
Notes from the editors 
Hope this message finds you well and we are all very glad to see that COVID-19 is under better 
control this Spring. It is now easier for us to reconnect with colleagues, family, and friends in per-
son. One of the lessons learned from this pandemic is that digital tools and technologies present 
significant opportunities for us. Our first issue of 2022 will focus on the theme of “digital health” 
with featured contributing articles from industry, government, and academia . 

In this first issue of 2022, we open with an article from our current Section Chair, Alan Hart-
ford, and the 2021 BIOP chair, Weili He, reflecting on the past year and sharing the plans for 
the rest of 2022. Next, we feature an article by Junrui Di (Pfizer), Jiawei Bai (Pfizer), Isik Kara-
hanoglu (Pfizer), Nunzio Camerlingo (Pfizer), and Charmaine Demanuele (Pfizer). They 
describe the analytical challenges of multi-modal sensor data and discuss the practical consider-
ations for incorporating them into clinical trials. This is followed by an article by academics and 
NIH’s National Institute of Mental Health (NIMH). Vadim Zipunnikov (Johns Hopkins), Deban-
gan Dey (Johns Hopkins), Kathleen Merikangas (NIMH), and Andrew Leroux (U Colorado, 
Denver) present the statistical challenges of modelling mobile digital health data and advocate 
for a collaborative team effort to translate the research effort to actionable health information. 
Next up is a feature article contribution from non-clinical statistics colleagues, Elliott Schmitt 
(Moderna), Gang Wang (Moderna), and Julia O’Neill (Moderna), on the use of Digital Twins 
for accelerating process development. They also present a case study focusing on the model 
development and application aspects. Our fourth feature article is by Irina Gaynanova (Texas 
A&M). She outlines reproducibility challenges associated with continuous glucose monitoring data 
as digital biomarkers of glucose control, and highlights the accompanying free and open-source R 
package and Shiny app iglu for the calculation of various continuous glucose monitoring metrics. 
This is followed by a second non-clinical statistics article. David Christopher (Merck), Erik 
Talens (Merck), and Phillip Yates (BMS), leaders from the Chemistry, Manufacturing, and Con-
trols Statistics Leadership Group and Biostatistics Statistics Leadership Group of the International 
Consortium for Innovation and Quality in Pharmaceutical Development (IQ Consortium), intro-
duce IQ leadership forums and promote IQ as a unique platform for cross-industry collaboration. 
Later in this issue, you will find a summary report from a virtual discussion organized by the ASA 
BIOP Statistical Methods in Oncology Scientific Working Group, the FDA Oncology Center of 
Excellence, and LUNGevity Foundation. The topic of discussion is “Statistical Considerations in 
Clinical Trials for Rare Pediatric Cancers”. The final article is from Margaret Gamalo (Pfizer), 
Editor-in-Chief for the Journal of Biopharmaceutical Statistics. She shares a summary of JBS’s special 
issues published in 2022 and plans of future issues. We would like to continue this series by invit-
ing other editors of statistical journals with broad readership among the BIOP membership. In the 
last section, we provide an update on upcoming conferences in 2022 that are of interest to the 
BIOP community. The editors would like to thank all the authors of the articles for their time and 
contributions, and wish that everyone enjoys this very first issue of the BIOP Report in 2022.

Chair: Alan Hartford Editors: Herbert Pang, Ling Wang, Kristi L. Griffiths
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TRANSITION REPORT

Greetings to all BIOP Section members. We want to 
thank you for the honor of serving the members of the 
Biopharmaceutical Section (BIOP). 2021 was another 
extraordinary year, a time of both tragedy and exciting 
breakthroughs. It continued to be a unique year, while 
we perfected the way of working in a pandemic era and 
still managed to successfully achieve our goals of serv-
ing the BIOP community. To no one’s surprise, but to all 
their credit, our BIOP committees have been success-
fully operating virtually and continue to be extremely 
effective in providing benefits to our members and 
preparing for our annual meetings. But there were many 
changes in the BIOP as there were everywhere.

As we continued to work virtually in 2021, all 3 BIOP 
EC meetings were held virtually. While we all missed 
the in-person interactions, the EC still moved forward 
with section business without any hiccups. Also held 
virtually was the annual business meeting during JSM. 
In the pre-pandemic years, this was a great event for 
networking, catching up with acquaintances, learning 
about section business and seeing the award winners 
while having some food and drink supplied by BIOP. 
As with 2020, the 2021 business meeting was virtual; 
Nonetheless, there were approximately 90 attendees for 
the annual update to the BIOP business. 

Our annual Regulatory-Industry Statistics Workshop, 
even still held virtually, was another huge success 
where the virtual attendance reached 1300. The interest-
ing and contemporary topics and the smooth running of 
the workshop without many technical glitches afforded 
the attendees a pleasant learning and networking expe-
rience. The ASA, workshop co-chairs, and the organiz-
ing committee did an amazing job putting together an 
excellence workshop program. 

In this article, we provide a summary of the most 
important initiatives and events that took place in 2021 
and early 2022, and our plans for the rest of 2022. 

Biopharmaceutical Section Scholarship
The Biopharmaceutical Section scholarships were 
awarded again in 2021. Consideration for the awards 

is based primarily on notable academic achievement or 
applied project work related to the area of biopharma-
ceutical statistics. General academic performance, lead-
ership, volunteering, and service will also be reviewed. 
The 2021 recipients were: 

•	 Siddhesh Kulkarni (University of Connecticut)

•	 Inkoo Lee (Florida State University)

•	 Ruizhe Chen (University of Illinois at Chicago)

•	 Michael Daniel Lucagbo (University of Mary-
land, Baltimore County)

Student Paper Award at Joint Statistical 
Meetings

First: Tian Gu, U of Michigan on An ensemble 
meta-prediction framework to integrate multiple 
external models

Second: Bingkai Wang, Johns Hopkins on Preci-
sion by Stratified Randomization and Covariate 
Adjustment

Third: Sharon Ling, U of Minnesota on Calibrated 
Dynamic Borrowing Using Capping Priors

Honorable Mention: Nathan Bean, U of North 
Carolina on Bayesian Multi-Regional Clinical Tri-
als Using Model Averaging

Honorable Mention: Ethan Alt, U of North Caro-
lina on Historical Data with Strict Control of 
Family-wise Error Rate

Biopharmaceutical Section 40th 
Anniversary 
The Biopharmaceutical Section celebrated its 40th anni-
versary as a section in 2021. The committee planned a 
panel session with past BIOP chairs at the 2021 Joint 
Statistical Meeting. There were also several articles 
included in 2021 Biopharmaceutical reports (Spring, 
Summer, Fall & Winter issues) on the BIOP section 

Weili He (BIOP Chair 2021) and Alan Hartford (BIOP Chair 2022)
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journey over the years and reflection from several past 
BIOP section chairs on their experience.  

Due to the virtual nature of both JSM and RISW in 
2021, BIOP EC also has planned on its 40th +1 anni-
versary celebration at both 2022 JSM and RISW, if held 
in-person. Stay tuned! 

 
Joint Statistical Meetings 
The Section had a successful presence at the virtual JSM 
in 2021. Special thanks and acknowledgment to Jona-
than Moscovici, who as our BIOP 2021 Section Pro-
gram Chair, for putting together a spectacular program. 
Among the 12 invited session proposals submitted to the 
section, the whole JSM invited program included five 
Biopharmaceutical Section sponsored sessions. Topics 
included stories from COVID-19 vaccine development: 
Statistical challenges and opportunities, statistical chal-
lenges linked to estimands of interest, synthetic clinical 
trial design to accelerated FDA approvals, data science 
and statistics in pharmaceutical engineering and experi-
mental studies: where is it, where is it going, and con-
siderations in clinical trials endpoints selection. There 
were 14 topic contributed sessions sponsored by BIOP, 
selected from 33 submitted session proposals. Also 
included were 118 contributed abstracts for 6 speed ses-
sions and 9 roundtable sessions. This is another stellar 
year for the BIOP at JSM.

ASA Biopharmaceutical Section 
Regulatory-Industry Statistics Workshop
As noted above, 2021 was another record setting year 
for attendance at the Regulatory-Industry Statistics 
Workshop under the leadership of co-chairs Gene Pen-
nello and Bo Huang and their steering committee. How-
ever, looking forward, thanks to the efforts from ASA 
meeting planners and the BIOP Workshop Task Force, 

when we return to an in-person venue for the Workshop, 
hopefully in 2022, we will have a new space at the 
Bethesda North Marriott Hotel and Conference Center 
which will allow for growth and additional flexibility 
for activities within an in-person Workshop. 

We are also very happy to report that the 2021 Work-
shop sponsorship was highly successful! There were 8 
principal sponsors and 8 supporting sponsors, raising 
over $54,000 to support Workshop activities. Sponsor-
ships for the 2022 Workshop are already underway, with 
numerous opportunities remaining. For more informa-
tion on Workshop sponsorships, please see https://ww2.
amstat.org/meetings/biop/2022/sponsors.cfm. We look 
forward to the exciting program that our 2022 co-chairs 
Chia-Wen (Kiki) Ko and Hope Knuckles and their 
steering committee will provide for the attendees.

ASA Biopharmaceutical Section 
Nonclinical Biostatistics Conference
The 2021 Nonclinical Biostatistics Conference was held 
virtually June 21-24, 2021. The conference was the 
7th such conference since 2009, meeting biennially. It 
was organized by the ASA BIOP section’s nonclinical 
working group, co-chaired by Xin Huang (Abbvie) and 
John Kolassa (Rutgers). One-hundred forty attendees 
participated in a program that kicked off with two short 
courses: Bayesian Regression Trees BY Dr. Jason Roy 
(Rutgers) and Bayesian Survival and Joint Models using 
Rstanarm, Jacqueline Buros Novik (Generable Inc.). 
There were 28 technical presentations and 14 posters 
related to the 4 main areas of nonclinical biostatistics 
(Discovery/Biomarkers, Safety/Pharmacology, CMC, 
Statistical Computing and Visualization). The confer-
ence also recognized 3 awardees for the best nonclinical 
papers published over the preceding 3 years as follows: 

•	 1st Place: Burdick, R. K., Thomas, N., & 
Cheng, A. (2017). Statistical considerations in 
demonstrating CMC analytical similarity for a 
biosimilar product. Statistics in Biopharmaceutical 
Research, 9(3), 249-257. 

•	 2nd Place: Novick, S. J., Christian, E., 
Farmer, E., & Tejada, M. (2021). A Bayesian 
statistical approach to continuous qualification of a 
bioassay. PDA Journal of Pharmaceutical Science 
and Technology, 75(1), 8-23. 

https://ww2.amstat.org/meetings/biop/2022/sponsors.cfm
https://ww2.amstat.org/meetings/biop/2022/sponsors.cfm
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•	 3rd Place: Sondag, P., & Lebrun, P. (2020). 
Risk-based similarity testing for potency assays 
using MCMC simulations. Statistics in Biophar-
maceutical Research, 1-10. 

Two graduate students received best poster awards, 
with first prize ($250) going to Louise Leonard and 
second prize ($150) going to Jinghang Lin. 
Fellows Committee
Our BIOP Fellows Committee will identify potential 
fellows from within BIOP and provide guidance in 
submitting nomination packages. Please utilize this 
resource if you are considering application for an 
ASA Fellow or sponsoring someone. A wonderful 
article was produced by BIOP members in 2020 about 
Advice for ASA Fellow Nominations. If you haven’t 
read it, check it out here: https://magazine.amstat.org/
blog/2020/06/01/advice-for-asa-fellow-nomination/

Scientific Working Groups
The process of establishing new working groups is 
overseen by the Scientific Working Group (SWG) 
Committee. Through the SWG Committee, section 
members can submit research topics that contribute to 
the goals of advancing the science, enabling innova-
tion, and leveraging the membership expertise. The 
establishment of the working group must be approved 
by the Section Executive Committee and each scientific 
working group must provide a yearly update report to 
the Executive Committee.

Individuals interested in forming a new SWG can 
review the BIOP guidelines for more information. 
https://community.amstat.org/biop/aboutus/sub-com-
mittees/swg
Outreach
We are always looking for new ways to build synergies 
with other groups and share best practices within our 
own membership! 

For 2021, the BIOP EC recognized the importance of 
our Outreach and Collaboration Committee. Our BIOP 
Manual of Operations was updated to specify that 
the BIOP Chair-Elect will become a member of the 
Outreach Committee to ensure ongoing engagement 
with other Sections and Chapters as well as external 
organizations.

The BIOP is very 
fortunate to have 
generous sponsors 
and a large member-
ship, which means we 
have available funds 
to benefit our members’ 
section experiences. 

