

June 2, 2022

ZOLL Circulation, Inc. Elizabeth Haines Senior Director, Regulatory Affairs 2000 Ringwood Avenue San Jose, California 95131

Re: K220008

Trade/Device Name: Solex 7 Intravascular Heat Exchange Catheter, Cool Line Intravascular Heat

Exchange Catheter, ICY Intravascular Heat Exchange Catheter, Quattro

Intravascular Heat Exchange Catheter, Thermogard HQ Start-Up Kit, Thermogard

HQ Start-Up Kit EX, Thermogard HQ Console,

Regulation Number: 21 CFR 870.5900

Regulation Name: Thermal Regulating System

Regulatory Class: Class II

Product Code: NCX Dated: April 29, 2022 Received: May 2, 2022

### Dear Elizabeth Haines:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act and the limitations described below. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

The OHT5: Office of Neurological and Physical Medicine Devices has determined that there is a reasonable likelihood that the Solex 7 Intravascular Heat Exchange Catheter will be used for an intended use not identified in the proposed labeling and that such use could cause harm. Therefore, in accordance with Section 513(i)(1)(E) of the Act, the following limitation must appear in the box warning immediately following the indications for use statement of the device's labeling:

## Warning - Fever Reduction

The safety of this device has not been demonstrated for fever reduction in patients presenting with subarachnoid hemorrhage or primary traumatic brain injury. A randomized controlled trial of endovascular cooling in patients with fever associated with subarachnoid hemorrhage and primary traumatic brain injury has shown increased mortality as compared to patients receiving standard of care.

The OHT5: Office of Neurological and Physical Medicine Devices has determined that there is a reasonable likelihood that the Cool Line Intravascular Heat Exchange Catheter will be used for an intended use not identified in the proposed labeling and that such use could cause harm. Therefore, in accordance with Section 513(i)(1)(E) of the Act, the following limitation must appear in the box warning immediately following the indications for use statement of the device's labeling:

## Warning – Fever Reduction

The safety of this device has not been demonstrated for fever reduction in patients presenting with subarachnoid hemorrhage or primary traumatic brain injury. The safety and effectiveness of this device was examined in a randomized controlled trial of 296 patients. The mortality results reported in this trial, for the four patient cohorts enrolled, are presented in the table below (CI – cerebral infarction, ICH – intracerebral hemorrhage, PTBI – primary traumatic brain injury, SAH – subarachnoid hemorrhage).

|      | Cool Line |    |      | Cor |    |      |      |
|------|-----------|----|------|-----|----|------|------|
|      | n         | N  | %    | n   | N  | %    | p*   |
| CI   | 3         | 16 | 18.8 | 3   | 14 | 21.4 | 0.74 |
| ICH  | 8         | 33 | 24.2 | 7   | 27 | 25.9 | 1.00 |
| PTBI | 10        | 44 | 22.7 | 4   | 38 | 10.5 | 0.24 |
| SAH  | 13        | 61 | 21.3 | 7   | 63 | 11.1 | 0.15 |

<sup>\*</sup>Fischer's exact test

For more details on the clinical trial results, refer to the Physician's Manual – "Normothermia for the Neurocritically III stroke patient."

Please note that the above labeling limitations are required by Section 513(i)(1)(E) of the Act. Therefore, a new 510(k) is required before these limitations are modified in any way or removed from the device's labeling.

The FDA finding of substantial equivalence of your device to a legally marketed predicate device results in a classification for your device and permits your device to proceed to the market. This letter will allow you to begin marketing your device as described in your Section 510(k) premarket notification if the limitation statement described above is added to your labeling.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see <a href="https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products">https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products</a>); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to <a href="https://www.fda.gov/medical-devices/medical-device-safety/medical-device-reporting-mdr-how-report-medical-device-problems">https://www.fda.gov/medical-device-problems</a>.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (<a href="https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance</a>) and CDRH Learn (<a href="https://www.fda.gov/training-and-continuing-education/cdrh-learn">https://www.fda.gov/training-and-continuing-education/cdrh-learn</a>). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (<a href="https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice</a>) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Christopher M. Loftus M.D.
Acting Director
OHT5: Office of Neurological
and Physical Medicine Devices
Office of Product Evaluation and Quality
Center for Devices and Radiological Health

Enclosure

## DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

## **Indications for Use**

Form Approved: OMB No. 0910-0120

Expiration Date: 06/30/2023 See PRA Statement below.

