

November 1, 2022

Suzhou Powersite Electric Co., Ltd. % Xinyue Lu Regulatory Engineer Building 5, No.188 Fuchunjiang Road, Suzhou New District Suzhou, Jiangsu Province 215151 CHINA

Re: K222258

Trade/Device Name: Combined High Frequency X-ray Source Regulation Number: 21 CFR 892.1720 Regulation Name: Mobile x-ray system Regulatory Class: Class II Product Code: IZL Dated: July 18, 2022 Received: September 6, 2022

Dear Xinyue Lu:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part

801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to <u>https://www.fda.gov/medical-devices/medical-device-safety/medical-device-reporting-mdr-how-report-medical-device-problems</u>.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (<u>https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance</u>) and CDRH Learn (<u>https://www.fda.gov/training-and-continuing-education/cdrh-learn</u>). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (<u>https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice</u>) for more information or contact DICE by email (<u>DICE@fda.hhs.gov</u>) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

For

Laurel Burk, Ph.D. Assistant Director Diagnostic X-Ray Systems Team DHT8B: Division of Radiological Imaging Devices and Electronic Products OHT8: Office of Radiological Health Office of Product Evaluation and Quality Center for Devices and Radiological Health

Enclosure

Indications for Use

510(k) Number *(if known)* K222258

Device Name Combined High Frequency X-ray Source

Indications for Use (Describe)

The Combined High Frequency X-ray Source is intended for use by a qualified/trained technician on both adult and pediatric subjects for body extremities and cervical spine exclusively. Applications can be performed with the patient sitting, standing, or lying in the prone or supine position. (Not for mammography)

Type of Use (Select one or both, as applicable)	
Prescription Use (Part 21 CFR 801 Subpart D)	Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff *PRAStaff@fda.hhs.gov*

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

510(k) Summary

510(k) Submission Number: K222258

I. SUBMITTER

Suzhou Powersite Electric Co., Ltd Building 5, No.188 Fuchunjiang Road, Suzhou New District, Suzhou, Jiangsu Province, PEOPLE'S REPUBLIC OF CHINA

Phone: +86-0512-62913368

Contact Person: Yanyan Cui Phone: +86-13771842733 E-mail: <u>may_cui@powersite-group.com</u>

Primary correspondent Name: Xinyue Lu Title: Regulatory Engineer Phone: +86-13722611742 E-mail: <u>xinyue lu@powersite-group.com</u>

Date Prepared: June 15, 2022

II. DEVICE

Name of Device: Combined High Frequency X-ray Source Model: PSM-PD5.6CPL, PSM-PD5.6CPLG, PSM-PD4CPL, PSM-PD4CPLG, PSM-PD3.5CPL, PSM-PD3.5CPLG, PSM-PD5.6CPE, PSM-PD5.6CPEG, PSM-PD4CPEG, PSM-PD3.5CPE, PSM-PD3.5CPEG Common or Usual Name: Combined High Frequency X-ray Source Classification Name: System, X-Ray, Mobile (21 CFR 892.1720) Regulatory Class: II Product Code: IZL Regulation Medical Specialty: Radiology

III. PREDICATE DEVICE

Device Classification Name: system, x-ray, mobile 510(k) Number: K103522 Device Name: SEDECAL Proprietary-Trade Name: Sedecal SPL-HF-4.0 (and SPL-HF-2.0) Common/Usual Name: Mobile Diagnostic X-Ray System Applicant: SEDECAL S.A. 8870 RAVELLO NAPLES, FL 34114 Regulation Name and Number: 21 CFR 892.1720 Device Class: 2 Classification Product Code: IZL Regulation Medical Specialty: Radiology

This predicate has not been subject to a design-related recall. No reference devices were used in this submission.

IV. DEVICE DESCRIPTION

PSM-PD series combined high frequency X-ray source is an advanced high frequency X-ray source, which is mainly composed of shell case, control panel mounting assembly, DCDC riser mounting assembly, power panel mounting assembly, ESU energy storage capacitor mounting assembly, high voltage TANK, collimator, Lithium battery. The product is small in size, light in weight and high in power density, which can meet the needs of outdoor portability. At the same time, we provide battery-powered solutions to meet customers' diversified demands for product functions.

