

Bringing new life to organ transplantation<sup>™</sup>

## OCS<sup>™</sup> Lung System for the Preservation of Donor Lungs for Transplantation

May 17, 2017

TransMedics, Inc.

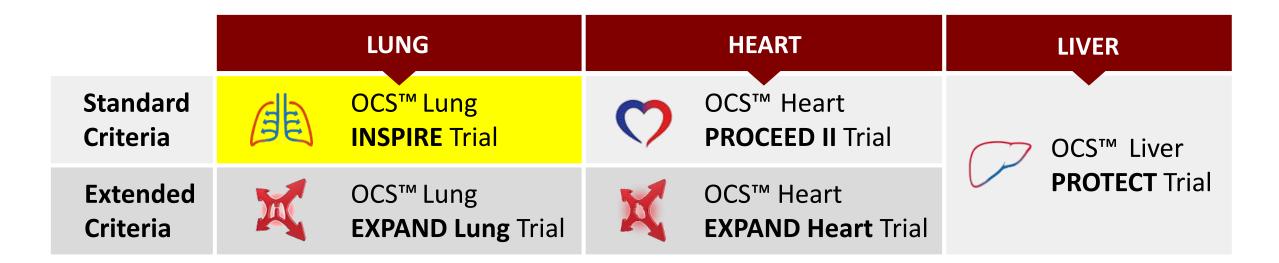
Gastroenterology-Urology Devices Panel

#### Introduction

#### Waleed Hassanein, MD

President and CEO

TransMedics, Inc.


## **TransMedics is a Clinically Driven Organization**

Origin of OCS Technology: 1995-98 academic cardiothoracic surgery research project


TransMedics founded in 2000: developed Organ Care System (OCS<sup>M</sup>) technology to maintain human solid organs in near-physiologic and functioning state to overcome limitations of cold ischemic storage – OCS Lung, Heart & Liver

OCS platform approved outside of U.S. with ~800 successful human transplants performed globally to date in standard, extended, and DCD organ criteria

# Establishing High Level of Clinical Evidence – OCS Global Clinical Programs



# OCS System Designed to Address Limitations of Cold Ischemic Storage



Blood Perfusion

Ventilation Recruitment Oxygenation, Vascular Resistance, & Airway Compliance

#### OCS Lung System: Integrated, Portable, Ex-vivo Lung Perfusion and Ventilation System







#### **OCS Lung Console**

#### **OCS Lung Perfusion Module**

#### **OCS Lung Solution**

#### **INSPIRE Demonstrated Assurance of Safety and Effectiveness of OCS Lung System**

Met primary effectiveness and safety endpoints

Clinically significant reduction in PGD Grade 3 within 72 hours

Similar safety profile of OCS Lung System to standard of care

Other clinical benefits that will be further studied in post-market

**Proposed Indication for Use** 

The TransMedics<sup>®</sup> Organ Care System<sup>™</sup> (OCS) Lung System is a portable organ perfusion, ventilation, and monitoring medical device intended to preserve donor lungs in a near physiologic, ventilated, and perfused state for transplantation.

## Agenda

| Gabriel Loor, MD<br>Associate Professor of Surgery; Director, Lung Transplantation<br>Baylor College of Medicine                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waleed Hassanein, MD                                                                                                                                                        |
| Abbas Ardehali, MD<br>Professor of Surgery and Medicine; Chief of Cardiothoracic Transplantation<br>UCLA School of Medicine                                                 |
| John Wallwork, FRCS, FmedSCI<br>Emeritus Professor, Cardiothoracic Surgery Papworth Hospital<br>Past President, International Society for Heart and Lung Transplant (ISHLT) |
| <b>Gregor Warnecke, MD</b><br>Prof. of Surgery; Director of Cardiothoracic Transplantation<br>Hannover Medical School                                                       |
| Waleed Hassanein, MD                                                                                                                                                        |
| <b>Dirk Van Raemdonck, MD, PhD</b><br>Professor of Surgery, University Hospital Leuven Medical Center<br>Co-chair of ISHLT PGD Working Group                                |
|                                                                                                                                                                             |

## **Additional Experts**

| DSMB Chairman                 | Joshua Sonett, MD<br>Professor of Surgery<br>Chief, Thoracic Surgery<br>Columbia University Medical Center |
|-------------------------------|------------------------------------------------------------------------------------------------------------|
| Biostatistics                 | <b>Christopher Mullin, MS</b><br>Biostatistician<br>3D Communications, LLC                                 |
| Device Design and Engineering | John Sullivan, MS<br>Vice President, Engineering<br>TransMedics, Inc.                                      |
| Clinical Operations           | <b>Tamer Khayal, MD</b><br>Chief Medical Officer<br>TransMedics, Inc.                                      |
| Regulatory                    | Miriam Provost, PhD<br>Christine Brauer, PhD<br>Robert Sheridan                                            |

## **Clinical Needs and Current Limitations of Cold Storage Preservation**

#### Gabriel Loor, MD

Associate Professor, Department of Surgery

Surgical Director of Lung Transplantation

Division of Cardiothoracic Transplantation and Circulatory Support

Michael E. DeBakey Department of Surgery

Baylor College of Medicine

### **Transplantation is Gold Standard for Treating End-stage Lung Failure**

- Without transplant, <50% patients alive in 1-2 years</p>
- Lung transplantation provides:
  - Longer life expectancy
  - Improved functional status
  - Better quality of life

## **Challenges in Lung Transplant Today**

- Organ availability
- Older and sicker patients
- Preservation limitation and transplant logistics
- Primary Graft Dysfunction (PGD)
- Bronchiolitis Obliterans Syndrome (BOS)

## **No Advancements in Organ Preservation for 30 Years**

In last 30 years, many advancements in lung transplantation:

- Surgical techniques
- Pre- and peri-operative care of recipients
- Immunosuppressives
- No advancements in organ preservation beyond cold storage since dawn of organ transplantation

#### **Three Key Limitations of Cold Ischemic Storage**



- Time-dependent ischemia / reperfusion injury
- No lung optimization capabilities
- No assessment of lung function

#### **Clinical Constraints of Ischemia in Lung Transplantation**

#### 50 42.1 40 30 Proportion 22.3 21.3 (%) 20 10 5.9 1.4 0 2 - <4 6 - <8 <2 4 - <6 8+

#### **Most U.S. Lung Transplants are <6 Hours**

**Total Ischemia Time (Hours)** 

## Primary Graft Dysfunction (PGD) is Acute Lung Injury Associated with Reperfusion Injury

- PGD can occur within first 72 hours after transplant
  - Assessed at T0, 24, 48, and 72 hours post-transplant
- Short-term morbidity associated with PGD
  - Severe hypoxemia, lung edema, difficulty with ventilation, etc.
- ISHLT PGD Grading from 0-3 (0 = absent to 3 = severe)

#### **Reported PGD3 Incidence of 30.8% Within Initial 72 Hours**

#### Clinical Risk Facto Lung Transplantat

Joshua M. Diamond<sup>1</sup>, James C. Lee<sup>1</sup>, Scarlett L. Bellamy<sup>2</sup>, David J. Lederer Sangeeta M. Bhorade<sup>8</sup>, Maria Crespo Jonathan Orens<sup>12</sup>, Ashish S. Shah<sup>13</sup>, J David S. Wilkes<sup>15</sup>, Lorraine B. Ware<sup>10</sup> for the Lung Transplant Outcomes Gro

<sup>1</sup>Pulmonary, Allergy, and Critical Care Division Cardiovascular Surgery, and <sup>6</sup>Department of A Philadelphia, Pennsylvania; <sup>4</sup>Division of Pulmoo of Physicians and Surgeons, New York, New York

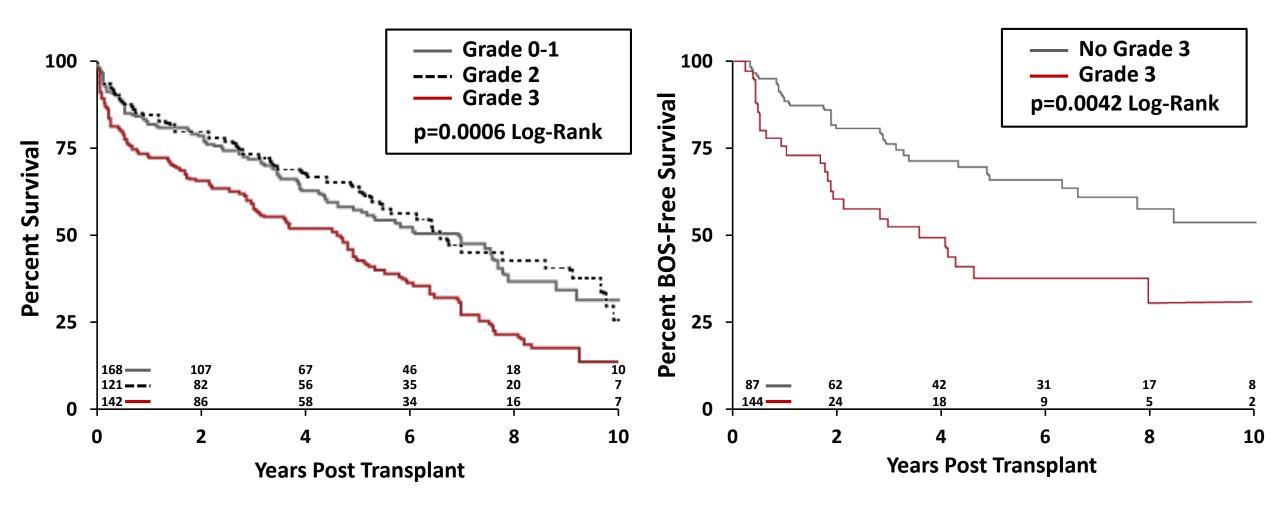
ing results. Some explanations for these v sample sizes; inconsistencies in PGD pher trol for multiple confounding variables; a rospective, single center, or administrati rigorous PGD definitions (5, 6).

In 2005, the International Society for I plantation (ISHLT) standardized the PGI research on risk factors associated with the syndrome (7). Subsequent studies have of struct validity of this definition with clini logic markers of ALI severity (8, 9). In the identify donor, recipient, and perioperative risk factors for PGD

using the ISHLT definition in a large, multiventer, prospective cohort study design.

#### METHODS

Study Design and Subject Selection

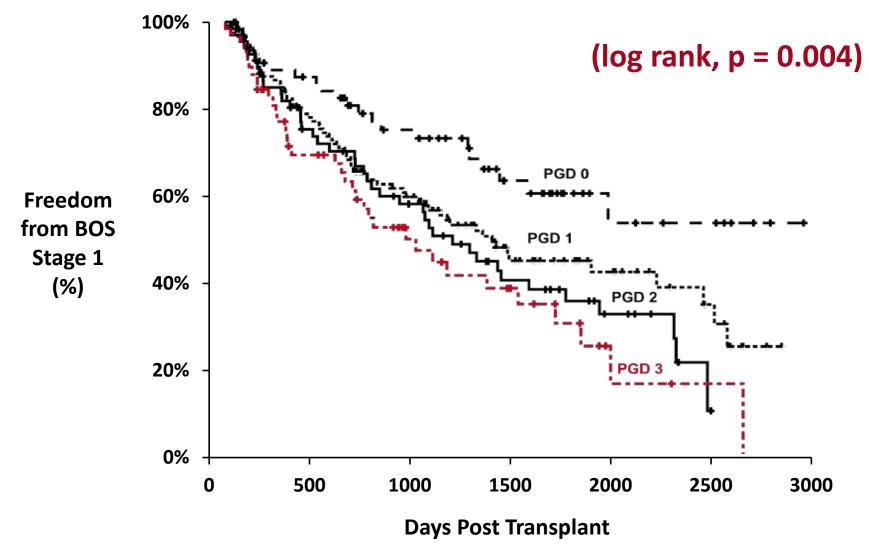

#### RESULTS

There were 2,011 lung and heart-lung transplants performed at study centers during the study period. Of these, 1,255 patients were enrolled in the cohort study (Figure 1). There were no significant differences in sex or age, but there was more chronic obstructive pulmonary disease, less cystic fibrosis, and more SLT in the enrolled group (*see* Table E3). A total of 211 subjects (16.8%; 95% CI, 14.7–18.9) met criteria for grade 3 PGD, and 386 subjects (30.8%; 95% CI, 28.2–33.3) met the secondary PGD definition of grade 3 PGD at any time during the first 72 hours after transplantation.

were enrolled in the cohort study (Figure 1). There were no significant differences in sex or age, but there was more chronic obstructive pulmonary disease, less cystic fibrosis, and more SLT in the enrolled group (*see* Table E3). A total of 211 subjects (16.8%; 95% CI, 14.7–18.9) met criteria for grade 3 PGD, and 386 subjects (30.8%; 95% CI, 28.2–33.3) met the secondary PGD definition of grade 3 PGD at any time during the first 72 hours after transplantation.



