

11/16/2020

Vision Quest Industries Inc. Mohamed Ouerghi Director of QA/RA 1390 Decision Street, Suite A Vista, California 92081

Re: K202490

Trade/Device Name: Avid CT2 Neuromuscular and Interferential Stimulation System

Regulation Number: 21 CFR 890.5850

Regulation Name: Powered Muscle Stimulator

Regulatory Class: Class II Product Code: IPF, LIH Dated: October 2, 2020 Received: October 5, 2020

## Dear Mohamed Ouerghi:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at <a href="https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm">https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm</a> identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's

requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see <a href="https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products">https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products</a>); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to <a href="https://www.fda.gov/medical-devices/medical-device-safety/medical-device-reporting-mdr-how-report-medical-device-problems">https://www.fda.gov/medical-device-problems</a>.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (<a href="https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance</a>) and CDRH Learn (<a href="https://www.fda.gov/training-and-continuing-education/cdrh-learn">https://www.fda.gov/training-and-continuing-education/cdrh-learn</a>). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (<a href="https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice</a>) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Xiaorui Tang, Ph.D.
Acting Assistant Director
DHT5B: Division of Neuromodulation
and Physical Medicine Devices
OHT5: Office of Neurological
and Physical Medicine Devices
Office of Product Evaluation and Quality
Center for Devices and Radiological Health

Enclosure

# DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

# **Indications for Use**

510(k) Number (if known)

Form Approved: OMB No. 0910-0120

Expiration Date: 06/30/2020 See PRA Statement below.

| K202490                                                                                                                                                                                                                                                                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Device Name                                                                                                                                                                                                                                                                                     |  |
| Avid CT2, Neuromuscular and Interferential Stimulation System, Model AV-CT20A                                                                                                                                                                                                                   |  |
| ndications for Use (Describe)                                                                                                                                                                                                                                                                   |  |
| nterferential Stimulation can be used in the following applications:  Symptomatic relief of post-surgical and/or post traumatic acute pain  Symptomatic relief of chronic intractable pain  Relaxation of muscle spasms  Maintain or increase range of motion  Increase local blood circulation |  |
| Neuromuscular Stimulation can be used in the following applications: Immediate postsurgical stimulation of calf muscles to prevent venous thrombosis Prevention or retardation of disuse atrophy Muscle-re-education                                                                            |  |
|                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                 |  |
| Type of Use (Select one or both, as applicable)                                                                                                                                                                                                                                                 |  |
| Prescription Use (Part 21 CFR 801 Subpart D)                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                 |  |
| CONTINUE ON A SEPARATE PAGE IF NEEDED.                                                                                                                                                                                                                                                          |  |

This section applies only to requirements of the Paperwork Reduction Act of 1995.

#### \*DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.\*

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

# 510(k) SUMMARY

510(k) Owner: Vision Quest Industries, Inc.

18011 Mitchell South, Irvine, CA, 92614

Contact: Mohamed Ouerghi

Director of QA/RA

Vision Quest Industries, Inc.

Phone 760-477-8201 Mobile 760-691-0168 Fax 760-727-5950

mouerghi@vqorthocare.com

Date Summary Prepared: 8/26/2020

Proprietary Name: Avid CT2 Neuromuscular and

Interferential Stimulation System,

Model AV-CT20A

Device Name and Classification: Neuromuscular and Interferential Stimulator, Class II,

21 CFR 882.5890, Product Code LIH and 21 CFR 890.5850, Product Code IPF

Predicate Devices: Surgi Stim/T.E.A.R. Tech by Vision Quest Industries, Inc.

K982388 and

Avid IF2 by Vision Quest Industries, Inc.K183692

Device Description: The Avid CT2, Model AV-CT20A is a combination therapy

device. Like its predicate Avid IF2, it is an Interferential Stimulator that produces a low electrical current that is

transmitted via lead wires to electrodes placed on the skin in the area predetermined by a clinician. Operating parameters can be adjusted throughout their range by a trained clinician but the end-user is limited to protocol selection and amplitude. The user interface consists of an LCD display and a keypad. The primary

difference between the two devices is the addition of useradjustable parameters that allow the existing interferential waveform to turn on and off within a small, preselected range to

provide necessary control for neuromuscular stimulation. This same method of gating the interferential on and off was used in

VQ's previous Surgi Stim stimulator.

