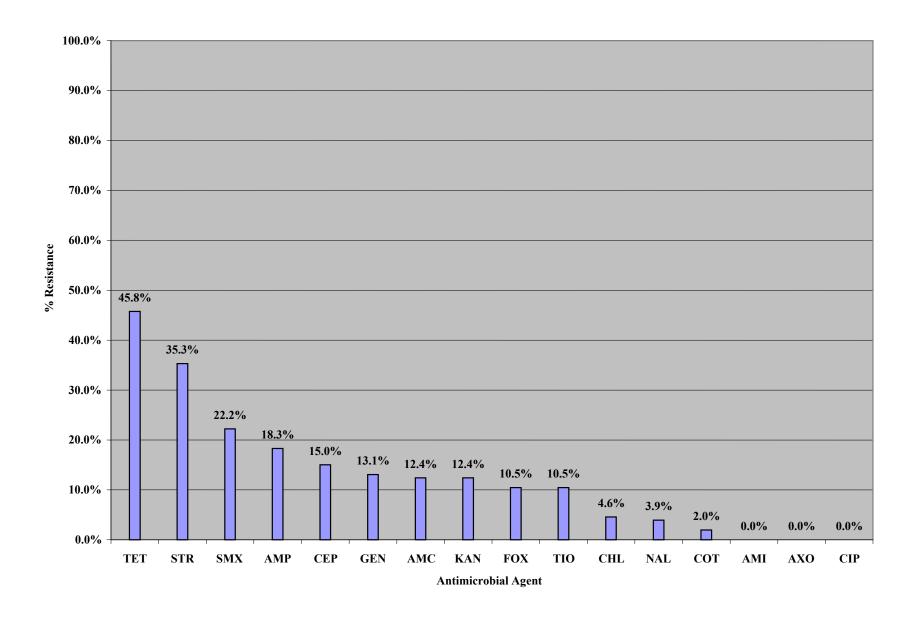


Figure 5: Minimum Inhibitory Concentration of Amikacin for Salmonella (N=153 Isolates)

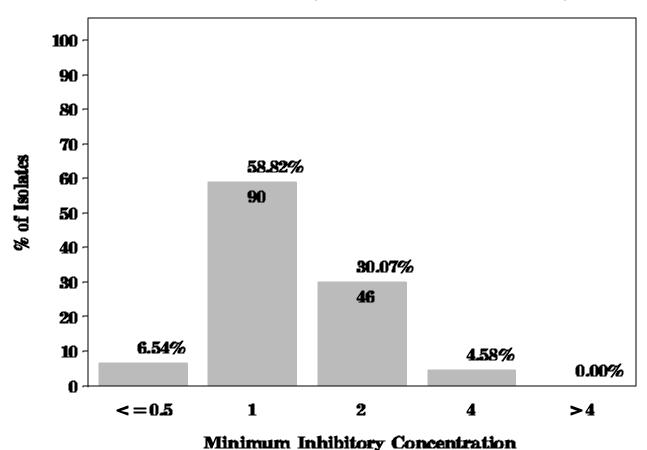


Figure 5: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella (N=153 Isolates)

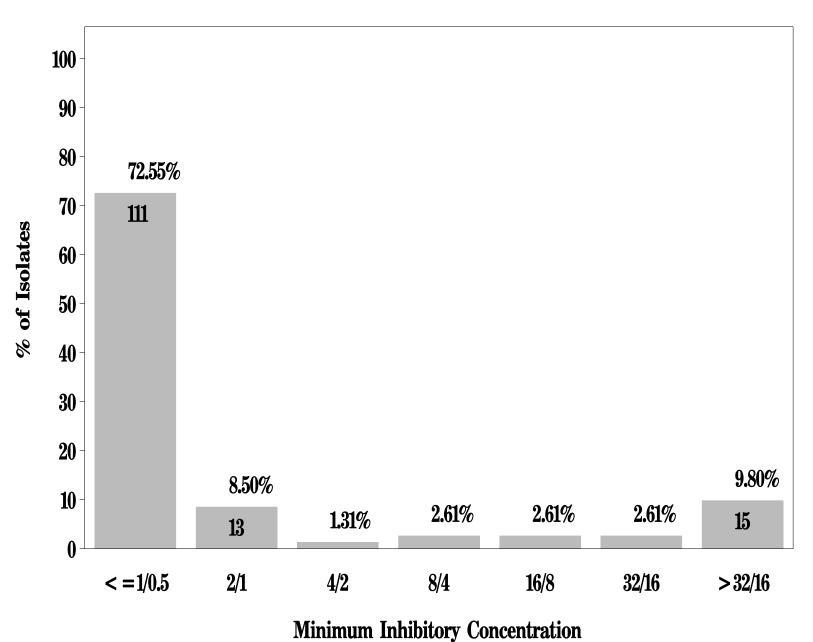


Figure 5: Minimum Inhibitory Concentration of Ampicillin for Salmonella (N=153 Isolates)

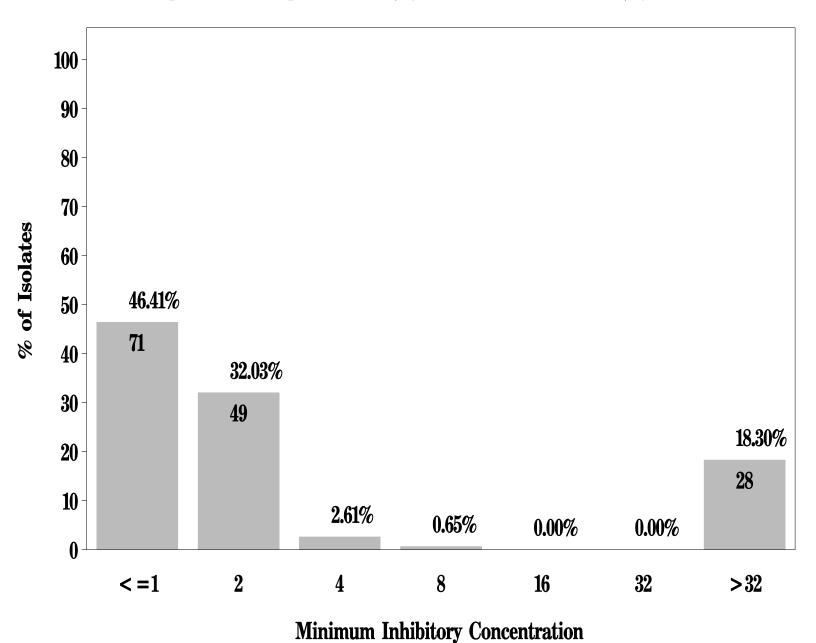


Figure 5: Minimum Inhibitory Concentration of Cefoxitin for Salmonella (N=153 Isolates)

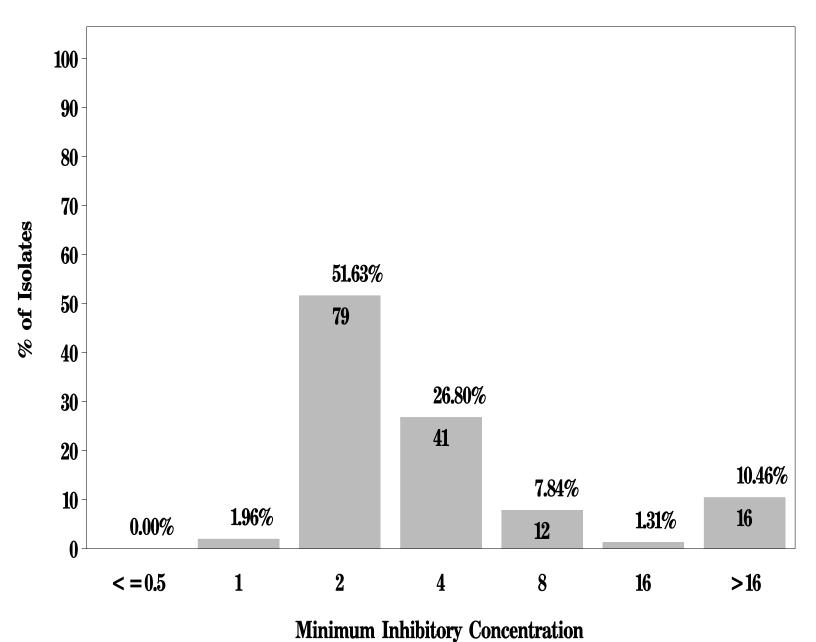
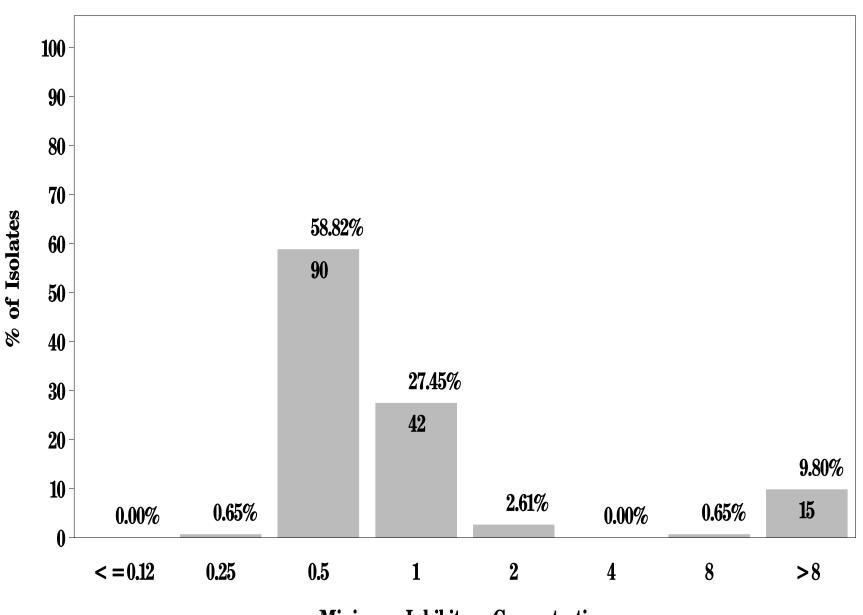
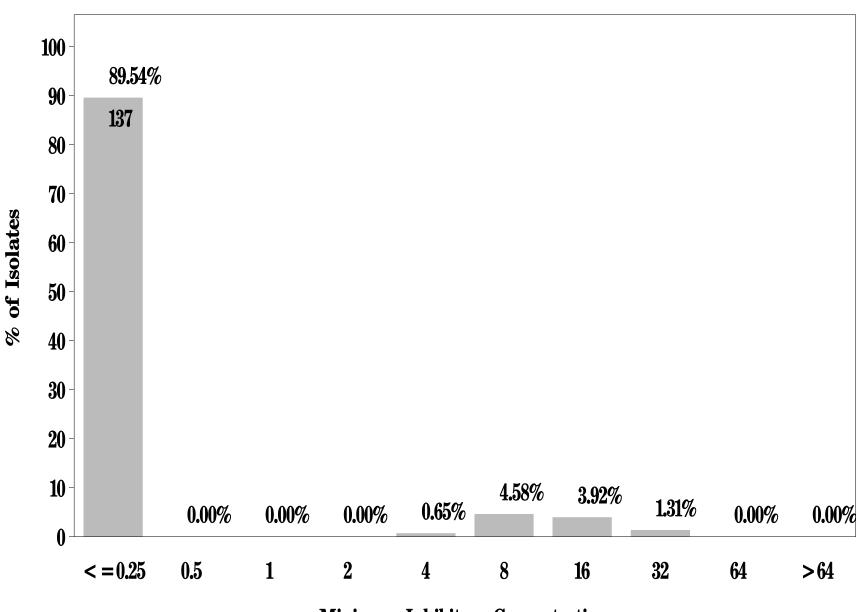




Figure 5: Minimum Inhibitory Concentration of Ceftiofur for Salmonella (N=153 Isolates)

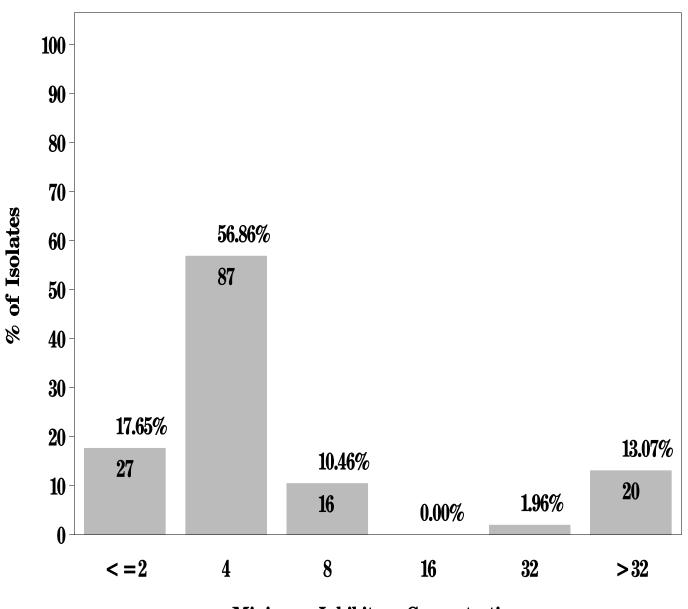

Minimum Inhibitory Concentration

Figure 5: Minimum Inhibitory Concentration of Ceftriaxone for Salmonella (N=153 Isolates)

Minimum Inhibitory Concentration

Figure 5: Minimum Inhibitory Concentration of Cephalothin for *Salmonella* (N=153 Isolates)

Minimum Inhibitory Concentration

Figure 5: Minimum Inhibitory Concentration of Chloramphenicol for Salmonella (N=153 Isolates)

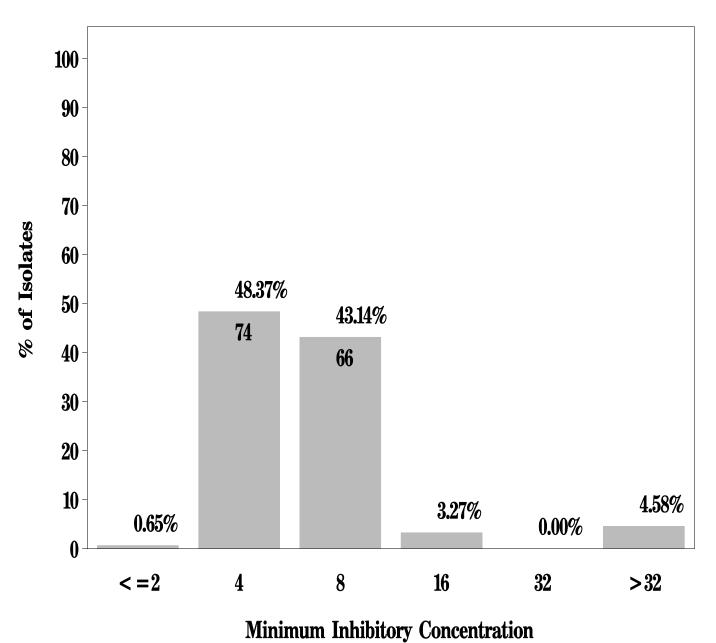


Figure 5: Minimum Inhibitory Concentration of Ciprofloxacin for Salmonella (N=153 Isolates)

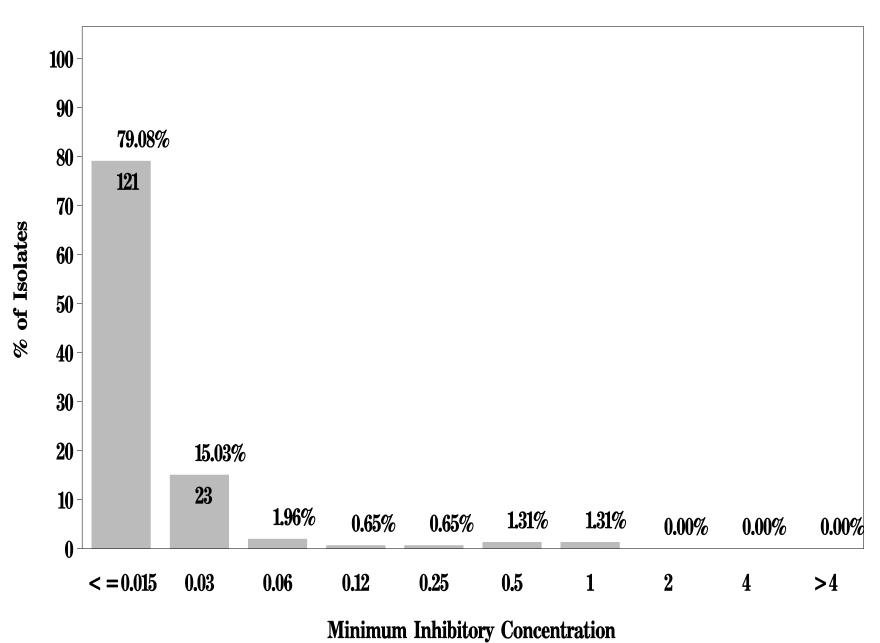
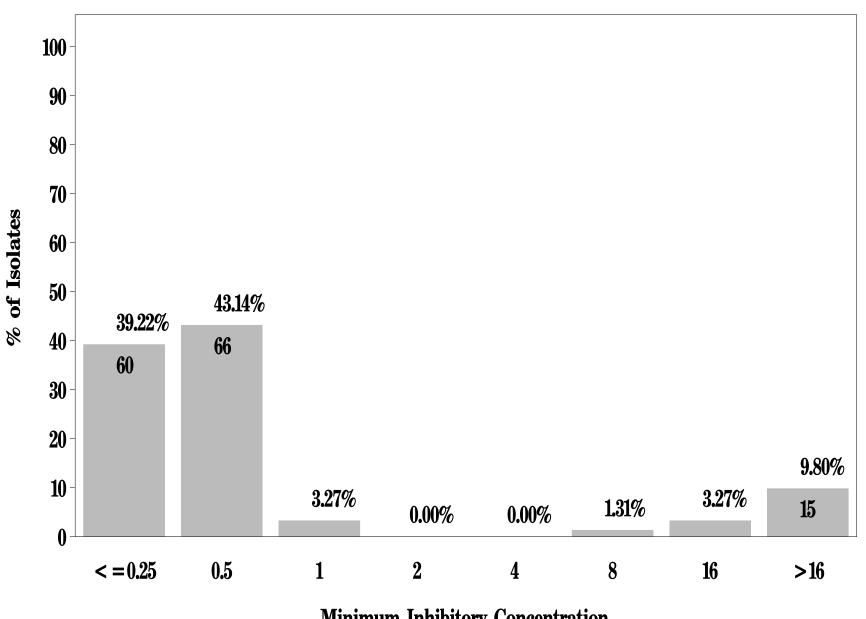



Figure 5: Minimum Inhibitory Concentration of Gentamicin for Salmonella (N=153 Isolates)

Minimum Inhibitory Concentration

Figure 5: Minimum Inhibitory Concentration of Kanamycin for Salmonella (N=153 Isolates)

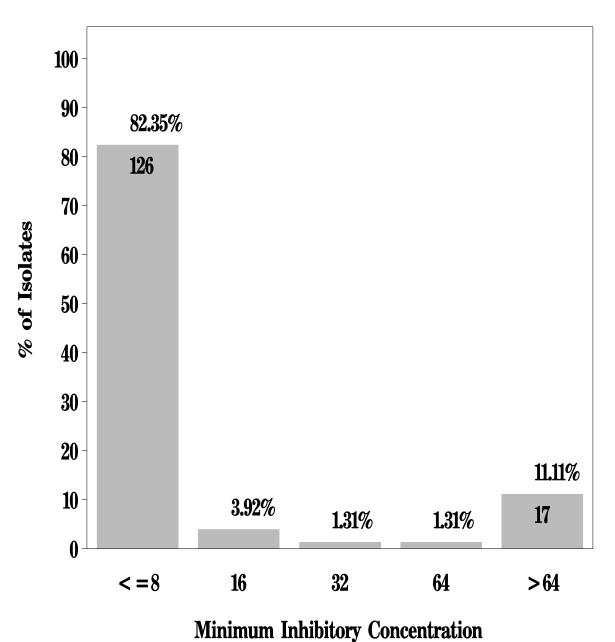
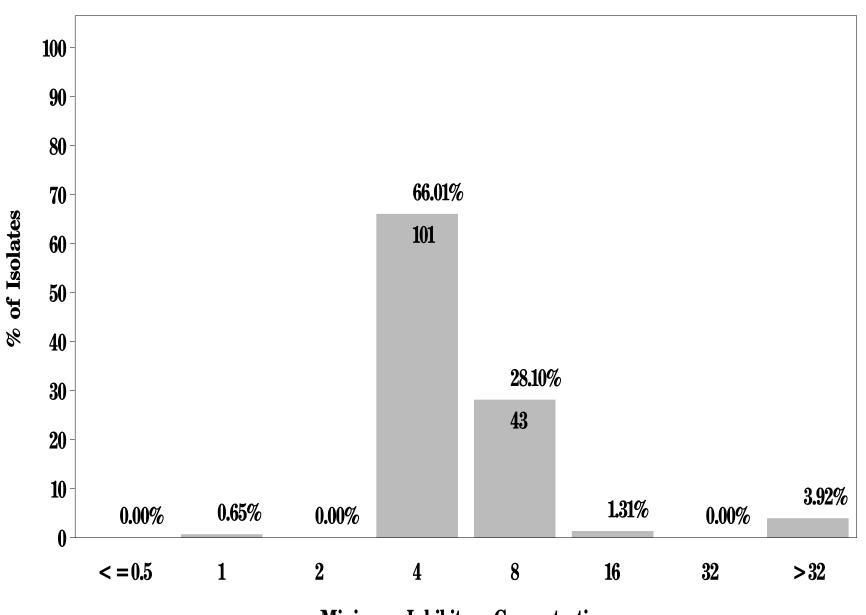
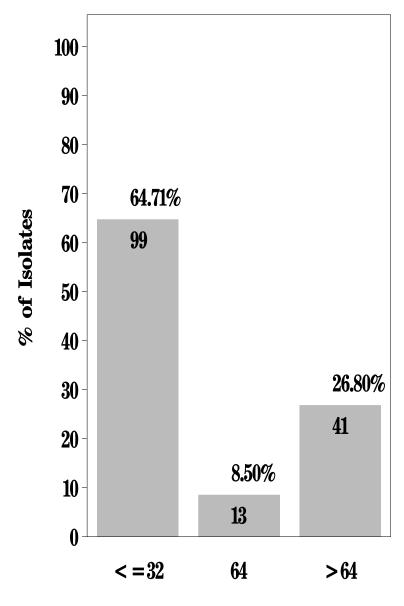




Figure 5: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella (N=153 Isolates)

Minimum Inhibitory Concentration

Figure 5: Minimum Inhibitory Concentration of Streptomycin for Salmonella (N=153 Isolates)

Minimum Inhibitory Concentration

Figure 5: Minimum Inhibitory Concentration of Sulfamethoxazole for Salmonella (N=153 Isolates)

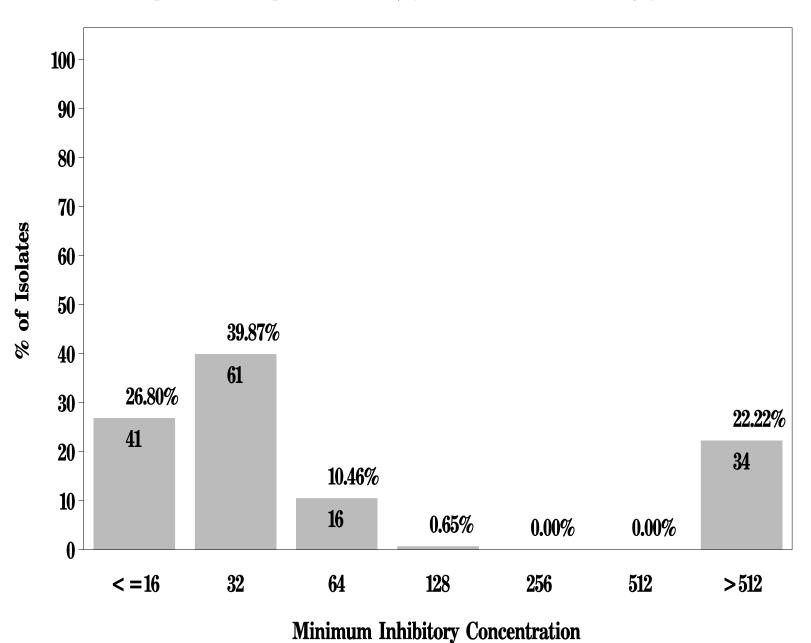


Figure 5: Minimum Inhibitory Concentration of Tetracycline for Salmonella (N=153 Isolates)

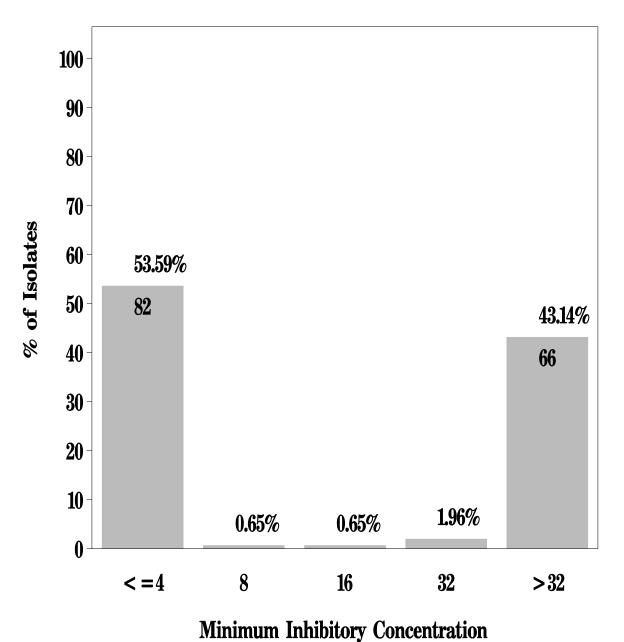


Figure 5: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Salmonella* (N=153 Isolates)

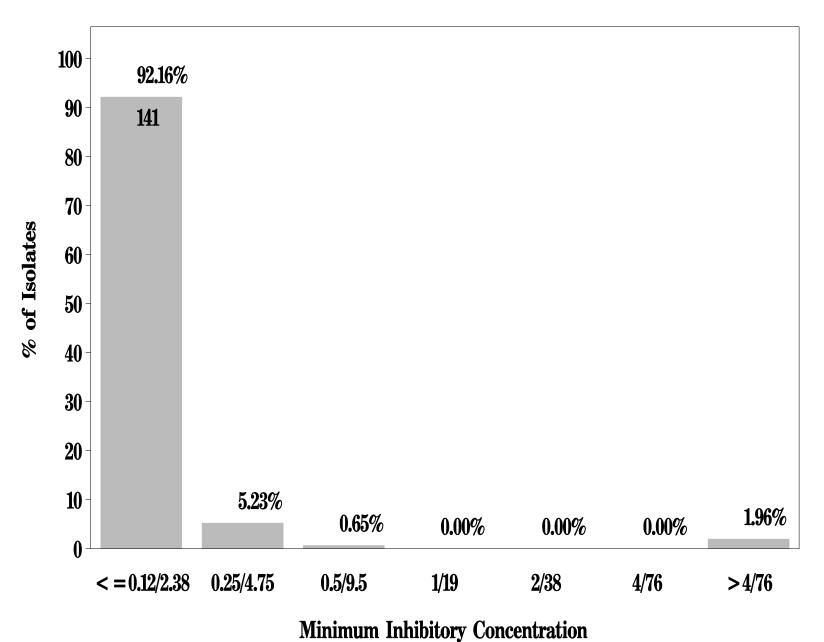


Table 11. Antimicrobial Resistance among Salmonella Isolates by Meat Type,* 2002.

Antimicrobial Agent	Chicken Breast	Ground Turkey	Ground Beef	Pork Chop
Anumicioona Ageni	(n=60)	(n=74)	(n=9)	(n=10)
Tetracycline	33.3%	55.4%	22.2%	70.0%
Streptomycin	28.3%	37.8%	22.2%	70.0%
Sulfamethoxazole	16.7%	20.3%	22.2%	70.0%
Ampicillin	16.7%	16.2%	22.2%	40.0%
Cephalothin	13.3%	14.9%	22.2%	20.0%
Gentamicin	10.0%	14.9%		30.0%
Amoxicillin/Clavulanic Acid	10.0%	12.2%	22.2%	20.0%
Kanamycin	6.7%	18.9%		10.0%
Cefoxitin	10.0%	8.1%	22.2%	20.0%
Ceftiofur	10.0%	8.1%	22.2%	20.0%
Chlorampenicol		1.4%	22.2%	40.0%
Nalidixic Acid		8.1%		
Trimethoprim/Sulfamethoxazole		1.4%		20.0%

^{*} No resistance seen to Amikacin, Ciprofloxacin or Ceftriaxone for these isolates.

Figure 6a. Antimicrobial Resistance Among Salmonella from Chicken Breast (n=60), 2002.

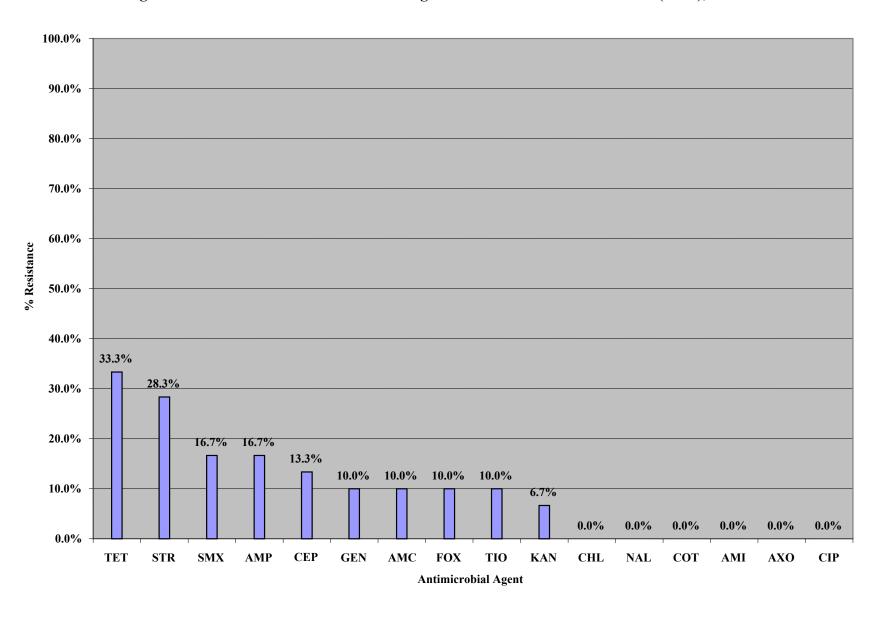


Figure 6b. Antimicrobial Resistance among Salmonella from Ground Turkey (n=74), 2002.

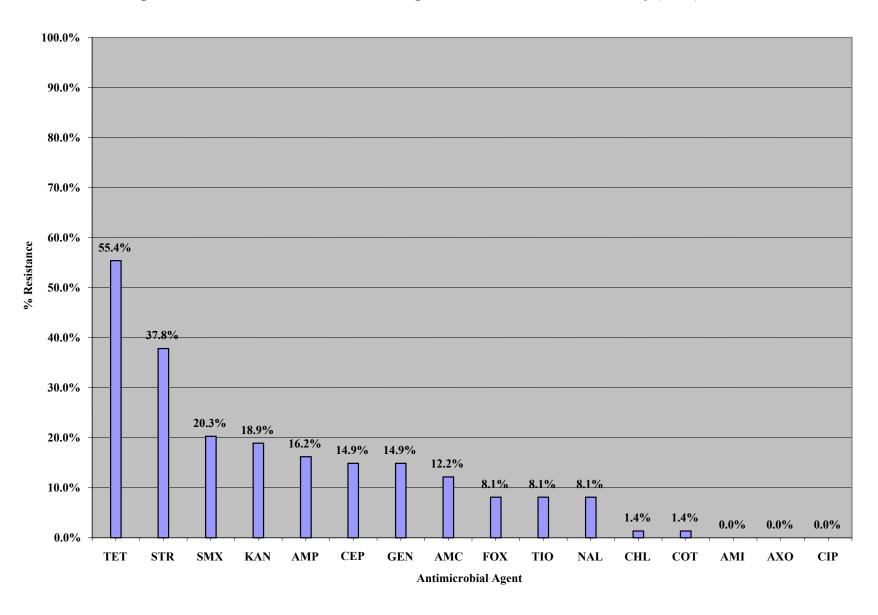


Figure 6c. Antimicrobial Resistance among Salmonella from Ground Beef (n=9), 2002.

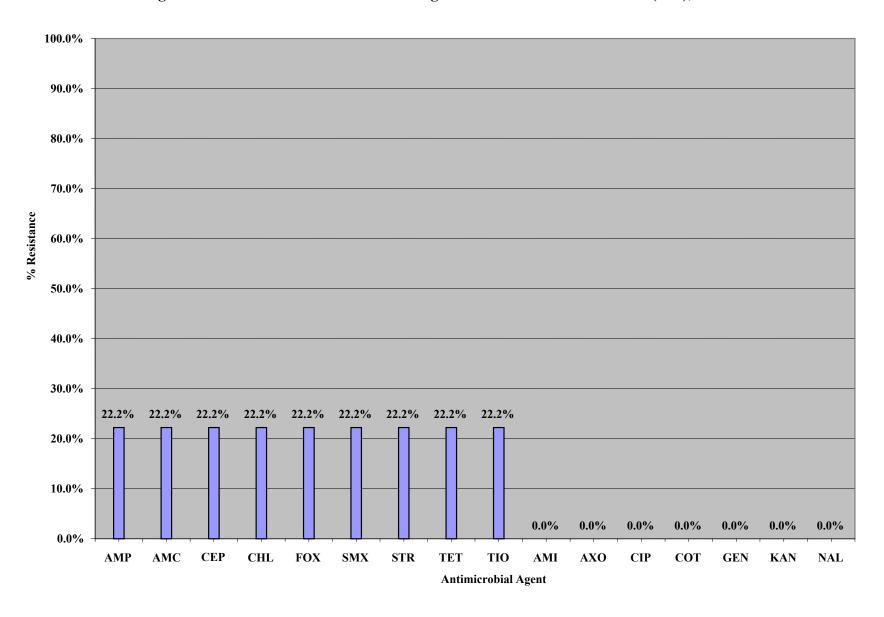


Figure 6d. Antimicrobial Resistance among Salmonella from Pork Chops (n=10), 2002.

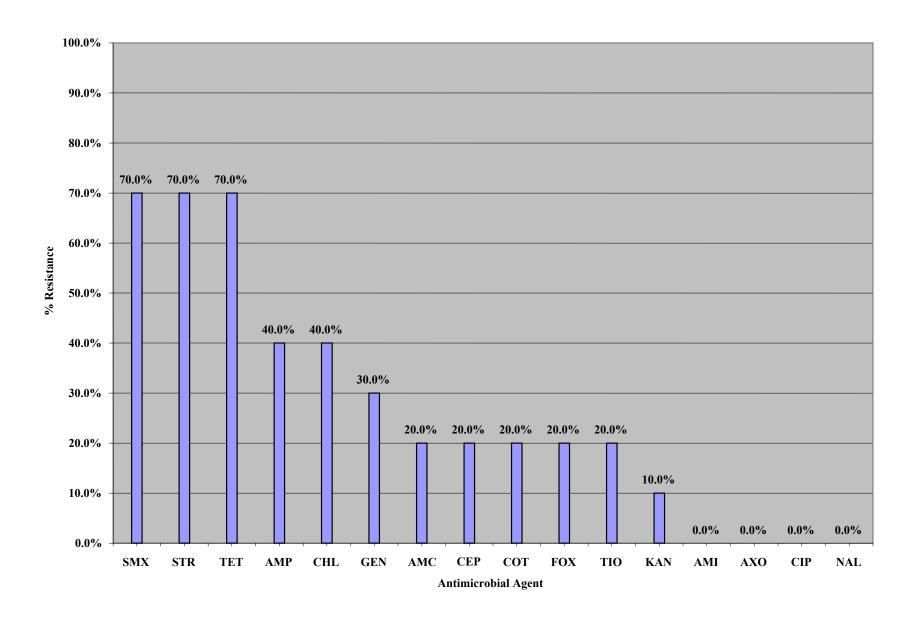


Figure 7: Minimum Inhibitory Concentration of Amikacin for Salmonella in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

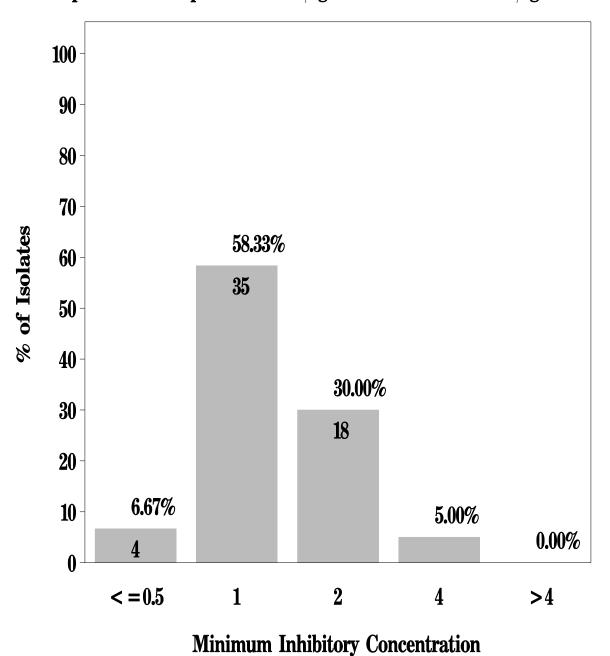


Figure 7: Minimum Inhibitory Concentration of Amikacin for Salmonella in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

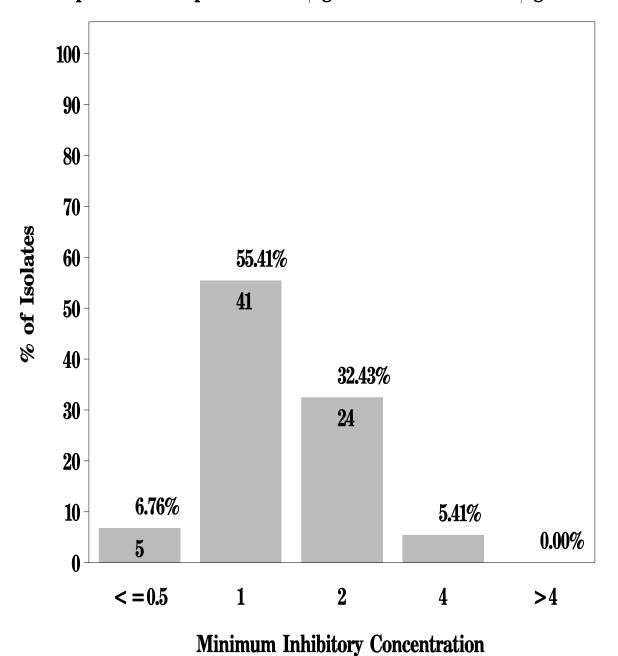


Figure 7: Minimum Inhibitory Concentration of Amikacin for Salmonella in Ground Beef (N=9 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

100 90 80 66.67% **70** % of Isolates 6 **60 50 40 30** 22.22% 20 2 11.11% **10** 0.00% 0.00% 0 < = 0.51 2 4 >4

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Amikacin for Salmonella in Pork Chop (N=10 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

100 90 80% 80 8 **70** % of Isolates **60 50 40 30** 20% 20 2 10 0% 0% 0% 0 < = 0.51 2 >4 4

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible < = 8/4 μ g/mL Resistant > = 32/16 μ g/mL

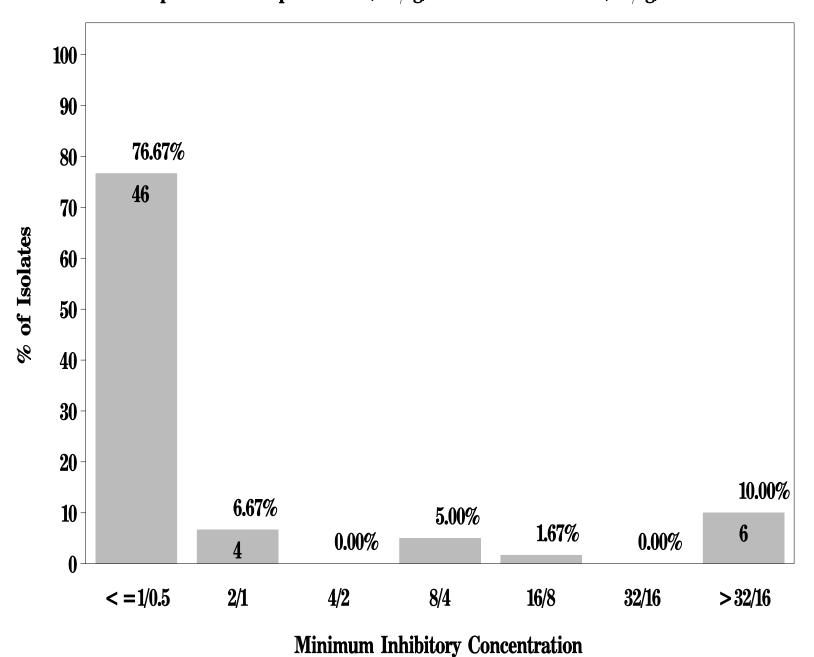


Figure 7: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible <= 8/4 μ g/mL Resistant >= 32/16 μ g/mL

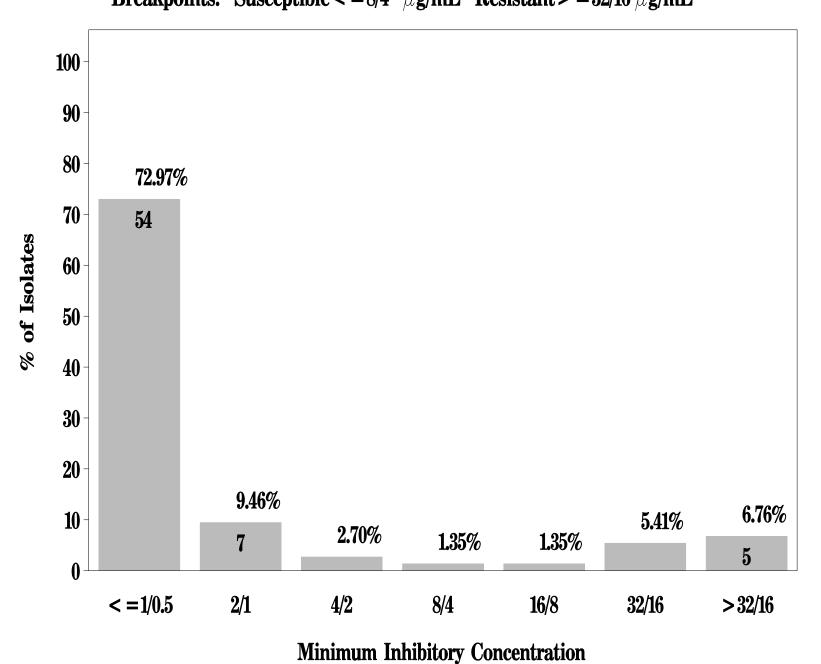


Figure 7: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella in Ground Beef (N=9 Isolates)

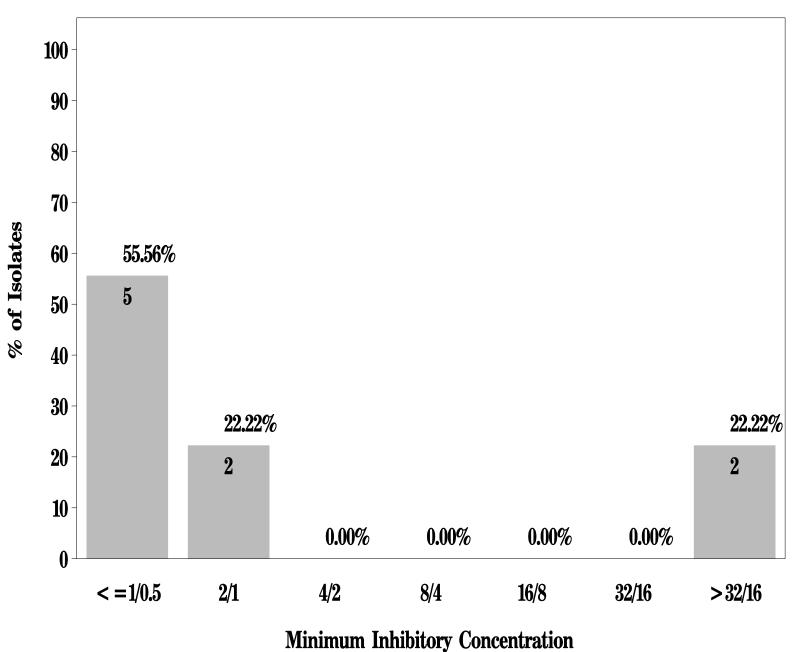


Figure 7: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella in Pork Chop (N=10 Isolates)

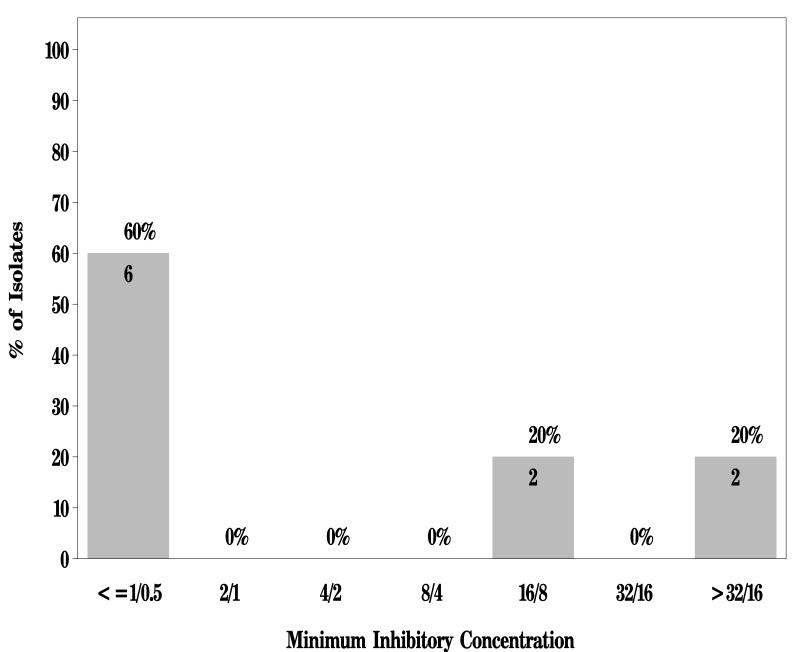
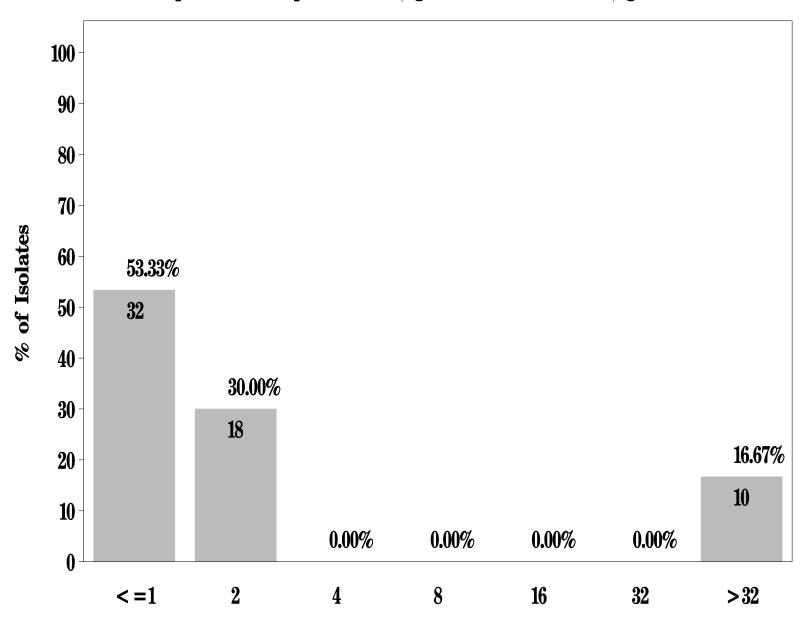



Figure 7: Minimum Inhibitory Concentration of Ampicillin for *Salmonella* in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible < = $8 \mu g/mL$ Resistant > = $32 \mu g/mL$

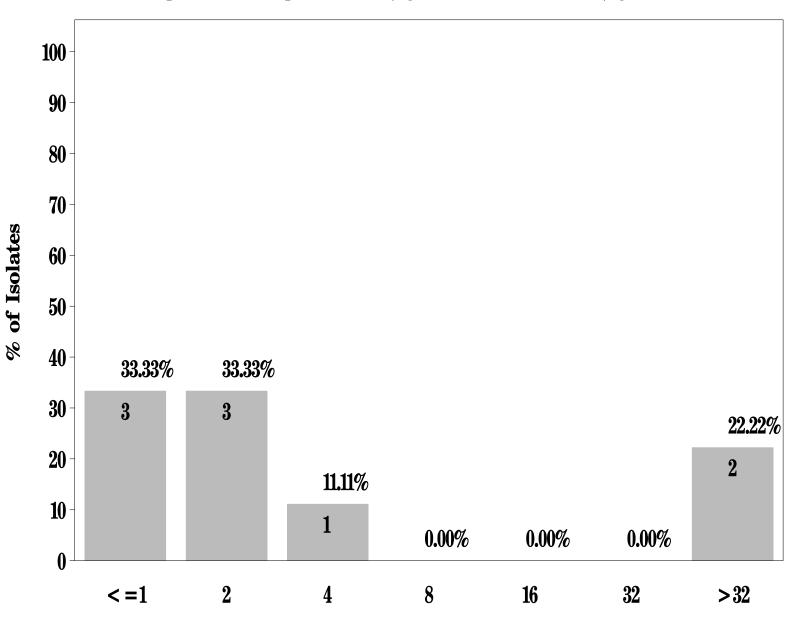

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Ampicillin for *Salmonella* in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 32 μ g/mL

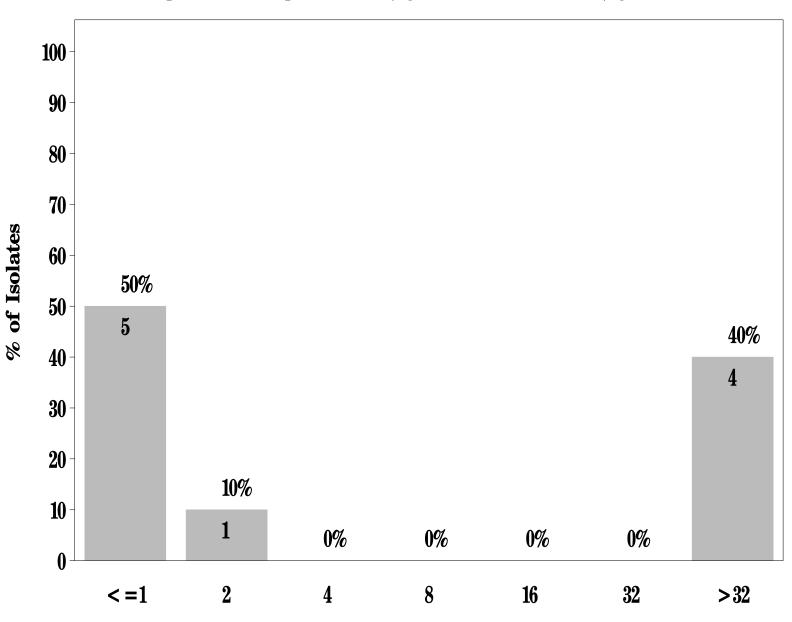
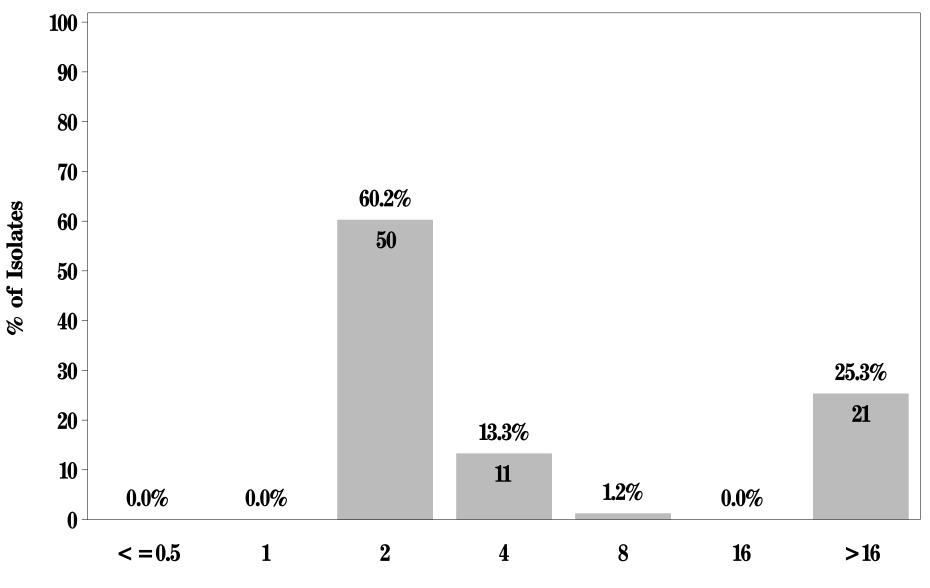


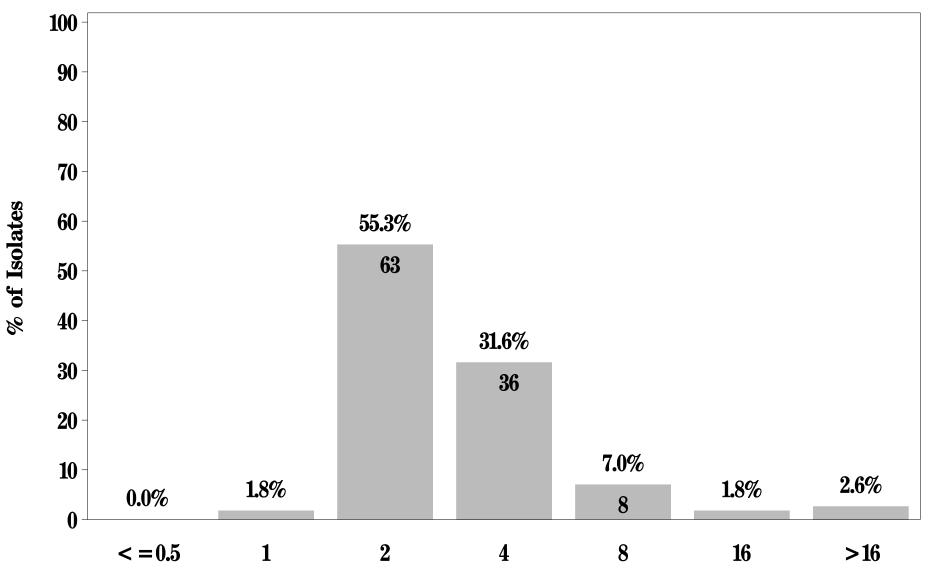
Figure 7: Minimum Inhibitory Concentration of Ampicillin for Salmonella in Ground Beef (N=9 Isolates)

Minimum Inhibitory Concentration


Figure 7: Minimum Inhibitory Concentration of Ampicillin for Salmonella in Pork Chop (N=10 Isolates)

Minimum Inhibitory Concentration

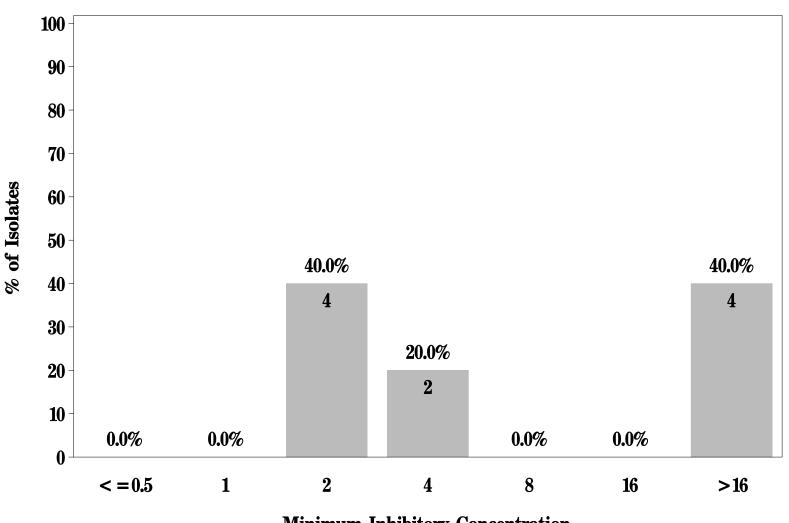
Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for *Salmonella* in Chicken Breast (N=83 Isolates)


Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for *Salmonella* in Ground Turkey (N=114 Isolates)

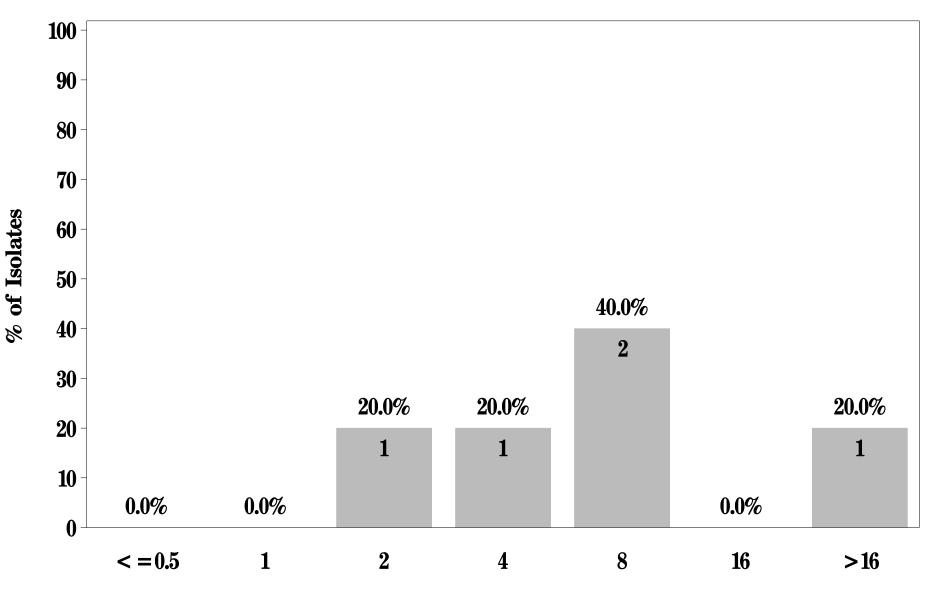
Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL



Minimum Inhibitory Concentration

NARMS

Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for Salmonella in Ground Beef (N=10 Isolates)


Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for Salmonella in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