The working flow of combined high-frequency X-ray source is as follows:

1) Input single-phase alternating current, through the filter circuit, reduce the influence of harmonics on mains power supply, APFC circuit will change AC into DC, improve the power factor of the product, through the filter circuit to reduce AC ripple.

2) The DC inverter is converted into high-frequency alternating current by the inverter, and the high-frequency low voltage is boosted into high-frequency high voltage by the boost transformer, and the AC is converted into high-voltage DC by the voltage multiplier, and finally the smooth high voltage is loaded at both ends of the ball tube through filtering.

3) Set different parameters and working modes through DSP+FPGA control unit.

4) Provide serial communication and wireless remote control functions.

5) Provide LCD operation and upper computer software control of two parameters, working mode setting.

Our company provides Combined High Frequency X-ray Source to the complete machine manufacturer. Then the complete machine manufacturers assemble the complete machine with our product and sell the complete machine to the hospital or others.

The associated consumables include:

- Mains power supply cord
- Hand switch control line
- Serial port transfer wiring
- Fuse(0215016.MXP)
- Fuse(8020.0604)
- Cross countersunk head screw(SUS304, M3*6)
- Cross flat head screw(SUS304, M3*8, head diameter 6mm)
- USB flash disk
- Automatic test report

V. INDICATIONS FOR USE

The Combined High Frequency X-ray Source is intended for use by a qualified/trained technician on both adult and pediatric subjects for body extremities and cervical spine exclusively. Applications can be performed with the patient sitting, standing, or lying in the prone or supine position. (Not for mammography)

The Indications for Use statement for the Powersite device is not identical to the predicate device; however, the differences do not alter the intended diagnostic use of the device nor do they affect the safety and effectiveness of the device relative to the predicate. Both the subject and predicate devices have the same intended use for X-ray photography of human limb joints and cervical spine in emergency rescue occasions, by cooperating with X-ray imaging device.

VI. COMPARISON OF TECHNOLOGICAL CHARACTERISTICS WITH THE

PREDICATE DEVICE

At a high level, the subject and predicate devices are based on the following same technological elements:

The working flow of combined high-frequency X-ray source is as follows:

1) Input single-phase alternating current, through the filter circuit, reduce the influence of harmonics on mains power supply, APFC circuit will change AC into DC, improve the power

factor of the product, through the filter circuit to reduce AC ripple.

2) The DC inverter is converted into high-frequency alternating current by the inverter, and the high-frequency low voltage is boosted into high-frequency high voltage by the boost transformer, and the AC is converted into high-voltage DC by the voltage multiplier, and finally the smooth high voltage is loaded at both ends of the ball tube through filtering.

3) Set different parameters and working modes through DSP+FPGA control unit.

4) Provide serial communication and wireless remote control functions.

5) Provide LCD operation and upper computer software control of two parameters, working mode setting.

The following technological differences exist between the subject and predicate devices:

Table 1 Comparison Table

Comparison item	The subject product	The predicate device(K103522)	Difference	Overview of supporting materials
Common/Usual Name of Device	Combined High Frequency X-ray Source	Mobile Diagnostic X-ray System	SE	User manual
Model Specification	PSM-PD5.6CPL、PSM-PD5.6CPLG、 PSM-PD4CPL、PSM-PD4CPLG、 PSM-PD3.5CPL、PSM-PD3.5CPLG、 PSM-PD5.6CPE、PSM-PD5.6CPEG、 PSM-PD4CPE、PSM-PD4CPEG、 PSM-PD3.5CPE、PSM-PD3.5CPEG	Sedecal SPL-HF-4.0 (and SPL-HF-2.0)	SE	User manual
Indications for use	The Combined High Frequency X-ray Source is intended for use by a qualified/trained technician on both adult and pediatric subjects for body extremities and cervical spine exclusively. Applications can be performed with the patient sitting, standing, or lying in the prone or supine position. (Not for mammography)	Intended for use by a qualified/trained doctor or technician on both adult and pediatric subjects for taking diagnostic radiographic exposures of the skull, spinal column, chest, abdomen, extremities, and other body parts. Applications can be performed with the patient sitting, standing, or lying in the prone or supine position. (Not for mammography)	SE	User manual
Basic principle (Working	The working flow of combined high- frequency X-ray source is as follows:	The working flow of combined high- frequency X-ray source is as follows:	SE	User manual

