Figure 4. Using a PBPK Model to Explore Drug-Drug Interaction Potential Between a Substrate Drug and an Interacting Drug (Modified from Zhao et al, *Clin Pharmacol Ther*. 89(2):259-267,

Abbreviations: ADME, absorption, distribution, metabolism and excretion; AUC, area under the plasma concentration versus time curve; B/P, blood to plasma ratio; C_{max} , maximum concentration; CL, clearance; CL_T, renal clearance; DDI, drug-drug interactions; EC₅₀ or IC₅₀, concentration causing half maximal effect or inhibition; E_{max} or I_{max} , maximum effect or inhibition; F, bioavailability; F_a , fraction absorbed; F_g , bioavailability in the gut; F_h , bioavailability in the liver; $f_{u,p}$, unbound fraction in plasma; γ , Hill coefficient; J_{max} , maximum rate of transporter-mediated efflux/uptake; K_a , first-order absorption rate constant; K_d , dissociation constant of drug-protein complex; K_i , reversible inhibition constant, concentration causing half maximal inhibition; K_I , apparent inactivation constant, concentration causing half maximum inactivation; k_{inact} , apparent maximum inactivation rate constant; K_m , Michaelis-Menten constant, substrate concentration causing half maximal reaction or transport; K_p , tissue-to-plasma partition coefficient; LogP, Logarithm of the octanol-water partition coefficient; P_{eff} , jejunum permeability; P_{K} , pharmacokinetics; $P_{OP}P_{K}$, population pharmacokinetics; P_{V} , volume of distribution; P_{V} , maximum rate of metabolite formation.