Statement of Intended Use:

The Avid CT2 Neuromuscular and Interferential Stimulator, Model AV-CT20A, is indicated for use in the following applications:

Interferential Stimulation can be used in the following applications:

- Symptomatic relief of post-surgical and/or post traumatic acute pain
- Symptomatic relief of chronic intractable pain
- Relaxation of muscle spasms
- Maintain or increase range of motion
- Increase local blood circulation

Neuromuscular Stimulation can be used in the following applications:

- Immediate postsurgical stimulation of calf muscles to prevent venous thrombosis
- Prevention or retardation of disuse atrophy
- Muscle-re-education

## **Substantial Equivalence**

The Avid CT2 is a minor product enhancement to the Avid IF2. The primary difference between the two devices is the addition of user-adjustable parameters that allow the existing interferential waveform to turn on and off within a small, preselected range to provide necessary control for neuromuscular stimulation. This same method of gating the interferential on and off was used in VQ's previous Surgi Stim stimulator.

The Avid CT2 is equivalent to the Avid IF2 in all areas except these new user-adjustable parameters. For those parameters we are substantially equivalent to VQ's Surgi Stim stimulator.

#### **Indications for Use**

The Avid CT2 has the same indications for use as the Avid IF2 when these are used in IF mode. The Avid CT2 has the additional indications for use as allowed by neuromuscular stimulators.

#### **Device Functionality Equivalency**

- Like the predicate devices, the new device uses a microcontroller and LCD display to create a user friendly interface.
- The Avid IF2 and CT2 Stimulator is self-contained and includes two non-removable, rechargeable lithium ion batteries and an external power supply like the predicates.
- The Avid IF2 and CT2 Stimulator also contain a single output jack for both output channels, and a user interface consisting of a touchscreen LCD for improved user experience. The electrodes used for stimulation are the same used with the predicates. The lead wires are of proprietary design.
- The user is able to select presets on the device for the desired treatment and waveform output based upon prescriptions from the treating clinician. This is accomplished by displayed menu items and selection through the device interface. If desired, the user will be able to upload data stored on the device to Vision Quest Industries, Inc. (via wired interface or wirelessly). The device has the ability to move from preset to preset without patient interaction. This allows for easy use of physician prescribed protocols.

# **Device Characteristics and Output Specifications Equivalency**

The Avid IF2 only has the IF mode whereas the Avid CT2 has an additional neuromuscular mode. The second predicate device from Vision Quest Industries, Inc. has three modes of stimulation: High Volt Pulsed Current (HVPC), Interferential (IF), and a Neuromuscular Electrical Stimulation (NMES) mode.

The tables below compare the Avid CT2 to the two predicate devices.

