

DSM Nutritional Products

45 Waterview Boulevard Parsippany NJ 07054 United States of America

phone +1 800 526 0189 fax +1 973 257 8414

Food and Drug Administration Division of Animal Feeds (HFV-224) Office of Surveillance and Compliance Center for Veterinary Medicine 7519 Standish Place Rockville, Maryland 20855

July 8, 2013

GRAS Notification of RONOZYME HiPhos® by DSM Nutritional Products

Dear Mr. