

August 9, 2022

Point Robotics MedTech Inc. Wayne Kao, Director 7F., No.219, Sec.3, Beixin Rd., Xindian Dist. New Taipei City, 231 Taiwan

Re: K220241

Trade/Device Name: "POINT" Kinguide Robotic-Assisted Surgical System

Regulation Number: 21 CFR 882.4560 Regulation Name: Stereotaxic Instrument

Regulatory Class: Class II Product Code: OLO Dated: January 25, 2022

Received: d-

Dear Mr. Wayne Kao:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part

801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to https://www.fda.gov/medical-device-problems.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance) and CDRH Learn (https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Shumaya Ali, M.P.H.
Assistant Director
DHT6C: Division of Restorative, Repair
and Trauma Devices
OHT6: Office of Orthopedic Devices
Office of Product Evaluation and Quality
Center for Devices and Radiological Health

Enclosure

DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

Indications for Use

510(k) Number (if known)

Form Approved: OMB No. 0910-0120

Expiration Date: 06/30/2023 See PRA Statement below.

X22U241
Device Name POINT" Kinguide Robotic-Assisted Surgical System
ndications for Use (Describe) POINT" Kinguide Robotic-Assisted Surgical System is intended as an aid for precisely locating anatomical structures in ither open or percutaneous neurosurgical and orthopedic procedures. The device is indicated for medical condition in which the use of stereotactic spinal surgery may be appropriate, and where reference to a rigid anatomical structure can be identified relative to images of the anatomy. The indications include nedical procedures in which pedicle screws are implanted posteriorly into lumbar vertebrae (L1-L5) or sacral vertebrae S1).
ype of Use (Select one or both, as applicable)
CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

510(k) Summary

Kinguide Surgical System

510(k) Number: K220241

January 13, 2022

1. Submitter's Information

Submission Submitter

Company Name	Point Robotics MedTech Inc.		
Address	7F., No.219, Sec.3, Beixin Rd., Xindian Dist.,		
	New Taipei City 231, Taiwan		
Contact Person	Mr. Wayne Kao		
Phone	866-2-29130272#165		
Email	wayne.kao@pointroboticsinc.com		

2. Subject Device Information

Proprietary/Trade Name	"POINT" Kinguide Robotic-Assisted Surgical		
	System		
Regulation Name	Stereotaxic Instrument		
Regulation Number	882.4560		
Product Code	OLO		
Device Classification	П		
Review Panel	Orthopedic		

3. Device Description

"POINT" Kinguide Robotic-Assisted Surgical System (Kinguide Surgical System) is an orthopedic stereotaxic medical device, which consists of a hand-held robot, a passive arm, a workstation, an infrared navigation camera, navigation software, C-arm ring calibrator and surgical navigation accessories. Among them, the workstation, as the main console for controlling the hand-held robot, is equipped with a computer and control modules, which performs all operations in the surgical procedure through the computer, and transmits its information to the control modules for controlling movements of the hand-held robot. The C-arm ring calibrator and the navigation probe are used to perform registration process. The infrared navigation camera receives the spatial positioning of the patients, the hand-held robot and the surgical accessories through Dynamic Reference Frames (DRFs), and in the meantime the camera sends the data back to the workstation for monitoring stereotactic surgical operation.

The Kinguide Surgical System can assist surgeons to find surgical trajectories quickly and precisely during surgical operations. Software application in the system provides the

Kinguide Surgical System 510(k) Number: K220241

patient's image to match coordinates of the patient's anatomical structure, and establishes a surgical navigation map. The user can perform the operation according to the surgical navigation map with navigable tools.

4. Indications for Use

"POINT" Kinguide Robotic-Assisted Surgical System is intended as an aid for precisely locating anatomical structures in either open or percutaneous neurosurgical and orthopedic procedures.

The device is indicated for any medical condition in which the use of stereotactic spinal surgery may be appropriate, and where reference to a rigid anatomical structure can be identified relative to images of the anatomy. The indications include medical procedures in which pedicle screws are implanted posteriorly into lumbar vertebrae (L1-L5) or sacral vertebrae (S1).