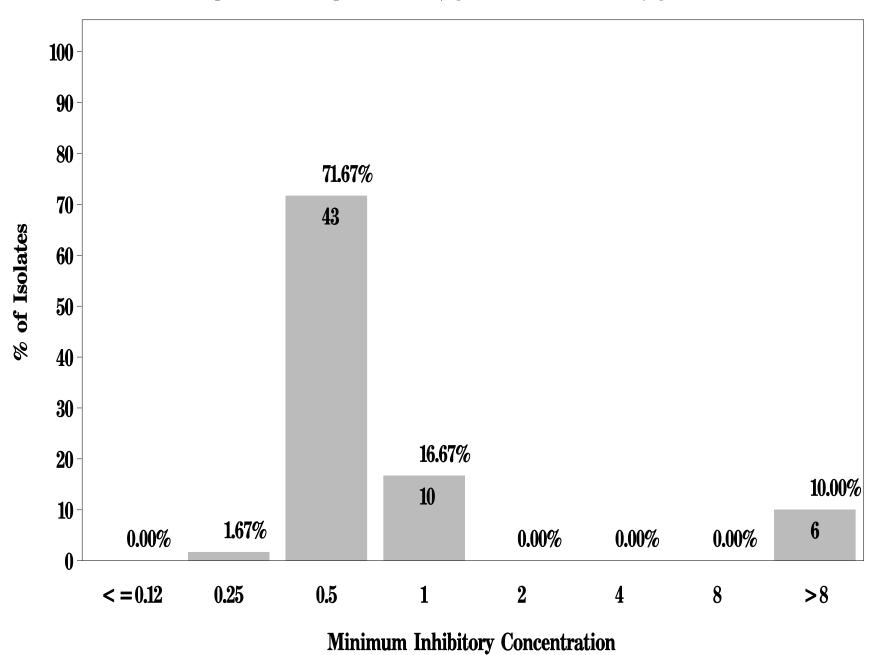
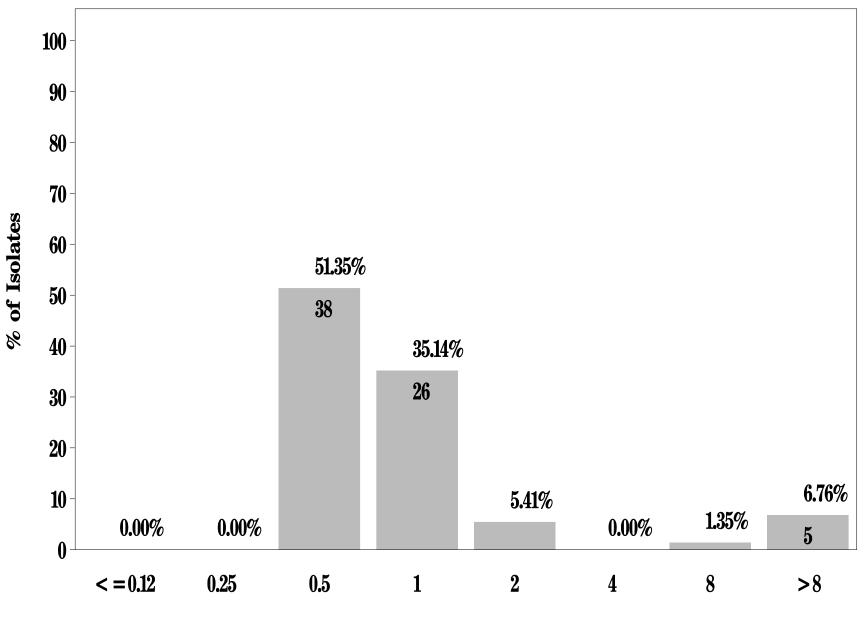
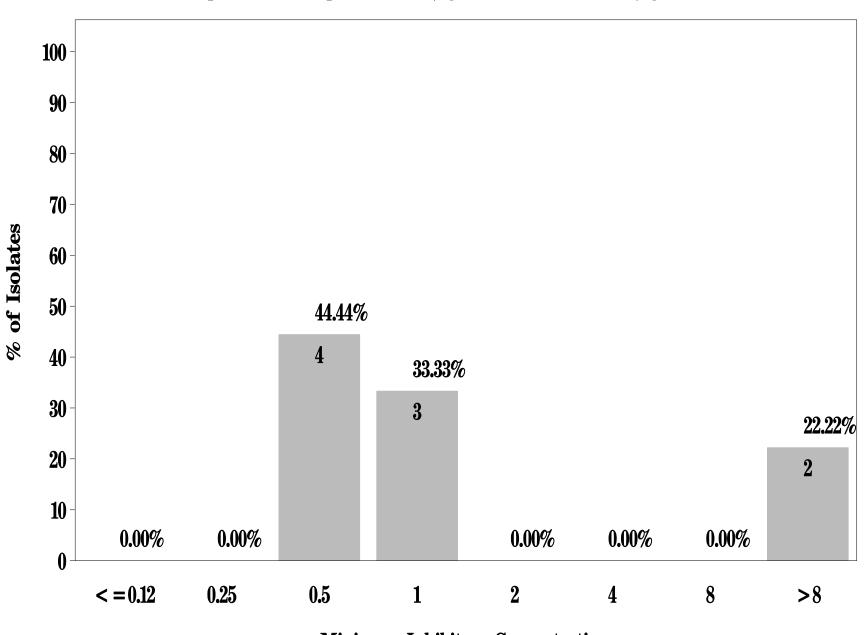
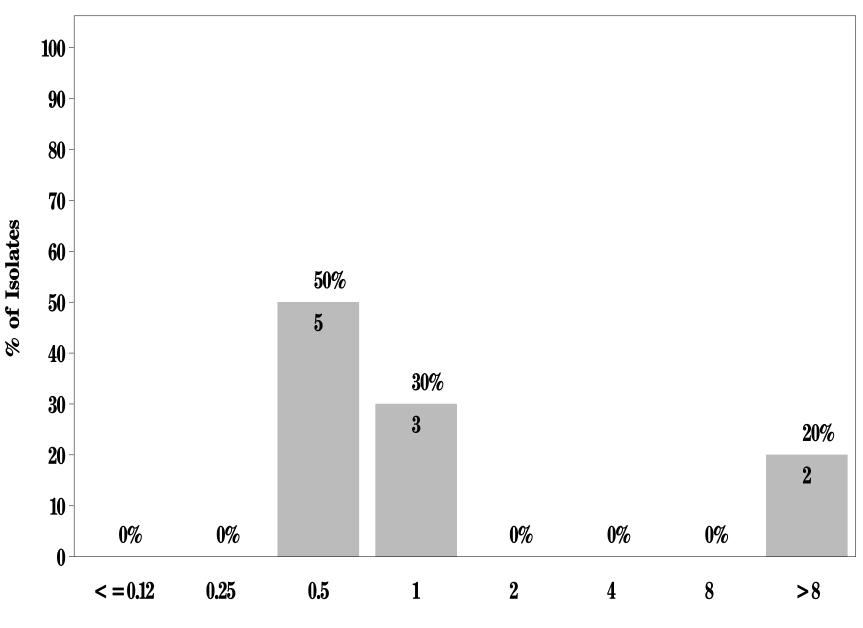



Figure 7: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Ground Turkey (N=74 Isolates)


Breakpoints: Susceptible <= $2 \mu g/mL$ Resistant >= $8 \mu g/mL$

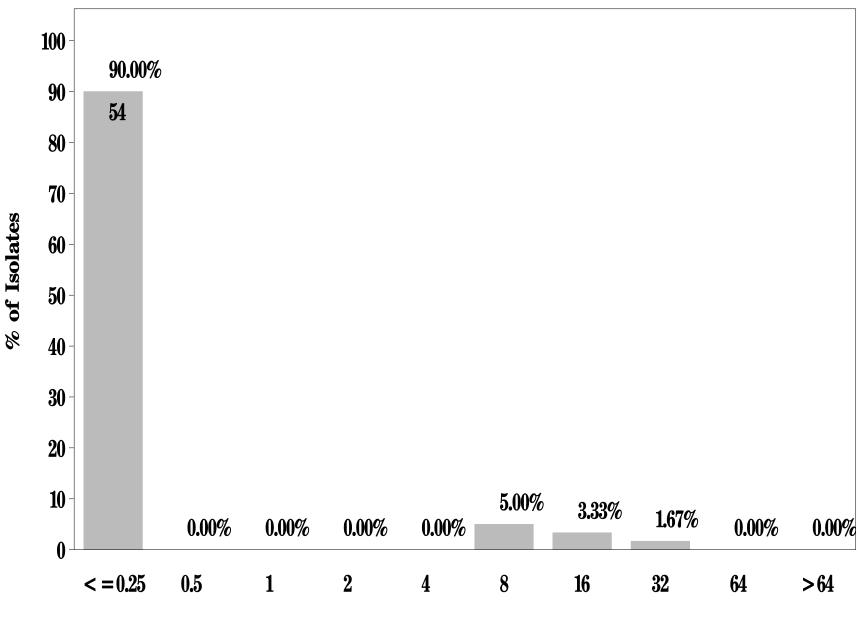
Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Ground Beef (N=9 Isolates)


Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Pork Chop (N=10 Isolates)


Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

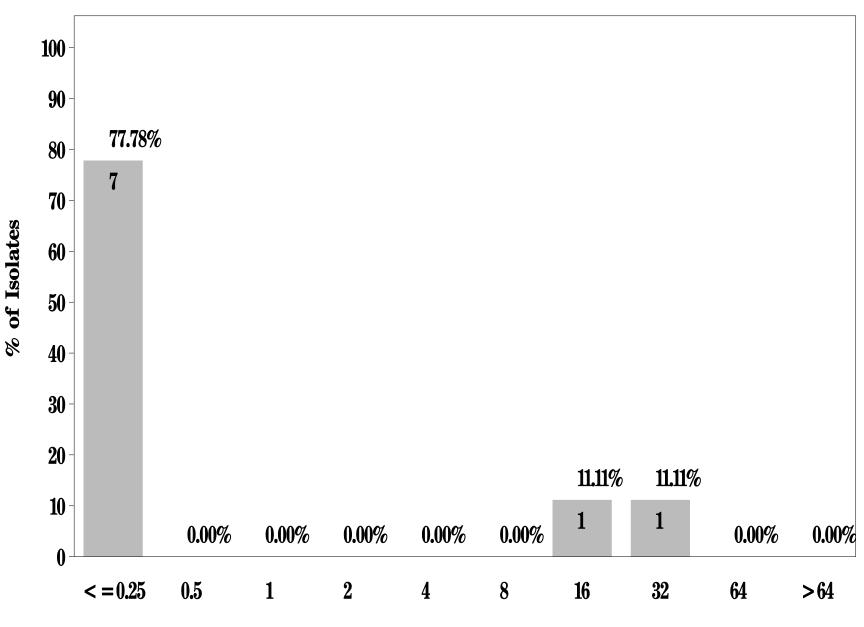
Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Ceftriaxone for *Salmonella* in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 64 μ g/mL

Minimum Inhibitory Concentration

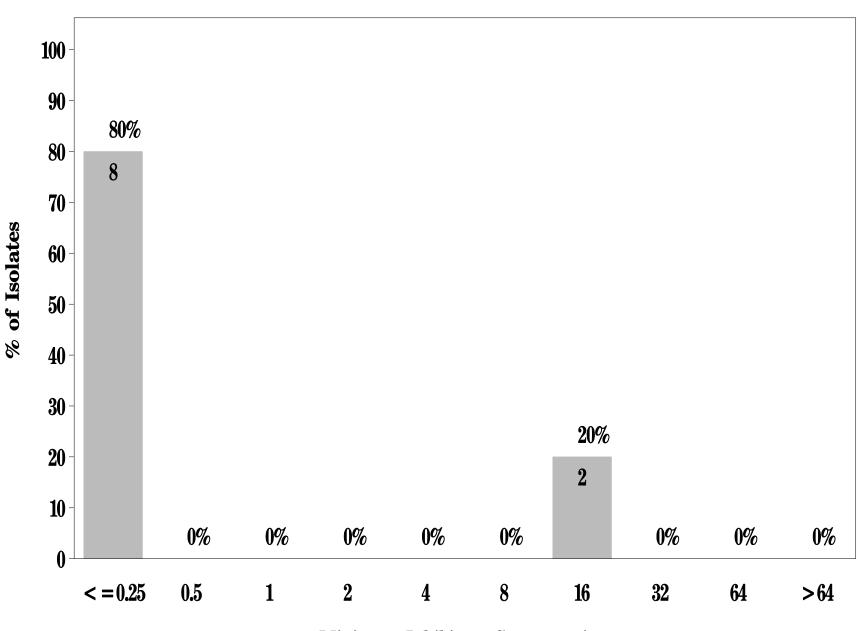
Figure 7: Minimum Inhibitory Concentration of Ceftriaxone for *Salmonella* in Ground Turkey (N=74 Isolates)


Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 64 μ g/mL

100 91.89% 90 68 80 **70** % of Isolates **60 50** 40 **30 20 5.41% 10** 1.35% 1.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0 1 8 16 >64 < = 0.250.5 2 4 32 64

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Ceftriaxone for *Salmonella* in Ground Beef (N=9 Isolates)


Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Ceftriaxone for Salmonella in Pork Chop (N=10 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Cephalothin for *Salmonella* in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

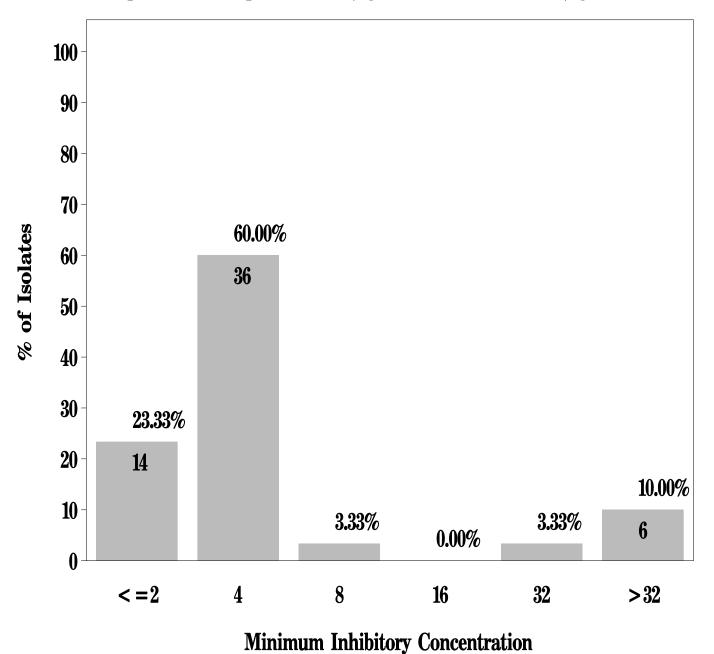


Figure 7: Minimum Inhibitory Concentration of Cephalothin for *Salmonella* in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 32 μ g/mL

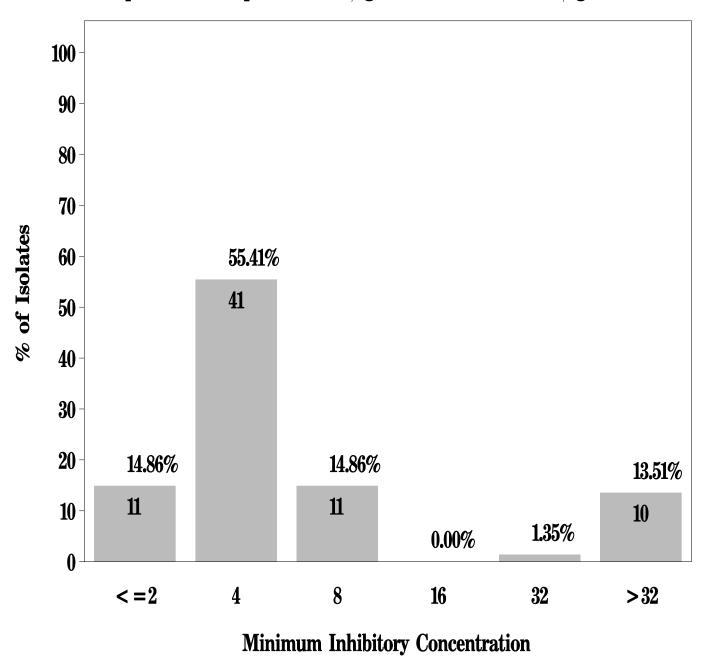
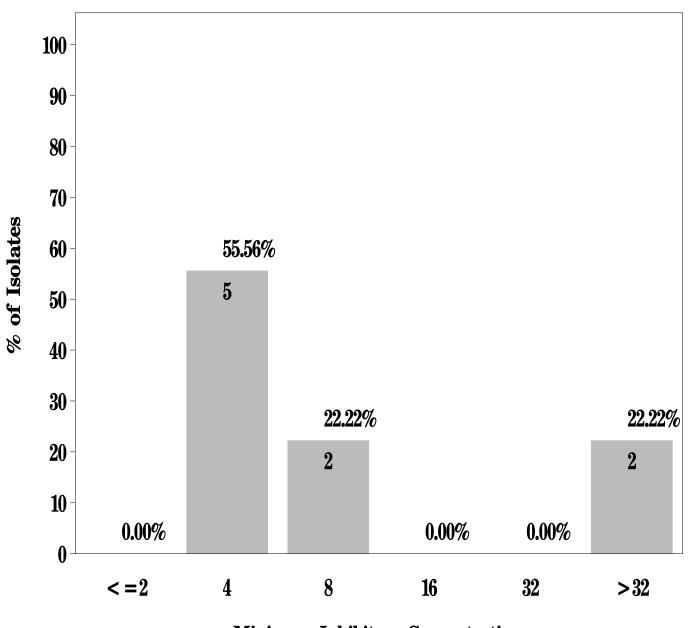
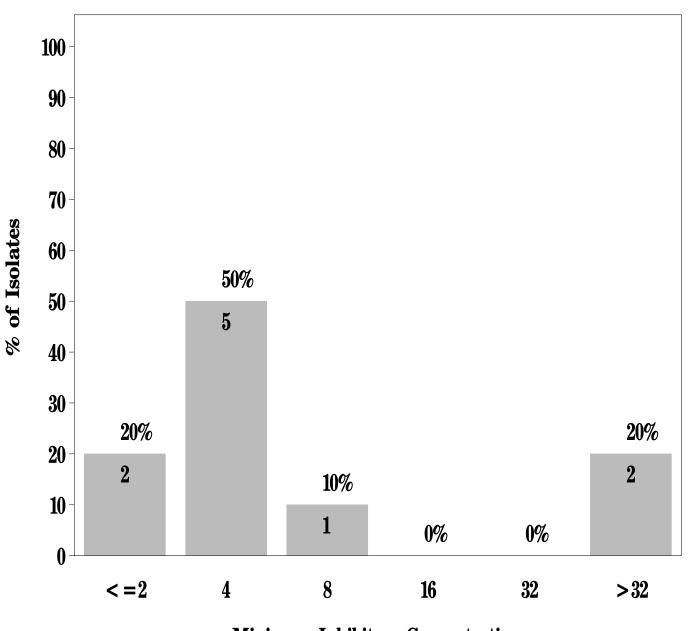
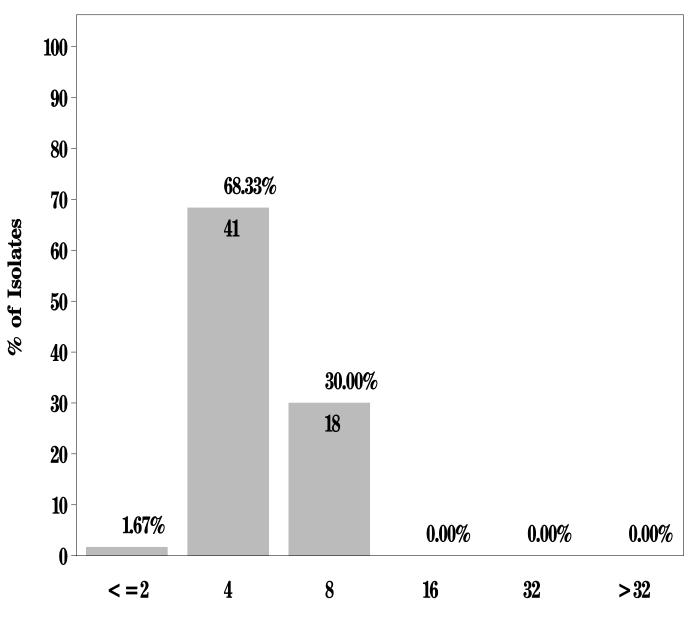



Figure 7: Minimum Inhibitory Concentration of Cephalothin for *Salmonella* in Ground Beef (N=9 Isolates)


Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Cephalothin for Salmonella in Pork Chop (N=10 Isolates)


Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Chloramphenicol for Salmonella in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Chloramphenicol for Salmonella in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

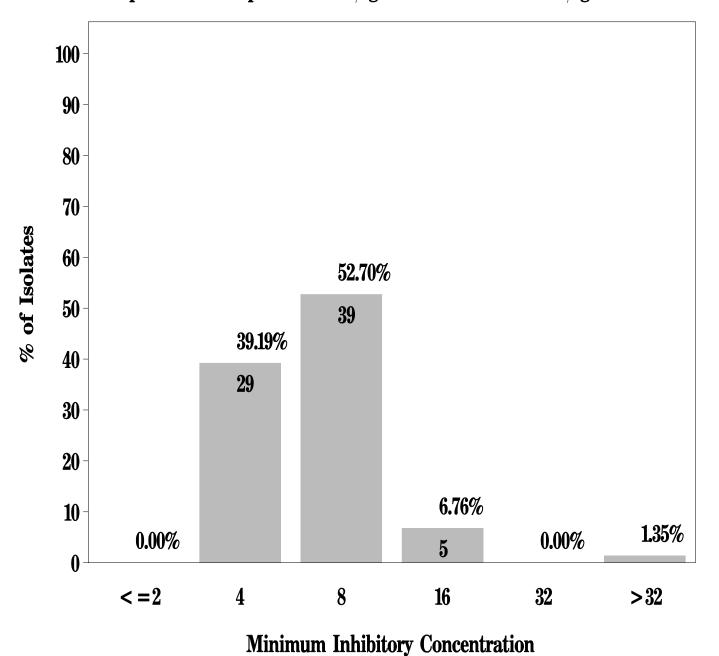
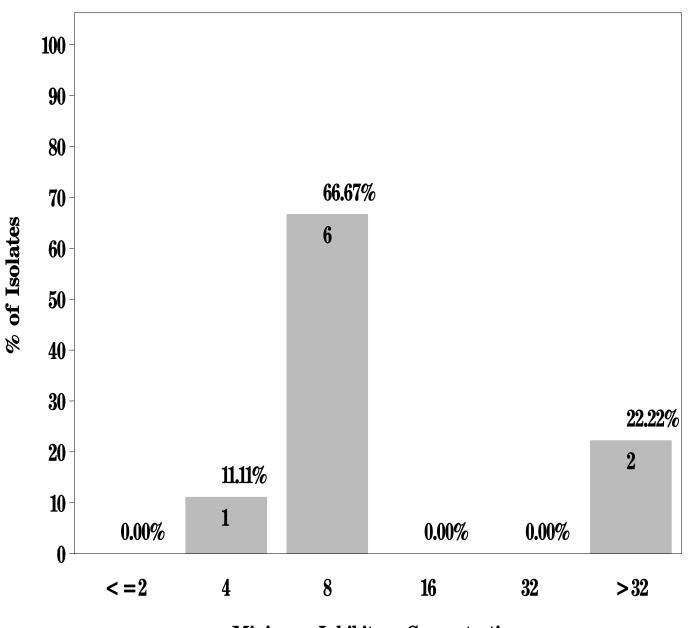
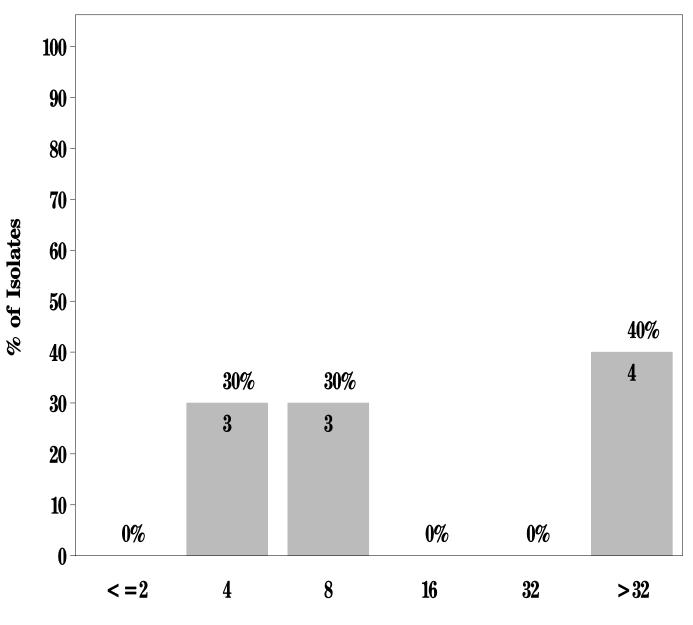



Figure 7: Minimum Inhibitory Concentration of Chloramphenicol for Salmonella in Ground Beef (N=9 Isolates)


Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Chloramphenicol for Salmonella in Pork Chop (N=10 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Ciprofloxacin for *Salmonella* in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible < = 1 μ g/mL Resistant > = 4 μ g/mL

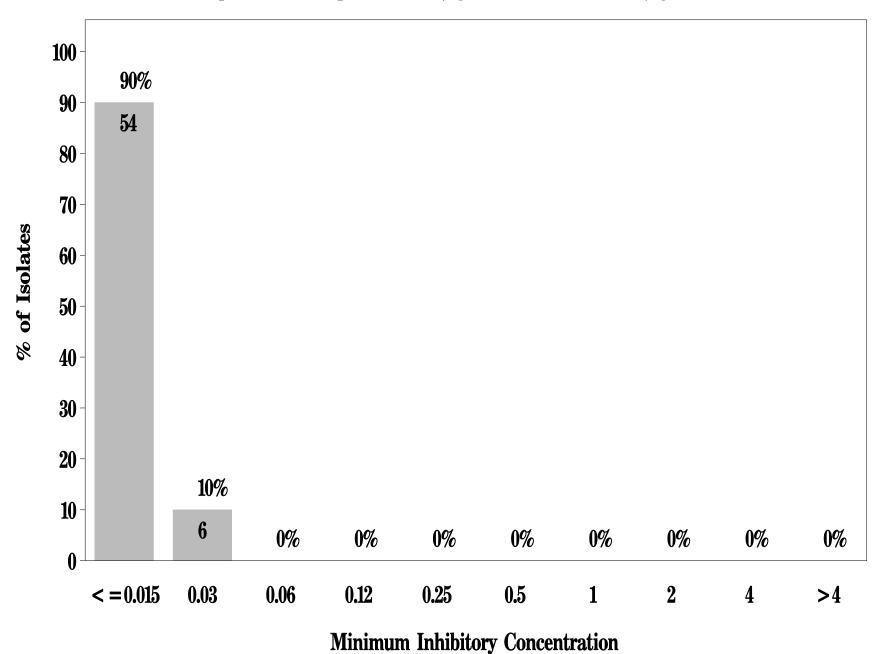


Figure 7: Minimum Inhibitory Concentration of Ciprofloxacin for *Salmonella* in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible <= 1 μ g/mL Resistant >= 4 μ g/mL

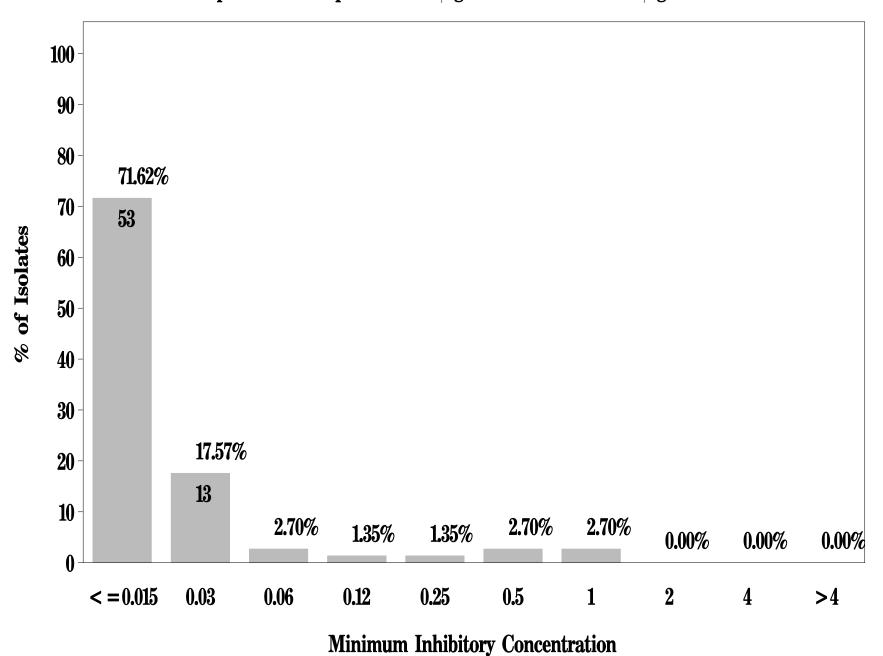


Figure 7: Minimum Inhibitory Concentration of Ciprofloxacin for Salmonella in Ground Beef (N=9 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

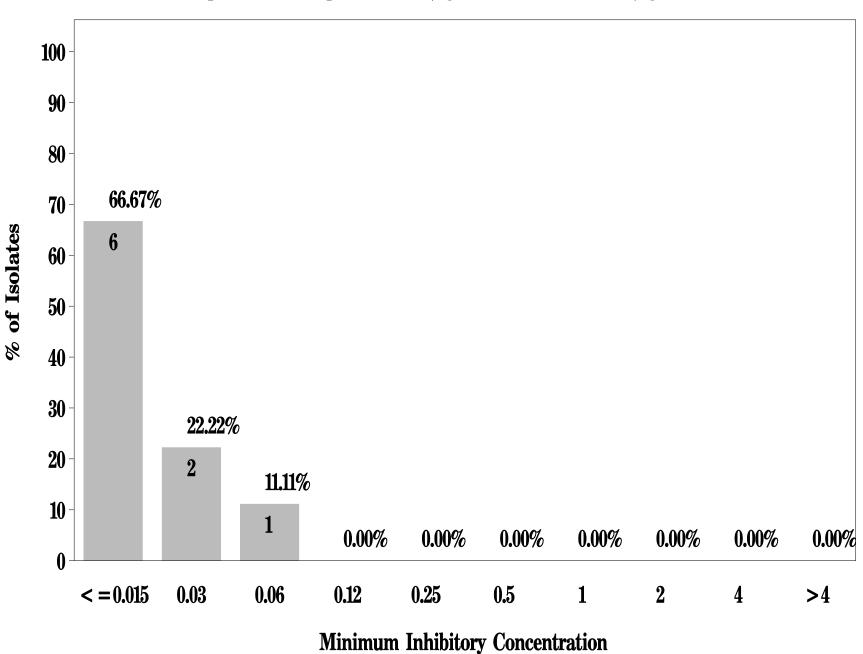
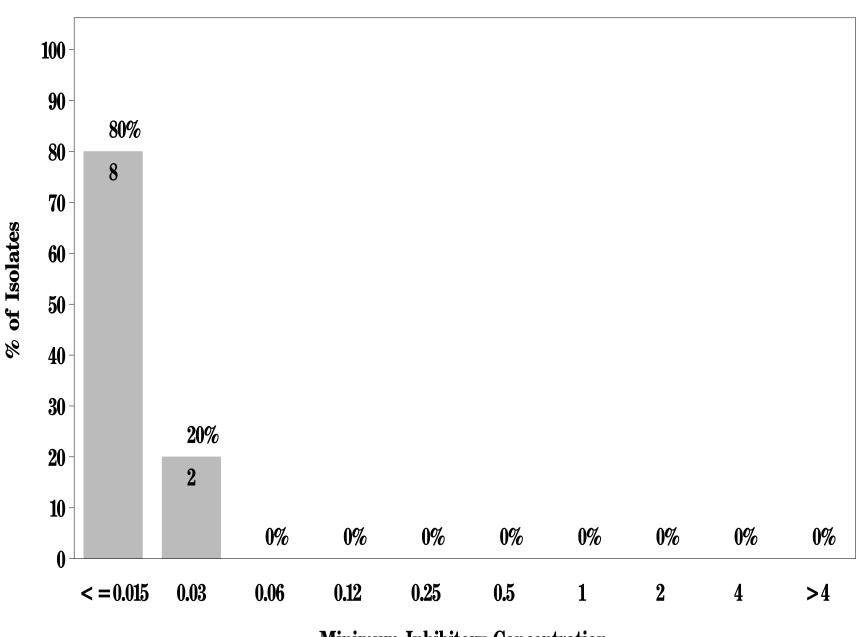



Figure 7: Minimum Inhibitory Concentration of Ciprofloxacin for Salmonella in Pork Chop (N=10 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Gentamicin for *Salmonella* in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

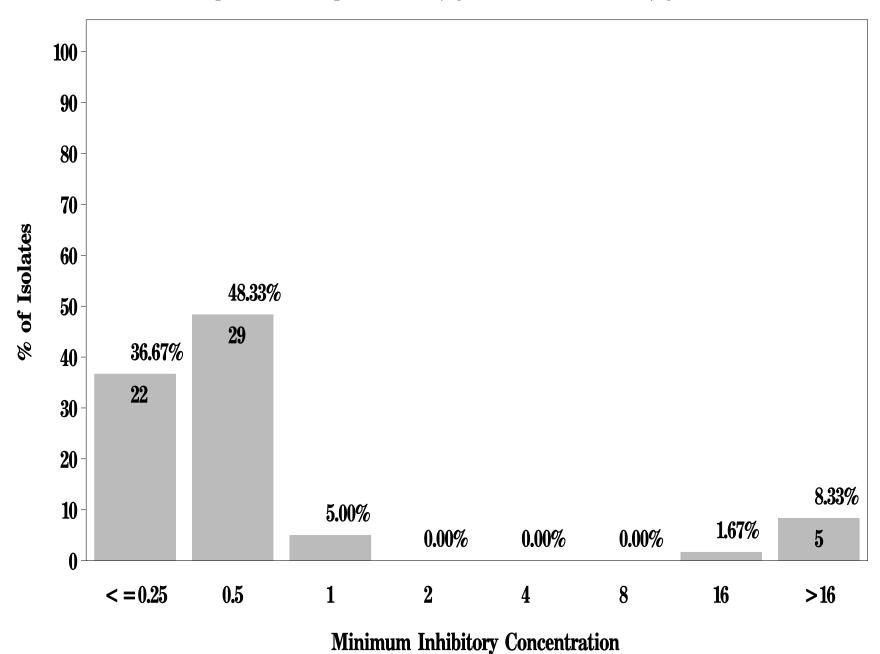


Figure 7: Minimum Inhibitory Concentration of Gentamicin for *Salmonella* in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

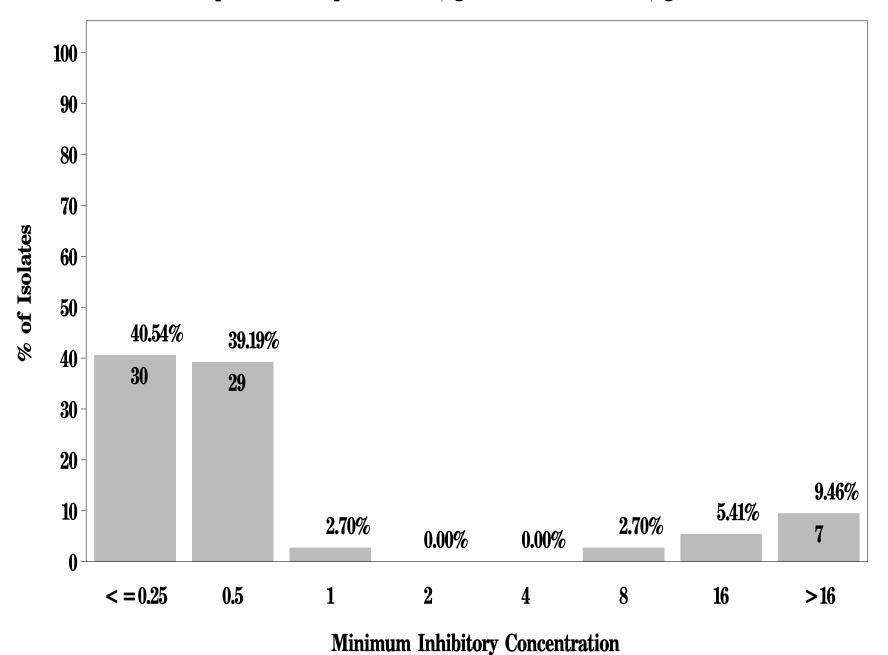
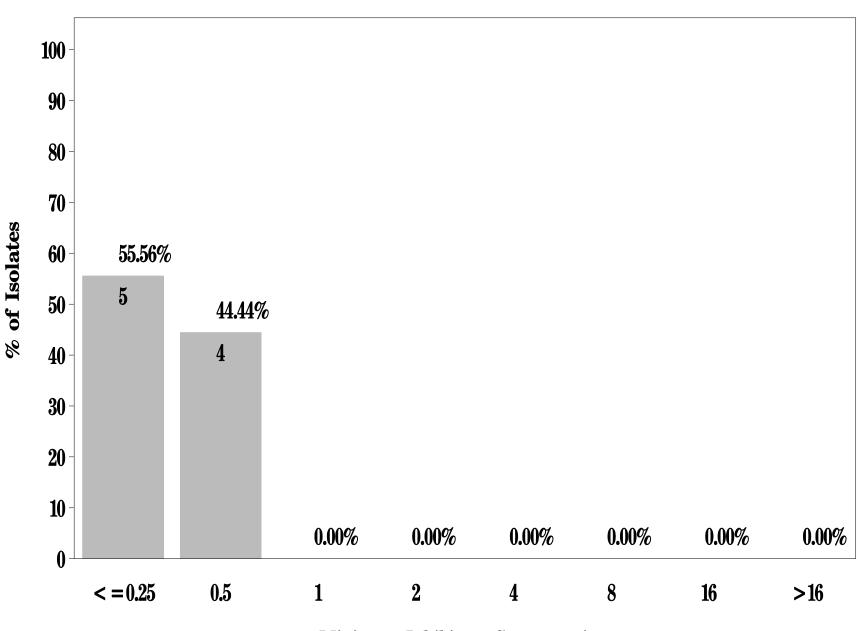



Figure 7: Minimum Inhibitory Concentration of Gentamicin for Salmonella in Ground Beef (N=9 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Gentamicin for Salmonella in Pork Chop (N=10 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

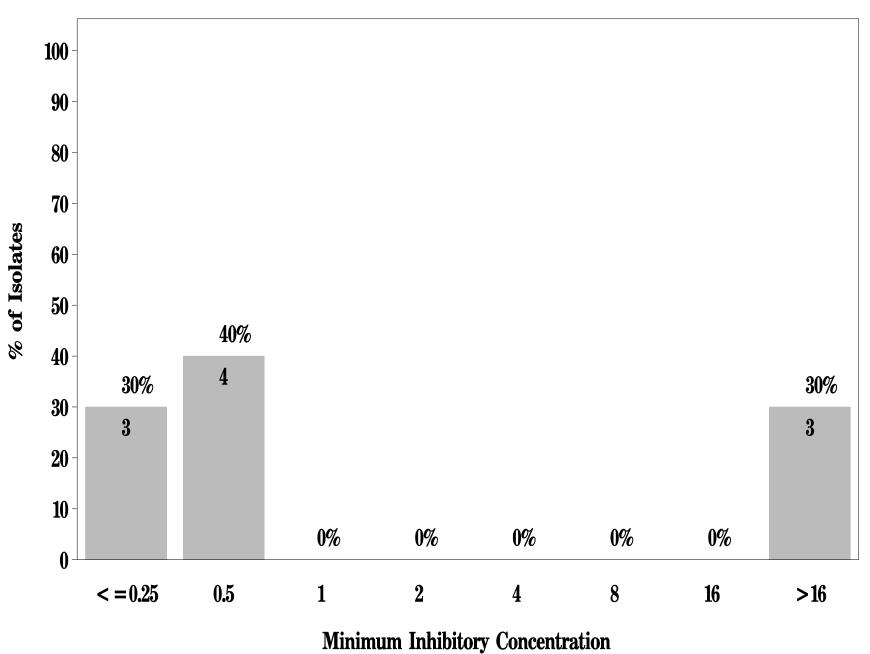
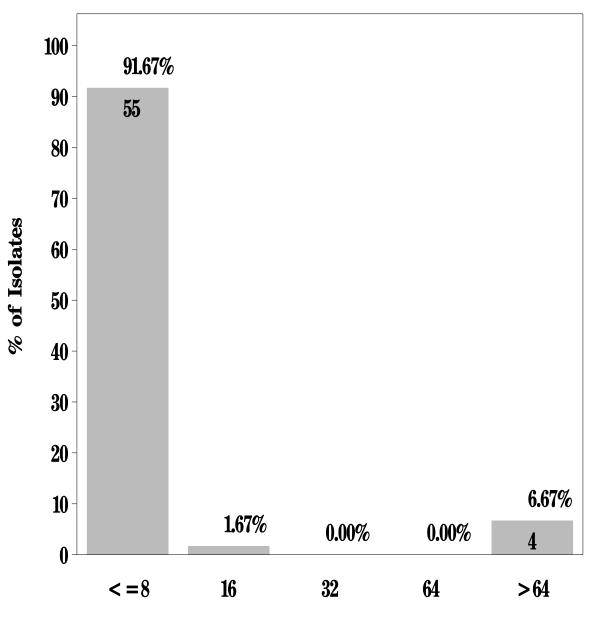



Figure 7: Minimum Inhibitory Concentration of Kanamycin for *Salmonella* in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Kanamycin for *Salmonella* in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

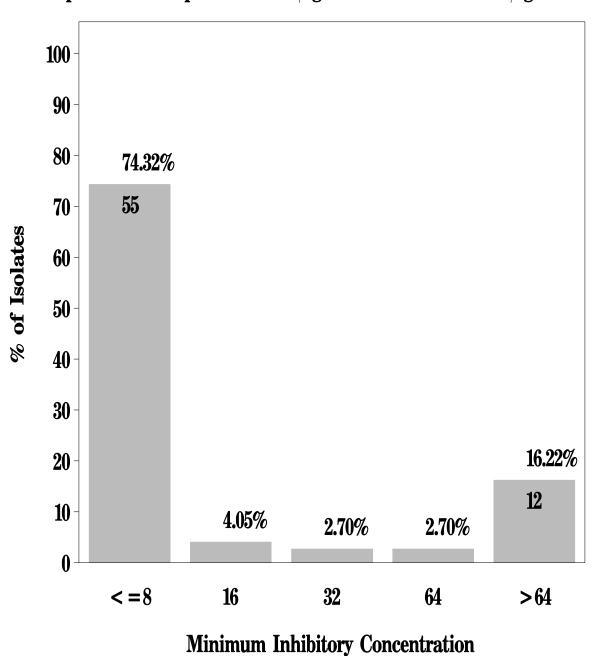


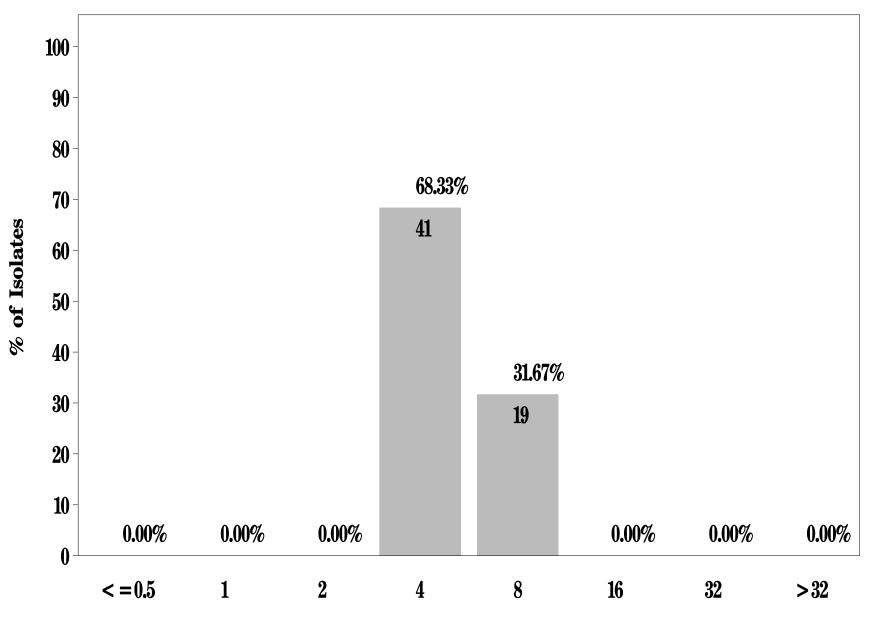
Figure 7: Minimum Inhibitory Concentration of Kanamycin for *Salmonella* in Ground Beef (N=9 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

100% 100 90 80 **70** % of Isolates **60 50** 40 **30** · 20 10 0% 0% 0% 0% 0 64 >64 **<=**8 16 32

Minimum Inhibitory Concentration

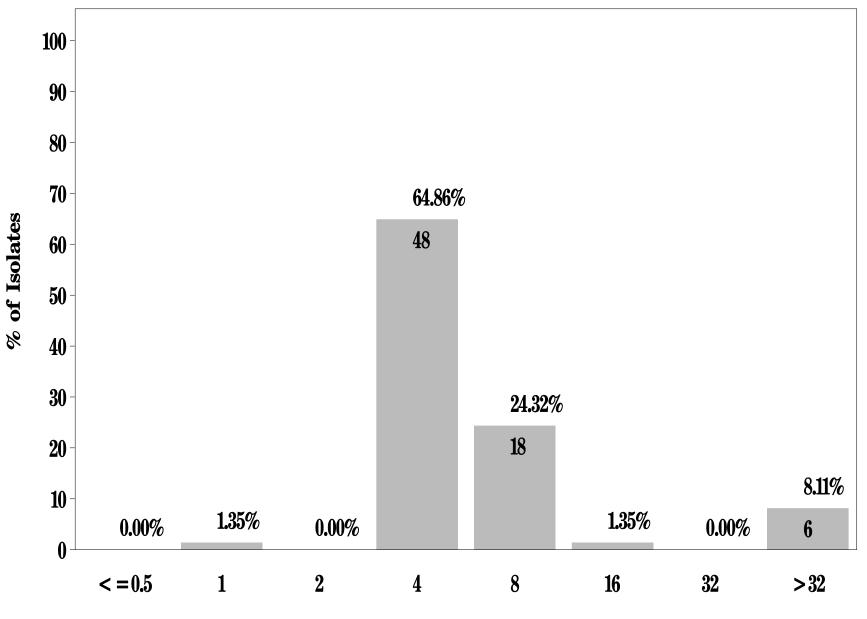
Figure 7: Minimum Inhibitory Concentration of Kanamycin for Salmonella in Pork Chop (N=10 Isolates)


Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

100 90 80 70% 70 % of Isolates **60 50** 40 **30** · 20% 20 10% 10 0% 0% 0 16 64 >64 **<=**8 32

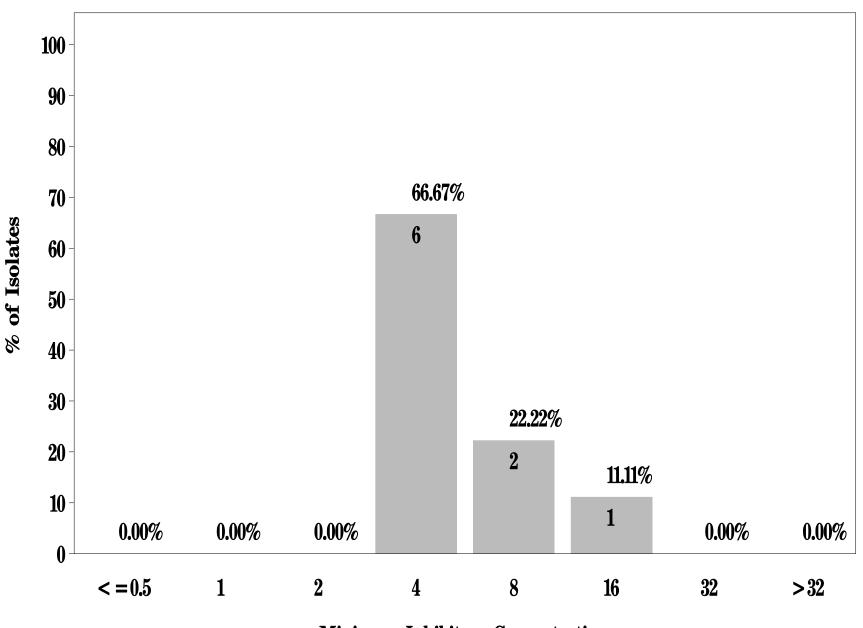
Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Nalidixic acid for *Salmonella* in Chicken Breast (N=60 Isolates)


Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 32 μ g/mL

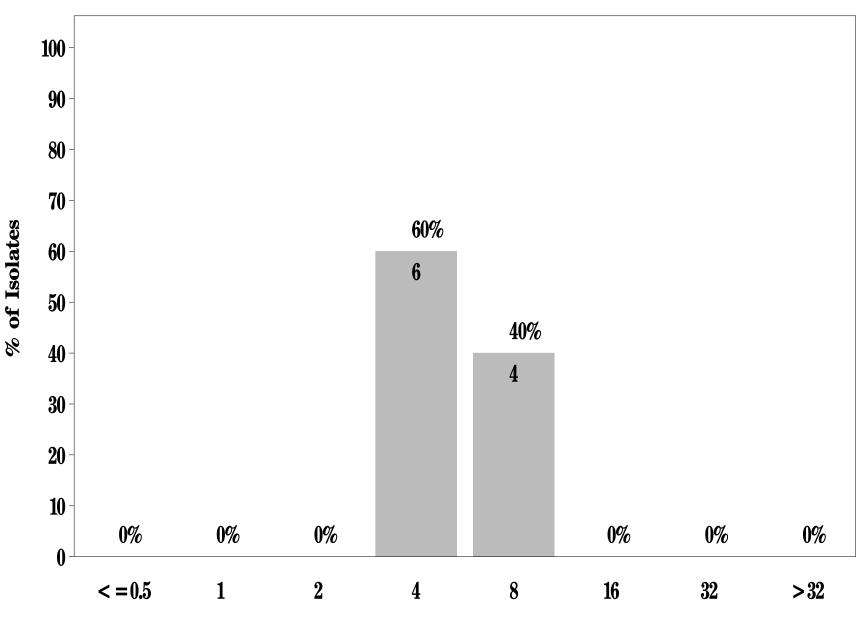
Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella in Ground Turkey (N=74 Isolates)


Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 32 μ g/mL

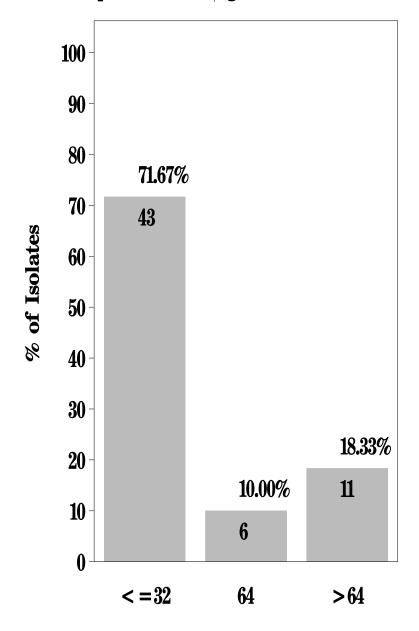
Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella in Ground Beef (N=9 Isolates)


Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 32 \mu g/mL$

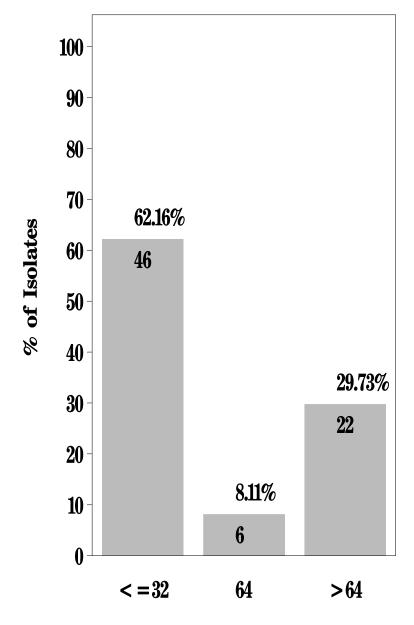
Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella in Pork Chop (N=10 Isolates)


Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

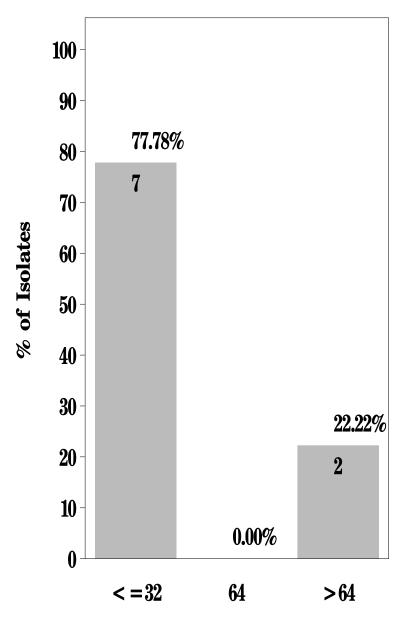
Figure 7: Minimum Inhibitory Concentration of Streptomycin for *Salmonella* in Chicken Breast (N=60 Isolates)


Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Streptomycin for *Salmonella* in Ground Turkey (N=74 Isolates)

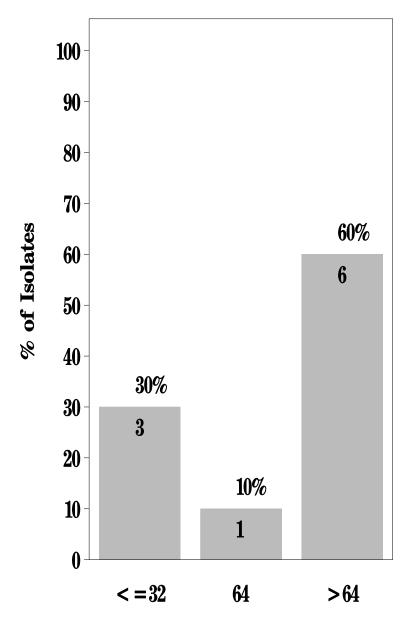
Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 64 μ g/mL



Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Streptomycin for Salmonella in Ground Beef (N=9 Isolates)

Prophysical Supportible 4 = 22 mg/mL Register t > = 64 mg/mL


Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Streptomycin for Salmonella in Pork Chop (N=10 Isolates)

Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Sulfamethoxazole for *Salmonella* in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL

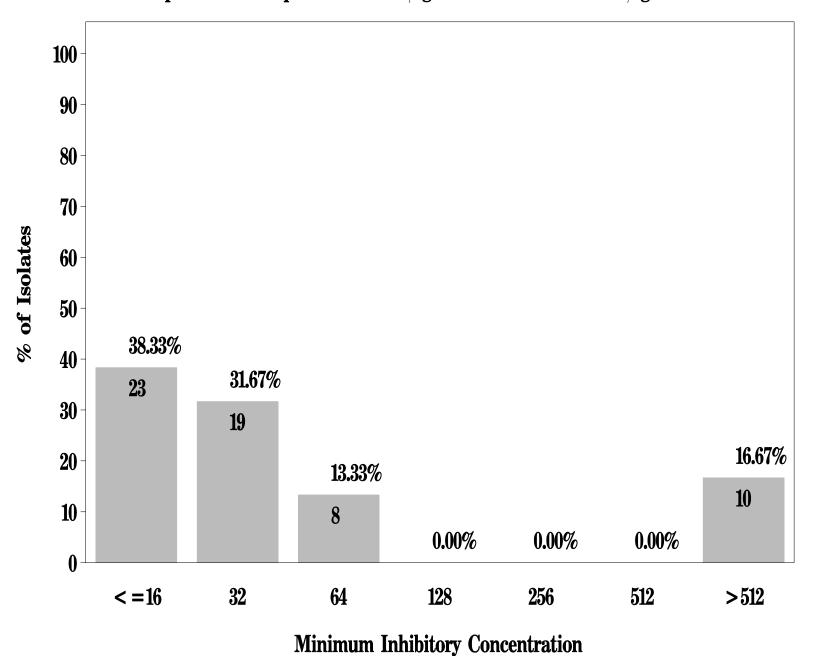


Figure 7: Minimum Inhibitory Concentration of Sulfamethoxazole for *Salmonella* in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL

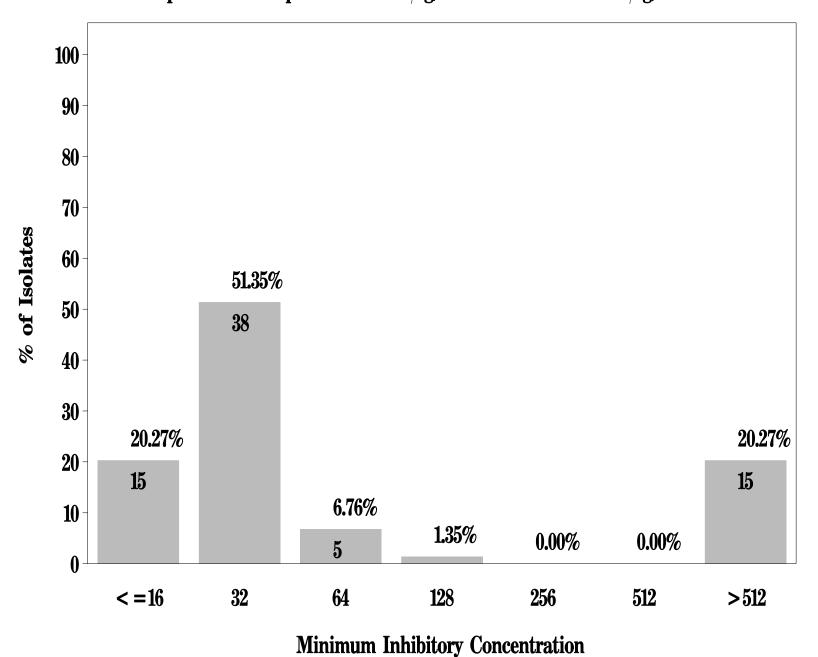
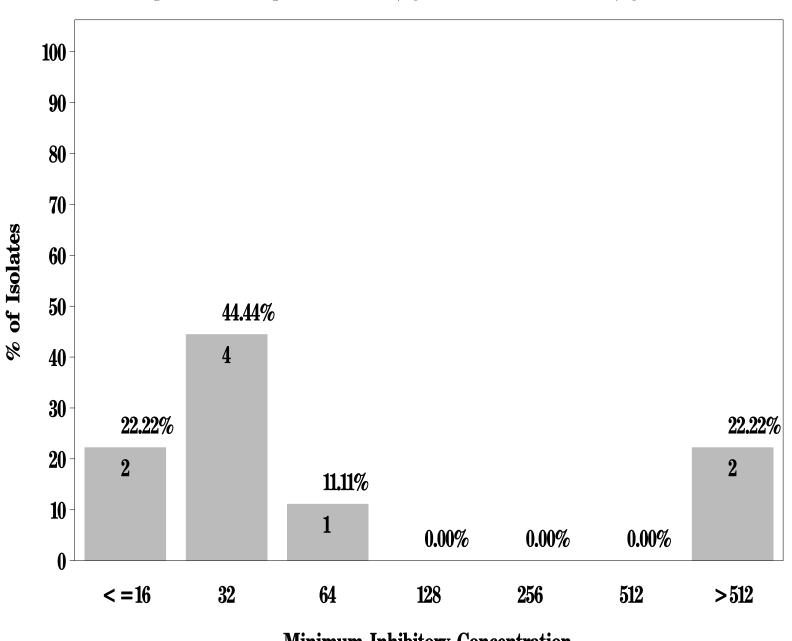



Figure 7: Minimum Inhibitory Concentration of Sulfamethoxazole for Salmonella in Ground Beef (N=9 Isolates)

Breakpoints: Susceptible $< = 256 \mu g/mL$ Resistant $> = 512 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Sulfamethoxazole for Salmonella in Pork Chop (N=10 Isolates)

Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL

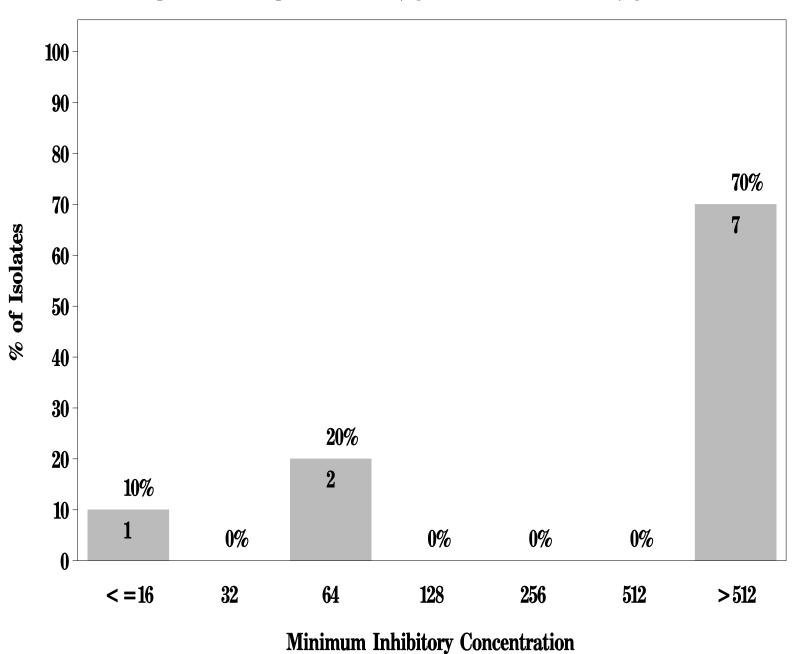


Figure 7: Minimum Inhibitory Concentration of Tetracycline for *Salmonella* in Chicken Breast (N=60 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

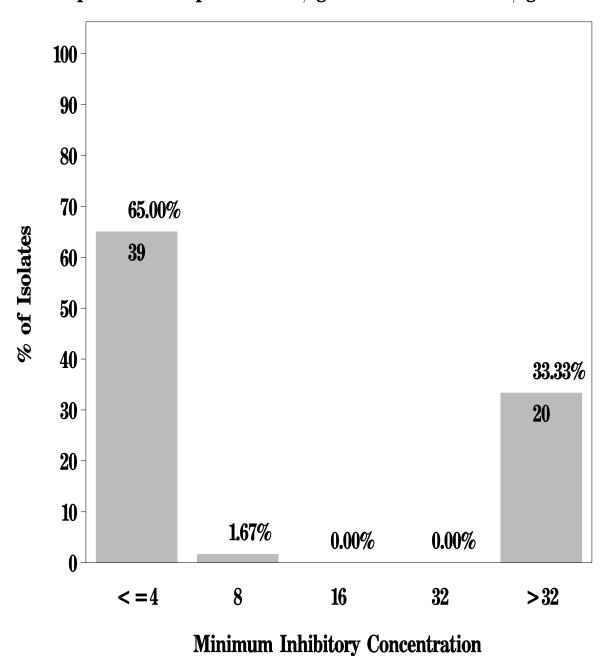
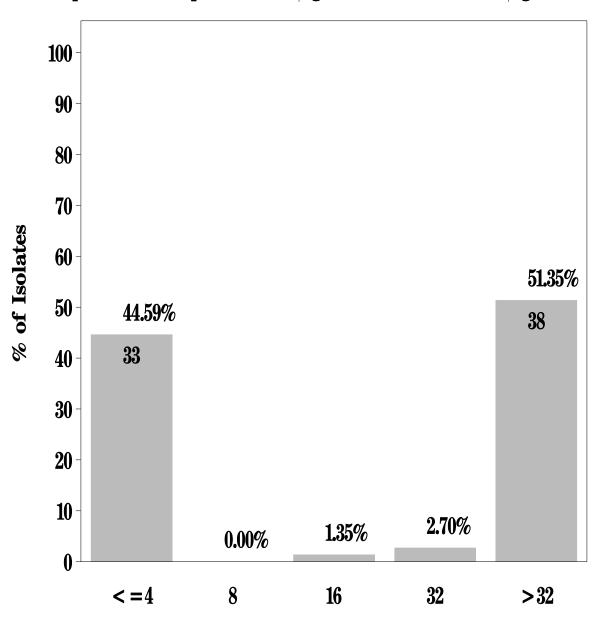



Figure 7: Minimum Inhibitory Concentration of Tetracycline for *Salmonella* in Ground Turkey (N=74 Isolates)

Breakpoints: Susceptible < = $4 \mu g/mL$ Resistant > = $16 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Tetracycline for *Salmonella* in Ground Beef (N=9 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

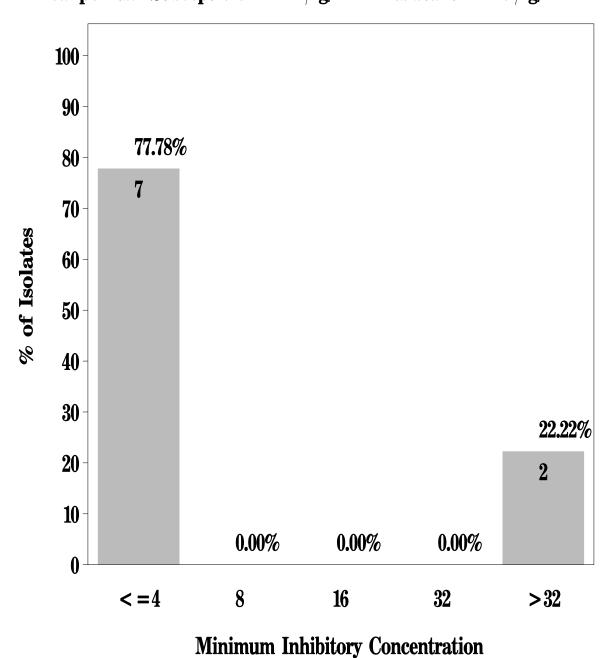


Figure 7: Minimum Inhibitory Concentration of Tetracycline for Salmonella in Pork Chop (N=10 Isolates)

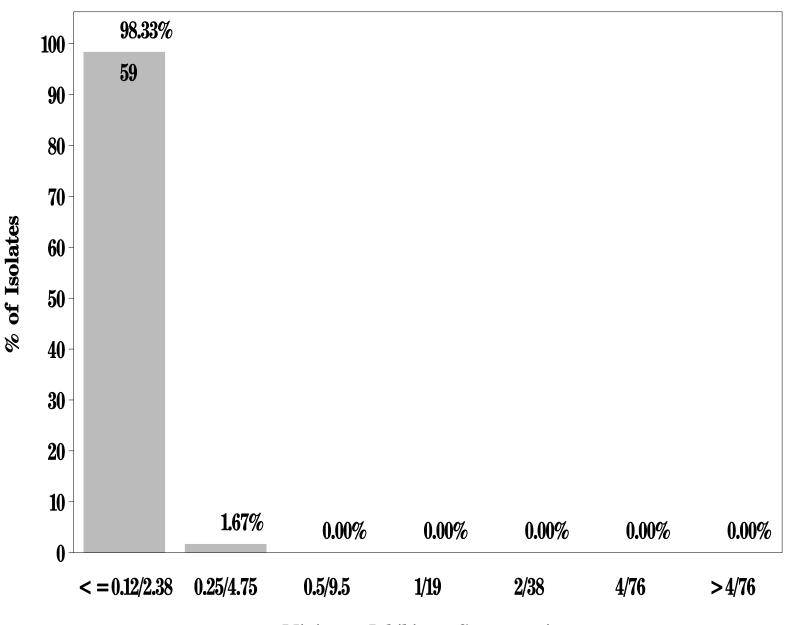
Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

100 90 80 **70** 60% % of Isolates **60** 6 **50 40** 30% 30 **20** 10% 10 0% 0% 0

Minimum Inhibitory Concentration

16

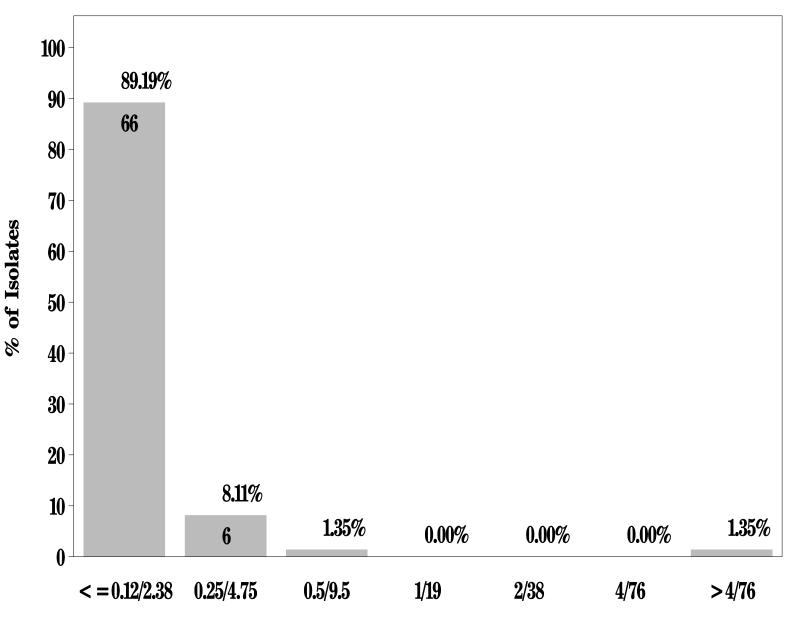
32


>32

8

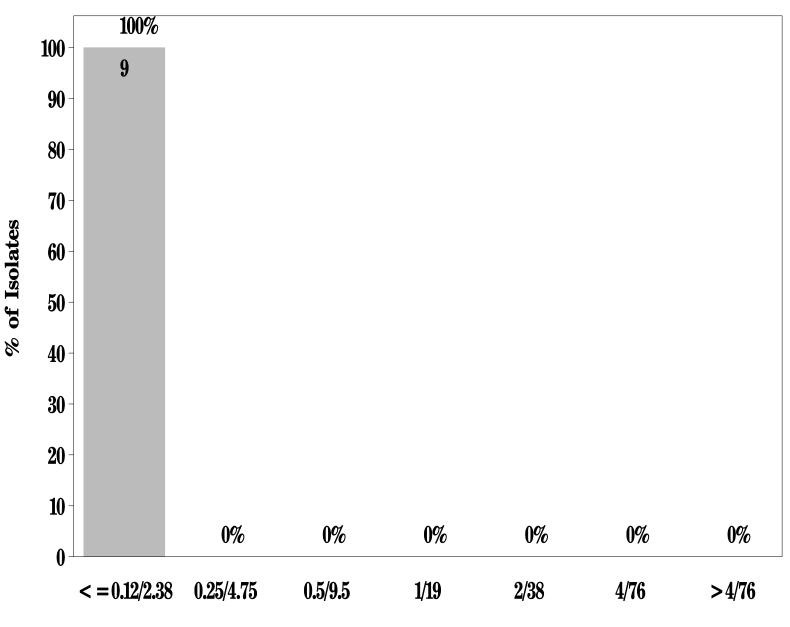
<=4

Figure 7: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for Salmonella in Chicken Breast (N=60 Isolates)


Breakpoints: Susceptible $< = 2/38 \mu g/mL$ Resistant $> = 4/76 \mu g/mL$

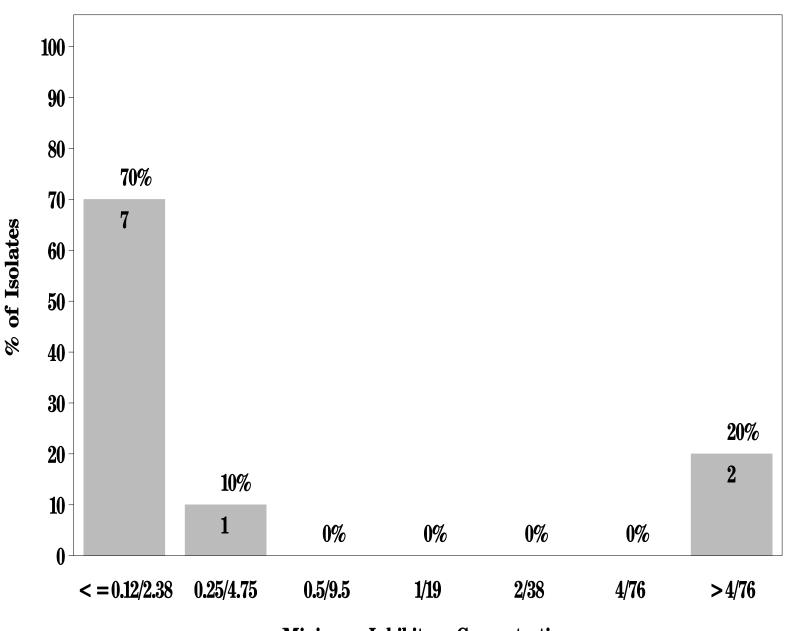
Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for Salmonella in Ground Turkey (N=74 Isolates)


Breakpoints: Susceptible $< = 2/38 \mu g/mL$ Resistant $> = 4/76 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for Salmonella in Ground Beef (N=9 Isolates)


Breakpoints: Susceptible $< = 2/38 \mu g/mL$ Resistant $> = 4/76 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for Salmonella in Pork Chop (N=10 Isolates)

Breakpoints: Susceptible $< = 2/38 \mu g/mL$ Resistant $> = 4/76 \mu g/mL$

Minimum Inhibitory Concentration

Table 12. Antimicrobial Resistance among Salmonella Isolates by Serotype,* 2002.

Serotype	Antimicrobial Agent												
	TET	STR	SMX	AMP	CEP	GEN	AMC	KAN	FOX	TIO	CHL	NAL	COT
Heidelberg (n=35)	54.3%	65.7%	42.9%	17.1%	17.1%	40.0%	37.1%	11.4%	11.4%	11.4%		2.9%	
Saintpaul (n=17)	94.1%	23.5%	23.5%	23.5%	23.5%	11.8%	11.8%	17.6%				23.5%	
Typhimurium (n=15)	40.0%	6.7%	33.3%	26.7%	20.0%			20.0%	20.0%	20.0%	6.7%		
Kentucky (n=13)	38.5%	38.5%		23.1%	23.1%			23.1%	23.1%	23.1%			
Hadar (n=11)	81.8%	81.8%											
Newport (n=8)	62.5%	62.5%	62.5%	62.5%	62.5%			62.5%	62.5%	62.5%	62.5%		37.5%
Reading (n=7)	28.6%	14.3%	14.3%	28.6%	14.3%		14.3%				14.3%		
Muenster (n=4)	50.0%	50.0%	50.0%			50.0%	50.0%					25.0%	
Bredeney (n=2)	100.0%	100.0%											
SI 6,7:k:- (n=2)				100.0%									
Agona (n=1)	100.0%												
Mbandaka (n=1)	100.0%												
S IIIa 18:z4:z32:- (n=1)	100.0%												
S rough "o"s: i: 1,2 (n=1)				100.0%	100.0%			100.0%	100.0%	100.0%			
Senftenberg (n=1)		100.0%	100.0%	100.0%		100.0%	100.0%						
SI 4,12:r:- (n=1)	100.0%	100.0%	100.0%			100.0%							
Total %R (N=153)	45.8%	35.3%	22.2%	18.3%	15.0%	13.1%	12.4%	12.4%	10.5%	10.5%	4.6%	3.9%	2.0%

^{*} Includes only those serotypes in which resistance was observed; total number of *Salmonella* isolates, N=153.

Table 13. Antimicrobial Resistance among Salmonella by Meat Type in Overall Top 5 Serotypes,* 2002.

Meat Type	Serotype		•	•		•	Antimic	robial Age	ent	•			•	•
		TET	STR	SMX	AMP	CEP	GEN	AMC	KAN	FOX	TIO	CHL	NAL	COT
	Heidelberg (n=11)	45.5%	63.6%	45.6%	18.2%	18.2%	45.6%		36.4%					
Chicken	Saintpaul (n=0)													
Breast	Typhimurium (n=9)	44.4%		44.4%	33.3%	33.3%		33.3%		33.3%	33.3%			
	Enteritidis (n=8)													
	Kentucky (n=12)	41.7%	41.7%		16.7%	16.7%		16.7%		16.7%	16.7%			
	Heidelberg (n=21)	57.1%	61.9%	33.3%	19.1%	19.1%	28.6%	19.1%	42.9%	19.1%	19.1%		4.8%	
Ground	Saintpaul (n=17)	94.1%	23.5%	23.5%	23.5%	23.5%	11.7%	17.7%	11.7%				23.5%	
Turkey	Typhimurium (n=2)													
	Enteritidis (n=5)													
	Kentucky (n=1)				100.0%	100.0%		100.0%		100.0%	100.0%			
	Heidelberg (n=3)	66.7%	100.0%	100.0%			100.0%							
Pork	Saintpaul (n=0)													
Chop	Typhimurium (n=2)	100.0%	50.0%	50.0%	50.0%							50.0%		
	Enteritidis (n=0)													
	Kentucky (n=0)			·		·				·	·			

_

^{*} No resistance seen in any of the top 5 serotypes recovered from ground beef.

Table 14. Antimicrobial Resistance among Salmonella by Top 5 Serotypes within Meat Type, 2002.

Meat Type	Serotype						Antin	iicrobial A	gent					
		TET	STR	SMX	AMP	CEP	GEN	AMC	KAN	FOX	TIO	CHL	NAL	COT
	Kentucky (n=12)	41.7%	41.7%		16.7%	16.7%		16.7%		16.7%	16.7%			
Chicken	Heidelberg (n=11)	45.5%	63.6%	45.6%	18.2%	18.2%	45.6%		36.4%					
Breast	Typhimurium (n=9)	44.4%		44.4%	33.3%	33.3%		33.3%		33.3%	33.3%			
	Enteritidis (n=8)													
	Hadar (n=4)	100.0%	100.0%											
	Heidelberg (n=21)	57.1%	61.9%	33.3%	19.1%	19.1%	28.6%	19.1%	42.9%	19.1%	19.1%		4.8%	
Ground	Saintpaul (n=17)	94.1%	23.5%	23.5%	23.5%	23.5%	11.7%	17.7%	11.7%				23.5%	
Turkey	Hadar (n=7)	71.4%	71.4%											
	Reading (n=6)	16.7%			16.7%	16.7%								
-	Enteritidis (n=5)													
	Newport (n=3)	66.7%	66.7%	66.7%	66.7%	66.7%		66.7%		66.7%	66.7%	66.7%		
Ground	Anatum (n=2)													
Beef	Typhimurium (n=2)													
	Enteritidis (n=1)													
	Montevideo (n=1)													
	Heidelberg (n=3)	66.7%	100.0%	100.0%			100.0%							
Pork	Meunster (n=2)													
Chop	Newport (n=2)	100.0%	100.0%	100.0%	100.0%	100.0%		100.0%		100.0%	100.0%	100.0%		100.0%
	Typhimurium (n=2)	100.0%	50.0%	50.0%	50.0%				100.00			50.0%		
	Reading (n=1)	100.0%	100.0%	100.0%	100.0%				100.0%			100.0%		

Table 15. Antimicrobial Resistance among Salmonella by Site, Meat Type, and Antimicrobial Agent, 2002.

Site	Meat Type	Antimicrobial Agent												
		TET	STR	SMX	AMP	CEP	GEN	AMC	KAN	FOX	TIO	CHL	NAL	COT
	CB (n=17)	29.4%	11.8%	29.4%	23.5%	11.8%	5.9%	5.9%		5.9%	5.9%			
CT	GT (n=21)	52.4%	57.1%	47.6%	42.9%	38.1%	33.3%	33.3%	42.9%	19.1%	19.1%		19.1%	
	GB (n=5)	20.0%	20.0%	20.0%	20.0%	20.0%		20.0%		20.0%	20.0%	20.0%		
	PC (n=1)													
	Total (n=44)	38.6%	34.1%	36.4%	31.8%	25.0%	18.2%	20.5%	20.5%	13.6%	13.6%	2.3%	9.1%	0.0%
	CB (n=14)	28.6%	21.4%	7.1%	7.1%	7.1%	7.1%							
GA	GT (n=19)	52.6%	26.3%		5.3%	5.3%			5.3%					
GA	GB (n=2)													
	PC (n=2)	100.0%	50.0%	50.0%	50.0%				50.0%			50.0%		
	Total (n=37)	43.2%	24.3%	5.4%	8.1%	5.4%	2.7%	0.0%	5.4%	0.0%	0.0%	2.7%	0.0%	0.0%
	CB (n=8)	25.0%	25.0%		50.0%	50.0%		50.0%		50.0%	50.0%			
MD	GT (n=9)	33.3%	22.2%	22.2%	11.1%	11.1%	11.1%	11.1%	11.1%	11.1%	11.1%	11.1%	22.2%	11.1%
MID	GB (n=2)	50.0%	50.0%	50.0%	50.0%	50.0%		50.0%		50.0%	50.0%	50.0%		
	PC (n=6)	83.3%	100.0%	100.0%	50.0%	33.3%	50.0%	33.3%		33.3%	33.3%	50.0%		33.3%
	Total (n=25)	44.0%	44.0%	36.0%	36.0%	32.0%	16.0%	32.0%	4.0%	32.0%	32.0%	20.0%	8.0%	12.0%
	CB (n=4)	25.0%	25.0%		25.0%	25.0%		25.0%		25.0%	25.0%			
MN	GT (n=7)	28.6%	42.9%	14.3%	14.3%	14.3%	14.3%	14.3%		14.3%	14.3%			
14114	GB (n=0)													
	PC (n=0)													
	Total (n=11)	27.3%	36.4%	9.1%	18.2%	18.2%	9.1%	18.2%	0.0%	18.2%	18.2%	0.0%	0.0%	0.0%
	CB (n=4)	50.0%	75.0%											
OR	GT (n=2)	100.0%												
OK	GB (n=0)													
	PC (n=0)													
	Total (n=6)	66.7%	50.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=13)	46.2%	46.2%	30.8%			30.8%		30.8%					
TN	GT (n=16)	81.3%	37.5%	12.5%			12.5%		18.8%					
111	GB (n=0)													
	PC (n=1)													
	Total (n=30)	63.3%	40.0%	20.0%	0.0%	0.0%	20.0%	0.0%	23.3%	0.0%	0.0%	0.0%	0.0%	0.0%
	Total %R (N=153)	45.8%	35.3%	22.2%	18.3%	15.0%	13.1%	12.4%	12.4%	10.5%	10.5%	4.6%	3.9%	2.0%

Table 16. Number of Salmonella (N=153) Resistant to Multiple Antimicrobial Agents, 2002.

Meat Type	Num	ıber o	f Anti	imicro	bials
<i>71</i>	0	1	2-4	5-7	<u>≥</u> 8
СВ	31	5	12	12	0
GT	28	15	19	4	8
GB	7	0	0	0	2
PC	2	1	3	2	2
Total	68	21	34	18	12

Table 17. Overall Campylobacter Species Identified, 2002.

Species	n
C. coli	95
C. jejuni	202
Total	297

Table 18. Campylobacter Species by Meat Type, 2002.

Species		ricken reast		round urkey		round Beef	Pork Chop				
	n	%	n	%	n	%	n	%			
C. coli	90	94.7%	2	2.1%			3	3.2%			
C. jejuni	198	98.0%	2	1.0%			2	1.0%			
Total	288	97.0%	4	1.4%	0	0.0%	5	1.7%			

Table 19. Campylobacter Species by Site and Meat Type*, 2002.

		(hicken	G	round		Pork
Site	Species	Î	Breast	7	urkey		Chop
		n	%	n	%	n	%
CT	C. coli (n=22)	22	100.0%				
CI	<i>C. jejuni</i> (n=55)	52	94.6%	2	3.6%	1	1.8%
	Total (n=77)	74	96.1%	2	2.6%	1	1.3%
GA	C. coli (n=22)	22	100.0%				
GA	<i>C. jejuni</i> (n=62)	62	100.0%				
	Total (n=84)	84	100.0%	0	0.0%	0	0.0%
MD	C. coli (n=10)	10	100.0%				
MID	<i>C. jejuni</i> (n=21)	20	95.2%			1	4.8%
-	Total (n=31)	30	96.8%	0	0.0%	1	3.2%
MN	C. coli (n=15)	14	93.3%	1	6.7%		
14114	<i>C. jejuni</i> (n=19)	19	100.0%				
	Total (n=34)	33	97.1%	1	2.9%	0	0.0%
OR	C. coli (n=0)						
OK	C. jejuni (n=1)	1	100.0%				
-	Total (n=1)	1	100.0%	0	0.0%	0	0.0%
TN	C. coli (n=26)	22	84.6%	1	3.9%	3	11.5%
111	<i>C. jejuni</i> (n=44)	44	100.0%				
	Total (n=70)	66	94.3%	1	1.4%	3	4.3%

* No Campylobacter recovered from ground beef.

Table 20. Campylobacter Isolates by Month for All Sites, 2002.

Month	n	%
January	18	6.1%
February	32	10.8%
March	29	9.8%
April	24	8.1%
May	26	8.8%
June	24	8.1%
July	18	6.1%
August	31	10.4%
September	27	9.1%
October	22	7.4%
November	23	7.7%
December	23	7.7%
Total	297	100.0%

Table 21. Campylobacter Species by Meat Type and Month for All Sites,* 2002.

Meat	Species		Ian.		Feb.	1	Mar.		Apr.		May		Jun.		Jul.		Aug.	S	Sept.		Oct.		Nov.	j	Dec.
Type	Species	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
Chicken	<i>C.coli</i> (n=90)	5	5.6%	4	4.4%	6	6.7%	6	6.7%	11	12.2%	17	18.9%			7	7.8%	8	8.9%	10	11.1%	2	2.2%	14	15.6%
Breast	C. jejuni (n=198)	13	6.6%	25	12.6%	23	11.6%	16	8.1%	15	7.6%	7	3.5%	17	8.6%	24	12.1%	19	9.6%	11	5.6%	19	9.6%	9	4.6%
	Total (n=288)	18	6.3%	29	10.1%	29	10.1%	22	7.6%	26	9.0%	24	8.3%	17	5.9%	31	10.8%	27	9.4%	21	7.3%	21	7.3%	23	8.0%
Ground	C.coli (n=2)													1	50.0%							1	50.0%		
Turkey	<i>C. jejuni</i> (n=2)							2	100.0%																
	Total (n=4)							2	50.0%					1	25.0%							1	25.0%		
Pork	<i>C.coli</i> (n=3)			3	100.0%																				
Chop	<i>C. jejuni</i> (n=2)																			1	50.0%	1	50.0%		
	Total (n=5)			3	60.0%															1	20.0%	1	20.0%		
	Total (N=297)	18	6.1%	32	10.8%	29	9.8%	24	8.1%	26	8.8%	24	8.1%	18	6.1%	31	10.4%	27	9.1%	22	7.4%	23	7.7%	23	7.7%

 $^{^{\}ast}$ No $\it Campylobacter$ recovered from ground beef.

Table 22. Antimicrobial Resistance (%R) among Campylobacter Isolates (N=297), 2002.

Antimicrobial Agent	n	%R
Doxycycline		27.6%
Ciprofloxacin	41	13.8%
Erythromycin	18	6.1%
Gentamicin	0	0.0%
Meropenem*	0	0.0%

 * One *C. coli* from ground turkey had MER MIC=2 μ g/ml.

Figure 8. Antimicrobial Resistance among Campylobacter Isolates (N=297), 2002.

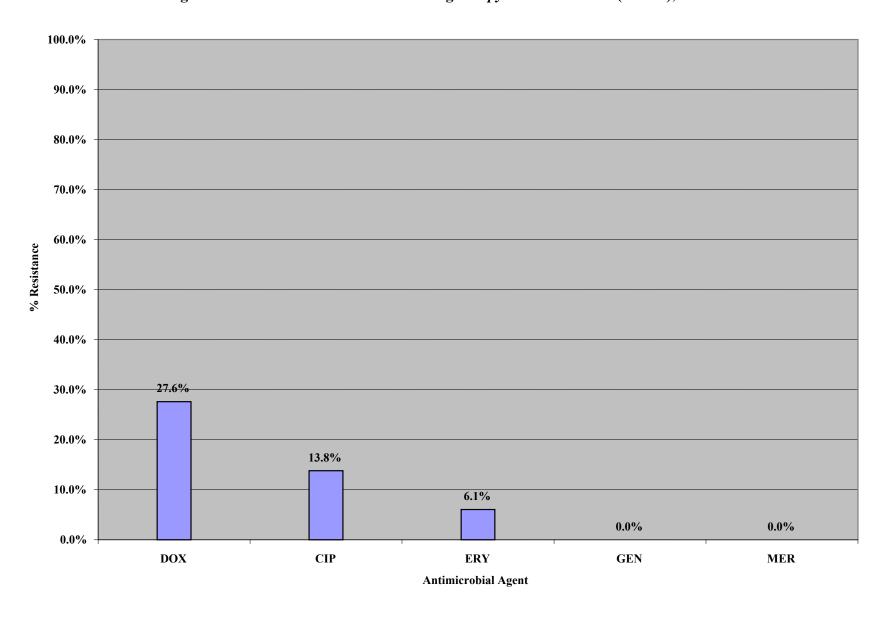


Figure 9: Minimum Inhibitory Concentration of Ciprofloxacin for Campylobacter (N=297 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

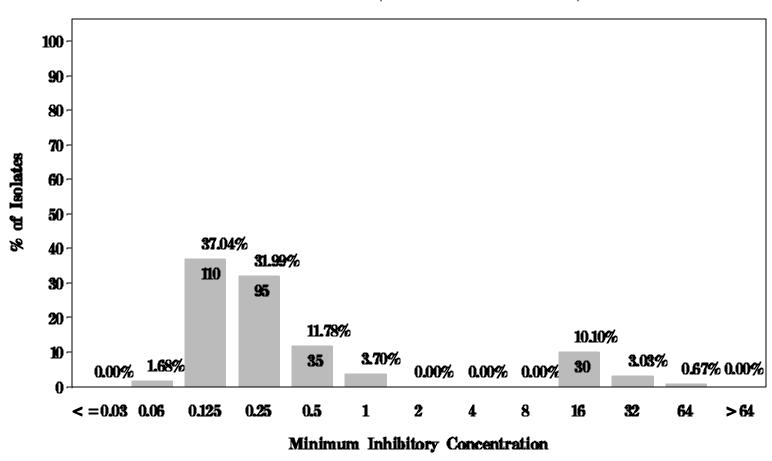


Figure 9: Minimum Inhibitory Concentration of Doxycycline for Campylobacter (N=297 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

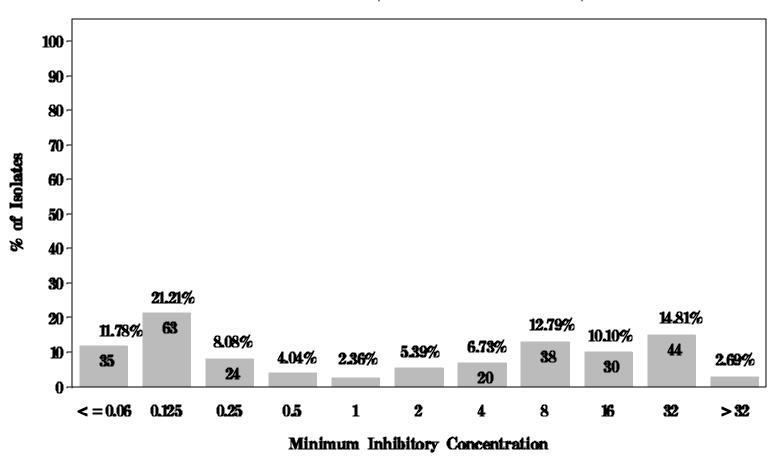


Figure 9: Minimum Inhibitory Concentration of Erythromycin for Campylobacter (N=297 Isolates)

Breakpoints: Susceptible $< = 0.5 \mu g/mL$ Resistant $> = 8 \mu g/mL$

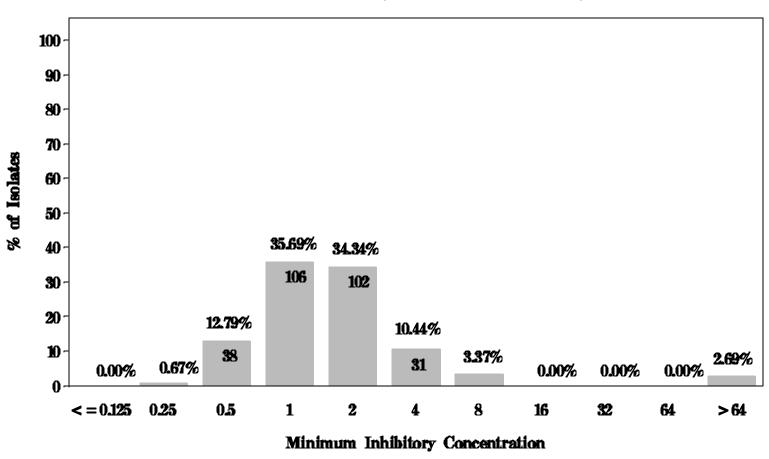


Figure 9: Minimum Inhibitory Concentration of Gentamicin for Campylobacter (N=297 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

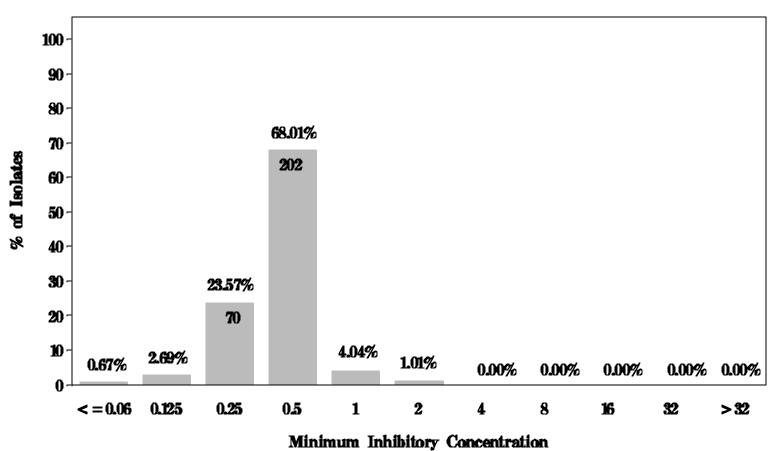


Figure 9: Minimum Inhibitory Concentration of Meropenem

for Campylobacter (N=297 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

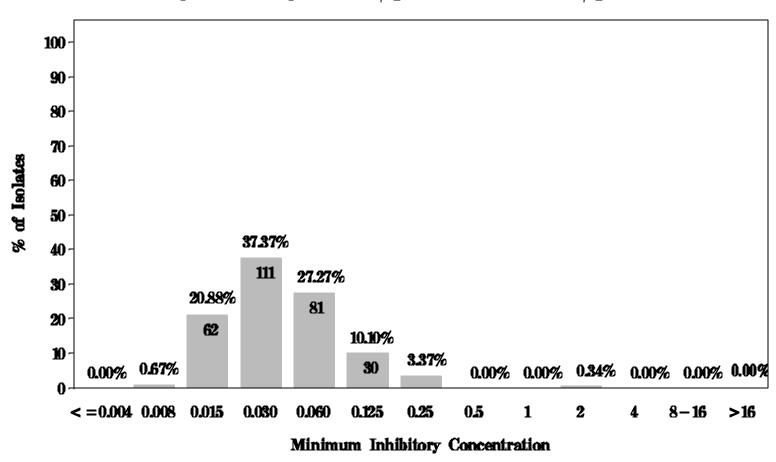


Table 23. Antimicrobial Resistance among *Campylobacter* by Meat Type,*† 2002.

Antimicrobial Agent	Chicken Breast (n=288)	Ground Turkey (n=4)	
Doxycycline	27.4%	50.0%	20.0%
Ciprofloxacin	13.5%	50.0%	
Erythromycin	5.9%		20.0%

^{*} No *Campylobacter* recovered from ground beef.

† No resistance to Gentamicin or Meropenem in these isolates; one *C. coli* from ground turkey had MER MIC=2μg/ml.

Figure 10a. Antimicrobial Resistance among Campylobacter from Chicken Breast (n=288), 2002.

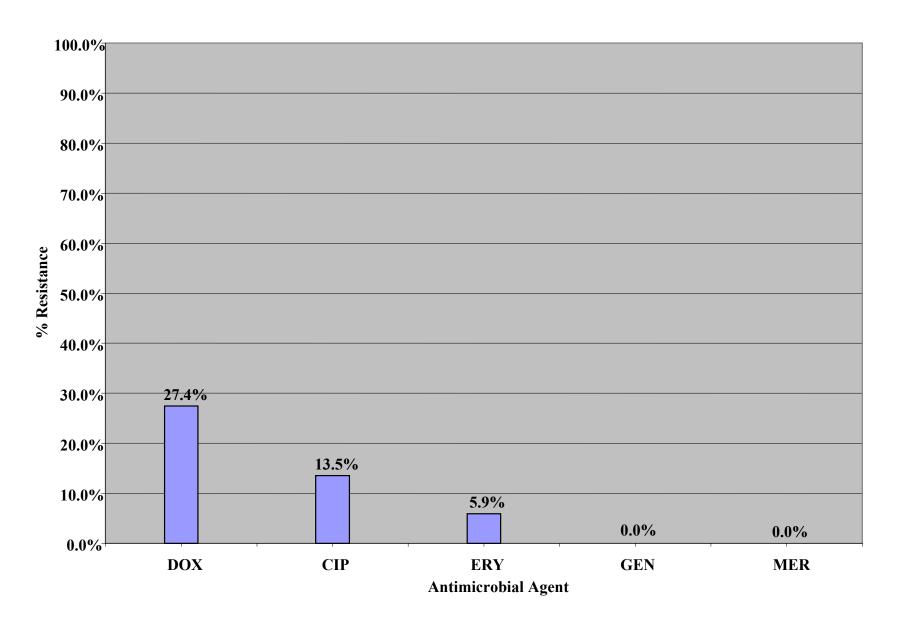


Figure 10b. Antimicrobial Resistance among Campylobacter from Ground Turkey (n=4), 2002.

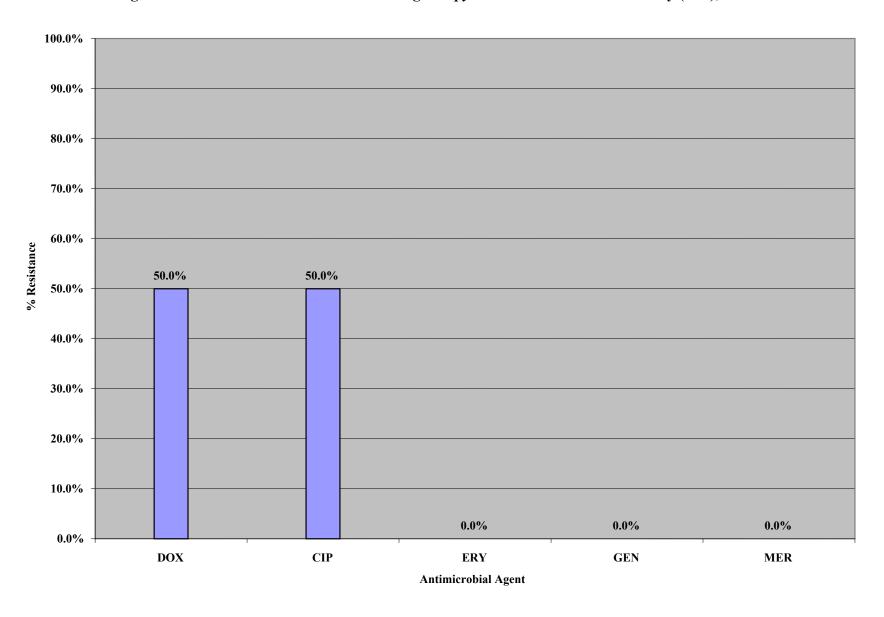


Figure 10c. Antimicrobial Resistance among Campylobacter from Pork Chops (n=5), 2002.

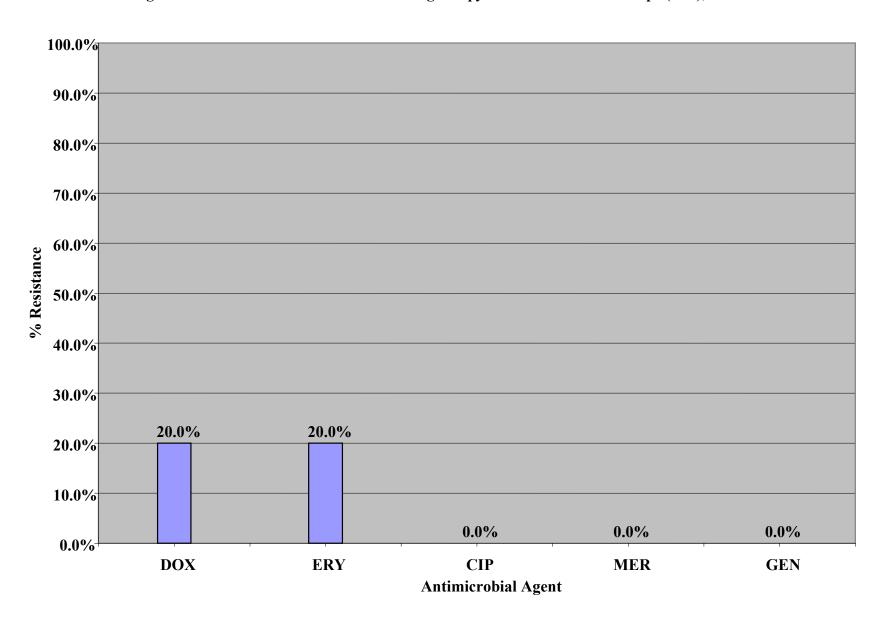


Figure 11: Minimum Inhibitory Concentration of Ciprofloxacin for Campylobacter in Chicken Breast (N=288 Isolates)

Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

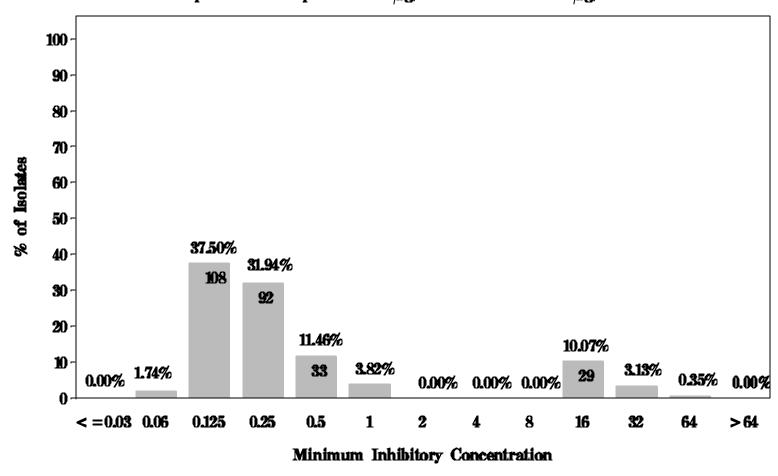


Figure 11: Minimum Inhibitory Concentration of Ciprofloxacin for Campylobacter in Ground Turkey (N=4 Isolates)

Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

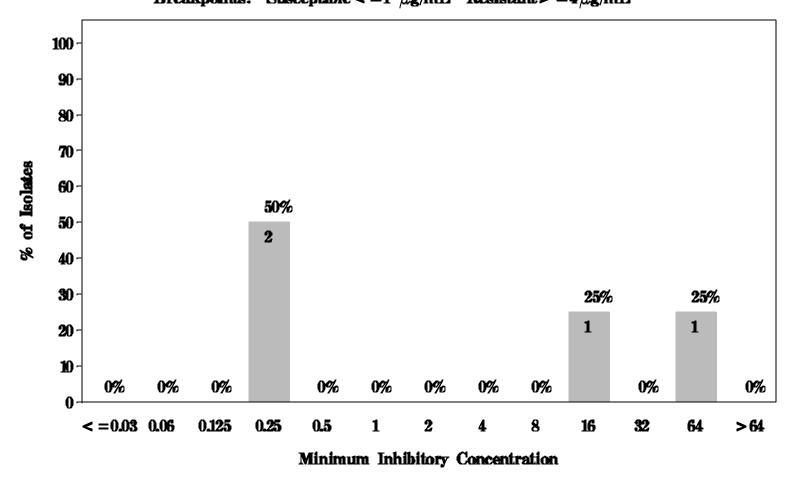


Figure 11: Minimum Inhibitory Concentration of Ciprofloxacin for Campylobacter in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

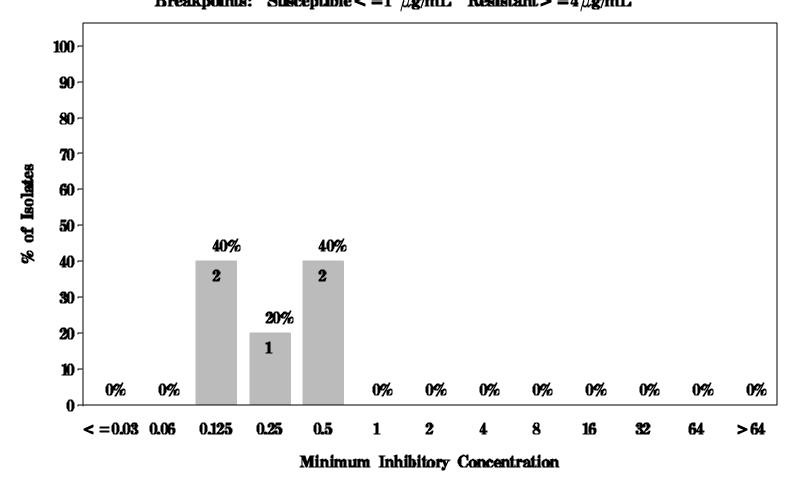


Figure 11: Minimum Inhibitory Concentration of Doxycycline for Campylobacter in Chicken Breast (N=288 Isolates) Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

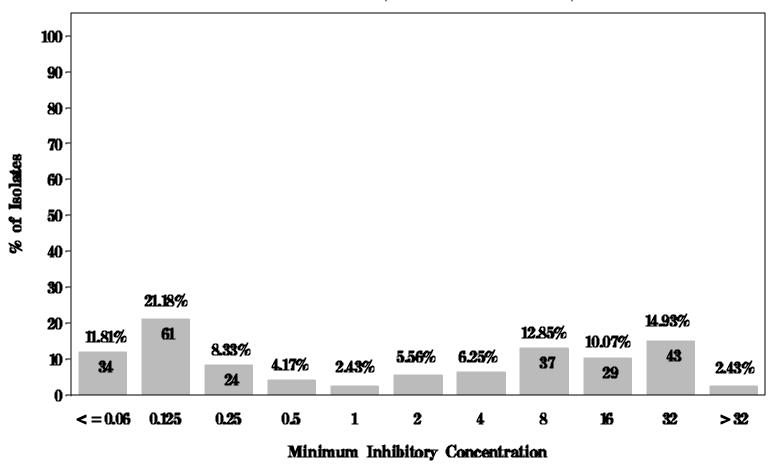


Figure 11: Minimum Inhibitory Concentration of Doxycycline for Campylobacter in Ground Turkey (N=4 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

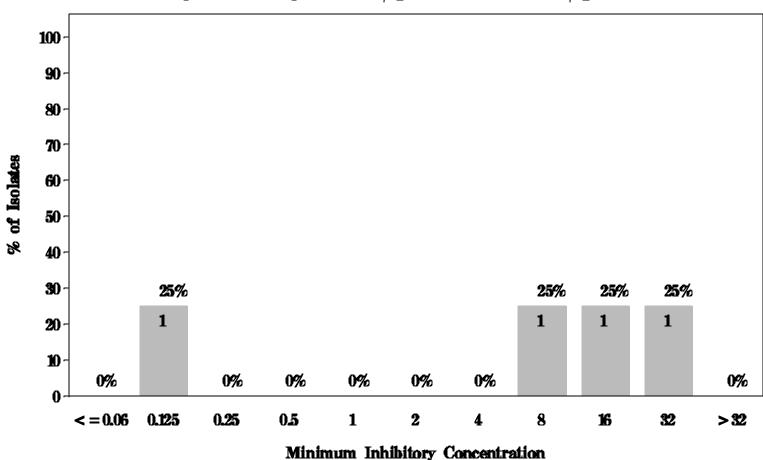


Figure 11: Minimum Inhibitory Concentration of Doxycycline for Campylobacter in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

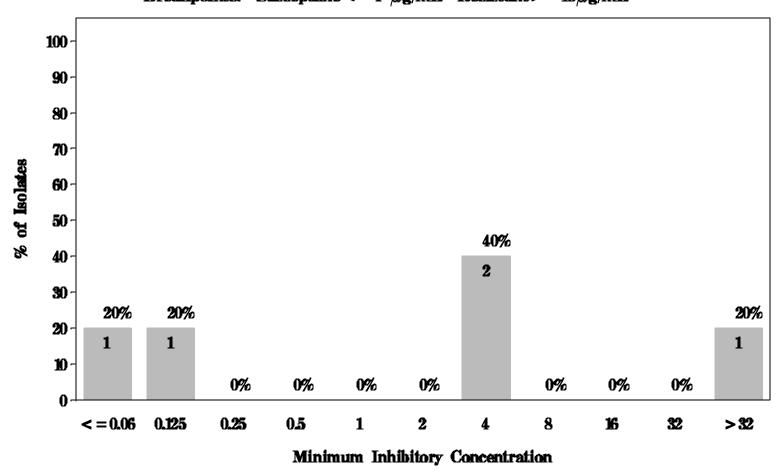


Figure 11: Minimum Inhibitory Concentration of Erythromycin for Campylobacter in Chicken Breast (N=288 Isolates)

Breakpoints: Susceptible < = 0.5 μ g/mL Resistant > = 8 μ g/mL

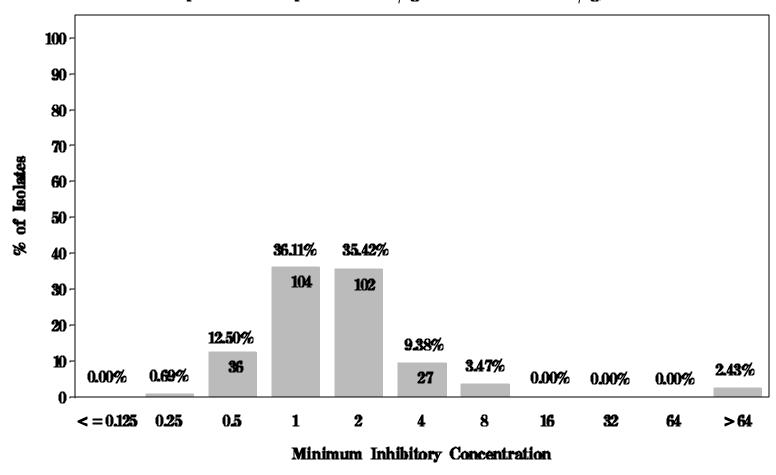


Figure 11: Minimum Inhibitory Concentration of Erythromycin for Campylobacter in Ground Turkey (N=4 Isolates)

Breakpoints: Susceptible $< = 0.5 \mu g/mL$ Resistant $> = 8\mu g/mL$

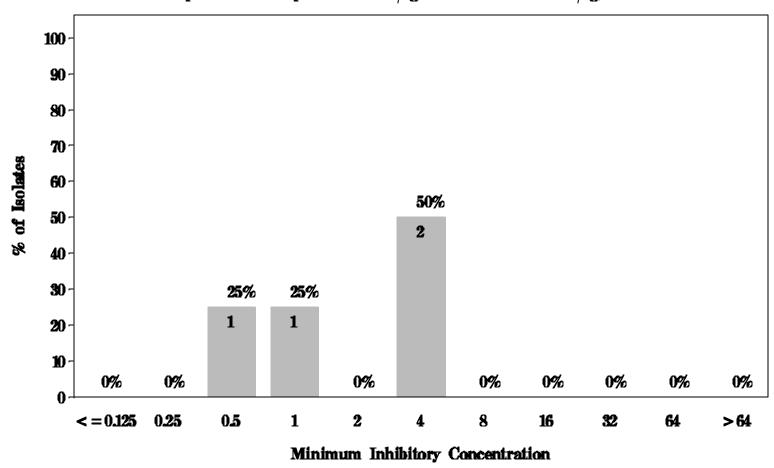


Figure 11: Minimum Inhibitory Concentration of Erythromycin for Campylobacter in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< = 0.5 \mu g/mL$ Resistant $> = 8\mu g/mL$

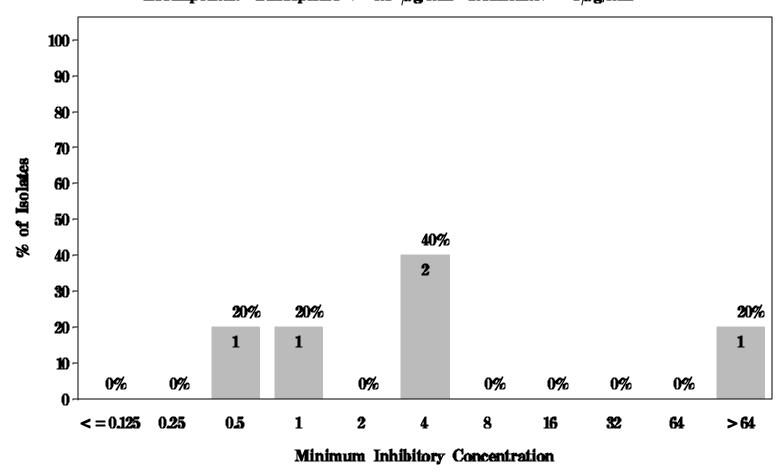


Figure 11: Minimum Inhibitory Concentration of Gentamicin for Campylobacter in Chicken Breast (N=288 Isolates) Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

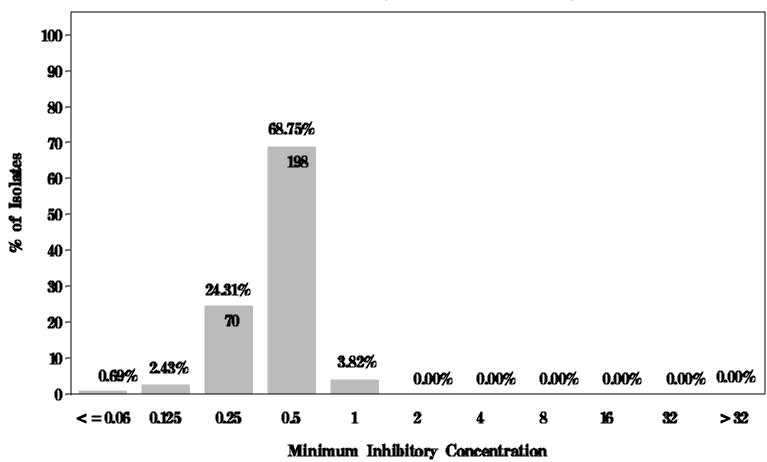


Figure 11: Minimum Inhibitory Concentration of Gentamicin for Campylobacter in Ground Turkey (N=4 Isolates)

Breakpoints: Susceptible < = $4 \mu g/mL$ Resistant > = $16 \mu g/mL$

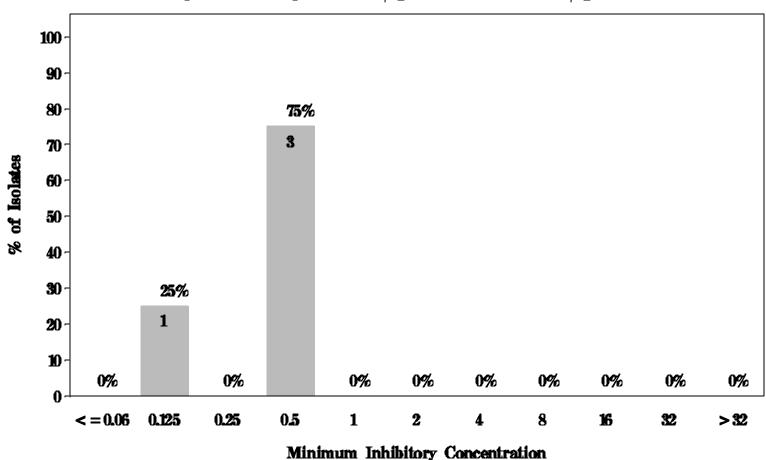


Figure 11: Minimum Inhibitory Concentration of Gentamicin for Campylobacter in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

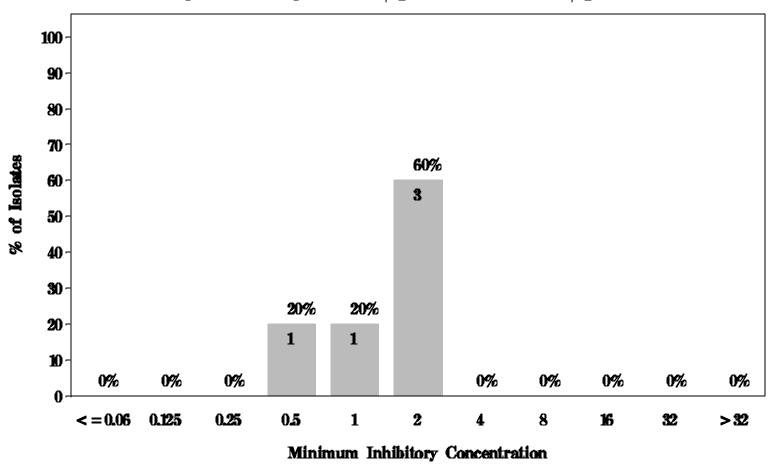


Figure 11: Minimum Inhibitory Concentration of Meropenem for Campylobacter in Chicken Breast (N=288 Isolates) Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

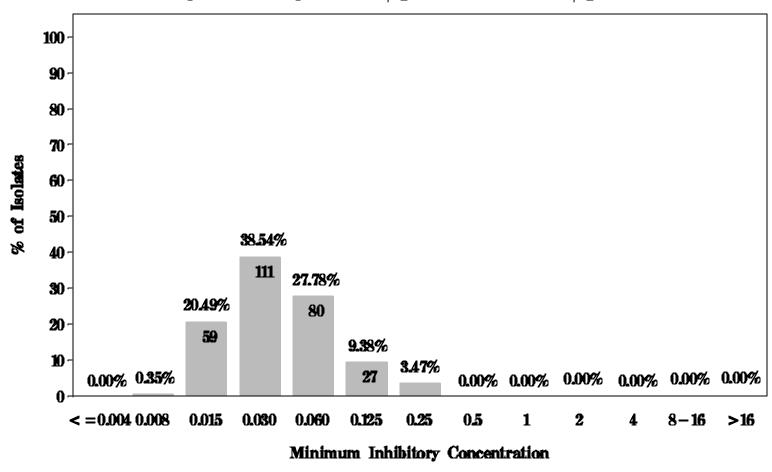


Figure 11: Minimum Inhibitory Concentration of Meropenem for Campylobacter in Ground Turkey (N=4 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

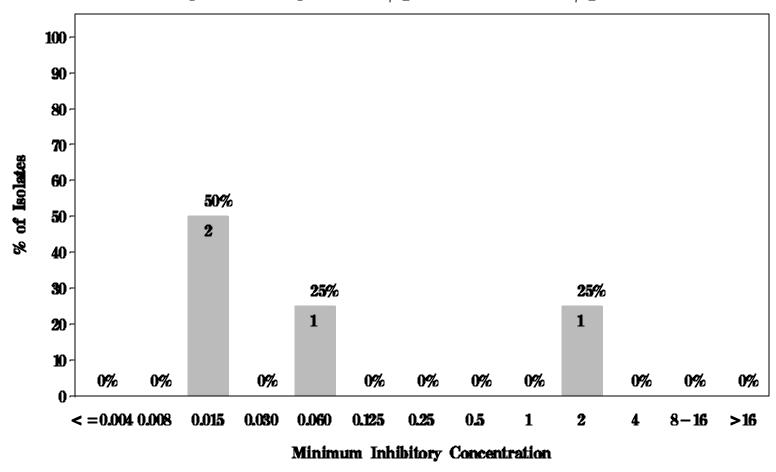


Figure 11: Minimum Inhibitory Concentration of Meropenem for Campylobacter in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

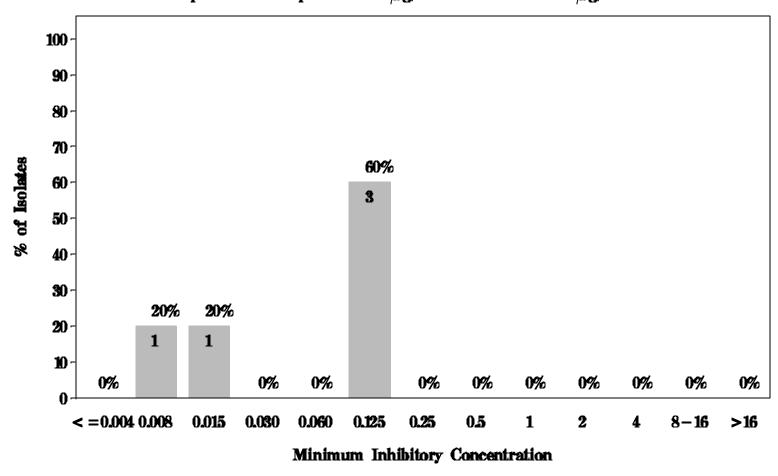


Table 24. Antimicrobial Resistance among Campylobacter by Species, 2002.