principle / Action	1. Input single-phase alternating current,	1. Input single-phase alternating current,		
mechanism)	through the filter circuit, reduce the	through the filter circuit, reduce the		
	influence of harmonics on mains power	influence of harmonics on mains power		
	supply, APFC circuit will change AC into	supply, APFC circuit will change AC into		
	DC, improve the power factor of the	DC, improve the power factor of the		
	product, through the filter circuit to reduce	product, through the filter circuit to		
	AC ripple.	reduce AC ripple.		
	2. The DC inverter is converted into high-	2. The DC inverter is converted into		
	frequency alternating current by the	high-frequency alternating current by the		
	inverter, and the high-frequency low voltage	inverter, and the high-frequency low		
	is boosted into high-frequency high voltage	voltage is boosted into high-frequency		
	by the boost transformer, and the AC is	high voltage by the boost transformer,		
	converted into high-voltage DC by the	and the AC is converted into high-		
	voltage multiplier, and finally the smooth	voltage DC by the voltage multiplier, and		
	high voltage is loaded at both ends of the	finally the smooth high voltage is loaded		
	ball tube through filtering.	at both ends of the ball tube through		
	3. Set different parameters and working	filtering.		
	modes through DSP+FPGA control unit.	3. Set different parameters and working		
	4. Provide serial communication and	modes through DSP+FPGA control unit.		
	wireless remote control functions.	4. Provide serial communication and		
	5. Provide LCD operation and upper	wireless remote control functions.		
	computer software control of two	5. Provide LCD operation and upper		
	parameters, working mode setting.	computer software control of two		
		parameters, working mode setting.		
Structural			Difference:	
composition	Combined High Frequency X-ray Source	The predicate device consists of the	1) The structure	User manual

	product consists of the control software (Release version: V1.0) and the host of Combined High Frequency X-ray Source. The host of Combined High Frequency X- ray Source is mainly composed of shell case, control panel mounting assembly, DCDC riser mounting assembly, power panel mounting assembly, ESU energy storage capacitor mounting assembly, high voltage TANK, collimator, Lithium battery.	control software and the host of Combined High Frequency X-ray Source. The host of the predicate device is composed of a control panel with a display, a power module, a high voltage tank (TANK), a collimator, a handswitch, and a mobile column with an articulated arm and a cassette basket.	composition is different. The predicate device is accompanied with a mobile column with articulated arm and cassette basket, which the subject device does not have.	
Basic parameter	 AC power input 100V~240VAC, ±10% 50Hz/60Hz±1Hz DC power input 48VDC/2A 	 AC power input 100~240VAC, ±10% VAC, 50/60Hz DC power input 48VDC/2A 		User manual

3. Maximum n	3. Maximum nominal electrical power		3. Maximum nominal electrical power	Difference:
PSM-PD3.50	CPL/CPLG	0.0144/	SPL-HF4: 4kW	2) The maximum
PSM-PD3.50	CPE/CPEG	3.2kW		nominal electric
PSM-PD4C	PL/CPLG	4.01.04/		power and the
PSM-PD4CI	PE/CPEG	4.0kW		maximum output
PSM-PD5.6 (CPL/CPLG	E CLAN		electric power are
PSM-PD5.60	CPE/CPEG	5.6kW		different. The
	·			maximum nominal
				electric power and
4. Maximum o	output electric po	ower	4. Output power:	the maximum output
PSM-PD3.50	CPL/CPLG	2 CLAN	SPL-HF4: 4kW	electric power in the
PSM-PD3.50	CPE/CPEG	3.6kW		model declared by
PSM-PD4C	PL/CPLG	4.01144		the subject device
PSM-PD4CI	PE/CPEG	4.0kW		are 5.6kW. While the
PSM-PD5.6 (CPL/CPLG	5.6kW		maximum nominal
PSM-PD5.60	CPE/CPEG	J.OKVV		electric power and
				the maximum output
				electric power in the
				model declared by
				the predicate device
				are 4kW.