| Device Characteristics Comparison                   |                                                                                         |                                                                                                 |                                                                                        |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 510(k) Number<br>Device Name<br><b>Manufacturer</b> | K982388<br>Surgi Stim /T.E.A.R. Tech<br>Vision Quest Industries,<br>Inc.                | K183692<br>Avid IF2<br>Vision Quest Industries,<br>Inc.                                         | Unassigned Avid CT2 Vision Quest Industries, Inc.                                      |
| Power Source                                        | 2 battery packs consisting of<br>4 'AA' alkaline cells each or<br>external power supply | 2 internal, non-removable,<br>rechargeable Lithium-ion<br>batteries or external power<br>supply | 2 internal, non-removable, rechargeable Lithium-ion batteries or external power supply |
| -Method of Line Current                             | Use of UL2601-1 approved                                                                | Use of UL2601-1 approved                                                                        | Use of UL2601-1 approved                                                               |
| Isolation                                           | external power supply                                                                   | external power supply                                                                           | external power supply                                                                  |
| -Patient Leakage Current                            |                                                                                         |                                                                                                 |                                                                                        |
| -Normal Condition<br>(μA)                           | <500                                                                                    | <500                                                                                            | <500                                                                                   |
| -Single fault condition (μA)                        | <500                                                                                    | <500                                                                                            | <500                                                                                   |
| No. of Output Modes                                 | 3 (IF, HVPC, NMES)                                                                      | 4 (IF)                                                                                          | 1 (IF, NMES)                                                                           |
| No. of Output Channels                              | IF Mode – 2<br>IF Mode – 1<br>NMES Mode- 2<br>NMES Mode - 1<br>HVPC Mode - 1            | IF Mode – 2<br>IF Mode – 1                                                                      | IF Mode – 2<br>IF Mode – 1<br>NMES Mode – 2<br>NMES Mode -1                            |
| Synchronous or<br>Alternating                       | IF – Synchronous<br>NMES – Synchronous<br>HVPC – Synchr. Or Alt.                        | IF – Synchronous                                                                                | IF – Synchronous<br>NMES – Synchronous                                                 |
| Method of Channel<br>Isolation                      | IF - Transformer coupled<br>NMES - Transformer<br>coupled<br>HVPC – N/A                 | IF – Transformer coupled                                                                        | IF – Transformer coupled<br>NMES - Transformer coupled                                 |
| Reciprocal                                          | IF - No<br>NMES - No<br>HVPC - Yes                                                      | IF – No                                                                                         | IF – No<br>NMES - No                                                                   |
| Regulated Current or<br>Regulated Voltage           | IF – Regulated voltage<br>NMES – Regulated voltage<br>HVPC – Regulated voltage          | IF – Regulated voltage                                                                          | IF – Regulated voltage<br>NMES– Regulated voltage                                      |
| Software/Firmware/<br>Microprocessor Control        | Microprocessor Control                                                                  | Microprocessor Control                                                                          | Microprocessor Control                                                                 |
| Software Provided                                   | Yes-Embedded Firmware                                                                   | Yes- Embedded Firmware                                                                          | Yes- Embedded Firmware                                                                 |
| Automatic Overload Trip                             |                                                                                         | Yes                                                                                             | Yes                                                                                    |
| Automatic No-Load Trip                              |                                                                                         | Yes (w/override option)                                                                         | Yes (w/override option)                                                                |
| Automatic Shut Off                                  | Yes                                                                                     | Yes                                                                                             | Yes                                                                                    |
| Patient Override Control                            | Yes                                                                                     | Yes                                                                                             | Yes                                                                                    |
| Indicator Display: Unit Functioning                 | Yes                                                                                     | Yes                                                                                             | Yes                                                                                    |
| On/Off Status                                       | Yes                                                                                     | Yes                                                                                             | Yes                                                                                    |
| Low Battery                                         | Yes                                                                                     | Yes                                                                                             | Yes                                                                                    |
| Voltage/Current                                     | 4.4V                                                                                    | 5.75V                                                                                           | 6.0V                                                                                   |
| Level Other                                         | LCD panel displays all                                                                  | LCD panel displays all                                                                          | LCD panel displays all                                                                 |
|                                                     | parameter settings.                                                                     | parameter settings.                                                                             | parameter settings.                                                                    |
| Constant Current                                    | IF- No                                                                                  | IF – No                                                                                         | IF – No                                                                                |