Species	Antimicrobial Agent										
	DOX	CIP	ERY	GEN	MER*						
C. coli (n=95)	42.1%	10.5%	19.0%								
C. jejuni (n=202)	20.8%	15.4%									
Total %R (N=297)	27.6%	13.8%	6.1%	0.0%	0.0%						

* One *C. coli* from ground turkey had MER MIC=2 µg/ml.

Table 25. Antimicrobial Resistance among Campylobacter jejuni & C. coli by Meat Type,* 2002.

Meat Type	Species	Antim	Agent [†]	
		DOX	CIP	ERY
Chicken	C. coli (n=90)	42.2%	10.0%	18.9%
Breast	C. jejuni (n=198)	20.7%	15.2%	
Ground	C. coli (n=2)	50.0%	50.0%	_
Turkey	<i>C. jejuni</i> (n=2)	50.0%	50.0%	
Pork	C. coli (n=3)	33.3%		33.3%
Chop	C. jejuni (n=2)			

^{*} No *Campylobacter* recovered from ground beef.

† No resistance seen to Gentamicin or Meropenem in *Campylobacter* isolates; one *C. coli* from ground turkey had MER MIC=2 μg/ml.

Table 26. Antimicrobial Resistance among Campylobacter by Site, Meat Type, and Antimicrobial Agent, 2002.

Site*	Meat Type [†]	Antimi	crobial A	lgent [‡]
		DOX	CIP	ERY
	CB (n=74)	36.5%	28.4%	6.8%
CT	GT (n=2)	50.0%	50.0%	
CI	PC (n=1)			
	Total (n=77)	36.4%	28.6%	6.5%
	CB (n=84)	26.2%	6.0%	2.4%
GA	GT (n=0)			
GA	PC (n=0)			
	Total (n=84)	26.2%	6.0%	2.4%
	CB (n=30)	23.3%	20.0%	13.3%
MD	GT (n=0)			
MID	PC (n=1)			
	Total (n=31)	22.6%	19.4%	12.9%
	CB (n=33)	3.0%		
MN	GT (n=1)	100.0%	100.0%	
17117	PC (n=0)			
	Total (n=34)	5.9%	2.9%	0.0%
	CB (n=66)	33.3%	10.6%	9.1%
TN	GT (n=1)			
111	PC (n=3)	33.3%		33.3%
	Total (n=70)	32.9%	10.0%	10.0%
	Total %R (N=297)	27.6%	13.8%	6.1%

^{*} No resistant isolates recovered from OR.

† No *Campylobacter* recovered from ground beef.

‡ No resistance seen to Gentamicin or Meropenem in *Campylobacter* isolates; one isolate from ground turkey had MER MIC=2 μg/ml.

Table 27. Number of Campylobacter Isolates (N=297) Resistant to Multiple Antimicrobial Agents,* 2002.

Meat Type	Number	er of Antimicrobia								
<i>31</i>	0	1	2	3						
СВ	173	97	17	1						
GT	1	2	1	0						
PC	4	0	1	0						
Total	178	99	19	1						

 $^{^{\}ast}$ No $\it Campylobacter$ recovered from ground beef.

Table 28. Overall *Enterococcus* Species Identified, 2002

Species	n
faecalis	893
faecium	506
hirae	102
durans	10
gallinarum	5
avium	4
Total	1520

Table 29. Enterococcus Species by Meat Type, 2002

	Chick	en Breast	Groun	nd Turkey	Grou	ınd Beef	Pork Chop		
Species	n	n %		%	n	%	n	%	
faecalis (n=893)	134	15.0%	294	32.9%	210	23.5%	255	28.6%	
faecium (n=506)	231	45.7%	89	17.6%	93	18.4%	93	18.4%	
<i>hirae</i> (n=102)	12	11.8%	2	2.0%	76	74.5%	12	11.8%	
avium (n=4)	3	75.0%		0.0%	1	25.0%		0.0%	
durans (n=10)	1	10.0%		0.0%	3	30.0%	6	60.0%	
gallinarum (n=5)		0.0%	2	40.0%		0.0%	3	60.0%	
Total (N=1520)	381	25.1%	387	25.5%	383	25.2%	369	24.3%	

Table 30. Enterococcus Species by Site and Meat Type, 2002

		Chicke	n Breast	Ground	l Turkey	Groui	nd Beef	Pork	Chop	
Site	Species	n	%	#	%	#	%	#	%	
GA	faecalis (n=393)	84	21.4%	118	30.0%	85	21.6%	106	27.0%	
	faecium (n=47)	27	57.4%	2	4.3%	7	14.9%	11	23.4%	
	hirae (n=33)	7	21.2%		0.0%	24	72.7%	2	6.1%	
	avium (n=2)	2	100.0%		0.0%		0.0%		0.0%	
	durans (n=2)		0.0%		0.0%	2	100.0%		0.0%	
	Total (n=477)	120	25.2%	120	25.2%	118	24.7%	119	24.9%	
MD	faecalis (n=117)	10	8.5%	38	32.5%	31	26.5%	38	32.5%	
1,12	faecium (n=284)	105	37.0%	74	26.1%	56	19.7%	49	17.3%	
	hirae (n=31)	1	3.2%	1	3.2%	20	64.5%	9	29.0%	
	avium (n=1)	1	100.0%		0.0%		0.0%		0.0%	
	durans (n=5)		0.0%		0.0%		0.0%	5	100.0%	
	Total (n=438)	117	26.7%	113	25.8%	107	24.4%	101	23.1%	
OD	faecalis (n=115)	21	18.3%	35	30.4%	22	19.1%	37	32.2%	
OR	faecium (n=27)	17	63.0%	4	14.8%	4	14.8%	2	7.4%	
	hirae (n=16)	2	12.5%		0.0%	14	87.5%		0.0%	
	gallinarum (n=1)		0.0%	1	100.0%		0.0%		0.0%	
	Total (n=159)	40	25.2%	40	25.2%	40	25.2%	39	24.5%	
TN	faecalis (n=268)	19	7.1%	103	38.4%	72	26.9%	74	27.6%	
	faecium (n=148)	82	55.4%	9	6.1%	26	17.6%	31	20.9%	
	hirae (n=22)	2	9.1%	1	4.5%	18	81.8%	1	4.5%	
	avium (n=1)		0.0%		0.0%	1	100.0%		0.0%	
	durans (n=3)	1	33.3%		0.0%	1	33.3%	1	33.3%	
	gallinarum (n=4)		0.0%	1	25.0%		0.0%	3	75.0%	
	Total (n=446)	104	23.3%	114	25.6%	118	26.5%	110	24.7%	

Table 31. Enterococcus Isolates by Month for All Sites, 2002

Month	n	%
January	120	7.9%
February	119	7.8%
March	112	7.4%
April	115	7.6%
May	108	7.1%
June	120	7.9%
July	116	7.6%
August	115	7.6%
September	152	10.0%
October	160	10.5%
November	149	9.8%
December	134	8.8%
Total	1520	100.0%

Table 32. Enterococcus Species by Meat Type and Month for All Sites, 2002

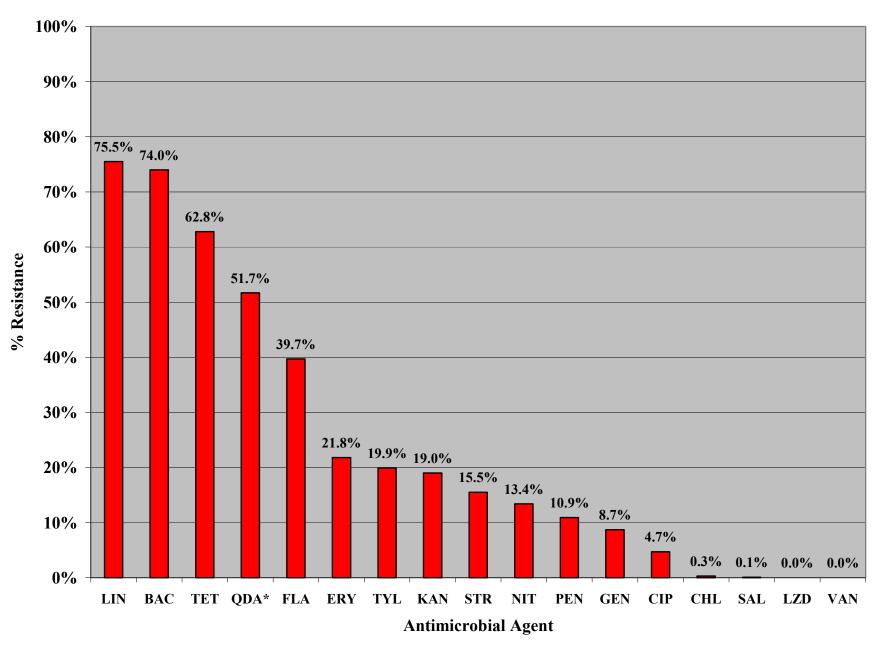

			Jan		Feb]	Mar	,	Apr	1	May		Jun		Jul	1	Aug		Sep	,	Oct		Nov]	Dec
Meat Type	Species	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
СВ	fa <i>ecalis</i> (n=134)	21	15.7%	10	7.5%	10	7.5%	11	8.2%	11	8.2%	7	5.2%	9	6.7%	7	5.2%	13	9.7%	14	10.4%	13	9.7%	8	6.0%
	faecium (n=231)	7	3.0%	18	7.8%	19	8.2%	17	7.4%	15	6.5%	22	9.5%	20	8.7%	22	9.5%	22	9.5%	22	9.5%	25	10.8%	22	9.5%
	hirae (n=12)	1	8.3%	1	8.3%							1	8.3%			1	8.3%	5	41.7%	3	25.0%				
	avium (n=3)	1	33.3%							1	33.3%									1	33.3%				
	durans (n=1)			1	100%																				
	Total (n=381)	30	7.9%	30	7.9%	29	7.6%	28	7.3%	27	7.1%	30	7.9%	29	7.6%	30	7.9%	40	10.5%	40	10.5%	38	10.0%	30	7.9%
GT	faecalis (n=294)	21	7.1%	25	8.5%	17	5.8%	24	8.2%	19	6.5%	20	6.8%	20	6.8%	22	7.5%	26	8.8%	31	10.5%	35	11.9%	34	11.6%
	faecium (n=89)	9	10.1%	5	5.6%	8	9.0%	6	6.7%	9	10.1%	9	10.1%	9	10.1%	8	9.0%	10	11.2%	9	10.1%	2	2.2%	5	5.6%
	hirae (n=2)											1	50.0%					1	50.0%						
	gallinarum (n=2)																	2	100%						
	Total (n=387)	30	7.8%	30	7.8%	25	6.5%	30	7.8%	28	7.2%	30	7.8%	29	7.5%	30	7.8%	39	10.1%	40	10.3%	37	9.6%	39	10.1%
GB	faecalis (n=210)	16	7.6%	14	6.7%	17	8.1%	16	7.6%	14	6.7%	16	7.6%	16	7.6%	16	7.6%	20	9.5%	22	10.5%	23	11.0%	20	9.5%
	faecium (n=93)	5	5.4%	13	14.0%	9	9.7%	9	9.7%	5	5.4%	8	8.6%	8	8.6%	2	2.2%	10	10.8%	11	11.8%	6	6.5%	7	7.5%
	hirae (n=76)	9	11.8%	3	3.9%	3	3.9%	2	2.6%	7	9.2%	6	7.9%	5	6.6%	8	10.5%	8	10.5%	6	7.9%	8	10.5%	11	14.5%
	avium (n=1)																			1	100%				
	durans (n=3)																					2	66.7%	1	33.3%
	Total (n=383)	30	7.8%	30	7.8%	29	7.6%	27	7.0%	26	6.8%	30	7.8%	29	7.6%	26	6.8%	38	9.9%	40	10.4%	39	10.2%	39	10.2%
PC	faecalis (n=255)	21	8.2%	21	8.2%	19	7.5%	24	9.4%	12	4.7%	15	5.9%	18	7.1%	18	7.1%	29	11.4%	31	12.2%	26	10.2%	21	8.2%
	faecium (n=93)	9	9.7%	7	7.5%	10	10.8%	6	6.5%	8	8.6%	12	12.9%	11	11.8%	8	8.6%	4	4.3%	8	8.6%	5	5.4%	5	5.4%
	hirae (n=12)			1	8.3%							2	16.7%			3	25.0%	2	16.7%			4	33.3%		
	durans (n=6)									4	66.7%	1	16.7%							1	16.7%				
	gallinarum (n=3)									3	100%														
	Total (369)	30	8.1%	29	7.9%	29	7.9%	30	8.1%	27	7.3%	30	8.1%	29	7.9%	29	7.9%	35	9.5%	40	10.8%	35	9.5%	26	7.0%
Total ((N=1520)	120	7.9%	119	7.8%	112	7.4%	115	7.6%	108	7.1%	120	7.9%	116	7.6%	115	7.6%	152	10.0%	160	10.5%	149	9.8%	134	8.8%

Table 33. Antimicrobial Resistance (% R) among Enterococcus Isolates (N=1520), 2002

Antimicrobial Agent	n	% R
Quinupristin-Dalfopristin*	324	51.7%
Lincomycin	1148	75.5%
Bacitracin	1124	74.0%
Tetracycline	954	62.8%
Flavomycin	603	39.7%
Erythromycin	332	21.8%
Tylosin	302	19.9%
Kanamycin	289	19.0%
Streptomycin	235	15.5%
Nitrofurantoin	204	13.4%
Penicillin	166	10.9%
Gentamicin	132	8.7%
Ciprofloxacin	71	4.7%
Chloramphenicol	4	0.3%
Salinomycin	2	0.1%
Linezolid	0	0.0%
Vancomycin	0	0.0%

^{*} Presented for all species except E. faecalis (n=893)

Figure 12. Antimicrobial Resistance among *Enterococcus* Isolates (N=1520), 2002

^{*}Presented for all species except E. faecalis in QDA (N=1520-893=627 non E. faecalis)

Figure 13: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* (N=1520 Isolates)

Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 128 \mu g/mL$

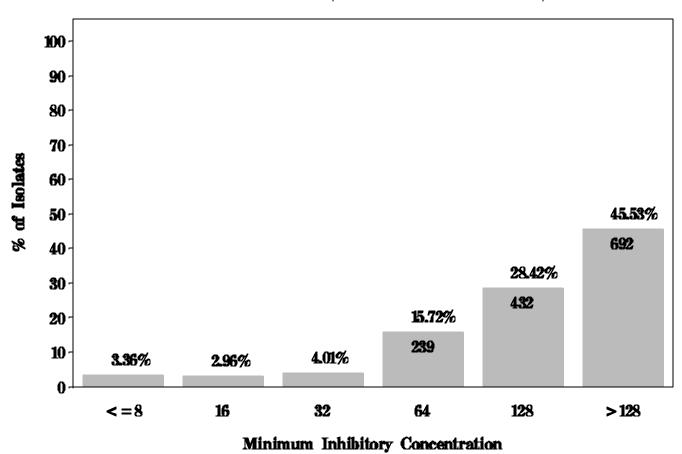


Figure 13: Minimum Inhibitory Concentration of Chloramphenicol for Enterococcus (N=1520 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

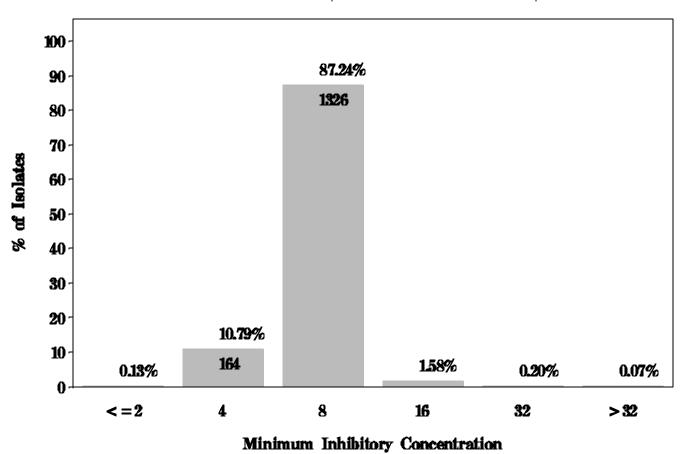


Figure 13: Minimum Inhibitory Concentration of Ciprofloxacin for Enterococcus (N=1520 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

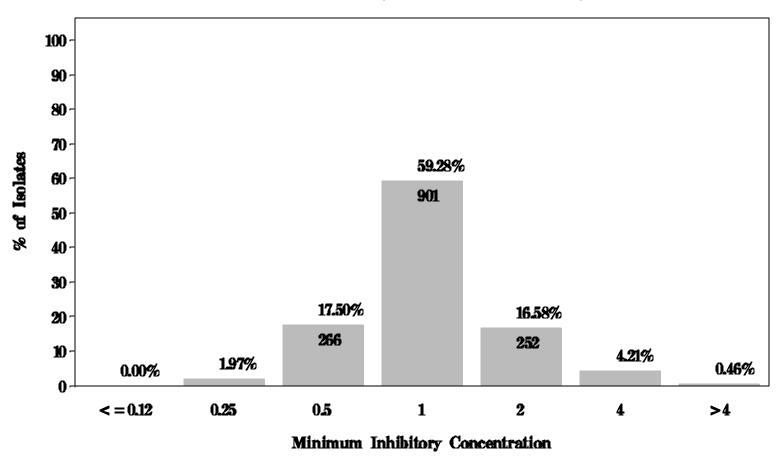


Figure 13: Minimum Inhibitory Concentration of Erythromycin for Enterococcus (N=1520 Isolates)

Breakpoints: Susceptible < = .5 μ g/mL Resistant > =8 μ g/mL

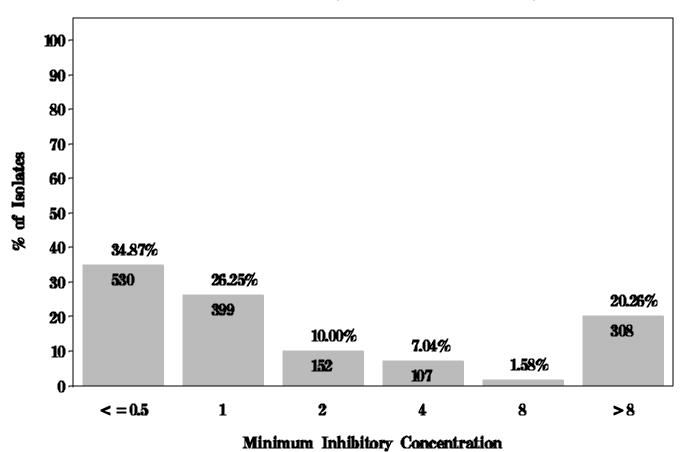


Figure 13: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* (N=1520 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

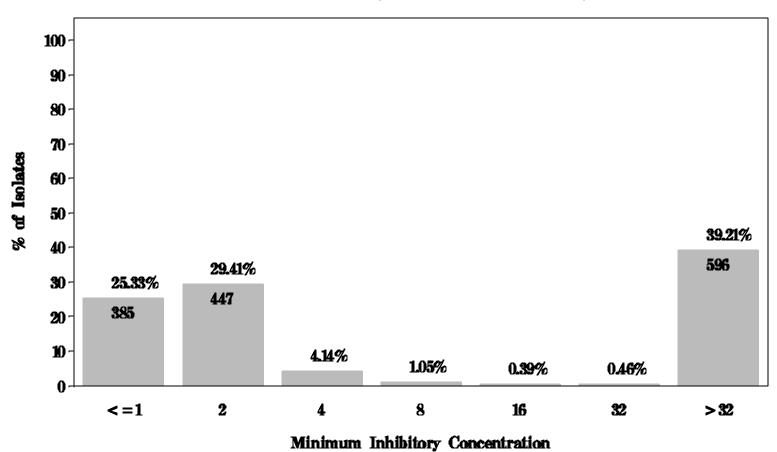


Figure 13: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* (N=1520 Isolates)

Breakpoints: Susceptible < 500 μ g/mL Resistant > = 500 μ g/mL

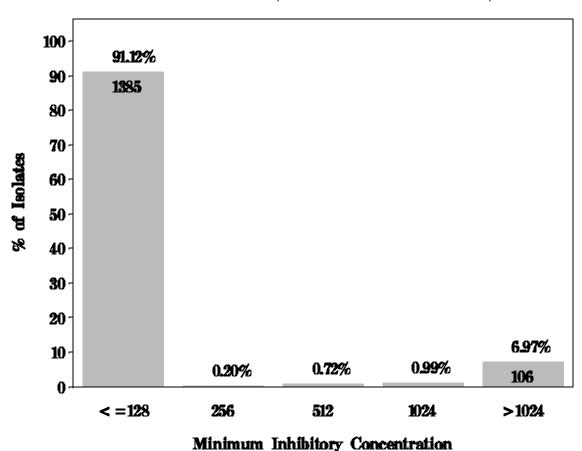


Figure 13: Minimum Inhibitory Concentration of Kanamycin for *Enterococcus* (N=1520 Isolates)

Breakpoints: Susceptible < = 128 μ g/mL Resistant > = 512 μ g/mL

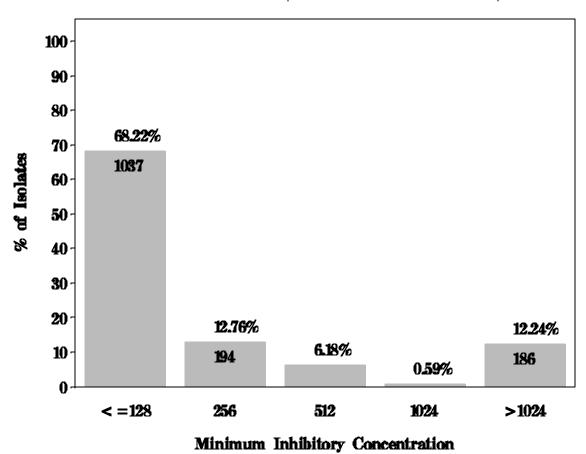


Figure 13: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* (N=1520 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

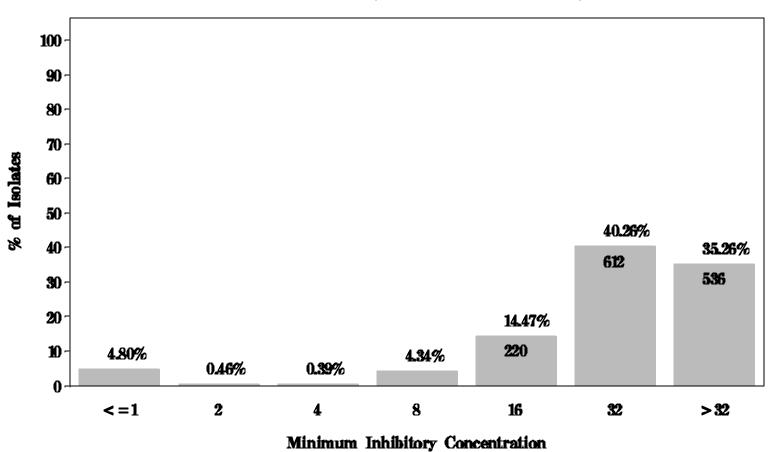


Figure 13: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* (N=1520 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

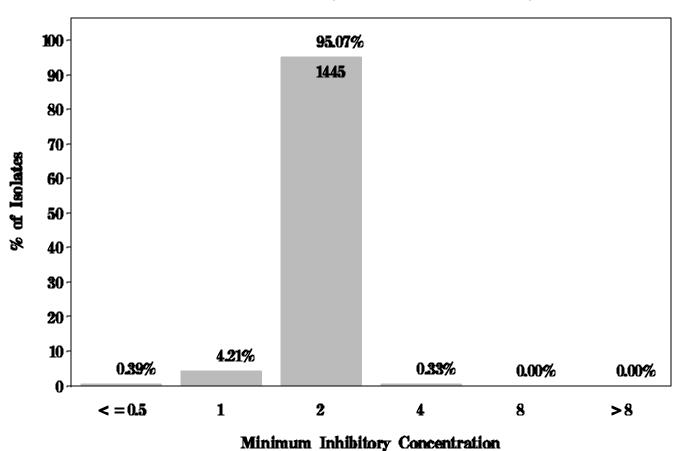


Figure 13: Minimum Inhibitory Concentration of Nitrofurantoin for Enterococcus (N=1520 Isolates)

Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 128 \mu g/mL$

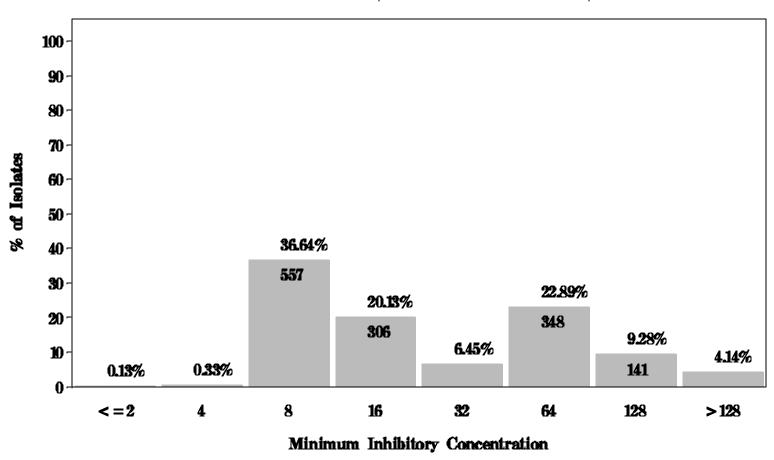


Figure 13: Minimum Inhibitory Concentration of Penicillin

for Enterococcus (N=1520 Isolates)

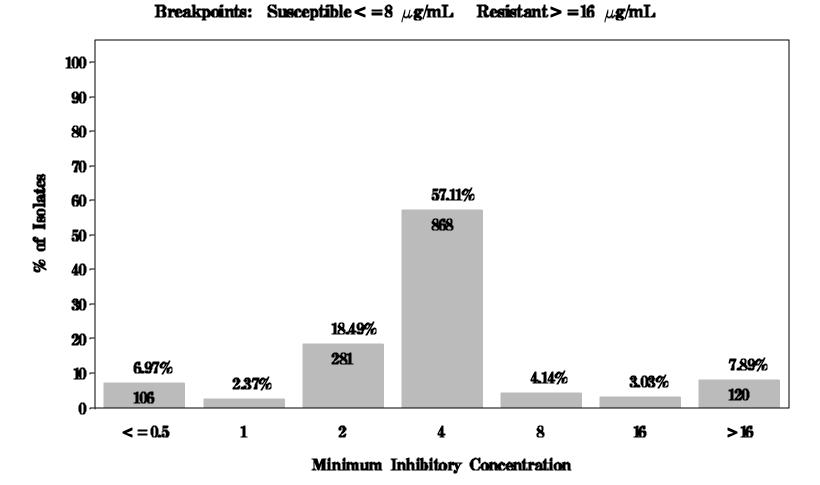


Figure 13: Minimum Inhibitory Concentration of Salinomycin for *Enterococcus* (N=1520 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

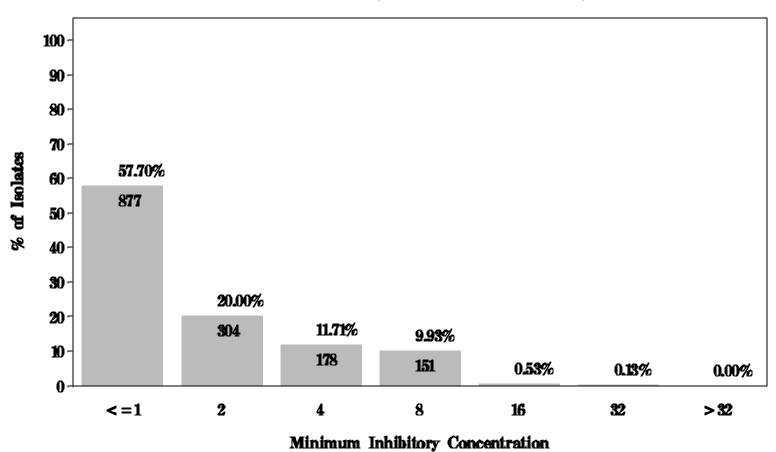
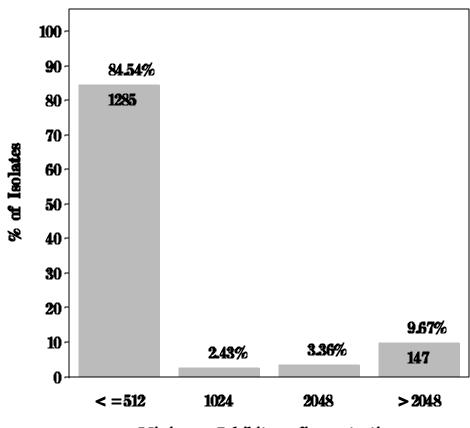



Figure 13: Minimum Inhibitory Concentration of Streptomycin for *Enterococcus* (N=1520 Isolates)

Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

Minimum Inhibitory Concentration

Figure 13: Minimum Inhibitory Concentration of Quinupristin—dalfopristin for Enterococcus (N=627 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

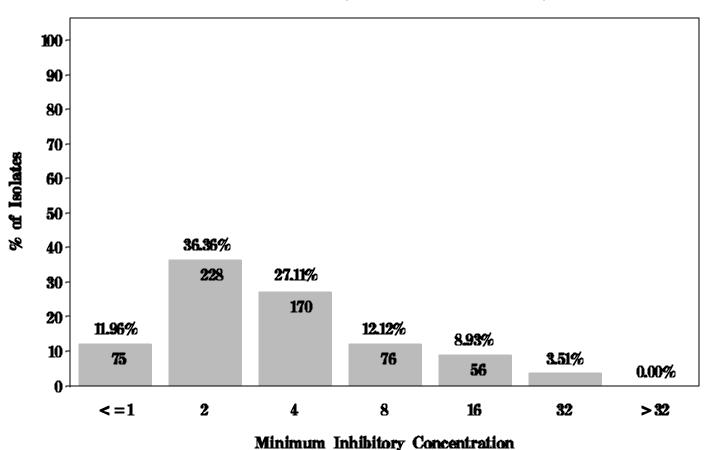


Figure 13: Minimum Inhibitory Concentration of Tetracycline for Enterococcus (N=1520 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

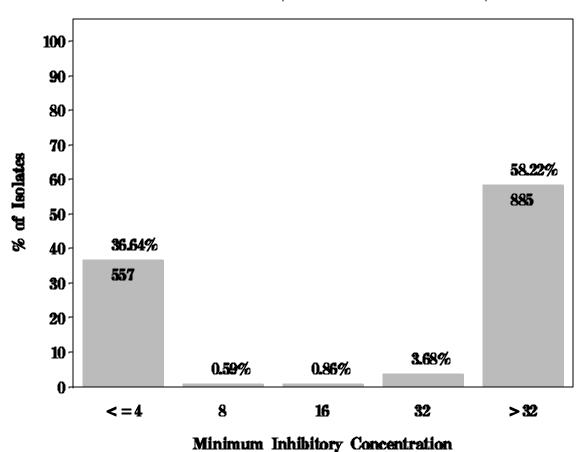


Figure 13: Minimum Inhibitory Concentration of Tylosin for Enterococcus (N=1520 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

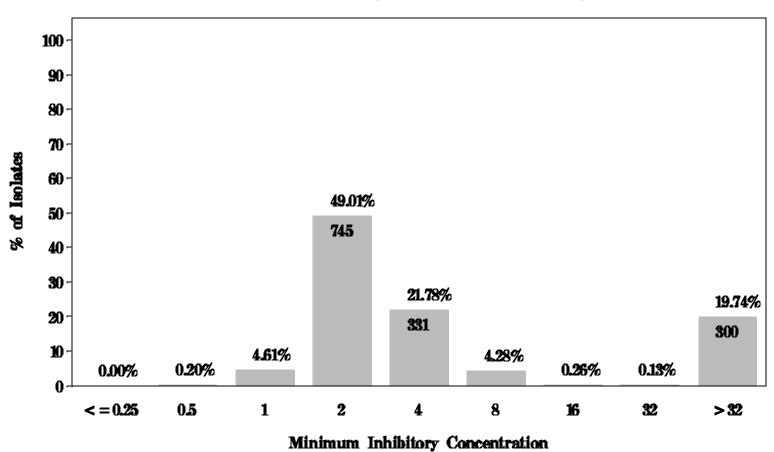


Figure 13: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* (N=1520 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 32 \mu g/mL$

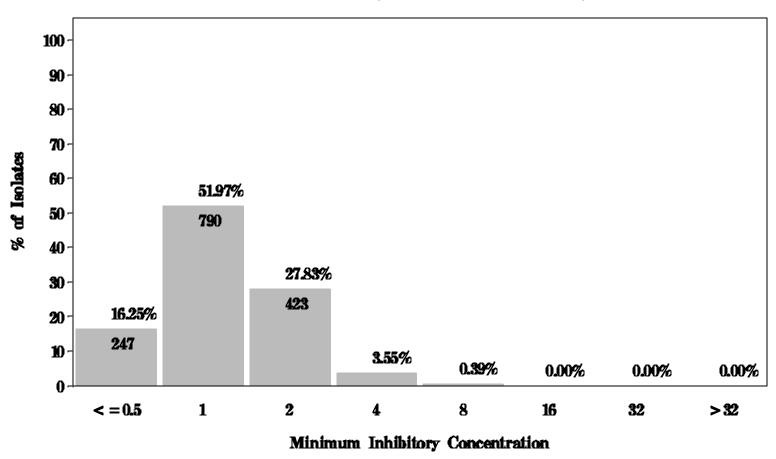
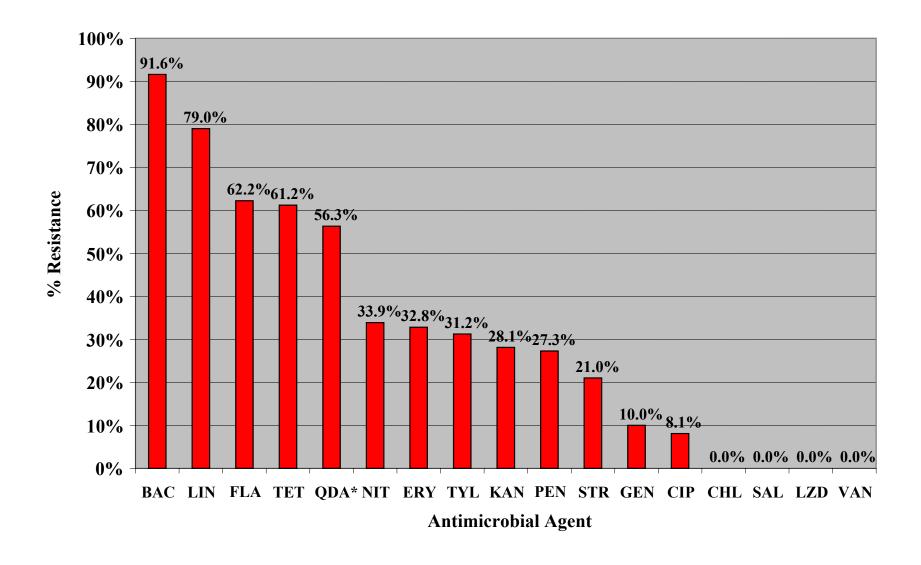



Table 34. Antimicrobial Resistance among Enterococcus by Meat Type for All Sites, 2002

	Chicken Breast (N=381)		Ground Turkey (N=387)		Ground Beef (N=383)		Pork Chop (N=369)	
Antimicrobial Agent	n	% R	n	% R	n	% R	n	% R
Quinupristin-Dalfopristin*	139	56.3%	74	79.6%	80	46.2%	31	27.2%
Lincomycin	301	79.0%	342	88.4%	258	67.4%	247	66.9%
Bacitracin	349	91.6%	318	82.2%	206	53.8%	251	68.0%
Tetracycline	233	61.2%	332	85.8%	108	28.2%	281	76.2%
Flavomycin	237	62.2%	86	22.2%	165	43.1%	115	31.2%
Erythromycin	125	32.8%	136	35.1%	29	7.6%	42	11.4%
Tylosin	119	31.2%	126	32.6%	25	6.5%	32	8.7%
Kanamycin	107	28.1%	127	32.8%	26	6.8%	29	7.9%
Streptomycin	80	21.0%	107	27.7%	15	3.9%	33	8.9%
Nitrofurantoin	129	33.9%	52	13.4%	18	4.7%	5	1.4%
Penicillin	104	27.3%	59	15.3%	0	0.0%	3	0.8%
Gentamicin	38	10.0%	79	20.4%	7	1.8%	8	2.2%
Ciprofloxacin	31	8.1%	21	5.4%	12	3.1%	7	1.9%
Chloramphenicol	0	0.0%	1	0.3%	2	0.52%	1	0.3%
Salinomycin	0	0.0%	2	0.5%	0	0.0%	0	0.0%
Linezolid	0	0.0%	0	0.0%	0	0.0%	0	0.0%
Vancomycin	0	0.0%	0	0.0%	0	0.0%	0	0.0%

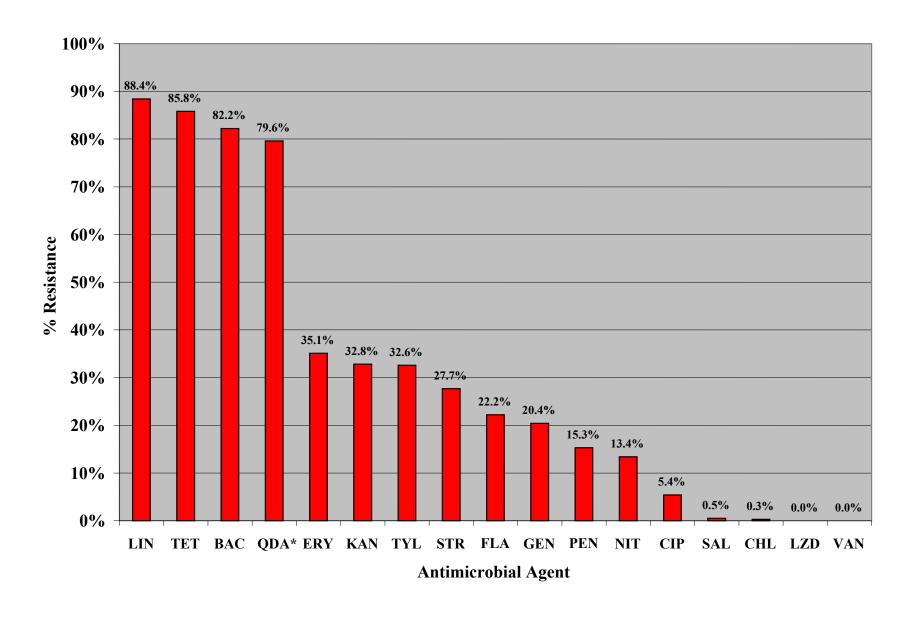

^{*} Presented for all species except E. faecalis which is considered intrinsically resistant.

Figure 14a. Antimicrobial Resistance among Enterococcus from Chicken Breast (n=381), 2002

^{*} Presented for all species except E. faecalis in QDA (n=381-134= 247 non E. faecalis)

Figure 14b. Antimicrobial Resistance among Enterococcus from Ground Turkey (n=387), 2002

^{*} Presented for all species except E. faecalis in QDA (n=387-294= 93 non E. faecalis)

Figure 14c. Antimicrobial Resistance among Enterococcus from Ground Beef (n=383), 2002

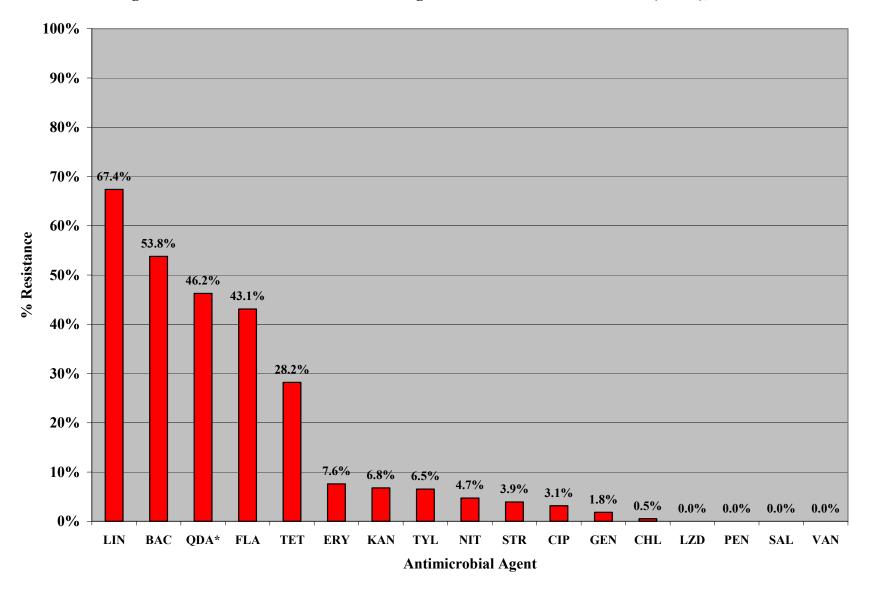
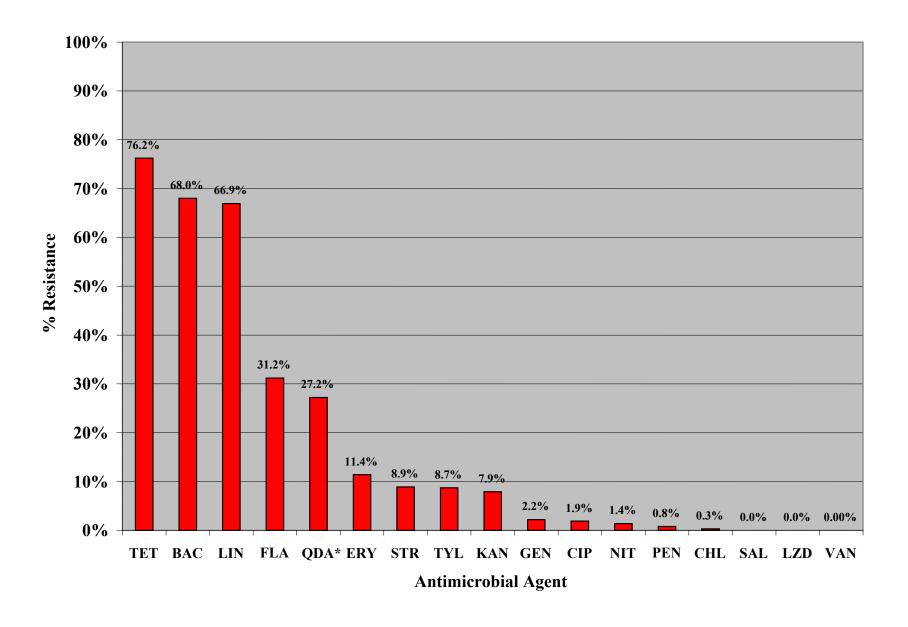



Figure 14d. Antimicrobial Resistance among Enterococcus from Pork Chop (n=369), 2002

^{*} Presented for all species except E. faecalis in QDA (n=369-255=114 non E. faecalis)

Figure 15: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible <= 32 μ g/mL Resistant >= 128 μ g/mL

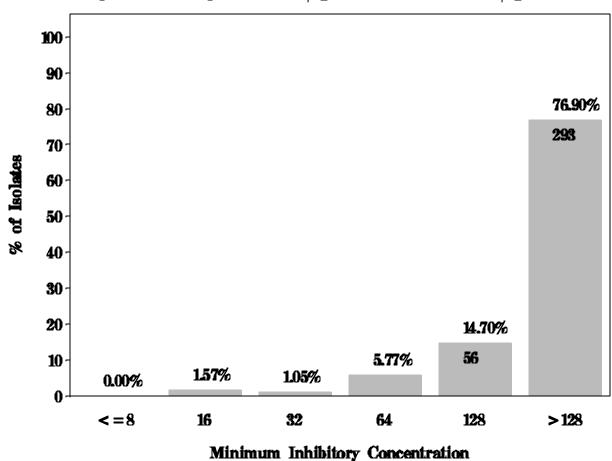


Figure 15: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* in Ground Turkey (N=387 Isolates) Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

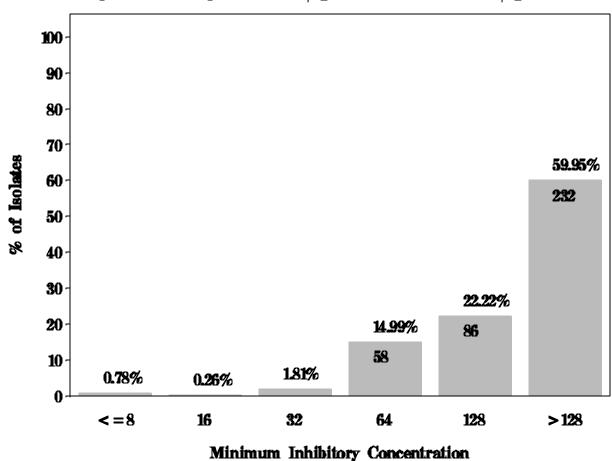


Figure 15: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* in Ground Beef (N=383 Isolates) Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

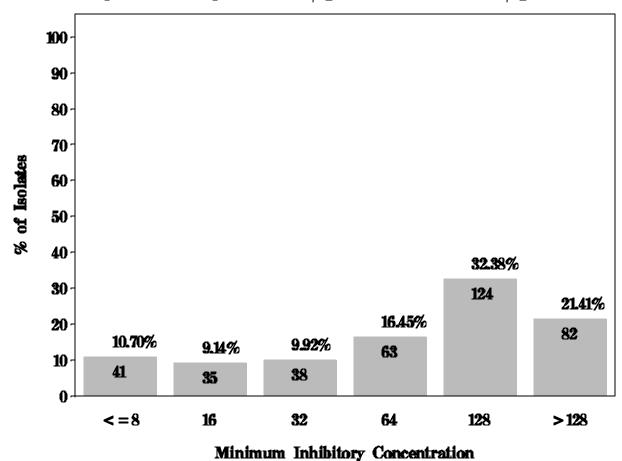


Figure 15: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

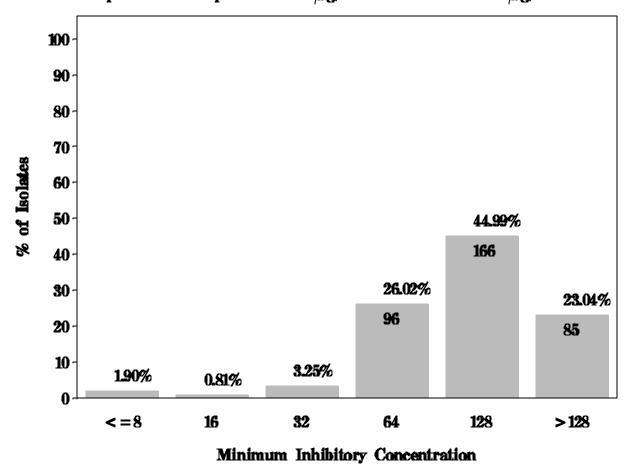


Figure 15: Minimum Inhibitory Concentration of Chloramphenicol for Enterococcus in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible <= $8~\mu g/mL$ Resistant >= $32 \mu g/mL$

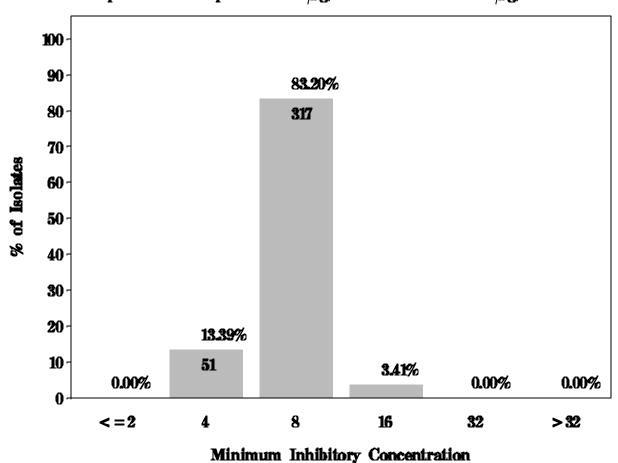


Figure 15: Minimum Inhibitory Concentration of Chloramphenicol for Enterococcus in Ground Turkey (N = 387 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

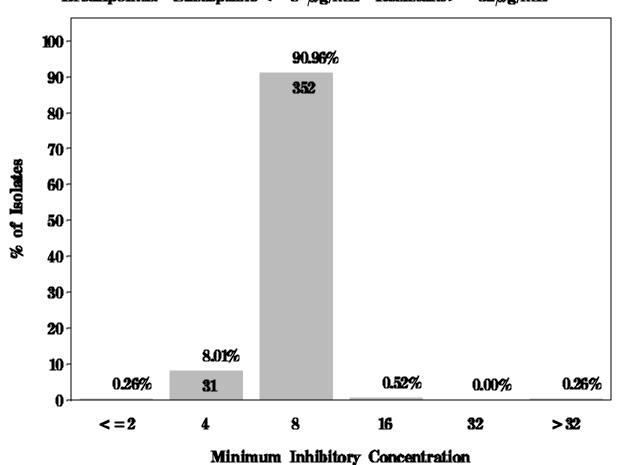


Figure 15: Minimum Inhibitory Concentration of Chloramphenicol for Enterococcus in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

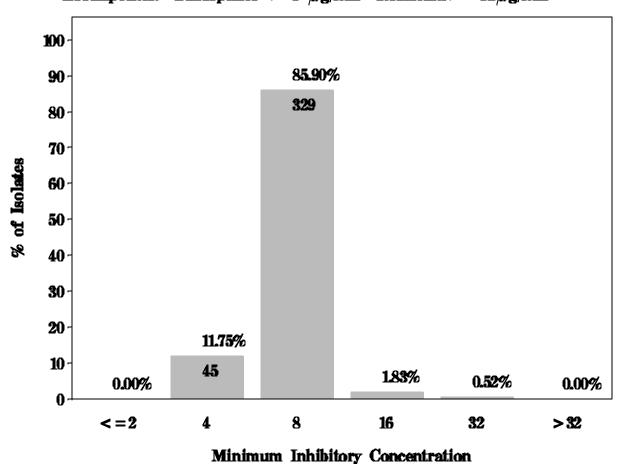


Figure 15: Minimum Inhibitory Concentration of Chloramphenicol for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

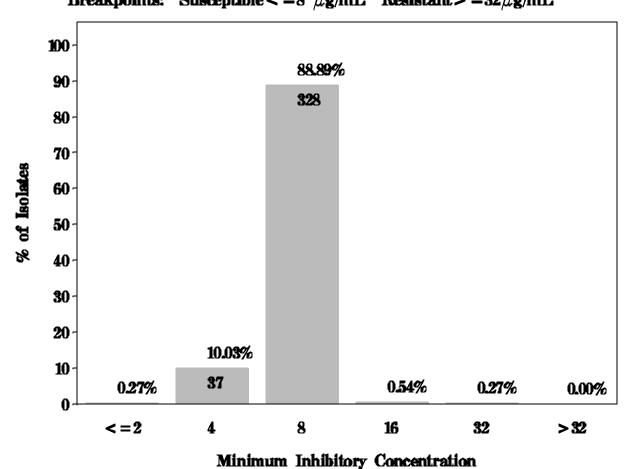


Figure 15: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Chicken Breast (N=381 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

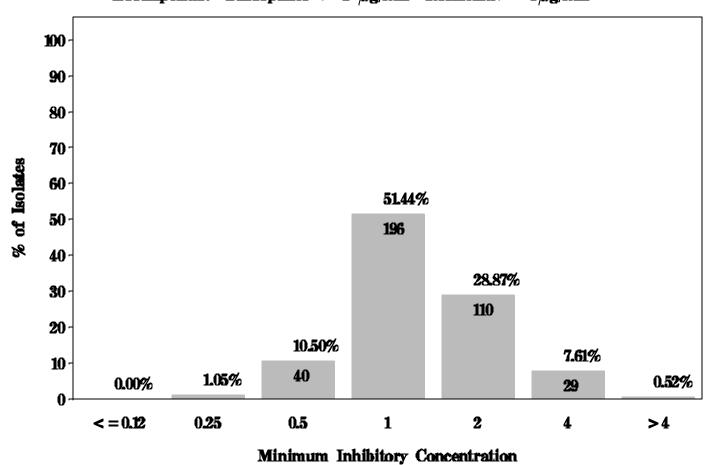


Figure 15: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Ground Turkey (N=387 Isolates) Breakpoints: Susceptible $<=1~\mu g/mL$ Resistant $>=4~\mu g/mL$

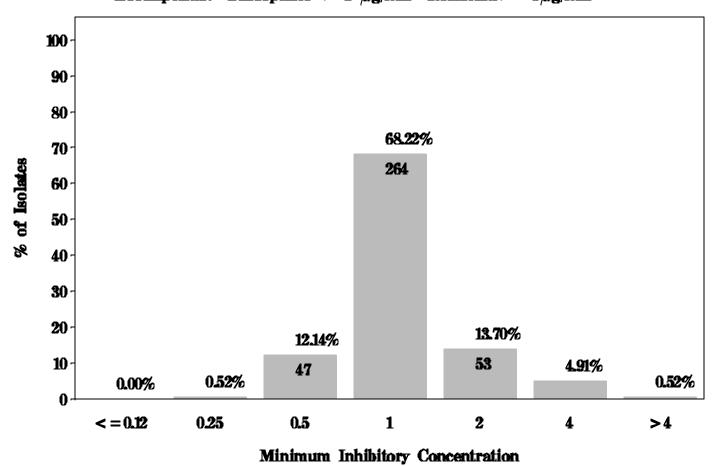


Figure 15: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

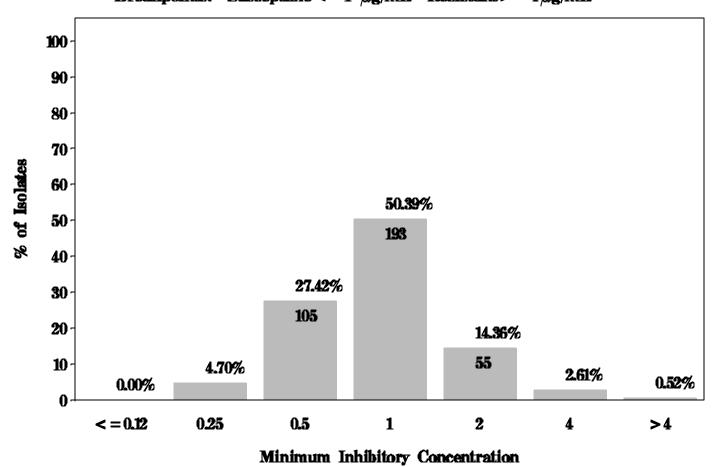


Figure 15: Minimum Inhibitory Concentration of Ciprofloxacin for Enterococcus in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible < = 1 μ g/mL Resistant > = 4 μ g/mL

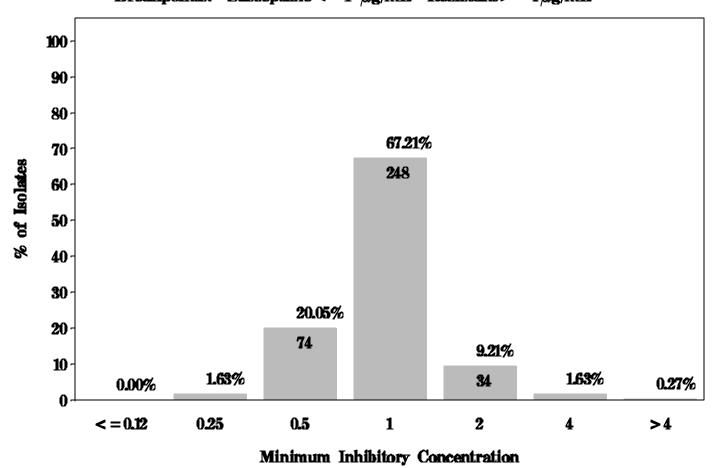


Figure 15: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible < = .5 μ g/mL Resistant > = 8μ g/mL