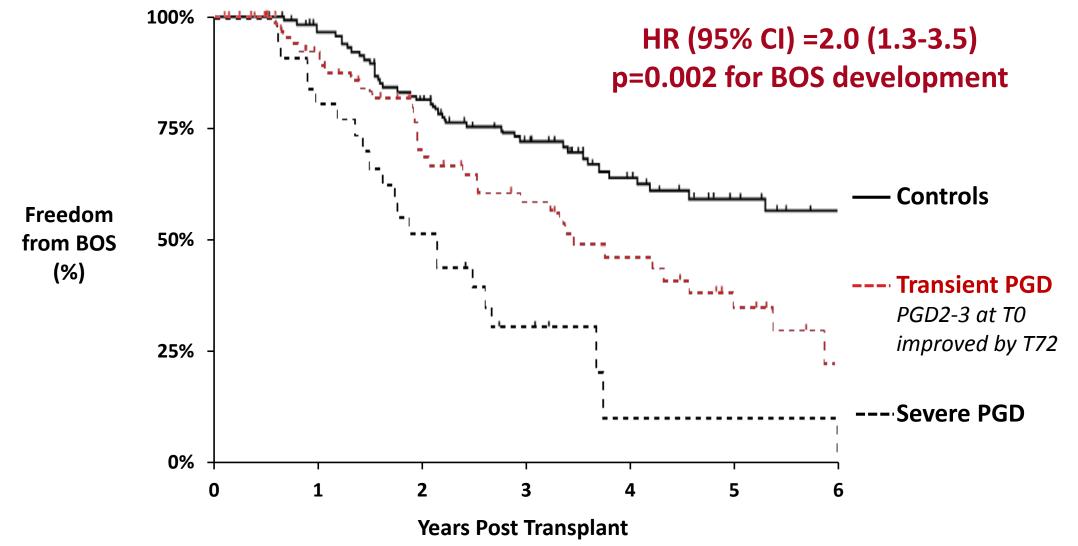
## PGD3 Within First 48 Hours Correlates with Lower Long-term Survival, Higher BOS Rate




FDA Discussion Question 1 & 3

**CO-20** 

Whitson BA et al., JHLT 2007; 26:1004-1011


#### PGD 3 at T0 Correlates with Long-Term BOS Rates



Daud et al. AMJ. Resp. & Crit. Care Med. 2007

#### FDA Discussion Question 1 & 3

#### **PGD 2 or 3 at TO Significant Risk Factor for BOS**



DerHovanessian et al, Am J Transplant. 2016; 16(2): 640-649.

#### FDA Discussion Question 1 & 3

**CO-22** 

#### **Clinical Need for Advancements in Lung Preservation for Transplantation**

- Lung transplantation is gold standard for end-stage lung disease
- Lung preservation limited to cold ischemic storage for past 30+ years with inherent limitations
- PGD3 at any time point within 72 hours associated with poor patient outcomes
- Need for technology to improve lung preservation
  - Minimize ischemic injury
  - Optimize and assess lung during preservation

# Regulatory History and Protocol Design of OCS Lung INSPIRE Trial

Waleed Hassanein, MD

President and CEO

TransMedics, Inc.

## **INSPIRE Trial Regulatory Background**

- First RCT for lung preservation for transplantation
- Several challenges to be addressed in study design:
  - Endpoints, analysis population, timing of evaluations, etc.
  - Complex organ allocation and retrieval process

## **INSPIRE Trial Regulatory Timeline Summary**

#### NOV 2010

#### **IDE Submitted**

- 30-day Survival
- PGD3 at T24
- PP population
- NI Margin 10%

#### DEC 2012

#### **U.S. Trial Initiation**

- Composite of 30-day Survival + PGD3 at T72
- mITT population
- NI Margin 4%

#### **DEC 2013**

#### **Approved Amendment**

- Composite 30-day + PGD3 within T72
- PP population
- PGD3 at T72 secondary
- NI Margin 4%

#### 24 Months of Complex Negotiations

- FDA outlined conditions for IDE approval
- TransMedics agreed to conditions to initiate INSPIRE

#### EXPAND Lung IDE & ODE Appeal Jan-Dec 2013

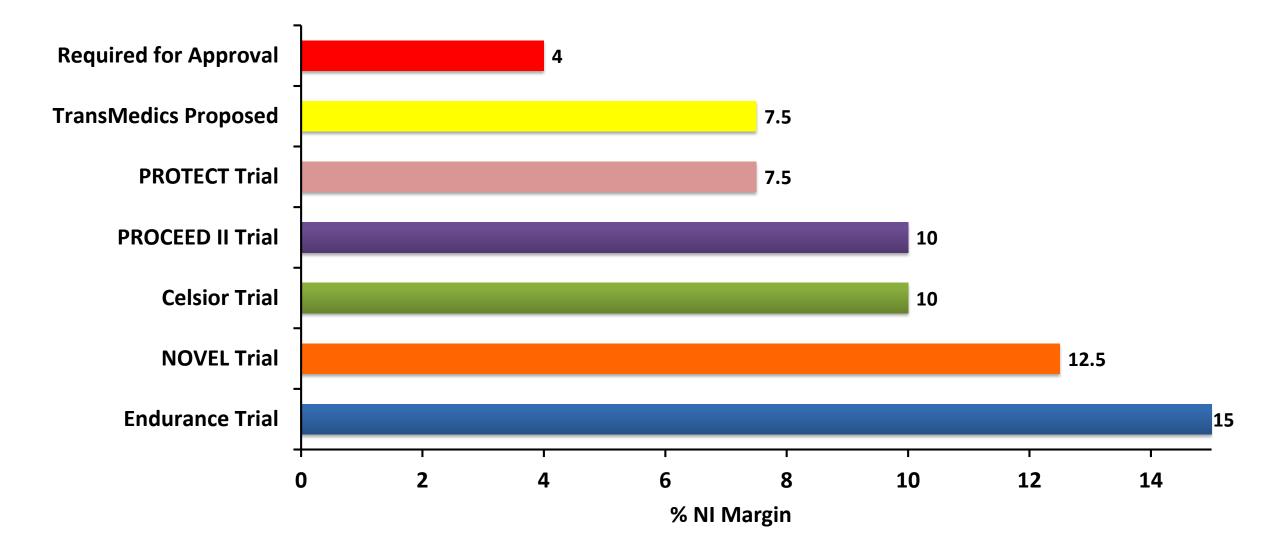
#### **Rationale for Protocol Amendment**

- Published literature on early PGD
- Successful EXPAND Trial appeal to ODE on scientific merits of PGD3 within 72 hours<sup>1-4</sup>

3. Christie J et al., JHLT 2010; 29:2131-2137 4. Huang H et al., AJT 2008: 245402462

## **Protocol Design Topics for Clarification**

#### **Protocol Non-Inferiority Design and Margin**


#### **Rationale for Protocol Amendment**

#### **Rationale for Administrative Extension Cohort**

## **Non-Inferiority Trial Design**

- Rationale for INSPIRE non-inferiority trial design:
  - Very common pivotal FDA trial design for device approval
  - Maintain current success rate of lung transplantation

## FDA Required 4% Non-Inferiority Margin



#### **Interpretation of Results with Conservative 4% NI Margin**

- To our knowledge, 4% NI margin is narrowest used in pivotal device trial
- OCS had to perform at least 4-5% better than Control to meet NI margin

## **Protocol Design Topics for Clarification**

#### **Protocol Non-Inferiority Design and Margin**

#### **Rationale for Protocol Amendment**

## **Rationale for Administrative Extension Cohort**

#### **INSPIRE Protocol Amendment**

 Allow PGD component of the primary endpoint to comprehensively assess PGD3 within all time points rather than at single point post-transplantation (T72)

 Re-designate the Per-Protocol as primary analysis population for effectiveness

## PGD3 Within 72 Hours Clinically Appropriate Endpoint for Preservation Technology



- PGD3 within 72 hours is comprehensive and robust assessment of PGD3 post-lung transplantation<sup>1-4</sup>
- Captures early timepoints that may be impacted by preservation injury as compared at only at T72
- PGD assessed at every timepoint throughout INSPIRE Trial

1. Whitson BA et al., JHLT 2007; 26:1004-10113. Christie J et al., JHLT 2010; 29:2131-21372. Daud et al., AMJ. Resp. & Crit. Care Med. 20074. Huang H et al., AJT 2008: 245402462

## Per Protocol Analysis is Clinically Appropriate Population

- TransMedics consistently maintained that PP was appropriate primary analysis population:
  - FDA guidance on non-inferiority trial analysis<sup>1</sup>
  - PP assesses treatment effect when OCS and cold storage used as intended, eliminating confounding variables:
    - Not treated as randomized (e.g. OCS recipient transplanted using cold storage preserved lungs)
    - Major protocol violations (e.g. donor lung with pneumonia)

## **Protocol Design Topics for Clarification**

#### **Protocol Non-Inferiority Design and Margin**

#### **Rationale for Protocol Amendment**

## **Rationale for Administrative Extension Cohort**

## **INSPIRE Trial Cohorts**



- IDE approved 2 perfusion solutions in the OCS arm: OCS Lung Solution and LPD Solution
- Several investigators observed lung edema during preservation using LPD. TMDX notified FDA of this observation to seek advice
- Agreement to file an administrative extension (Admin Ext) to allow time to define plan
- OCS Solution subgroup identified as an important adjunct analysis

## **Comprehensive Data Presentation**

- Cohorts
  - INSPIRE Cohort (N=320, pre-specified sample size)
  - Combined Cohort (N=349, INSPIRE + administrative extension)
- Effectiveness Analysis Populations
  - Per-protocol (primary)
  - Modified ITT (supportive)
- Results presented both Overall and for OCS Solution Subgroup

## **INSPIRE Trial Design**

#### Abbas Ardehali, MD

**Professor of Surgery and Medicine** 

William E. Connor Chair in Cardiothoracic Transplantation

Director, Heart and Lung Transplant Center

**UCLA Medical Center** 

## **Donor Eligibility Criteria Reflect Standard Lung Transplantation**

| Age | <65 | years | old |  |
|-----|-----|-------|-----|--|
|     |     | ,     |     |  |

Normal gas exchange [PaO<sub>2</sub> / FiO<sub>2</sub> ≥ 300] at time of final acceptance of donor lung

Inclusion

- No active lung disease
- Lung suitable for both OCS or cold storage

 Presence of moderate to severe traumatic lung injury

**Exclusion** 

- Presence of confirmed active pneumonia
- Positive serology (Hep. B/C, HIV etc.)

## **Recipient Eligibility Criteria Reflect Standard Lung Transplantation**

| Inclusion                                                           | Exclusion                                                           |
|---------------------------------------------------------------------|---------------------------------------------------------------------|
| <ul> <li>Registered double-lung transplant<br/>candidate</li> </ul> | <ul> <li>Prior solid organ or bone marrow<br/>transplant</li> </ul> |
| Age ≥ 18 years old                                                  | Multi-organ transplant recipient                                    |

• Multi-organ transplant recipient

**CO-40** 

- Single lung recipient
- Chronic renal failure

## **Primary Effectiveness Endpoint and Safety Endpoint**

- Primary effectiveness composite endpoint (NI margin = 4%)
  - All-cause survival post transplant at day 30 <u>and</u> absence of PGD Grade 3 within first 72 hours
- Safety endpoint: mean # of lung-graft-related SAEs through 30 days post transplant (NI margin = 0.07 events)
  - Moderate to severe acute rejection
  - Respiratory failure
  - Bronchial anastomotic complications
  - Lung related infections
- 30-day window relevant to assessing preservation-related issues as compared to later timepoints which could be impacted by other variables

## **Secondary and Other Clinical Endpoints**

- Secondary endpoints:
  - PGD Grade 3 at 72 hours (NI margin = 5%)
  - PGD Grade 2 or 3 at 72 hours (NI margin = 7.5%)
  - Patient survival at day 30 (NI margin = 4%)
- Other endpoints:
  - Bronchiolitis Obliterans Syndrome (BOS)
  - ICU length of stay
  - Hospital length of stay
  - Ventilation time