510(k) Number (if known) K220008

#### Device Name

Solex 7 Intravascular Heat Exchange Catheter, Cool Line Intravascular Heat Exchange Catheter, ICY Intravascular Heat Exchange Catheter, Quattro Intravascular Heat Exchange Catheter, Thermogard HQ Start-Up Kit, Thermogard HQ Start-Up Kit EX, Thermogard HQ Console

#### Indications for Use (Describe)

The Solex 7 Intravascular Heat Exchange Catheter connected to the Coolgard/Thermogard Thermal Regulation System is indicated for use:

- In cardiac surgery patients to achieve and/or maintain normothermia during surgery and recovery/intensive care. (Maximum use period: 4 days)
- To induce, maintain and reverse mild hypothermia in neurosurgery patients in surgery and recovery/intensive care. (Maximum use period: 4 days)
- In fever reduction, as an adjunct to other antipyretic therapy, in adult patients with cerebral infarction and intracerebral hemorrhage who require access to the central venous circulation and who are intubated and sedated. (Maximum use period: 7 days)

## Warning - Fever Reduction

The safety of this device has not been demonstrated for fever reduction in patients presenting with subarachnoid hemorrhage or primary traumatic brain injury. A randomized controlled trial of endovascular cooling in patients with fever associated with subarachnoid hemorrhage and primary traumatic brain injury has shown increased mortality as compared to patients receiving standard of care.

The Cool Line Catheter Model CL-2295A, when used with the ZOLL Thermal Regulation System, is indicated for use in fever reduction, as an adjunct to antipyretic therapy, in adult patients with cerebral infarction and intracerebral hemorrhage who require access to the central venous circulation and who are intubated and sedated.

#### WARNING - Fever Reduction

The safety of this device has not been demonstrated for fever reduction in patients presenting with subarachnoid hemorrhage or primary traumatic brain injury. The safety and effectiveness of this device was examined in a randomized controlled trial of 296 patients. The mortality results reported in this trial, for the four patient cohorts enrolled, are presented in the table below (CI – cerebral infarction, ICH – intracerebral hemorrhage, PTBI – primary traumatic brain injury, SAH – subarachnoid hemorrhage).

|      | *  | Cool Lir | ne   | Control |    |      |      |
|------|----|----------|------|---------|----|------|------|
|      | n  | N        | %    | n       | N  | %    | p*   |
| CI   | 3  | 16       | 18.8 | 3       | 14 | 21.4 | 0.74 |
| ICH  | 8  | 33       | 24.2 | 7       | 27 | 25.9 | 1.00 |
| PTBI | 10 | 44       | 22.7 | 4       | 38 | 10.5 | 0.24 |
| SAH  | 13 | 61       | 21.3 | 7       | 63 | 11.1 | 0.15 |

<sup>\*</sup> Fischer's exact test

For more details on the clinical trial results, refer to the Physician's Manual – "Normothermia for the Neuro- critically Ill stroke patient".

The ZOLL ICY Intravascular Heat Exchange Catheter Model IC-3893A, connected to the ZOLL Coolgard/Thermogard Thermal Regulation System, is indicated for use:

- In cardiac surgery adult patients to achieve and/or maintain normothermia during surgery and recovery/intensive care, and
- To induce, maintain and reverse mild hypothermia in neurosurgery adult patients in surgery and recovery/intensive care.

The ZOLL Quattro Catheter Model IC-4593, connected to a ZOLL Thermal Regulation System, is indicated for use:

- In cardiac surgery adult patients to achieve and/or maintain normothermia during surgery and recovery/intensive care, and
- To induce, maintain and reverse mild hypothermia in neurosurgery adult patients in surgery and recovery/intensive care.

| Type of Use (Select one or both, as applicable) |                                             |  |  |  |
|-------------------------------------------------|---------------------------------------------|--|--|--|
| Prescription Use (Part 21 CFR 801 Subpart D)    | Over-The-Counter Use (21 CFR 801 Subpart C) |  |  |  |
|                                                 |                                             |  |  |  |

#### CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

#### \*DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.\*

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

## K220008 510(k) SUMMARY

Date Prepared: May 31, 2022

Submitter: ZOLL Circulation, Inc. Address: 2000 Ringwood Avenue

San Jose, CA 95131

Phone: 978-421-9291 Fax: 408-541-1030

Contact Person: Elizabeth Haines, Senior Director Regulatory Affairs Submission Author: Melissa Paffenroth, Manager Regulatory Affairs

Trade Name: Solex 7 Intravascular Heat Exchange Catheter

Cool Line Intravascular Heat Exchange Catheter ICY Intravascular Heat Exchange Catheter Quattro Intravascular Heat Exchange Catheter

Thermogard HQ<sup>TM</sup> Start-Up Kit Thermogard HQ<sup>TM</sup> Start-Up Kit EX

Thermogard HQ<sup>TM</sup> Console

Common Name: Central Venous Catheter (short term) and Thermal Regulating System

Classification/Name: Class II; System, Hypothermia, Intravenous, Cooling Regulation: 21 CFR 870.5900, Thermal Regulating System

Product Code: NCX

Predicate Device: K213031, Solex 7<sup>®</sup> Intravascular Heat Exchange Catheter, Cool

Line<sup>®</sup> Intravascular Heat Exchange Catheter, ICY<sup>®</sup> Intravascular Heat Exchange Catheter, Quattro<sup>®</sup> Intravascular Heat Exchange Catheter, Start-Up Kit, Coolgard 3000<sup>®</sup> Console, Thermogard XP<sup>®</sup>