BIOP was very active in 
2021 on our publication front, 
with 11 new podcasts from Richard Zink, 9 BIOP 
sponsored webinars, 4 issues of the Biopharmaceu-
tical Report at https://community.amstat.org/biop/ 
biopharmreport.

We completed 7 years of the BIOP mentoring pro-
gram! This program has been beneficial in pairing 
students and young professionals with more veteran 
members of the Section to provide career advice. We 
are looking forward to many more years of this success-
ful program. For more information on the BIOP mentor-
ing program, send an email to BiopharmMentoring@
gmail.com. The BIOP mentoring program was also a 
featured topic in the 2020 Podcast series. Check out 
podcast Episode 81 to hear from 3 mentor-mentee pairs 
on the value of the mentoring program. 

All the Podcast Episodes can be found here: https://
www.buzzsprout.com/16296

While BIOP is one of the largest ASA Sections, we 
have made concerted efforts to highlight the benefits of 
BIOP membership at our conferences and in our pub-
lications (see Vol 26, issue 2 of the Biopharmaceutical 
Report). We believe that we provide a lot of educational 
and networking opportunities to our members. We hope 
you think so too. The best recommendations we can 
receive are from our members, so we would appreciate 
your recommendations for people to join the Section! 
Membership Survey
We conducted a membership survey in early 2021, and 
you can find the survey results in the BIOP report Vol 
28 Issue 2. Based on the feedback, we will continue to 
strive to improve our service to the members. 
Communication
We have revised and created roles for publications/
communication, including adding Communication  

https://magazine.amstat.org/blog/2020/06/01/advice-for-asa-fellow-nomination/
https://magazine.amstat.org/blog/2020/06/01/advice-for-asa-fellow-nomination/
https://community.amstat.org/biop/aboutus/sub-committees/swg

https://community.amstat.org/biop/aboutus/sub-committees/swg

https://community.amstat.org/biop/biopharmreport
https://community.amstat.org/biop/biopharmreport
mailto:BiopharmMentoring%40gmail.com?subject=
mailto:BiopharmMentoring%40gmail.com?subject=
https://www.buzzsprout.com/16296

https://www.buzzsprout.com/16296
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Secretary and Social Media Coordinator in addition to 
the elected Publication Officer. We are examining new 
platforms to get the information out, and to hear from 
our members. Stay tuned in 2022 for more on this topic.

Biopharmaceutical Section Newly  
Elected Officers
We would like to welcome the following elected offi-
cers to the Biopharmaceutical Section Executive Com-
mittee for 2021:

•	 Chair-Elect 2022: Brian A. Millen
•	 Program Chair-Elect 2022: Elena Polverejan
•	 Publications Office 2022-2024: Hiya Banerjee
•	 Council of Sections Representative 2022-2024: 

Janelle Charles
We know these individuals will do a fantastic job rep-

resenting the Section and we wish them the best of luck!

2022 plan
For 2022, we have both new and renewed efforts under-
way. We have a new committee, Statisticians in Small 
Biotech, led by Liang Fang, to focus on (you guessed 
it!) serving the needs of statisticians working in smaller 
companies who may not have other statisticians on 
staff with whom to share information, both technical 
and procedural. This committee will focus on identify-
ing challenges and opportunities that are unique to this 
group and will work on solutions and ideas for these 
challenges and opportunities, making our BIOP com-
munity even more valuable to them. These efforts will 
likely also be of value to all statisticians starting their 
career to augment the training they may receive from 
their employers.

One of our renewed efforts underway is to further our 
connections with statistical leaders across our section. 
Our goal is to explore the concept of leadership with 
our section members. With this in mind, please share 
your stories of examples of leadership you’ve seen of 
statisticians working across BIOP by sending an email 
to asabiopharm@gmail.com. We’d like to share your 
stories of how you’ve witnessed the impact they have 
made that has earned your admiration. 

As mentioned above, we are putting additional focus 
on BIOP’s Outreach and Collaboration Committee. 
This year we will review and update the charter of this 

committee. We will deliberate on how we can build a 
“bigger tent” for potential new members. 

Final Thoughts
We would like to take this opportunity to thank all the 
elected officers, committee chairs, and committee mem-
bers for their commitment, time, energy, and expertise 
in the smooth running of the Section. Without all of 
you, the Section would not have been able to accom-
plish everything that it did. Despite the pandemic, the 
dedication to the section did not waiver. That is greatly 
appreciated.

Special thanks to our outgoing elected officers at the 
end of 2021:

•	 Bruce Binkowitz, Past Chair (Chair in 2020)
•	 Jonathan Moscovici, Program Chair
•	 Yongming Qu, Publication Officer
•	 Veronica Bubb, Council of Sections  

Representative
Curious to see what it takes to keep the Section run-

ning? Check out our Charter and our Manual of Opera-
tions under the About Us tab of our website https://
community.amstat.org/biop/home. Thanks to Bruce 
Binkowitz for leading the 2021 updates to the Manual 
of Operations.

Finally, we would like to thank the membership for 
your support of our very active section. We are looking 
forward to a productive 2022, and hopefully seeing you 
all in person again, in 2022! n

Be Safe, Be Well,
Weili and Alan

mailto:asabiopharm%40gmail.com?subject=
https://community.amstat.org/biop/home
https://community.amstat.org/biop/home
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DEPLOYMENT AND APPLICATION  
OF MULTI-MODAL SENSORS IN 
CLINICAL TRIALS
Junrui Di (Pfizer), Jiawei Bai (Pfizer), F. Isik Karahanoglu (Pfizer), Nunzio Camerlingo (Pfizer), Charmaine Demanuele (Pfizer)

1.	 Introduction
Over the last decade, Digital Health Technologies (DHTs) 
have proven to be effective in measuring human activity 
and physiology, and been integrated into numerous clini-
cal trials (Digital Medicine Society (DiME), 2021). DHTs 
have evolved rapidly especially in recent years, with aston-
ishing strides toward miniaturization and life-cycle exten-
sion. It has been reported previously (Karas et al., 2019) 
that small sensors such as accelerometers could provide 
valuable information about the study participants’ health 
condition. While more of these sensors (e.g. heart rate 
monitor, thermometer, pulse oximeter (SpO2), continu-
ous glucose monitoring) were being packaged together 
in modern wearable devices, one of the most common 
questions to ask is, whether and how we can better 
understand human health using the data from all these 
sensors combined. This question arises naturally from 
the fact that each sensor often provides location-specific 
information, that is, limited to one dimension of human 
activity or physiology. For example, accelerometers 
measure the magnitude of physical movement of the 
body, while heart rate monitors may indicate the level 
of exertion. However, neither of these two sensors could 
reliably provide blood oxygen level, which would need 
an SpO2 sensor. For a study focusing on heart failure, 
each of the three domains (activity, exertion, and blood 
oxygen level) have its own clinical indication and miss-
ing any of them may fail to provide a holistic picture of 
disease progression.  Therefore, combining multi-modal 
sensor data may enable more comprehensive phenotyp-
ing, better symptom characterization and more accurate 
assessment of changes in health status over time.

A few notable studies have explored this path. Meri-
kangas et al. (2019) included both an accelerometer and 

an ecological momentary assessment (EMA) component 
in their study to examine the associations among motor 
activity, energy, mood, and sleep. The joint modeling 
of a) the motor activity and sleep measurement derived 
from accelerometry data and b) the mood and energy 
level assessed through the EMA devices offered the 
authors opportunities to gain insights into how these dif-
ferent domains interact with each other and potentially 
what the therapeutic target is for patients with bipolar 
disorder. A similar example is the Apple Women’s 
Health Study (Mahalingaiah et al., 2021), which aims 
to investigate the relationship among women’s men-
strual cycles, health and behavior, through a “mobile-
application-based longitudinal cohort study” that has 
both a sensor and a survey component. Their analysis 
aims to combine both the (monthly) survey data with 
longitudinally measured smartphone/watch data, so that 
a better understanding might be reached of how the 
menstrual cycle relates to exercise, sleep, environment, 
behavioral and other physiological processes. Besides 
typical observational studies, Quer et al. ( 2021) show-
cased that multi-modal sensor data including heart rate, 
sleep and activity coupled with self-reported symptoms 
could significantly distinguish between symptomatic 
individuals with and without a diagnosis of COVID-19

These studies all highlighted the fact that multi-
modal sensors were beneficial because each sensor 
contributed distinct aspect of information to the statisti-
cal model. However, there are considerations research-
ers should be aware of, before conducting studies with 
multi-modal sensors. In the remainder of this article, we 
will first discuss typical analytical challenges, and then 
elaborate on the requirements of deploying multi-modal 
sensors in clinical studies.
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2.	 Analytical Challenges of Multi-Modal 
Sensor Data and Emerging Techniques 
Modern DHTs collect data passively, continuously, and 
frequently, leading to rich streams of time series data 
with high dimensionality, complex data structure, and 
potentially noisy signals.  With features derived from 
multi-modal sensors, one can directly combine those 
features in linear or nonlinear fashion using statistical 
and machine learning models. For example, as dis-
cussed previously, by combining motion-related features 
acquired from actigraphy, and heart rate/heart rate vari-
ability features acquired from wearable electrocardio-
gram (ECG), the accuracy for sleep prediction and sleep 
stage classification can be potentially increased when 
compared to using only one of these modalities (Aktaru-
zzaman et al., 2017; Yuda et al., 2017). However, when 
multi-modal sensors are deployed simultaneously, some 
new challenges arise due to the continuous nature of the 
measurements, and the interrelation between different 
modalities. It becomes crucial to fully utilize the rich 
data and identify the homogenous underlying signals 
(such as disease progression or treatment effects) from 
multiple modalities while accounting for the possible 
heterogeneity across modalities. 

2.1 Fully Utilize the Temporal Aspect of 
Sensor Data
Before fusing data collected by multiple sensor modali-
ties, a key issue to consider is to leverage the continuous 
time series signals from each of the sensors. It is still 
common practice to derive features that quantify certain 
physiological or behavioral characteristics (Di et al., 
2019). For example, total activity counts have been used 
to represent overall daily activity intensity in many stud-
ies using accelerometers (Varma et al., 2017). Simi-
larly, time-in-ranges indices are commonly employed 
in studies involving continuous glucose monitoring 
(CGM) sensors to quantify the quality of glucose 
control (Battelino et al., 2019) However, these fea-
tures are summary measures and do not reveal the 
temporal variations within a day. 

In circadian rhythm research, cosinor and extended 
cosinor models have been utilized to parametrically 
estimate the daily diurnal trend as a cosinor (or trans-
formed cosinor) curve to represent the amplitude and 

phase of time series data  (i.e. time to reach the peak) 
(Marler et al., 2006; Cornelissen, 2014). Time series 
data collected by sensors can be considered as a func-
tion of time.  More recently, functional data analysis 
(Georgiev et al., 1998), which was developed to 
study the smooth functional behaviors of curves 
over a continuum, has been widely use to nonpara-
metrically estimate the temporal characteristics of 
physiological trends or diurnal patterns (Goldsmith 
et al., 2016). By assuming the underlying functional 
smoothness, functional data analysis approaches such 
as functional regression (function-on-scalar or scalar-
on-function) and functional principal component 
analyses can identify treatment effects within a 
specific time window in a day, or to detect a shift of 
phase across different cohorts. For example, Spira 
et al. recently discovered significant differences in 
activity levels between participants with and without 
β-amyloid (Aβ) antibody only within specific time 
windows during a day, by using function-on-scalar 
regression (2021). 

Other than emerging statistical methodologies that 
aims to reveal temporal trends, modern deep learn-
ing architectures such as Recurrent Neural Network 
(RNN) can ingest time-sequential data collected by 
wearables to solve for prediction problems (Nweke et 
al., 2018), such as human activity recognition (Chen 
et al., 2021). Specifically, RNN models using Long 
Short-Term Memory (LSTM) with different memory 
units have been widely used to model data collected 
by wearable devices (Rabby et al., 2021; Uddin and 
Soylu, 2021). 

The prediction ahead of time of glucose concen-
tration levels can be reliably achieved by exploiting 
their recent history, monitored by (minimally inva-
sive or non-invasive) CGM sensors, in combina-
tion with data-driven algorithms. Simple data-driven 
strategies, using polynomial or linear autoregressive 
models (Eren-Oruklu et al., 2009), as well as more 
sophisticated methods, such as Kalman filters (Fac-
chinetti et al., 2011) or neural networks (Rabby et al., 
2021), have proven effective in the short-term predic-
tion of future glucose levels (Prendin et al., 2021).

With the amount of available data collected by 
wearables rapidly growing, these deep learning 
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approaches and model-based techniques will become 
mainstream and standard approaches to deal with 
real-world measurements. 