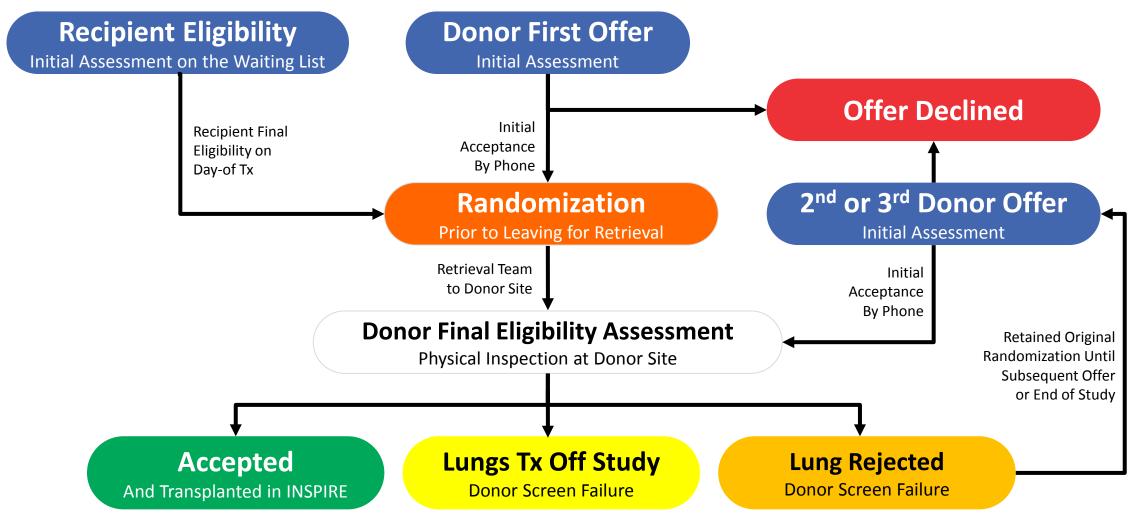
## PGD Assessment According to ISHLT 2005 Consensus Statement<sup>1</sup>

| Grade | PaO <sub>2</sub> /FiO <sub>2</sub> | Radiographic infiltrates consistent with<br>pulmonary edema |
|-------|------------------------------------|-------------------------------------------------------------|
| 0     | >300                               | Absent                                                      |
| 1     | >300                               | Present                                                     |
| 2     | 200-300                            | Present                                                     |
| 3     | <200                               | Present                                                     |

Clinical Implementation of ISHLT Consensus Statement as follows:

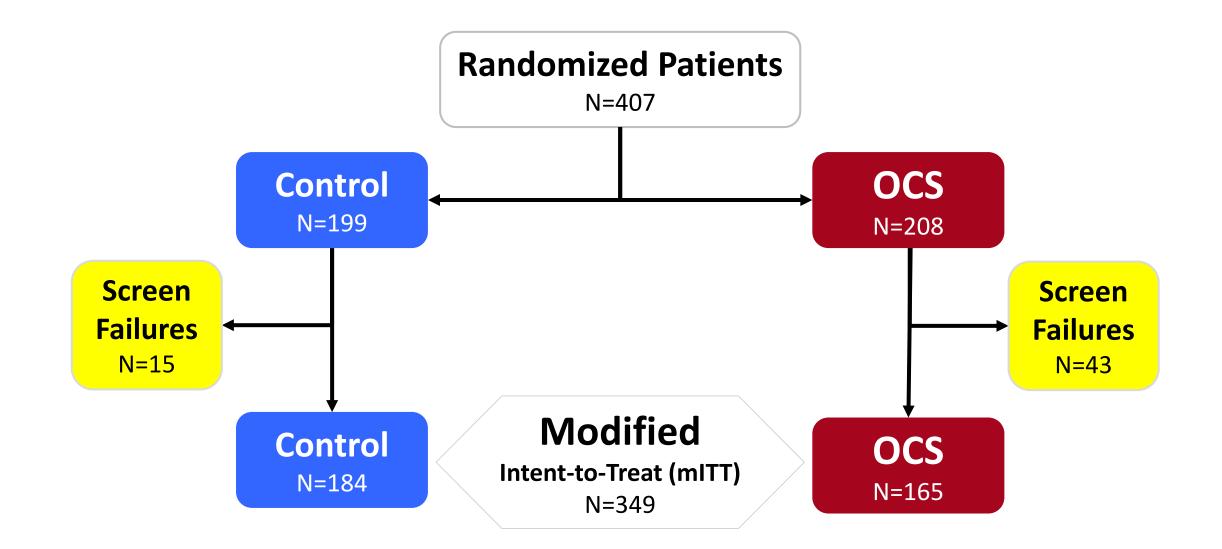
- Intubated patients graded based on PaO<sub>2</sub>/FiO<sub>2</sub> ratio & chest x-ray
- Extubated patients graded 0/1 based chest x-ray
- ECMO graded Grade 3 except prophylactic ECMO for IPAH

## **PGD Grading Discrepancy Examples**


Recipient **intubated**, PF ratio <200 mmHg with clear chest X-ray reading :

- INSPIRE Grade = PGD 3
- FDA Grade = PGD 0

Recipient **extubated**, PF ratio <200 mmHg on nasal supplemental O<sub>2</sub>:


- INSPIRE Grade= PGD 0 or 1 based on Chest X-ray reading
- FDA Grade = PGD 3

## **Complexities of Donor Lung Offer and Randomization Process**



FDA Discussion Question 2

## **CONSORT** Diagram of INSPIRE Trial (Randomization to mITT)

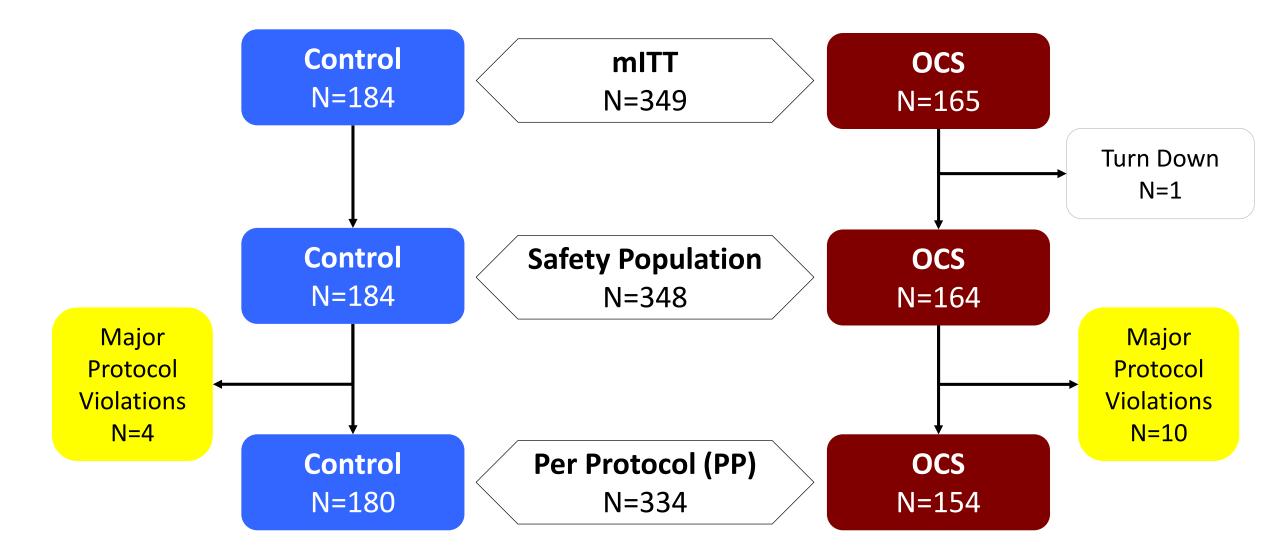


## **Categories of Screen Failures (n=58)**

| Screen Failure Type*                                                 | Definition                                                                                                                                                             | Control<br>N=15 | <b>OCS</b><br>N=43 |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| Donor Screen Failure,<br>Transplanted Off Study                      | Donor lungs <b>did not meet INSPIRE inclusion criteria</b><br>and were transplanted off study                                                                          | 6               | 17                 |
| Donor Screen Failure,<br>Remained on Waiting List<br>at End of Study | Initial donor lungs were <b>not accepted for</b><br><b>transplantation</b> , patient remained randomized and<br>waiting for a second offer at time of trial completion | 4               | 14                 |
| Logistics                                                            | Logistical issues prevented use of randomized preservation method to be used                                                                                           | 1               | 10                 |
| Recipient                                                            | Recipient found to be no longer eligible for inclusion in the trial on day of transplant                                                                               | 4               | 2                  |

\*Adjudicated by independent medical monitor

## **Extensive Analyses Performed To Understand Screen Failures**


## Multiple factors led to screen failures:

- Randomization prior to physical evaluation of donor lungs
- Some lungs were not suitable for transplantation and randomized recipients remained on waiting list awaiting another donor offer
- Transplant logistics
- No clear reason for imbalance between arms, however, this imbalance did not result in any measurable difference favoring the OCS arm in the patients analyzed in INSPIRE

## No Evidence of Donor Lung Characteristics Favoring OCS Arm in INSPIRE Trial

| Donor Parameters                                           | Control<br>N=184 | <b>OCS</b><br>N=165 |
|------------------------------------------------------------|------------------|---------------------|
| Age (year) (mean ± SD)                                     | 40 ± 14          | 42 ± 14             |
| Final PaO <sub>2</sub> /FiO <sub>2</sub> (mean ± SD)       | 432 ± 73         | 441 ± 79            |
| Smoking >20 Pky in last 6 months                           | 17%              | 18%                 |
| Abnormal Findings on Donor Lung Visualization at Retrieval | 26%              | 36%                 |
| Lung contusions                                            | 1%               | 4%                  |
| Emphysematous blebs                                        | 1%               | 2%                  |
| Granulomas                                                 | 0.5%             | 2%                  |
| Pneumonia                                                  | 0%               | 1%                  |
| Major atelectasis                                          | 21%              | 24%                 |
| Excessive lung adhesions, or parenchymal tears             | 1%               | 6%                  |

## **CONSORT** Diagram of INSPIRE Trial (mITT to PP)



# Patients with Pre-Specified Major Protocol Violations Included in mITT, Not PP Population

| Major Protocol Violation*                                                                                                                        | <b>Control</b><br>n=4 | <b>OCS</b><br>n=10 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|
| Donor lungs not eligible for inclusion (active pneumonia, severe<br>COPD with large blebs, or no final donor PF ratio to confirm<br>eligibility) | 1                     | 4                  |
| Failure to follow Instruction for Use (IFU)/Protocol                                                                                             | 3                     | 4                  |
| Patient transplanted with preservation method different than randomized due to user error                                                        | 0                     | 2                  |

\*Adjudicated by independent medical monitor

## **Recipient Characteristics Similar Between Arms**

|                                              | Control                | OCS                            |
|----------------------------------------------|------------------------|--------------------------------|
| Recipient Characteristic                     | N=184                  | N=165                          |
| Age (years), Mean ± SD                       | $50 \pm 14$            | $50 \pm 13$                    |
| Female, %                                    | 36%                    | 48%                            |
| BMI (kg/m <sup>2</sup> ), Mean ± SD          | <b>23</b> ± <b>4.1</b> | $\textbf{23} \pm \textbf{4.6}$ |
| LAS Score, Mean ± SD                         | <b>48</b> ± <b>18</b>  | $51 \pm 20$                    |
| On ECMO on Transplant Day, %                 | 5%                     | 5%                             |
| Use of Intraoperative Cardiopulmonary Bypass | 38%                    | 40%                            |
| Secondary Pulmonary Hypertension, %          | 32%                    | 40%                            |
| Primary Cause of Lung Failure, %             |                        |                                |
| COPD                                         | 28%                    | 28%                            |
| IPF                                          | 34%                    | 35%                            |
| Cystic Fibrosis                              | 23%                    | 21%                            |
| IPAH                                         | 4%                     | 9%                             |
| Sarcoidosis                                  | 5%                     | 3%                             |

## **INSPIRE Trial Methodology Summary**

- INSPIRE RCT was successfully implemented in 21 international academic lung Tx. Centers in the complex field of lung transplantation
- PGD assessment followed the clinical implementation of the 2005 ISHLT Consensus Statement
- Screen failure imbalance did not result in any measurable difference favoring the OCS arm
- Largest body of prospective clinical evidence supporting use of EVLP in standard lung transplantation

## **INSPIRE Trial Adjudication and Trial Oversight**

#### John Wallwork, FRCS, FmedSCI

Emeritus Professor, Cardiothoracic Surgery

Papworth Hospital

Cambridge University, UK

President (1994-95), International Society for Heart and Lung Transplant (ISHLT)

## **Medical Monitor Adjudication Process**

- Adjudicated PGD scores according to the ISHLT 2005 consensus statement guidelines. This process was implemented in a blinded and consistent manner for both study groups.
- Adjudicated all Serious Adverse Events (SAEs) according to the protocol definitions, without changes to the protocol safety endpoint definition. This process was implemented in a blinded and consistent manner for both study groups
- There was no conflict between Medical Monitor role and my role on the DSMB