Console

## I. DEVICE DESCRIPTION

The ZOLL® Intravascular Temperature Management (IVTM<sup>TM</sup>) System is comprised of an external heat exchange console (Thermogard HQ<sup>TM</sup> console) and intravascular heat exchange catheter connected via a sterile heat exchanger and tubing circuit (Thermogard HQ<sup>TM</sup> Start-Up Kit or Thermogard HQ<sup>TM</sup> Start-Up Kit EX). These components together comprise a patient temperature regulation apparatus employing feedback control. The subject devices of this submission are the Thermogard HQ<sup>TM</sup> Console, Thermogard HQ<sup>TM</sup> Start-Up Kit and Thermogard HQ<sup>TM</sup> Start-Up Kit EX. The Solex 7 Intravascular Heat Exchange Catheter, Cool Line Intravascular Heat Exchange Catheter, ICY Intravascular Heat Exchange Catheter, and Quattro Intravascular Heat Exchange Catheter are also included as part of the system but are unchanged compared to the predicate device.

#### II. INDICATIONS FOR USE

The Thermogard HQ<sup>TM</sup> Console and Thermogard HQ<sup>TM</sup> Start-Up Kit (EX) are not intended to be used separately from the heat exchange catheters and do not have specific indications for use. The indications for use of the Solex 7<sup>®</sup> Intravascular Heat Exchange Catheter, Cool Line<sup>®</sup> Intravascular Heat Exchange Catheter, ICY<sup>®</sup> Intravascular Heat Exchange Catheter, Quattro<sup>®</sup> Intravascular Heat Exchange Catheter are identical to the indications for use of the predicate device.

#### Indications for Use

## Solex 7<sup>®</sup> Intravascular Heat Exchange Catheter

The Solex 7<sup>®</sup> Intravascular Heat Exchange Catheter connected to the Coolgard/Thermogard Thermal Regulation System is indicated for use:

- In cardiac surgery patients to achieve and/or maintain normothermia during surgery and recovery/intensive care. (Maximum use period: 4 days)
- To induce, maintain and reverse mild hypothermia in neurosurgery patients in surgery and recovery/intensive care. (Maximum use period: 4 days)
- In fever reduction, as an adjunct to other antipyretic therapy, in adult patients with cerebral infarction and intracerebral hemorrhage who require access to the central venous circulation and who are intubated and sedated. (Maximum use period: 7 days)

#### **Warning - Fever Reduction**

The safety of this device has not been demonstrated for fever reduction in patients presenting with subarachnoid hemorrhage or primary traumatic brain injury. A randomized controlled trial of endovascular cooling in patients with fever associated with subarachnoid hemorrhage and primary traumatic brain injury has shown increased mortality as compared to patients receiving standard of care.

## Cool Line® Intravascular Heat Exchange Catheter

The Cool Line® Catheter Model CL-2295A, when used with the ZOLL® Thermal Regulation System, is indicated for use in fever reduction, as an adjunct to antipyretic therapy, in adult patients with cerebral infarction and intracerebral hemorrhage who require access to the central venous circulation and who are intubated and sedated.

## Warning - Fever Reduction

The safety of this device has not been demonstrated for fever reduction in patients presenting with subarachnoid hemorrhage or primary traumatic brain injury. The safety and effectiveness of this device was examined in a randomized controlled trial of 296 patients. The mortality results reported in this trial, for the four patient cohorts enrolled, are presented in the table below (CI – cerebral infarction, ICH – intracerebral hemorrhage, PTBI – primary traumatic brain injury, SAH – subarachnoid hemorrhage).

|      | Cool Line® |    |      | Control |    |      |      |
|------|------------|----|------|---------|----|------|------|
|      | n          | N  | %    | n       | N  | %    | p*   |
| CI   | 3          | 16 | 18.8 | 3       | 14 | 21.4 | 0.74 |
| ICH  | 8          | 33 | 24.2 | 7       | 27 | 25.9 | 1.00 |
| PTBI | 10         | 44 | 22.7 | 4       | 38 | 10.5 | 0.24 |
| SAH  | 13         | 61 | 21.3 | 7       | 63 | 11.1 | 0.15 |

<sup>\*</sup>Fischer's exact test

For more details on the clinical trial results, refer to the Physician's Manual – "Normothermia for the Neuro-critically Ill stroke patient."

## ICY® Intravascular Heat Exchange Catheter

The ZOLL® ICY® Intravascular Heat Exchange Catheter Model IC-3893A, connected to the ZOLL® Coolgard/Thermogard Thermal Regulation System, is indicated for use:

- In cardiac surgery adult patients to achieve and/or maintain normothermia during surgery and recovery/intensive care, and
- To induce, maintain and reverse mild hypothermia in neurosurgery adult patients in surgery and recovery/intensive care.

## Quattro<sup>®</sup> Intravascular Heat Exchange Catheter

The ZOLL® Quattro® Catheter Model IC-4593, connected to a ZOLL Thermal Regulation System, is indicated for use:

- In cardiac surgery adult patients to achieve and/or maintain normothermia during surgery and recovery/intensive care, and
- To induce, maintain and reverse mild hypothermia in neurosurgery adult patients in surgery and recovery/intensive care.