2.2 Separate the Joint Effects and Individual 
Modal Specific Effects
In clinical trials, fusion of multi-modal sensor data can 
be used to identify overall treatment effects by aggregat-
ing information from different physiological/behavioral 
domains. To reveal such effects, sometimes it is necessary 
to separate the joint effects that are homogenous across 
different modalities from the modal-specific effects. 

In 2013, Lock et al., developed the Joint and Indi-
vidual Variation Explained (JIVE) and used it to study 
the association between gene expression and miRNA 
data collected from the same samples (2013). As a data 
fusion technique and an extension to principal com-
ponent analysis, JIVE decomposes multi-modal data 
into a low-rank approximation capturing joint variation 
across data types, low-rank approximations for struc-
tured variation individual to each data modal. Di et al. 
applied it to integrate accelerometry-derived features 
quantifying three physiological domains of activity, 
sleep, and circadian rhythm quantify and separate 
between- and within-domain variation (Di et al., 2019).  
The same concept can be directly implemented to study 
features derived from multi-modal sensors. With recent 
generalizations and extensions such as to account for  
heterogeneous data types (continuous/binary/count) (Li 
and Gaynanova, 2017) and partially shared information 
between modals (Gaynanova and Li, 2017), JIVE shows 
the promise to fuse multi-modal sensor data.

JIVE provides a framework to properly quantify the 
interrelation and codependency across multiple data 
modalities. Conceptually, the interrelation and codepen-
dency can be considered as an outcome measurement by 
itself. With longitudinal clinical trials with multi-modal 
sensors, the change of such interrelation can be traced and 
analyzed to provide meaningful clinical interpretation. 

3.	 Practical Considerations to Incorporate 
multi-modal sensors into clinical trials
FDA recently released the draft guidance “Digital 
Health Technologies for Remote Data Acquisition in 
Clinical Investigations” which provided recommenda-
tions on the use of DHTs in clinical investigations, 
such as considerations for device selection, endpoints 
validation and verification, and statistical analysis. (US 
FDA, 2021). Di et al. provided operational suggestions to 
deploy DHTs in clinical studies to minimize the impact of 
missing data (Di et al., 2022). Incorporating multi-modal 
sensors should in principle follow these suggestions, such 
as to configure the devices appropriately, to determine the 
optimal placement location of the device, and to collect 
additional contextual information, when possible. 

For clinical studies where patients wear one or mul-
tiple devices for a long period of time, it is crucial to 
incorporate the patients’ perspective to increase their 
adherence. At the design phase of the studies, focus 
group of patients can be used to capture their voice to 
understand the preferrable form factor of the device(s) 
and the outcome measures that is the most meaningful 
to their daily life and health conditions. One question 
that can be considered is that to obtain a holistic view 
of multiple physiological/cognitive/behavior/environ-
mental domains, should we identify a single device 
with multiple embedded sensors instead of providing 
multiple devices? To reduce risks to patients, as sug-
gested by FDA in the draft guidance (US FDA, 2021), it 
is important to have a comprehensive informed consent 
of human subjects that details what data will be acquired 
from the multi-modal sensors, what foreseeable risks, 
patients’ privacy concern, or discomforts may occur in 
using the sensors, and intended research purposes and 
data use. 

There are other advantages of using multi-modal 
data to improve clinical studies. For example, with the 
technological advancement and widespread adoption of 
consumer grade wearable devices that contain multiple 
built-in sensors, we can obtain individualized baseline 
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that is close to “truth” using patients’ historical wear-
able device data to assess change in digital measures 
over weeks, months, or even years. Similarly, this 
historical device data can help prescreen patients for 
particular phenotypes and characteristics of interest to 
select patient cohorts for early phase (I or II) studies. 
This has the potential to improve the efficiency of these 
typically small studies by reducing variability.  

4.	 Conclusion
Multi-modal sensors are beneficial to clinical stud-
ies by providing a holistic picture of human behavior 
and physiology in real-life. A broader application of 
advanced methodologies and innovative approaches to 
analyze data from multi-modal sensors are needed for 
researchers to fully utilize those valuable data.
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STATISTICAL CHALLENGES OF 
MODELLING OF MOBILE DIGITAL 
HEALTH DATA 
Vadim Zipunnikov (Johns Hopkins), Debangan Dey (Johns Hopkins), Kathleen Merikangas (NIMH), Andrew Leroux (U Colo-
rado, Denver)

INTRODUCTION Multi-sensor wearable 
devices are now used to perform real-time tracking of 
physical activity, sleep, heart rate, blood glucose, ambi-
ent and core body temperature, light and noise expo-
sure and many more to come. This passive real-time 
tracking of human physiology and ambient environ-
mental exposure is increasingly collected concurrently 
with data concerning individuals’ behavior and mood 
state using self reported surveys administered through 
smartphone apps, typically multiple times per day, in 
a process referred to as Ecological Momentary Assess-
ment (EMA), daily electronic diaries, experience sam-
pling, or intensive longitudinal data. Historically, these 
surveys, hereafter referred to as EMA have collected 
information on varied aspects of human behaviours, 
including diet choices, self-perceived levels of energy, 
emotional states, physical activity, and quality of sleep 
(Csikszentmihalyi, 2011). EMA has been used to assess 
incident health and behavioral events, such as episodes 
of alcohol and substance use and abuse, headache or 
cardiac events, compliance and outcome of interven-
tions (Bolger and Laurenceau, 2013). As an illustrative 
example, Figure 1 shows a multimodal sensor assess-
ment in NIMH Family Study (Merikangas et al, 2019) 
that includes two sensors (actigraphy and light) coupled 
with multiple daily EMA assessments on participants’ 
quality of sleep, mood, and energy. This combined 
assessment using passive multi-sensor monitoring and 
active EMA reporting creates mobile digital health data 
that provides tremendous opportunities to better under-
stand human health and behavior, and to better inform 
prevention and intervention efforts. There is, however, 
a large gap between the complexity of mobile digital 
health data and statistical methodology designed for 
fully leveraging the potential for these data to provide 

insights into temporal dynamics between these various 
data streams and health outcomes. Below, we outline 
key statistical challenges of jointly modelling actigra-
phy and EMA. 

Figure 1. A schematic diagram of within-day inter-relationships between 
sleep (self-reported and actigraphy-estimated), light, self-reported mood 
and energy, and actigraphy-estimated motor activity.

ACTIGRAPHY The most commonly employed 
methods for analyzing actigraphy data fall well short of 
the sophistication of the data, specifically in the form 
of massive data reduction and loss of temporal infor-
mation. These methods often rely on simple multi-day 
summaries which correspond to one of three domains 
measurable by wearable accelerometers: sleep, circadian 
rhythmicity, and physical activity. Moreover, studies 
generally only focus on features related to one of these 
three domains separately, when each has been shown to 
be a contributor to health outcomes. Recently, there has 
been increasing interest in methods which capture infor-
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mation about temporal (or functional), distributional, 
and time-series aspects of actigraphy data. For example, 
functional data analysis (FDA) methods can be used 
to account for the temporal aspect of actigraphy data. 
FDA treats 24-hour actigraphy profiles as functional 
observations (Wang et al, 2016) and studies associations 
of health outcomes with both the timing and volume of 
actigraphic motor activity using, for example, scalar-
on-function or function-on-scalar regression models 
(Goldsmith et al, 2016; Morris, 2015). FDA methods are 
fully data-driven without requiring parametric assump-
tions about the functional form of diurnal actigraphy 
profiles. The distributional aspect in actigraphy data can 
be captured via Distributional Data Analysis (DDA), 
a family of novel statistical methods that employ all 
subject-specific observations via either subject-specific 
probability distribution functions or quantile functions 
(Ghosal et al, 2021) that can then be used as predic-
tors or outcomes (Petersen et al, 2022). For example, 
subject-specific activity bout durations during monitor-
ing period are typically summarized as the mean activity 
bout duration and associated with outcomes of interest 
using classical regression. In contrast, DDA can sum-
marize all bout durations through a  subject-specific 
quantile function, where each quantile is associated with 
outcomes in a principled fashion. The time-series aspect 
can be captured using various time-series techniques. 
For example, Hidden Markov models with subject-
specific time-varying parameters can be used to capture 
transition in and out of bouts of low/high activity (Laf-
fan et al, 2010; Di et al, 2017). Novel integrative tech-
niques such as Joint and Individual Variation Explained 
(JIVE) can simultaneously fuse multiple scalar features 
from each of the three domains of physical activity, 
sleep, and circadian rhythmicity (Di et al, 2019) or 
aggregate multiple aspects of actigraphy data including 
temporal, distributional, and time-series via joint and 
individual latent components (Varma et al, 2021; Ghosal 
et al, 2021). Differences in preferred timing of sleep and 
chronotypes can be accounted for using co-registration 
techniques, ensuring the amplitude and phase varia-
tions are properly separated (McDonnell et al, 2021). 
In addition to diurnal modelling, FDA approaches can 
account for weekly and seasonal trends which often 
present in actigraphy data but are commonly ignored in 
analyses (Wrobel et al, 2021). For cross-study analyses, 

additional challenges include differences in collection 
protocols, placements of devices, duration of wear time, 
even more so in combining data from studies that have 
employed different devices (Karas et al, 2022). 

EMA measures typically exhibits a substantial 
between and within subject variability. To account for 
correlation in intensive longitudinal EMA measures,  
they are usually analyzed with multi-level methods 
(Bolger and Laurenceau, 2013), such as mixed effects 
models that take into account participant heterogene-
ity by allowing subject-specific random effects.  Many 
key statistical challenges in EMA are similar to those 
in actigraphy and include: 1) informative and non-
informative missingness that are frequently confounded 
by the contextual change in mental/physical status of 
individuals; 2) differences in subjective interpretation 
of scales; 3) cross-dependence across multiple EMA 
measures such as mood and energy; 4) presence of 
diurnal, weekly, and seasonal trends; 5) small sample 
sizes of many studies due to the intensity of assessments 
(Walls et al, 2006). In addition, many asssesments have 
different time scales (once per day, four times per day, 
or 24-hour), different timing of assessments (e.g. four 
fixed times per day vs four subject-specific times per 
day) and many EMA measures are collected using dif-
ferent measurement scales (binary, nominal, ordinal, 
truncated, or continuous) (Dunster et al, 2021). 

JOINT MODELLING OF ACTIGRAPHY 
AND EMA inherits all modality-specific challenges 
and is further  complicated by significant cross-depen-
dences across multiple modalities. Recent develop-
ments in joint modelling of Actigraphy and EMA data 
primarily focused on non-structured machine learn-
ing methods (Kim et al, 2019) and more structured 
approaches such as dynamical structural equation 
models (Asparouhov et al, 2018; Merikangas et al, 
2019). Identifying a structural change (Aminikhang-
hahi and Cook, 2017) in combined actigraphy and 
EMA data requires simultaneous exploration and 
monitoring multiple aspects present in these two 
modalities - distributional, temporal, time-series in 
actigraphy and mean, variability, stability, autocorrela-
tion, fragmentation in EMA (Johns et al, 2019).



BIOPHARMACEUTICAL REPORT SPRING 2022	 13

HARMONIZATION The process of transforming 
mobile digital health data into knowledge is impossible 
without active intellectual participation of statisticians 
and subject matter experts in major multidisciplinary 
efforts that focus on conceptualization, measurement, 
analysis and treatment of multiple physiological, behav-
ioral, and health components. One example of such 
an effort is the “mobile Motor Activity Research 
Consortium for Health” (mMARCH), a collaborative 
network of studies of clinical and community samples 
that employ common mobile, clinical, and biological 
measures to examine the generalizability and clinical 
significance of findings across involved studies (Gideon 
et al, 2021). mMARCH currently includes sites both in 
the US and across the world.  The main scientific goals 
of mMARCH sites are broad, ranging from developing 
an understanding of the inter-relationships of physi-
cal activity, sleep, and mood to the dynamic interplay 
between sleep, stress, alcohol and substance use, and 
other health behaviors in children, adolescents, and 
adults. These goals can only be accomplished through  
the combined, large-scale effort, involvement, and 
leadership of statisticians whose expertise in the many 
relevant areas of statistics will allow for progress on the 
fronts of standardization of data collection protocols, 
sampling design, and application and development of 
novel analytical methods.

CONCLUSION The development of novel sta-
tistical methods should be accompanied by substantial 
collaborative efforts with behavioral scientists and 
clinicians to translate the powerful potential of mobile 
digital health data into actionable health information.