5. Identification of Legally Marketing Devices

K201189 - StealthstationTM S8 Spine Software v1.3.0

K162309 - StealthstationTM S8 System Platforms and StealthStation Cranial Software

K160713 - Stealth-Midas System

6. Comparison to the Predicate Device

	Subject Device	Software Predicate	Platform Predicate	Drill System Predicate
Itam	"POINT" Kinguide	Stealthstation TM S8 Spine	StealthStation TM S8	Stealth-Midas System
Item	Robotic-Assisted	Software v1.3.0	System	
	Surgical System			
K number	N/A	K201189	K162309	K160713
Product Code	OLO	OLO	HAW, OLO, PGW	OLO
	"POINT" Kinguide	The StealthStation TM	The StealthStation TM	The Stealth-Midas System
	Robotic-Assisted	System, with	System, with	is indicated for the
	Surgical System is	StealthStation Spine	StealthStation Cranial	drilling, burring and
	intended as an aid for	Software, is intended as an	software, is intended as an	removal of hard tissue and
	precisely locating	aid for precisely locating	aid for precisely locating	bone in spinal surgical
	anatomical structures in	anatomical structures in	anatomical structures in	procedures. Computer-
Intended Use &	either open or	either open or	either open or	assisted surgery and its
Indications for	percutaneous	percutaneous	percutaneous surgical	associated applications are
Use	neurosurgical and	neurosurgical and	procedures. The	intended as an aid for
Use	orthopedic procedures.	orthopedic procedures.	StealthStationTM System	precisely locating
	The device is indicated	Their use is indicated for	is indicated for any	anatomical structures in
	for any medical condition	any medical condition in	medical condition in which	either open or
	in which the use of	which the use of	the use of stereotactic	percutaneous procedures.
	stereotactic spinal	stereotactic surgery may	surgery may be	Their use is indicated for
	surgery may be	be appropriate, and where	appropriate, and where	any medical condition in
	appropriate, and where	reference to a rigid	reference to a rigid	which the use of

	Subject Device	Software Predicate	Platform Predicate	Drill System Predicate
Itama	"POINT" Kinguide	Stealthstation TM S8 Spine	StealthStation TM S8	Stealth-Midas System
Item	Robotic-Assisted	Software v1.3.0	System	
	Surgical System			
	reference to a rigid	anatomical structure, such	anatomical structure, such	stereotactic surgery may
	anatomical structure can	as the spine or pelvis, can	as the skull, can be	be appropriate, and where
	be identified relative to	be identified relative to	identified relative to a CT	reference to a rigid
	images of the anatomy.	images of the anatomy.	or MR based model,	anatomical structure, such
	The indications include	This can include, but is	fluoroscopy images, or	as a long bone, or
	all medical procedures in	not limited to, the	digitized landmarks of the	vertebra, can be identified
	which pedicle screws are	following procedures:	anatomy.	relative to a CT- or MR-
	implanted posteriorly	• Pedicle Screw Placement		based model, fluoroscopic
	into lumbar vertebrae	Iliosacral Screw		images, or digitized
	(L1-L5) or sacral	Placement		landmarks of the anatomy.
	vertebrae (S1).	Interbody Device		
		Placement		
	According to verification	Under representative	Under representative	Confirmed navigated
	and validation results,	worst-case configuration,	worst-case configuration,	instrument accuracy.
System	"POINT" Kinguide	the StealthStation S8	the StealthStation S8	Stealth-Midas integrates
Accuracy	Robotic-Assisted	Spine software v1.3.0, has	System with StealthStation	seamlessly with
Requirement	Surgical System has	demonstrated performance	Cranial v1.0.0 Software,	StealthStation surgical
	demonstrated	in 3D positional accuracy	has demonstrated	navigation solutions.
	performance in 3D	with a mean positional	performance in 3D	