| Device Characteristics Comparison |                               |                               |                                 |
|-----------------------------------|-------------------------------|-------------------------------|---------------------------------|
| 510(k) Number                     | K982388                       | K183692                       | Unassigned                      |
| Device Name                       | Surgi Stim /T.E.A.R. Tech     | Avid IF2                      | Avid CT2                        |
| Manufacturer                      | Vision Quest Industries, Inc. | Vision Quest Industries, Inc. | Vision Quest Industries, Inc.   |
|                                   | NMES- No<br>HVPC- No          | NMES – No                     | NMES – No                       |
| Constant Voltage                  | IF- Yes                       | IF – Yes                      | IF – Yes                        |
|                                   | NMES- Yes                     |                               | NMES – Yes                      |
|                                   | HVPC- Yes                     |                               |                                 |
| Timer Range (minutes)             |                               |                               |                                 |
| Timer Settings                    | 10 min to 8 hours or          | 1 min to 24 hours or          | 1 min to 24 hours or continuous |
|                                   | continuous                    | continuous                    |                                 |
| Compliance with                   | Standards-AAMI/ANSI NS4       | NA                            | NA                              |
| voluntary Standards               | 1986                          |                               |                                 |
| Compliance with                   | Not Tested                    | Yes                           | Yes                             |
| EN60601-1 (Safety)                |                               |                               |                                 |
| Compliance with                   | Not Tested                    | Yes                           | Yes                             |
| IEC60601-1-2 (EMC)                |                               |                               |                                 |
| Compliance with 21                | NA                            | Yes                           | Yes                             |
| CFR 898 (Mandatory                |                               |                               |                                 |
| 05/09/02)                         |                               |                               |                                 |
| Weight (with batteries)           | 10.6 oz.                      | 6.8 oz.                       | 6.8 oz.                         |
| Dimensions (inches)               | 5.7 x 3.0 x 1.5               | 4.9 x 2.85 x 1.0              | 4.9 x 2.85 x 1.0                |
| Housing Materials and             | Molded ABS/PC plastic         | Molded ABS/PC plastic         | Molded ABS/PC plastic housing   |
| Construction                      | housing                       | housing                       |                                 |

## **Technical Explanations:**

The following device performance description/comparison to predicate devices are provided in accordance with the FDA document "Guidance Document for Powered Muscle Stimulator 510(k)s" Attachment II section 3, issued on June 9, 1999.

The above document also requires some explanations of calculations and modulations – these are provided below.

#### **Interference Pattern**

The interference pattern is created using two different frequencies. When the four electrode stimulation is selected two separate frequencies are provided on the two electrode pairs.

Interference occurs at the patient. When two electrodes stimulation is selected the two frequencies are combined inside the device and the interference pattern is delivered via the one electrode pair.

# **Current Density**

Current density is calculated using 2 different electrode sizes. A 2" round electrode equal to 20.27 sq. cm and a 2" x 1.25" rectangular electrode is equal to 16.13 sq. cm. This second electrode is used in the Limited mode output where amplitude is limited to 60% of full power.

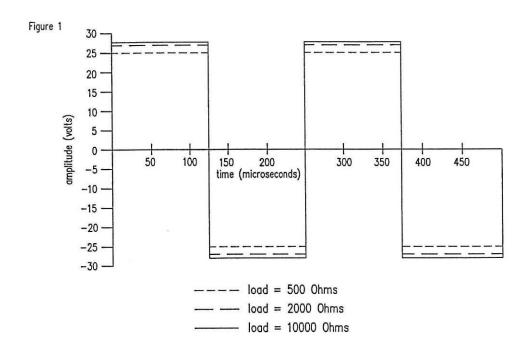
In the IF mode current density is the pulsed current over the electrode area. Each phase is 50% of the pulse thus the average is given as half.

#### **Power Density**

Power density is calculated in a similar manner to current density except that the peak phase power density is the max voltage times the max current.

#### **Maximum Phase Charge**

In the IF mode, charge (Q) can be calculated as follows:


(Peak voltage/load) X duration of pulse

## **Waveform Drawings Explanations**

The waveform drawings are provided in accordance with the "Guidance Document for Powered Muscle Stimulator 510(k) s".

#### **Waveform Drawing 1**

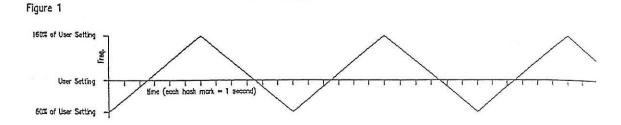
**Figure 1** This drawing shows the output waveform in the IF stimulation mode. Waveforms are given with purely resistive loads of 500 Ohms, 2000 Ohms, and 10,000 Ohms as required.