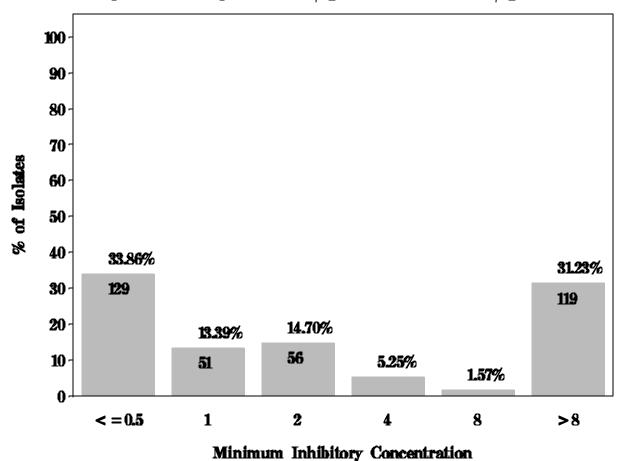


Figure 15: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* in Ground Turkey (N=387 Isolates)

Breakpoints: Susceptible < = .5 μ g/mL Resistant > = 8 μ g/mL

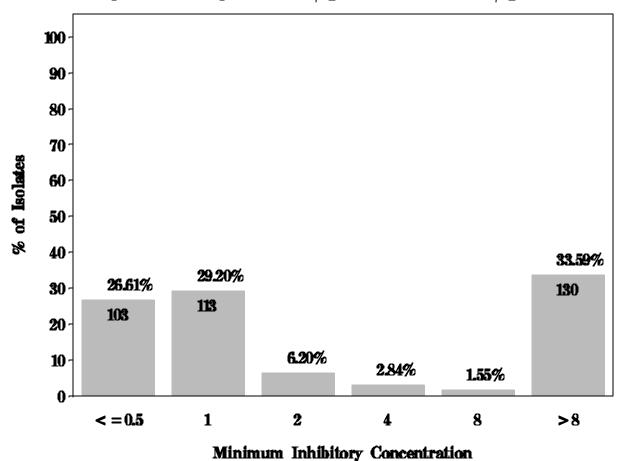


Figure 15: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* in Ground Beef (N=383 Isolates) Breakpoints: Susceptible < =.5 μ g/mL Resistant > =8 μ g/mL

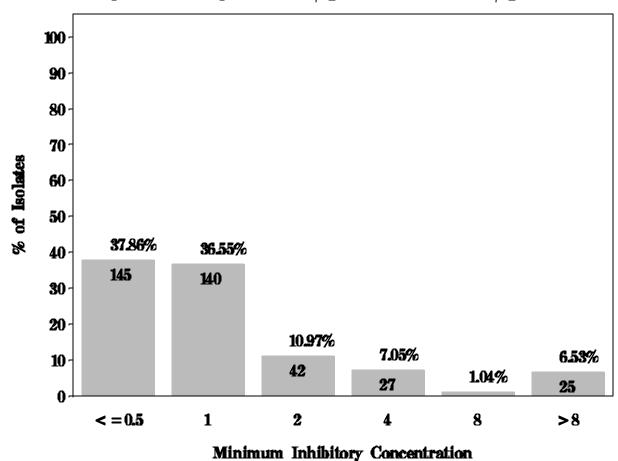


Figure 15: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible $< =.5 \mu g/mL$ Resistant $> =8\mu g/mL$

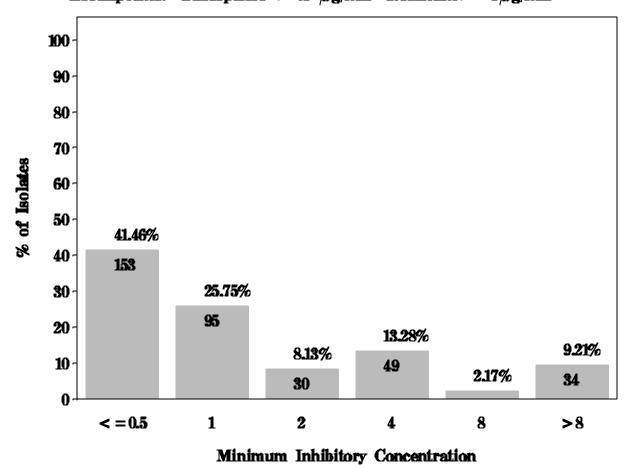


Figure 15: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32 \mu g/mL$

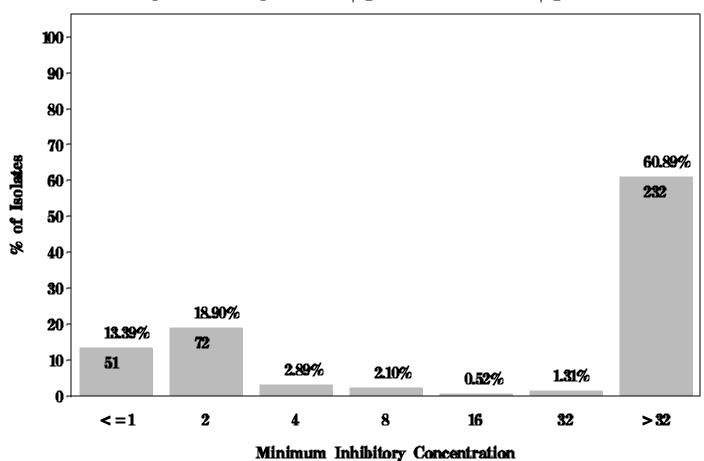


Figure 15: Minimum Inhibitory Concentration of Flavornycin for *Enterococcus* in Ground Turkey (N = 387 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

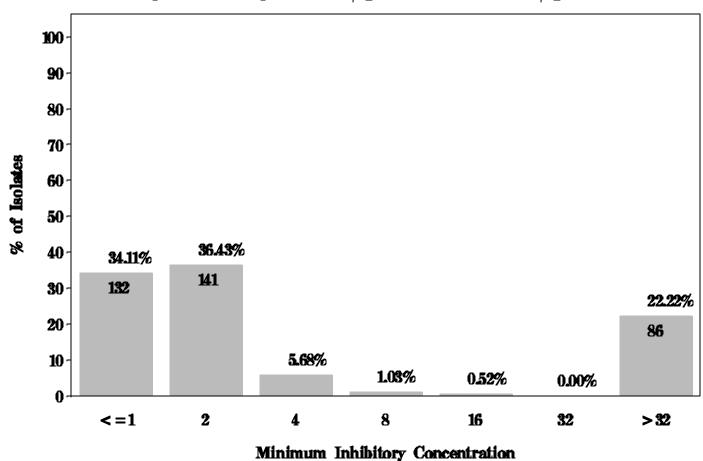


Figure 15: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Ground Beef (N=383 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32\mu g/mL$

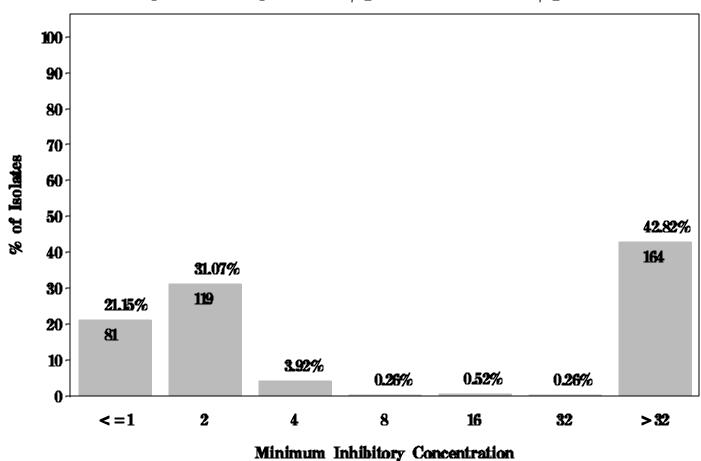


Figure 15: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

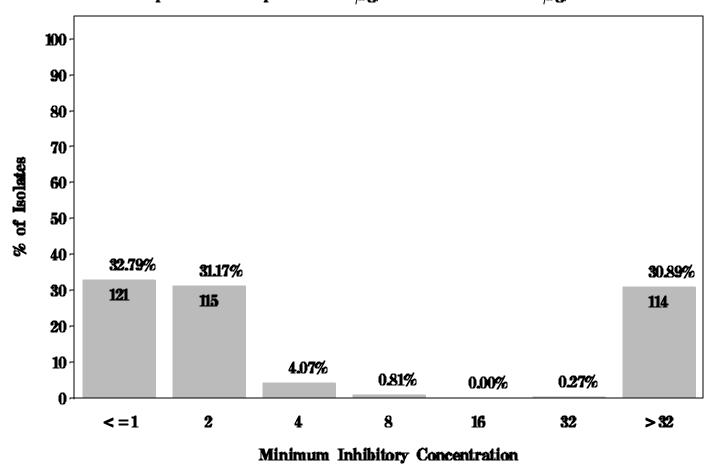
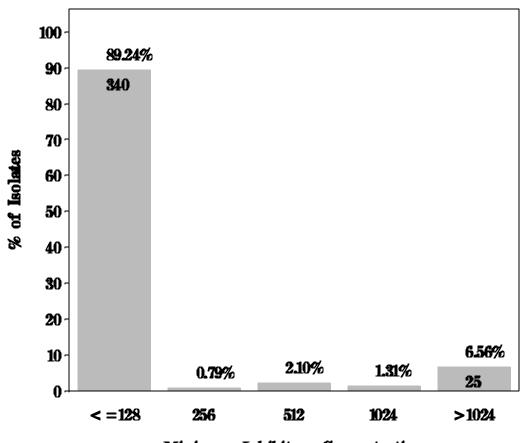



Figure 15: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* in Chicken Breast (N=381 Isolates)

Breakpoints: Susceptible < 500 μ g/mL Resistant > = 500 μ g/mL

Minimum Inhibitory Concentration

Figure 15: Minimum Inhibitory Concentration of Gentamicin for Enterococcus in Ground Turkey (N=387 Isolates)

Breakpoints: Susceptible < 500 μ g/mL Resistant > = 500 μ g/mL

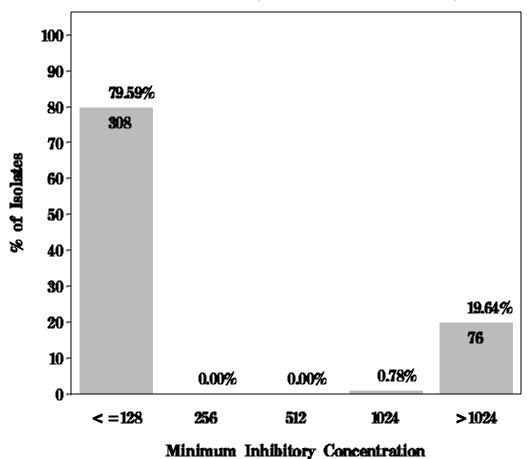


Figure 15: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible < 500 μ g/mL Resistant > = 500 μ g/mL

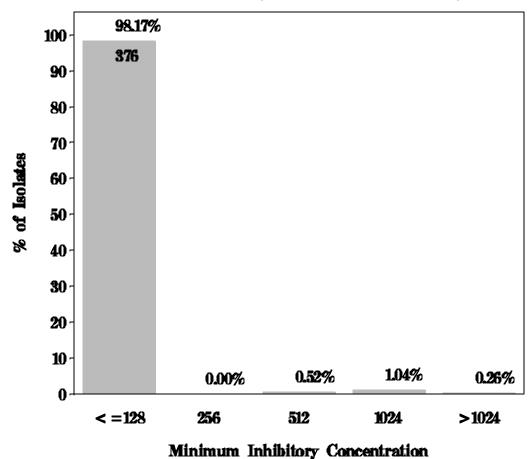


Figure 15: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible < 500 μ g/mL Resistant > = 500 μ g/mL

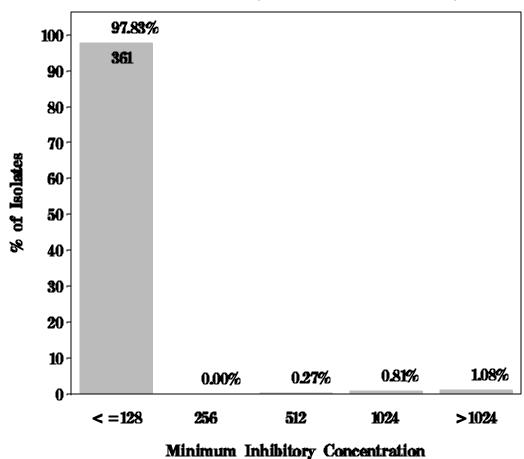


Figure 15: Minimum Inhibitory Concentration of Kanamycin for *Enterococcus* in Chicken Breast (N=381 Isolates)

Breakpoints: Susceptible <= 128 μ g/mL Resistant >= 512 μ g/mL

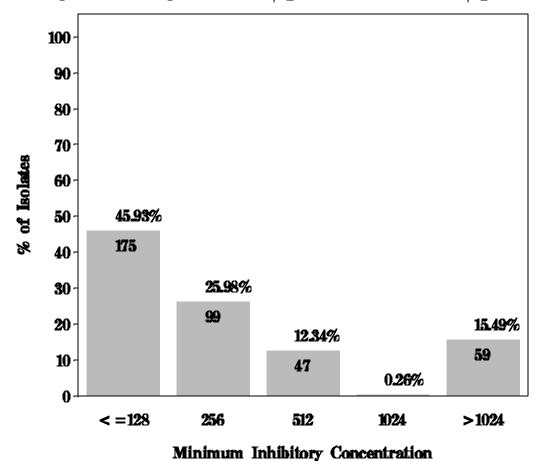


Figure 15: Minimum Inhibitory Concentration of Kanamycin for *Enterococcus* in Ground Turkey (N=387 Isolates)

Breakpoints: Susceptible <= 128 μ g/mL Resistant >= 512 μ g/mL

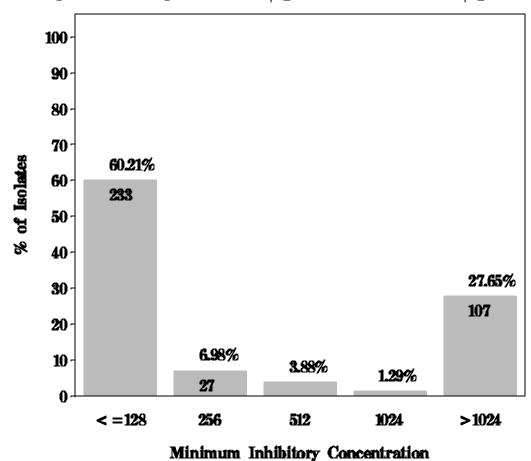


Figure 15: Minimum Inhibitory Concentration of Kanamycin for Enterococcus in Ground Beef (N=383 Isolates) Breakpoints: Susceptible <= 128 μ g/mL Resistant >= 512 μ g/mL

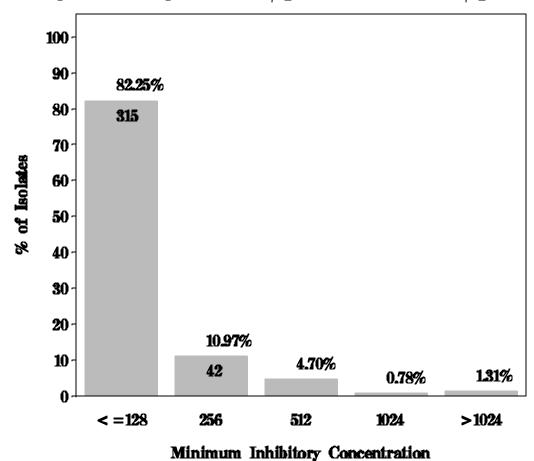


Figure 15: Minimum Inhibitory Concentration of Kanamycin for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible < = 128 μ g/mL Resistant > = 512 μ g/mL

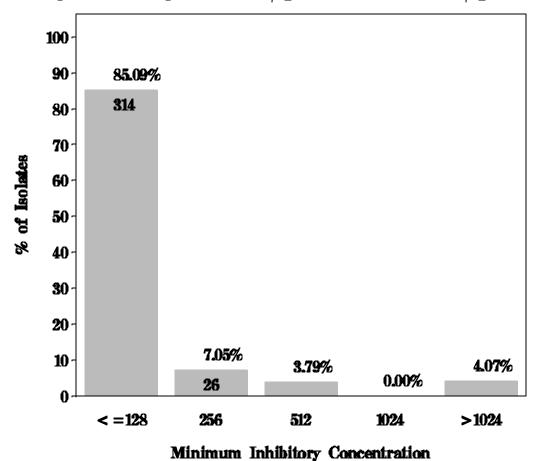


Figure 15: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32 \mu g/mL$

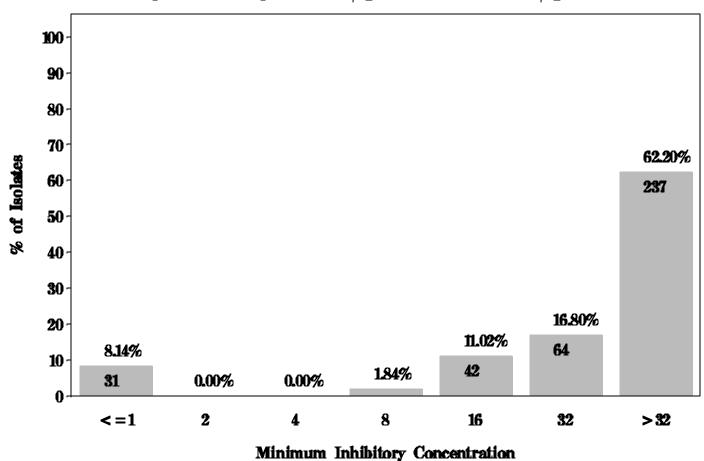


Figure 15: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Ground Turkey (N=387 Isolates)

Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

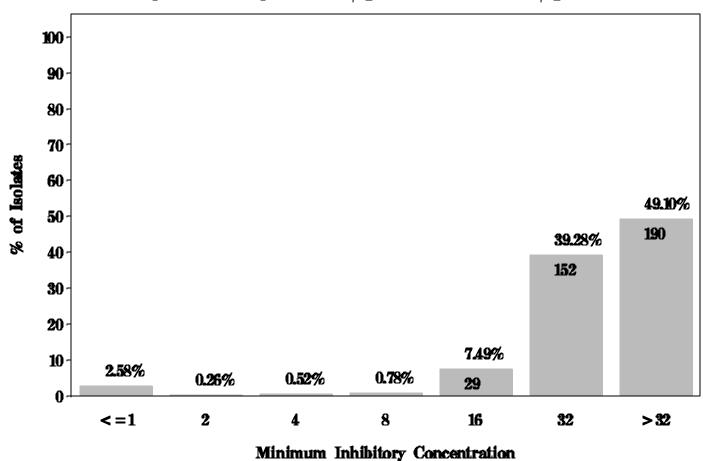


Figure 15: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

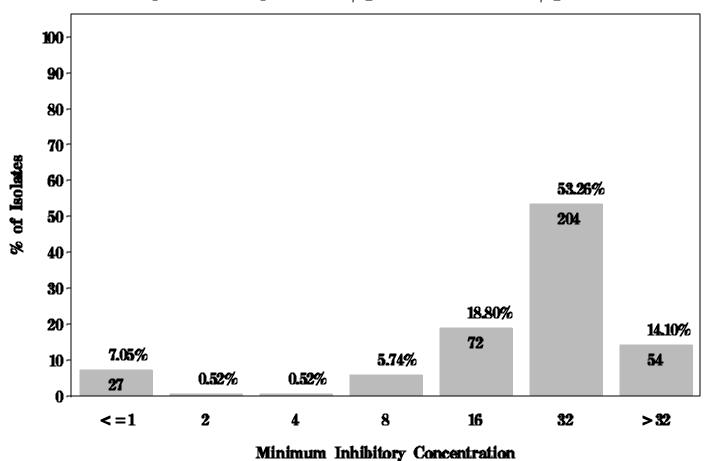


Figure 15: Minimum Inhibitory Concentration of Lincomycin for Enterococcus in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

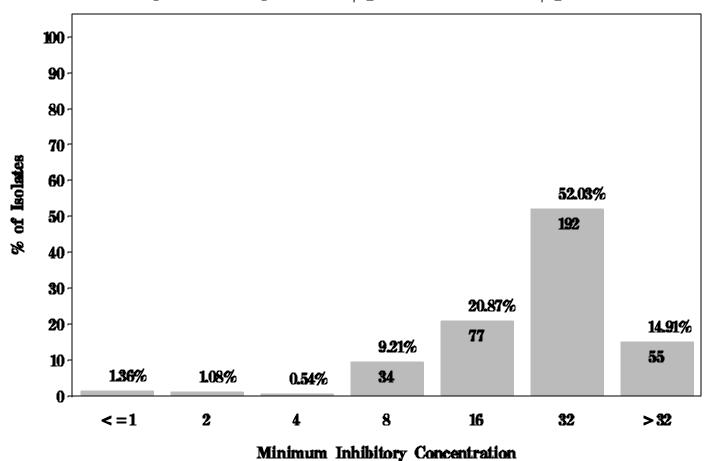


Figure 15: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible $<=2~\mu g/mL$ Resistant $>=8\mu g/mL$

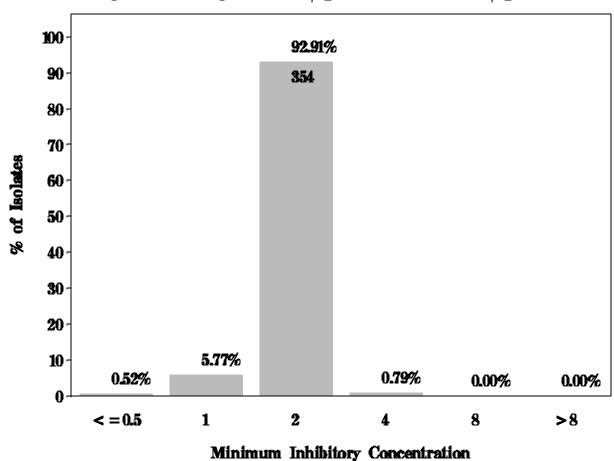
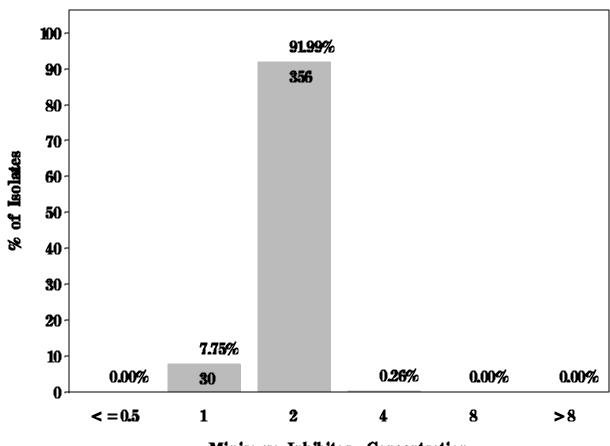
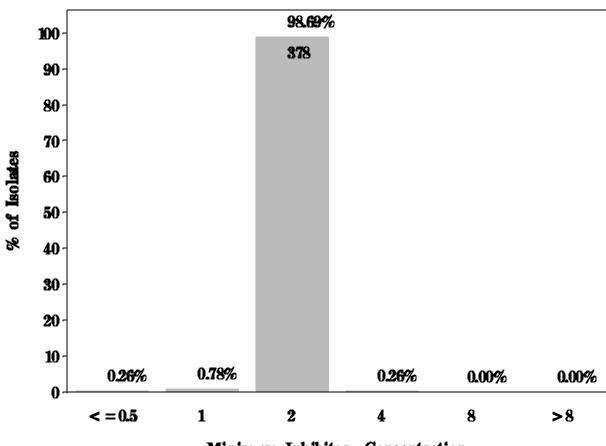



Figure 15: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Ground Turkey (N=387 Isolates)


Breakpoints: Susceptible <= $2 \mu g/mL$ Resistant >= $8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 15: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8\mu g/mL$

Minimum Inhibitory Concentration

Figure 15: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible $<=2 \mu g/mL$ Resistant $>=8\mu g/mL$

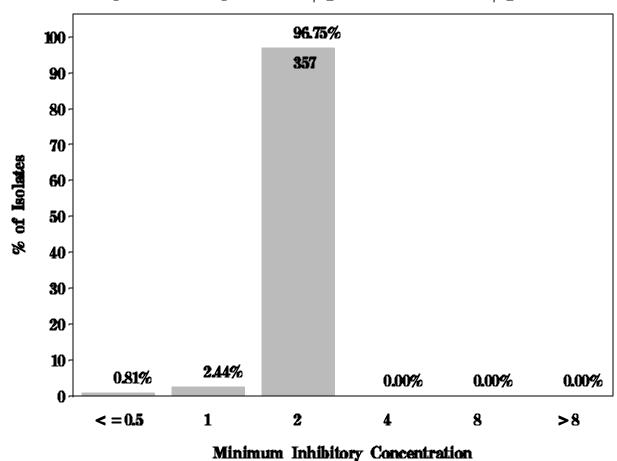


Figure 15: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible $<=32~\mu g/mL$ Resistant $>=128\mu g/mL$

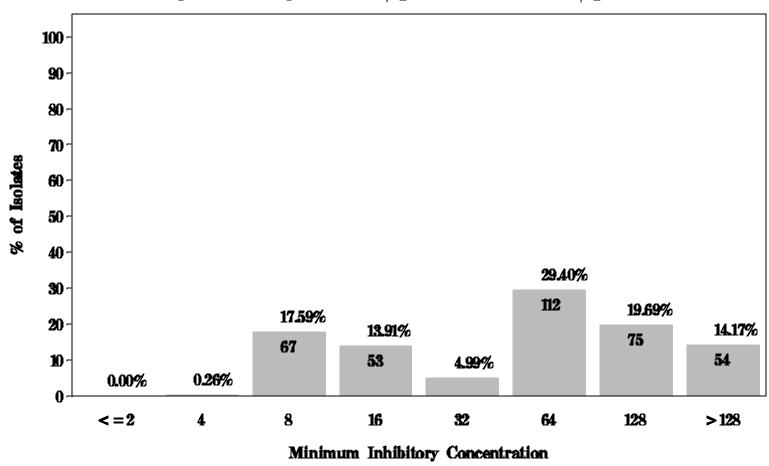


Figure 15: Minimum Inhibitory Concentration of Nitrofurantoin for Enterococcus in Ground Turkey (N=387 Isolates) Breakpoints: Susceptible <= 32 μ g/mL Resistant >= 128 μ g/mL

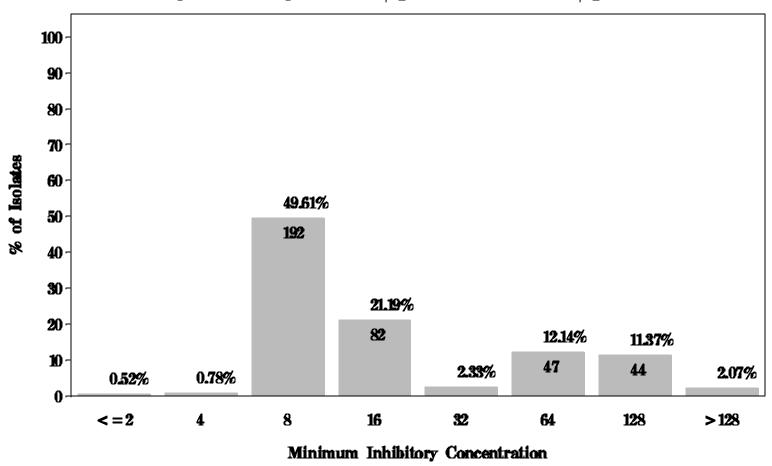


Figure 15: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible <= 32 μ g/mL Resistant >= 128 μ g/mL

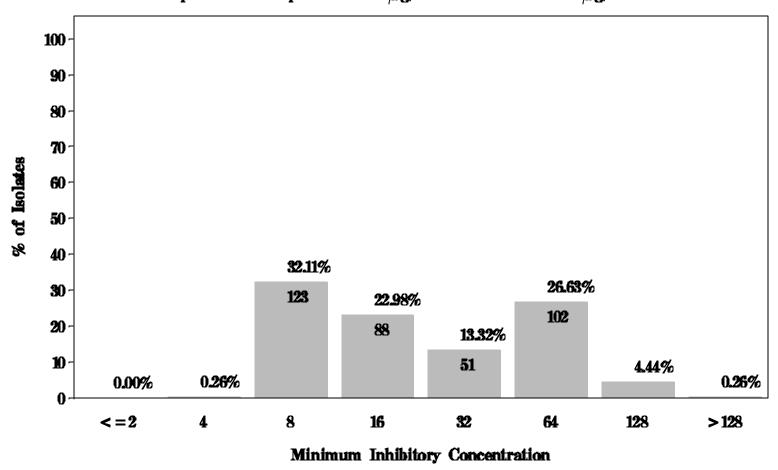


Figure 15: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

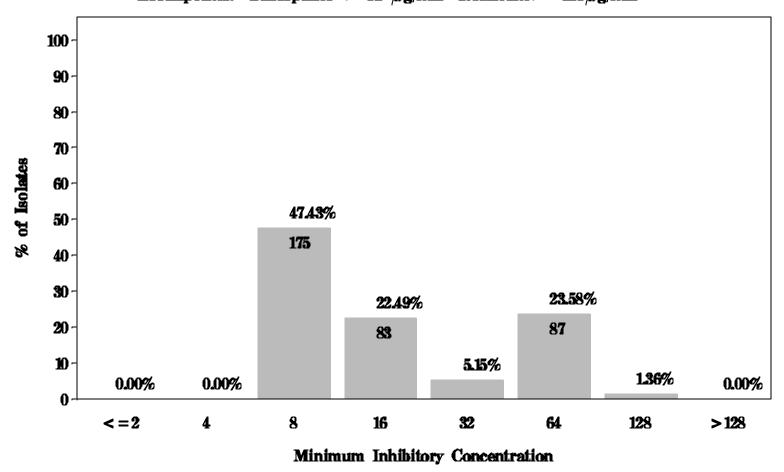


Figure 15: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=16 \mu g/mL$

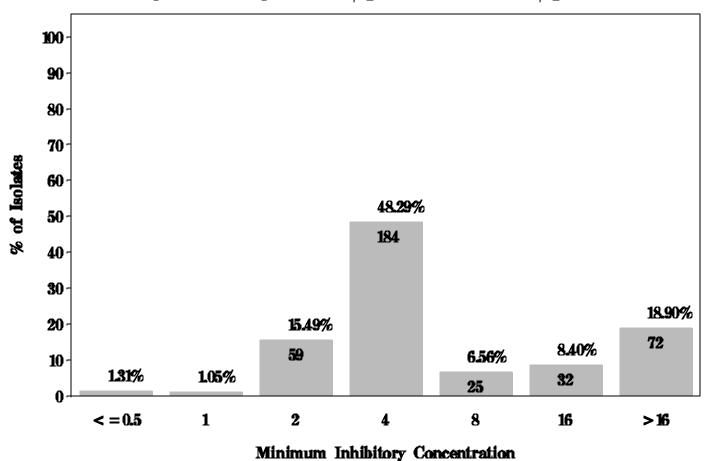


Figure 15: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Ground Turkey (N=387 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=16 \mu g/mL$

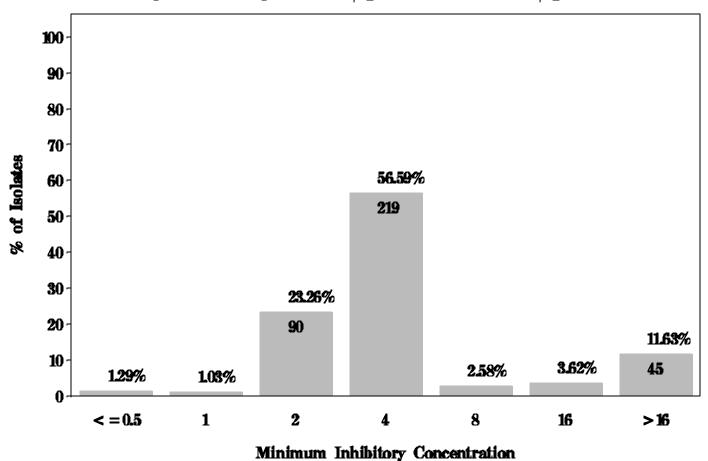


Figure 15: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $16 \mu g/mL$

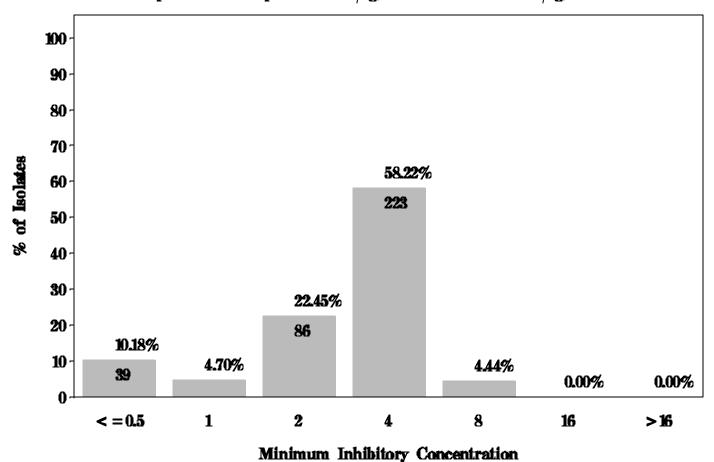


Figure 15: Minimum Inhibitory Concentration of Penicillin for Enterococcus in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 16 μ g/mL

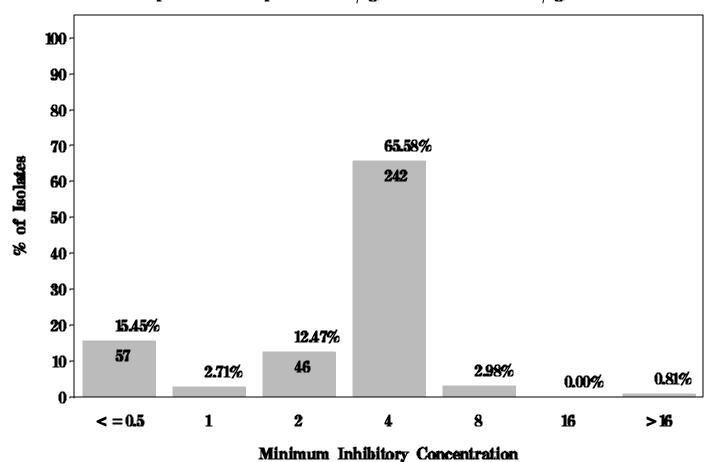


Figure 15: Minimum Inhibitory Concentration of Salinomycin for *Enterococcus* in Chicken Breast (N=381 Isolates)

Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

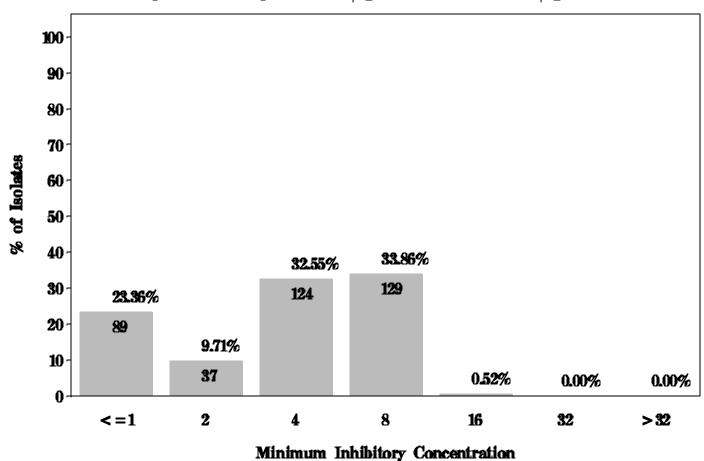


Figure 15: Minimum Inhibitory Concentration of Salinomycin for *Enterococcus* in Ground Turkey (N=387 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

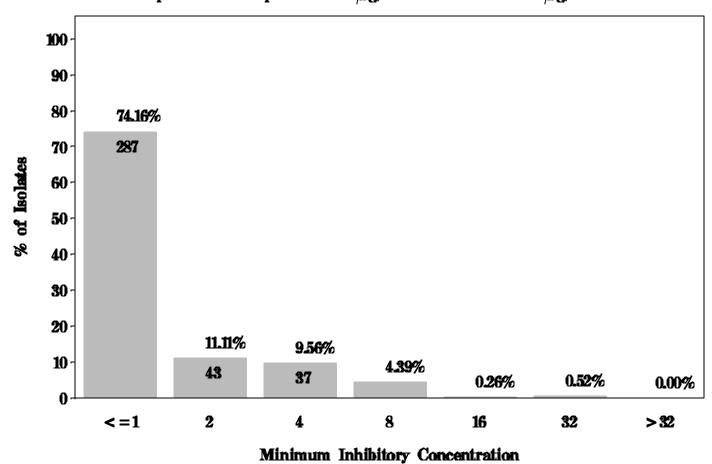


Figure 15: Minimum Inhibitory Concentration of Salinomycin for Enterococcus in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 32 μ g/mL

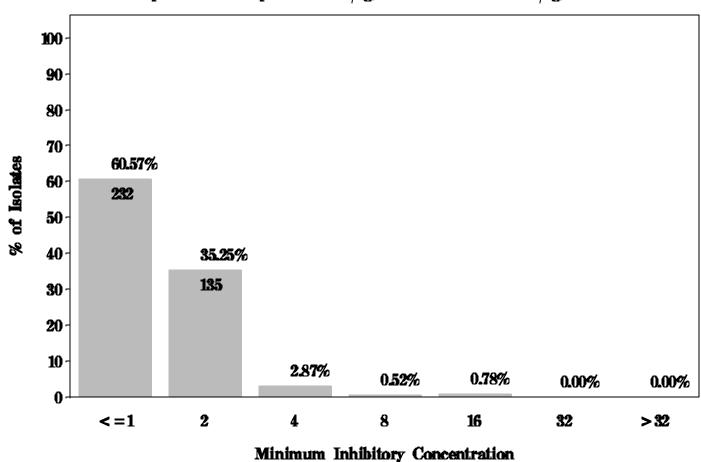


Figure 15: Minimum Inhibitory Concentration of Salinomycin for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

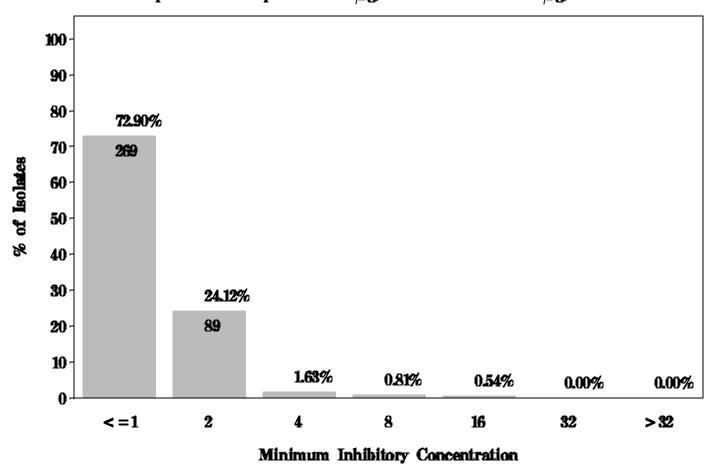


Figure 15: Minimum Inhibitory Concentration of Streptomycin for Enterococcus in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

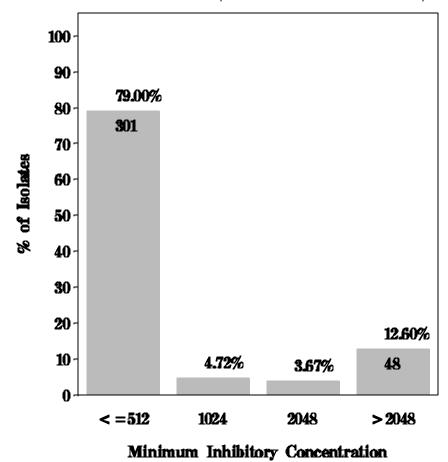


Figure 15: Minimum Inhibitory Concentration of Streptomycin for *Enterococcus* in Ground Turkey (N=387 Isolates)

Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

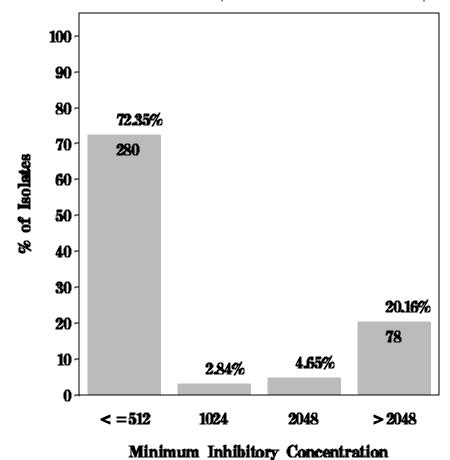


Figure 15: Minimum Inhibitory Concentration of Streptomycin for Enterococcus in Ground Beef (N=383 Isolates) Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

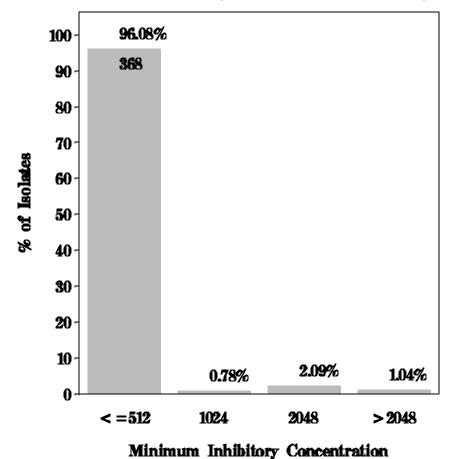


Figure 15: Minimum Inhibitory Concentration of Streptomycin for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

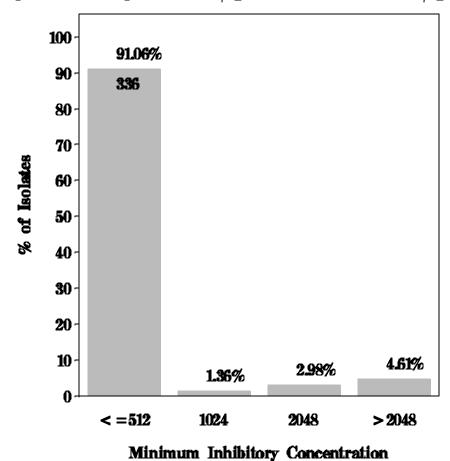


Figure 15: Minimum Inhibitory Concentration of Quinupristin—dalfopristin for Enterococcus in Chicken Breast (N=247 Isolates)

Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

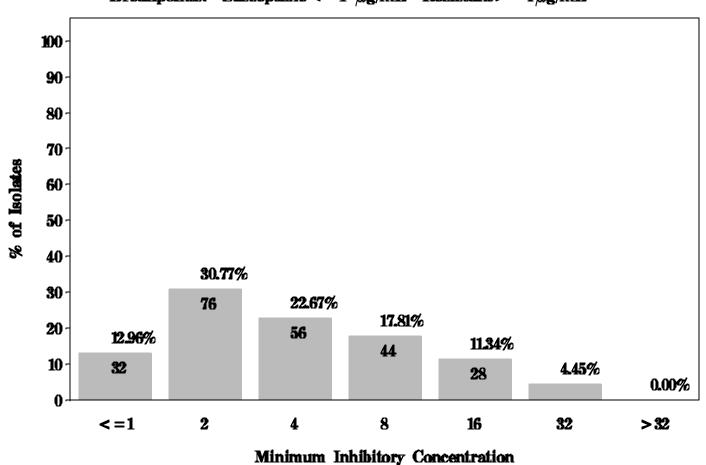


Figure 15: Minimum Inhibitory Concentration of Quinupristin—dalfopristin for Enterococcus in Ground Turkey (N=93 Isolates)

Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

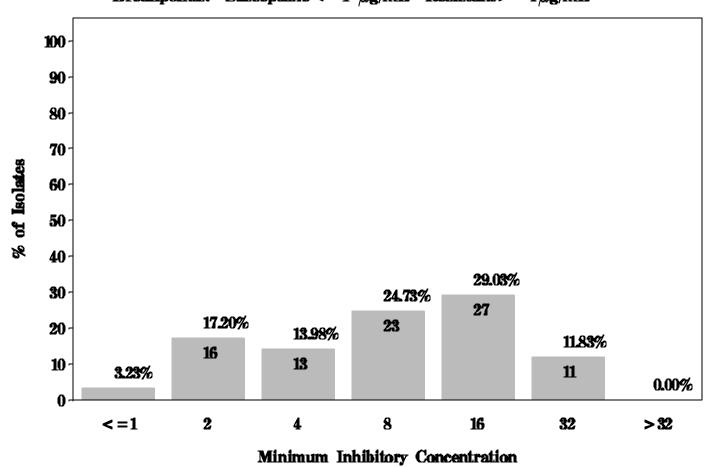


Figure 15: Minimum Inhibitory Concentration of Quinupristin—dalfopristin for Enterococcus in Ground Beef (N=173 Isolates)

Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

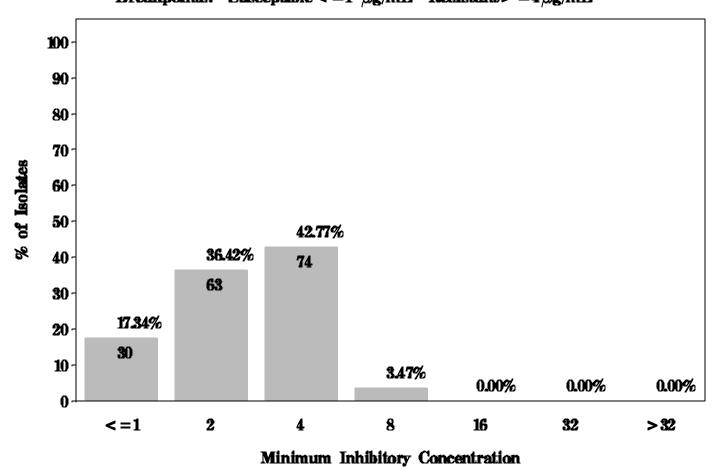


Figure 15: Minimum Inhibitory Concentration of Quinupristin—dalfopristin for Enterococcus in Pork Chop (N=114 Isolates)

Breakpoints: Susceptible < = 1 μ g/mL Resistant > = 4 μ g/mL

100 -90 -80 -**70** -64.04% % of Isolates **6**0 · **73 50** 40 **3**0 · 23.68% **2**0 -27 8.77% 10 2.63% 0.88% 10 0.00% 0.00% <=1 2 8 **16 32** >32 4 **Minimum Inhibitory Concentration**

Figure 15: Minimum Inhibitory Concentration of Tetracycline for *Enterococcus* in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible $< =4~\mu g/mL$ Resistant $> =16 \mu g/mL$

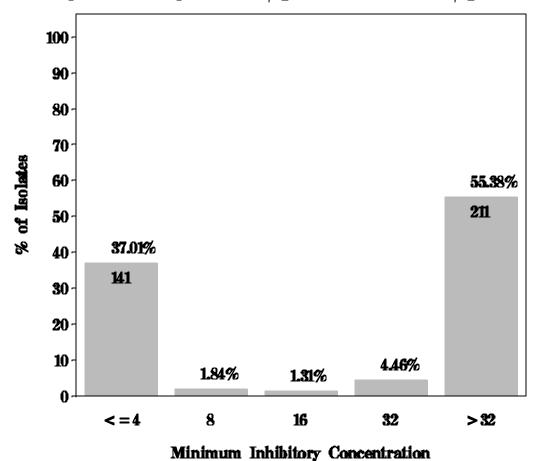


Figure 15: Minimum Inhibitory Concentration of Tetracycline for *Enterococcus* in Ground Turkey (N=387 Isolates) Breakpoints: Susceptible $< =4~\mu g/mL$ Resistant $> =16 \mu g/mL$

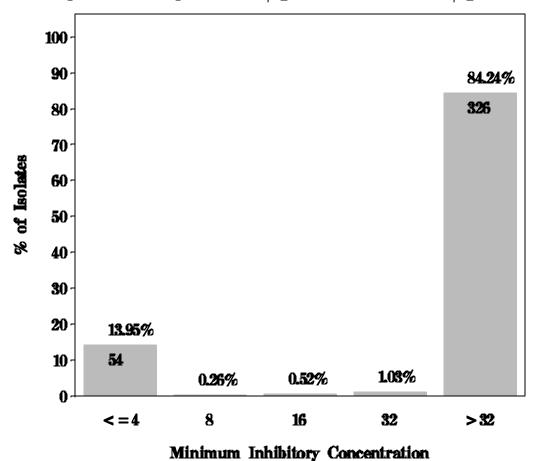


Figure 15: Minimum Inhibitory Concentration of Tetracycline for *Enterococcus* in Ground Beef (N=383 Isolates) Breakpoints: Susceptible $< =4~\mu g/mL$ Resistant $> =16 \mu g/mL$

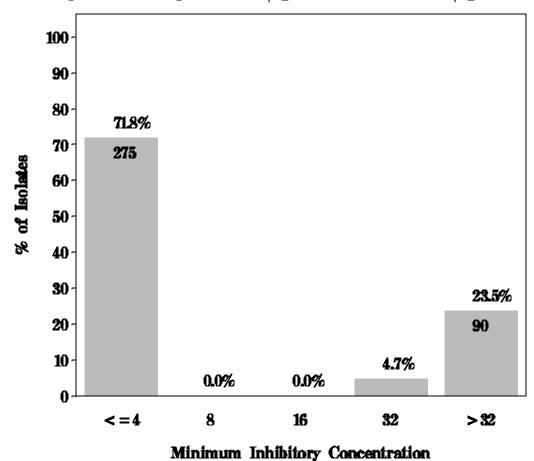


Figure 15: Minimum Inhibitory Concentration of Tetracycline for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

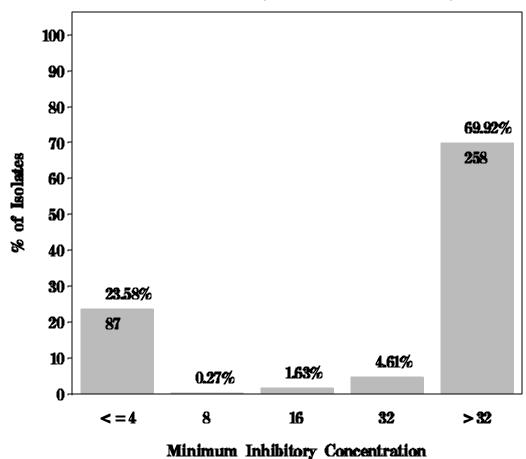


Figure 15: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Chicken Breast (N=381 Isolates) Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

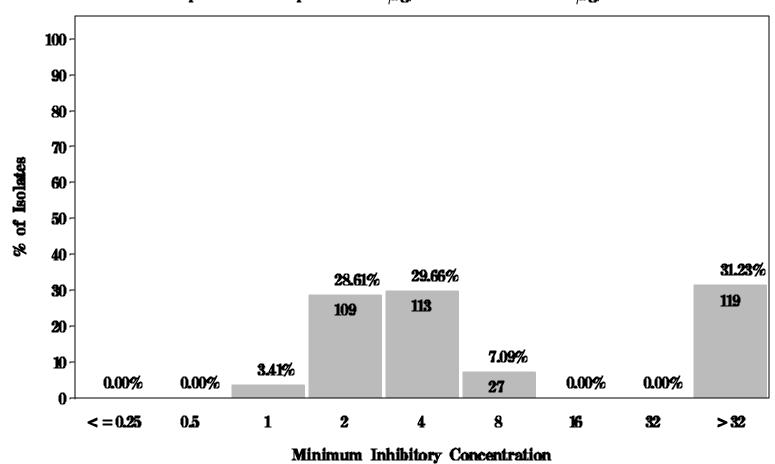


Figure 15: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Ground Turkey (N=387 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32\mu g/mL$

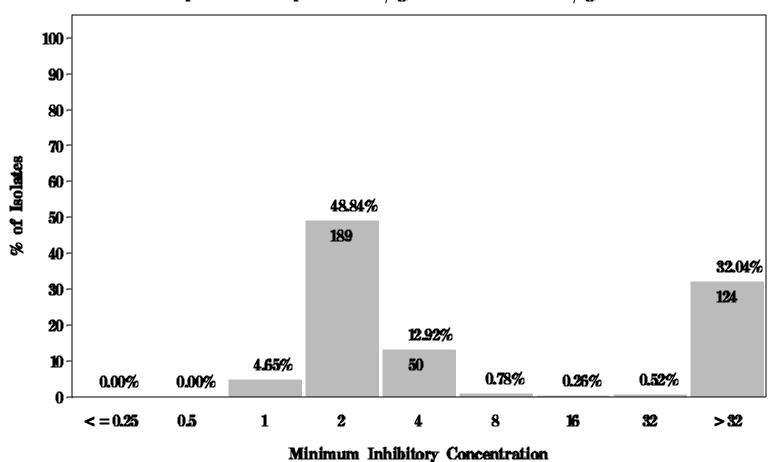


Figure 15: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

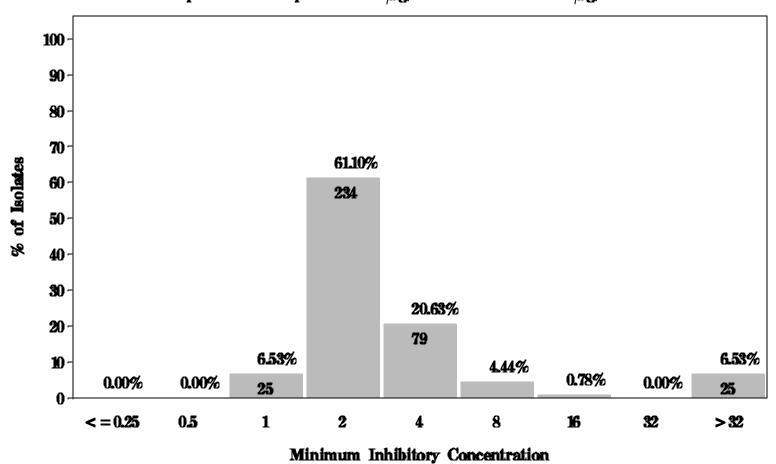


Figure 15: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

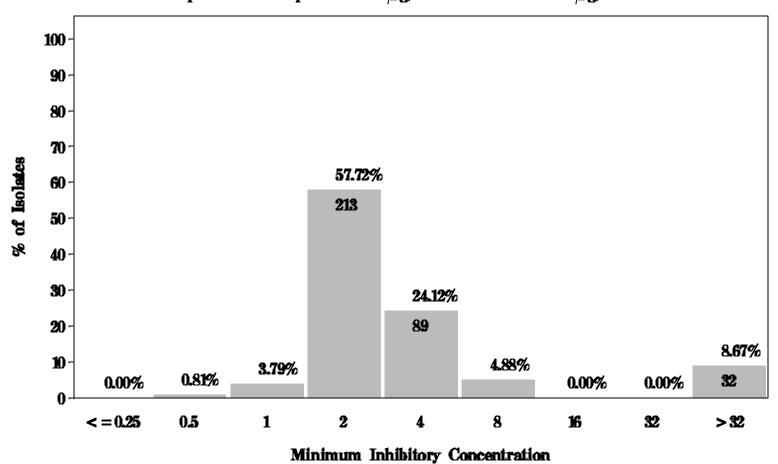


Figure 15: Minimum Inhibitory Concentration of Vancomycin for Enterococcus in Chicken Breast (N=381 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 32 μ g/mL

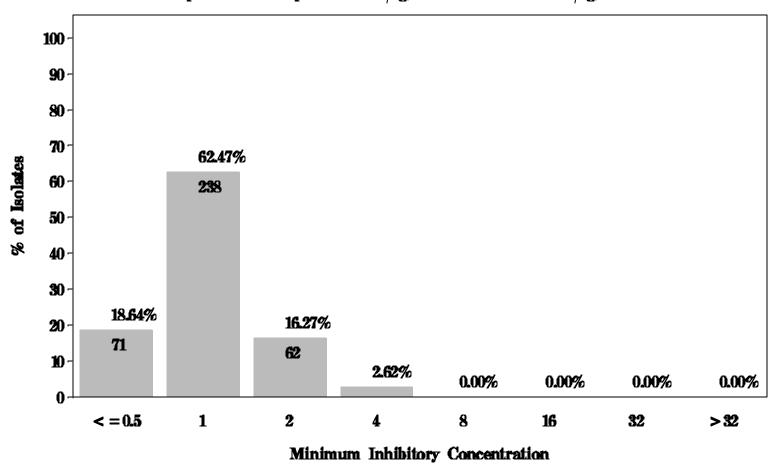


Figure 15: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* in Ground Turkey (N=387 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =32 \mu g/mL$

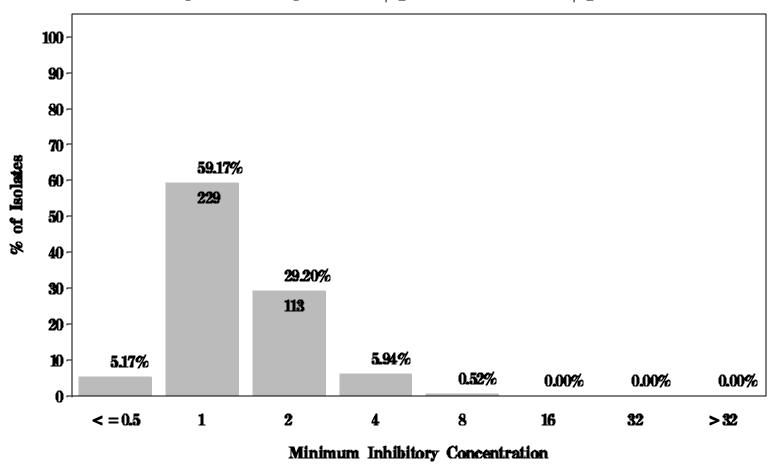


Figure 15: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* in Ground Beef (N=383 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =32 \mu g/mL$

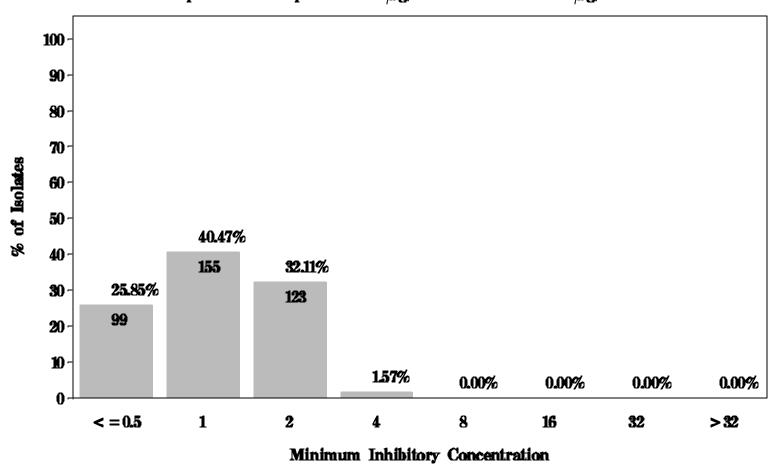


Figure 15: Minimum Inhibitory Concentration of Vancomycin for Enterococcus in Pork Chop (N=369 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 32 μ g/mL

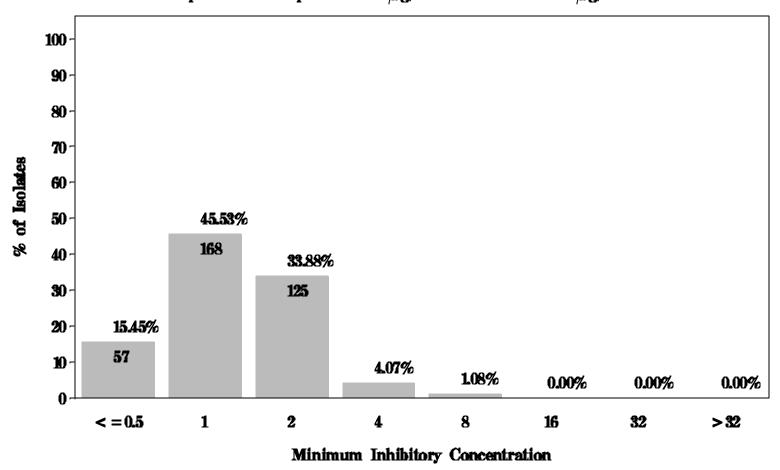


Table 35. Antimicrobial Resistance among Enterococcus by Species, 2002

	avium (n=4)			urans n=10)	•	ecalis =893)	•	ecium =506)		inarum n=5)	hirae (n=102)		
Antimicrobial	# R	% R	# R	% R	# R	% R	# R	% R	# R	% R	# R	% R	
QDA*	3	75.0%	4	40.0%	*	*	268	53.0%	3	60.0%	46	45.1%	
LIN	3	75.0%	5	50.0%	798	89.4%	286	56.5%	0	0.0%	56	54.9%	
BAC	4	100.0%	6	60.0%	649	72.7%	451	89.1%	5	100.0%	9	8.8%	
TET	3	75.0%	2	20.0%	584	65.4%	295	58.3%	4	80.0%	66	64.7%	
FLA	3	75.0%	9	90.0%	6	0.7%	484	95.7%	5	100.0%	96	94.1%	
ERY	3	75.0%	0	0.0%	178	19.9%	134	26.5%	0	0.0%	17	16.7%	
TYL	3	75.0%	0	0.0%	186	20.8%	96	19.0%	0	0.0%	17	16.7%	
KAN	0	0.0%	1	10.0%	146	16.4%	139	27.5%	0	0.0%	3	2.9%	
STR	0	0.0%	1	10.0%	147	16.5%	82	16.2%	0	0.0%	5	4.9%	
NIT	1	25.0%	1	10.0%	7	0.8%	193	38.1%	0	0.0%	2	2.0%	
PEN	0	0.0%	1	10.0%	0	0.0%	164	32.4%	0	0.0%	1	1.0%	
GEN	1	25.0%	0	0.0%	107	12.0%	23	4.6%	0	0.0%	1	1.0%	
CIP	0	0.0%	0	0.0%	4	0.5%	66	13.0%	0	0.0%	1	1.0%	
CHL	0	0.0%	0	0.0%	2	0.2%	1	0.2%	0	0.0%	1	1.0%	
SAL	0	0.0%	0	0.0%	2	0.2%	0	0.0%	0	0.0%	0	0.0%	
LZD	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	
VAN	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	

^{*} QDA resistance is not presented for *E. faecalis*..

