

Elekta Solutions AB % Irina Proutski Senior Regulatory Affairs Consultant Kungstensgatan 18, Box 7593 Stockholm, SE-103 93 SWEDEN February 23, 2021

Re: K202789

Trade/Device Name: Monaco RTP System Regulation Number: 21 CFR 892.5050

Regulation Name: Medical charged-particle radiation therapy system

Regulatory Class: Class II Product Code: MUJ Dated: January 18, 2021 Received: January 21, 2021

Dear Irina Proutski:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for

K202789 - Irina Proutski Page 2

devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to https://www.fda.gov/medical-device-problems.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance) and CDRH Learn (https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

For

Thalia T. Mills, Ph.D.
Director
Division of Radiological Health
OHT7: Office of In Vitro Diagnostics
and Radiological Health
Office of Product Evaluation and Quality
Center for Devices and Radiological Health

Enclosure

DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

Indications for Use

510(k) Number (if known)

Form Approved: OMB No. 0910-0120

Expiration Date: 06/30/2020 See PRA Statement below.

K202789	
Device Name Monaco RTP System	
Indications for Use (Describe) The Monaco system is used to make treatment plans for patients with prescriptions for external beam radiation the The system calculates dose for photon, proton and electron treatment plans and displays, on-screen and in hard-coor three-dimensional radiation dose distributions inside patients for given treatment plan set-ups.	
The Monaco product line is intended for use in radiation treatment planning. It uses generally accepted methods for	or:
• contouring • image manipulation • simulation • image fusion • plan optimization • QA and plan review	
Type of Use (Select one or both, as applicable)	
Prescription Use (Part 21 CFR 801 Subpart D) Over-The-Counter Use (21 CFR 801 Subpart C)	
CONTINUE ON A SEPARATE PAGE IF NEEDED.	

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

510(K) SUMMARY (21 CFR § 807.92)

I. SUBMITTER Elekta Solutions AB

Kungstensgatan 18 Box 7593

Stockholm, Stockholms Ian [SE-01] SE SE10393

Contact: Nickie Power

nickie.power@elekta.com

Establishment

Registration Number: 3015232217 510(k) Number: K202789

Date Prepared: 15 January 2021

II. DEVICE

Trade Name: Monaco RTP System

Release Version #: Release 6.00

Product Classification: Class II

Common Name: Radiation Treatment Planning System

Regulation Number: 21 CFR § 892.5050

Regulation Description: Medical charged-particle radiation therapy system

Product Code: MUJ

III. PREDICATE DEVICE

Predicate Device 1: K190178 (Monaco RTP System)
Predicate Device 2: K190387 (RayStation 8.1)

IV. DEVICE DESCRIPTION

Monaco is a radiation treatment planning system that first received FDA clearance in 2007 (K071938). The modified system received clearance in 2009, when Volumetric Modulated Arc Therapy (VMAT) planning capability was added (K091179), again when Dynamic Conformal Arc planning was added (K110730), and electron planning, support for stereotactic cones, and SUV calculation were added (K132971). Specialty image creation was added in 2015 (K151233), and adaptive planning and dose calculation in the presence of a magnetic field (e.g., MR-Linac) was added in 2018 (K183037). A 510(k) was filed in 2017 for the addition of carbon ion planning. The 510(k) was withdrawn because there was no hardware cleared for the US market capable of delivering carbon ion plans. Monaco's carbon ion planning functionality remains licensed off and inaccessible to US users.

The Monaco system accepts patient imaging data and "source" dosimetry data from a linear accelerator. The system then permits the user to display and define (contour) the target volume to be treated and critical structures which must not receive above a certain level of radiation on these diagnostic images.

Based on the prescribed dose, the user, a Dosimetrist or Medical Physicist, can create multiple treatment scenarios involving the number, position(s) and energy of radiation beams and the use of a beam modifier (MLC, block, etc.) between the source of radiation and the patient to shape the beam. The Monaco system then produces a display of radiation dose distribution within the patient, indicating doses to the target volume and surrounding structures. The "best" plan satisfying the clinican prescription is then selected, one that maximizes dose to the target volume while minimizing dose to surrounding healthy volumes.

Monaco 6.00 supports Proton Pencil Beam Scanning (Proton PBS) planning for IBA Proteus®ONE and Proteus®PLUS delivery systems (Ion Beam Applications S.A.).

LEVEL OF CONCERN

Item 4b of Table 1 in the FDA Guidance document entitled, "Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices asks, "Does the Software Device control the delivery of potentially harmful energy that could result in death or serious injury, such as radiation treatment systems...." Monaco does not directly control the linear accelerator that delivers the radiation. Once completed, plans are reviewed and approved by qualified clinicians and may be subject to quality assurance practices before treatment actually takes place. There is no automatic link between the Monaco software and the linear accelerator. However, should a flaw in the treatment plan escape the notice of the qualified professionals using the Monaco system, serious injury or death could result. Therefore, we believe Monaco to be of major level of concern.