Contact email: vadim.zipunnikov@gmail.com
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I. mRNA manufacturing platform enables rapid response to urgent demands 

In 2020, the sudden onset of the global SARS-CoV-2 pandemic crisis required a fast response to avert 
tragic losses. Vaccine development timelines, which can take 10-15 years (Offit, P. MD, 2020) from 
discovery to approval, were accelerated. The compressed timelines required many activities, such as 
clinical trials, process development, and health authority reviews to be completed in parallel, instead of 
in the traditional sequential order (Figure 1). The accelerated product timeline enabled emergency use 
authorization for COVID vaccines from both Pfizer/BioNTech and Moderna in less than a year. Both the 
Pfizer/BioNTech and Moderna vaccines were based on mRNA technology and successfully demonstrated 
the speed, flexibility, and scalability of the platform for vaccine manufacturing. 

 

 
Figure 1 (Top) Traditional approach to vaccine development, (Bottom) Accelerated approach to vaccine development 

The commercialization of the mRNA-based vaccine platform approach for COVID has opened the 
door to future mRNA-based medicines. A platform process is an approach of developing a production 
strategy for a new drug based on established manufacturing processes (Q11 Development and 
Manufacture of Drug Substances, 2012). Once the platform is proven through the acceptance of an 
initial drug product (e.g. Moderna mRNA-1273, Spikevax), a template for future drug products is 
created. Each new program follows an iterative process, building upon the knowledge from the previous 
programs, incorporating new data and innovations into the next-generation platform. This platform-
based approach enables multiple product opportunities, a higher probability of technical success, 
accelerated research and development timelines and greater capital efficiency with each new product.  

The principles of Quality by Design (QbD) are complementary to platform processes. A QbD 
approach to development emphasizes understanding and control of process parameters and product 
quality attributes. This can be achieved through using statistical design of experiments (DoE), process 
modeling, risk assessment, and process analytical technology (PAT) to characterize the relationship 
between Critical Process Parameters (CPP) and Critical Quality Attributes (CQA). Knowledge of these 
relationships is used to determine the design space and define a control strategy to assure product 
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quality. The time, resource, and financial investment costs to establish a QbD control strategy can be 
significant. Process development can take 3 – 5 years and cost anywhere from $40 – 100 million per 
product (Farid et al., 2020). With a platform process, prior knowledge can be used to support design 
decisions and reduce some of the development burden for next-generation products. This can free up 
resources to take advantage of more sophisticated tools to increase process understanding and improve 
product quality.  

II. Accelerated process development through Digital Twins 

Digital twins have been presented as a promising approach to accelerate process development 
(Cardillo et al., 2021; Schmidt et al., 2021; Zobel-Roos et al., 2019). A digital twin can be defined as a 
virtual representation that serves as a real-time digital counterpart of a physical process. The main 
components of a digital twin include a process model, digital infrastructure (databases), and real-time 
sensors (Figure 2). The process can be defined by the system dynamics, process constraints (or controls) 
and target states. Using Digital twins for in silico process development could save 50 – 75% in process 
development time (Stosch et al., 2021). If a digital twin for an mRNA-based platform process could 
reduce process development time by 50%, then all BLA required activities could be completed in less 
than 6 months. This substantial benefit of acceleration motivates future process development work for 
mRNA-based vaccines and therapeutics to rely on using digital twins to drive in silico process design, 
optimization, and validation. 

 
Figure 2 The components of a Digital Twin of a manufacturing process 

III. Case study: AEX model development and application 

In what follows, an AEX (anion-exchange) chromatography process is used as a case study to 
describe how a Digital Twin has been implemented and applied to perform in silico design of 
experiments (DoE) for process robustness study at Moderna. An overview of the general workflow is 
illustrated in Figure 3. First, the structural form of the mechanistic model is defined for the AEX process 
based on domain expertise and previous experience. Then, deliberately designed experiments are used 
to calibrate, or determine the parameters of, the mechanistic model. After the AEX model has been 
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calibrated, it is ready to be used for in silico DoE, process design and optimization, operational decisions, 
and other applications. 

 
Figure 3 Workflow of digital twin creation combining in silico and lab experiments 

For the AEX case study, the classic equilibrium dispersive model (Figure 4) is used to describe the 
mass transfer in the chromatography column (Guélat et al., 2016; Khalaf et al., 2016; Ng et al., 2012). In 
this model, concentrations in both mobile phase 𝐶𝐶 and stationary phase 〈𝑞̂𝑞〉 are considered functions of 
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commercial and free PDE solvers are available. For this case study, GoSilico™ Chromatography Modeling 
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Figure 4 Mass transfer equation (equilibrium dispersive) of column chromatography 

Linear or nonlinear optimization is used for model calibration, where parameters are estimated to 
minimize the residuals between the model predictions and experimental observations. Scores like mean 
squared error or mean absolute error are commonly used to locate the optimum (minimal) residuals. It 
is critical to select experimental run settings to support calibration for the specific mechanistic model 
form to be calibrated. In contrast to empirical statistical models based on linearized Taylor expansion 
model terms, mechanistic models are often highly nonlinear, and the residual sensitivity to model 
parameters is not always trivial. Therefore, classical DoE design matrices, such as full factorial or central 
composite designs, may not support optimal parameter fitting efficiency and estimation confidence. 
Model-based DoE approaches are commonly used to fit mechanistic models (Shahmohammadi & 
McAuley, 2019). For chromatography models, experimental designs relying on linear gradient elution 
(LGE), isocratic elution, and frontal analysis experiments are commonly used to calibrate IEX (ion-
exchange) models (Carta et al., 2020, 2005). In this approach, linear gradient elution experiments with 
different gradients are performed first to determine the isotherm properties. Then, frontal analysis is 
used to validate the isotherm properties and evaluate parameters describing steric hindrance effects 
and capacities. Finally, axial dispersion dependency on the flow rate is evaluated by running either 
gradient elution or isocratic elution experiments with different residence times. Global optimization 
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techniques are applied to fit the model parameters. With this dedicated setup of experiments, 
satisfactory agreement is reached and only reached when 1) the mechanistic model captures all physics 
in the system, and 2) optimal model parameters are found (Figure 5). 

 
Figure 5 Model calibration using deliberately designed experiments and agreement is found between model predictions and 

experiments (screenshot from GoSilico™ Chromatography Modeling Software) 

The mechanistic model can be applied for in silico predictions when domain experts endorse the 
model performance. in silico experiments can explore design space where lab experiments are 
challenging to perform due to limitations such as material availability and time. As an example, we used 
the AEX chromatography model to evaluate and identify critical material attributes (CMAs) from 
upstream unit operations. In lab experiments, it is nearly impossible to generate abundant samples with 
combinations of concentrations of multiple components, and the time to perform such experiments in 
this high-dimensional space is prohibitive. Using the Digital Twin we developed, we generated 1000 
parameter sets in a high-dimensional design space using a Latin hypercube approach (Figure 6) and ran 
in silico simulations. Critical material attributes were identified and the simulation results will give us 
insight on upstream specification setting. 

 
Figure 6 Latin hypercube / Monte Carlo generated design space for in silico simulations (scatter plot generated by JMP) 
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IV. Model-based design and filing 

Most pharmaceutical development and regulatory filings applying Quality by Design (QbD) principles 
are based on classical design of experiments and empirical statistical models described in the ICH 
guidance document Q8(R2) (ICH Q8(R2), 2009). Predictions are interpretable and robust within the 
design space, but uncertainty increases when the process parameters extend beyond the design space 
or factors that are not accounted for during process characterization turn out to have impact on the 
process. The original experiments can be augmented empirically to address these situations. However, 
Digital Twins and mechanistic models provide more reliable predictions when extending the design 
space and incorporating factors not considered during the original characterization. Their strength relies 
on the basic principle that extrapolation of mechanistic models beyond the original design space is more 
reliable than extrapolation beyond the demonstrated limits of empirical models. 

Digital Twins increase the confidence in the statistical models built upon process characterization 
studies by explaining the mechanism of the significant process parameters. Developing capability of in 
silico prediction helps to target experiments on parameter spaces where there is greater information 
potential, such as higher risk of quality attributes failing specifications or greater likelihood of global 
rather than local optima. Instead of relying solely on domain expertise in defining the range of design 
space, rational determination of the space can be achieved by employing mechanistic models. The 
combination of Digital Twins and statistical model adds even greater value to platform processes, where 
mRNA sequence dependent information could be incorporated into the mechanistic model and targeted 
experiments could be performed to assess risks at certain region of the design space and ensure the 
QbD principles. 
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DIGITAL BIOMARKERS OF GLUCOSE 
CONTROL - REPRODUCIBILITY 
CHALLENGES AND OPPORTUNITIES
Irina Gaynanova (Texas A&M)

Introduction
The prevalence of diabetes, a chronic disease char-
acterized by high blood glucose levels, continues to 
rise globally. According to the International Diabetes 
Federation, 537 million adults live with type 1 or type 
2 diabetes, and this number is predicted to rise to 643 
million by 2030 and 783 million by 20451. Glycated 
hemoglobin A1c (HbA1c) has proven to be a reliable 
biomarker for diagnosing and monitoring the man-
agement of diabetes2. First, HbA1c is an indicator of 
long-term glucose control as it reflects the average 
blood glucose over the preceding 2-3 months. Second, 
high levels of HbA1c correlate with long-term diabetes 
complications, with HbA1c being an independent risk 
factor for coronary heart disease and stroke in subjects 
with or without diabetes. Despite this, HbA1c as a sole 
biomarker has severe limitations. Glucose levels are 
highly non-linear and non-stationary, even for healthy 
subjects. They are strongly affected by various environ-
mental factors, including diet, physical activity, stress, 
and sleep quality3. HbA1c is unable to capture this gly-
cemic variability.

Continuous glucose monitors (CGM) are small wear-
able devices that automatically measure blood glucose 
levels at frequent time intervals, with some monitors 
taking measurements as often as every 5 min. Unlike 
HbA1c, CGM data provide a detailed quantification of 
the variation in blood glucose levels, thus playing an 
increasing role in clinical practice4,5. Figure 1 shows 
example glucose measurements for a subject with type 
2 diabetes over 13 days obtained with Dexcom G4; 
these data are part of R package iglu6. Observe the 
highly non-stationary nature of the profile with mul-
tiple peaks (likely corresponding to meal intakes) and 
deviations from the in-range values. The increasing use 
of CGM devices coupled with their increasing measure-
ment accuracy led to enormous interest in extracting 
CGM-based digital biomarkers of glucose control to 
replace or enhance the traditional HbA1c biomarker.

CGM-derived metrics as digital biomarkers 
of glucose control
Multiple CGM-derived digital biomarkers of glycemic 
control have been proposed7,8. These digital biomarkers 
can be viewed as summary statistics extracted from the 
complete CGM glucose profile aimed at measuring dif-
ferent glycemic aspects such as overall glucose levels 
(e.g., mean glucose), overall glucose variability (e.g., 
percent of glucose values in [70,180] mg/dL range, 
and coefficient of variation), local glucose variability 
(e.g., mean amplitude of glycemic excursions9, and the 
standard deviation of glucose rate of change10), hypo-
glycemic (e.g., Hypo Index) and hyperglycemic (e.g., 
Hyper Index) risks. New CGM metrics continue to be 
proposed and developed, including composite metrics 
that account for multiple dimensions of glucose control 
(e.g., GRADE11, and COGI12). The variety of available 
CGM metrics poses continuous challenges for research-
ers, clinicians, and patients alike.
On the one hand, in patient-centered care, it is crucial 
to use CGM biomarkers that have clear evidence of 
association with diabetes-associated risks and are easy 
to extract, interpret, and explain to the patient. Driven 
by these considerations, an international panel selected 
a small list of CGM metrics for clinical care, includ-
ing mean glucose value, time in [70,180] mg/dL range, 
coefficient of variation13. On the other hand, in clinical 
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Figure 1: Glucose profile of a subject with Type 2 diabetes measured using 
Dexcom G4 CGM with 5 min frequency. The horizontal lines correspond to 
the in-range glucose thresholds of [70,180] mg/dL.
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research, having accessibility to a broader range of 
metrics is of value due to the multi-faceted nature of 
glucose control (overall glucose levels, glucose vari-
ability, hypoglycemic risk, etc.). While metrics that 
provide a dynamic characterization of glucose trajecto-
ries (e.g., the mean amplitude of glycemic excursions 
MAGE, CONGA, and the standard deviation of rate of 
change) may be challenging to explain to the patient, 
they are relevant when considering the potential impact 
of conditions associated with acute temporal changes 
in pathophysiological mechanisms. However, there is a 
lack of consensus on the optimal metrics for assessing 
glucose variability14 and no agreement on how to assign 
weights to different metrics of glucose control when 
determining disease progression8.
We argue that there are two main challenges in utiliz-
ing CGM-derived metrics as digital biomarkers of 
glucose control. The first challenge is associated with 
the relative recency of CGMs, and as a result, limited 
CGM use. The newness of CGM technology translates 
into the lack of long-term prospective outcome studies 
for objective cross-comparison of various metrics and 
the lack of studies validating metrics’ relationship to 
predicting long-term diabetes complications. This chal-
lenge is well-acknowledged within clinical literature8 

and can only be addressed with time as these studies 
take place. The second challenge, however, is more 
subtle and should be addressed now, but in our view, 
received much less attention - a challenge of reproduc-
ibility. Limited CGM software options, variation in 
algorithms used for metrics calculation, and lack of 
algorithms’ validation on public datasets all lead to (a) 
disagreement in the values of the same CGM metrics 
across software platforms; (b) disregard of some met-
rics due to their inaccessibility rather than due to their 
potential clinical value. Statisticians and data scientists 
are well-positioned to help address these challenges, 
and here we review some efforts done by our group as 
well as outline opportunities for future work.

CGM reproducibility challenges and 
opportunities

1. Limited metrics’ implementation in existing software 
solutions. 

Ambulatory Glucose Profile (AGP) is the standardized 
report of CGM metrics offered through most CGM 
devices and their reporting software13. This report, 
however, is designed for individualized patient care 

and ease of interpretation rather than for large-scale 
research studies. AGP only includes a small subset 
of CGM metrics and, in particular, lacks metrics that 
provide a dynamic characterization of glucose trajec-
tories (e.g., MAGE, and the standard deviation of rate 
of change). Furthermore, while some CGM metrics are 
easy to calculate without specialized software (e.g., 
average glucose value, and coefficient of variation), 
other metrics require non-trivial computations. For 
example, the average daily risk range (ADRR)14 is a 
composite metric that requires both logarithmic and 
power transformations of glucose values, truncation 
of values based on specified hypo- and hyperglycemic 
cutoffs, and a weighted average. While the correspond-
ing mathematical formula is explicit, we find it unlikely 
that non-quantitative researchers will utilize ADRR in 
the absence of readily available software. Since ADRR 
is not a part of standardized AGP, it is not routinely 
calculated; thus, its potential clinical utility (or lack 
of thereof) often remains unassessed in large-scale 
studies. The situation is even more complicated with 
time-specific measures of standard deviation such as 
SdB metric (between day – within time points standard 
deviation)7. Calculation of SdB requires putting glu-
cose measurements on the same time grid from day to 
day (thus requiring interpolation or time adjustment), 
and then calculating various summary statistics across 
days and times. As with ADRR, we find it unlikely that 
clinicians will routinely calculate SdB without easily 
accessible software. In summary, there is a gap between 
CGM biomarkers proposed in the literature and CGM 
biomarkers routinely calculated in practice. There is a 
need for software tools that are free, easy to use for both 
researchers and clinicians, and up to date with the array 
of CGM biomarkers being proposed.

In recent years, multiple free software packages have 
been developed to address this need. EasyGV is a free 
CGM software in a macro-enabled Excel workbook15 

and thus is accessible to a broad range of clinicians and 
researchers. However, Excel is not a script-based pro-
gramming language, and many underlying algorithms 
are black-box. It is thus less desirable for those users 
who want to create reproducible scripts for all data pro-
cessing and metric calculation steps. It also has a lim-
ited array of available CGM metrics. A growing interest 
in open-source software for CGM data led to the devel-
opment of multiple R packages within just the last two 
to three years16, 17, including the iglu6  package developed 
by our group. The main advantages of iglu over its 
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predecessors are (i) a significantly more exhaustive list 
of available CGM metrics; (ii) accompanying graphi-
cal user interface via Shiny app (https://irinagain. 
shinyapps.io/shiny_iglu) making it accessible to users 
with limited programming experience and (iii) commu-
nity-based approach to maintenance and development 
of new features based on public GitHub repository to 
stay up to date with the most current CGM metrics. 
Given how frequently new CGM metrics appear in the 
literature, we believe open-source approaches coupled 
with community efforts are needed for any CGM soft-
ware solution to stay relevant. Having easy access to 
well-documented and tested software for calculating 
continuously proposed CGM metrics is crucial for 
determining their clinical importance in follow-up stud-
ies, reproducibility, and follow-up analyses of interven-
tions' effects on glucose control.

2.  Proprietary algorithms and black-box data processing. 

The algorithms and data processing techniques used 
in various reporting systems provided by CGM manu-
facturers are proprietary, making the comparisons diffi-
cult, and often leading to disagreements across software 
systems. Lack of agreement is especially challenging 
for metrics whose calculation is non-trivial due to (a) 
required underlying data-processing and (b) algorithmic 
differences in translation of clinical metric definition. 

By default, CGMs take measurements on an equidis-
tant time grid. However, missing values are common 
due to device placement issues, device replacement 
from one to another, and underlying glucose values 
outside the CGM measurement range (too low or too 
high). In the presence of such missingness, each soft-
ware implementation must either ignore these missing 
values or impute them, with the latter requiring an addi-
tional decision on the specific imputation scheme. As 
many existing software and algorithms are proprietary, 
it is unclear what choice is being made. Even with 
open-source software, the explicit choice is not always 
adequately described in the documentation, leading to 
the lack of reproducibility across the implementations. 

But even in the absence of missing data, significant 
variations in underlying algorithms could exist. For 
example, the mean amplitude of glycemic excursions 
(MAGE) is a commonly used measure of glucose vari-
ability. Based on the original definition9, MAGE is the 
arithmetic mean of the amplitude (height) of glucose 
excursions greater than the standard deviation of the 
glucose values. Visually, an “excursion” is a substantial 

peak in glucose values, typically due to a meal intake. 
Translation of MAGE definition into an automated 
algorithm requires quantification of this visual “excur-
sion”. In our experience, the variability in this quantifi-
cation leads to differences in calculated MAGE values. 
These differences could be substantial across software 
platforms and even used as a rationale for abandoning 
MAGE as a metric altogether18. But to us, this rationale 
seems faulty. The issue is not MAGE’s clinical utility 
but rather a choice of the algorithm for automatically 
identifying excursions that will maximize this utility. 
As statisticians, we are accustomed to doing simulation 
studies to compare various algorithms on either syn-
thetic data or on actual public data so that comparisons 
can be replicated and verified by others. We argue that 
the same approach is desperately needed to evaluate 
and compare CGM software and associated algorithms. 
In the context of MAGE, we developed an open-source 
algorithm for excursion identification19 with implemen-
tation being freely available through R package iglu. 
As a standard of comparison, we used visual identi-
fication of excursions and manual calculations on the 
public rather than private CGM data. While manual 
calculations are undoubtedly error-prone, the public 
availability of all software, underlying algorithms, and 
the utilized CGM data ensures that the results can be 
publicly disproved or validated by the community. We 
believe such comparison efforts are desperately needed 
for many other CGM metrics and CGM software and can 
benefit from the more active involvement of quantitative 
scientists. It is encouraging to see some recent progress 
in this area20, 21, and we hope that these efforts continue.

3. Lack of easily accessible public CGM data for validation 
of metric calculation and development. 

Most of the studies proposing new CGM metrics 
and software rely on CGM data that is not publicly 
available. Lack of data availability makes it difficult to 
validate the correctness of metrics’ calculations, hinder-
ing the development of better algorithms and software.  
We believe that the area of CGM digital biomarkers 
research has some lessons to learn from the machine 
learning community. The availability of a central pub-
lic repository of datasets to test the performance of 
various algorithms, widely known as UCI machine 
learning repository 22, has mainly been credited for the 
exponential growth in machine learning algorithms 
development. The standard in the field is not to display 
the results on only private data that no one has access 

https://irinagain.shinyapps.io/shiny_iglu
https://irinagain.shinyapps.io/shiny_iglu
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to, but to display the results on public data that every-
one can access, and thus use as a benchmark. Public 
availability of deidentified CGM datasets and ease of 
access will allow evaluation of the agreements and dif-
ferences across CGM software and the effect of those 
disagreements on the relationship between calculated 
metrics and clinical outcomes of interest. We believe 
that such public availability will help to naturally filter 
both algorithms and CGM metrics, as well as generate 
more confidence in the community in the correctness 
of underlying calculations. Our group has made some 
effort towards this goal by assembling links to public 
CGM data with corresponding processing scripts in R 
and python hosted on GitHub23, with contributions open 
to the community. We believe having easy access to pub-
lic deidentified CGM datasets will spearhead the valida-
tion of CGM biomarkers and ensure their reproducibility.

4. Lack of large-scale data-driven studies to assess the 
relationship between the metrics. 

While using multiple indices from CGM data allows 
considering different characteristics of glucose control, 
many of the proposed digital biomarkers appear to be 
redundant. For example, glucose management indica-
tor (GMI)24 is a linear function of mean glucose. While 
it provides utility in terms of its values being directly 
comparable to HbA1c values, it does not give additional 
information on glucose control beyond the information 
provided by the mean glucose. Traditionally, an expert 
opinion is needed to differentiate redundant metrics 
and identify which aspects of glucose control (overall 
levels, global variability, local variability, etc.) vari-
ous metrics represent. However, such expert opinion 
is increasingly challenging to obtain as new metrics 
continue to be developed. It’s easy to be overwhelmed 
by the sheer amount of information across all metrics, 
much of which is overlapping. There is a need to evalu-
ate metrics similarity and redundancy in a data-driven 
way to complement existing clinical expertise.

To illustrate the idea, in Figure 2, we reproduce 
Figure 6 from Broll et al.6 showing hierarchical cluster-
ing of 40+ CGM metrics based on public data of five 
subjects with Type 2 diabetes available in iglu package6. 

The cluster tree for metrics is cut at 6 groups, which we 
interpret as follows (from top to bottom): 

(1) In range metrics; 
(2) Hypoglycemia metrics; 
(3) Hyperglycemia metrics; 

(4) A mixture of variability and hyperglycemia metrics; 
(5) CVsd (standard deviation of CV, coefficient of 

variation, across days); 
(6) Glucose variability metrics. 

Figure 2. Heatmap of CGM metrics calculated using R package 
iglu for five subjects with Type 2 diabetes. Hierarchical clustering 
is performed on centered and scaled metric values using distance 
correlation with complete linkage. The cluster tree for metrics is 
cut such that it results in six groups.

Such visual representation provides a data-driven 
way to assess metrics’ similarity and can be used as a 
guide for metrics selection. Metrics clustering across 
various populations (e.g., patients with Type 1 diabetes 
vs. patients with Type 2 diabetes vs. patients with gesta-
tional diabetes) may shed light on the condition-specific 
choice of digital biomarkers.
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As an alternative approach to clustering, Fabris et 
al.25, 26 investigated the use of sparse principal component 
analyses as a data-driven way to create new composite 
digital biomarkers from the existing metrics list. How-
ever, only a small subset of metrics has been considered, 
the studies were based on very small CGM datasets (<20 
subjects each), and those datasets are not in public access.

There are great opportunities to use algorithms from 
statistics and machine learning (clustering, principal com-
ponent analysis, factor analysis) to shed light on relation-
ships between existing CGM metrics and quantify each 
metric’s additional information. Significantly more large-
scale studies are needed in this direction. Still, ultimately 
their success will depend on overcoming other reproduc-
ibility challenges first: comprehensive and publicly avail-
able implementation software, open-source algorithms, 
and public CGM datasets.

Conclusion
Continuous improvement in CGMs accuracy and their 
increased use provide exciting opportunities for improv-
ing glucose control of patients leaving with diabetes and 
improving our understanding of diabetes progression, risk 
factors, and treatment effects. However, multiple chal-
lenges exist in realizing these opportunities. Here we out-
lined four reproducibility challenges associated with the 
CGM-based digital biomarkers of glucose control: limited 
software implementations, proprietary algorithms, lack 
of easily accessible public CGM data, and lack of large-
scale data-driven studies to assess the relationships across 
metrics. We believe that statisticians and data scientists are 
well-positioned to help address these challenges by devel-
oping algorithms, software, and reproducible workflows 
for CGM data processing and downstream analyses. Some 
examples of these efforts by our group are the free and 
open-source R package iglu6 for the calculation of various 
CGM metrics, the accompanying Shiny app ( https://irin-
again.shinyapps.io/shiny_iglu/), and the curated GitHub 
repository with information on public CGM datasets23. 
Open-source implementation and curation of public CGM 
datasets for cross-comparison and benchmarking are all 
necessary to ensure validation by the research commu-
nity at large. Significantly more efforts are needed in this 
direction, including initiatives that support collaborations 
between statisticians. data scientists, CGM manufacturers,  
and clinicians to ensure rigor, reproducibility, and clinical 
utility. As long-term prospective outcome studies collect-
ing CGM data become a reality, reproducible analytical 
solutions are desperately needed to facilitate the use of 
CGM technology by investigators in both observational 
studies and randomized clinical trials.
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THE IQ CONSORTIUM – CMC AND BIOSTATISTICS 
STATISTICS LEADERSHIP GROUP
David Christopher (Merck), Erik Talens (Merck), and Phillip Yates (Bristol Myers Squibb)

Introduction
The International Consortium for Innovation and 

Quality in Pharmaceutical Development (IQ Consor-
tium or IQ, www.iqconsortium.org) is a not-for-profit 
organization comprised of pharmaceutical and biotech-
nology companies. The IQ’s vision is to be the leading 
science-based organization for advancing innovative 
solutions and to enable companies to bring quality 
medicines to patients. The IQ has close to 40 member 
companies with over 2,000 annual participants across 
various activities and celebrated its 10th anniversary in 
2020. Member company scientists and engineers can 
participate on one or more of approximately 100 Work-
ing Groups (WG) broadly aligned under four themes: 
Chemistry, Manufacturing, and Controls (CMC), Life 
Sciences, Quality, and Statistics. These four areas are 
subdivided into 10 Leadership Groups (LG), four CMC 
LGs and four Life Sciences LGs, where both the Qual-
ity and Statistics LGs are split between two Forums. 
Figure 1 illustrates the organizational bridge between 
the diverse set of WGs (not shown) that operate within 
each LG and the Board of Directors and labels the LGs 
by the area of scientific collaboration.

As a science- and technology-based collaborative 
organization, the IQ has five strategic objectives. First, 
to collaborate across member companies in a ‘N > 1’ 
manner with cross-functional datasets and to form joint 
scientific positions/conclusions. Second, to advance 
relationships with other consortia, academic, or govern-
ment research institutes, e.g., NCATS or PhRMA, to 
promote scientific excellence and harmonization. The 
IQ also seeks to proactively engage global regulators 
either directly, in collaboration with external partners, 
or via joint meetings on select development topics. 
Sharing results in the peer-reviewed or trade litera-
ture, via presentations or involvement at workshops or 
symposia, or providing online webinars is the fourth 
objective. Finally, they seek to ensure the continued 
value of the IQ through committed leadership, produc-
tive collaborations, priority-setting, and talent pool 

engagement/leadership succession. The IQ may not be 
immediately familiar to the at-large biopharmaceutical 
community; but, a large number of our drug discovery 
and development subject matter expert colleagues are 
involved in the IQ.

Two IQ Affiliates, for drug induced liver injury 
(DILI, www.iqdili.org) and microphysiological systems 
(‘organs-on-a-chip’, www.iqmps.org), also operate in 
the IQ framework and showcase a tailored scientific 
pursuit of interest to member companies. The IQ 
has served as a test bed/launch pad leading to de 
novo consortia formation, the Allotrope Foundation 
(www.allotrope.org) and the Enabling Technologies  
Consortium (www.etconsortium.org). IQ secretariat, 

Figure 1: IQ Organization Layout, The IQ has 10 Leadership 
Groups segmented into four areas (CMC, Life Sciences, Quality, 
and Statistics) for technical and scientific exchange (graphic 
courtesy of the IQ Annual Report, iqconsortium.org/about/annual-
reports/annual-report-2020). An extensive number of Working 
Groups, not shown, report to the Leadership Groups.

http://www.iqdili.org
http://www.iqmps.org
http://www.allotrope.org
http://www.etconsortium.org
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technical, and legal support is provided by the law firm 
of Faegre Drinker Biddle & Reath. Secretariat support, 
in addition to coordinating routine administrative and 
meeting tasks, provides a valuable infrastructure for 
effectively sharing and managing both cross-company 
datasets and communication channels both internal 
and external to the IQ. Data sharing, industry surveys/
benchmarking, and collective positions on scientific 
topics are just three common examples where the 
whole exceeds the sum of the parts or the individual 
contribution of a single member company. In this short 
introduction to the IQ we highlight how the Statistics 
Leadership Group (SLG) has contributed to one or more 
of the IQ’s stated objectives.
Statistics Leadership Forums

The majority of the WGs operate in the CMC and 
Life Sciences areas. The CMC and Biostatistics Forums 
were created to loosely align activities under these two 
broad umbrellas. To help provide limited context and 
reinforce IQ’s scientific emphasis here are examples 
of WGs in each area, respectively: Dissolution (CMC 
Analytical LG), Nitrosamine (CMC Drug Substance 
LG), Continuous Manufacturing (CMC Drug Product 
LG), Subvisible Particles (CMC Biologics CMC LG), 
Immunogenicity (Life Sciences Clinical Pharmacology 
LG), Pediatrics PBPK (Life Sciences Translational and 
ADME Sciences LG), Pre-FIH Tox Attrition (Life Sci-
ences DruSafe LG), and Recovery Animals (Life Sci-
ences 3Rs Translational and Predictive Sciences LG). 
The Control Strategy Global Harmonization Metrics 
WG is an example of a Quality LG effort with regulatory 
dimensions whose title reflects components of the IQ’s 
strategic mission. The CMC and Biostatistics Forums, 
or SLGs, do not currently have any dedicated WGs but 
directly support several WGs, a common situation for 
consulting statisticians where impact is achieved not by 
being in the limelight but from the trenches. Currently, 
each SLG has approximately 20-25 statisticians repre-
senting approximately 15 member companies. Member 
company statisticians can have direct involvement with 
a WG and not actively participate on a SLG. In part, 
SLG participants are encouraged to act as a liaison 
between their internal statistician communities and their 
scientific counterparts. Both technical contributors and 
managers participate on each of the two Forums.

CMC has traditionally been a focus area for nonclini-
cal statisticians and supported by the CMC Statistics 
Leadership Group (CMC SLG). Some current CMC 
SLG members participated on the PhRMA Technical 

Committee, a precursor to the CMC SLG, more than 
2 decades ago. As the value and role of CMC-related 
statistics evolved the IQ has emerged to offer a part-
time ‘home’ for the CMC statistician community with 
direct ties to our large and diverse customer base. The 
Biostatistics Forum or SLG was formed in 2019 to 
explore and address topics for statisticians supporting 
domains outside of the CMC space, e.g., drug safety, in 
vitro/vivo assays. In the paragraphs below we provide a 
snapshot of some select activities.

CMC – Jyh-Ming Shoung (Janssen), with other 
member company statisticians, authored an in-depth 
internal whitepaper on statistical considerations for 
modeling risk-based predictive accelerated stability 
studies as part of supporting the Analytical LG. Lori 
Pfahler, recently retired from Merck, presented at the 
2021 Nonclinical Biostatistics Conference on CMC in 
relation to statistics and data science that was, in part, 
based on a series of discussions among the CMC SLG. 
Jose Ramirez, now at Kite Pharma, co-presented a four-
part webinar series on computational Bayesian methods 
for CMC applications that was attended by several hun-
dred viewers across the globe. 

Reviewing and offering an opportunity to provide 
feedback on upcoming regulatory guidances and stan-
dards has occurred. Member companies often choose 
to provide individual feedback via their own internal 
mechanisms; but, the opportunity to present a collec-
tive response has occurred in the IQ framework (e.g., 
the Dissolution WG’s endorsement of the use of apex 
vessels for USP dissolution evaluations, review of USP 
<1095> for batch release dose uniformity testing).

The CMC SLG provides a regular and recurring 
framework for discussing items of mutual interest. For 
example, it provided an effective forum to consider and 
debate important issues around limitations of the wide-
spread similarity factor (f2) approach for comparing 
dissolution profiles. Using IQ resources, the group con-
ducted a member company survey, engaging analytical, 
regulatory, and statistics functions, to better gauge the 
impact of its (essentially statistical) limitations. The 
survey concluded that the f2 approach was a ‘nuisance’ 
but not a pain point that warranted engaging resources 
to address. The IQ framework provided an opportunity 
for a clearer understanding of both the statistical aspects 
of this approach as well as practical implications. Stan 
Altan (Janssen) has been involved in on-going and 
evolving clinically relevant discussions regarding the 
‘safe space’ concept in relation to bioequivalence. This 
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developing area relies on a deeper physiology-based 
pharmacokinetic (PBPK) understanding of the interplay 
between dissolution and in vivo outcomes. Adopting the 
‘safe space’ concept is an example of a ‘patient-centric’ 
implementation of drug product quality. Recent interest 
in topics such as digital twins or real-world evidence 
(RWE) have been posed that might otherwise have only 
been conducted via email or ad hoc at a (virtual) confer-
ence. Some have benefitted from CMC SLG feedback 
on upcoming conference presentations. Unlike the spe-
cialization that can occur in the clinical trial space CMC 
SLG members are often involved across the nonclinical 
spectrum. Members have recently been involved in the 
ASA Biopharmaceutical Section’s separate Nonclinical 
Bayesian and p-value workstreams.

Biostatistics – The Biostatistics Forum (Biostatistics 
SLG) formed with the goal of expanding into areas 
outside the traditional CMC remit. While expanding 
to the clinical trial domain was a (currently unreal-
ized) possibility current Biostatistics SLG members 
work in and discuss matters related to drug safety, 
aspects of pharmacology, and topics of specific member 
company interest. For example, several robust discus-
sions resulted from an internal presentation series on 
anti-drug antibody assay cut point determinations. For 
statisticians interested in collaborating alongside scien-
tists to improve quantitative rigor and help shape best 
practices the Life Sciences area is ripe for additional 
involvement.

Jorge Quiroz and Dave Christopher (both from 
Merck) engaged with two Translational and ADME Sci-
ences LG (TALG) WGs following their request for SLG 
involvement. The Bioanalytical Samples QC WG con-
ducted an evaluation to assess agreement for pharmaco-
kinetic data from passed, failed, and retested samples. 
In a Bioanalysis article involving data from several 
companies, molecular types, and analytical platforms, 
the analyses suggested that the bioanalytical methods 
are very reproducible and that the QC samples improve 
overall pharmacokinetic assay quality. Separately, a 
second TALG WG study was conducted to determine 
the value of duplicate versus singlet-based sampling. 
In another Bioanalysis article incorporating actual and 
simulated data from 20 diverse drug candidates across 
four analytical platforms from eight organizations they 
proposed that a singlet-based sampling approach is a 
suitable default for ligand-binding assays whereas a 
duplicate-based approach is needed where imprecision 
and/or inaccuracy impedes assay validation. Phillip 

Yates (BMS) assisted the TALG Induction WG for 
several years in its evaluation of this preclinical in vitro 
assay, using shared data generated for this effort by at 
least seven member companies, as part of the important 
role it can play in the study of drug-drug interactions. 
Multiple Drug Metabolism and Disposition articles, 
co-authored by member company statisticians, were 
published with a view towards influencing regulatory 
guidelines. The recent FDA guidance on in vitro drug 
interaction studies, released in early 2020, cites two of 
these papers as references.
Conclusion

The pre- or nonclinical arena for statisticians is broad 
and heterogeneous. As highlighted in a recent ASA 
Biopharmaceutical Report (Fall ’21), for US-based col-
leagues the biennial Nonclinical Biostatistics Confer-
ence, Midwest Biopharmaceutical Statistics Workshop, 
ASA Biopharmaceutical Section nonclinical working 
group, and the Nonclinical Biostatistics Leaders’ Forum 
are well-known venues for nonclinical statisticians. 
The IQ, although not statistics-centric per se, is another 
less-trodden ‘home’ for nonclinical statisticians with a 
distinct emphasis on scientific topics not pertaining to 
clinical trials. A diverse range of scientific and practi-
cal topics related to drug discovery and development 
are encountered and present compelling and challeng-
ing problems. The IQ provides, especially for subject 
matter experts engaged on various WGs, a unique and 
beneficial platform for cross-company collaboration 
and another venue for CMC or nonclinical statisticians 
to contribute and help bring new medicines to patients.

If you would like more information or are employed 
at a member company and wish to get involved in the 
IQ please contact Erik Talens (CMC SLG chair, erik.
talens@merck.com), Phillip Yates (CMC SLG immedi-
ate past chair, phillip.yates@bms.com), or Dave Chris-
topher (Biostatistics SLG chair, j.david.christopher@
merck.com). Interested participants are encouraged to 
refer to a recent Pharmaceutical Technology (www.e-
digitaleditions.com/i/1302985-pharmtech-regulatory-
sourcebook-october/59) article for additional overview 
or the 2020 annual report (iqconsortium.org) to see 
a select list of publications, comments on regulatory 
guidances and standards, and assorted presentations. n

mailto:erik.talens%40merck.com?subject=
mailto:erik.talens%40merck.com?subject=
mailto:phillip.yates%40bms.com?subject=
mailto:j.david.christopher%40merck.com?subject=
mailto:j.david.christopher%40merck.com?subject=
http://www.e-digitaleditions.com/i/1302985-pharmtech-regulatory-sourcebook-october/59
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SUMMARY OF ASA BIOP SECTION’S VIRTUAL 
DISCUSSIONS WITH REGULATORS ON 
STATISTICAL CONSIDERATIONS IN CLINICAL 
TRIALS FOR RARE PEDIATRIC CANCERS
Rajeshwari Sridhara (FDA), Olga Marchenko (Bayer), Qi Jiang (Seagen), Elizabeth Barksdale (LUNGevity Foundation), Richard 
Pazdur (FDA), Gregory Reaman (FDA)

The American Statistical Association (ASA) Biophar-
maceutical Section (BIOP) and LUNGevity Foundation 
hosted open forum virtual discussions on June 24, 2021 
with participation from biostatisticians, clinicians, and 
regulators in a series conducted under the guidance of 
the U.S. FDA Oncology Center of Excellence’s Project 
SignifiCanT (Statistics in Cancer Trials). The goal of 
Project SignifiCanT is to advance cancer drug devel-
opment through collaboration and engagement among 

stakeholders in the design and analysis of cancer clinical 
trials. These discussions were organized jointly by the 
ASA BIOP Statistical Methods in Oncology Scientific 
Working Group, the FDA Oncology Center of Excel-
lence (OCE), and LUNGevity Foundation. 

Randomized clinical trials remain the best method 
to assess the benefit/risk of investigational treatments. 
However, all pediatric cancers are rare and molecular 
characterization of specific cancers has resulted in 

* Speakers/ Panelists: Dr. Todd Alonzo (COG Group Statistician), Mr. David Arons (National Brain Tumor Society), Dr. Elizabeth 
Barksdale (LUNGevity Foundation), Dr. Alex Bliu (HC, Canada), Dr. Qiuyi Choo (HAS, Singapore), Dr. Michael Coory (TGA, Australia), 
Dr. Martha Donoghue (FDA), Lori Ehrlich (FDA), Dr. Leonardo Fabio Costa Filho (ANVISA, Brazil), Dr. Elizabeth Fox (St. Jude), Dr. 
Boris Freidlin (NCI), Ms. Nancy Goodman (Kids V Cancer), Dr. Doug Hawkins (COG Group Chair), Dr. Qi Jiang, (Seagen), Dr. Pallavi 
Mishra Kalyani (FDA), Dr. E. Anders (Andy) Kolb (DuPont Hosp. for Children, COG AML Chair),  Dr. Helen Mao (HC, Canada), Dr. Olga 
Marchenko (Bayer), Dr. Eric Ng (Bayer), Dr. Alberto Pappo (Director, Solid Tumor Program at St. Jude), Dr. Richard Pazdur (OCE, FDA), 
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even smaller population subsets. In many cases lim-
ited sample sizes often make it infeasible to conduct 
large randomized clinical trials in a timely manner 
with adequate power and control of type I error rate at 
a two-sided 0.05 level.  To accelerate pediatric cancer 
drug development, there is a need to identify potential 
innovative clinical trial design options to evaluate treat-
ments for pediatric cancers with small sample sizes in 
which randomized trials are not possible. This virtual 
open forum discussion focused on clinical trial design 
considerations for evaluating new treatments for pedi-
atric cancers where the standard or traditional random-
ized trials are deemed infeasible. 

The speakers/panelists* for the discussion included 
members of the BIOP Statistical Methods in Oncology 
Scientific Working Group representing pharmaceutical 
companies, representatives from International Regu-
latory Agencies (FDA, EMA, HC, TGA, ANVISA, 
MHRA, HSA), clinical investigators, academicians, 
patient advocacy groups and expert statisticians in 
industry.  In addition, over 100 participants attended the 
virtual meeting, including representatives from other 
International Regulatory Agencies (SMC, PMDA, 
Israel).  The discussions were moderated by the BIOP 
Statistical Methods in Oncology Scientific Working 
Group co-chairs, Dr. Qi Jiang from Seagen and Dr. Olga 
Marchenko from Bayer; Dr. Elizabeth Barksdale from 
LUNGevity Foundation; and Dr. Rajeshwari Sridhara, 
contractor from OCE, FDA.

This open forum was divided into three sections, 
each featuring a short presentation followed by a panel 
discussion, on the following topics: (1) Use of external 
controls, (2) Frequentist approach, and (3) Bayesian 
approach.  After the introductory remarks by the OCE 
leadership who highlighted the need for a multi-disci-
plinary approach to facilitate pediatric drug develop-
ment, an FDA representative presented regulatory and 
statistical considerations for externally controlled clini-
cal trials.  The presentation acknowledged that while 
randomized controlled trials are the preferred approach 
for generating evidence of drug safety and efficacy, in 
certain cases where randomization is not feasible, an 
external control arm may be an option for estimating 
comparative treatment effect, when the clinical course 
of the disease is well understood.  Furthermore, to con-
sider external control as a comparator, the data must be 

fit for purpose with appropriate quality and complete-
ness, including clear definitions of disease criteria, 
baseline demographics and disease characteristics, key 
clinical covariates, endpoints, standardized measure-
ments, timing and follow-up schedule of assessments, 
temporality of data, and access to patient-level data are 
necessary.  The panel members pointed out that within 
currently identified molecular subgroups, external con-
trol data may be less than optimal, jeopardizing their 
use.  It was recognized, however, that the external and 
relevant data can provide a benchmark and be used to 
generate hypotheses for future clinical trials.  In some 
cases, there may no longer be equipoise when the 
adult data are already available, and drug is shown to 
be effective in adults for a disease and/or biomarker 
defined disease that also occurs in children, or when 
there are data from off label use in children.  In general, 
patients appreciate that using external data can attenuate 
the chance of being randomized to control. Additionally, 
use of external control data may reduce the time and 
cost associated with conducting trials.  Minimizing bias 
is the key issue in considering external controls. Panel 
members from multiple regulatory agencies stressed the 
importance of data quality, evaluation in the presence 
of missing data, overall comparability, and prospective 
planning in consultation with regulatory bodies.  

The second section of the discussion focused on fre-
quentist randomized controlled clinical trials with inno-
vative designs. Presenting for this section, a National 
Cancer Institute (NCI) statistician proposed a strategy 
of relaxing the evidentiary threshold (Type I error rate) 
in randomized controlled clinical trials for pediatric 
cancers, highlighting the importance of randomization 
even in small populations with limited numbers of 
patients to participate in clinical trials.  The proposal 
was to consider feasibility-driven evidentiary standards, 
based on the time required to enroll patients (e.g., 4-5 
years may be appropriate for some newly diagnosed 
patient populations). Other innovative designs, such as 
use of master protocols with common control arms, can 
also be efficient ways of conducting the clinical trials. 
During the discussion, panel members agreed that with 
the Type I error controlled at one-sided 0.025 level, 
clinical trials- in particular those for rare pediatric can-
cers- could take 8-10 years or longer to complete, by 
which time the drug being investigated may no longer 
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be reflective of clinical practice.  When there is equi-
poise, small randomized clinical trials are feasible by 
increasing Type I error, or if the drugs are very effec-
tive.  A systematic decision approach may be needed, 
considering the risks of erroneous decisions, limited 
sample size, and the potential harm of approving a 
drug which may have limited or no efficacy. It was also 
noted that the meaningful benefit and risk assessments 
are different in adults and pediatric patients. Regulators 
pointed out that there should be flexibility in regulatory 
considerations depending on the clinical relevance, cur-
rently available treatment options, and the magnitude 
of treatment effect.  Some panelists opined that low-
powered randomized controlled trials are preferred, 
compared to uncontrolled single arm trials, with or 
without use of external control comparator data.

The third section of the discussion focused on use of 
Bayesian approaches. An industry statistician presented 
statistical considerations when using a Bayesian design 
and analysis, particularly understanding the uncertainty 
of extending or borrowing adult data in evaluating a 
treatment effect in pediatric patients.  Different Bayes-
ian methods such as use of power prior, commensurate 
prior, and meta-analytic-predictive approach are avail-
able.  Key considerations include what amount of infor-
mation can be borrowed from historical/adult/external 
data and how the operating characteristics (e.g., Type I 
error) can be controlled. Some of the challenges include 
concerns regarding simulated Type I error and degree 
of historical data included in the estimation of treat-
ment effect, recognizing that the amount borrowed 
is a random variable. In the panel discussion it was 
acknowledged that efficient trials to test and prioritize 
drugs are needed, particularly with the development 
of molecularly targeted therapies. Bayesian designs 

are attractive for this purpose.  However, there are 
uncertainties in applicability of adult data to children 
in some indications, including host characteristics 
and the disease characteristics, preferred outcomes, 
and feasibility of measurement. As an example, a 
Bayesian design (AGILE, https://clinicaltrials.gov/
ct2/show/NCT03970447) with three arms is currently 
being used in adults with glioblastoma multiforme. 
Acceptability of Bayesian designs that borrow adult/
historical data depends on the availability and quality 
of data, keeping in mind that children are not young 
adults with respect to metabolism, risk of toxicity, 
degree of tolerability, and other characteristics. Most 
often there is not sufficient prior data to initiate a 
Bayesian design. Whether Bayesian design is more 
appropriate than frequentist approach needs to be 
considered on a case-by-case basis. By borrowing 
data Type I error will increase and there is potential 
bias in selecting prior data. Timely discussions with 
regulators are also critical during the planning stage.

This forum provided an opportunity to have open 
scientific discussions among a diverse interdisci-
plinary stakeholder group – clinicians, statisticians, 
patient advocates, international regulators, and repre-
sentatives from pharmaceutical companies focusing 
on emerging statistical issues in cancer drug devel-
opment.  We plan to continue with similar multi-
disciplinary open forum discussions in the future on 
a variety of important topics that include statistical 
aspects in cancer drug development with various 
stakeholders participation.

Acknowledgement: Authors thank Joan Todd 
(FDA) and Rick Peterson (ASA) for supporting the 
forum, and Dr. Jun Yin (Mayo Clinic) for taking the 
meeting minutes. n
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Recently, the Journal of Biopharmaceutical Statistics 
(JBS) launched several special issues to create coherent 
and thematic set of statistical research that can serve 
as desktop reference for statisticians in the biopharma-
ceutical industry. The themes were carefully selected 
to reflect topics that are relevant to the emerging drug 
development landscape. The special issue may also 
come from recently concluded conference or sympo-
sium discussing thematic statistical research, emerg-
ing insights and opinions, and technological trends in 
the biopharmaceutical industry. Because they have a 
separate micro-editorial system, special issues leverage 
networks of key opinion leaders in the field for contrib-
uted manuscripts. They also are more expedient because 
the manuscripts do not go through the usual review 
process within the JBS system. Generally, the submit-
ting authors in a special issue create an ecosystem of 
reciprocal peer review. The current list of special issues 
is described below and include ways to get connected 
with the respective Guest Editors and whether they are 
still accepting manuscripts.

The first special issue launched is on Real World 
Evidence. This issue will feature innovative statistical 
methodologies and case studies that incorporate real-
world data (RWD) or RWE into medical product devel-
opment and regulatory decision-making, especially in 
areas of unmet medical need. For instance, in clinical 
trials for treatment of rare diseases or rare, geneti-
cally targeted subsets of common diseases, randomiza-
tion may not be feasible due to timeline, budget, and 
ethical concerns. Using external controls by borrowing 
information from RWD sources or historical trials can 
provide relevant evidence (i.e., RWE) to examine the 
treatment effect from single-arm trials. Further, innova-
tive adaptive designs enable trialists to utilize historical 
information from adults or children of other age groups 
in their planning for pediatric trials, provided that these 
reference data gives the basis and prior knowledge for 
extrapolation and inferences of the treatment effect. 
With the advances of technology and increasingly avail-

able RWD/RWE, there is more room for improvement 
in clinical trial designs and data analysis strategies. The 
guest editors in this issue are Junjing Lin (Takeda) and 
Helen Li (BMS) and came up with an issue that presents 
new ideas in this field, e.g., methodological papers such 
as entropy balancing (Yu et al. 2022), small-sized trial 
(Jiao et al. 2022), resampling approaches for estimating 
similarity measure (Li et al. 2022), sampling impor-
tance resampling method for borrowing (Sachdeva et 
al. 2022), propensity score based prior construction 
(Baron et al. 2022, Lu et al. 2021), deep learning (Zhan 
et al. 2021), combining survival data reconstruction 
technique with balancing weights (Getz et al. 2021), 
and intermediate outcome assisted borrowing (Liu et 
al. 2022). Additionally, a comprehensive review of pro-
pensity score methods under Bayesian framework was 
provided by Lin and Lin (2021), and extensive simula-
tion studies on different propensity score adjustment 
methods with various priors were conducted by Wang et 
al (2022); a case example of propensity score matching 
was illustrated by Yin et al. (2022). The issue should be 
published very soon. 