## **INSPIRE Trial Results**

Gregor Warnecke, MD, PhD

Vice Chairman

Director of Heart and Lung Transplantation

Hannover Medical School

## **Outline of INSPIRE Trial Results**

**Critical Transplant Times and OCS Perfusion Parameters** 

#### **Composite Primary Effectiveness Endpoint**

#### **Components of Primary Composite Endpoint**

Short-Term Patient Survival Freedom from PGD3 Within 72 hours

#### **Adjunct Effectiveness Analysis**

**Secondary Endpoints** 

Safety

**Additional Clinical Endpoints** 

## **INSPIRE Trial Definitions of Cross-Clamp and Ischemic Times**

|                  | Definition                                                                                 |
|------------------|--------------------------------------------------------------------------------------------|
| Cross-Clamp Time | Time from aortic cross-clamp in donor to pulmonary artery cross-clamp removal in recipient |
| Ischemic Time    | Time donor lung was not perfused with oxygenated blood                                     |

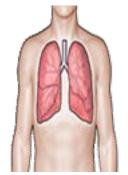
## **OCS Lung Perfusion Impact on Ischemic Times During Transplantation**

#### **Control - Cross Clamp/Ischemic Times Are Same**



Donor

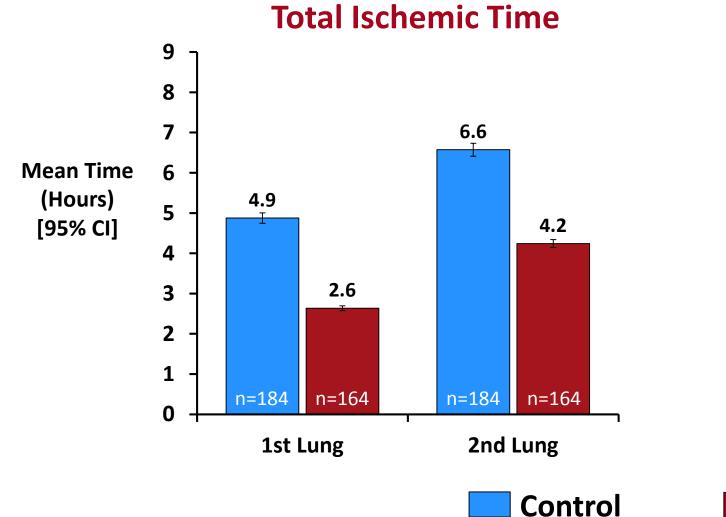
From aortic cross-clamp in donor to pulmonary artery cross-clamp removal in recipient


Time donor lung was not perfused with oxygenated blood

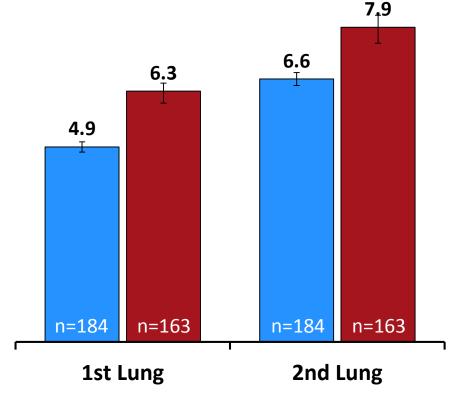
#### **OCS** - Ischemic Times Are Limited Due to OCS Perfusion

Ischemia

**Oxygenated Perfusion** 

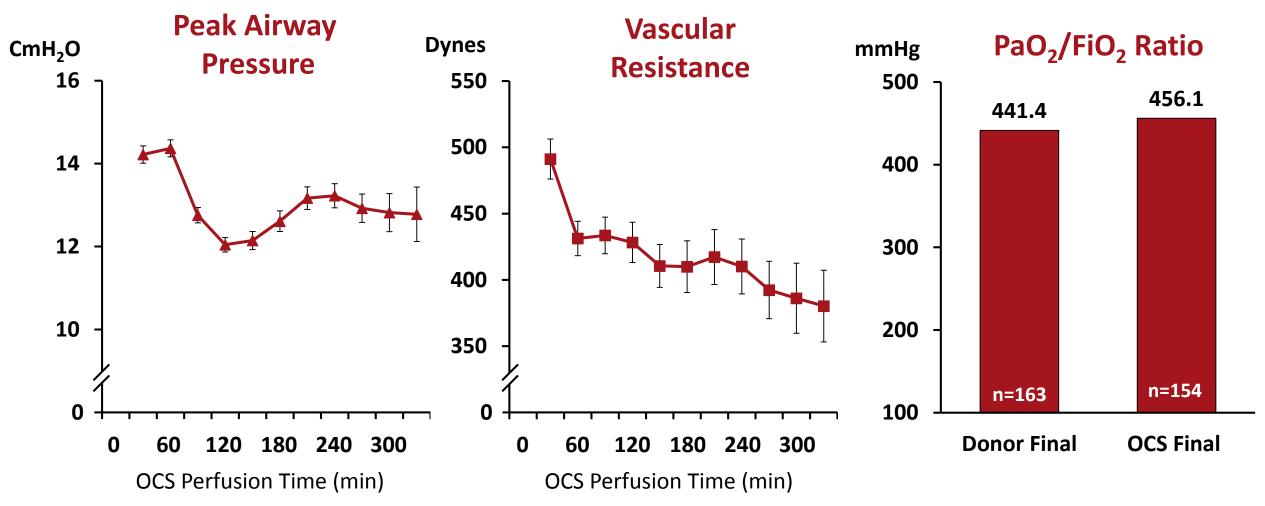

Ischemia




**CO-59** 

Recipient

## OCS Significantly Reduced Ischemic Time on Donor Lungs – Combined Cohort




#### **Total Cross-Clamp Time**



OCS

## Stable Perfusion Parameters & Lung Oxygenation on OCS Lung System – Combined Cohort



Mean± SE

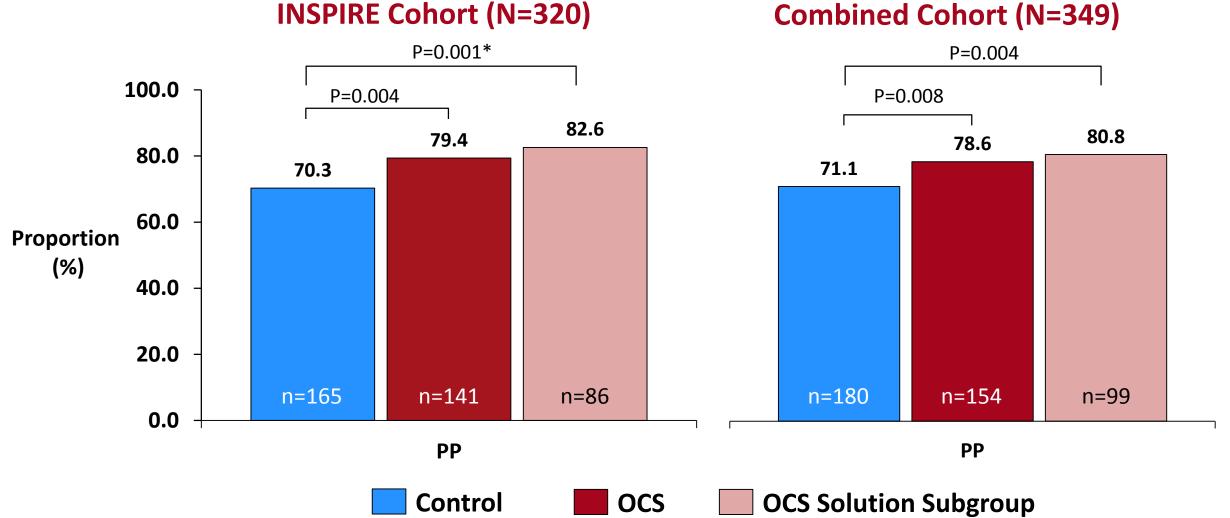
## **Outline of INSPIRE Trial Results**

**Critical Transplant Times and OCS Perfusion Parameters** 

**Composite Primary Effectiveness Endpoint** 

#### **Components of Primary Composite Endpoint**

Short-Term Patient Survival Freedom from PGD3 Within 72 hours


#### **Adjunct Effectiveness Analysis**

**Secondary Endpoints** 

Safety

**Additional Clinical Endpoints** 

### **Primary Effectiveness Endpoint - PP:** Composite of <u>30-Day</u> Survival and Freedom from PGD3 Within 72 Hours



\* met superiority test

CO-63

## **INSPIRE Trial Met Pre-specified Primary Effectiveness Endpoint**

|                      | Point I    | Estimate | Treatment Difference [Upper 95% CI]      | P-value |
|----------------------|------------|----------|------------------------------------------|---------|
| OCS Overall          | Control    | OCS      |                                          |         |
| PP INSPIRE Coho      | rt 70.3%   | 79.4%    | -9.1%                                    | 0.004   |
| Combined Col         | nort 71.1% | 78.6%    | -7.5%                                    | 0.008   |
|                      | rt 70.4%   | 74.2%    | -3.8%                                    | 0.060   |
| mITT<br>Combined Col | nort 71.2% | 73.3%    | -2.1%                                    | 0.100   |
| OCS Solution         |            |          |                                          |         |
| PP INSPIRE Coho      | rt 70.3%   | 82.6%    | -12.3%                                   | 0.001   |
| Combined Col         | nort 71.1% | 80.8%    | -9.7% 🗨                                  | 0.004   |
| INSPIRE Coho         | rt 70.4%   | 78.9%    | -8.5% 🗨                                  | 0.012   |
| mITT<br>Combined Col | nort 71.2% | 76.9%    | -5.7% 🗨 🚽                                | 0.034   |
|                      |            | -2       | 0% -10% 0% <mark>4%</mark> 10% 20        | 0%      |
|                      |            |          | Supports Non-Inferiority Does Not Suppor | t NI    |

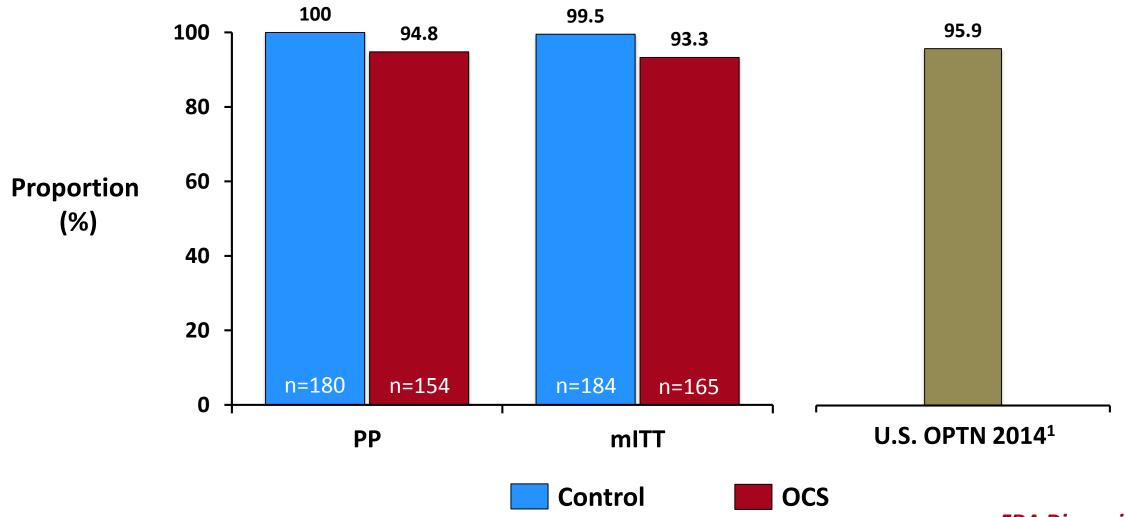
## **Outline of INSPIRE Trial Results**

**Critical Transplant Times and OCS Perfusion Parameters** 

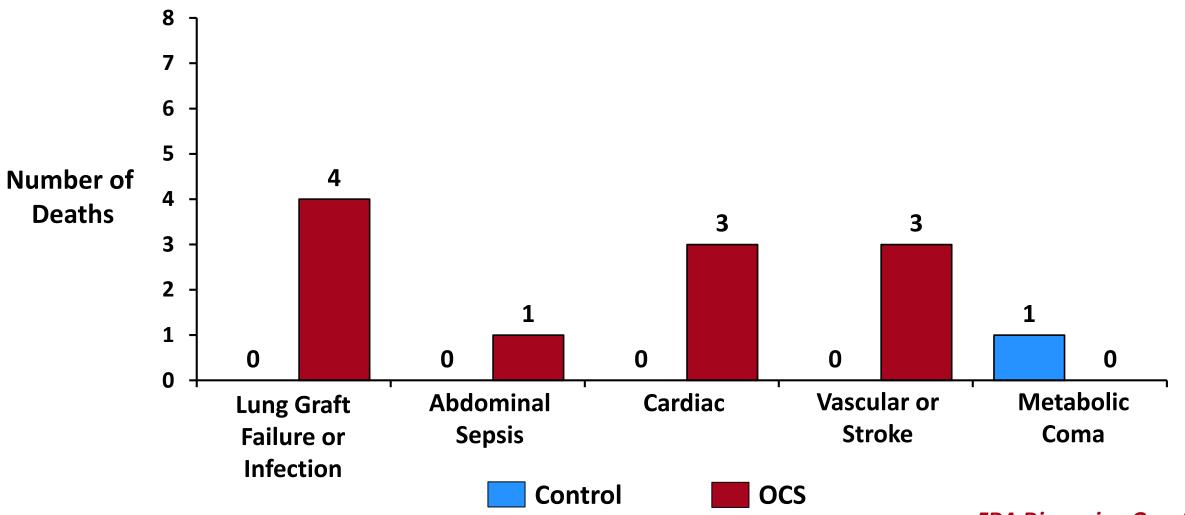
**Composite Primary Effectiveness Endpoint** 