# III. TECHNOLOGICAL CHARACTERISTICS OF THE SUBJECT DEVICES COMPARED TO THE PREDICATE DEVICES

There were no changes to the intravascular heat exchange catheters as shown through comparison of the technological characteristics in Table 1 and 2. The comparison with the predicate Start-Up Kit and Start-Up Kit EX shows the technological characteristics of the proposed Thermogard HQ<sup>TM</sup> Start-Up Kit and Thermogard HQ<sup>TM</sup> Start-Up Kit EX to be substantially equivalent in Table 3. The comparison with the predicate Thermogard XP<sup>®</sup> Console shows the technological characteristics of the proposed Thermogard HQ<sup>TM</sup> Console to be substantially equivalent in Table 4.

**Table 1: Comparison of Subject and Predicate Catheters** 

| Feature                           | PREDICATE DEVICES                                                                                                                         | SUBJECT DEVICES                                                                                                                           |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Device Name                       | Quattro® Intravascular Heat Exchange Catheter, Cool Line® Intravascular Heat Exchange Catheter, ICY® Intravascular Heat Exchange Catheter | Quattro® Intravascular Heat Exchange Catheter, Cool Line® Intravascular Heat Exchange Catheter, ICY® Intravascular Heat Exchange Catheter |
| 510(k) Number                     | K213031                                                                                                                                   | K220008                                                                                                                                   |
| Class                             | II                                                                                                                                        | Same                                                                                                                                      |
| Classification/Regulation<br>Name | System, Hypothermia, Intravenous, Cooling/Thermal Regulating System                                                                       | Same                                                                                                                                      |
| Regulation Number                 | 21 CFR 870.5900                                                                                                                           | Same                                                                                                                                      |
| Product Code                      | NCX                                                                                                                                       | Same                                                                                                                                      |

| Feature                                   | PREDICATE DEVICES                                                                                                   | SUBJECT DEVICES |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------|
| Insertion Site                            | Cool Line® – Femoral vein, jugular vein, subclavian vein ICY® – Femoral vein Quattro® – Femoral vein                | Same            |
| Heparin Coating                           | SurModics Applause<br>Heparin Coating                                                                               | Same            |
| Luer Designs                              | Inflow and outflow Luers: ZOLL® Custom Luers Infusion Luers: ZOLL® Standard Luers Vent Caps: ZOLL® Custom Vent Caps | Same            |
| Luer Materials                            | Base material is polyurethane (for all Luers except for vent caps)                                                  | Same            |
|                                           | Inflow and outflow Luers: Polyurethane: Tecoplast OP-770-164 Orange                                                 |                 |
|                                           | Distal infusion Luer: Polyurethane: Tecoplast OP-770-477Brown (pad printing white ink)                              |                 |
|                                           | Medial Infusion Luer: Polyurethane: Tecoplast OP-770-White                                                          |                 |
|                                           | Proximal infusion Luer: Polyurethane: Tecoplast OP-770-541 Dark Blue (pad printing white ink)                       |                 |
|                                           | Male vent cap: ABS: Ineos<br>Lustran (P/N 348-012002)                                                               |                 |
|                                           | Female vent cap: ABS: Ineos<br>Lustran (P/N 348-012002)                                                             |                 |
| Catheter Working Length (tip to manifold) | Cool Line® – 22 cm<br>ICY® – 38 cm<br>Quattro® – 45 cm                                                              | Same            |
| Shaft Diameter                            | 9.3 Fr                                                                                                              | Same            |
| Number of Lumens                          | 5 lumens: 2 infusion, 1 guidewire (plus infusion), 1 inflow, 1 outflow                                              | Same            |
| Guidewire Compatibility                   | 0.032 in.                                                                                                           | Same            |

| Feature                                                          | PREDICATE DEVICES                                                                                   | SUBJECT DEVICES |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------|
| Heat Exchange Balloons                                           | Cool Line® – 2 (straight/coaxial)<br>ICY® – 3 (straight/coaxial)<br>Quattro® – 4 (straight/coaxial) | Same            |
| Flow Rate (by lumen)                                             | Cool Line® Distal – 2100 mL/hr Medial – 1200 mL/hr Proximal – 1400 mL/hr                            | Same            |
|                                                                  | ICY® Distal – 1700 mL/hr Medial – 900 mL/hr Proximal – 1200 mL/hr                                   |                 |
|                                                                  | Quattro® Distal – 1300 mL/hr Medial – 800 mL/hr Proximal – 1100 mL/hr                               |                 |
| Approx. Inflated Balloon OD (Cross-sectional Area)               | Cool Line®: ~5 mm (20 mm²)<br>ICY® and Quattro®: ~8 mm<br>(50 mm²)                                  | Same            |
| Heat Exchange Power                                              | Cool Line® – 65 Watts nominal ICY® – 140 Watts nominal Quattro® – 190 Watts nominal                 | Same            |
| Materials:<br>Shaft                                              | Polyurethane PET and Polyurethane (ICY® and Quattro®)                                               | Same            |
| Balloon Sterilization Method and Sterility Assurance Level (SAL) | Polyurethane (Cool Line®) Ethylene Oxide (EO) and SAL 10 <sup>-6</sup>                              | Same            |