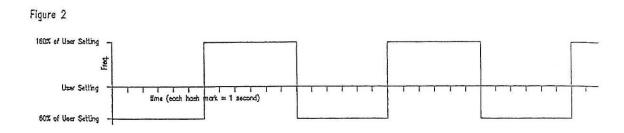


#### **Waveform Drawing 2**

**Figure 1** Modelity = IF Mode = 6/6

This drawing represents the frequency of a series of pulses when the device is in the IF mode with frequency modulation. The modulation parameters are six second ramping between the preset frequencies.


When the device is turned on pulses begin at 60% of the user selected frequency (4000Hz plus beat frequency) over a six second period, ramp up to 160% of the selected frequency. Over the next six second period the frequency ramps down to 60% of the setting again and the cycle starts over.


**Figure 2** Modality = IF Mode = 6|6

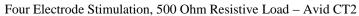
This drawing represent the frequency of a series of pulses when the device is in the IF mode with frequency modulation. The modulation parameters are six seconds, abruptly changing between the preset frequencies.

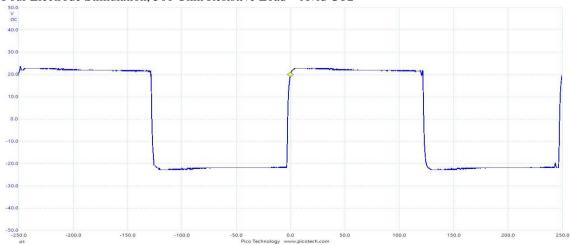
When the device is turned on pulses begin at 60% of the user selected frequency (4000Hz plus beat frequency) over a six second period, instantly change to 160% of the selected frequency for six seconds. The frequency then instantly decreases down to 60% of the setting again and the cycle starts over.

## Waveform Drawing 2

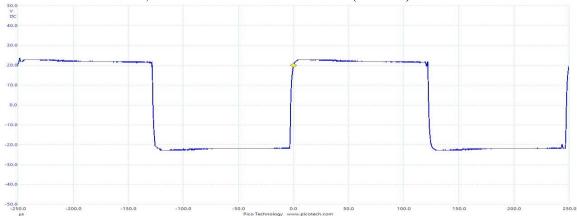




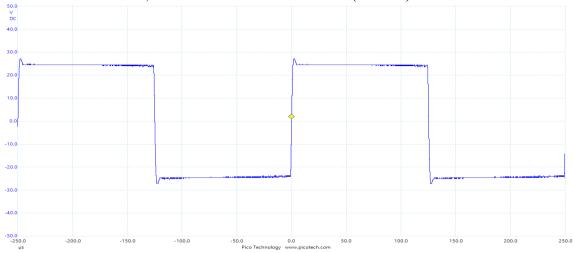

#### **Waveform Description**

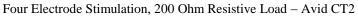

The waveforms from the Avid CT2 are the same as the predicate devices. A description of the waveforms is provided below in table format allowing comparison of measured values. For a visual comparison, scope traces of all three devices are also provided below.

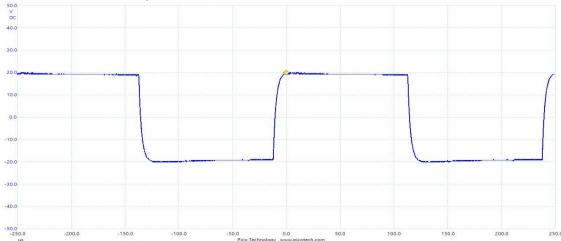
Note that the scope traces of all three devices show a slight improvement with each generation; cleaner wave forms and less voltage variation over load.