	Subject Device	Software Predicate	Platform Predicate	Drill System Predicate
T4 a	"POINT" Kinguide	Stealthstation TM S8 Spine	StealthStation TM S8	Stealth-Midas System
Item	Robotic-Assisted	Software v1.3.0	System	
	Surgical System			
	positional accuracy with	error of \leq 2.0 mm and	positional accuracy with a	
	a mean positional error of	mean trajectory error of ≤	mean error ≤ 2.0 mm and	
	\leq 2.0 mm and mean	2 degrees.	in trajectory angle	
	trajectory error of ≤ 2	Mean Accuracy Values	accuracy with a mean error	
	degrees.	(StealthAiR Spine):	\leq 2.0 degrees.	
		Positional Error – 1.01		
		mm		
		Trajectory Error – 0.37		
		degrees		
		Mean Accuracy Values		
		(Overlapping Slices):		
		Positional Error – 0.51		
		mm		
		Trajectory Error –0.41		
		degrees		
Imaging	X-Ray based (CT)	X-Ray Based Imaging	X-Ray based, MR based	Identified relative to a CT-
Modalities			Nuclear Medicine based	or MR-based model

	Subject Device	Software Predicate	Platform Predicate	Drill System Predicate
T4	"POINT" Kinguide	Stealthstation TM S8 Spine	StealthStation TM S8	Stealth-Midas System
Item	Robotic-Assisted	Software v1.3.0	System	
	Surgical System			
	Surface Matching	PointMerge Registration	PointMerge® registration	Stealth-Midas integrates
	Registration	SurfaceMerge	(referred to as Landmark	seamlessly with
	Image Landmark	Registration	registrations)	StealthStation surgical
	Registration	FluoroMerge Registration	Tracer TM registration	navigation solutions.
	Precise Surface	Automatic 2D Image	Touch registration	
	Registration	Registration	(previously Touch-N-	
Registration	Image Registration	Automatic 3D Image	Go TM)	
Features		Registration	StealthAiR® registration,	
		StealthAiR Spine	O-arm® registration,	
		Automatic Registration	Mechanical based	
			registrations (Stereotactic	
			Localizer Registration and	
			StarFix TM Bone Anchor	
			Registration)	
	Plan Entry and Target	Plan Entry and Target	Plan Entry and Target	Stealth-Midas integrates
Planning	Selection	Selection	selection	seamlessly with
Features	3D Model Building	3D Model Building	3D Model Building	StealthStation surgical
		Deformity Planning	Advanced Visualization	navigation solutions.

	Subject Device	Software Predicate	Platform Predicate	Drill System Predicate
T4	"POINT" Kinguide	Stealthstation TM S8 Spine	StealthStation TM S8	Stealth-Midas System
Item	Robotic-Assisted	Software v1.3.0	System	
	Surgical System			
	Siemens Arcadis Varic C-	O-arm Imaging System	Microscope Navigation:	Stealth-Midas integrates
	Arm	Ziehm Vision FD Vario	Zeiss, Leica	seamlessly with
	Siemens Arcadis Orbic	3D C-Arm	Ultrasound Navigation:	StealthStation surgical
	C-Arm	ISO-C 3D C-Arm	Aloka and Sonosite	navigation solutions.
		Ziehm Vision RFD 3D C-	Medtronic O-arm®	
Medical Device		arm	Stereotactic Frame	
Interfaces		Stealth-Midas MR8	Systems: Fischer ZD,	
		Orbic 3D C-Arm	Fischer RM, Integra CRW	
			and Elekta Leksell	
			Nexframe® Stereotactic	
			System	
			STarFix TM Platform System	
	Look Sideways	Look Sideways	Ultrasound Video In,	Stealth-Midas integrates
	3D View	3D	Ultrasound Overlay,	seamlessly with
View/Diemley	Anatomic Orthogonal	Anatomic Orthogonal	3D, 2D Anatomic	StealthStation surgical
View/Display	Trajectory 1 and 2	Trajectory 1 and 2	Orthogonal,	navigation solutions.
Features	Trajectory Guidance	Trajectory Guidance	Trajectory 1 and 2, Target	
	Probe's Eye	Look Ahead	Guidance, Trajectory	
	AP and Lateral	Probe's Eye	Guidance, Probes Eye,	