Table 36. Antimicrobial Resistance among Enterococcus faecalis & E. faecium by Meat Type, 2002

		Chicken	Breast	Ground	l Turkey	Groun	nd Beef	Pork	Chop
Antimicrobial	Species	#	%	#	%	#	%	#	%
Agent		Resistant	Resistance	Resistant	Resistance	Resistant	Resistance	Resistant	Resistance
QDA*	faecalis**								
	faecium***	128	55.4%	73	82.0%	44	47.3%	23	24.7%
BAC	faecalis	114	85.1%	227	77.2%	126	60.0%	182	71.4%
	faecium	225	97.4%	88	98.9%	77	82.8%	61	65.6%
LIN	faecalis	127	94.8%	269	91.5%	184	87.6%	218	85.5%
	faecium	161	69.7%	72	80.9%	30	32.3%	23	24.7%
TET	faecalis	90	67.2%	250	85.0%	39	18.6%	205	80.4%
	faecium	131	56.7%	79	88.8%	21	22.6%	64	68.8%
FLA	faecalis	0	0.0%	0	0.0%	1	0.5%	5	2.0%
	faecium	223	96.5%	82	92.1%	88	94.6%	91	97.9%
ERY	faecalis	61	45.5%	91	31.0%	3	1.4%	23	9.0%
	faecium	59	25.5%	45	50.6%	11	11.8%	19	20.4%
KAN	faecalis	45	33.6%	78	26.5%	8	3.8%	15	5.9%
	faecium	59	25.5%	49	55.1%	17	18.3%	14	15.1%
TYL	faecalis	65	48.5%	94	32.0%	4	1.9%	23	9.0%
	faecium	49	21.2%	32	36.0%	6	6.5%	9	9.7%
STR	faecalis	39	29.1%	71	24.2%	10	4.8%	27	10.6%
	faecium	39	16.9%	35	39.3%	3	3.2%	5	5.4%
NIT	faecalis	1	0.8%	6	2.0%	0	0.0%	0	0.0%
	faecium	126	54.6%	45	50.6%	17	18.3%	5	5.4%
PEN	faecalis	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	faecium	102	44.2%	59	66.3%	0	0.0%	3	3.2%
GEN	faecalis	30	22.4%	65	22.1%	5	2.4%	7	2.8%
	faecium	7	3.0%	14	15.7%	1	1.1%	1	1.1%

^{*}QDA resistance is not presented for *E. faecalis*.

^{**} *E. faecalis*: Chicken Breast, n=134; Ground Turkey, n=294; Ground Beef, n=210; Pork Chop, n=255 *** *E. faecium*: Chicken Breast, n=231; Ground Turkey, n=89; Ground Beef, n=93; Pork Chop, n=93

CIP	faecalis	0	0.0%	1	0.3%	0	0.0%	3	1.2%
	faecium	30	13.0%	20	22.5%	12	12.9%	4	4.3%
CHL	faecalis	0	0.0%	1	0.3%	0	0.0%	1	0.4%
	faecium	0	0.0%	0	0.0%	1	1.1%	0	0.0%
SAL	faecalis	0	0.0%	2	0.7%	0	0.0%	0	0.0%
	faecium	0	0.0%	0	0.0%	0	0.0%	0	0.0%
LZD	faecalis	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	faecium	0	0.0%	0	0.0%	0	0.0%	0	0.0%
VAN	faecalis	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	faecium	0	0.0%	0	0.0%	0	0.0%	0	0.0%

^{*}QDA resistance is not presented for *E. faecalis*.

** *E. faecalis*: Chicken Breast, n=134; Ground Turkey, n=294; Ground Beef, n=210; Pork Chop, n=255

*** *E. faecium*: Chicken Breast, n=231; Ground Turkey, n=89; Ground Beef, n=93; Pork Chop, n=93

Table 37. Antimicrobial Resistance among Enterococcus by Site, Meat Type, and Antimicrobial Agent, 2002

								A	ntimic	robial A	Agent							
		QDA*	LIN	BAC	TET	FLA	ERY	TYL	KAN	STR	NIT	PEN	GEN	CIP	CHL	SAL	LZD	VAN
GA	CB (n=120)	63.9%	85.0%	88.3%	72.5%	28.3%	44.2%	45.0%	32.5%	30.8%	5.8%	2.5%	19.2%	5.0%				
	GT (n=120)	100.0%	94.2%	85.8%	89.2%	0.8%	35.8%	37.5%	28.3%	26.7%	0.8%		25.8%					
	GB (n=118)	45.5%	78.8%	46.6%	23.7%	25.4%	5.1%	5.1%	3.4%	0.8%			0.8%		0.8%			
	PC (n=119)	46.2%	71.4%	61.3%	73.1%	12.6%	4.2%	4.2%	5.9%	11.8%			4.2%					
	Total (N=477)	65.4%	82.4%	70.6%	64.8%	16.8%	22.4%	23.1%	17.6%	17.6%	1.7%	0.6%	12.6%	1.3%	0.2%			
MD	CB (n=117)	84.0%	82.9%	95.7%	68.4%	89.7%	33.3%	28.2%	23.9%	17.1%	57.3%	53.0%	2.6%	11.1%				
	GT (n=113)	40.8%	90.3%	88.5%	87.6%	63.7%	50.4%	39.8%	50.4%	35.4%	40.7%	47.8%	23.9%	15.0%		0.9%		
	GB (n=107)	23.8%	43.0%	64.5%	27.1%	70.1%	4.7%	2.8%	7.5%	1.9%	8.4%		0.9%	4.7%				
	PC (n=101)	15.8%	49.5%	65.3%	64.4%	62.4%	12.9%	7.9%	6.9%	4.0%	3.0%	3.0%	1.0%	2.0%	1.0%			
	Total (N=438)	20.0%	67.4%	79.2%	62.3%	71.9%	26.0%	20.3%	22.8%	15.1%	28.5%	27.2%	7.3%	8.4%	0.2%	0.2%		
OR	CB (n=40)	27.8%	77.5%	90.0%	35.0%	45.0%	17.5%	20.0%	27.5%	5.0%	42.5%	30.0%	10.0%	10.0%				
	GT (n=40)	100.0%	65.0%	90.0%	67.5%	12.5%	20.0%	17.5%	25.0%	17.5%	2.5%		15.0%					
	GB (n=40)	50.6%	72.5%	57.5%	40.0%	42.5%	5.0%	5.0%	7.5%	10.0%			5.0%					
	PC (n=39)	72.7%	97.4%	84.6%	84.6%	5.1%	10.3%	5.1%	5.1%	7.7%			2.6%	5.1%				
	Total (N=159)	63.0%	78.0%	80.5%	56.6%	26.4%	13.2%	11.9%	16.4%	10.1%	11.3%	7.5%	8.2%	3.8%				
TN	CB (n=104)	22.2%	68.3%	91.3%	50.0%	76.9%	25.0%	23.1%	27.9%	20.2%	36.5%	26.0%	7.7%	7.7%				
	GT (n=114)	51.7%	88.6%	69.3%	86.8%	7.0%	24.6%	25.4%	22.8%	24.6%	3.5%	4.4%	13.2%	3.5%	0.9%	0.9%		
	GB (n=118)	63.9%	76.3%	50.0%	29.7%	36.4%	13.6%	11.9%	9.3%	6.8%	7.6%		2.5%	5.9%	0.8%			
	PC (n=110)	100.0%	67.3%	71.8%	87.3%	31.8%	18.2%	15.5%	11.8%	10.9%	1.8%		0.9%	2.7%				
	Total (N=446)	45.5%	75.3%	70.0%	63.2%	37.2%	20.2%	18.8%	17.7%	15.5%	11.9%	7.2%	6.1%	4.9%	0.4%	0.2%		
Tota	I (N=1520)	78.2%	75.5%	73.9%	62.8%	39.7%	21.8%	19.9%	19.0%	15.5%	13.4%	10.9%	8.7%	4.7%	0.3%	0.1%		

^{*} Does not include *E. faecalis* in QDA, as it is considered intrinsically resistant.

Table 38. Number of *Enterococcus faecalis* (N=893) Resistant to Multiple Antimicrobial Agents,* 2002

Meat Type	Number of Antimicrobials											
JI -	0	1	2-4	5-7	<u>></u> 8							
СВ	3	13	56	52	10							
GT	4	16	170	77	27							
GB	13	61	131	1	3							
PC	12	18	208	14	4							
Total	32	108	565	144	44							

^{*}Does not include QDA, as *E. faecalis* is considered intrinsically resistant.

Table 39. Number of *Enterococcus faecium* (N=506) Resistant to Multiple Antimicrobial Agents, 2002

Meat Type	Nu	mbe	er of A	ntimicr	obials
<i>71</i>	0	1	2-4	5-7	<u>≥</u> 8
СВ	0	0	75	107	49
GT	0	0	13	24	52
GB	0	5	66	19	4
PC	1	3	70	14	4
Total	1	8	224	164	109

Table 40. Escherichia coli by Meat Type, 2002

Meat Type	N	# Isolates	% Positive
Chicken Breast	390	282	72.3 %
Ground Turkey	395	304	78.0 %
Ground Beef	399	295	73.9 %
Pork Chop	390	184	47.2 %
Total	1574	1065	67.7%

Table 41. Escherichia coli by Site and Meat Type, 2002

	G	eorgia	Ma	ryland	0	regon	Tennessee			
Meat Type	n	%	n	%	n	%	n	%		
Chicken Breast (N=390)	104	29.3%	107	27.6%	9	15.8%	62	23.4%		
Ground Turkey (N=395)	103	29.0%	110	28.4%	17	29.8%	74	27.9%		
Ground Beef (N=399)	93	26.2%	105	27.1%	22	38.6%	75	28.3%		
Pork Chop (N=390)	55	15.5%	66	17.0%	9	15.8%	54	20.4%		
Total	355	100.0%	388	100.0%	57	100.0%	265	100.0%		

Table 42. Escherichia coli Isolates by Month for All Sites, 2002

Month	# Isolates	% Positive
January	76	7.1%
February	84	7.9%
March	81	7.6%
April	82	7.7%
May	95	8.9%
June	88	8.3%
July	62	5.8%
August	76	7.1%
September	106	10.0%
October	115	10.8%
November	104	9.8%
December	96	9.0%
Total	1065	100%

Table 43. Escherichia coli by Meat Type and Month for All Sites, 2002

	,	Jan	F	eb	N	<i>l</i> lar		Apr		May		Jun	,	Jul	l A	lug	9	Sep		Oct	1	lov)ec
Meat																								
Type	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
СВ	22	7.8%	25	8.9%	25	8.9%	21	7.4%	29	10.3%	29	10.3%	20	7.1%	19	6.7%	24	8.5%	25	8.9%	19	6.7%	24	8.5%
(n=282)																								
GT	20	7.6%	23	7.6%	20	5.9%	16	8.6%	27	9.2%	25	8.2%	18	5.9%	20	6.6%	25	8.2%	34	11.2%	35	11.5%	29	9.5%
(n=304)																								
GB	23	6.8%	23	7.8%	18	6.8%	26	5.4%	28	9.2%	25	8.5%	17	5.8%	19	6.4%	37	12.5%	30	10.2%	32	10.8%	29	9.8%
(n=295)																								
PC	11	6.0%	13	7.1%	18	9.8%	19	10.3%	11	6.0%	9	4.9%	7	3.8%	18	9.8%	20	10.9%	26	14.1%	18	9.8%	14	7.6%
(n=184)																								
Total	76	7.1%	84	7.9%	81	7.6%	82	7.7%	95	8.9%	88	8.3%	62	5.8%	76	7.1%	106	10.0%	115	10.8%	104	9.8%	96	9.0%
(N=1065)																								

Table 44. Antimicrobial Resistance among E. coli Isolates (n=1065), 2002

Antimicrobial Agent	# Resistant	% Resistance
Tetracycline	552	51.8%
Streptomycin	383	36.0%
Sulfamethoxazole	289	27.1%
Ampicillin	199	18.7%
Gentamicin	150	14.1%
Cephalothin	141	13.2%
Kanamycin	74	7.0%
Amoxicillin/Clavulanic Acid	67	6.3%
Cefoxitin	51	4.8%
Trimethoprim/Sulfamethoxazole	26	2.4%
Ceftiofur	24	2.4%
Nalidixic Acid	22	2.1%
Chloramphenicol	9	0.8%
Amikacin	0	0.0%
Ceftriaxone	0	0.0%
Ciprofloxicin	0	0.0%

Figure 16. Antimicrobial Resistance among E. coli Isolates (n=1065), 2002

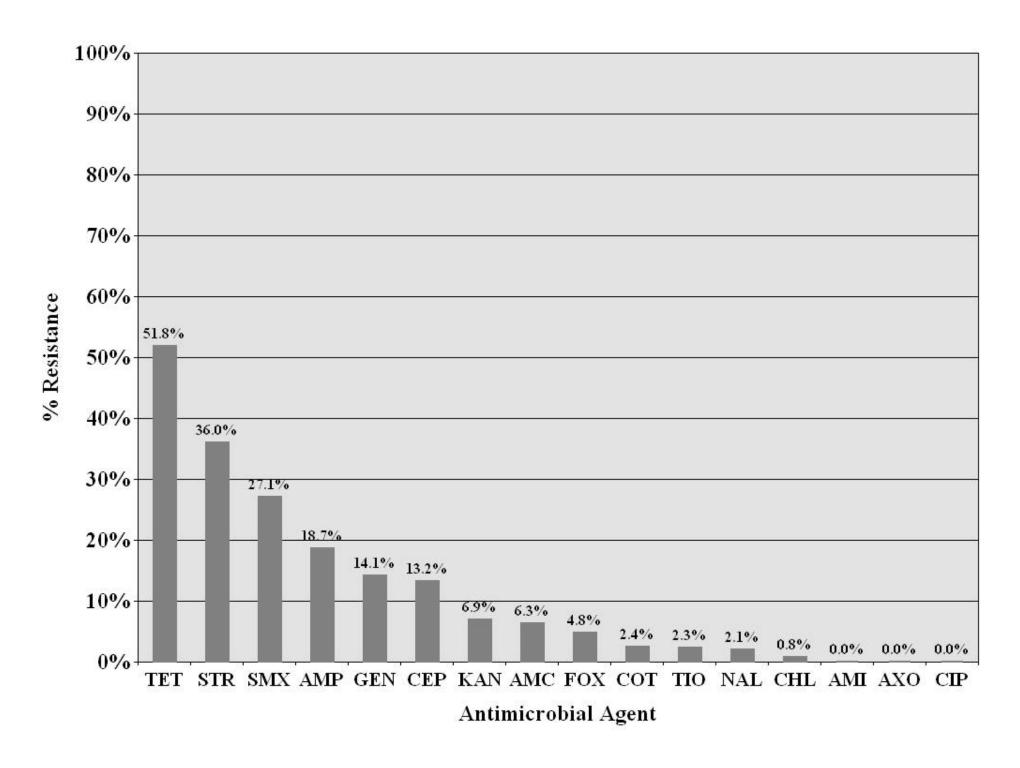


Figure 17: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

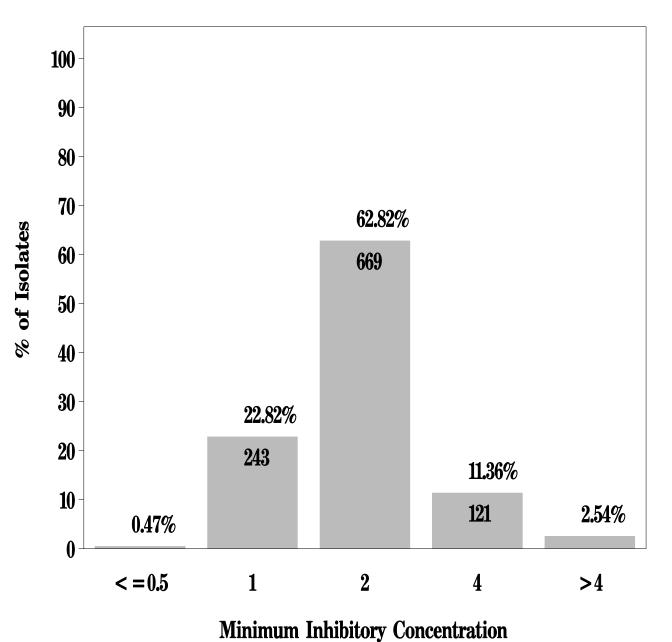


Figure 17: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 8/4 \mu g/mL$ Resistant $> = 32/16 \mu g/mL$

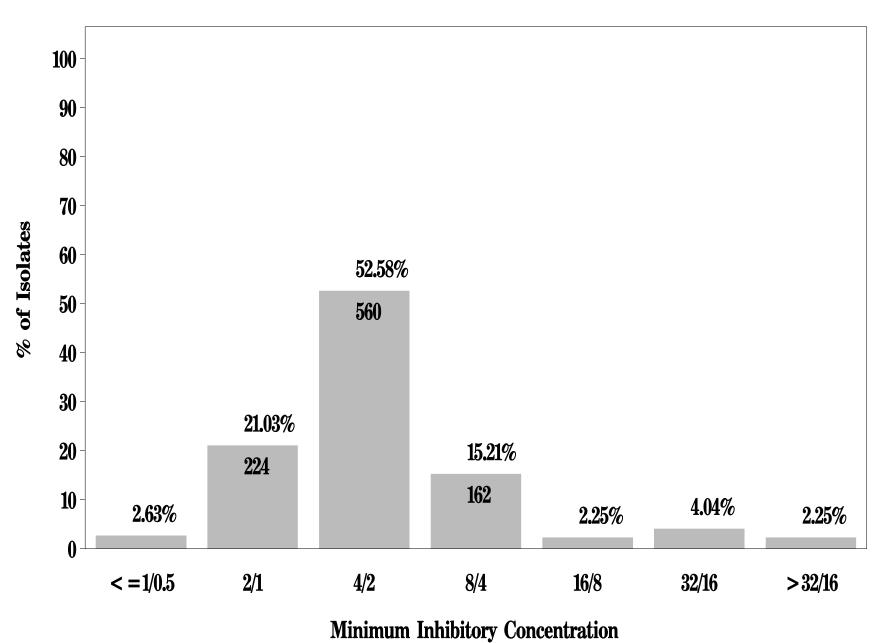


Figure 17: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

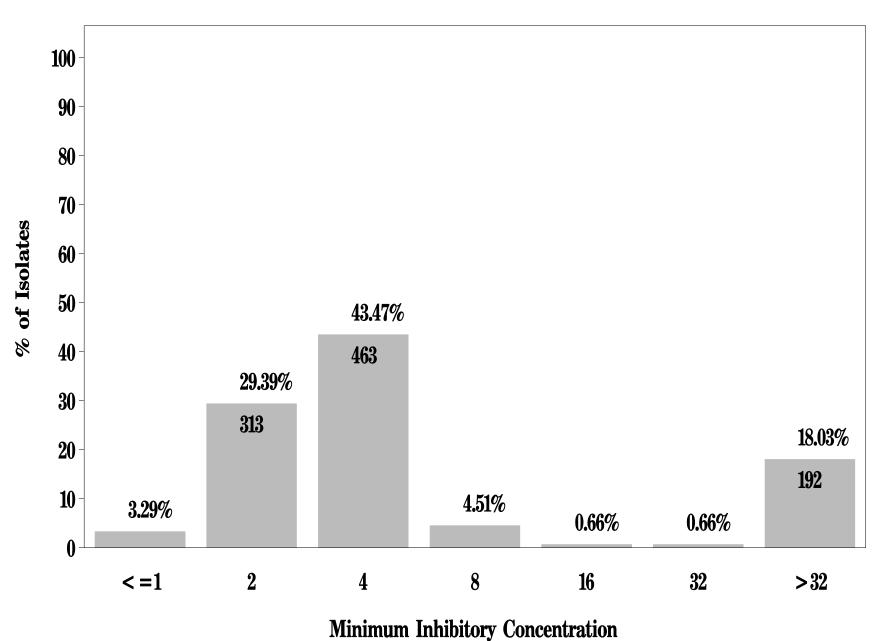
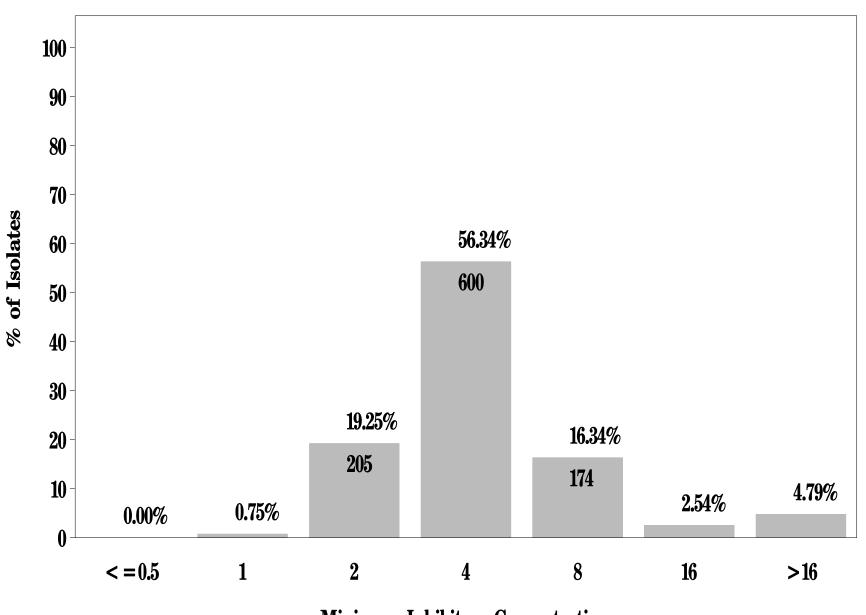
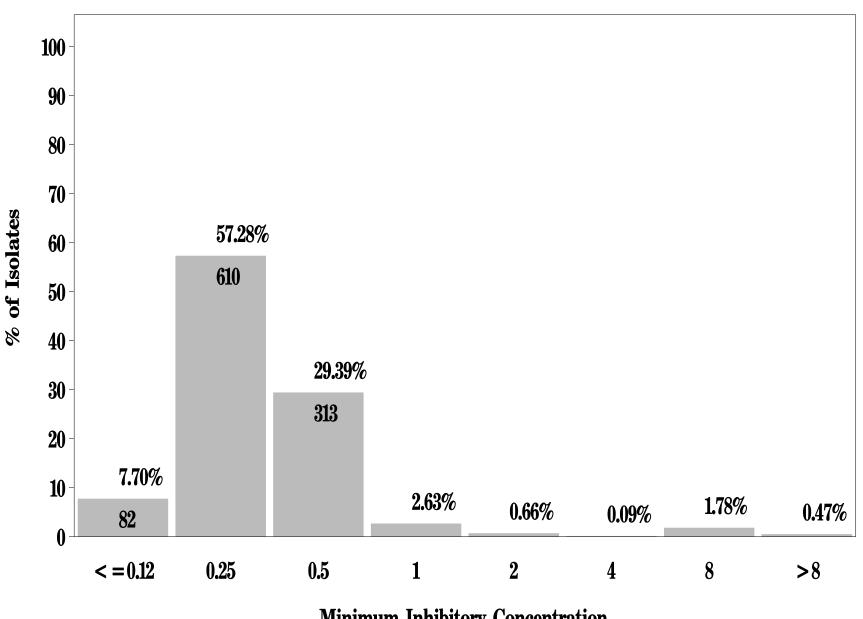



Figure 17: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* (N=1065 Isolates)


Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 17: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 17: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 64 \mu g/mL$

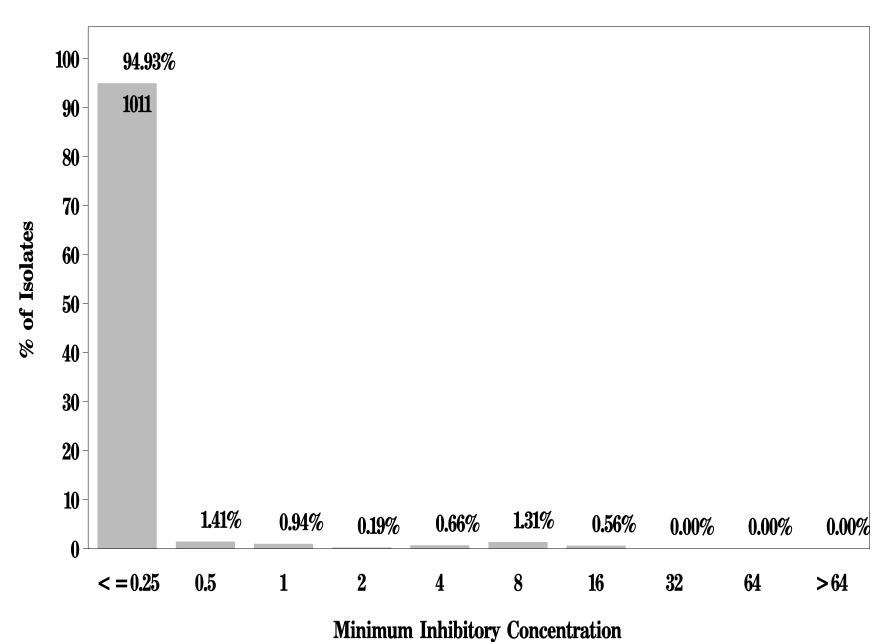


Figure 17: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

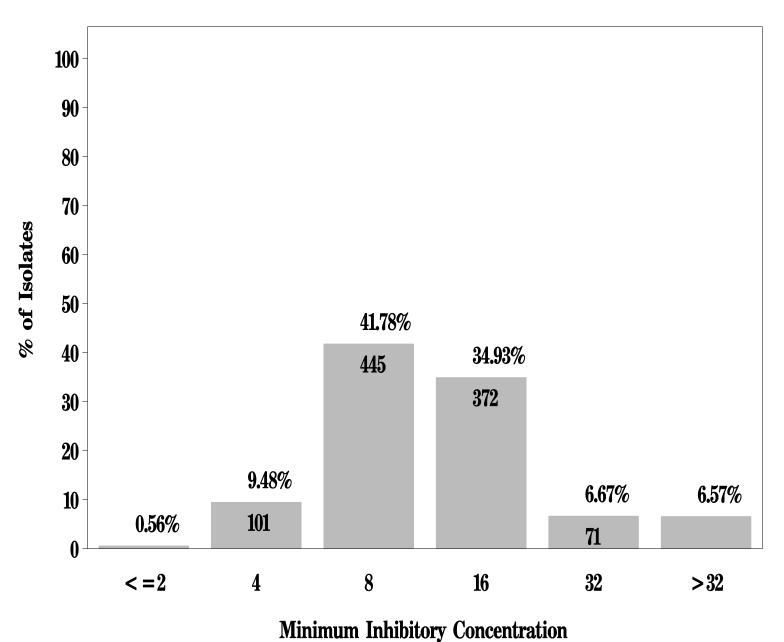


Figure 17: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

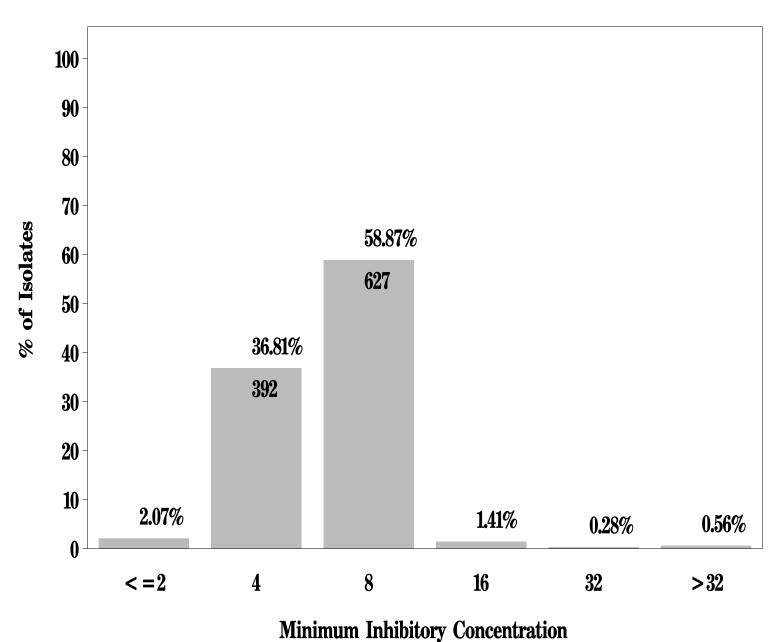


Figure 17: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

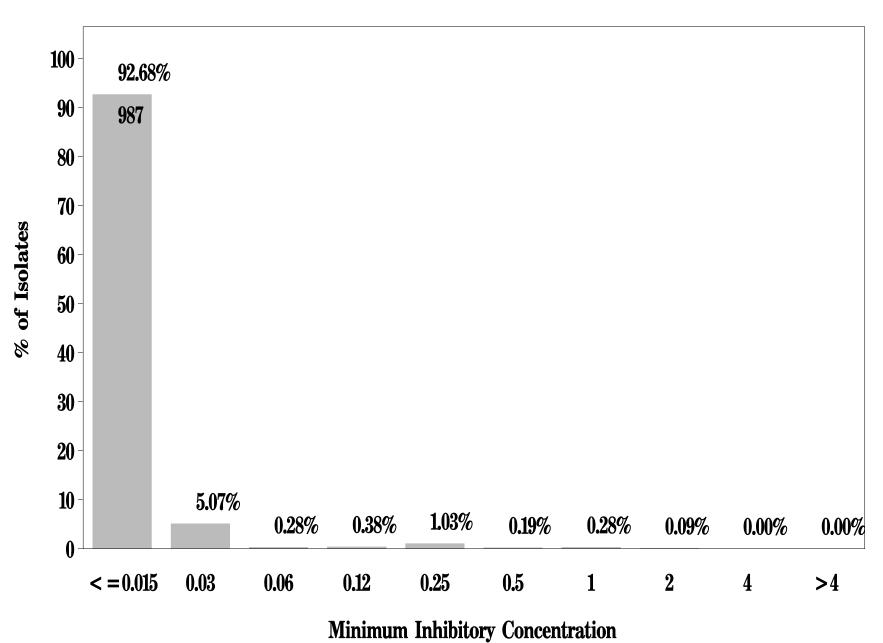


Figure 17: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

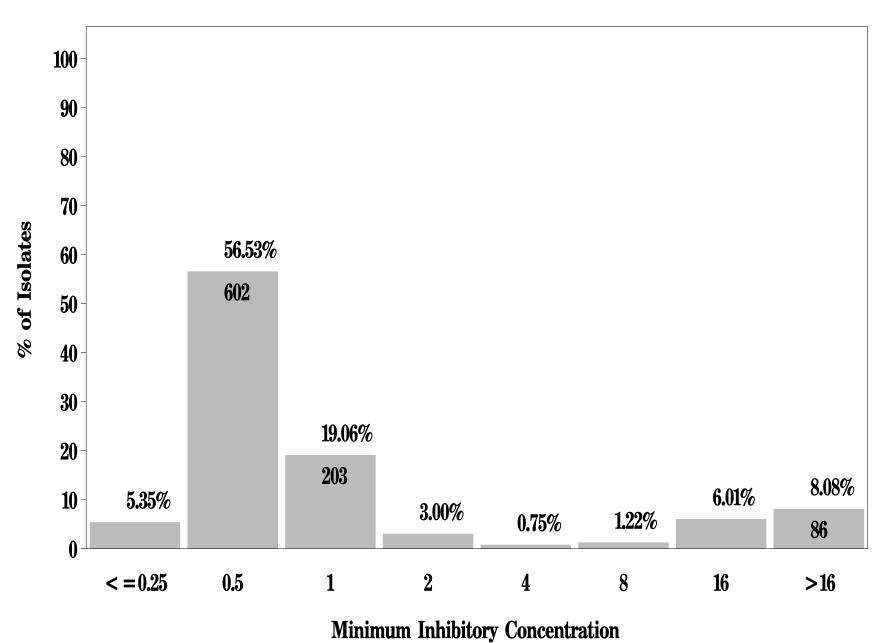


Figure 17: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

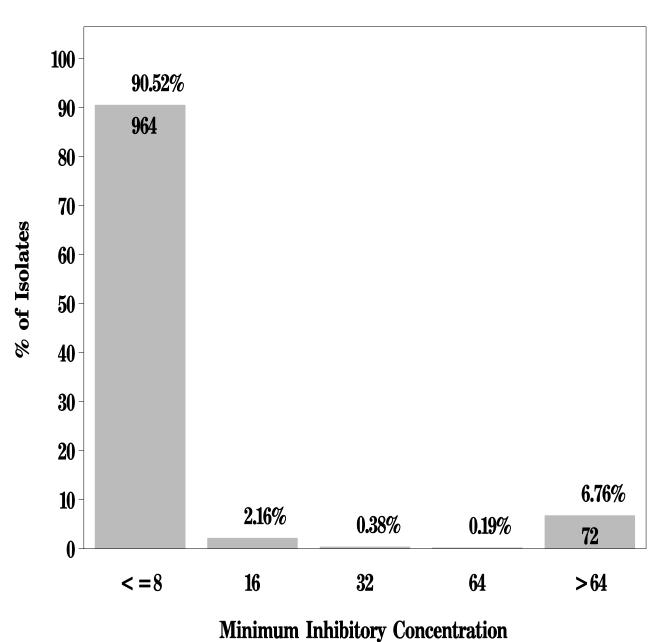


Figure 17: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 32 \mu g/mL$

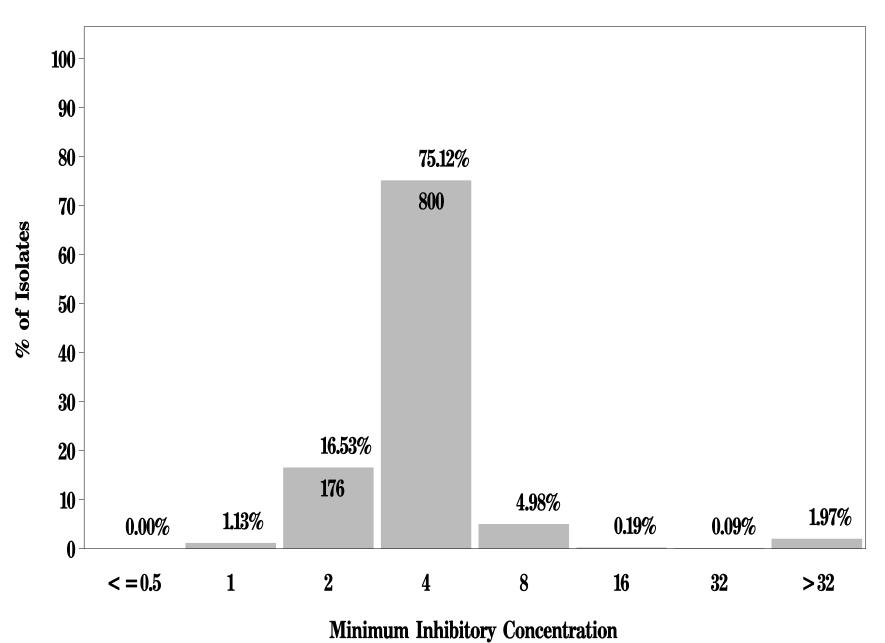
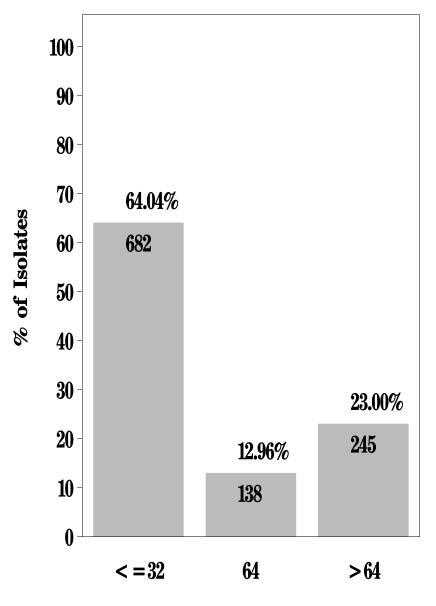



Figure 17: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 17: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 256 \mu g/mL$ Resistant $> = 512 \mu g/mL$

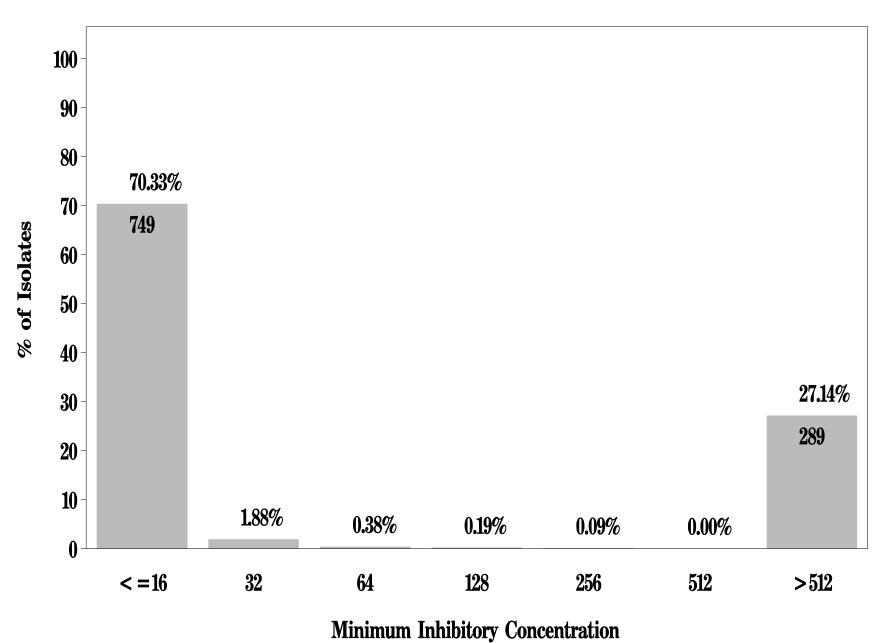
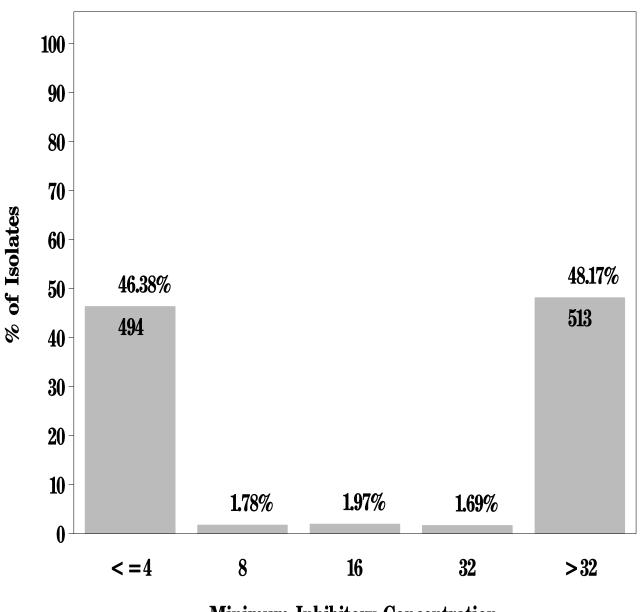



Figure 17: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

Minimum Inhibitory Concentration

Figure 17: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* (N=1065 Isolates)

Breakpoints: Susceptible $< = 2/38 \mu g/mL$ Resistant $> = 4/76 \mu g/mL$

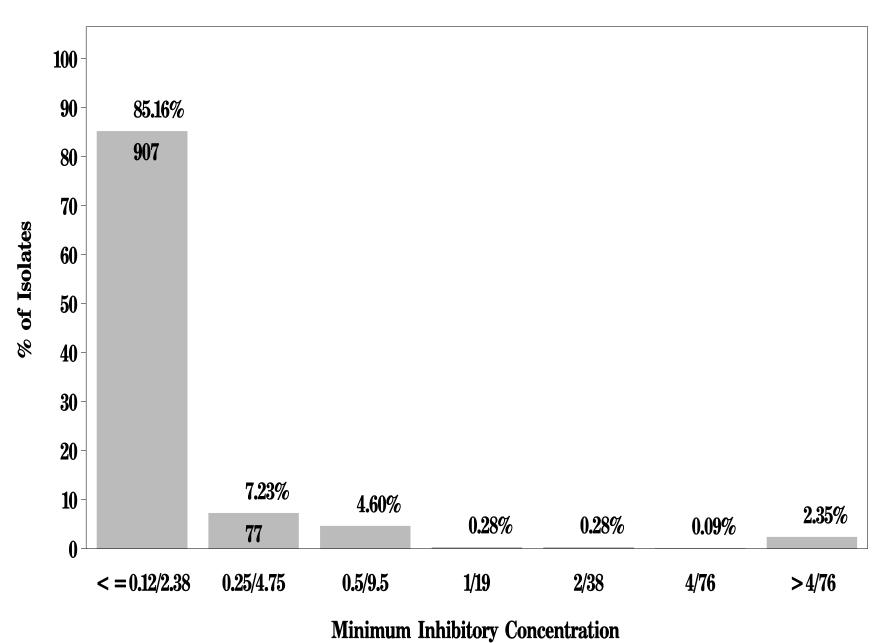


Table 45. Antimicrobial Resistance among *Escherichia coli* by Meat Type, 2002

	Chicken Breast (n=282)		Ground Turkey (n=304)		Ground Beef (n=295)		Pork Chop (n=184)	
Antimicrobial	# Resistant	% Resistance	# Resistant	% Resistance	# Resistant	% Resistance	# Resistant	% Resistance
							Nesistant 97	
TET	130	46.1%	234	77.0%	91	30.9%		52.7%
STR	139	49.3%	175	57.6%	28	9.5%	41	22.3%
SMX	91	32.3%	146	48.0%	29	9.8%	23	12.5%
AMP	61	21.6%	95	31.3%	18	6.1%	25	13.6%
GEN	65	23.1%	82	27.0%	1	0.3%	2	1.1%
CEP	60	21.3%	45	14.8%	17	5.8%	19	10.3%
KAN	17	6.0%	40	13.2%	7	2.4%	10	5.4%
AMC	34	12.1%	17	5.6%	6	2.0%	10	5.4%
FOX	31	11.0%	10	3.3%	4	1.4%	6	3.3%
COT	10	3.6%	12	4.0%	2	0.7%	2	1.1%
TIO	20	7.1%	3	1.0%	0	0.0%	1	0.5%
NAL	8	2.8%	13	4.3%	0	0.0%	1	0.5%
CHL	2	0.7%	1	0.3%	3	1.0%	3	1.6%
AMI	0	0.0%	0	0.0%	0	0.0%	0	0.0%
AXO	0	0.0%	0	0.0%	0	0.0%	0	0.0%
CIP	0	0.0%	0	0.0%	0	0.0%	0	0.0%

Figure 18a. Antimicrobial Resistance among *E. coli* from Chicken Breast (n=282), 2002

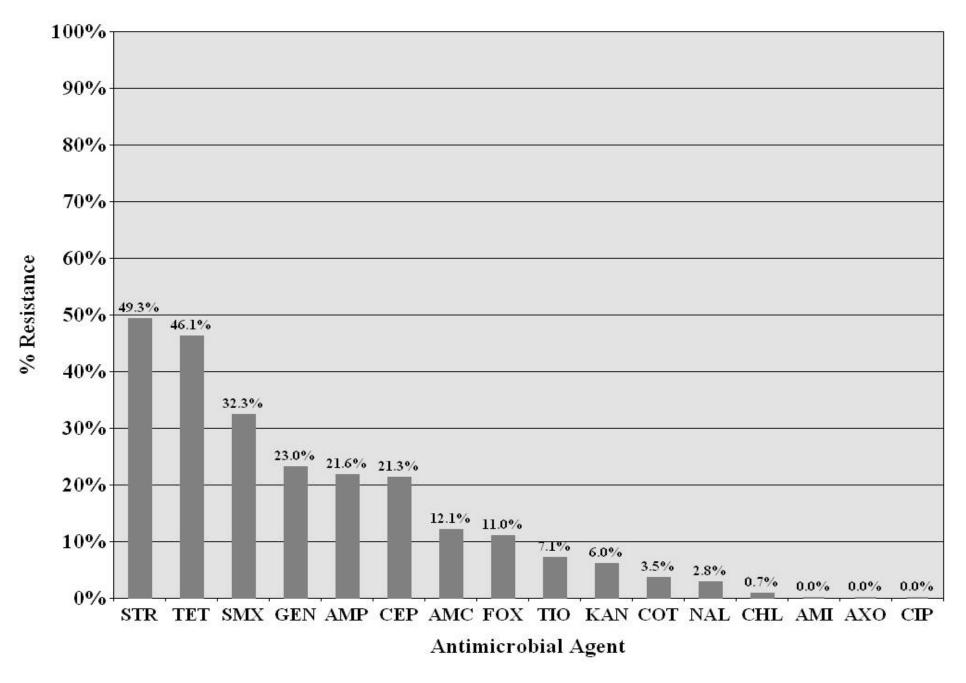


Figure 18b. Antimicrobial Resistance among *E. coli* from Ground Turkey (n=304), 2002

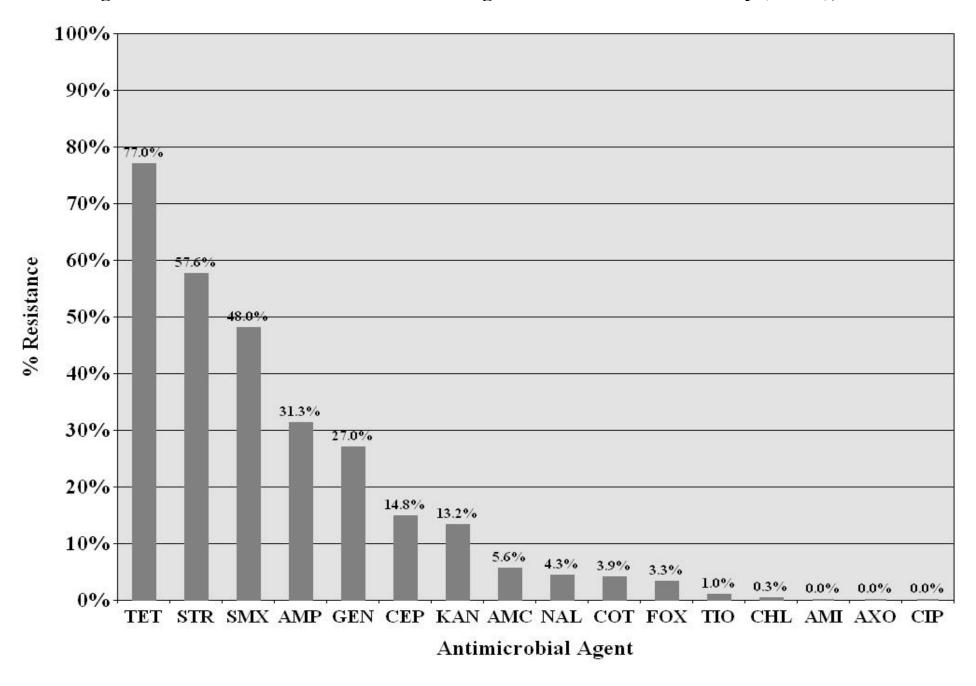


Figure 18c. Antimicrobial Resistance among $E.\ coli$ from Ground Beef (n= 295), 2002

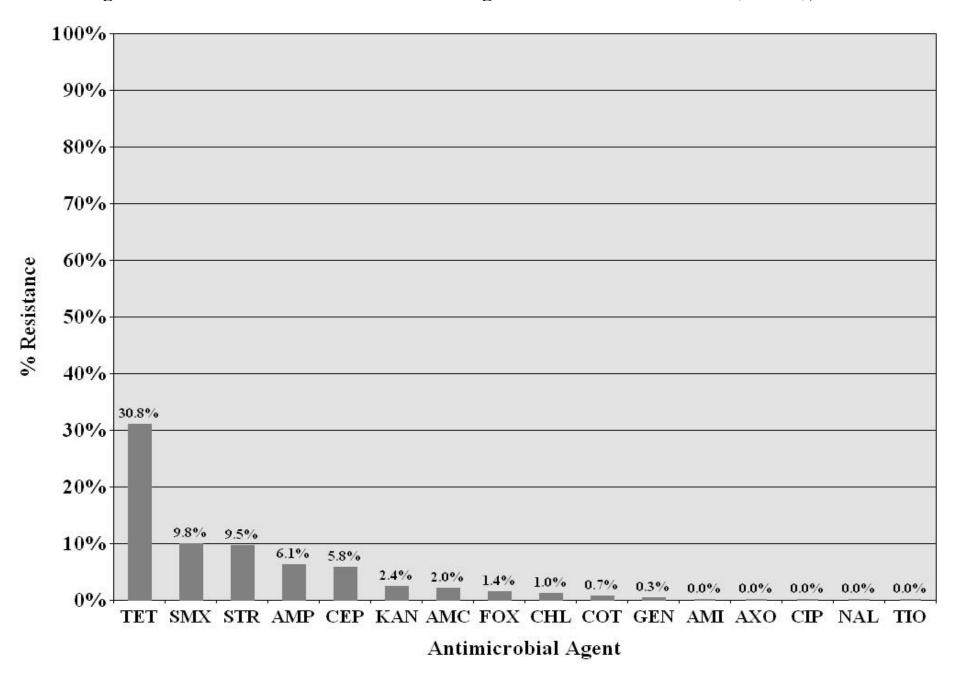


Figure 18d. Antimicrobial Resistance among E. coli from Pork Chop (n=184), 2002

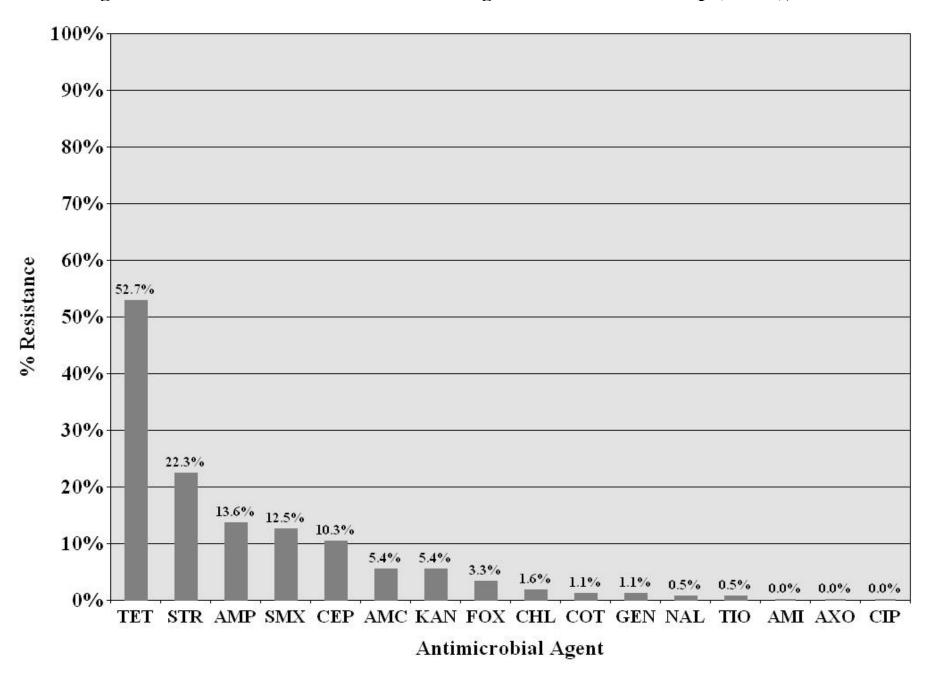


Figure 19: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

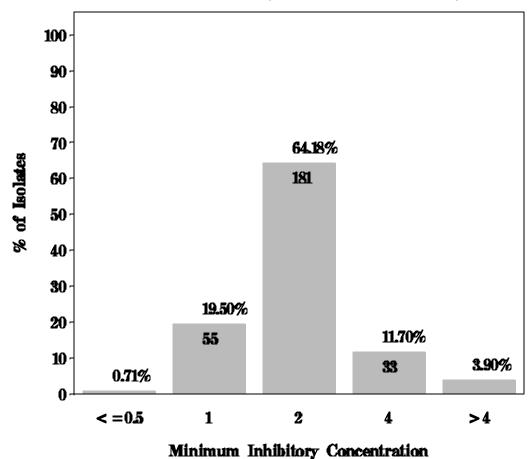


Figure 19: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

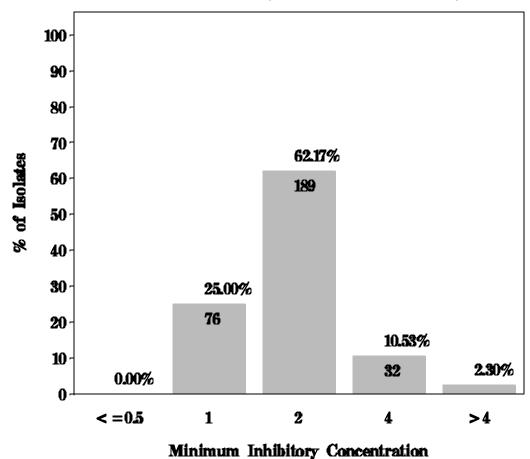
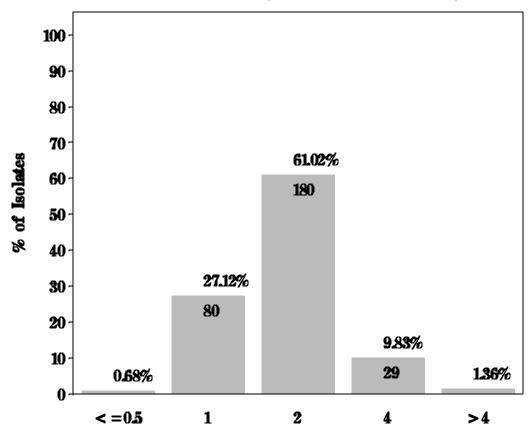



Figure 19: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Ground Beef (N=295 Isolates) Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 19: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

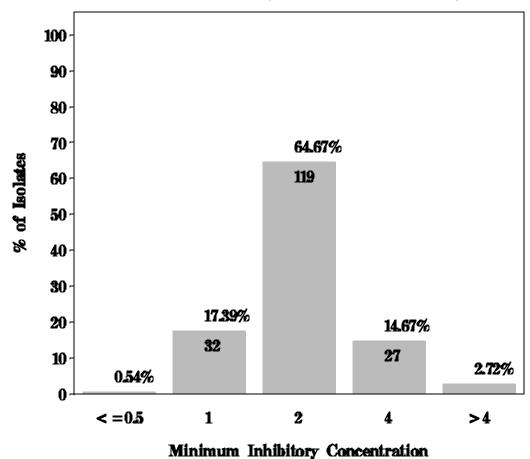


Figure 19: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* in Chicken Breast (N=282 Isolates)

Breakpoints: Susceptible <= $8/4~\mu$ g/mL Resistant >= $32/16~\mu$ g/mL

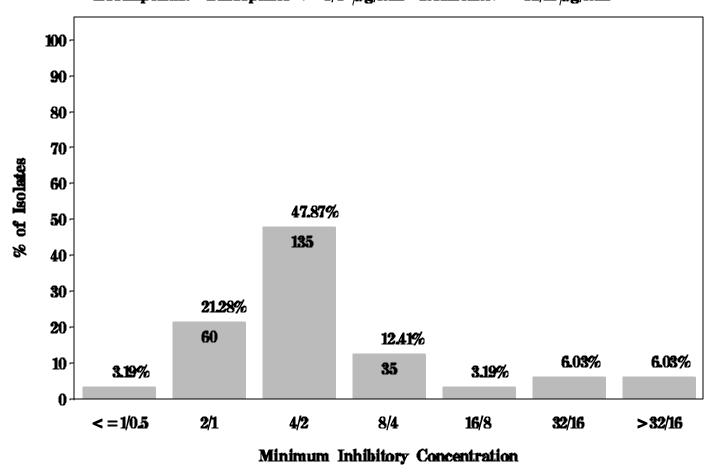


Figure 19: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* in Ground Turkey (N = 304 Isolates)