| Output Specifications Comparison |                                             |                                     |                              |
|----------------------------------|---------------------------------------------|-------------------------------------|------------------------------|
| 510(k) Number                    | K982388                                     | K183692                             | Unassigned                   |
| Device Name                      | Surgi Stim /T.E.A.R. Tech                   | Avid IF2                            | Avid CT2                     |
| Waveform                         | IF- Sym. Biphasic                           | IF – Sym. Biphasic                  | IF – Sym. Biphasic           |
| w avcioiiii                      | NMES–Sym. Biphasic                          | II – Sylli. Dipliasic               | NMES–Sym. Biphasic           |
|                                  | HVPC- Twin peak pulsed                      |                                     | TWILD Sym. Diphasic          |
|                                  | monophasic                                  |                                     |                              |
| Max. Output                      | IF Mode – 50mA ±10%                         | IF Mode – 50mA+/- 10%               | IF Mode – 50mA+/- 10%        |
| Current (500                     | NMES Mode- 50mA ±10%                        | II Wode John III 1070               | NMES Mode- 50mA ±10%         |
| Ohm Load)                        | HVPC66A ±10%                                |                                     | TWILD WING JOHN 1 11070      |
| Max. Output                      | IF- 25V ± 10%                               | IF – 25V +/- 10%                    | IF – 25V +/- 10%             |
| Voltage (500                     |                                             | $11^{\circ} - 23$ <b>v</b> +/- 1070 | NMES – 25V +/- 10%           |
| Ohm Load)                        | NMES- 25V ±10%                              |                                     | 1VIVIES = 25 V +/- 10/0      |
|                                  | HVPC 330V ±10%                              | IE Communication 1                  | IF Comment to the last       |
| Shape                            | IF- Square or rectangular                   | IF – Square or rectangular          | IF – Square or rectangular   |
|                                  | NMES- Square or rectangular                 |                                     | NMES – Square or rectangular |
| G .                              | HVPC- Dual exponential spike                | TE G                                | TE G                         |
| Symmetry                         | IF- Symmetrical                             | IF – Symmetrical                    | IF – Symmetrical             |
|                                  | NMES- Symmetrical                           |                                     | NMES – Symmetrical           |
| Not Dhoga Classes                | HVPC - No                                   | IE O.C                              | IE 0C                        |
| Net Phase Charge                 | IF - 0μC                                    | $IF - 0\mu C$                       | $IF - 0\mu C$                |
|                                  | NMES – 0μC                                  |                                     | NMES – 0μC                   |
| D. 1 Dl                          | HVPC- 8.25μC                                | IE 50 A                             | IE 50 A                      |
| Peak Phase                       | IF – 50mA                                   | IF – 50mA                           | IF – 50mA                    |
| Current (500                     | NMES – 50mA                                 |                                     | NMES – 50mA                  |
| Ohm)                             | HVPC – 0.66A                                | TE OFFI                             | TE 2511                      |
| Peak Phase                       | IF-25V                                      | IF – 25V                            | IF – 25V                     |
| Voltage (500                     | NMES – 25V                                  |                                     | NMES – 25V                   |
| Ohm)                             | HVPC-330V                                   | W. 2 G                              | TE 2.0                       |
| Phase Rise Time                  | IF - < 2μS                                  | IF - $< 2\mu$ S                     | IF $- < 2\mu S$              |
| (500 Ohm,                        | NMES- <2μS                                  |                                     | NMES - $< 2\mu$ S            |
| max.width)                       | HVPC- <1μS                                  | TE +2 C                             | IE 12 G                      |
| Phase Decay                      | IF- < 2µS                                   | IF- $< 2\mu S$                      | $IF-<2\mu S$                 |
| Time (500 Ohm,                   | NMES- <2μS                                  |                                     | NMES- $< 2\mu$ S             |
| max. width)                      | HVPC- 27μS                                  | W. 7. C. 125. C.                    | IE 7 C 125 C                 |
| Phase Duration                   | IF - 7μS – 125μS                            | IF - $7\mu$ S – $125\mu$ S          | IF - 7μS – 125μS             |
| Range (at 50%                    | NMES - 7μS – 125μS                          |                                     | NMES - $7\mu$ S – $125\mu$ S |
| max. width)                      | HVPC- 5μS                                   | TE 0.C                              | IF 0.5                       |
| Interphase<br>Interval           | IF – 0µS                                    | $IF - 0\mu S$                       | IF – OµS                     |
| Interval                         | NMES – 0μS                                  |                                     | NMES – $0\mu$ S              |
| Frequency Range                  | HVPC – 100 - 300μS<br>IF- 4000 Hz – 4240 Hz | IF- 4000 Hz – 4240 Hz               | IF- 4000 Hz – 4240 Hz        |
| riequency Kange                  | NMES – 4000 Hz – 4240 Hz                    | IF- 4000 HZ – 4240 HZ               | NMES- 4000 Hz – 4240 Hz      |
|                                  | HVPC – 1-200 Hz                             |                                     | NNES- 4000 HZ - 4240 HZ      |
|                                  |                                             |                                     |                              |
| Interference                     | IF – Yes                                    | IF – Yes                            | IF – Yes                     |
| Pattern                          | NMES - Yes                                  |                                     | NMES – Yes                   |
|                                  | HVPC – No                                   |                                     | 777 1 2 10 77                |
| Beat                             | IF- 1-240 Hz                                | IF- 1-240 Hz                        | IF- 1-240 Hz                 |
| Frequencies                      | NMES – 1-240Hz                              |                                     | NMES- 1-240 Hz               |
| D (35.1                          | HVPC – NA                                   | N.                                  | NY.                          |
| Burst Mode                       | No                                          | No                                  | No                           |
| Current Density                  | 75. 0.47. 4                                 | W 2.47                              | TF 2.47                      |
| Peak (per sq.                    | IF – 2.47mA                                 | IF – 2.47mA                         | IF – 2.47mA                  |
| cm) (500 Ohm                     | NMES – 2.47mA                               |                                     | NMES – 2.47mA                |
| Load)                            | HVPC – 65.1mA                               |                                     |                              |
|                                  | HF 1 225                                    | W. 1005                             | TF 1.005                     |
| Ave. (per sq.                    | IF – 1.235mA                                | IF – 1.235mA                        | IF – 1.235mA                 |
| (500 Ohm                         | NMES – 1.235mA                              |                                     | NMES – 1.235mA               |
| (500 Ohm                         | HVPC – 0.13mA                               |                                     |                              |
| Load)                            |                                             |                                     |                              |