Normal operating condition	 Temperature: 0~35℃(AC supply) 0~40℃(only for battery Relative humidity: 95%, non-condensing; Atmospheric pressure: 700hPa~1060hPa. X-ray tube voltage 	discharging)	 Temperature: 0~40℃ Relative humi 95%, non-con Atmospheric µ 700hPa~1060 X-ray tube volta 	dity: idensing; pressure:)hPa.	SE	User manual
	 a) Tube voltage regulation r 40kV~125kV, 1kV step size can be set according to pow 	, tube voltage	a) Tube voltage re 40~125kV, 1kV st	egulation range:		
Performance requirements	Model	Tube voltage regulation range	Model SPL-HF4	regulation range 40~125kV		User manual
	PSM-PD5.6CPL/CPLG PSM-PD5.6CPE/CPEG PSM-PD4CPL/CPLG PSM-PD4CPE/CPEG PSM-PD3.5CPL/CPLG	40kV~125kV	b) Tube voltage d	eviation: ±(3%+1kV)		

PSM-PD3.5CPE/CPEG				
b) Tube voltage deviation: ±(3%+1kV)				
2. X-ray tube currenta) Tube current regulation ra	inge	2. X-ray tube curr a) Tube current re		Difference: 3) The number systems
Model	Tube current regulation	Model SPL-HF4	Tube current regulation range 5~100mA	of tube current, loading time and current time product are different. The
PSM-PD3.5CPL/CPLG	range 5-63mA	16 steps, the spec	cific data are: 5, 6.4, 8	subject device is distributed according to the R'20 number system, and the
PSM-PD3.5CPE/CPEG PSM-PD4CPL/CPLG		10, 12.5, 16, 20, 2 100 mA	25, 32, 40, 50, 64, 80,	
PSM-PD4CPE/CPEG PSM-PD5.6CPL/CPLG	5-80mA 5-100mA	b) Tube current de	eviation:	system and the user- defined number system.

PSM-PD5.6CPE	±(4% + 1 mA)	
Increasing according to the number system R'20, the specific data are $5 \\ 5.6 \\ 6.3 \\ 7.1 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12.5 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 25 \\ 28 \\ 32 \\ 36 \\ 40 \\ 45 \\ 50 \\ 56 \\ 63 \\ 71 \\ 80 \\ 90 \\ 100 \\ b)$ Tube current deviation: $\pm(4\% + 1 \text{ mA})$		
3. Loading time	3. Loading time	
a) Loading time regulation range:	a) Loading time regulation range:	Difference: 4) The loading time
1ms~10000ms,	1 ms~10000ms,	deviation is different.
Increasing according to the number system	Increase according to the number	The loading time
R'20, the specific data are 1 , 1.1 , 1.25 ,	system R'10 (in 25% steps), for a total of	deviation of the subject device is
1.4、1.6、1.8、2、2.2、2.5、2.8、3.2、	41 steps	larger than that of the predicate device. The

3.6、4、4.5、5、5.6、6.3、7.1、8、9、 10、11、12.5、14、16、18、20、22、 25、28、32、36、40、45、50、56、63、 71、80、90、100、110、125、140、 160、180、200、220、250、280、320、 360、400、450、500、630、710、800、 900、1000、1100、1250、1400、1600、 1800、2000、2200、2500、2800、3200、 3600、4000、4500、5000、6300、7100、 8000、900、10000; b) Loading time deviation: not greater than $\pm(2\%+0.2ms)$ @ >5ms	b) Loading time deviation: ± (2% + 0.1ms)	deviation of the subject device is controlled within the scope of the international standard requirements.	
not greater than			

4. Curre	4. Current time product		4. Current tim	ne product			
a) Curre	a) Current time product regulation range:		a) Current tim	ne product regulation			
		Current time	range:			Difference:	
	Model	product regulation range	Model	Current time product regulation range		 The regulation range of current time product is different. The regulation range 	
	PSM-		SPL-HF4	0.1 mAs ~ 250 mAs		of current time	
PD3.	3.5CPL/CPLG				_	product of the subject device is larger than	
	PSM-		Increase according to the number			that of the predicate	
PD3.	.5CPE/CPEG		system R'10	(in 25% steps), a total of	f 34	device.	
	PSM-		steps				
PD4	4CPL/CPLG	0.1-320mAs					
	PSM-	0.1-02011/13	b) Current tim	ne product deviation:			
PD4	4CPE/CPEG		± (5% + 0.1 n	nAs)			
	PSM-						
PD5	6.6CPL/CPLG						
	PSM-						
PD5.	.6CPE/CPEG						