Breakpoints: Susceptible $< = 8/4 \mu g/mL$ Resistant $> = 32/16 \mu g/mL$

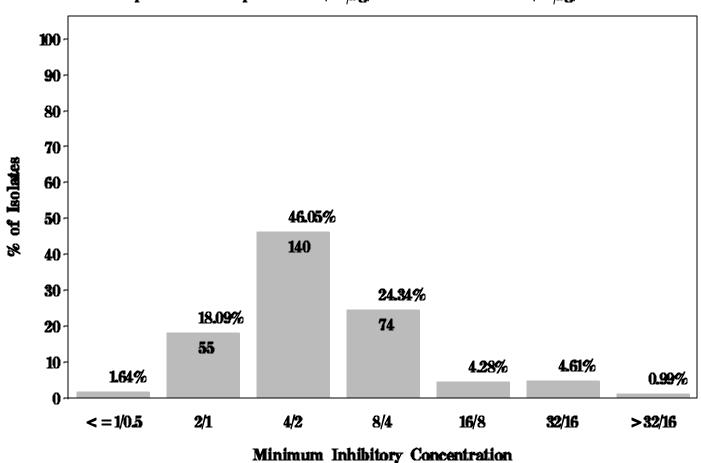


Figure 19: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* in Ground Beef (N=295 Isolates)

Breakpoints: Susceptible < = $8/4~\mu$ g/mL Resistant > = $32/16~\mu$ g/mL

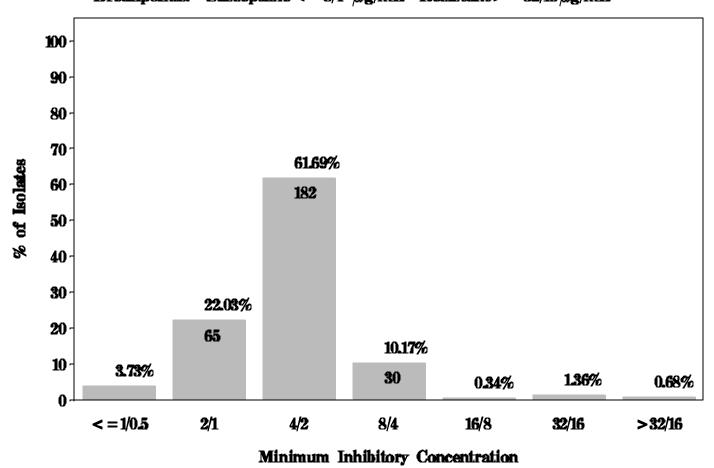


Figure 19: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $<=8/4~\mu g/mL$ Resistant $>=32/16~\mu g/mL$

100 90 80 **70** · % of Isolates 55.98% 60 103 **50** 40 **3**0 · 23.91% 20 44 12.50% 10 4.35% 23 163% 1.09% 0.54% 4/2 8/4 <=1/0.5 2/1 16/8 32/16 >32/16

Minimum Inhibitory Concentration

Figure 19: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32 \mu g/mL$

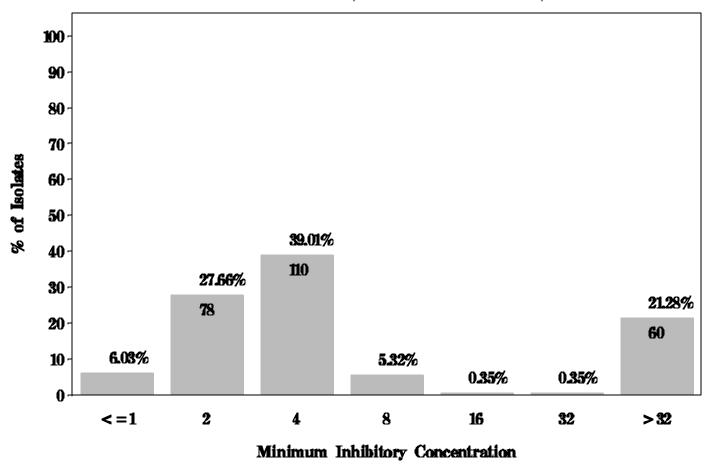


Figure 19: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

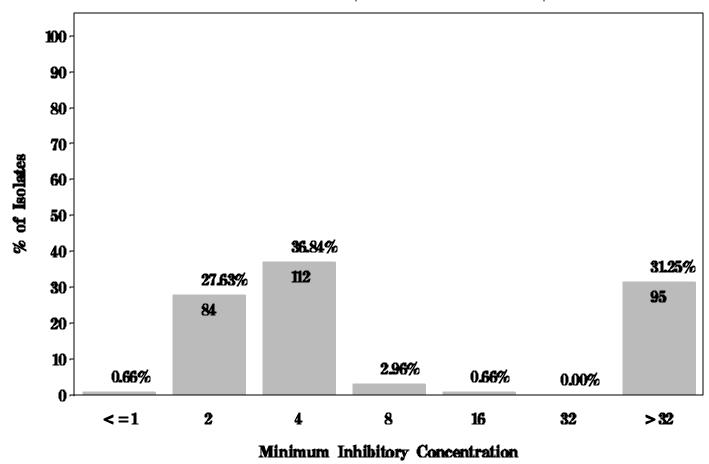


Figure 19: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Ground Beef (N=295 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

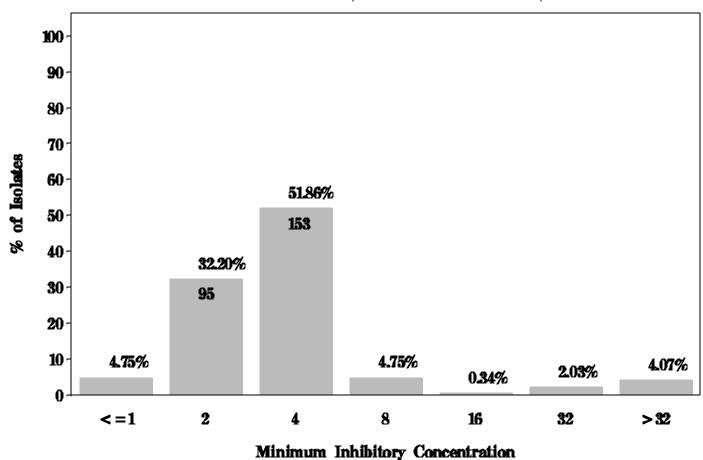


Figure 19: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

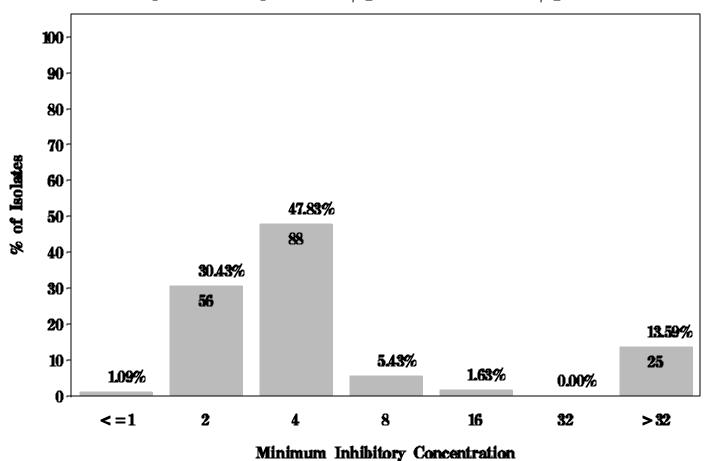


Figure 19: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

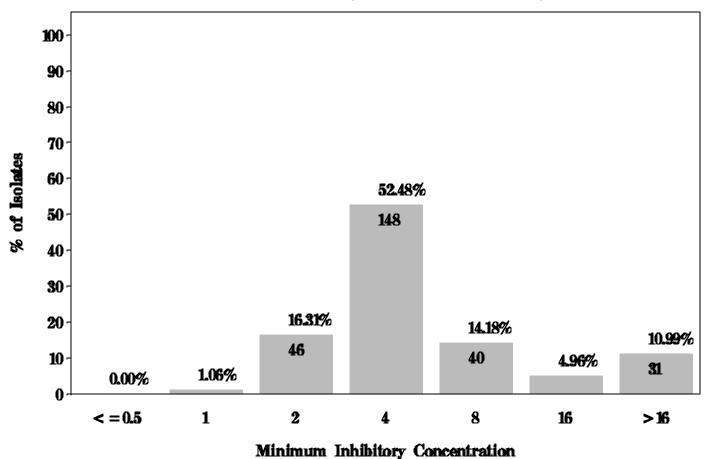


Figure 19: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32\mu g/mL$

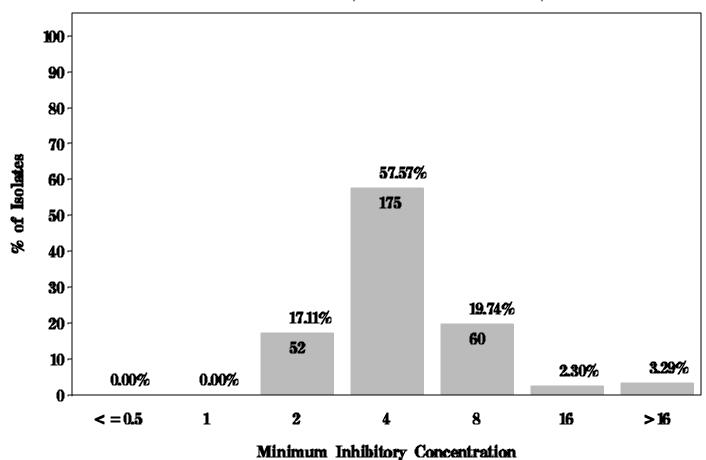


Figure 19: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* in Ground Beef (N=295 Isolates) Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

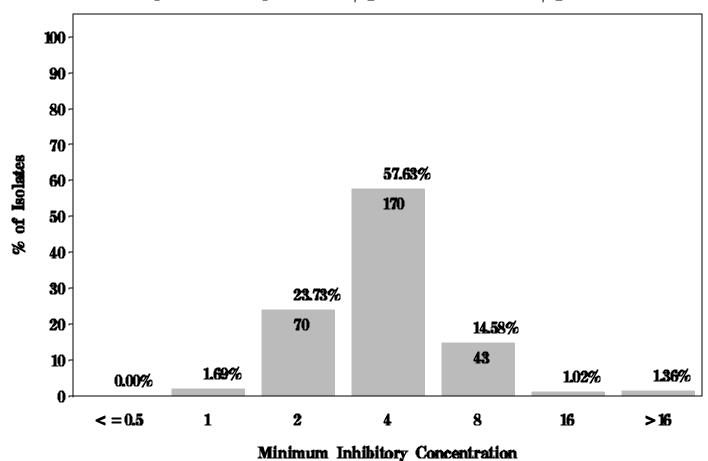


Figure 19: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32\mu g/mL$

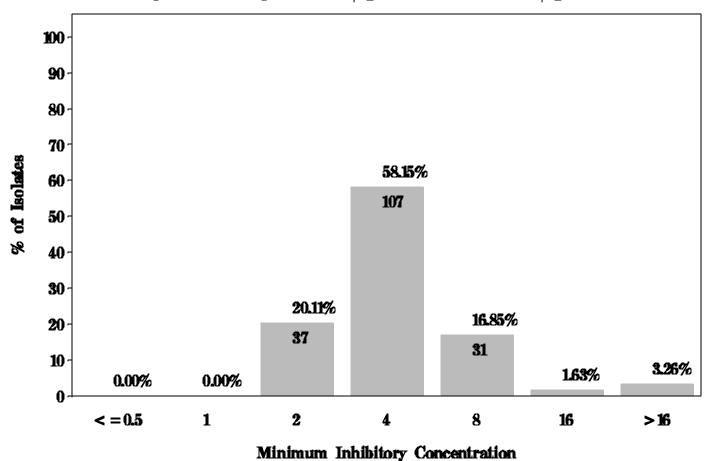


Figure 19: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible <= $2 \mu g/mL$ Resistant >= $8 \mu g/mL$

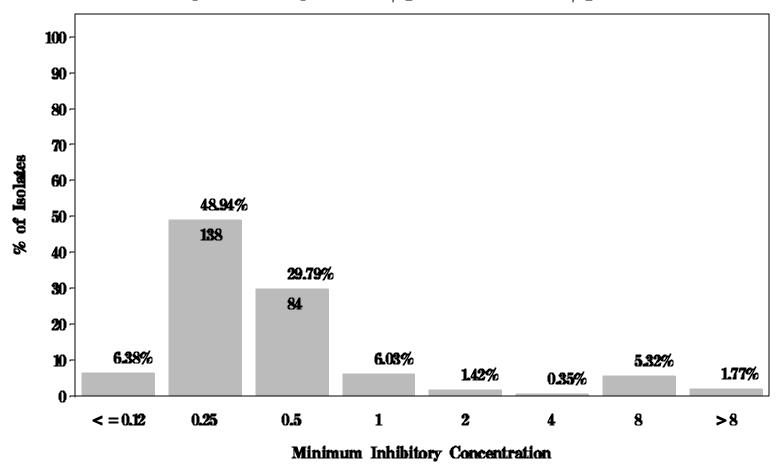


Figure 19: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible $<=2~\mu g/mL$ Resistant $>=8\mu g/mL$

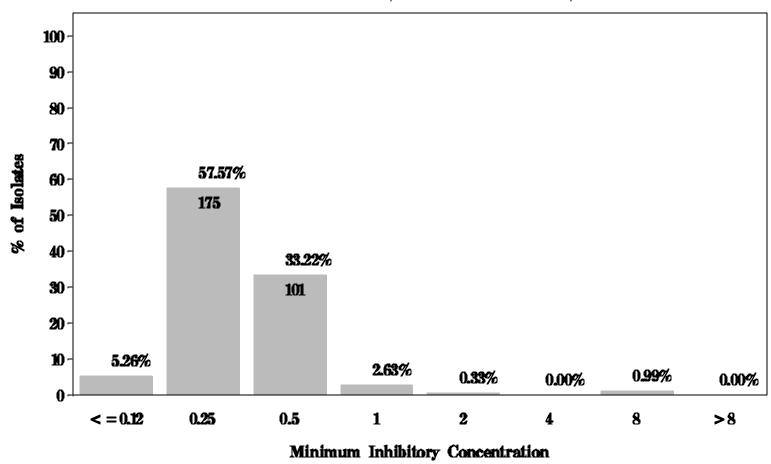


Figure 19: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Ground Beef (N=295 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

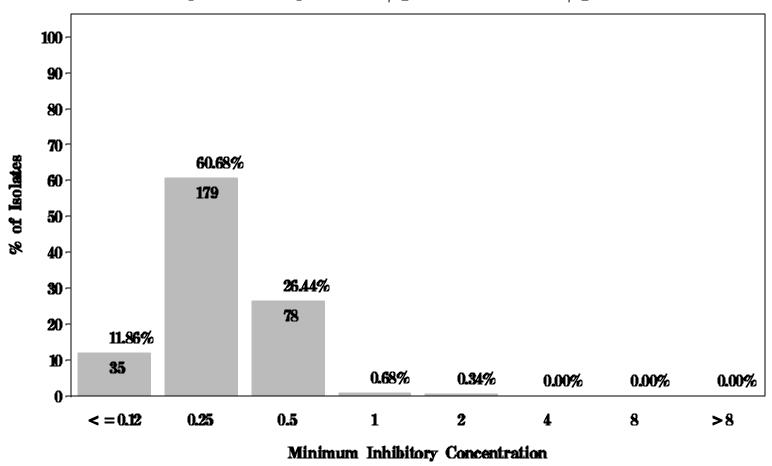


Figure 19: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

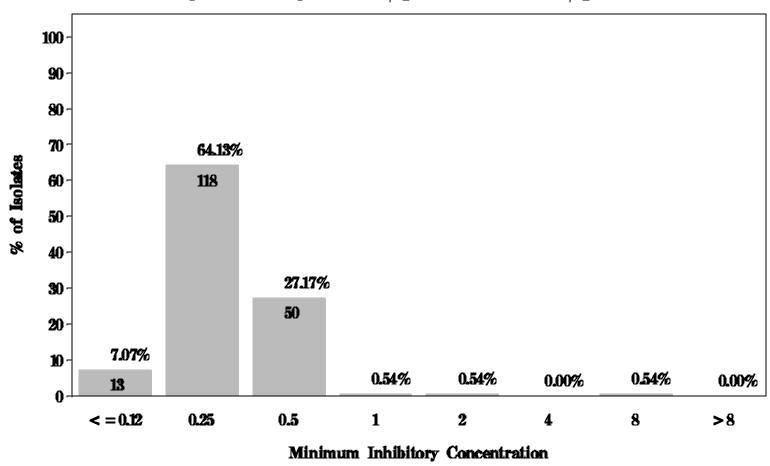


Figure 19: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible $<=8 \mu g/mL$ Resistant $>=64 \mu g/mL$

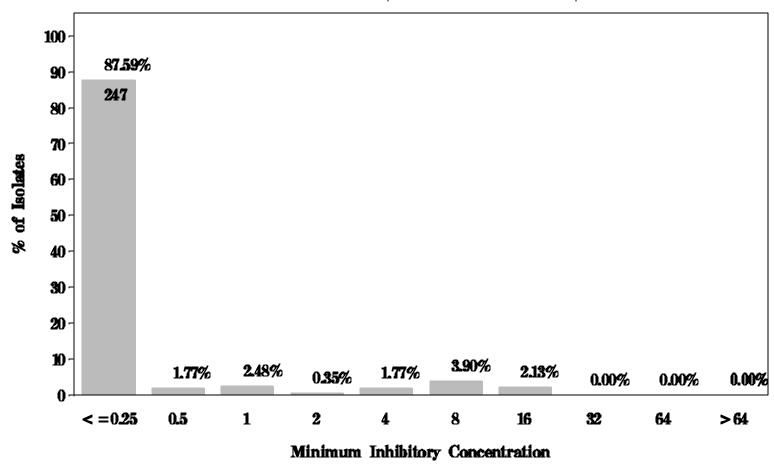


Figure 19: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 64 \mu g/mL$



Figure 19: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* in Ground Beef (N=295 Isolates)

Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $64 \mu g/mL$

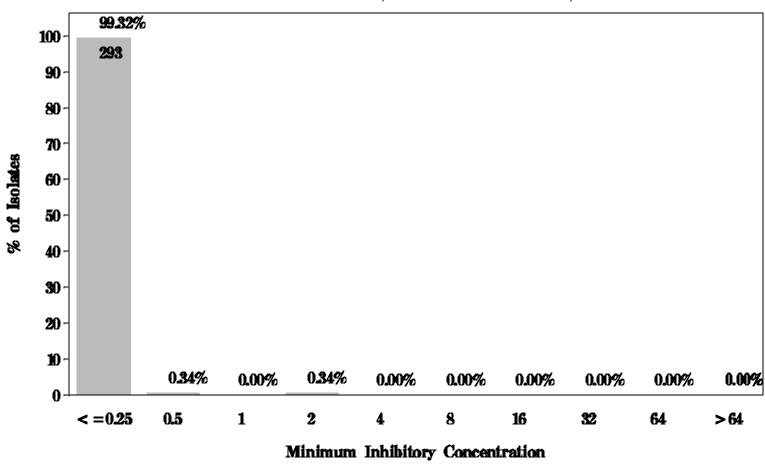


Figure 19: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 64 \mu g/mL$

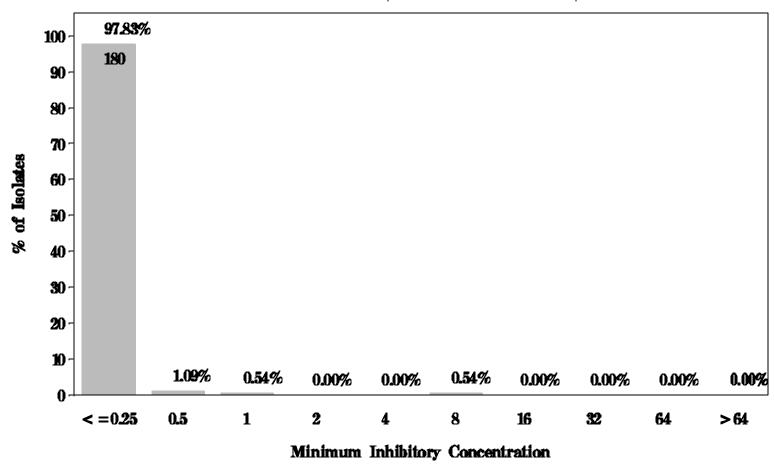


Figure 19: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

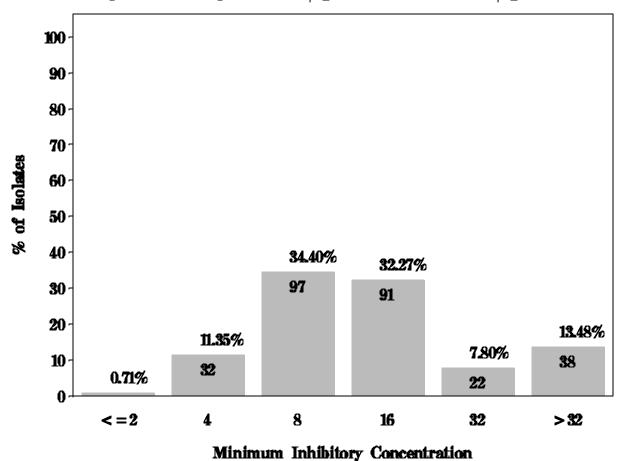


Figure 19: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32 \mu g/mL$

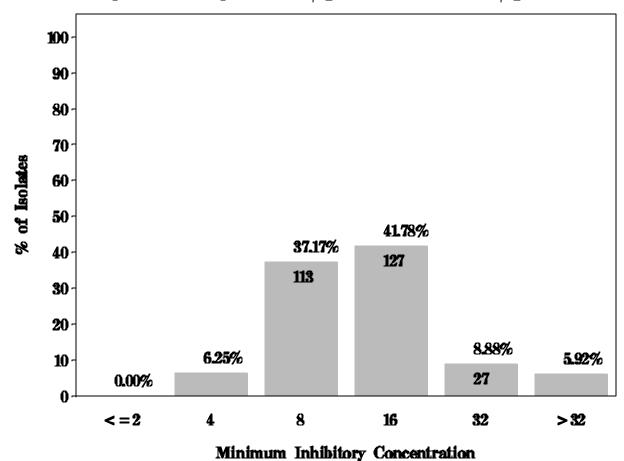


Figure 19: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* in Ground Beef (N=295 Isolates)

Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

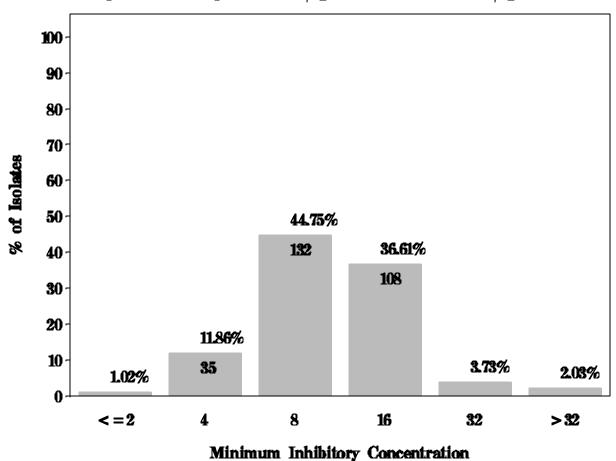


Figure 19: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

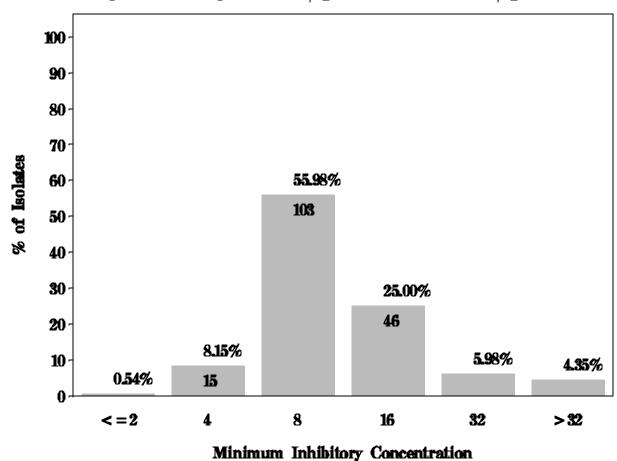


Figure 19: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32 \mu g/mL$

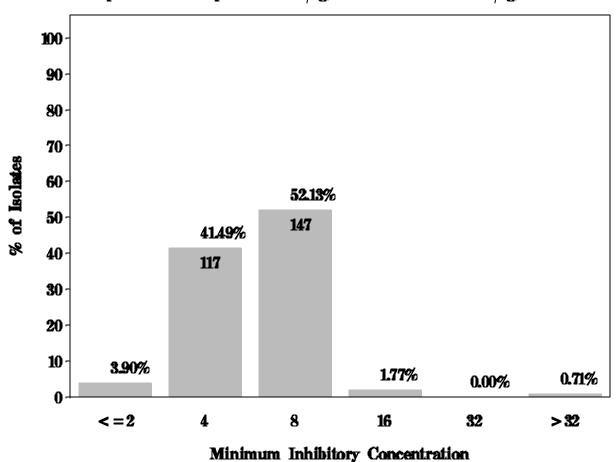


Figure 19: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Ground Turkey (N=304 Isolates)

Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

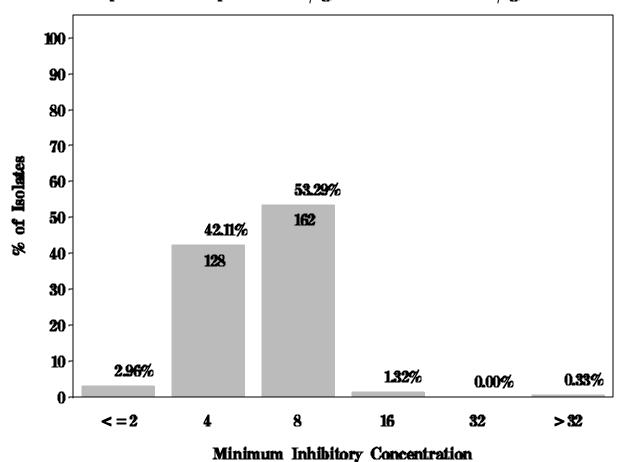


Figure 19: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Ground Beef (N=295 Isolates) Breakpoints: Susceptible $<=8~\mu g/mL$ Resistant $>=32 \mu g/mL$

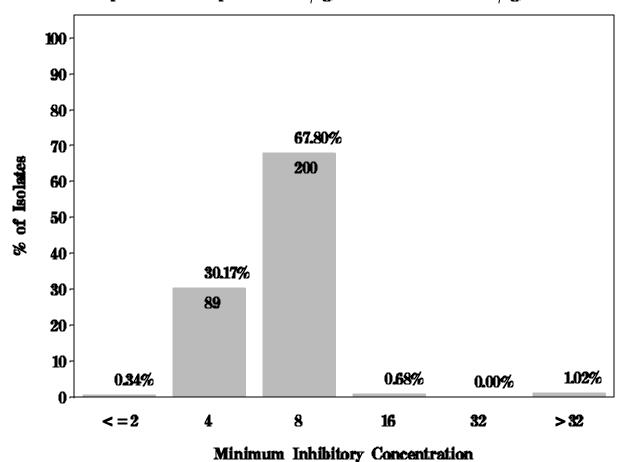


Figure 19: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

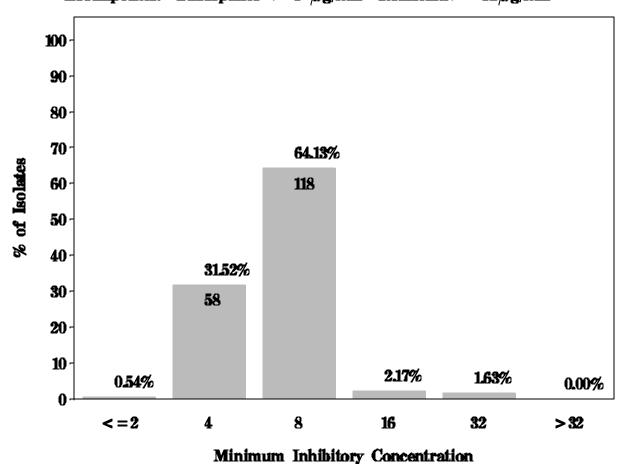


Figure 19: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

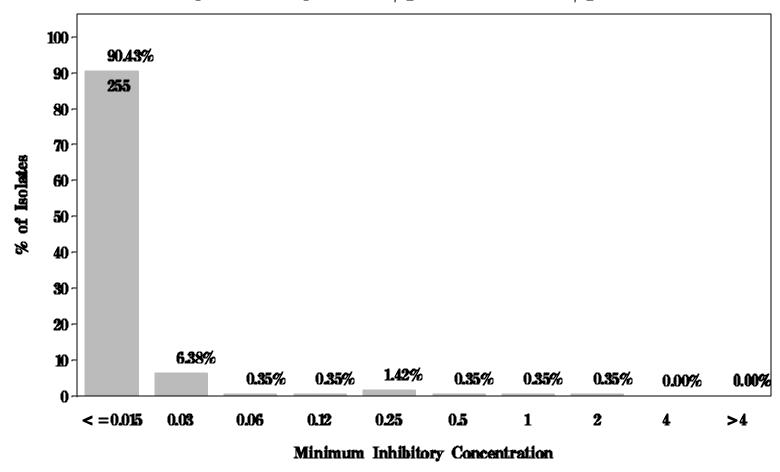


Figure 19: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Ground Turkey (N = 304 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

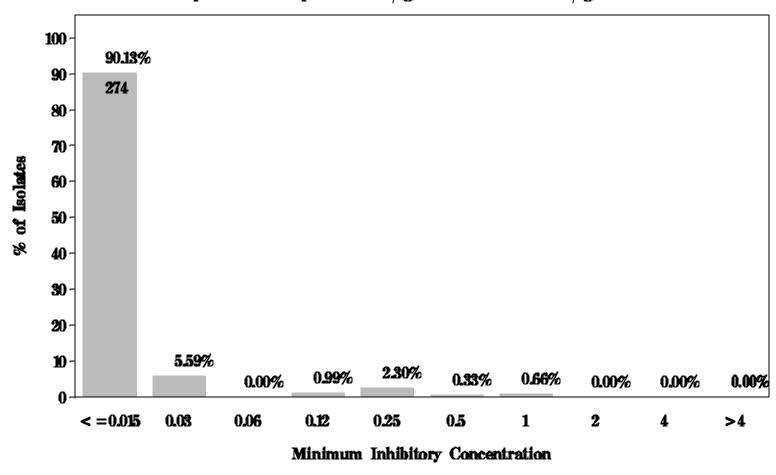


Figure 19: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Ground Beef (N=295 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

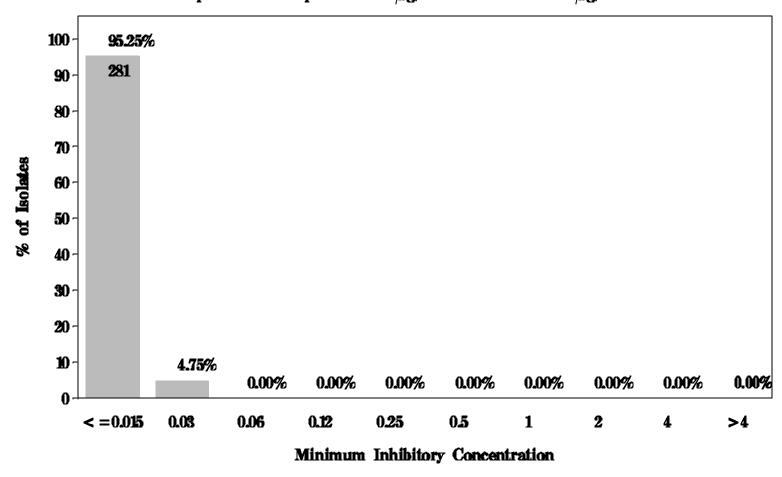


Figure 19: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

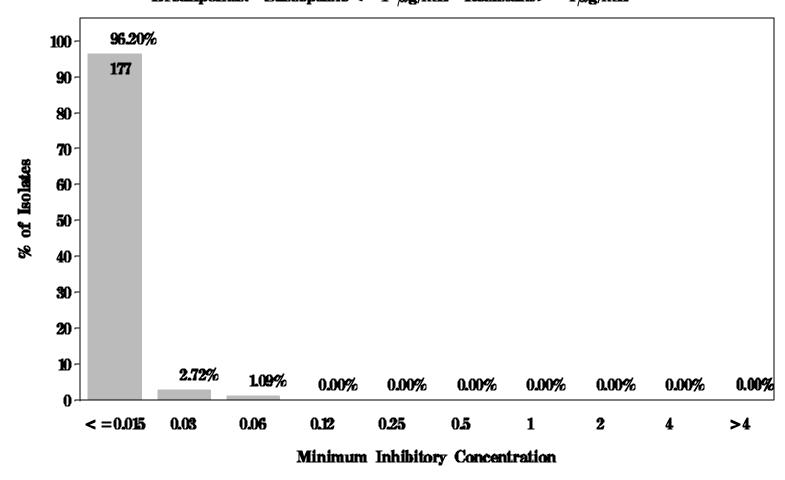


Figure 19: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible < = $4 \mu g/mL$ Resistant > = $16 \mu g/mL$

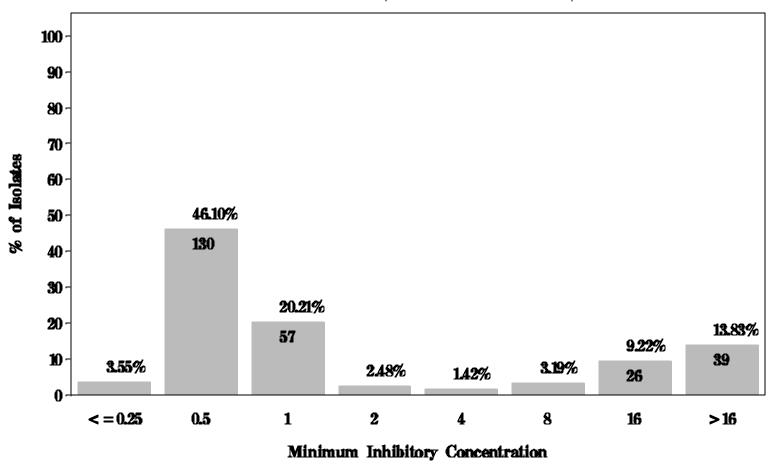


Figure 19: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible < =4 μ g/mL Resistant > =16 μ g/mL

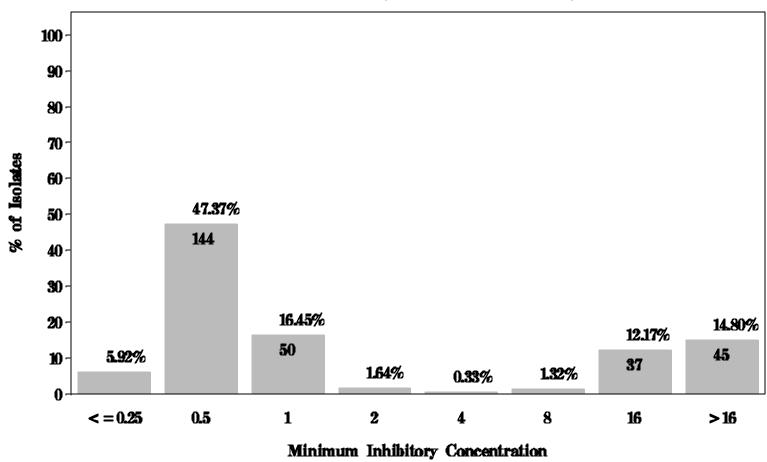


Figure 19: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Ground Beef (N=295 Isolates) Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

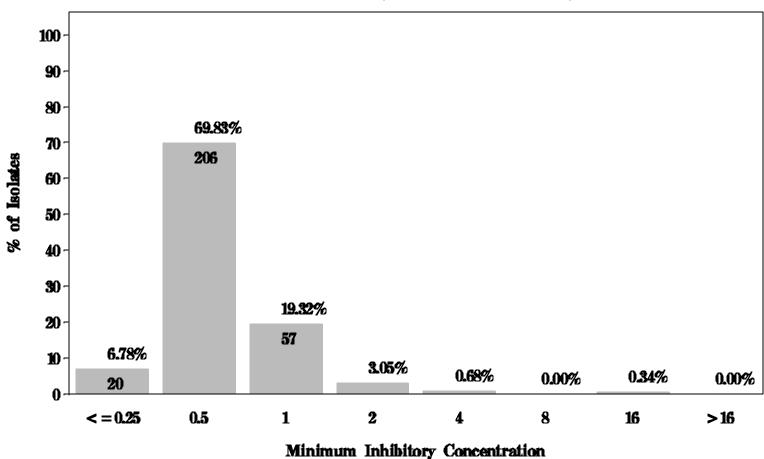


Figure 19: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< =4 \mu g/mL$ Resistant $> =16 \mu g/mL$

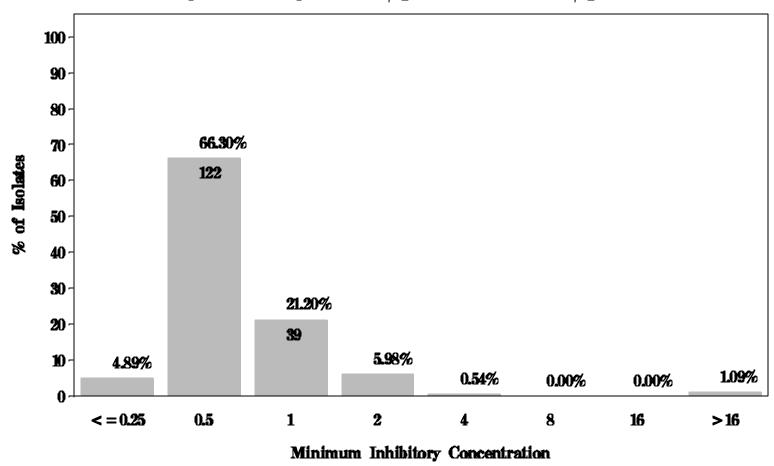


Figure 19: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

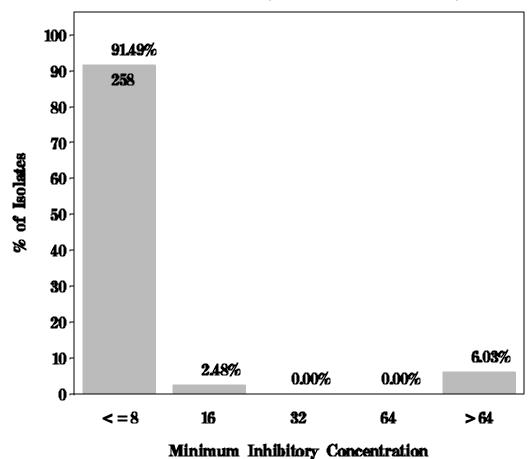
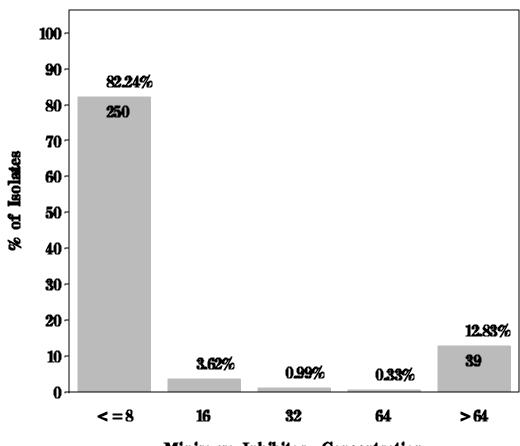
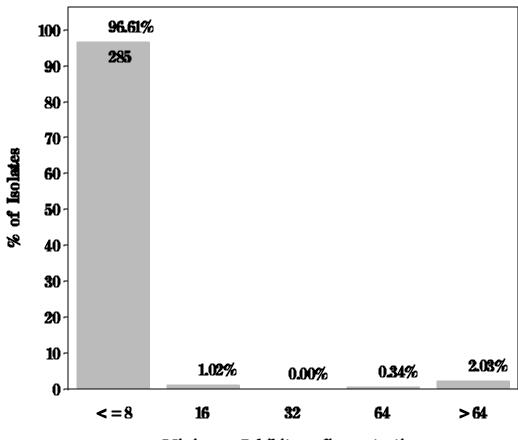




Figure 19: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible < =16 μ g/mL Resistant > =64 μ g/mL

Minimum Inhibitory Concentration

Figure 19: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Ground Beef (N=295 Isolates) Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 19: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Pork Chop (N=184 Isolates) Breakpoints: Susceptible < =16 μ g/mL Resistant > =64 μ g/mL

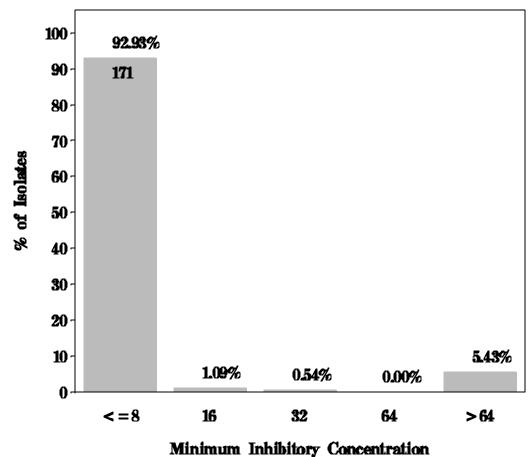


Figure 19: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Chicken Breast (N=282 Isolates)

Breakpoints: Susceptible < = $16 \mu g/mL$ Resistant > = $32 \mu g/mL$

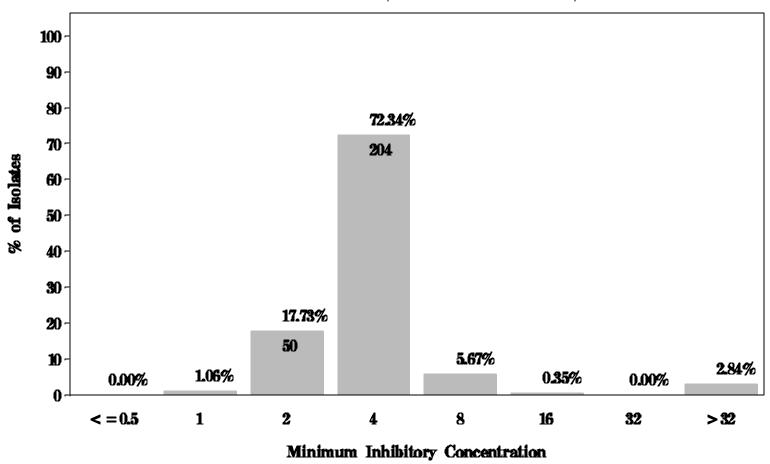


Figure 19: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible < =16 μ g/mL Resistant > =32 μ g/mL

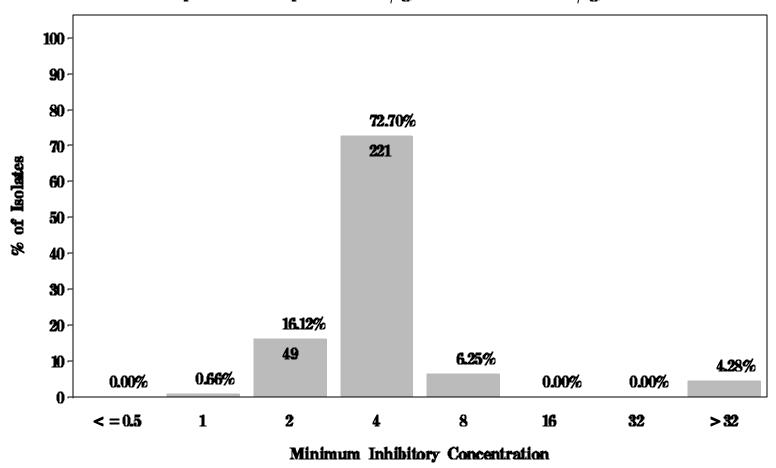


Figure 19: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Ground Beef (N=295 Isolates)

Breakpoints: Susceptible < = $16 \mu g/mL$ Resistant > = $32 \mu g/mL$

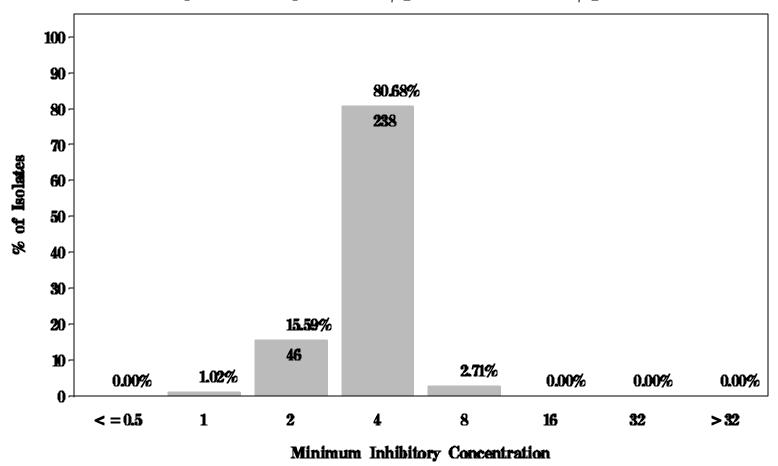


Figure 19: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 32 \mu g/mL$

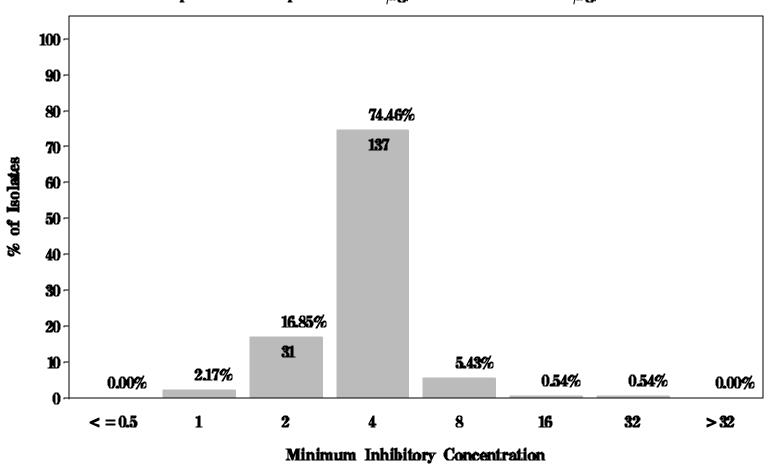
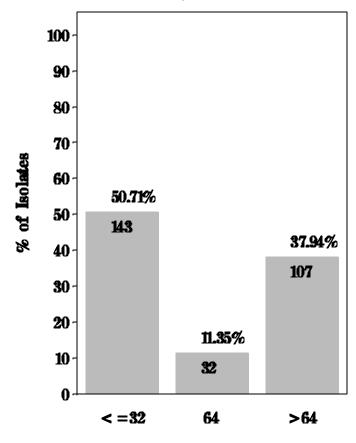
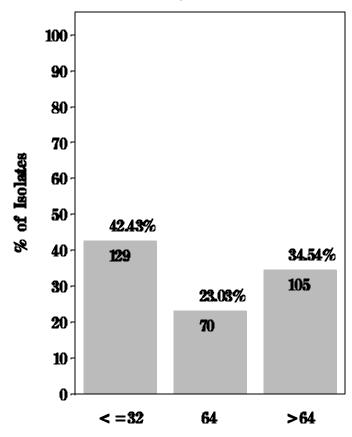




Figure 19: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible <= 32 μ g/mL Resistant >= 64 μ g/mL

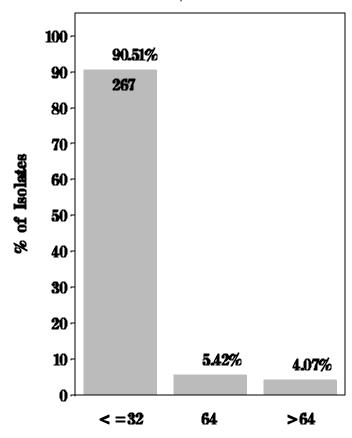
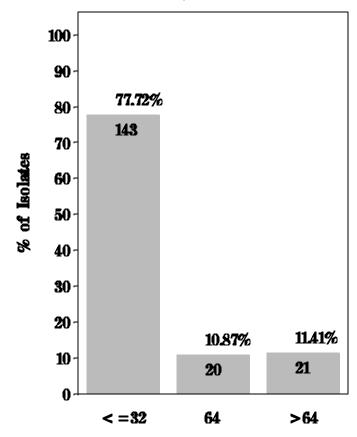

Minimum Inhibitory Concentration

Figure 19: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible <= 32 μ g/mL Resistant >= 64 μ g/mL

Minimum Inhibitory Concentration


Figure 19: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Ground Beef (N=295 Isolates) Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

Figure 19: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 19: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* in Chicken Breast (N=282 Isolates)

Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL

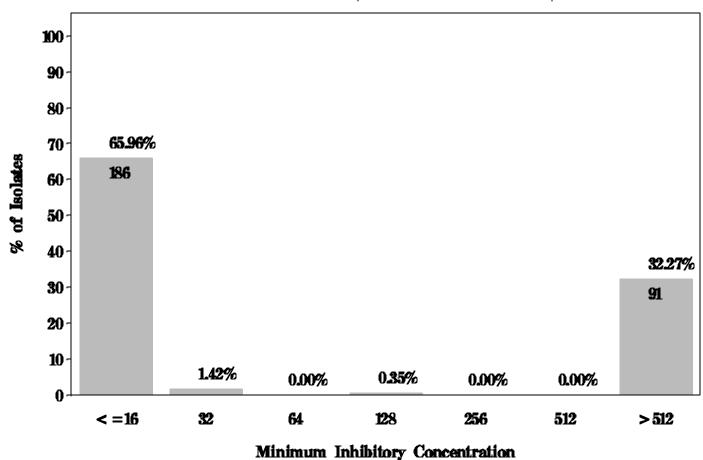


Figure 19: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible < =256 μ g/mL Resistant > =512 μ g/mL

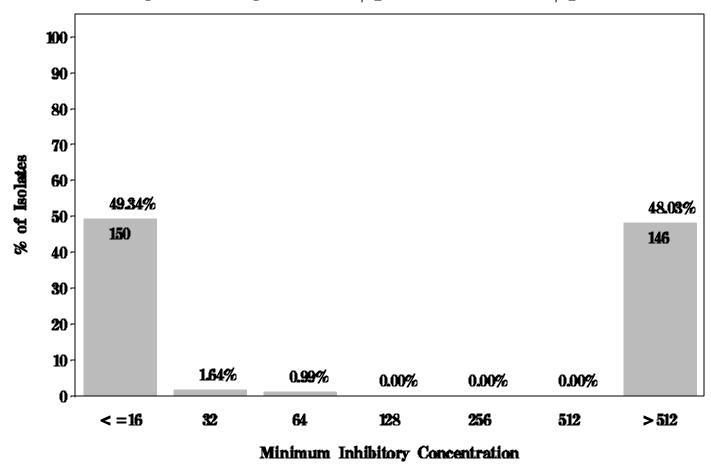


Figure 19: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* in Ground Beef (N=295 Isolates)

Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL

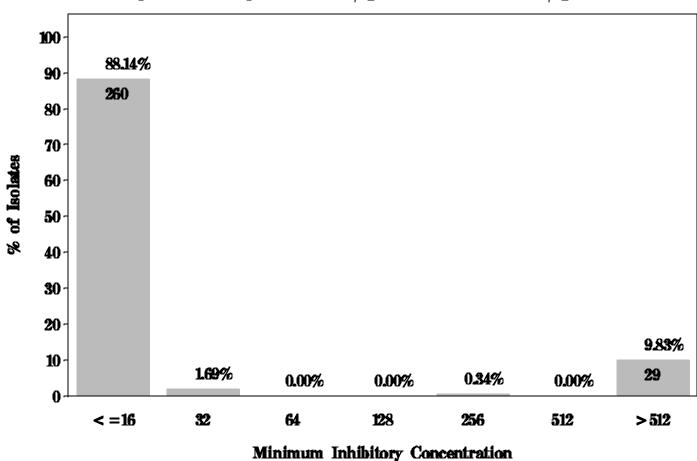


Figure 19: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< = 256 \mu g/mL$ Resistant $> = 512 \mu g/mL$

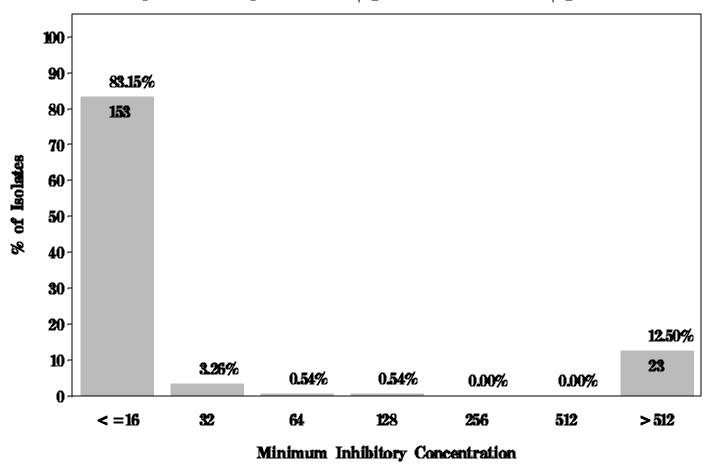


Figure 19: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Chicken Breast (N=282 Isolates) Breakpoints: Susceptible $< =4~\mu g/mL$ Resistant $> =16 \mu g/mL$

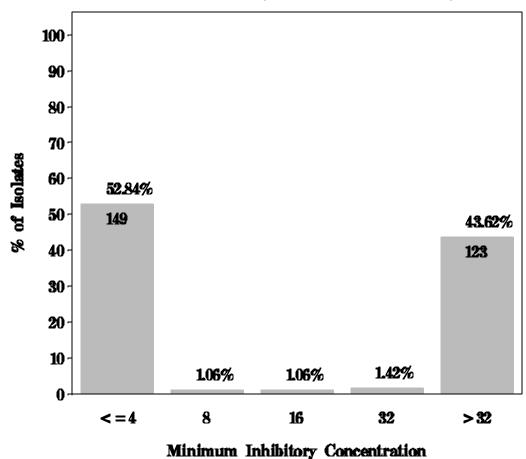


Figure 19: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Ground Turkey (N=304 Isolates) Breakpoints: Susceptible $< =4~\mu g/mL$ Resistant $> =16 \mu g/mL$

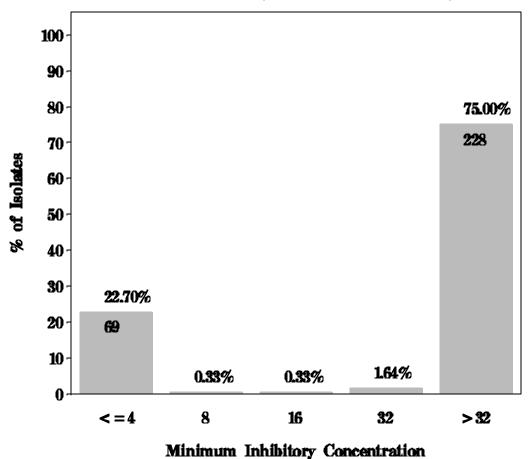


Figure 19: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Ground Beef (N=295 Isolates) Breakpoints: Susceptible $< =4~\mu g/mL$ Resistant $> =16 \mu g/mL$

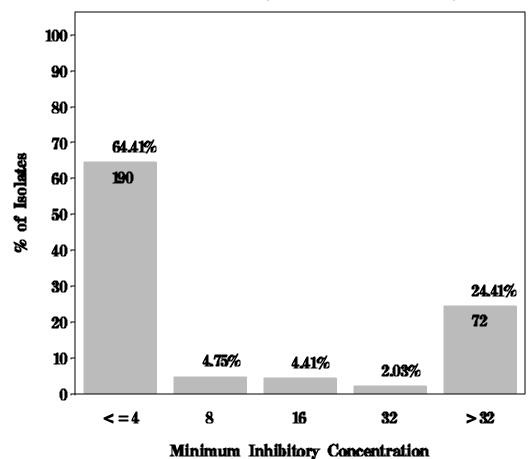


Figure 19: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Pork Chop (N=184 Isolates) Breakpoints: Susceptible $< =4~\mu g/mL$ Resistant $> =16 \mu g/mL$

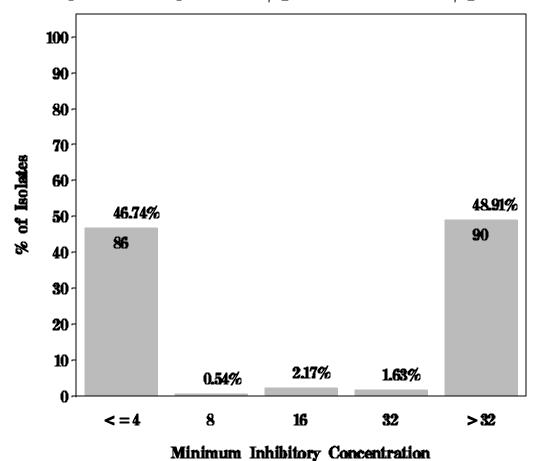


Figure 19: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Chicken Breast (N=282 Isolates)

Breakpoints: Susceptible < = $2/38 \mu g/mL$ Resistant > $= 4/76 \mu g/mL$

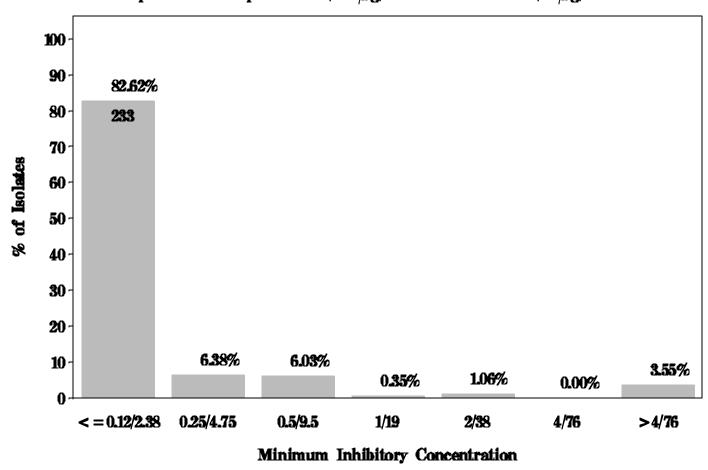


Figure 19: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Ground Turkey (N=304 Isolates)

Breakpoints: Susceptible $< = 2/38 \ \mu g/mL$ Resistant $> = 4/76 \mu g/mL$

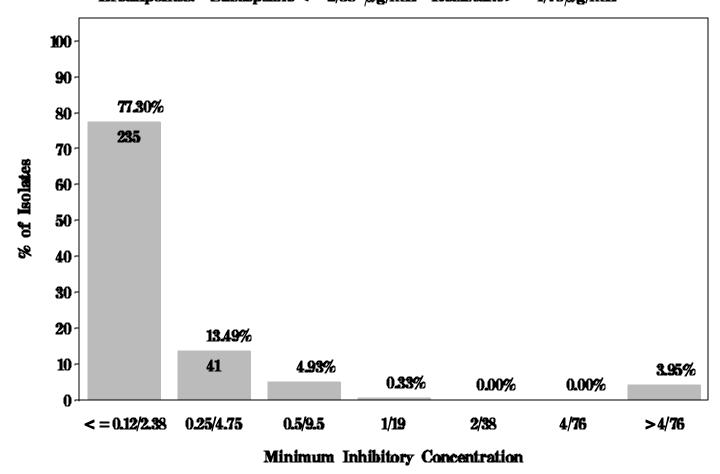


Figure 19: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Ground Beef (N=295 Isolates)

Breakpoints: Susceptible < = $2/38 \mu g/mL$ Resistant > $= 4/76 \mu g/mL$

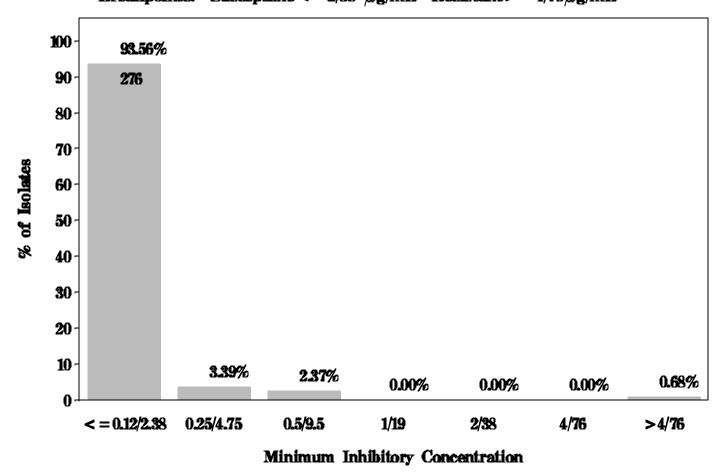


Figure 19: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Pork Chop (N=184 Isolates)

Breakpoints: Susceptible $< = 2/38 \ \mu g/mL$ Resistant $> = 4/76 \ \mu g/mL$

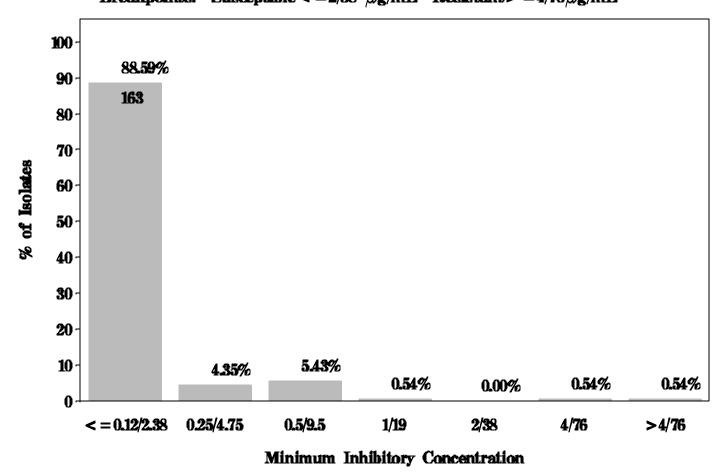


Table 46. Antimicrobial Resistance among *Escherichia coli* by Site, Meat Type, and Antimicrobial Agent, 2002

		Chicken Breast		Ground Beef		Ground Turkey		Pork Chop	
Site	Antimicrobial	# R	% R	# R	% R	# R	% R	# R	% R
GA	TET	52	50.0%	12	12.9%	78	75.7%	26	47.3%
(n=104)	STR	56	53.8%	4	4.3%	58	56.3%	11	20.0%
	SMX	43	41.3%	3	3.2%	48	46.6%	5	9.1%
	GEN	37	35.6%	0	0.0%	21	20.4%	0	0.0%
	AMP	8	7.7%	1	1.1%	33	32.0%	8	14.5%
	KAN	6	5.8%	1	1.1%	19	18.4%	4	7.3%
	CEP	11	10.6%	2	2.2%	10	9.7%	4	7.3%
	NAL	4	3.8%	0	0.0%	9	8.7%	0	0.0%
	FOX	5	4.8%	0	0.0%	5	4.9%	0	0.0%
	COT	6	5.8%	0	0.0%	3	2.9%	0	0.0%
	AMI	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	AMC	3	2.9%	0	0.0%	3	2.9%	0	0.0%
	TIO	2	1.9%	0	0.0%	1	1.0%	0	0.0%
	CHL	1	1.0%	0	0.0%	0	0.0%	1	1.8%
	AXO	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	CIP	0	0.0%	0	0.0%	0	0.0%	0	0.0%
MD	TET	44	41.1%	44	41.9%	87	79.1%	34	51.5%
(n=107)	STR	54	50.5%	11	10.5%	61	55.5%	20	30.3%
	AMP	37	34.6%	4	3.8%	40	36.4%	9	13.6%
	SMX	18	16.8%	13	12.4%	51	46.4%	8	12.1%
	CEP	37	34.6%	3	2.9%	21	19.1%	4	6.1%
	GEN	13	12.1%	1	1.0%	33	30.0%	0	0.0%
	AMC	23	21.5%	1	1.0%	7	6.4%	0	0.0%
	KAN	5	4.7%	4	3.8%	13	11.8%	2	3.0%
	FOX	18	16.8%	0	0.0%	4	3.6%	0	0.0%
	TIO	17	15.9%	0	0.0%	2	1.8%	0	0.0%
	COT	3	2.8%	2	1.9%	9	8.2%	1	1.5%
	AMI	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	CHL	1	0.9%	2	1.9%	1	0.9%	0	0.0%
	NAL	2	1.9%	0	0.0%	2	1.8%	0	0.0%
	AXO	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	CIP	0	0.0%	0	0.0%	0	0.0%	0	0.0%
OR	TET	7	77.8%	9	40.9%	15	88.2%	8	88.9%
(n=9)	STR	7	77.8%	7	31.8%	13	76.5%	0	0.0%
	SMX	1	11.1%	3	13.6%	8	47.1%	2	22.2%

	AMP	3	33.3%	2	9.1%	6	35.3%	1	11.1%
	CEP	0	0.0%	3	13.6%	2	11.8%	0	0.0%
	GEN	1	11.1%	0	0.0%	3	17.6%	0	0.0%
	KAN	0	0.0%	1	4.5%	2	11.8%	1	11.1%
	AMI	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	AMC	0	0.0%	1	4.5%	0	0.0%	0	0.0%
	CHL	0	0.0%	1	4.5%	0	0.0%	0	0.0%
	FOX	1	11.1%	0	0.0%	0	0.0%	0	0.0%
	NAL	0	0.0%	1	4.5%	0	0.0%	0	0.0%
	AXO	1	11.1%	0	0.0%	0	0.0%	0	0.0%
	CIP	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	COT	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	TIO	0	0.0%	0	0.0%	0	0.0%	0	0.0%
TN	TET	0	0.0%	0	0.0%	0	0.0%	0	0.0%
(n=62)	SMX	27	43.5%	26	34.7%	54	73.0%	29	53.7%
	STR	29	46.8%	10	13.3%	39	52.7%	8	14.8%
	AMP	22	35.5%	6	8.0%	43	58.1%	10	18.5%
	CEP	13	21.0%	11	14.7%	16	21.6%	7	13.0%
	GEN	12	19.4%	9	12.0%	12	16.2%	11	20.4%
	AMC	14	22.6%	0	0.0%	25	33.8%	2	3.7%
	FOX	8	12.9%	4	5.3%	7	9.5%	10	18.5%
	KAN	8	12.9%	3	4.0%	1	1.4%	6	11.1%
	AMI	0	0.0%	0	0.0%	0	0.0%	0	0.0%
	NAL	2	3.2%	2	2.7%	1	1.4%	1	1.9%
	CHL	1	1.6%	0	0.0%	2	2.7%	1	1.9%
	COT	0	0.0%	0	0.0%	0	0.0%	2	3.7%
	TIO	1	1.6%	0	0.0%	0	0.0%	1	1.9%
	AXO	1	1.6%	0	0.0%	0	0.0%	1	1.9%
	CIP	0	0.0%	0	0.0%	0	0.0%	0	0.0%

Table 47. Number of *E. coli* Resistant to Multiple Antimicrobial Agents, 2002.