Table 2: Comparison of Subject Solex 7® Intravascular Heat Exchange Catheter with Predicate

| Feature                   | PREDICATE DEVICE                   | SUBJECT DEVICE                     |
|---------------------------|------------------------------------|------------------------------------|
| Device Name               | Solex 7 <sup>®</sup> Intravascular | Solex 7 <sup>®</sup> Intravascular |
|                           | Heat Exchange Catheter             | Heat Exchange Catheter             |
| 510(k) Number             | K213031                            | K220008                            |
| Class                     | II                                 | Same                               |
| Classification/Regulation | System, Hypothermia,               | Same                               |
| Name                      | Intravenous, Cooling/Thermal       |                                    |
|                           | Regulating System                  |                                    |
| Regulation Number         | 21 CFR 870.5900                    | Same                               |
| Product Code              | NCX                                | Same                               |
| Heparin Coating           | SurModics Applause Heparin         | Same                               |
|                           | Coating                            |                                    |

| Feature                                                | PREDICATE DEVICE                                             | SUBJECT DEVICE |
|--------------------------------------------------------|--------------------------------------------------------------|----------------|
| Luer Designs                                           | Inflow and Outflow Luers:                                    | Same           |
|                                                        | ZOLL® Custom Luers                                           |                |
|                                                        | Infusion Luers: Standard Luers                               |                |
|                                                        | Vent Caps: ZOLL® Custom Vent                                 |                |
| T M . 1                                                | Caps                                                         | S.             |
| Luer Materials                                         | Luer Base: Polyurethane (for all Luers except for vent caps) | Same           |
|                                                        | Inflow and outflow Luers: Polyurethane: Tecoplast Orange     |                |
|                                                        | Distal infusion Luer:                                        |                |
|                                                        | Polyurethane: Tecoplast Brown                                |                |
|                                                        | (pad printing white ink)                                     |                |
|                                                        | Medial infusion Luer:                                        |                |
|                                                        | Polyurethane: Tecoplast White                                |                |
|                                                        | Proximal infusion Luer:                                      |                |
|                                                        | Polyurethane: Tecoplast Dark                                 |                |
|                                                        | Blue (pad printing white ink)                                |                |
|                                                        | Male vent cap: ABS                                           |                |
|                                                        | Female vent cap: ABS                                         | ~              |
| Catheter Working Length (tip to manifold)              | 20 cm                                                        | Same           |
| Shaft Diameter                                         | 9.3 Fr                                                       | Same           |
| Number of Lumens                                       | 5 lumens:<br>2 infusion                                      | Same           |
|                                                        | 1 guidewire (also infusion)                                  |                |
|                                                        | 1 inflow                                                     |                |
|                                                        | 1 outflow                                                    |                |
| Guidewire Compatibility                                | 0.032 in.                                                    | Same           |
| Flow Rate (by lumen)                                   | Distal – 1900 mL/hr                                          | Same           |
|                                                        | Medial – 1300 L/hr                                           |                |
|                                                        | Proximal – 1300 mL/hr                                        |                |
| Heat Exchange Balloons                                 | 1 (serpentine)                                               | Same           |
| Inflated Balloon OD                                    | Balloon OD: N/A                                              | Same           |
| (Cross- Sectional Area)                                | Cross-sectional Area: 54 mm <sup>2</sup>                     |                |
| Cross Sectional Area (approx. inflated outer diameter) | 54 mm <sup>2</sup> (12.2 mm OD)                              | Same           |
| Insertion Site                                         | Jugular and Subclavian Veins                                 | Same           |
| Max. Use Period                                        | 7 Days                                                       | Same           |
| Materials                                              | Shaft: Polyurethane                                          | Same           |
|                                                        | Heat Exchange Balloon: PET                                   |                |

| Feature                      | PREDICATE DEVICE            | SUBJECT DEVICE |
|------------------------------|-----------------------------|----------------|
| Sterilization Method and SAL | EO and SAL 10 <sup>-6</sup> | Same           |