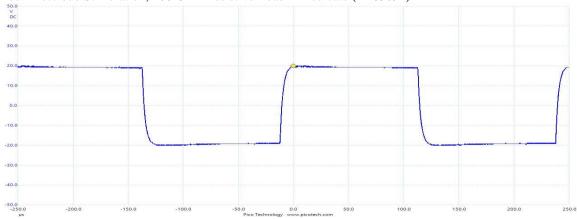
| Output Specifications Comparison |                           |              |                |
|----------------------------------|---------------------------|--------------|----------------|
| 510(k) Number                    | K982388                   | K183692      | Unassigned     |
| Device Name                      | Surgi Stim /T.E.A.R. Tech | Avid IF2     | Avid CT2       |
| Power Density                    |                           |              |                |
| Peak (per sq.                    | IF – 61.7mW               | IF – 61.7mW  | IF – 61.7mW    |
| cm)                              | NMES – 61.7mW             |              | NMES - 61.7mW  |
| (500 Ohm                         | HVPC – 10.7 W             |              |                |
| Load)                            |                           |              |                |
| Ave. (per sq.                    | IF – 30.85mW              | IF – 30.85mW | IF – 30.85mW   |
| cm)                              | NMES – 30.85mW            |              | NMES - 30.85mW |
| (500 Ohm                         | HVPC – 21.4 mW            |              |                |
| Load)                            |                           |              |                |
| Max. Phase                       |                           |              |                |
| Charge                           |                           |              |                |
| 500 Ohms                         | IF- 6.25μC                | IF- 6.25μC   | IF- 6.25μC     |
|                                  | NMES $-6.25 \mu\text{C}$  |              | NMES- 6.25μC   |
|                                  | HVPC- 9.9 μC              |              |                |
| 2K Ohms                          | IF- 1.56 μC               | IF- 1.56 μC  | IF- 1.56 μC    |
|                                  | NMES – 1.56 μC            |              | NMES- 1.56 μC  |
|                                  | HVPC- 1.65 μC             |              |                |
| 10K Ohms                         | IF- 0.33 μC               | IF- 0.33 μC  | IF- 0.33 μC    |
|                                  | NMES $-0.33 \mu C$        |              | NMES- 0.33 μC  |
|                                  | HVPC- 0.33 μC             |              |                |