V. INDICATIONS FOR USE

The Monaco system is used to make treatment plans for patients with prescriptions for external beam radiation therapy. The system calculates dose for photon, proton, and electron treatment plans and displays, on-screen and in hard-copy, two- or three-dimensional radiation dose distributions inside patients for given treatment plan setups.

The Monaco product line is intended for use in radiation treatment planning. It uses generally accepted methods for:

- contouring
- image manipulation
- simulation
- image fusion
- plan optimization
- QA and plan review

VI. SUMMARY OF CLINICAL TESTING

Clinical trials were not performed as part of the development of this product. Clinical testing on patients is not advantageous in demonstrating substantial equivalence or safety and effectiveness of the device since testing can be performed such that no human subjects are exposed to risk. Validation testing involved simulated clinical workflows using actual patient data, such as patient images. Pre-defined pass/fail criteria were also equivalent to that of the previous version of Monaco. The product was deemed substantially equivalent and fit for clinical use.

VII. SUMMARY OF NON-CLINICAL TESTING

Verification tests were written and executed to ensure that the system is working as designed. Over 600 test procedures were executed, including tests to verify requirements for new product functionality, tests to ensure that risk mitigations function as intended, and regression tests to ensure continued safety and effectiveness of existing functionality. Verification testing was performed according to the FDA Quality System Regulation (21 CFR §820), ISO 13485 Quality Management System standard, IEC 62304 Software Life Cycle standard, and ISO 14971 Risk Management Standard, as was the predicate version. Quality System procedures governing the testing process, including pre-defined pass/fail criteria, were equivalent to procedures used in the testing of the previous Monaco version cleared. Conformity to the same pass/fail criteria as the predicate version of Monaco indicated that Monaco 6.00 was substantially equivalent in safety and effectiveness. Monaco 6.00 was deemed safe and effective for its intended use.

Feature	Monaco (subject device)	Monaco Predicate Device K190178	RayStation 8.1 Predicate Device K190387		
Intended use and Indications for use					
Contouring	Yes	Yes	Yes		
Dose Calculation	Yes	Yes	Yes		
Plan Optimization	Yes	Yes	Yes		
Image Manipulation & Fusion	Yes	Yes	Yes		
CT Simulation	Yes	Yes	Yes		
QA/Plan Review	Yes	Yes	Yes		
Technological Characteristics					
Dose Calculation Algorithms	Monte Carlo (electron & photon), Collapsed Cone (photon), Pencil Beam (optimization only), GPUMCD for MR-linac, GPUMCD for proton, Proton Pencil Beam	Monte Carlo (electron & photon), Collapsed Cone (photon), Pencil Beam (optimization only), GPUMCD for MR-linac	Proton Pencil Beam and Monte Carlo, Collapsed Cone for photon, Monte Carlo for electron		
Calculates dose for MR-Linac (including magnetic field, coils & cryostat)	Yes	Yes	No		
Adaptive therapy features	Yes	Yes	Yes		
Calculation and display of standardized uptake value	Yes	Yes	Yes		
Feature	Monaco (subject device)	Monaco Predicate Device K190178	RayStation 8.1 Predicate Device K190387		

Local Biological Measure Optimization	Yes	Yes	No
Support for various treatment aids	Yes	Yes	Yes
Support for Dynamic Delivery Methods	Yes	Yes	Yes
Operating System	Windows	Windows	Windows
DICOM RT Support	Yes	Yes	Yes
Modalities Supported	Photon, Electron, Proton	Calculates dose for photon and electron plans only. For users with Monaco Sim only, partial workflows with limited functions are available for proton plans	Photon, Electron, Proton
Support for brachytherapy	No	No	No
Interoperable with OIS system	Yes, including support for prescribed relative offset (PRO)	Yes, including support for prescribed relative offset (PRO)	Yes
Beam modeling	Beam modeling is performed by Elekta personnel. Standarized beam models are provided for some Elekta linac energy options.	Beam modeling is performed by Elekta personnel. Standarized beam models are provided for some Elekta linac energy options.	Unknown
Scripting	Yes	No	Yes
Archive/Retrieve	Yes	No	Yes

VIII. CONCLUSIONS

Elekta's Monaco RTP System (subject device) is substantially equivalent to Elekta's Monaco RTP System predicate device cleared under K190178 and RaySerach Laboratories AB's RayStation 8.1 cleared under K190387.