**Components of Primary Composite Endpoint** 

Short-Term Patient Survival Freedom from PGD3 Within 72 hours

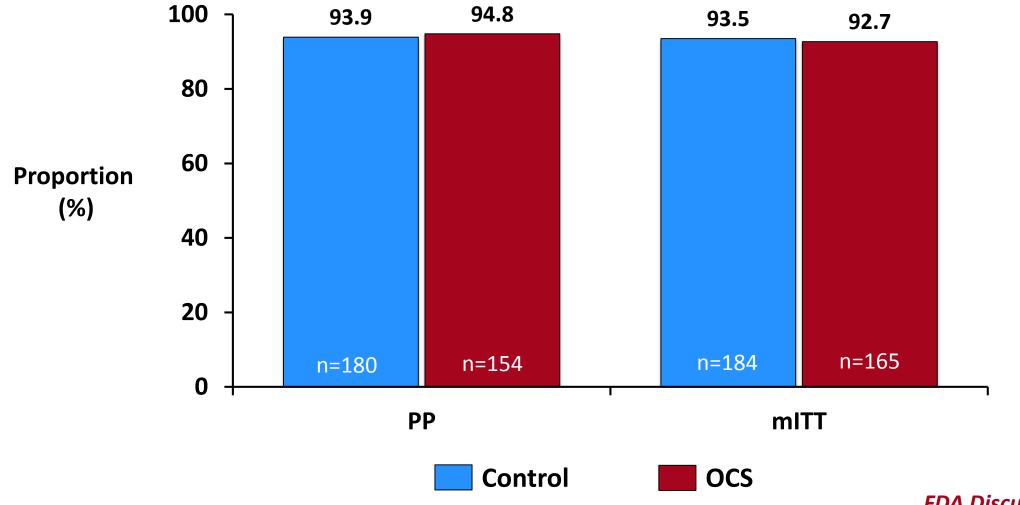

**Adjunct Effectiveness Analysis** 

**Secondary Endpoints** 


Safety

**Additional Clinical Endpoints** 


## **30-Day Patient Survival – Combined Cohort**




## **30-Day All Causes of Mortality – Combined Cohort**



## **30-Day AND In-Hospital Causes of Mortality - Combined Cohort**





## **Outline of INSPIRE Trial Results**

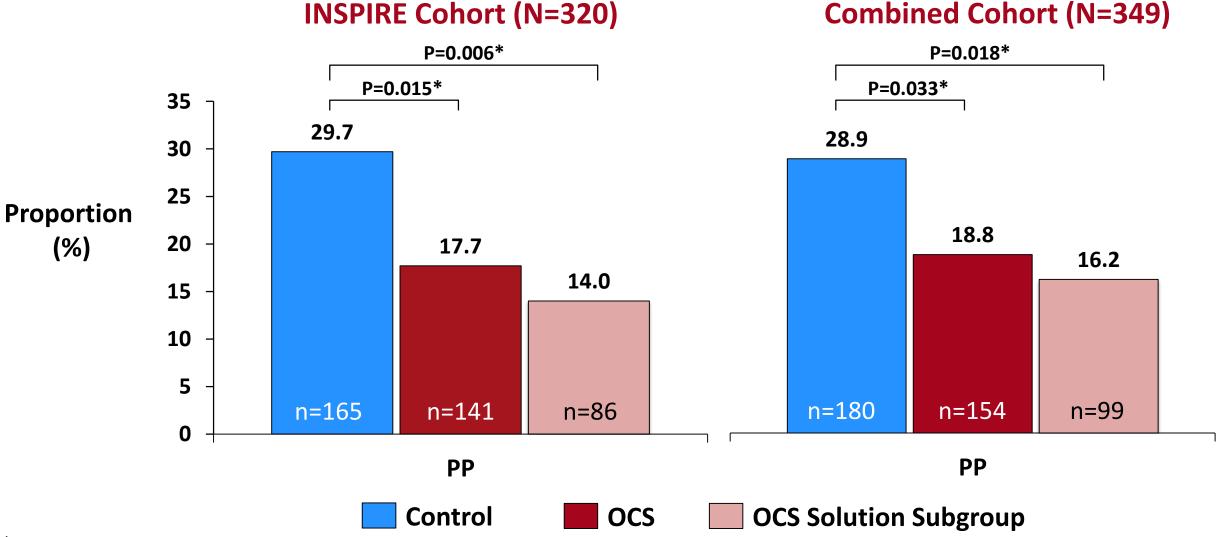
**Critical Transplant Times and OCS Perfusion Parameters** 

 $CO_{-}70$ 

**Composite Primary Effectiveness Endpoint** 

**Components of Primary Composite Endpoint** 

Short-Term Patient Survival Freedom from PGD3 Within 72 hours


**Adjunct Effectiveness Analysis** 

**Secondary Endpoints** 

Safety

**Additional Clinical Endpoints** 

## **OCS Resulted in Significant Reduction of PGD3** <u>Within</u> 72 Hours



\* superiority test

**CO-71** 

## **Outline of INSPIRE Trial Results**

**Critical Transplant Times and OCS Perfusion Parameters** 

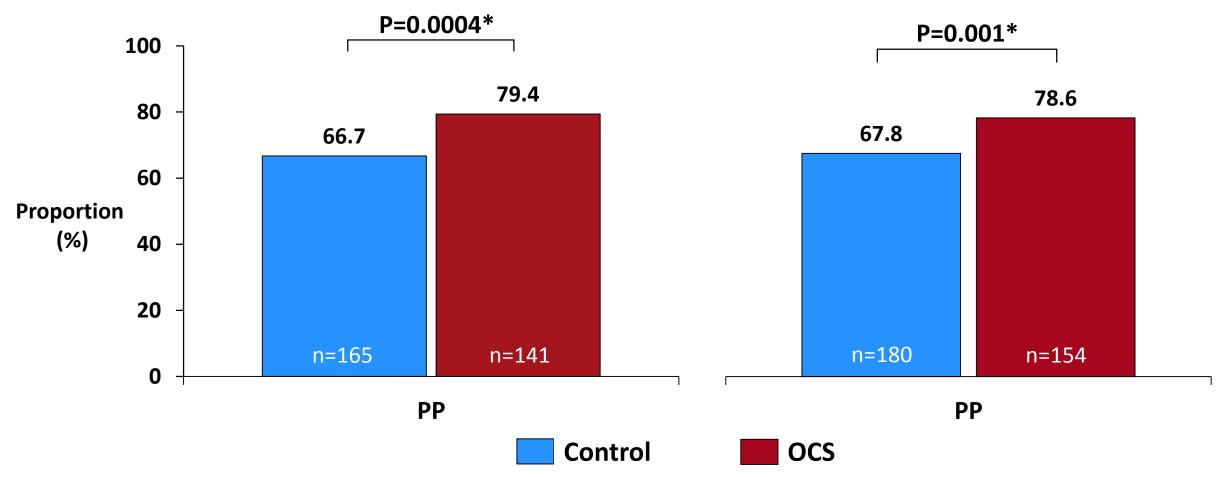
**Composite Primary Effectiveness Endpoint** 

**Components of Primary Composite Endpoint** 

Short-Term Patient Survival Freedom from PGD3 Within 72 hours

**Adjunct Effectiveness Analysis** 

**Secondary Endpoints** 


Safety

**Additional Clinical Endpoints** 

#### **Post-Hoc Adjunct Effectiveness Analysis – PP :** Composite of 30-Day and In-Hospital Survival & Freedom from PGD3 Within 72 Hours

**INSPIRE Cohort (N=320)** 

**Combined Cohort (N=349)** 



\* met superiority test

#### **Post-Hoc Adjunct Effectiveness Analysis Demonstrates Consistent Benefit of OCS**

|                |           | Point Estimate |       | Treatment Difference [Upper 95% CI]       | P-value |
|----------------|-----------|----------------|-------|-------------------------------------------|---------|
| OCS Overall    |           | Control        | OCS   |                                           |         |
|                | Cohort    | 66.7%          | 79.4% | -12.8%                                    | 0.0004  |
|                | ed Cohort | 67.8%          | 78.6% | -10.8%                                    | 0.001   |
|                | Cohort    | 66.9%          | 74.2% | -7.3%                                     | 0.013   |
| mITT<br>Combin | ed Cohort | 67.9%          | 73.3% | -5.4%                                     | 0.027   |
| OCS Solution   | n         |                |       |                                           |         |
|                | Cohort    | 66.7%          | 82.6% | -15.9%                                    | 0.0001  |
|                | ed Cohort | 67.8%          | 80.8% | -13.0%                                    | 0.0006  |
|                | Cohort    | 66.9%          | 78.9% | -12.0%                                    | 0.002   |
| mITT<br>Combin | ed Cohort | 67.9%          | 76.9% | -9.0% 🖸                                   | 0.008   |
|                |           |                |       | -20% -10% 0% 4% 10% 2                     | 20%     |
|                |           |                |       | Supports Non-Inferiority Does Not Support | rt NI   |

#### **Outline of INSPIRE Trial Results**

**Critical Transplant Times and OCS Perfusion Parameters** 

**Composite Primary Effectiveness Endpoint** 

**Components of Primary Composite Endpoint** 

Short-Term Patient Survival Freedom from PGD3 Within 72 hours

**Adjunct Effectiveness Analysis** 

**Secondary Endpoints** 

Safety

**Additional Clinical Endpoints** 

#### Rate of PGD Grade 3 At 72 Hours Similar Between Arms

|      |                 | Point E | stimate | Treatment Difference [Upper 95% CI]    | P-value |
|------|-----------------|---------|---------|----------------------------------------|---------|
| 00   | S Overall       | Control | OCS     |                                        |         |
| РР   | INSPIRE Cohort  | 4.2%    | 2.1%    | -2.1% ——                               | 0.0002  |
|      | Combined Cohort | 5.0%    | 3.9%    | -1.1% 🛑 🛶                              | 0.003   |
|      | INSPIRE Cohort  | 4.7%    | 5.3%    | 0.6%                                   | 0.037   |
| mITT | Combined Cohort | 5.5%    | 6.7%    | 1.2%                                   | 0.072   |
| OC   | S Solution      |         |         |                                        |         |
|      | INSPIRE Cohort  | 4.2%    | 2.3%    | -1.9% 🖳 -1.9%                          | 0.001   |
| PP   | Combined Cohort | 5.0%    | 5.1%    | 0.0% 🖳 🕂                               | 0.035   |
|      | INSPIRE Cohort  | 4.7%    | 4.5%    | -0.2%                                  | 0.028   |
| mITT | Combined Cohort | 5.5%    | 6.8%    | 1.3%                                   | 0.110   |
|      |                 |         | -2      | 20% -10% 0% <mark>5%</mark> 10%        | 20%     |
|      |                 |         |         | Supports Non-Inferiority Does Not Supp | ort NI  |

FDA Discussion Question 1

#### Rate of PGD Grade 2 or 3 At 72 Hours Similar Between Arms

|     |                 | Point Estimate |       | Treatment Difference [Upper 95% CI]   | P-value |
|-----|-----------------|----------------|-------|---------------------------------------|---------|
| 005 | 5 Overall       | Control        | OCS   |                                       |         |
|     | INSPIRE Cohort  | 8.5%           | 11.3% | 2.9%                                  | 0.089   |
| PP  | Combined Cohort | 10.6%          | 13.0% | 2.4%                                  | 0.075   |
|     | INSPIRE Cohort  | 8.9%           | 15.3% | 6.5% 🕒 🚽                              | 0.388   |
| mIT | Combined Cohort | 10.9%          | 16.5% | 5.5%                                  | -       |
| 009 | 5 Solution      |                |       |                                       |         |
| РР  | INSPIRE Cohort  | 8.5%           | 7.0%  | -1.5% 🗨                               | 0.005   |
| PP  | Combined Cohort | 10.6%          | 10.1% | -0.5% 🗨                               | 0.018   |
|     | INSPIRE Cohort  | 8.9%           | 9.0%  | 0.1% 🔍 🛶 🕌                            | 0.024   |
| mIT | Combined Cohort | 10.9%          | 11.7% | 0.7%                                  | -       |
|     |                 |                | -20   | 0% -10% 0% <b>7.5%</b> 10% 2          | 0%      |
|     |                 |                |       | Supports Non-Inferiority Does Not Sup | port NI |