	Subject Device	Software Predicate	Platform Predicate	Drill System Predicate
Itama	"POINT" Kinguide	Stealthstation TM S8 Spine	StealthStation TM S8	Stealth-Midas System
Item	Robotic-Assisted	Software v1.3.0	System	
	Surgical System			
	Maximum Intensity	AP and Lateral	Look Ahead, Microscope	
	Projection	Synthetic AP and Lateral	Injection, Video Input,	
		Maximum Intensity	Endoscopic	
		Projection		
		Video Input		
	User friendly interface	Black and gray style with	Black and gray style with	Stealth-Midas integrates
	with procedure task	procedure task overview	procedure task overview in	seamlessly with
	overview at home page.	in left menu option and	left menu option and	StealthStation surgical
	System tools for image	next/back task flow at	next/back task flow at	navigation solutions.
Software	adjustment, surgical	bottom of the screen.	bottom of the screen.	
Interface (GUI)	planning and instrument	Software controls for	Software controls for	
interface (GOI)	management are	images, planning and	images, planning and	
	contained in a left-side	instrument management	instrument management	
	bar. The system	are contained in a right-	are contained in a right-	
	information is shown on	side bar.	side bar.	
	the right-side bar.			
	C++	C++	C++	Stealth-Midas integrates
Programming				seamlessly with
Language				StealthStation surgical
<u> </u>				

	Subject Device	Software Predicate	Platform Predicate	Drill System Predicate
T.	"POINT" Kinguide	Stealthstation TM S8 Spine	StealthStation TM S8	Stealth-Midas System
Item	Robotic-Assisted	Software v1.3.0	System	
	Surgical System			
				navigation solutions.
Scanner	CD, DVD, USB	Network Connectivity	Network Connectivity	Stealth-Midas integrates
Interface	DICOM Import	CD, DVD, USB	CD, DVD, USB	seamlessly with
Technology		DICOM Import	DICOM Import	StealthStation surgical
(to imaging		DICOM Export	DICOM Export	navigation solutions.
devices)				
	Optical (infra-red)	Optical (infra-red)	Optical (infra-red)	Optical (infra-red)
Localization	Manufacturer: Northern	Manufacturer: Northern	Manufacturer: Northern	Manufacturer: Northern
Technology	Digital	Digital	Digital	Digital
	Localizer: Vega	Localizer: Vega	Localizer: Vega	Localizer: Vega
	Intel-based PC	Intel-based PC	Intel-based PC	Stealth-Midas integrates
Computer				seamlessly with
Platform				StealthStation surgical
				navigation solutions.

	Subject Device	Software Predicate	Platform Predicate	Drill System Predicate
T4	"POINT" Kinguide	Stealthstation TM S8 Spine	StealthStation™ S8	Stealth-Midas System
Item	Robotic-Assisted	Software v1.3.0	System	
	Surgical System			
	The Kinguide Surgical	Not Applicable	Not Applicable	The Stealth-Midas TM is a
	System has a hand-held			high-speed drill with a
	robot. The hand-held			permanently attached
	robot can be identified by			tracker that allows for
	the infrared navigation			intraoperative navigation
	camera through the			of spinal procedures using
	Robotic Base Frame			the StealthStation TM
Drill System	(BF). It has high freedom			surgical navigation
	of operation and high-			system.
	precision positioning			
	ability. It is used to			
	position the surgical			
	instrument connected to			
	the end-effector of the			
	robot.			
	A passive arm of this	Not Applicable	Not Applicable	A standard handpiece drill
Mechanical	system is applied to			with a permanently
Support	support the hand-held			attached tracker.
	robot during surgeries. It			

Kinguide Surgical System 510(k) Number: K220241

*.	Subject Device	Software Predicate	Platform Predicate	Drill System Predicate
	"POINT" Kinguide	Stealthstation TM S8 Spine	StealthStation TM S8	Stealth-Midas System
Item	Robotic-Assisted	Software v1.3.0	System	
	Surgical System			
	can assist surgeons to			
	move the hand-held robot			
	stably and prevent from			
	unexpected drop.			