Another special issue that will be published subse-
quently is on the conference for the 2021 Duke Indus-
try Statistics Symposium (DISS) around the theme 
of “Emerging Clinical Initiatives in Pharmaceutical 
Development’’. The DISS is organized by the Depart-
ment of Biostatistics and Bioinformatics, Duke Uni-
versity School of Medicine. It was established 7 years 
ago to discuss challenging issues and recent advances 
related to the clinical development of drugs and devices 
and to promote research and collaboration among stat-
isticians from industry, academia, and regulatory agen-
cies. The Annual meeting happened on April 21-23, 
2021. The editors for this special issue are Herbert 
Pang (Genentech) and Nelson Lu (FDA) Some of the 
innovative research and clinical trial strategies that will 
be coming out of this issue are group sequential design 
for randomized clinical trials with adaptive information 
borrowing, propensity score-integrated approach to 

SPECIAL ISSUES IN THE JOURNAL OF 
BIOPHARMACEUTICAL STATISTICS
Margaret Gamalo (Pfizer; Editor-in-Chief JBS)
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survival analysis, patient-centric clinical development, 
randomization tests with multiple imputation for han-
dling missing data, adaptive external evidence incorpo-
ration in sequentially monitored clinical trials, and data 
management of future digital clinical trials. 

The Estimand issue features manuscripts relevant to 
the discussion of estimands and associated sensitivity 
analysis in a broad context, i.e., not just for efficacy 
but also for safety and benefit-risk evaluation, in pre-
marketing and post-marketing settings. ICH E9 (R1) 
states that “An estimand is a precise description of the 
treatment effect reflecting the clinical question posed by 
a given clinical trial objective”. In drug development, 
the estimand of interest might be different for patients, 
regulators and payors. Carefully understanding the esti-
mand of interest, the intercurrent events and the associ-
ated sensitivity analysis is therefore important. Due to 
this complexity, the statistical community needs to take 
a lead here in raising awareness and understanding of 
the impact of using different estimands on the interpre-
tation and decision-making processes in drug develop-
ment. In light of this, the Journal of Biopharmaceutical 
Statistics decided to dedicate a special issue to this topic 
even if there has been so much attention on estimands 
in that past 3 years. This issue is edited by Bill Wang 
(Merck) and Yodit Seifu (BMS) and it will contain top-
ics that also highlight other avenues where estimands 
have not been common, e.g., assessing adverse events 
in clinical trials, estimands in benefit-risk determina-
tions, estimands in vaccine trials, and in associated 
causal estimands for hybrid trials. The special issue is 
slated to be published toward the end of this year. 

Another issue that will be published toward the 
end of this year is on the conference proceeding for 
the 2021 International Chinese Statistical Association 
(ICSA) Applied Statistics Symposium which was held 
on September 12-15, 2021. The theme of this confer-
ence is Leading with Statistics and Innovation and 
had a primary audience among statisticians working 
in academia, government, and industry. The guest edi-
tors are Guoqing Diao (GWU), Judy Wang (GWU), 
Qing Pan (GWU), Lu Mao (Wisconsin) and Junjing 
Lin (Takeda). This issue will showcase research on 
robust estimates of regional treatment effects with ordi-
nal responses in multiregional RCTs, use of surrogate 
information to improve confirmatory platform trial with 
sample size re-estimation, indirect comparison with 

real-world data for the survival endpoint under non-
proportional hazards, Bayesian design for platform tri-
als with multiple endpoints, multi-stage dose expansion 
cohort design with Bayesian stopping rule. 

There are three special issues that are still accepting 
contributed manuscripts. The first one is on Statistics 
in Pediatric Drug Development. This issue discusses 
theory, applications, and practical considerations when 
using innovative statistical methodologies or clinical 
trial designs to support new therapies in pediatrics. It 
will include, but is not limited to, the following topics 

•	 extrapolation from adults to pediatrics, older age 
group to younger age group, etc. 

•	 practical statistical considerations in the analysis 
and reporting of results of pediatric clinical trials, 

•	 regulatory and statistical issues encountered in the 
design and analysis of pediatric clinical trials, 

•	 statistical methodologies in demonstrating dose-
exposure-response similarity, and 

•	 statistical methods for the assessment of both lim-
ited short- and long-term safety data 

•	 real world databases in pediatrics and their use in 
regulatory decision making (RWE) 

•	 Innovative design and analysis methods in pediat-
ric rare diseases 

•	 pediatric epidemiology considerations in evaluat-
ing drug efficacy, safety, and effectiveness 

The guest editors are Jingjing Ye (BeiGene), Rima 
Izem (Novartis), and YJ Choi (Genentech), and Mar-
garet Gamalo (Pfizer). There has been a lot of interest 
and numerous inquiries to this issue - a testament to the 
fact that the pediatric drug development space needs 
innovative and efficient statistical methodologies to close 
the lag time between labelling in adults and labelling in 
children. Contributors are encouraged to reach out to any 
of the guest editors for details on the submission. 

The next special issue is on Advances in statisti-
cal methods for the assessment and validation of 
clinician, patient-reported, digital health, and pho-
tography outcomes. JBS recognizes that the industry 
is undergoing a shift toward implementing a paradigm 
that accentuates the influence of key stakeholders like 
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patients, regulators, and payers. For example, clinical 
outcomes with patient-oriented clinical relevancy and 
impact on quality of life describing added dimensions 
of therapeutic value are taken into consideration when 
designing pivotal studies and evaluating the added ben-
efit of medicines. Increased emphasis has been given to 
the validity, reliability, responsiveness, and interpreta-
tion of patient-centric outcomes. As such, psychometric 
methodology is continually evolving with a directive 
for developing and refining more effective and mean-
ingful outcomes. 

In addition, the recent explosion of data collected 
from digital health technologies (DHTs), including 
wearable sensors and connected devices, have captured 
human behaviors such as physical activity, physiology, 
the environment and the broader functional status of the 
patients – which are advancing patient outcomes even 
further. DHTs are enabling the adoption of decentral-
ized clinical trials and engaging patients and collecting 
data in their communities and homes using remote tech-
nology more frequently and unobtrusively. This grow-
ing deployment of DHTs and other digital tools such as 
photography in pharmaceutical research, and the shift to 
more community-based trials, present new challenges 
to the derivation, statistical analysis and interpretation 
of clinical outcomes and digital health measures. 

For patient-centric and DHS data to support conclu-
sions on efficacy and safety profile of a therapeutic 
product, regulatory and reimbursement agencies require 
that these are well-defined, accurate, sound, and clini-
cally meaningful to patients in assessing their symp-
toms and how they feel and function. 

For this reason, the Journal of Biopharmaceutical 
Statistics invites authors to submit papers for a special 
issue on Advances in Statistical Methods for the Assess-
ment and Validation of Clinician, Patient-Reported, 
Digital Health, and Photography Outcomes. This spe-
cial issue will feature innovative statistical methodolo-
gies, novel study designs, instructive case studies, and 
practical conceptual considerations in the design, vali-
dation, analysis, interpretation, and reporting of clinical 
outcome, digital health, and photographic assessments. 
The guest editors are Joseph Cappelleri (Pfizer) 
Charmaine Demanuele (Pfizer), Jessica Roydhouse 
(U Tasmania), and Margaret Gamalo (Pfizer).

The last in the current list of special issues is 

on Insights into drug development in the Emerging 
Markets: Statistical considerations and opportunities. 
“Emerging markets” is a frontier representing an excep-
tional opportunity for the biopharmaceutical industry 
as governments in these regions are looking to reform 
public healthcare and grant easier access to innova-
tive medicine. Gaining insights into the current and 
anticipated future market trends is key to navigating 
any emerging market and proper integration of their 
needs into the global drug development. This includes 
gathering insights on local healthcare access, care paths, 
reimbursement, and funding (including for both original 
and generic products), health policies, market demands, 
the competitive landscape, and the data requirements 
for market access. There are many development issues 
including efficacy and dosing reflecting variations in a 
drug’s efficacy and toxicity among different geographi-
cal or ethnic populations; understanding physicians’ and 
patients’ preferences and responding to them effectively 
is important to success in emerging markets; fixed-dose 
combination medicines—drug therapies with two or 
more active pharmaceutical ingredients combined in 
one tablet—are preferred in many markets, but their 
popularity varies greatly from one to the other; pre-
requisite local presence differs in China, India, South 
Korea, and Taiwan for local product registrations. 

Due to the prominence of this topic, the special issue 
will feature statistical methodologies on topics that are 
relevant to the emerging markets, case studies, practical 
statistical considerations in designing trials that include 
emerging markets, issues encountered in the analysis 
of data supporting efficacy and safety in the emerging 
markets, statistical insights into post marketing activi-
ties and, in general, opportunities for further research 
and integration. For further questions regarding sub-
mission, please contact one of the Guest Editors: Yuki 
Ando (PMDA), Joseph Beyene (McMaster) Jie Chen 
(Overland), Margaret Gamalo (Pfizer), Mahesh Iyer 
(Parexel), Shoichi Ohwada (Daiichi-Sankyo), Hsiao-
Hui Tsou (National Health Research Institutes), Jun 
Wang (NMPA), and Ying Wu (Southern Medical U).  

There will be other special issues that will be 
announced in the near future. For those who are inter-
ested in becoming a guest editor, please send me an 
email at margaret.gamalo@pfizer.com and we can 
discuss potential topics and its feasibility. There are  

mailto:margaret.gamalo%40pfizer.com?subject=
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topics that does not even have to reflect current sta-
tistical developments but something that will benefit 
statisticians within the biopharmaceutical industry. The 
journal is also keen on partnerships with conferences 
and workshops so we can push innovative research and 
insights in the most expedient manner. JBS also encour-
ages uncommon foresight reflecting vision of where the 
industry is heading or where we as statisticians want it 
to be. 
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2022 ASA Biopharmaceutical Section  
Regulartory-Industry Statistics 
Workshop
The ASA Biopharmaceutical Section Regulatory-
Industry Statistics Workshop is sponsored by the ASA 
Biopharmaceutical Section in cooperation with the FDA 
Statistical Association. The conference lasts three days 
(September 20, 2022 – September 22, 2022), with invited 
sessions co-chaired by statisticians from industry, academia, 
and the FDA and short courses on related topics offered 
on the first day of the workshop. To find out more visit: 
https://ww2.amstat.org/meetings/biop/2022/ 
Conference Early Registration Opens: June 15, 2022 and 
Early Conference Registration Closes: August 17, 2022

2022 WNAR
The WNAR 2022 will be held virtually from June 10-15, 
2022. The meeting brings together researchers and 
practitioners from academia, industry and government, 
connected through a common interest in Biometry. Short 
Courses will be held from June 10-11, 2022 and invited 
Oral Sessions, Contributed Oral Sessions, Student Paper 
Sessions will be held from June 13-15, 2022. Conference 
registration is free for all student members of IBS.  To 
register visit here: https://wnarofibs.wildapricot.org/
WNAR2022

UPCOMING 
CONFERENCES

2022 Symposium on Data Science & 
Statistics (SDSS)
The ASA’s fifth annual SDSS will be held in Pittsburgh, PA 
from June 7–10, 2022. SDSS provides a unique opportunity 
for data scientists, computer scientists, and statisticians 
to come together and exchange ideas. To register visit 
here: https://ww2.amstat.org/meetings/sdss/2022/
registration.cfm. You may register online or using the PDF 
form. For the latter, the deadline is May 31, 2022.

JSM 2022
Joint Statistical Meetings (JSM) is the largest gathering of 
statisticians and data scientists held in North America. 
This year’s meeting will be held between August 6, 2022 
and August 11, 2022. It is also one of the broadest, with 
topics ranging from statistical applications to methodology 
and theory to the expanding boundaries of statistics, such 
as analytics and data science. JSM also offers a unique 
opportunity for statisticians in academia, industry, and 
government to exchange ideas and explore opportunities 
for collaboration. Early registration opens May 2, 2022 and 
closes on May 31, 2022. Regular registration is from June 
1, 2022 to June 30, 2022. Late registration starts on July 
1, 2022. To register visit here: https://ww2.amstat.org/
meetings/jsm/2022/registration.cfm n
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