### **Outline of INSPIRE Trial Results**

**Critical Transplant Times and OCS Perfusion Parameters** 

**Composite Primary Effectiveness Endpoint** 

**Components of Primary Composite Endpoint** 

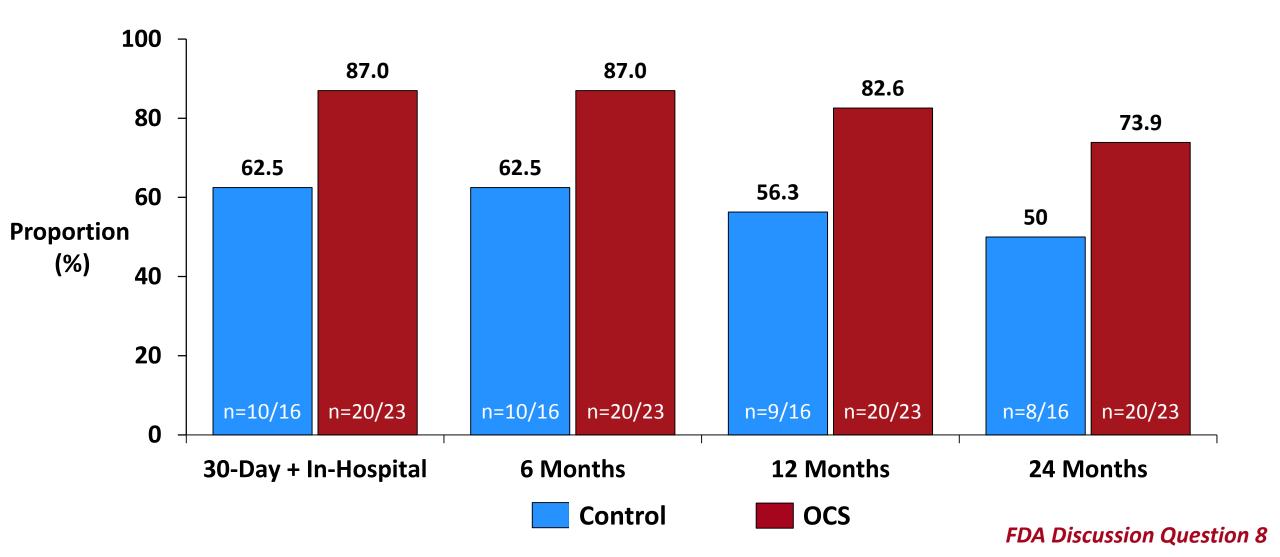
Short-Term Patient Survival Freedom from PGD3 Within 72 hours

**Adjunct Effectiveness Analysis** 

**Secondary Endpoints** 

Safety

**Additional Clinical Endpoints** 


## **OCS Lung System Met Primary Safety Endpoint**

| INSPIRE Combined Cohort (n=349)        | Control<br>N=184 | OCS<br>N=164 |
|----------------------------------------|------------------|--------------|
| Lung-graft related SAEs, n (%)         | 45 (24.5)        | 40 (24.4)    |
| Mean ± SD                              | 0.29 ± 0.54      | 0.26 ± 0.48  |
| Non-Inferiority p-value                |                  | 0.042        |
| Type of Lung-graft related SAEs, n (%) |                  |              |
| Acute Rejection                        | 4 (2)            | 2 (1)        |
| Respiratory Failure*                   | 16 (9)           | 23 (14)      |
| Bronchial Anastomotic Complication     | 4 (2)            | 0            |
| Major Pulmonary-Related Infection      | 29 (16)          | 18 (11)      |

\* Need for re-intubation, tracheostomy or the inability to discontinue ventilator support within 4 days post-transplant

#### FDA Discussion Question 8

### **Survival Profile for Respiratory Failure Patients**



#### **Overall Safety Profile (including Mortality) Similar Between OCS and Control**

| Patients              | Control<br>N=184 | OCS<br>N=164 |
|-----------------------|------------------|--------------|
| Any Type of AE        | 83%              | 83%          |
| Definitely Related    | 0%               | 0%           |
| Probably Related      | 0%               | 1%           |
| Possibly Related      | 3%               | 3%           |
| Unlikely Related      | 31%              | 36%          |
| Not Related           | 71%              | 69%          |
| Any SAEs              | 63%              | 56%          |
| Any Severe AEs        | 29%              | 31%          |
| Death up to 24 months | 16%              | 16%          |

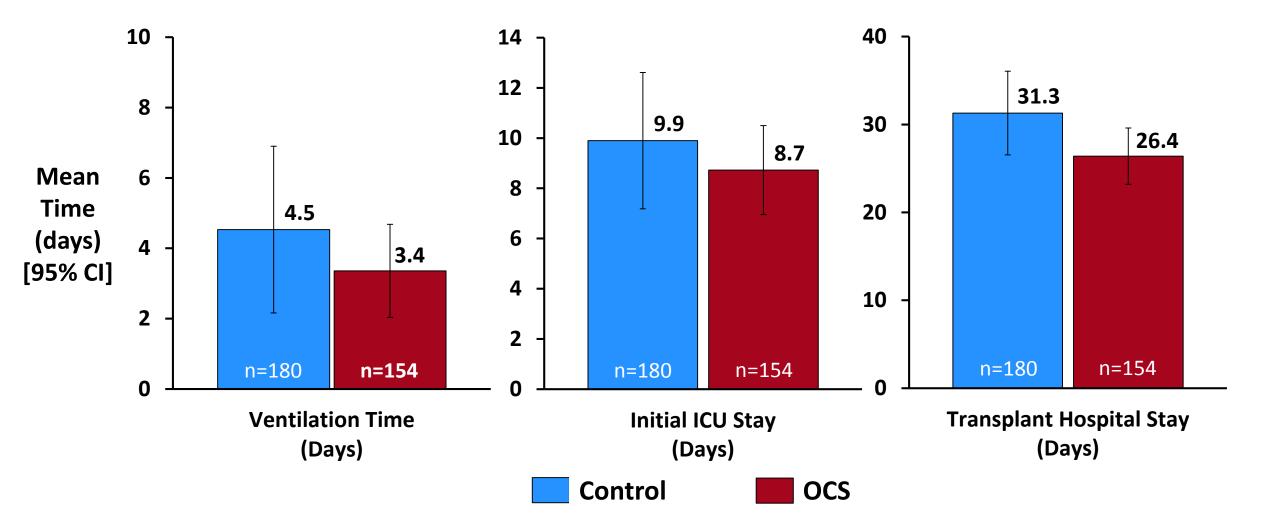
#### **Outline of INSPIRE Trial Results**

**Critical Transplant Times and OCS Perfusion Parameters** 

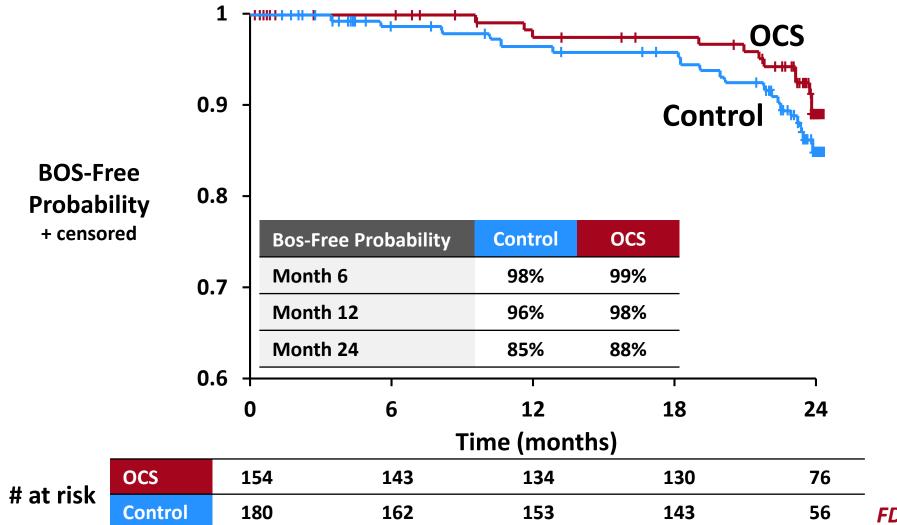
**Composite Primary Effectiveness Endpoint** 

**Components of Primary Composite Endpoint** 

Short-Term Patient Survival Freedom from PGD3 Within 72 hours


**Adjunct Effectiveness Analysis** 

**Secondary Endpoints** 


Safety

**Additional Clinical Endpoints** 

#### Ventilation Times, Lengths of ICU and Initial Hospital Stay Comparisons – Combined Cohort



#### OCS Associated with Lower Incidence of BOS Through 24 Months – Combined Cohort PP



FDA Discussion Question 9

# **INSPIRE Trial Demonstrated Safety and Effectiveness of the OCS Lung System**

- Met primary effectiveness endpoint and safety endpoint
- Significant reduction of PGD3 within 72 hours
- Significant reduction of ischemic time on donor lungs
- No additional safety risk associated with OCS compared to Control
- Favorable 2-year BOS results to be further evaluated in post-approval study

#### **Training Program and Post-Market Study Plan**

Waleed Hassanein, MD

President and CEO

TransMedics, Inc.

## **Clinical Training Infrastructure**



- Dedicated 15,000 Sq. F. facility equipped with latest surgical and diagnostics equipment to replicate a retrieval environment
- 86 global academic and clinical institutions
- >400 health care professionals trained





# **OCS Clinical Training and Support Program**

Initial Hands-On Clinical Training and Certification of Every New Clinical Center Starting an OCS Lung Program

Dedicated OCS Lung iPad Training & Support Application

#### 24 X 7 Phone and Text Messaging Hotline

# Post Approval Study Plan

#### **Two-Part Post-Approval Study Plan**

#### Long-term Follow-up of INSPIRE Patients

#### OCS Thoracic Organ Perfusion (TOP) Registry

FDA Discussion Question 12 & 13

## **Long-Term Follow-up of INSPIRE Patients**

#### Goal

 Assess impact of OCS Lung preservation on the incidence of BOS and survival for up to 5 years

#### **Data Collection**

- Incidence of BOS at year 3, 4, and 5
- Survival at year 3, 4, and 5

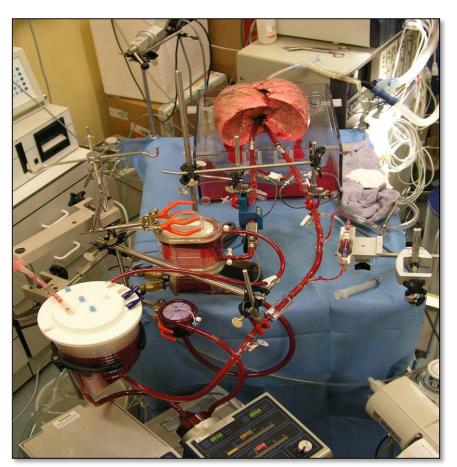
## **OCS Thoracic Organ Perfusion Registry**

- Goal: Expand clinical evidence for OCS Lung System in standard criteria lung transplantation post market
- Primary Clinical Objective: 5-year survival compared to SRTR/OPTN data for historical controls in same time period of enrollment
- Other Clinical Objectives:
  - Incidence of PGD within initial 72 hours
  - Incidence of BOS-free survival up to 5 years

#### Clinical Perspectives and Benefit-Risk Assessment

#### Dirk Van Raemdonck, MD, PhD

Director, Transplant Center

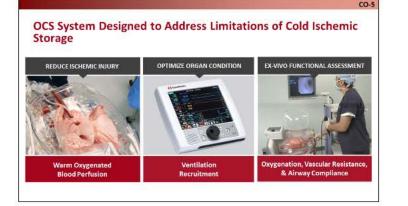

University Hospitals Leuven

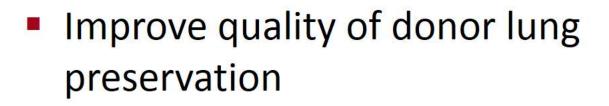
Department of Thoracic Surgery

#### OCS Lung System Provides Necessary Advance to Field of Lung Transplantation

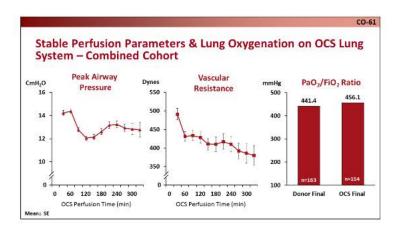




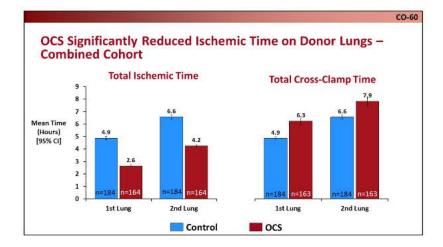



2004

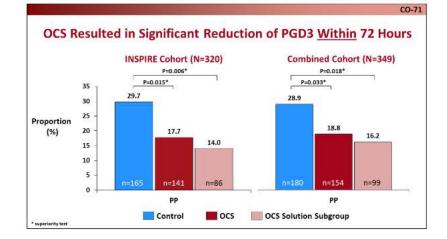



## OCS Provides New Optimization and Monitoring Capabilities That are Not Possible with Cold Storage






Improve clinical decision making




# **OCS Reduces Ischemic Time on Donor Lungs**



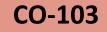
- First preservation technology to reduce ischemia on donor lungs
- Ability to travel longer
- Better transplant procedure logistics