Table 3: Comparison of the subject Thermogard HQ<sup>TM</sup> Start-Up Kit with predicate Start-Up Kit

|                           |                                          | -Up Kit with predicate Start-Up Kit         |
|---------------------------|------------------------------------------|---------------------------------------------|
| Feature                   | PREDICATE DEVICE                         | SUBJECT DEVICE                              |
| Device Name               | Start-Up Kit                             | Thermogard HQ <sup>TM</sup> Start-Up Kit    |
|                           | Start-Up Kit EX                          | Thermogard HQ <sup>TM</sup> Start-Up Kit EX |
| 510(k) number             | K213031                                  | K220008                                     |
| Model                     | CG-500D                                  | TGHQ-500D                                   |
|                           | CG-500D EX                               | TGHQ-500D EX                                |
| Class                     | II                                       | Same                                        |
| Classification/Regulation | System, Hypothermia,                     | Same                                        |
| Name                      | Intravenous, Cooling/Thermal             |                                             |
|                           | Regulating System                        |                                             |
| Regulation Number         | 21 CFR 870.5900                          | Same                                        |
| Product Code              | NCX                                      | Same                                        |
| Patient Contact           | Indirect Patient Contact                 | Same                                        |
| Luer Function             | Join the SUK to the                      | Same                                        |
|                           | InFlow/OutFlow Lumens of the             |                                             |
|                           | catheters, and allow saline to           |                                             |
|                           | circulate through the                    |                                             |
|                           | catheter/start-up kit fluid path         |                                             |
| Supplied 20 ml Sterile    | Syringe provided with SUK for            | Same                                        |
| Deflation (Slip-Fit)      | optional removal of saline from          |                                             |
| Syringe                   | catheter heat exchange balloons          |                                             |
|                           | prior to catheter removal                |                                             |
| Sterilization Method and  | Gamma sterilization SAL 10 <sup>-6</sup> | Same                                        |
| SAL                       |                                          |                                             |
| Shelf Life                | 2 years                                  | Same                                        |
| IV Spike design           | Bonded into a short section of           | New component with integrated               |
|                           | larger tubing at the end of the          | pockets into which the inlet and            |
|                           | tubing set.                              | outlet tubing are bonded.                   |
|                           | 8                                        | Revised spike geometry for ease of          |
|                           |                                          | insertion.                                  |
| Materials:                |                                          |                                             |
| Start-up Kit tubing       | Polyvinyl chloride                       | Same                                        |
|                           |                                          |                                             |
| Luer                      | Polyvinyl chloride                       | Same                                        |
|                           |                                          |                                             |
| Spike                     | Acrylonitrile butadiene styrene          | Same                                        |

Table 4: Comparison of the subject Thermogard  $\mathbf{HQ}^{TM}$  Console and predicate Thermogard  $\mathbf{XP}^{\circledast}$  Console

| Feature                | PREDICATE DEVICE                               | SUBJECT DEVICE                      |
|------------------------|------------------------------------------------|-------------------------------------|
| Device Name            | Thermogard XP® Console                         | Thermogard HQ <sup>TM</sup> Console |
|                        |                                                |                                     |
| 510(k) number          | K213031                                        | K220008                             |
| Principle of Operation | It automatically adjusts the temperature of a  | Same                                |
|                        | heater/chiller glycol bath to achieve the      |                                     |
|                        | patient target temperature that has previously |                                     |

| Feature                                  | PREDICATE DEVICE                                    | SUBJECT DEVICE                                      |
|------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|                                          | been set by the attending physician. A              |                                                     |
|                                          | temperature probe is used to monitor the            |                                                     |
|                                          | patient temperature, a catheter is used to          |                                                     |
|                                          | exchange heat to and from the patient, and          |                                                     |
|                                          | the delta between the target temperature and        |                                                     |
|                                          | patient temperature defines the temperature         |                                                     |
|                                          | of the saline pumped through the catheter. A        |                                                     |
|                                          | heat exchanger placed within the glycol bath        |                                                     |
|                                          | heats and cools the saline in the catheter.         |                                                     |
| Class                                    | Class II                                            | Same                                                |
| Classification/Regulation                | System, Hypothermia, Intravenous, Cooling           | Same                                                |
| Name                                     | 31                                                  |                                                     |
| Regulation Number                        | 21 CFR 870.5900                                     | Same                                                |
| Product Code                             | NCX                                                 | Same                                                |
| Patient Contact                          | No direct patient contact                           | Same                                                |
| Physical:                                |                                                     |                                                     |
| 1. Dimensions                            | Height: 45 in. (114 cm)                             | Same                                                |
| 11 2 1110110110                          | Width: 17 in. (43 cm)                               | ~ · · · · · · · · · · · · · · · · · · ·             |
|                                          | Depth: 30 in. (76 cm)                               |                                                     |
|                                          | Beptin 30 m. (70 cm)                                |                                                     |
| 2. Weight                                | 107 lb. (49 kg)                                     |                                                     |
| Electrical:                              |                                                     |                                                     |
| 1. Configuration                         | 100-120 VAC, 50/60 Hz, 5 A                          | Same                                                |
|                                          | 220-240 VAC, 50/60 Hz, 2.25 A                       |                                                     |
| 2. Voltage                               | 115 V - 230 V                                       |                                                     |
| 2 5                                      | TC 2A (-111) 5 20                                   |                                                     |
| 3. Fuse protection                       | T6.3A (slow blow) 5 x 20mm                          |                                                     |
|                                          | Lag: 60ms@60A Breaking                              |                                                     |
| Environmental:                           | Capacity: 63A @ 250VAC                              | <b>C</b>                                            |
|                                          | 100 C 270 C (500 E 910 E)                           | Same                                                |
| 1. Operating                             | 10° C – 27° C (50° F – 81° F)                       |                                                     |
| temperatures                             | 200/ 4- 750/                                        |                                                     |
| 2 On anotin a large iditar               | 30% to 75% noncondensing                            |                                                     |
| 2. Operating humidity                    | 70 l-D- 4- 106 l-D-                                 |                                                     |
| 2 . A 4                                  | 70 kPa to 106 kPa                                   |                                                     |
| 3. Atmospheric pressure:                 |                                                     |                                                     |
| Chiller and Heater:  1. Reservoir volume | 2.0 litara (0.5 col.)                               | Same                                                |
| 1. Reservoir volume                      | 2.0 liters (0.5 gal.)                               | Same                                                |
| 2. Pump capacity                         | 7 lpm at 0 m head (0 ft.)                           | Same                                                |
| 3. Temperature range                     | 0° C – 42° C                                        | Same                                                |
| 4. Coolant                               | 1:1 mixture of propylene glycol and distilled water | 1:1 mixture of propylene glycol and deionized water |
| 5. Refrigerant                           | RFC 134a                                            | Same                                                |