Increasing according to the number system		
R'20, the specific data are 0.1 , 0.11 ,		
0.12、0.14、0.16、0.18、0.2、0.22、		
0.25、0.28、0.32、0.4、0.45、0.5、		
0.56、0.63、0.71、0.8、0.9、1、1.1、		
1.25、1.4、1.6、1.8、2、2.2、2.5、2.8、		
3.2、3.6、4、4.5、5、5.6、6.3、7.1、8、		
9、10、11、12.5、14、16、18、20、22、		
25、28、32、36、40、45、50、56、63、		
71、80、90、100、110、125、140、		
160、180、200、220、250、280、320。		
b) Current time product deviation:		
± (5% + 0.1 mAs)		
5. Operating frequency:	5. Operating frequency:	
Maximum operating frequency	Maximum operating frequency	
300kHz±20kHz。	300kHz	
Maximum operating frequency	Maximum operating frequency	

	1. Exposure technology mode	1. Exposure technology mode	SE	
	The device should have mA/ms, mAs,	The device should have mA/ms, mAs		
	mAs/ms modes.	modes.		
	2. Fault diagnosis and prompt	2. Fault diagnosis and prompt		
Functional	1) During the exposure process, release the	All filament currents display values.		User manual
requirements	handbrake actively, and an error should be	When the range is exceeded, the		User manual
	prompted.	exposure is not allowed, a continuous		
	2) If the internal temperature of the oil tank	alarm will sound and the value on the		
	of the combined head exceeds the limit, an	display will flash.		
	error should be prompted.			
	Shall comply with the requirements of IEC	Shall comply with the requirements of	SE	
Electrical safety	60601-1 and IEC 60601-2-54.	IEC 60601-1 and IEC 60601-2-54.		User manual
	Shall comply with the requirements of IEC	Shall comply with the requirements of	SE	
EMC	60601-1-2.	IEC 60601-1-2.		User manual
			SE	
Software requirements	1. Basic data configuration	1. Basic data configuration		User manual
	2. Exposure parameter setting	2. Exposure parameter setting		

	It should be able to operate the software to	It should be able to operate the software		
	set the exposure mode, filament, tube	to set the exposure mode, filament, tube		
	voltage, tube current, loading time and	voltage, tube current, loading time and		
	current time product.	current time product.		
	3. Information indication and fault prompt	3. Information indication and fault		
		prompt		
	Data interface:		Difference:	
			6) Cybersecurity	
	There is an RS-232 output interface, and		requirements are	
	the RS-232 interface is used for the		different. The subject	
Cybersecurity			device have been	
requirements	communication between the Combined	None	tested and evaluated	User manual
	High Frequency X-ray Source and the		for cybersecurity. We	
			have not found	
	control software of the client X-ray imaging		information related to	
	device to meet the interactive information.		cybersecurity about	
			the predicate device.	
Sterilization /			Neither	
disinfection	Not applicable	Not applicable	sterilization/disinfection is	/
method			required.	

There are 6 differences in comparison items between the subject device and the predicate device of the same type of medical devices:

No.	Different item	Difference description	Detailed description
1	Structural composition	The predicate device is accompanied with a mobile column with articulated arm and cassette basket, which the subject device does not have.	The subject device is an X-ray source which is a component of the X-ray system and does not require a mobile column with an articulated arm and a cassette basket. We sell the subject device to the complete machine manufacturers, and they might provide a mobile column with an articulated arm and a cassette basket, or other accessories according to their own needs.
2	Basic parameter	The maximum nominal electric power and the maximum output electric power in the model declared by the subject device are 5.6kW. While the maximum nominal electric power and the maximum output electric power in the model declared by the predicate device are 4kW.	The subject device has more models and various powers. There is only one model of the predicate for comparison, and the power data is single. The range of the subject device applied for is wider and applicable to more places and body parts.
3	Performance requirements	The number systems of tube current, loading time and current time product are different.	The distribution of the subject device is more than that of the predicate device, and the radiation dose received by patients is more accurate, so as to avoid the adverse impact of useless dose on