# OCS First Device To Demonstrate Significant Reduction of Most Severe Form of PGD



- First technology to reduce PGD
- Offers potential for better short- and long-term outcomes
- Encouraging BOS results to be further evaluated post approval

# **INSPIRE Trial Demonstrates Reasonable Assurance of Safety for OCS Lung System**


- Met safety endpoint
- Higher 30-day mortality in OCS was due to non-lung graft related causes
- Overall hospital mortality was similar between arms
- Favorable long-term safety profile with similar survival through 2 years

# Effectiveness of OCS Lung System Clearly Demonstrated in INSPIRE Trial

- OCS performed similar to or better than control on most effectiveness measures
- OCS overcomes many limitations of cold storage:
  - Reduces ischemic injury
  - Provides optimization and monitoring capabilities
- Positive benefit-risk profile

## OCS Lung Approval Would Enable Future Advancements in Lung Transplantation

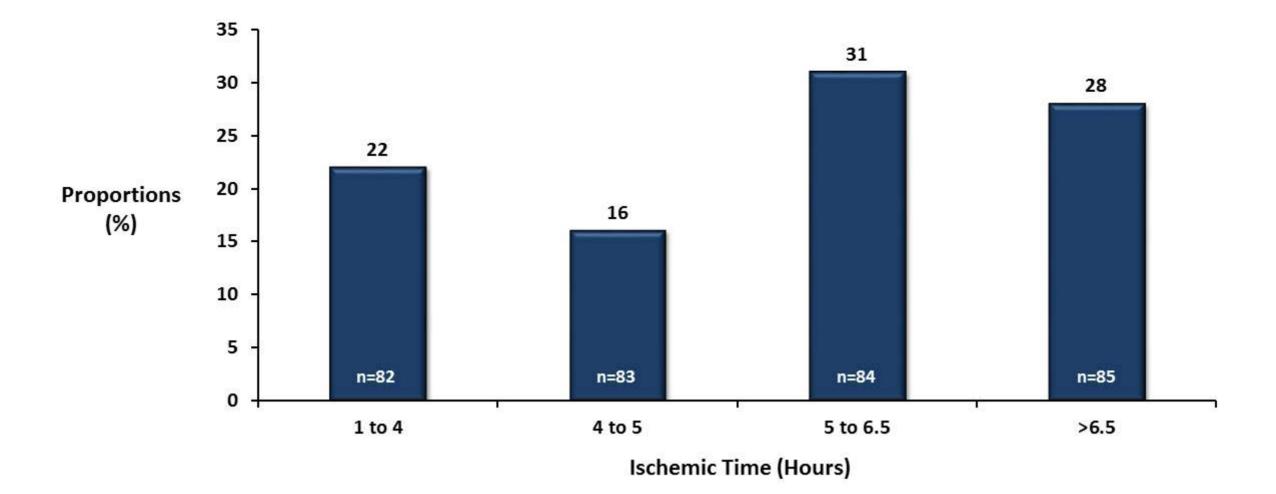
- OCS Lung System is a paradigm shift in lung transplantation
- Important <u>first step</u> toward further advancements:
  - Improve long-term viability of donor lungs
  - Increase availability of donor lungs currently wasted due to limitations of cold storage
    - Would reduce mortality on the waiting list
- Providing OCS Lung to patients/physicians in US now critical to advancing field of lung transplantation



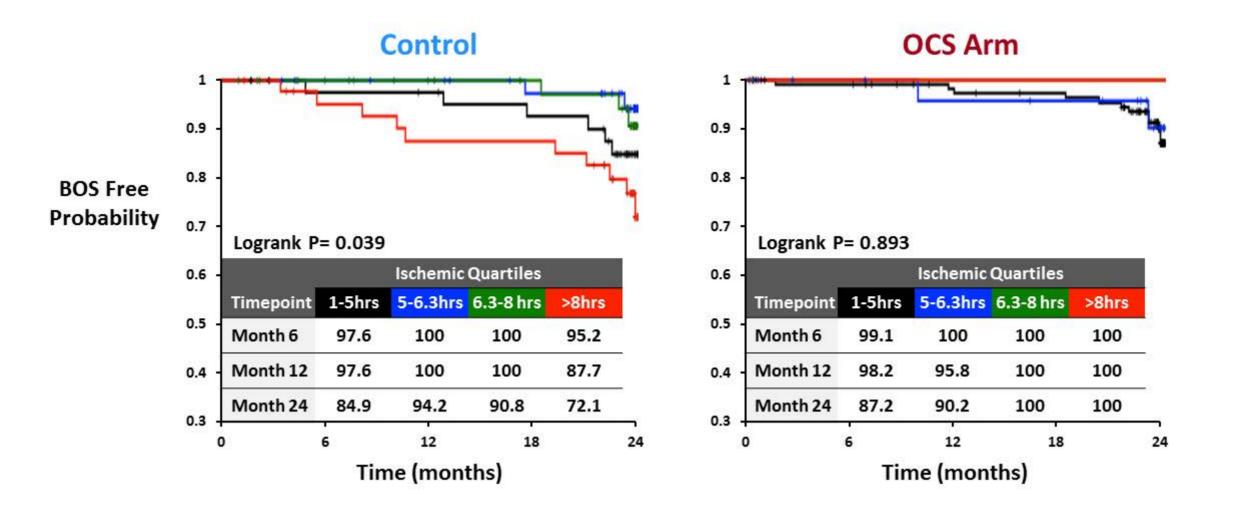


Bringing new life to organ transplantation<sup>™</sup>

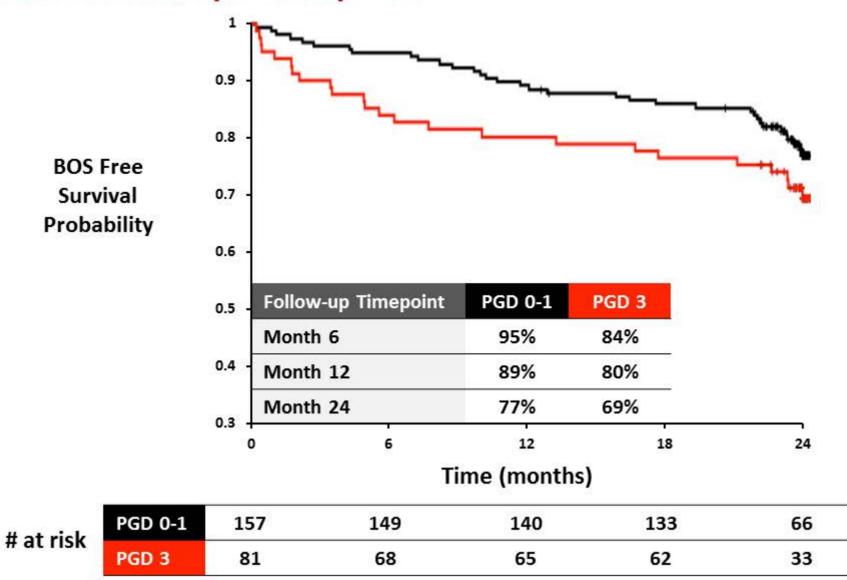
### OCS<sup>™</sup> Lung System for the Preservation of Donor Lungs for Transplantation


May 17, 2017

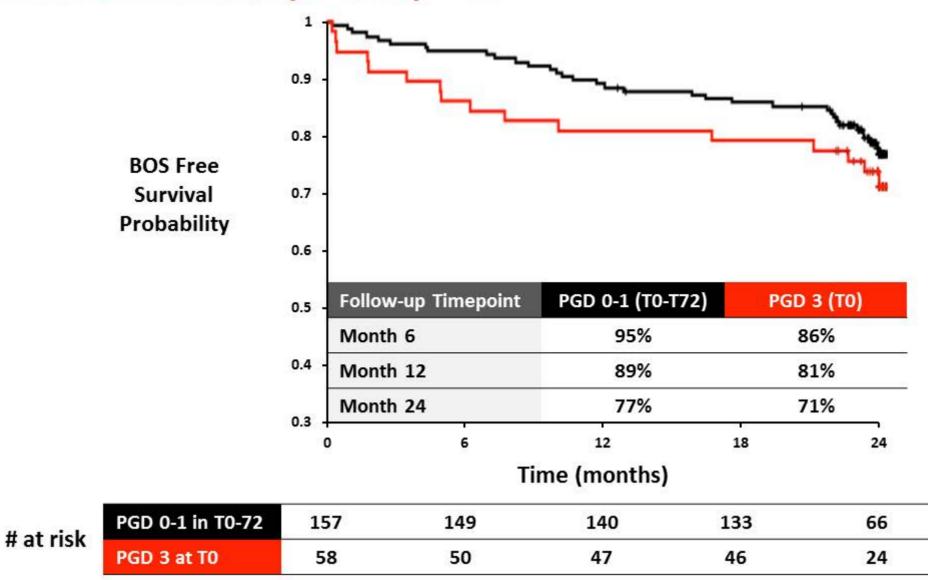
TransMedics, Inc.


Gastroenterology-Urology Devices Panel

#### **ONSCREEN BACK-UP SLIDES**


#### PGD3 Within 72 Hours Stratified by Ischemic Time Quartiles: Combined Cohort (N=349) – PP Population




#### BOS-Free Status Through 24 Months by Control Ischemic Quartile Per Protocol Combined Cohort (N=349), Treatment Splits



#### PGD 3 <u>Within 72</u> Hours and BOS Free Survival Combined Cohort (N=349) – PP



#### PGD 3 <u>at T0</u> and BOS Free Survival Combined Cohort (N=349) – PP



# **Logistics Screen Failure – Transplanted Off Study**

#### OCS



- 2 Device was not available for retrieval due to malfunction
- 1 No trained personnel to run OCS

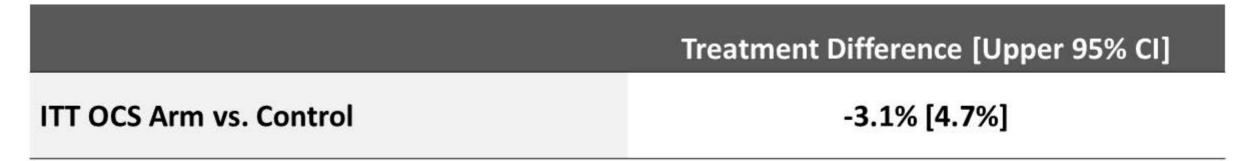
#### CONTROL

1 Randomization envelope not opened prior to retrieval

#### OCS

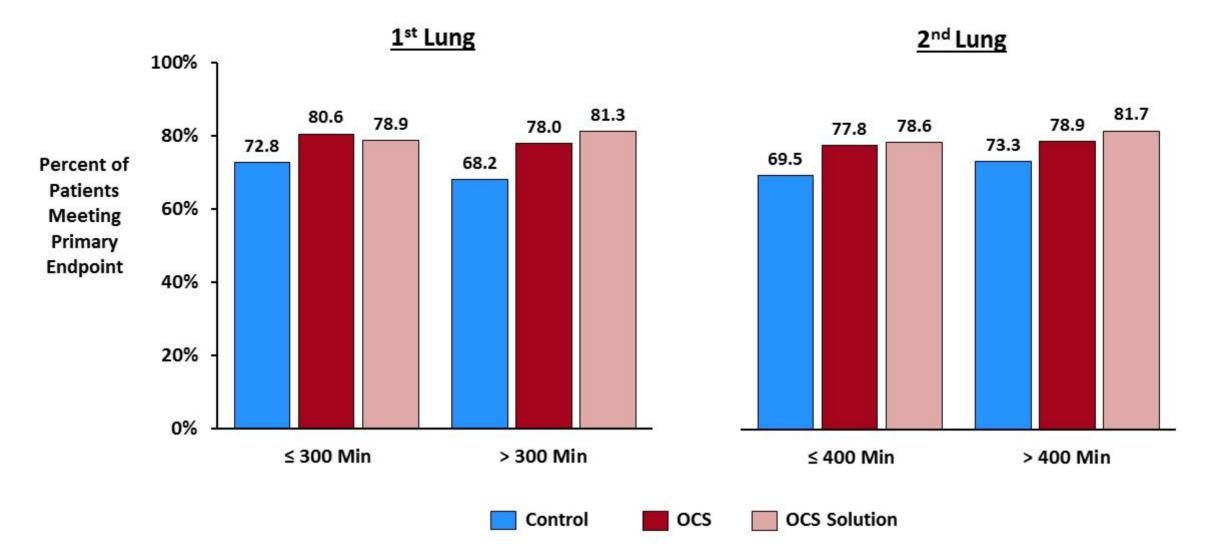
- 1 pRBCs expired during simultaneous donor offers
- 1 Out of geographical zone donor offer in the UK
- 2 OCS solution used in first donor offer and out of stock
- 3 No trained personnel available to run OCS