- Brief Substantial Equivalence Discussion

"POINT" Kinguide Robotic-Assisted Surgical System and the predicates- StealthStation™ System (K201189, K162309 and K160713) are based on the following same technological elements:

- ✓ Intended Use & Indications for Use
- ✓ System Accuracy Requirement
- ✓ Imaging Modalities
- ✓ Registration Features
- ✓ Planning Features
- ✓ View/Display Features
- ✓ Software Interface (GUI)
- ✓ Programming Language
- ✓ Scanner Interface Technology
- ✓ Localization Technology
- ✓ Computer Platform

Kinguide Surgical System 510(k) Number: K220241

The following technological differences exist between the subject and predicate devices:

- ✓ Drill System
- ✓ Mechanical Support

There are two minor differences between the subject and predicate devices; these differences are concerning the drilling system and its mechanical support.

"POINT" Kinguide Robotic-Assisted Surgical System can provide the high-precision positioning ability and assist surgeons to move the hand-held robot stably and prevent from unexpected drop. These minor differences are addressed and evaluated in our risk management, usability engineering and cadaveric validation.

As a result, we state that the differences haven't raised further issues of safety or effectiveness but mitigate potential risk.

7. Performance Testing

The performance data, including required verification/validation, of the "POINT" Kinguide Robotic-Assisted Surgical System has been carried out thoroughly both at the top level and on underlying SW/HW modules according to international standards and following U.S. FDA guidance. The verification was done to demonstrate that the design specifications and the safety requirements are all met.

Kinguide Surgical System

510(k) Number: K220241

Verification/Validation	Description
Human Factors & Usability Engineering	Usability of the system is validated in accordance with FDA guidance of applying Human Factors and Usability Engineering to Medical Devices and IEC 62366-1:2015.
Product Safety	Compliance with standards requirements, including: - ANSI/AAMI ES60601-1:2005/(R)2012 and A1:2012 & C1:2009/(R)2012 & A2:2010/(R)2012 - IEC 60601-1:2005 +A1:2012 (Ed. 3.1) - IEC 60601-1-2:2014 - IEC 60601-1-8:2006+AMD1:2012 - IEC 80601-2-77:2019
Positional Accuracy	Compliance with ASTM F2554-18 and ASTM F3107-14
Biocompatibility	Biocompatibility of those accessories that having contact with patients is evaluated in accordance with FDA guidance for the use of international standard ISO 10993-1.
Software	System software is validated in accordance with: - FDA guidance for the Content of Premarket Submissions for Software contained in Medical Devices, 2005 - IEC 62304:2006 + A1:2015.
Reprocessing	Reusable accessories are validated in accordance with: - FDA guidance for the Reprocessing medical devices in health care settings: Validation methods and labeling, 2015. - AAMI TIR30:2011/(R)2016 - AAMI TIR12:2020
Sterilization	Compliance with FDA guidance for Submission and

Verification/Validation	Description
	Review of Sterility Information in Premarket Notification
	(510(k)) Submissions for Devices Labeled as Sterile,
	2016
	Stability & Reliability evaluation includes:
Stability & Reliability	- Standard Practice for Climatic Stressing of
	Packaging Systems acc. ASTM F2825-18
	- Standard Practice for Performance Testing of
	Shipping Containers and Systems acc. ASTM
	D4169-16
	- Packaging for terminally sterilized medical devices
	acc. ISO 11607-1:2019
	- Environmental testing (Vibration) acc. IEC 60068-
	2-6:2007
	- Environmental testing (Shock) acc. IEC 60068-2-
	27:2008
	- Degrees of protection provided by enclosures acc.
	IEC 60529:2013
Non-clinical Performance (Accuracy)	The system has a mean accuracy of ≤ 2.0 mm for
	location error and $\leq 2^{\circ}$ for trajectory angle error.
	The following verification and validation are performed
	in support of our performance study:
	- Performance and Accuracy Verification Report
	- Cadaveric Validation Report

Kinguide Surgical System

510(k) Number: K220241

8. Conclusion

The information provided above supports that the "POINT" Kinguide Robotic-Assisted Surgical System is substantially equivalent to the identified predicate devices. Substantial equivalence has been demonstrated through a comparison of intended use, design, and technological characteristics, as well as performance evaluations. The "POINT" Kinguide Robotic-Assisted Surgical System can be considered substantially equivalent to the identified predicate devices.