Meat Type	Number of Antimicrobials							
теш туре	0	1	2-4	5-7	<u>≥</u> 8			
СВ	69	50	116	38	9			
GT	50	40	153	54	7			
GB	184	62	47	1	1			
PC	76	42	59	5	2			
Total	379	194	375	98	19			

Site: CT Meat Type Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total Chicken Breast 10 10 10 10 10 10 10 10 10 10 10 10 10
Chicken Breast 10 10 10 10 10 10 10 10 10 10 10 120
Ground Turkey 10 10 10 10 10 10 10 10 10 10 10 10 10
Ground Beef 10 10 10 10 10 10 10 10 10 10 10 10 120
Pork Chop 10 10 10 10 10 10 10 10 10 10 10 10 120
Total 40 40 40 40 40 40 40 40 40 40 40 40 40
Site: GA
Meat Type Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
Chicken Breast 10 10 10 10 10 10 10 10 10 10 10 10 120
Ground Turkey 10 10 10 10 10 10 10 10 10 10 10 10 10
Ground Beef 10 10 10 10 10 10 10 10 10 10 10 10 10
Pork Chop 10 10 10 10 10 10 10 10 10 10 10 10 10
Total 40 40 40 40 40 40 40 40 40 40 40 40 40
10141 40 40 40 40 40 40 40 40 40 40 40
Site: MD
Meat Type Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
Chicken Breast 10 10 10 10 10 10 10 10 10 10 10 10 10
Ground Turkey 10 10 10 10 10 10 10 10 10 10 10 10 120
Ground Beef 10 10 10 10 10 10 10 10 10 10 10 10 120
Pork Chop 10 10 10 10 10 10 10 10 10 10 10 10 120
Total 40 40 40 40 40 40 40 40 40 40 40 40 40
Site: MN
Meat Type Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
Chicken Breast 10 10 10 10 10 * 6 10 10 10 10 10 106
Ground Turkey 10 10 10 10 20 10 7 10 10 10 10 10 127
Ground Beef 10 10 10 10 20 10 3 10 10 10 10 123
Pork Chop 10 10 10 10 10 * 3 10 10 10 10 10 10 10 10 10 10 10 10 10
Total: 40 40 40 40 60 20 19 40 40 40 40 459

^{*} Samples not collected

Site:OR

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	*	*	*	*	*	*	*	*	10	10	10	10	40
Ground Turkey	*	*	*	*	*	*	*	*	10	10	10	10	40
Ground Beef	*	*	*	*	*	*	*	*	10	10	10	10	40
Pork Chop	*	*	*	*	*	*	*	*	10	10	10	10	40
Total:									40	40	40	40	160

Site: TN

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	*	110
Ground Turkey	10	10	5	10	10	10	10	10	10	10	10	10	115
Ground Beef	10	10	10	10	10	10	10	10	9	10	10	10	119
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	*	110
Total:	40	40	35	40	40	40	40	40	39	40	40	20	454
Total Year:													2513

^{*} Samples not collected

Appendix A-2. Percent Positive Samples by Month, Meat Type, and Bacterium, 2002

Month: January

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	18	36.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	22	73.3%
Salmonella	50	5	10.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	23	76.7%
Salmonella	50	12	24.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	20	66.7%
Salmonella	50	0	0.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	11	36.7%
Salmonella	50	1	2.0%

Month: February

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	29	58.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	25	83.3%
Salmonella	50	9	18.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	23	76.7%
Salmonella	50	5	10.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	23	76.7%
Salmonella	50	0	0.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	3	6.0%
Enterococcus	30	29	96.7%
Escherichia coli	30	13	43.3%
Salmonella	50	0	0.0%

Month: March

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	29	58.0%
Enterococcus	30	29	96.7%
Escherichia coli	30	25	83.3%
Salmonella	50	3	6.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	45	0	0.0%
Enterococcus	25	25	100.0%
Escherichia coli	25	18	72.0%
Salmonella	45	4	8.9%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	29	96.7%
Escherichia coli	30	20	66.7%
Salmonella	50	1	2.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	29	96.7%
Escherichia coli	30	18	60.0%
Salmonella	50	0	0.0%

Month: April

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	22	44.0%
Enterococcus	30	28	93.3%
Escherichia coli	30	21	70.0%
Salmonella	50	4	8.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	2	4.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	26	86.7%
Salmonella	50	5	10.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	27	90.0%
Escherichia coli	30	16	53.3%
Salmonella	50	1	2.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	19	63.3%
Salmonella	50	0	0.0%

Month: May

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	26	52.0%
Enterococcus	30	27	90.0%
Escherichia coli	30	29	96.7%
Salmonella	50	6	12.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	0	0.0%
Enterococcus	30	28	93.3%
Escherichia coli	30	28	93.3%
Salmonella	60	4	6.7%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	0	0.0%
Enterococcus	30	26	86.7%
Escherichia coli	30	27	90.0%
Salmonella	60	0	0.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	27	90.0%
Escherichia coli	30	11	36.7%
Salmonella	50	0	0.0%

Month: June

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	40	24	60.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	29	96.7%
Salmonella	40	1	2.5%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	25	83.3%
Salmonella	50	4	8.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	25	83.3%
Salmonella	50	2	4.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	40	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	9	30.0%
Salmonella	40	2	5.0%

Month: July

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	46	17	37.0%
Enterococcus	30	29	96.7%
Escherichia coli	30	20	66.7%
Salmonella	46	7	15.2%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	47	1	2.1%
Enterococcus	30	29	96.7%
Escherichia coli	30	18	60.0%
Salmonella	47	8	17.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	43	0	0.0%
Enterococcus	30	29	96.7%
Escherichia coli	30	17	56.7%
Salmonella	43	0	0.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	43	0	0.0%
Enterococcus	30	29	96.7%
Escherichia coli	30	7	23.3%
Salmonella	43	0	0.0%

Month: August

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	31	62.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	19	63.3%
Salmonella	50	3	6.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	20	66.7%
Salmonella	50	1	2.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	26	86.7%
Escherichia coli	30	19	63.3%
Salmonella	50	1	2.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	29	96.7%
Escherichia coli	30	18	60.0%
Salmonella	50	1	2.0%

Month: September

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	27	45.0%
Enterococcus	40	40	100.0%
Escherichia coli	40	24	60.0%
Salmonella	60	8	13.3%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	0	0.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	25	62.5%
Salmonella	60	0	0.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	59	0	0.0%
Enterococcus	39	38	97.4%
Escherichia coli	39	38	97.4%
Salmonella	59	0	0.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	0	0.0%
Enterococcus	40	35	87.5%
Escherichia coli	40	20	50.0%
Salmonella	60	0	0.0%

Month: October

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	21	35.0%
Enterococcus	40	40	100.0%
Escherichia coli	40	25	62.5%
Salmonella	60	4	6.7%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	0	0.0%
Enterococcus	40	40	100.0%
Escherichia coli	40	34	85.0%
Salmonella	60	11	18.3%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	0	0.0%
Enterococcus	40	40	100.0%
Escherichia coli	40	30	75.0%
Salmonella	60	2	3.3%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	1	1.7%
Enterococcus	40	40	100.0%
Escherichia coli	40	26	65.0%
Salmonella	60	3	5.0%

Month: November

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	21	35.0%
Enterococcus	40	38	95.0%
Escherichia coli	40	19	47.5%
Salmonella	60	5	8.3%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	1	1.7%
Enterococcus	40	37	92.5%
Escherichia coli	40	35	87.5%
Salmonella	60	11	18.3%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	0	0.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	32	80.0%
Salmonella	60	1	1.7%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	1	1.7%
Enterococcus	40	35	87.5%
Escherichia coli	40	18	45.0%
Salmonella	60	3	5.0%

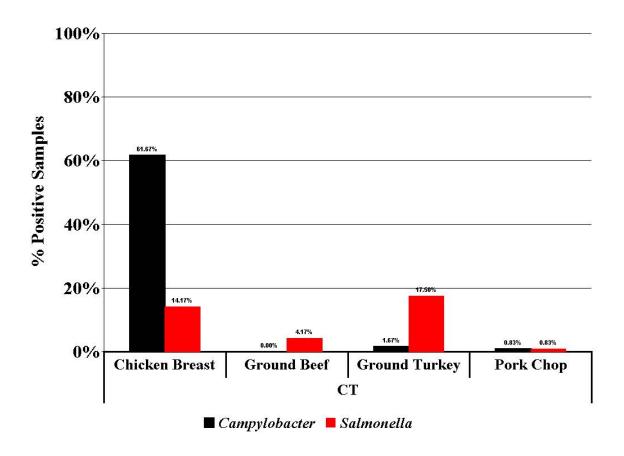
Month: December

Meat Type: Chicken Breast

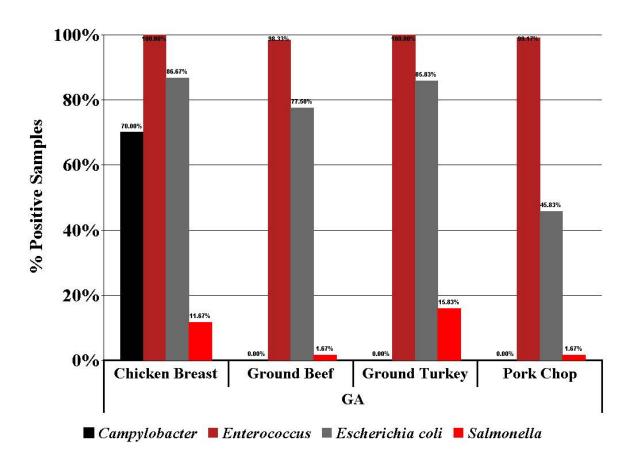
Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	24	48.0%
Enterococcus	30	30	100.0%
Escherichia coli	30	24	80.0%
Salmonella	50	5	10.0%

Meat Type: Ground Turkey

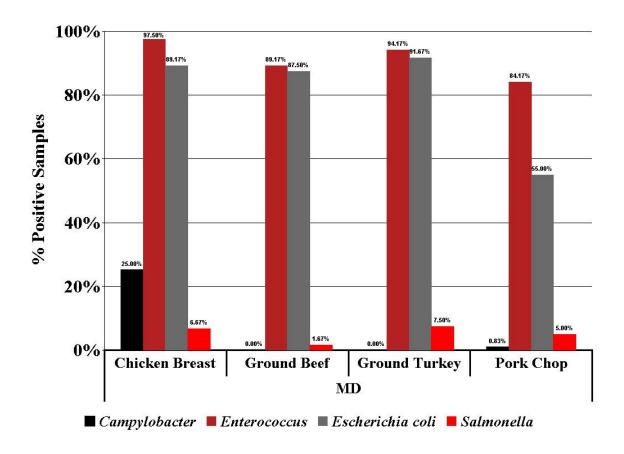
Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	0	0.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	29	72.5%
Salmonella	60	9	15.0%

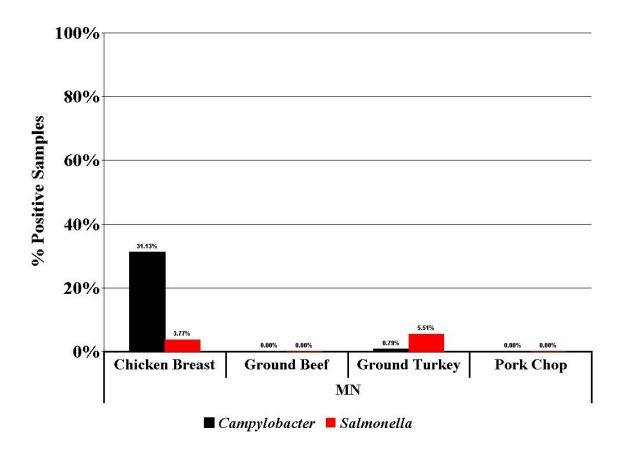

Meat Type: Ground Beef

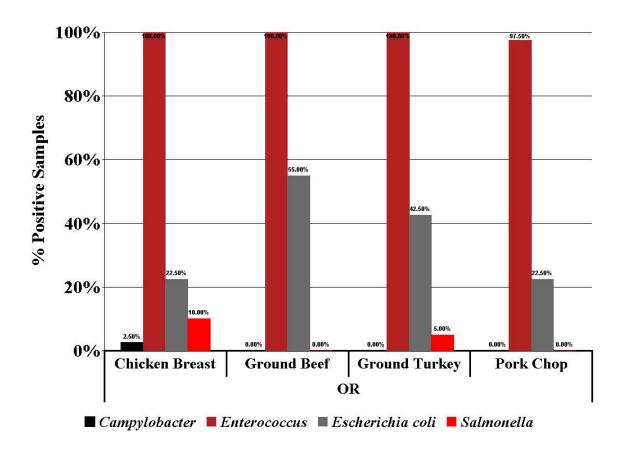
Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	60	0	0.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	29	72.5%
Salmonella	60	1	1.7%

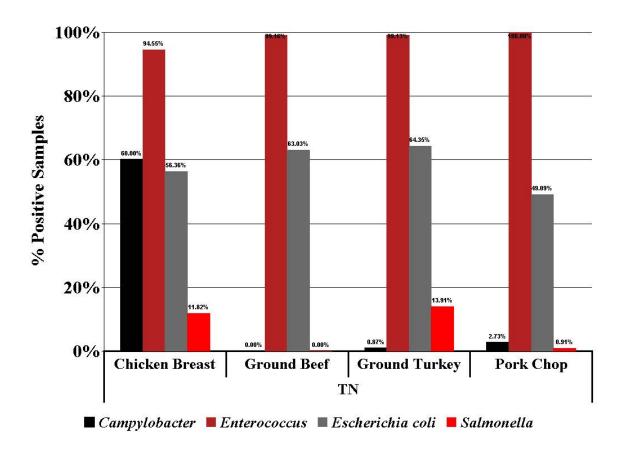

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	50	0	0.0%
Enterococcus	30	26	86.7%
Escherichia coli	30	14	46.7%
Salmonella	50	0	0.0%

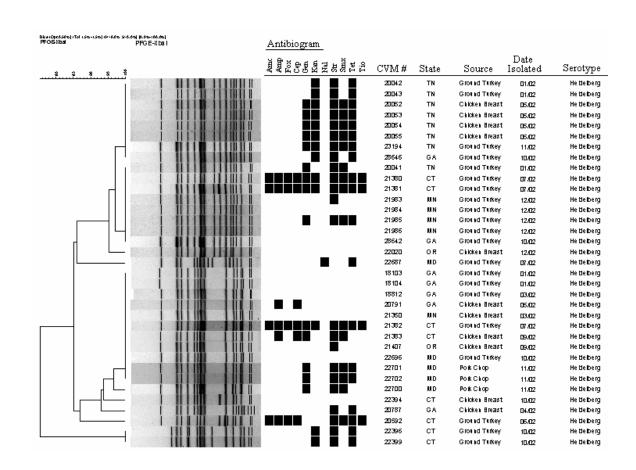
		Bacter	ium	App	endix A	A-3. Perc	ent Positive S	Sample	s by Meat	Type, Bacte	rium aı	nd Site	
			Campylobo	icter		Enteroco	occus		Escherich	ia coli		Salmon	ella
Meat Type	Site	N	Isolate	%Positive	N	Isolate	%Positive	N	Isolate	%Positive	N	Isolate	%Positive
Chicken Breast	CT	120	74	61.67%							120	17	14.17%
	GA	120	84	70.00%	120	120	100.00%	120	104	86.67%	120	14	11.67%
	MD	120	30	25.00%	120	117	97.50%	120	107	89.17%	120	8	6.67%
	MN	106	33	31.13%							106	4	3.77%
	OR	40	1	2.50%	40	40	100.00%	40	9	22.50%	40	4	10.00%
	TN	110	66	60.00%	110	104	94.55%	110	62	56.36%	110	13	11.82%
	Total	616	288	46.75%	390	381	97.69%	390	282	72.31%	616	60	9.74%
Ground Turkey	CT	120	2	1.67%							120	21	17.50%
	GA	120	0	0.00%	120	120	100.00%	120	103	85.83%	120	19	15.83%
	MD	120	0	0.00%	120	113	94.17%	120	110	91.67%	120	9	7.50%
	MN	127	1	0.79%							127	7	5.51%
	OR	40	0	0.00%	40	40	100.00%	40	17	42.50%	40	2	5.00%
	TN	115	1	0.87%	115	114	99.13%	115	74	64.35%	115	16	13.91%
	Total	642	4	0.62%	395	387	97.97%	395	304	76.96%	642	74	11.53%
Ground Beef	CT	120	0	0.00%							120	5	4.17%
	GA	120	0	0.00%	120	118	98.33%	120	93	77.50%	120	2	1.67%
	MD	120	0	0.00%	120	107	89.17%	120	105	87.50%	120	2	1.67%
	MN	123	0	0.00%							123	0	0.00%
	OR	40	0	0.00%	40	40	100.00%	40	22	55.00%	40	0	0.00%
	TN	119	0	0.00%	119	118	99.16%	119	75	63.03%	119	0	0.00%
	Total	642	0	0.00%	399	383	95.99%	399	295	73.93%	642	9	1.40%
Pork Chop	CT	120	1	0.83%							120	1	0.83%
	GA	120	0	0.00%	120	119	99.17%	120	55	45.83%	120	2	1.67%
	MD	120	1	0.83%	120	101	84.17%	120	66	55.00%	120	6	5.00%
	MN	103	0	0.00%							103	0	0.00%
	OR	40	0	0.00%	40	39	97.50%	40	9	22.50%	40	0	0.00%
	TN	110	3	2.73%	110	110	100.00%	110	54	49.09%	110	1	0.91%
	Total	613	5	0.82%	390	369	94.62%	390	184	47.18%	613	10	1.63%
Total		2513	297	11.82%	1574	1520	96.57%	1574	1065	67.66%	2513	153	6.09%

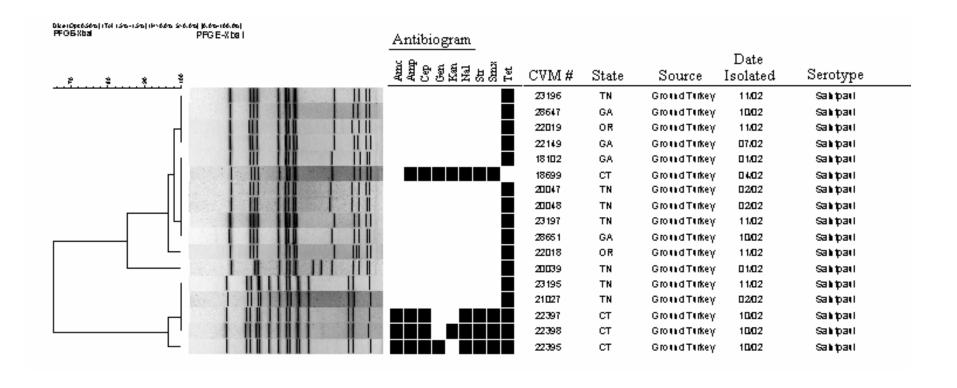

Appendix 3a. Percent Positive Samples by Meat Type, Bacterium in Connecticut, 2002

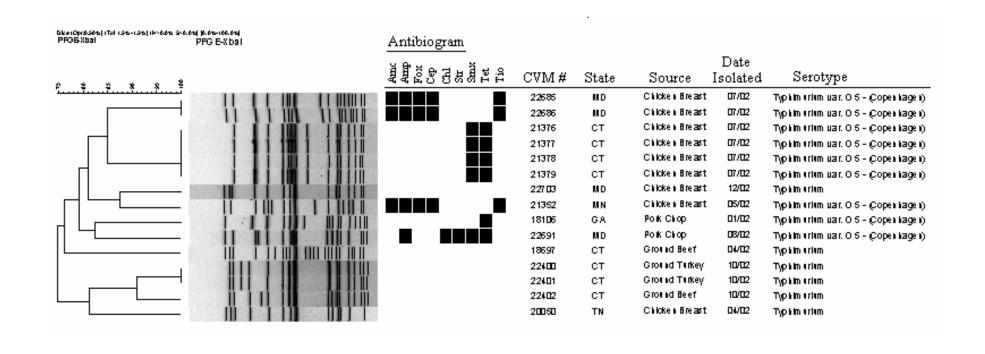

Appendix 3b. . Percent Positive Samples by Meat Type, Bacterium in Georgia, 2002

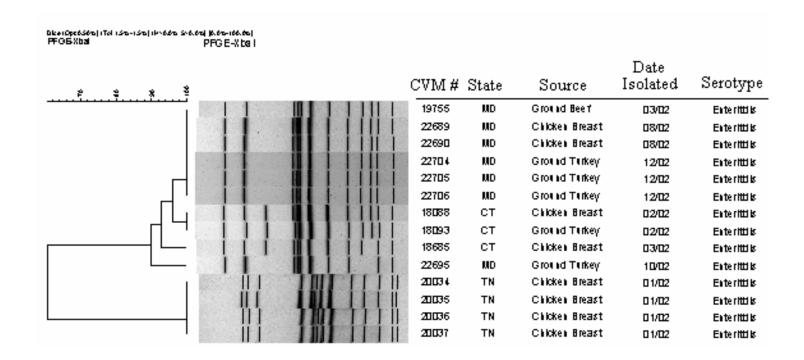

Appendix 3c. Percent Positive Samples by Meat Type, Bacterium in Maryland, 2002

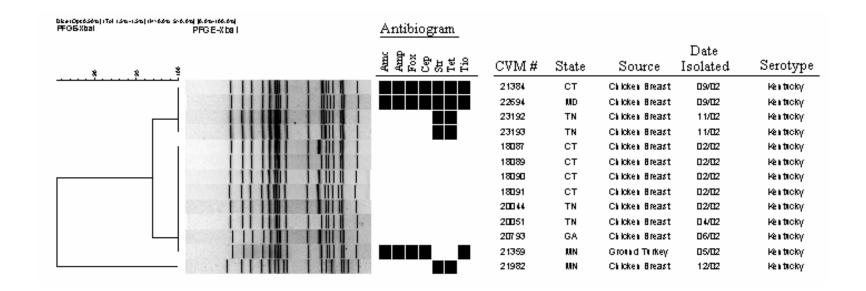

Appendix 3d. Percent Positive Samples by Meat Type, Bacterium in Minnesota, 2002

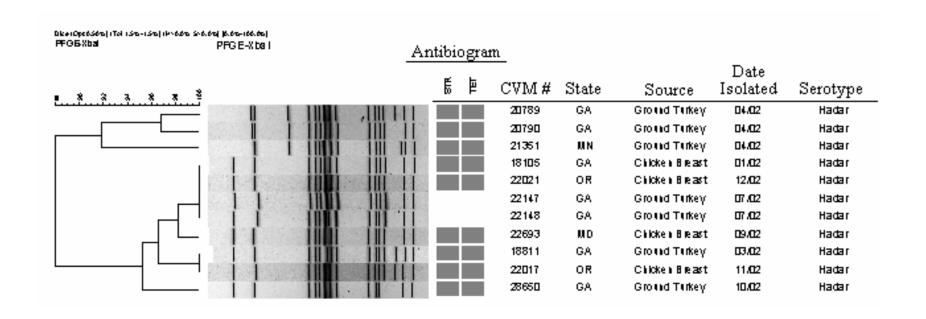

Appendix 3e. Percent Positive Samples by Meat Type, Bacterium in Oregon, 2002

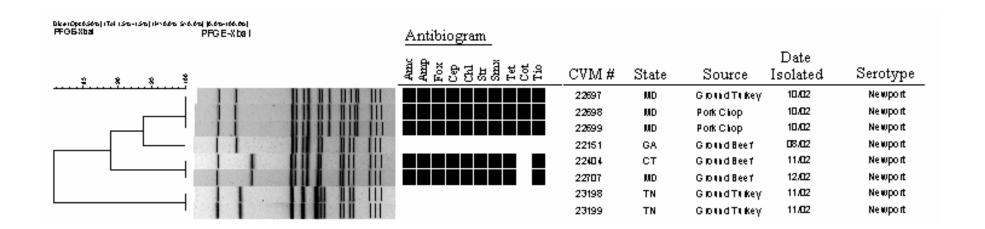

Appendix 3f. Percent Positive Samples by Meat Type, Bacterium in Tennessee, 2002

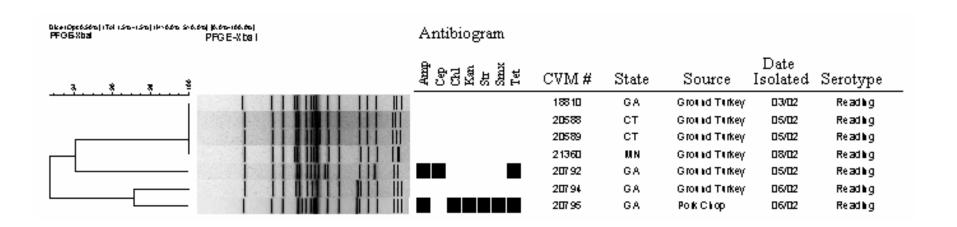

A-4a. PFGE Profiles of Salmonella Heidelberg, 2002.


A-4b. PFGE Profiles of Salmonella Saintpaul, 2002.


A-4c. PFGE Profiles of Salmonella Typhimurium, 2002.

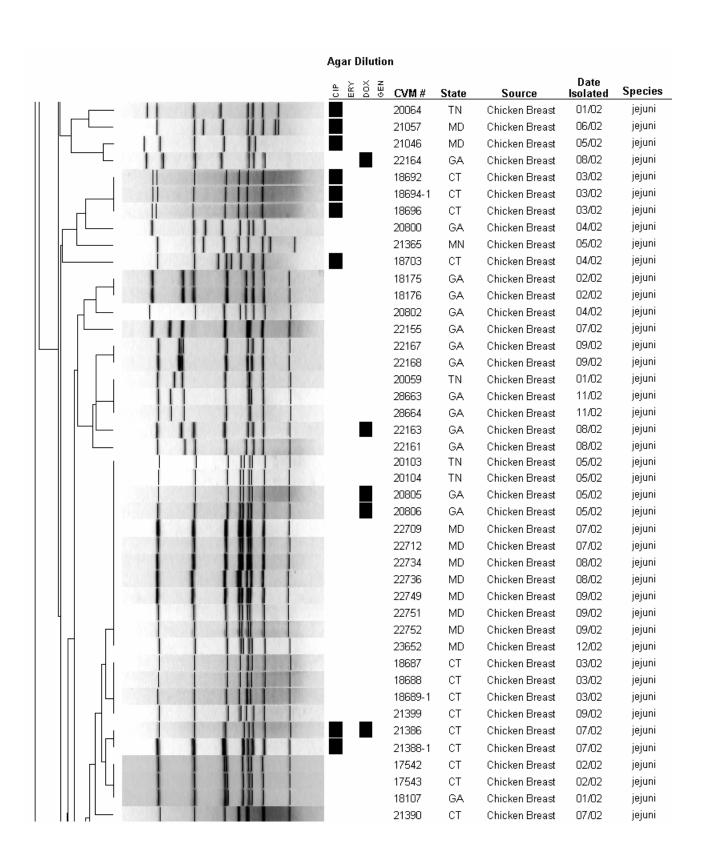

A-4d. PFGE Profiles of Salmonella Enteritidis, 2002.

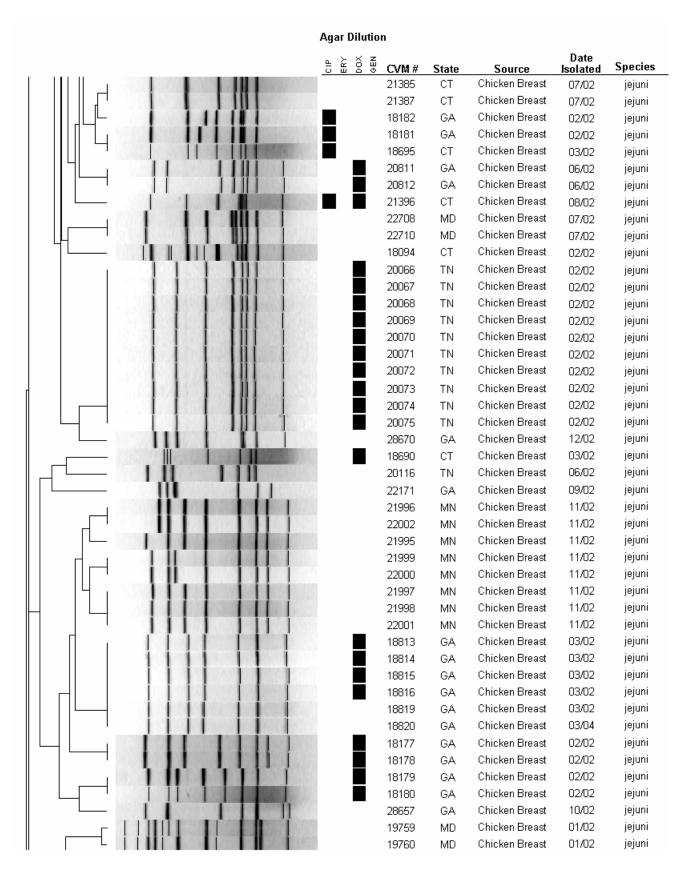

A-4e. PFGE Profiles of Salmonella Kentucky, 2002.

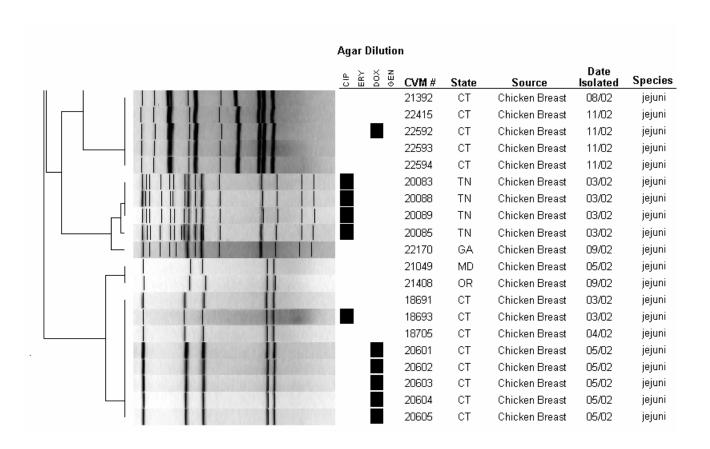

A-4f. PFGE Profiles for Salmonella Hadar, 2002.

A-4g. PFGE Profiles for Salmonella Newport, 2002.

A-4h. PFGE Profiles for Salmonella Reading, 2002.


	Agar Dilution					
		CVM#	State	Source	Date Isolated	Species
		20801	GΑ	Chicken Breast	04/02	coli
		22166	GΑ	Chicken Breast	09/02	coli
		19762-1	MD	Chicken Breast	01/02	coli
		19763-1	MD	Chicken Breast	01/02	coli
	ĺ/	20076	TN	Pork Chop	02/02	coli
		20077	TN	Pork Chop	02/02	coli
		20078	TN	Pork Chop	02/02	coli
		18096	CT	Chicken Breast	02/02	coli
		21401	CT	Chicken Breast	09/02	coli
		18704	CT	Chicken Breast	04/02	coli
		21366	MN	Chicken Breast	05/02	coli
		21051-1	MD	Chicken Breast	05/02	coli
		21053-1	MD	Chicken Breast	05/02	coli
	0.0	21054	MD	Chicken Breast	05/02	coli
		21052-1	MD	Chicken Breast	05/02	coli
		21371	MN	Chicken Breast	08/02	coli
		21372	MN	Chicken Breast	08/02	coli
		21373	MN	Chicken Breast	08/02	coli
	M	21375	MN	Chicken Breast	08/02	coli
		21063	MD	Chicken Breast	06/02	coli
		21064	MD	Chicken Breast	06/02	coli
		20596	CT	Chicken Breast	05/02	coli
		20597	CT	Chicken Breast	05/02	coli
		20598	CT	Chicken Breast	05/02	coli
		20599	CT	Chicken Breast	05/02	coli
	U _■	20600	CT	Chicken Breast	05/02	coli
	W	18817	GA.	Chicken Breast	03/02	coli
		19775	MD	Chicken Breast	02/02	coli
		22409	CT	Chicken Breast	10/02	coli
		22411	CT	Chicken Breast	10/02	coli
		22412	CT	Chicken Breast	10/02	coli
		22413	CT	Chicken Breast	10/02	coli
	1	17541	CT	Chicken Breast	02/02	coli
	1	20606 28673	CT	Chicken Breast	06/02	coli
	1	23217	GA TN	Chicken Breast Ground Turkey	12/02	coli
11 11 111 1111	(i) = =	21370	MN	Ground Turkey	11/02	coli
	ii — =	20807	GA	Chicken Breast	07/02 06/02	coli coli
		20813	GA	Chicken Breast	06/02	coli
		20814	GA	Chicken Breast	06/02	coli
		20079	TN	Chicken Breast	08/02	coli
		20079	TN	Chicken Breast	03/02	coli
		20081	TN	Chicken Breast	03/02	coli
		20082	TN	Chicken Breast	03/02	
		20086	TN	Chicken Breast	03/02	coli coli
		22160	GΑ	Chicken Breast	03/02	coli
		22100	50	Omeren Dieast	00/02	COII


Agar Dilution


	Agai Dilatio					
	CIP POX GEN	CVM#	State	Source	Date Isolated	Specie
		20796	GΑ	Chicken Breast	04/02	jejuni
		20797	GΑ	Chicken Breast	04/02	jejuni
	[<u></u>	20065	TN	Chicken Breast	01/02	jejuni
		23216	TN	Chicken Breast	10/02	jejuni
		28662	GΑ	Chicken Breast	11/02	jejuni
		28668	GΑ	Chicken Breast	12/02	jejuni
	1	28669	GΑ	Chicken Breast	12/02	jejuni
		20090	TN	Chicken Breast	03/02	jejuni
		23645	MD	Pork Chop	11/02	jejuni
		28656	GΑ	Chicken Breast	10/02	jejuni
		18700	CT	Ground Turkey	04/02	jejuni
		18707	CT	Chicken Breast	04/02	jejuni
		18101	CT	Chicken Breast	02/02	jejuni
		23201	TN	Chicken Breast	08/02	jejuni
39 (2003) 100000000 1 1000 1 50		23203	TN	Chicken Breast	08/02	jejuni
		23204	TN	Chicken Breast	08/02	jejuni
		23206	TN	Chicken Breast	08/02	jejuni
		23208	TN	Chicken Breast	08/02	jejuni
		23209	TN	Chicken Breast	08/02	jejuni
		23207	TN	Chicken Breast	08/02	jejuni
	1	21389	CT	Chicken Breast	07/02	jejuni
		20798	GA	Chicken Breast	04/02	jejuni
		28677	GA	Chicken Breast	12/02	jejuni
		22745	MD	Chicken Breast	09/02	jejuni
		22748	MD	Chicken Breast	09/02	jejuni
		18701	СТ	Ground Turkey	04/02	jejuni
	_	20091	TN	Chicken Breast	03/02	jejuni
		20092	TN	Chicken Breast	03/02	jejuni
		20093	TN	Chicken Breast	03/02	jejuni
		20095	TN	Chicken Breast	03/02	jejuni
		20096	TN	Chicken Breast	03/02	jejuni
		20097	TN	Chicken Breast	03/02	jejuni
		20098	TN	Chicken Breast	03/02	jejuni
		21374	MN	Chicken Breast	08/02	jejuni
		28661	GA	Chicken Breast	11/02	jejuni
		21989	MN	Chicken Breast	10/02	jejuni
		21990	MN	Chicken Breast	10/02	jejuni
		22156	GΑ	Chicken Breast	07/02	jejuni
		21367	MN	Chicken Breast	07/02	jejuni
	_	21368	MN	Chicken Breast	07/02	jejuni
		20809	GA	Chicken Breast	06/02	jejuni
		20810	GA	Chicken Breast	06/02	jejuni
		18702	CT	Chicken Breast	04/02	jejuni
		20105	TN	Chicken Breast	05/02	
		21393	CT	Chicken Breast	08/02	jejuni iejuni
						jejuni iojuni
	-	21394 22595	CT CT	Chicken Breast Chicken Breast	08/02 12/02	jejuni
I II II		ZZU35	O1	Onicken Dreast	12/02	jejuni

Agar Dilution

	CIP ERY DOX	0EN	CVM#	State	Source	Date Isolated	Species
			28665	GΑ	Chicken Breast	11/02	jejuni
			28666	GΑ	Chicken Breast	11/02	jejuni
			20803	GΑ	Chicken Breast	05/02	jejuni
			19792	MD	Chicken Breast	03/02	jejuni
J			22162	GΑ	Chicken Breast	08/02	jejuni
			28676	GΑ	Chicken Breast	12/02	jejuni
			22158	GΑ	Chicken Breast	07/02	jejuni
	_	_	22414	CT	Pork Chop	10/02	jejuni
			21398	CT	Chicken Breast	08/02	jejuni
			28652	GA	Chicken Breast	12/02	jejuni
			28653	GA	Chicken Breast	12/01	jejuni
			28667	GA	Chicken Breast	11/02	jejuni
			21395-1	CT	Chicken Breast	08/02	jejuni
			21397	CT	Chicken Breast	08/02	jejuni
			21991	MN	Chicken Breast	10/02	jejuni
			21994 21992	MN MN	Chicken Breast Chicken Breast	10/02 10/02	jejuni isiusi
			21993	MN	Chicken Breast	10/02	jejuni jejuni
			20106	TN	Chicken Breast	05/02	jejuni jejuni
The second second second second second			21391	CT	Chicken Breast	07/02	jejuni
			21400	CT	Chicken Breast	09/02	jejuni
			21402	CT	Chicken Breast	09/02	jejuni
			21403	CT	Chicken Breast	09/02	jejuni
			21404	CT	Chicken Breast	09/02	jejuni
			21405	CT	Chicken Breast	09/02	jejuni
			21406	CT	Chicken Breast	09/02	jejuni
			22012	MN	Chicken Breast	12/02	jejuni
			19779	MD	Chicken Breast	02/02	jejuni
			18108	GΑ	Chicken Breast	01/02	jejuni
			18109	GΑ	Chicken Breast	01/02	jejuni
(1 ((())			22157	GΑ	Chicken Breast	07/02	jejuni
			22169	GΑ	Chicken Breast	09/02	jejuni
			22172	GΑ	Chicken Breast	09/02	jejuni
			23200	TN	Chicken Breast	08/02	jejuni
			23202	TN	Chicken Breast	08/02	jejuni
			23205	TN	Chicken Breast	08/02	jejuni
			18818	GA	Chicken Breast	03/02	jejuni
			20808	GA	Chicken Breast	06/02	jejuni
			19778-2	MD	Chicken Breast	02/02	jejuni
			20057 20062	TN TN	Chicken Breast	01/02 01/02	jejuni iejuni
			20062	TN	Chicken Breast Chicken Breast	01/02	jejuni iejuni
			18097	CT	Chicken Breast	02/02	jejuni iejuni
			18098	CT	Chicken Breast	02/02	jejuni jejuni
			18099	CT	Chicken Breast	02/02	jejuni jejuni
			28671	GΑ	Chicken Breast	12/02	jejuni jejuni
				1	2e.e.ii Diodol		,5,5,1

Appendix A

NATIONAL ANTIMICROBIAL RESISTANCE MONITORING SYSTEM - RETAIL FOOD STUDY ISOLATES MONTHLY LOG SHEET

STATE_____ MONTH____ YEAR__

Circle One → CHICKEN BREAST				GR	OUN	D TURKEY		GROUND BEE	F	РО	RK C	СНОР			Co	ompl	eted	By (Ir	nitial	s): _			•		
	PART I																								
	Sample ID Number Sto			Store	Nam	ne C	itv	F	Brand Name	1.	Lot Number			Cut/Gı IN-ST (√ O Y	ORE	Sell-by Date			Purchase Date (M / D / Y)			Lab Proce Date (M / D / Y			
1		Oui	iipic ib itaiiii	701	Otore	Itali	.c, C	ity		rana name		<u> </u>	<u> </u>		<u> </u>		1.01	, ,,	',	(1017		'/	\.\.	, ,	· <i>,</i>
2															1										
2																									
4																									
5																									
6																									
7																									
6 7 8 9																									
9																									
10																									
										PART II															
СО N Г. ↓	Grov (√ O	ne)	IF	Salmonella IF GROWTH Growth (√ One)								Growth (√ One) IF				MD, TN		Gro (√ O Y	ne)		IF	O GR	Ř) OW		
	Υ	N	Serotype	Isolate	ID Number								1	Isola	te ID Nu	ımber				<u></u> —'	ISOI	ate IL) Nu	ımber	
1																				<u> </u>					
2																									
3																									
<u>4</u>																				 					
6																									
7																									
4 5 6 7 8																									
9																									
10																									

Fax log sheet to CDC at 404-371-5444; send original log sheet with specimens to FDA-CVM and keep a copy for your records. Thank you.

NARMS Retail Meat, 2002

Experimental Design and Procedures:

Microbiological analysis:

In the laboratory, samples were refrigerated at 4°C and processed no later than 96 hours after purchase. After microbiological examination, recordings were made on the log sheets whether or not the meat and poultry samples were presumptively positive for Salmonella, Campylobacter, E. coli, and Enterococcus. Each laboratory used essentially the same procedure for sample collection. Retail meat and poultry packages were kept intact until they were aseptically opened in the laboratory at the start of examination. For chicken and pork samples, one piece of meat was examined, whereas, 25 g of ground product was examined for ground beef and ground turkey samples. The analytical portions from each sample were placed in separate sterile plastic bags, 250 mL of buffered peptone water was added to each bag, and the bags were vigorously shaken. Fifty mL of the rinsate from each sample was transferred to separate sterile flasks (or other suitable sterile containers) for isolation and identification of Salmonella, Campylobacter, E. coli, or Enterococcus using standard microbiological procedures. Once isolated and identified, bacterial isolates were sent to FDA's CVM Office of Research for further characterization including species confirmation, antimicrobial susceptibility testing and PFGE analysis (Salmonella and Campylobacter only).

Salmonella isolation:

Fifty mL of double strength lactose broth was added to each flask containing the 50 mL of rinsate to be used for *Salmonella* isolation. The contents were mixed thoroughly and incubated at 35°C for 24 hours. From each flask, 0.1 ml was then transferred to 9.9 mL tubes of RVR10 medium. The tubes of RVR10 medium were incubated in a water bath at 42°C for 16-20 hours before transferring one ml to pre-warmed (35-37°C) 10 mL tubes of M Broth. The

inoculated M Broth tubes were incubated in a water bath at 35-37°C for 6-8 hours. From each M Broth culture, one ml was heated at 100°C for 15 minutes, and the remaining portion was refrigerated. The heated portion from each culture was cooled to room temperature and tested using the TECRA Salmonella Visual Immunoassay kit (International BioProducts, Bothell, WA) or the VIDAS® Salmonella Immunoassay kit (bioMerieux, Hazelwood, MO) according to the manufacturers' instructions. If the TECRA or VIDAS assay was negative, the sample was considered negative for Salmonella. If the TECRA or VIDAS assay was positive, a loopful of the corresponding, unheated M Broth culture was streaked for isolation onto a XLD agar plate. The inoculated plate was incubated at 35°C for 24 hours. Each XLD agar plate was examined for typical Salmonella colonies (pink colonies with or without black centers). If no Salmonella like growth was observed on a XLD agar, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. When Salmonella like growth was observed, one well-isolated colony was streaked for isolation onto a trypticase soy agar plate supplemented with 5% defribrinated sheep blood (BAP). The BAP(s) were incubated at 35°C for 18-24 hours before sub-culturing an isolated colony for further biochemical identification and serotyping using the FoodNet laboratory's standard procedures. Salmonella isolates were subsequently frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, every isolate was streaked for purity on a BAP before being confirmed as Salmonella using the Vitek microbial identification system (bioMérieux, Hazelwood, MO). These isolates were further serotyped for O and H antigens using either commercially available (Difco-Becton Dickinson, Sparks, MD) or CDC antisera.

Campylobacter isolation:

Fifty mL of double strength Bolton broth was added to each flask containing the 50 mL

of rinsate to be used for *Campylobacter* isolation. The broth and rinsate were mixed thoroughly, but gently to avoid aeration, and incubated at 42°C for 24 hours in a reduced oxygen atmosphere that was obtained using a Campy Pak (BBL-Becton Dickinson, Sparks, MD) or a gas mixture containing 85% nitrogen, 10% carbon dioxide, and 5% oxygen. Using a swab, the first quadrant of a CCA Plate was inoculated with the incubated Bolton broth culture. The remainder of each plate was then streaked with a loop to obtain isolated colonies, and the CCA plates were incubated at 42°C in the above atmosphere for 24 to 48 hours. Each CCA plate was examined for typical Campylobacter colonies (round to irregular with smooth edges; thick translucent white growth to spreading, film-like transparent growth). If no Campylobacter like growth was observed on a CCA plate, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. When Campylobacter like growth was observed, one typical well-isolated *Campylobacter* like colony from each positive CCA plate was sub-cultured to a BAP and incubated as described for the CCA plates. Following incubation, one typical well-isolated Campylobacter like colony was gram stained and tested using a smear catalase, oxidase, hippurate and/or motility test. If the Gram stain showed small, Gram- negative, curved rods, and the isolate was positive with the other test(s) that were conducted, a sample was considered presumptively positive for *Campylobacter*. If the CCA plates or BAPs had no typical colonies or isolate testing was inconsistent with Campylobacter, a sample was considered negative. All isolates presumptively identified as Campylobacter were frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, isolates were streaked for purity on a BAP twice before being confirmed as Campylobacter using a repeat Gram stain and an AccuProbe Campylobacter Identification Test (Gen-Probe, San Diego, CA). Campylobacter species were determined using a multiplex PCR assay previously described (3,7).

E. coli isolation (Georgia, Maryland, Oregon and Tennessee)

Fifty mL of double strength MacConkey broth was added to each flask containing the 50 mL of rinsate to be used for E. coli isolation. The contents were mixed thoroughly and incubated at 35°C for 24 hours. One loopful from each flask was then transferred to an EMB agar plate and streaked for isolation. Agar plates were then incubated at 35°C for 24 hours in ambient air and examined for typical E. coli colonies (colonies having a dark center and usually a green metallic sheen). If no typical growth was observed on an EMB agar plate, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. When E. coli-like growth was present, one typical, well-isolated colony was streaked for isolation onto a BAP. The BAPs were incubated at 35°C for 24 hours in ambient air and examined for purity. One typical, well-isolated colony was subcultured for indole and oxidase tests. Indole positive and oxidase negative isolates were considered presumptively positive as E. coli. Presumptive E. coli isolates were subsequently frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, every isolate was streaked for purity on a BAP before being confirmed as E. coli using the Vitek microbial identification system (bioMérieux, Hazelwood, MO).

Enterococcus isolation (Georgia, Maryland, Oregon and Tennessee)

Fifty mL of double strength Enterococcosel broth was added to each flask containing the 50 ml of rinsate to be used for *Enterococcus* isolation. The contents were mixed thoroughly and incubated at 45°C for 24 hours in ambient air. If no typical growth or blackening was observed in the flask, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. If blackening of the broth was observed, a loopful was streaked onto an EAP for isolation. The plates were then incubated at 35°C for 24 hours in ambient air and examined for enterococci-like colonies (small colonies surrounded by a

blackening of the agar). If no typical growth was observed on the EAP, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. If enterococci-like growth was present, one well-isolated colony was streaked for isolation onto a BAP, and incubated at 35°C for 24 hours in ambient air. Presumptive *Enterococcus* isolates were subsequently frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, every isolate was streaked for purity on a BAP before being confirmed as *Enterococcus* using the Vitek microbial identification system (bioMérieux, Hazelwood, MO).

Antimicrobial Susceptibility Testing:

For *E. coli*, *Enterococcus*, and *Salmonella*, antimicrobial MICs were determined using a 96 well broth microdilution method (Sensititre, Trek Diagnostic Systems, Westlake, OH) according to NCCLS standards (4,5,6). *Salmonella* and *E. coli* isolates were tested using a custom plate developed for Gram negative bacteria, catalog # CMV6CNCD; *Enterococcus* isolates were tested using a custom plate developed for Gram positive bacteria, catalog # CMV5ACDC (Table 1). NCCLS recommended QC organisms were used each time that antimicrobial susceptibility testing was performed. The QC organisms included *Escherichia coli* ATCC 25922 and 35218, *Enterococcus faecalis* ATCC 29212, *Staphylococcus aureus* ATCC 29213, and *Pseudomonas aeruginosa* ATCC 27853 (4,5,6).

For isolates confirmed as *Campylobacter*, the NCCLS approved agar dilution procedure was used to determine MICs to ciprofloxacin, doxycycline, erythromycin, gentamicin, and meropenem. (4,5). The NCCLS recommended quality control organism *Campylobacter jejuni* ATCC 33560 was used each time that antimicrobial susceptibility testing was performed (5). As there are no NCCLS-approved interpretive criteria for *Campylobacter*, tentative breakpoints used by NARMS are shown in Table 1. All of the resistant breakpoints with the exception of

meropenem, have been used previously in the absence of NCCLS approved interpretive criteria (2). All antimicrobial susceptibility testing was conducted in the laboratories of the Division of Animal and Food Microbiology, CVM-FDA, Laurel, MD.

Pulsed Field Gel Electrophoresis (PFGE):

Pulsed-field gel electrophoresis was used to assess genetic relatedness among *Salmonella* and *Campylobacter* isolates. The PFGE was performed according to protocols developed by CDC (1). Agarose-embedded DNA was digested with the enzyme *Xba*I for *Salmonella* isolates and *Smal*I for *Campylobacter* isolates DNA restriction fragments were separated by electrophoresis using a Chef Mapper electrophoresis system (Bio-Rad, Hercules, CA). Genomic-DNA profiles or "fingerprints" were analyzed using BioNumerics software (Applied-Maths, Kortrijk, Belgium), and banding patterns were compared using Dice coefficients with a 1.5% band position tolerance. PFGE analysis was conducted in the laboratories of the Division of Animal and Food Microbiology, CVM-FDA, Laurel, MD.

References

- Center for Disease Control and Prevention. 2002. Standardized molecular subtyping of foodborne bacterial pathogens by pulsed-field gel electrophoresis. Center for Disease Control and Prevention. Atlanta, GA.
- Ge, B., S. Bodeis, R.D. Walker, D.G. White, S. Zhao, P.F. McDermott, and J. Meng.
 2002. Comparison of the Etest and agar dilution for in vitro antimicrobial susceptibility testing of *Campylobacter*. J. Antimicrob. Chemother. 50:487-494.
- 3. Linton, D., A. J. Lawson, R. J. Owen, and J. Stanley. 1997. PCR detection, identification

- to species level, and fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. J. Clin. Microbiol. 35:2568-2572
- National Committee for Clinical Laboratory Standards. 2003. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; 2nd edition. NCCLS M31-A2. NCCLS, Wayne, Pa.
- 5. National Committee for Clinical Laboratory Standards. 2004. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; first information supplement. NCCLS M31-S1. NCCLS, Wayne, Pa.
- National Committee for Clinical Laboratory Standards. 2004. Performance standards for antimicrobial susceptibility testing; fourteenth information supplement. NCCLS M100-S14. NCCLS, Wayne, Pa.
- 7. Zhao, C., B. Ge, J. De Villena, R. Sudler, E. Yeh, S. Zhao, D. G. White, D. Wagner, and J. Meng. 2001. Prevalence of *Campylobacter* spp., *Escherichia coli*, and *Salmonella* serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., area. Appl.Environ.Microbiol. 67:5431-5436