Table 2 Comparative Analysis

	The subject device is	patients.
	distributed according	
	to the R'20 number	
	system, and the	
	predicate device is	
	distributed according	
	to the R'10 number	
	system and the user-	
	defined number	
	system.	
	The loading time	The irradiation time of the subject device is 0.1ms
	deviation of the subject	longer than that of the predicate device during one
	device is larger than	exposure, which has no effect on the radiation dose
	that of the predicate	received by the human body. The performance
	device. The deviation	indicators of the subject device have been verified
4	of the subject device is	by third-party registration testing and meet the
	controlled within the	requirements of IEC 60601-1 and IEC 60601-2-54.
	scope of the	This difference does not adversely affect the safety
	international standard	and efficacy of the product.
	requirements.	
5		The current time product range of the subject
		device is larger than that of the predicate device,
	The regulation range	and is applicable to a wider range of patient groups,
	of current time product	body parts and places. The performance indicators
	of the subject device is	of the subject device have been verified by third-
	larger than that of the	party registration testing and meet the requirements
	predicate device.	of IEC 60601-1 and IEC 60601-2-54. This
		difference does not adversely affect the safety and
		efficacy of the product.

			The control software of the subject device is
6	Cybersecurity requirements	The subject device have been tested and evaluated for cybersecurity. We have not found information related to cybersecurity about the predicate device.	installed on the general computer platform and configured by the user. The user manual provides instructions for the installation, operation, uninstallation and other use of the control software. The software functions and cybersecurity requirements have been verified by internal tests and third-party registration tests to meet the requirements of clinical application of the product, which will not adversely affect the safety and effectiveness of the product.

Through the above comparative analysis, the differences between Combined High Frequency X-ray Source of our company and the predicate device will not affect the safety and effectiveness of the product.

VII. PERFORMANCE DATA

The following performance data were provided in support of the substantial equivalence determination.

Biocompatibility testing

N/A.

Electrical safety and electromagnetic compatibility (EMC)

Electrical safety and EMC testing were conducted on the Powersite device, consisting of shell case, control panel mounting assembly, DCDC riser mounting assembly, power panel mounting assembly, ESU energy storage capacitor mounting assembly, high voltage TANK, collimator, Lithium battery. The device complies with the IEC 60601-1, IEC 60601-1-3 and IEC 60601-2-54 standards for safety and the IEC 60601-1-2 standard for EMC.

Software Verification and Validation Testing

Software verification and validation testing were conducted and documentation was provided as recommended by FDA's Guidance for Industry and FDA Staff, "Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices." The software for this device was considered as a "Moderate" level of concern, since a failure or latent flaw in the software could indirectly result in minor injury to the patient or operator through incorrect or delayed information or through the action of a care provider.

Mechanical and acoustic testing

- Acoustic Testing
- Elongation of the bending cable

• Crimp assembly, cable tensile strength, cable flexibility, minimum bending radius of the cables

• Simulated use testing

Animal Study

N/A.

Clinical Studies

Clinical images are not necessary to demonstrate substantial equivalence, based on the nature of the device (an x-ray generator) and on close similarities to the predicate system. Successful Bench Testing results should be sufficient to show device safety and effectiveness.

Summary

Based on the basic principle, intended use, performance parameters, operating environment, etc, Powersite Combined High Frequency X-ray Source was found to have a safety and effectiveness profile that is similar to the predicate device.

VIII. CONCLUSIONS

Since the subject device is an integral part of the X-ray imaging system, and similar products are mature and clinical-free products, substantial equivalence can be supported by comparing the basic principles, intended use, performance parameters, operating environment, etc. The safety of the device is supported by non-clinical data, hardware and software verification and validation indicate that Powersite Combined High Frequency X-ray Source should perform as intended under the specified conditions of use. The performance of Powersite Combined High Frequency X-ray Source is equivalent to that of similar devices for the same intended use sold on the market at present.