Determination of Furan in Alcoholic Beverages

Scope:

Furan is a low molecular weight volatile compound formed in foods and beverages during cooking and canning¹. Furan has been found to cause cancer in rodents and is a potential carcinogen for humans. The Food and Drug Administration (FDA) has developed a method for furan analysis in foods and is conducting an expanded survey of different foods and beverages to determine exposure and risk to consumers². As a part of this survey, the FDA approached TTB to help screen and analyze a number of alcoholic beverage samples. The Beverage Alcohol Laboratory has surveyed 37 alcoholic beverages for furan using a modified and optimized FDA method for alcohol beverage analysis^{2,3}. The details of the method and our findings are reported below.

Method:

A five mL test portion of the beverage is transferred to a head space sampling vial, fortified with the internal standard (*d4*-furan), and analyzed by gas chromatography/mass spectrometry (GC/MS) in the Selected Ion Monitoring (SIM) mode. Furan is quantified by using a standard additions curve, where the concentration of furan in the fortified test portions is plotted versus the furan/*d4*-furan response factors, which are calculated using the response ratio of m/z 68 for furan divided by m/z 72 for *d4*-furan. The method was validated for wines, beers, and distilled spirits with the following parameters: an average accuracy of 8%, precision of 7%, limit of detection (LOD) - 0.2 ppb, and limit of quantitation (LOQ) - 0.7 ppb.

Findings:

Total of 37 commercial samples (8 beers, 14 wines, and 15 distilled spirits) were analyzed for furan. The furan concentrations are expressed in ppb (μ g/L) and summarized below. Samples with the estimated furan levels between the LOQ and LOD are reported as < 0.7 ppb, and the estimates below 0.2 ppb are indicated as ND. The beers appear to have slightly elevated levels of furan compared to the wines and distilled spirits; however, none of the analyzed samples demonstrated unusually high levels of furan.

Product	Furan Conc. (ppb)
Tequila 1	< 0.7
Cognac 1	2.1
Bourbon Whisky 1	ND
Tennessee Whisky 1	1.9
Brandy 1	0.7

Bourbon Whisky 2 Brandy 2 Gin 1 Rum 1 Bourbon Whisky 3 Brandy 3 Rum 2 Rum 3 Vodka 1 Vodka 2	< 0.7 < 0.7 ND < 0.7 ND < 0.7 < 0.7 < 0.7 ND
Red Wine 1 Rose Wine 1 Red Wine 2 Red Wine 3 Red Wine 4 White Wine 1 White Wine 2 Red Wine 5 Sake 1 White Wine 3 Rose Wine 2 White Wine 4 Red Wine 6 Champagne 1	0.9 < 0.7 < 0.7 0.8 2.6 1.7 < 0.7 0.8 < 0.7 0.7 < 0.7 < 0.7 < 0.7 < 0.7 2.4 0.8 < 0.7
Beer 1 Beer 2 Beer 3 Beer 4 Beer 5 Beer 6	< 0.7 1.8 < 0.7 2.4 < 0.7 2.2

References:

Beer 7

Beer 8

1. Hasnip S, Crews C, Castle L. *Some factors affecting the formation of furan in heated foods.* Food Additives And Contaminants 23 (3): 219-227 Mar 2006.

1.6

4.0

2. Determination of Furan in Foods. http://www.cfsan.fda.gov/~dms/furan.html

3. Becalski A, Forsyth D, Casey V, Et Al. *Development And Validation Of A Headspace Method For Determination Of Furan In Food.* Food Additives And Contaminants 22 (6): 535-540 Jun 2005.