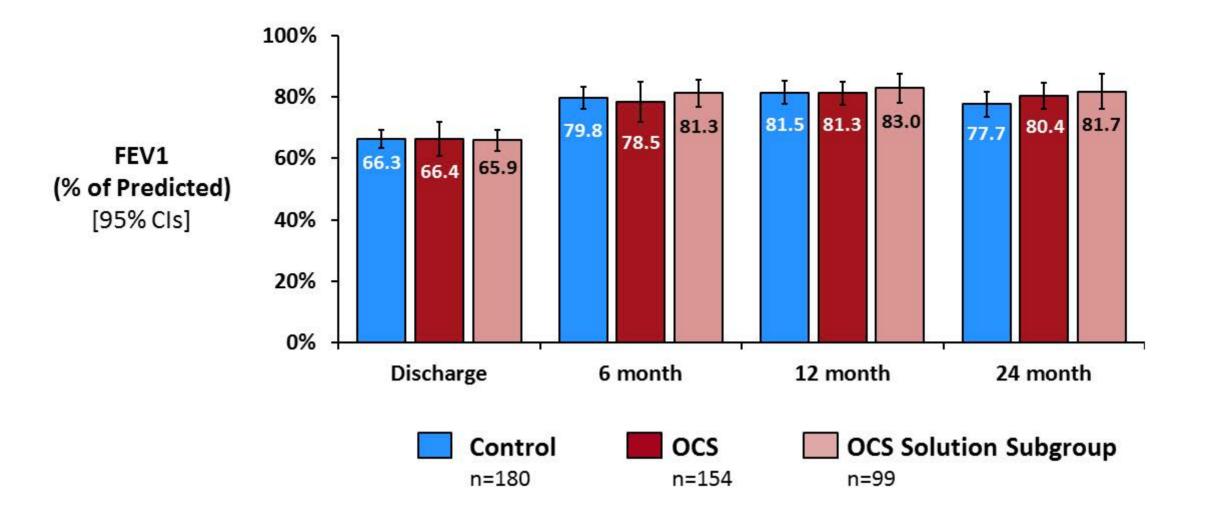

#### **Screen Failures**

- mITT Definition
  - All randomized patients for whom a matching lung has been harvested and determined to be eligible for preservation with either Control or OCS before any attempt has been made to preserve the lung with either Control or OCS.

#### Screen Failures not eligible for mITT


- Donor lungs turned down for transplant altogether (i.e. "dry runs)
- Donor lungs harvested but not eligible for INSPIRE according to inclusion/exclusion criteria
- Donor lungs harvested and eligible for INSPIRE but for which OCS or Control preservation could not be attempted ("Logistics Screen Failures")
- Recipient screen failures were subjects who did not meet inclusion/exclusion criteria for INSPIRE at the time that a matching donor lung became available

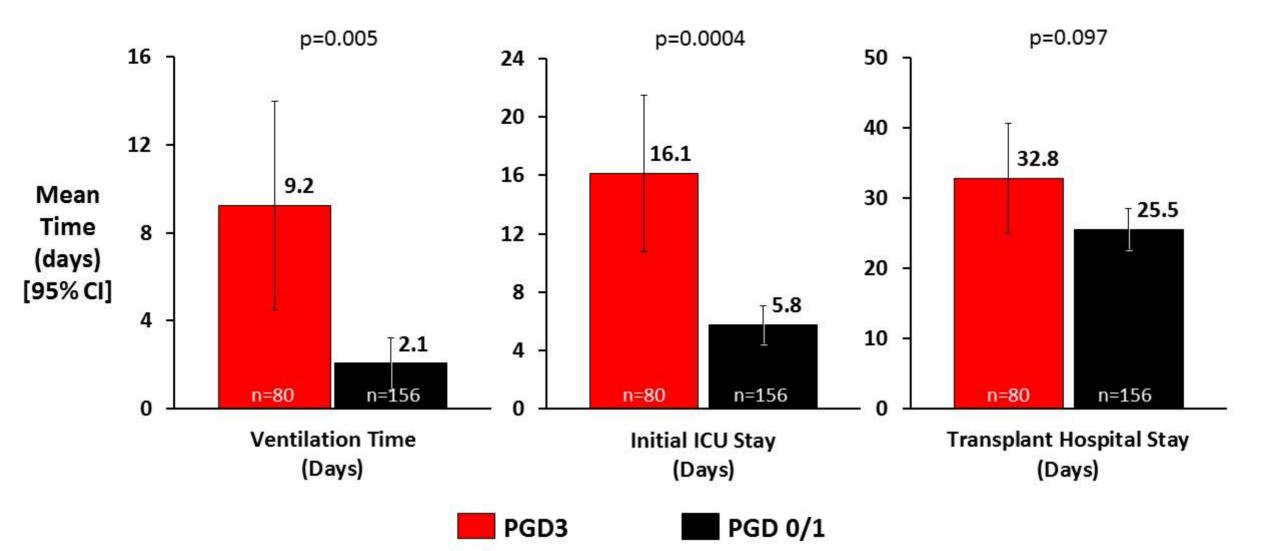
## ITT: N=407 INSPIRE Trial: Pre-Specified Primary Effectiveness Endpoint



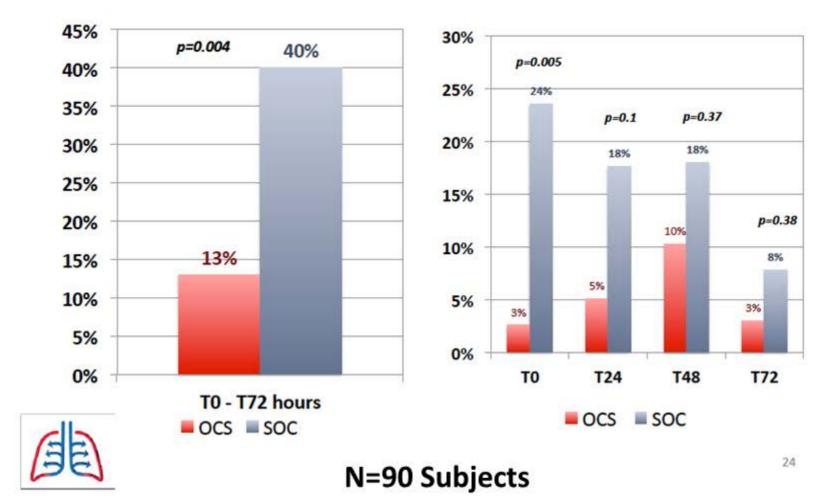

- Imputation Methodology
  - 9 US subjects had known outcomes off-study
  - Multiple imputation without adjustment was used to address unknown outcomes

#### OCS Performed Better than Control Regardless of Cross-Clamp Time: Combined Cohort (N=349) – PP



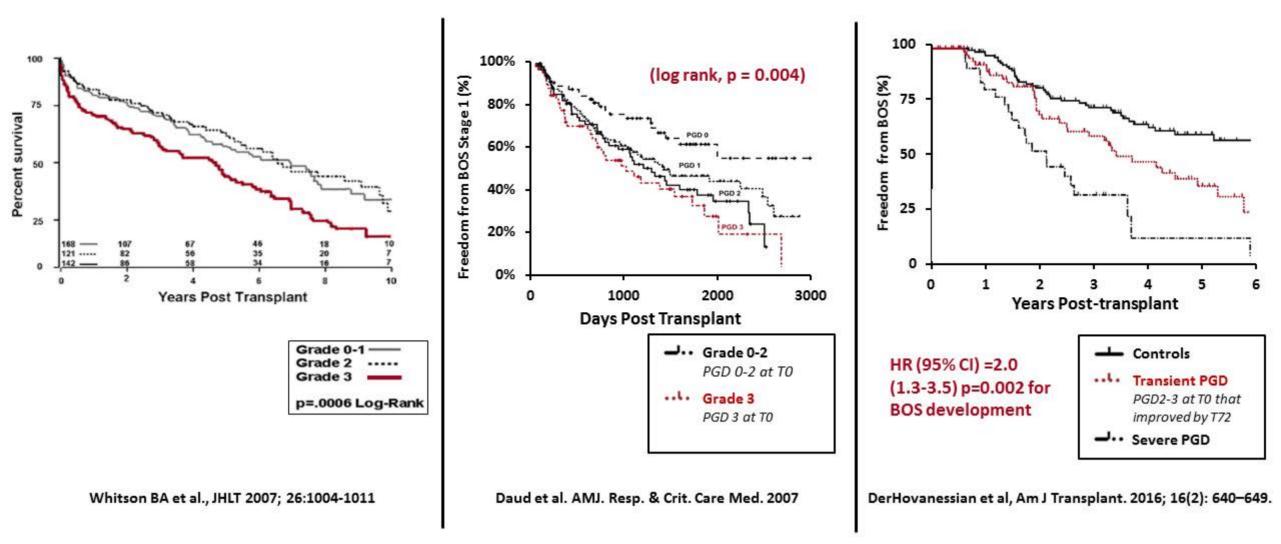

#### **Pulmonary Function Test** FEV1% Predicted from Discharge Through 24 Months – Combined Cohort (PP)




# **Recipient Characteristics Similar Between Arms**

| Recipient Characteristic                     | Control<br>N=184 | <b>OCS</b><br>N=165 |
|----------------------------------------------|------------------|---------------------|
| Age (years), Mean ± SD                       | 50 ± 14          | 50 ± 13             |
| Female, %                                    | 36%              | 48%                 |
| BMI (kg/m²), Mean ± SD                       | 23 ± 4.1         | 23 ± 4.6            |
| LAS Score, Mean ± SD                         | 48 ± 18          | 51 ± 20             |
| On ECMO on Transplant Day, %                 | 5%               | 5%                  |
| Use of Intraoperative Cardiopulmonary Bypass | 38%              | 40%                 |
| Secondary Pulmonary Hypertension, %          | 32%              | 40%                 |
| Primary Cause of Lung Failure, %             |                  |                     |
| COPD                                         | 28%              | 28%                 |
| IPF                                          | 34%              | 35%                 |
| Cystic Fibrosis                              | 23%              | 21%                 |
| IPAH                                         | 4%               | 9%                  |
| Sarcoidosis                                  | 5%               | 3%                  |

#### PGD 3 <u>Within 72 Hours</u> Associated with Significant Increase of Time on Ventilation and ICU Stay – Combined Cohort (N=349) – PP




# Incidence of Post-Transplant PGD Grade 3



#### PGD3 Within First 48 Hours Correlates with Lower Longterm Survival, Higher BOS Rate

PGD 3 at T0 Correlates with Long-Term BOS Rates PGD 2 or 3 at T0 Significant Risk Factor for BOS



# Subject D: Protocol Violation (Ineligible donor lungs due to presence of active pneumonia)

- Evidence from Site-Entered CRF:
  - Eligibility Donor Form: Presence of active pulmonary disease
  - Donor Assessment Form: Pulmonary edema possibly due to aspiration; ongoing LLL consolidation collapse with focal areas of <u>left upper lobe "pneumonic infiltrates"</u>
  - Donor Lung Assessment Form: Mucoid/mucopurulent secretions; apical lung scarring
- FDA's Control Subject Counter Example Site-Entered CRF:
  - Donor Assessment Form: +++ Polymorphs; ++ RBCs; Yeast isolated; Coagulase negative staphylococcus isolated; Enterobacter cloacae complex isolate
  - This counter example is not representative of ineligibility, because it only represents upper respiratory flora and <u>not</u> active pneumonia

# **Survival by PGD Category**

|                                  | Survival Probability at<br>24 Months |
|----------------------------------|--------------------------------------|
| PGD 0/1 at all timepoints        | 87.1%                                |
| PGD 3 at T0; PGD 0/1 thereafter  | 80.0%                                |
| PGD 3 at T24; PGD 0/1 thereafter | 72.9%                                |
| PGD 3 at T48; PGD 0/1 thereafter | 83.3%                                |
| PGD 3 at 72; PGD 0/1 thereafter  | 52.5%                                |