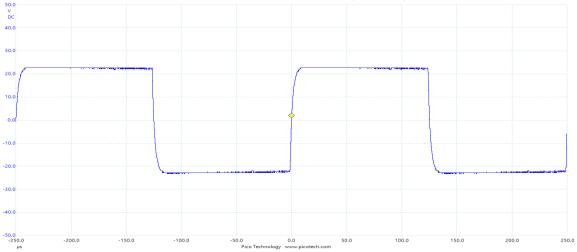



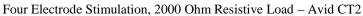


# Four Electrode Stimulation, 500 Ohm Resistive Load – Predicate (K183692)

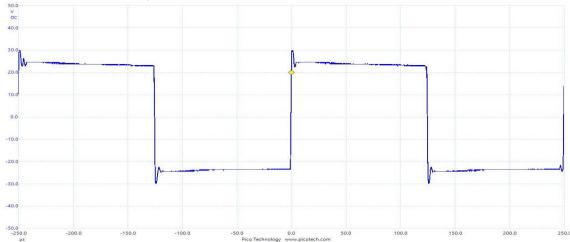



# Four Electrode Stimulation, 500 Ohm Resistive Load – Predicate (K982388)

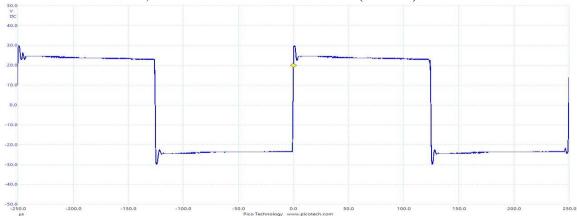




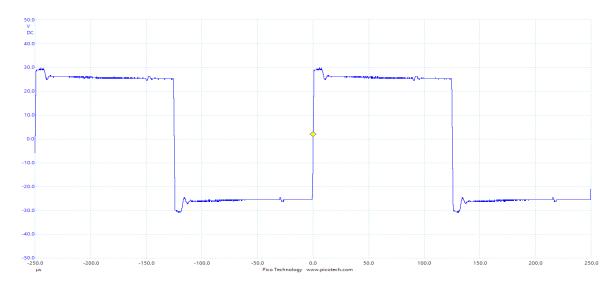



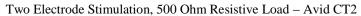


# Four Electrode Stimulation, 200 Ohm Resistive Load – Predicate (K183692)




# Four Electrode Stimulation, 200 Ohm Resistive Load – Predicate (K982388)

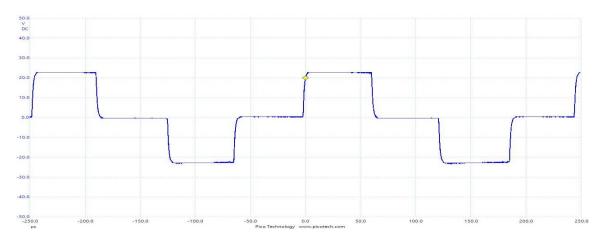




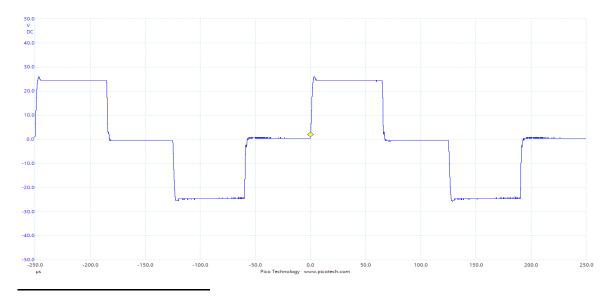




# Four Electrode Stimulation, 2000 Ohm Resistive Load – Predicate (K183692)




# Four Electrode Stimulation, 2000 Ohm Resistive Load – Predicate (K982388)








# Two Electrode Stimulation, 500 Ohm Resistive Load – Predicate (K183692)



#### Two Electrode Stimulation, 500 Ohm Resistive Load – Predicate (K982388)



# **Substantial Equivalence Summary**

Based on the data contained in the previous two tables and comparison waveforms we conclude that the Avid CT2 is equivalent to its predicates.