| Feature                                  | PREDICATE DEVICE                                                     | SUBJECT DEVICE                                                                       |
|------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 6. Nominal Power (must                   | 190 watts                                                            | Same                                                                                 |
| be greater than) Controller and Display  |                                                                      |                                                                                      |
| 1. Screen display                        | 6.4 in. (16.25 cm) LCD color VGA                                     | Same                                                                                 |
| 2. Controls                              | Pushbuttons and knob                                                 | Same                                                                                 |
| 3. Temperature input                     | Thermistor, YSI 400 series                                           | Same                                                                                 |
| 4. Articulation                          | 180° swivel, 45° tilt                                                | Same                                                                                 |
| 5. Data interface                        | Serial RS-232C, 9-pin sub-D connector                                | USB, Wi-Fi, Digital EMR<br>output (IOIOI), Patient<br>temperature output (T1<br>Out) |
| 6. Alarms                                | Audible tones and displayed text messages                            | Same                                                                                 |
| 7. Displayed temperature range           | 26° C– 42° C                                                         | Same                                                                                 |
| 8. Displayed temperature accuracy        | ± 0.2° C                                                             | Same                                                                                 |
| Saline Coolant Circuit 1. Priming volume | 200 ml                                                               | Same                                                                                 |
| 2. Heat exchanger                        | Disposable stainless steel coil                                      |                                                                                      |
| 3. Priming source                        | Sterile saline solution (hospital-provided)                          |                                                                                      |
| 4. Patient connection                    | Directional Luer connections on 72 in. (183 cm) lines                |                                                                                      |
| 5. Pump tubing                           | Roller pump compatible with directional fittings                     |                                                                                      |
| 6. Sterility                             | Gamma sterilized                                                     |                                                                                      |
| 7. Saline alarm                          | Reservoir level detection & alarm system                             |                                                                                      |
| 8. Coolant circuit operating life        | Replace disposable components after seven (7) days of continuous use |                                                                                      |
| Equipment                                | (1) days of continuous use                                           |                                                                                      |
| Classifications:                         |                                                                      |                                                                                      |
| 1. Type of protection against moisture   | Ordinary                                                             | Same                                                                                 |
| 2. 60601 Safety Class                    | Type BF for temperature inputs                                       |                                                                                      |

| Feature                | PREDICATE DEVICE                | SUBJECT DEVICE |
|------------------------|---------------------------------|----------------|
|                        | Type B for catheter connections |                |
|                        |                                 |                |
| 3. Protection class    | 1                               |                |
|                        |                                 |                |
| 4. Mode of operation   | Continuous                      |                |
| Start-Up Kit Accessory | Model CG-500D                   | TGHQ-500D      |
| _                      | Model CG-500D EX                | TGHQ-500D EX   |

## IV. SUMMARY OF THE NONCLINICAL TESTS PERFORMED

Non-clinical performance testing was conducted to verify the performance of the Thermogard  $HQ^{TM}$  Console, Thermogard  $HQ^{TM}$  Start-Up Kit and Thermogard  $HQ^{TM}$  Start-Up Kit EX. The following performance data were provided in support of substantial equivalence determination between the subject and predicate devices.

Table 5: Performance testing for the Thermogard  $HQ^{TM}$  Console and Thermogard  $HQ^{TM}$  Start-Up Kits

| Test                          | Test Method Summary                          | Conclusion |
|-------------------------------|----------------------------------------------|------------|
| Air Trap Insertion / Removal  | Test method verifies that the                | Pass       |
|                               | Thermogard HQ <sup>TM</sup> Start-Up Kit Air |            |
|                               | Trap may be inserted into and                |            |
|                               | removed from the Thermogard                  |            |
|                               | HQ <sup>TM</sup> Console as intended.        |            |
| Console Warming and Cooling   | Test method verifies that the system         | Pass       |
|                               | cools and warms as intended.                 |            |
| Electrical Safety             | Test methods verify that the system          | Pass       |
|                               | meets electrical safety standards.           |            |
| Electromagnetic Compatibility | Test method verifies that the system         | Pass       |
|                               | meets electrical immunity and                |            |
|                               | emissions standards.                         |            |
| Human Factors / Usability     | Test methods validate the device             | Pass       |
|                               | for human factors per the intended           |            |
|                               | use.                                         |            |
| Software Verification         | Test methods verify that the                 | Pass       |
|                               | software meets software                      |            |
|                               | requirements.                                |            |

Table 6: Performance testing specific only to the Thermogard HQ<sup>TM</sup> Console

| Test                      | Test Method Summary                  | Conclusion |
|---------------------------|--------------------------------------|------------|
| Data Module Functionality | Test methods verify that the Data    | Pass       |
|                           | Module meets applicable              |            |
|                           | requirements.                        |            |
| Reliability               | Test methods verify that the system  | Pass       |
|                           | meets the service life requirements. |            |

| Test            | <b>Test Method Summary</b>          | Conclusion |
|-----------------|-------------------------------------|------------|
| Transit Testing | Test methods verify that the system | Pass       |
|                 | meets the shipping and transit      |            |
|                 | requirements.                       |            |

Table 7: Performance testing specific only to the Thermogard HQ<sup>TM</sup> Start-Up Kits

| Test                      | <b>Test Method Summary</b>                | Conclusion |
|---------------------------|-------------------------------------------|------------|
| Use Duration (Life) and   | Test methods verify that the              | Pass       |
| Durability Testing        | Thermogard HQ <sup>TM</sup> Start-Up Kits |            |
|                           | meet the duration of use                  |            |
|                           | requirements.                             |            |
| Leak Testing              | Test methods verify that the              | Pass       |
|                           | Thermogard HQ <sup>TM</sup> Start-Up Kits |            |
|                           | meet the leak requirements.               |            |
| Tensile Testing           | Test methods verify that the              | Pass       |
|                           | Thermogard HQ <sup>TM</sup> Start-Up Kits |            |
|                           | meet the tensile strength                 |            |
|                           | requirements.                             |            |
| Transit and Environmental | Test methods verify that the              | Pass       |
|                           | Thermogard HQ <sup>TM</sup> Start-Up Kits |            |
|                           | meet the shipping and transit             |            |
|                           | requirements.                             |            |

## Safety testing per the international recognized standards

The proposed Thermogard HQ<sup>TM</sup> Console, Thermogard HQ<sup>TM</sup> Start-Up Kit, and Thermogard HQ<sup>TM</sup> Start-Up Kit EX were tested and all requirements were met from each applicable FDA recognized consensus standard.

Table 8: Thermogard  $HQ^{TM}$  Console, Thermogard  $HQ^{TM}$  Start-Up Kit, Thermogard  $HQ^{TM}$  Start-Up Kit EX Standards

| FDA Consensus Number | Standard                 | Year           |
|----------------------|--------------------------|----------------|
| 5-125                | ISO 14971                | 2019           |
| 5-117                | ISO 15223                | 2016           |
| 19-8                 | IEC 60601-1-2            | 2014           |
| 19-4                 | IEC 60601-1              | 2005/A1:2012   |
| 5-89                 | IEC 60601-1-6            | 2010+ A1:2013  |
| 5-76                 | IEC 60601-1-8            | 2006+ A1:2012  |
| 19-9                 | IEC 60601-1-10           | 2007+A1:2013   |
| 6-421                | ISO 80601-2-56           | 2017           |
| 13-79                | IEC 62304:2006/Amd1      | 2015           |
| 5-129                | IEC 62366-1              | 2015/Cor1:2016 |
| 5-57                 | ANSI/AAMI HE 75          | 2009/(R)2013   |
| 5-89                 | EN 60601-1-6 Edition 3.1 | 2013-10        |
| 14-499               | ASTM D4169               | 2016           |
| 2-245                | ISO 10993-5              | 1999           |
| 2-191                | ISO 10993-12             | 2002           |
| 14-514               | ISO 11737-1              | 2018           |

| FDA Consensus Number | Standard    | Year |
|----------------------|-------------|------|
| 14-540               | ISO 11737-2 | 2019 |

## V. SUMMARY OF THE CLINICAL TESTS PERFORMED

No clinical performance data were determined to be necessary to demonstrate substantial equivalence.

## VI. CONCLUSION

The Thermogard HQ<sup>TM</sup> Console, Thermogard HQ<sup>TM</sup> Start-Up Kit and Thermogard HQ<sup>TM</sup> Start-Up Kit EX meet their design, performance, and safety specifications when used in accordance with the labeling. The differences between the subject and predicate devices do not raise new questions of safety and effectiveness. It was demonstrated through performance testing, and comparison of design features that the proposed devices are substantially equivalent to the predicate devices.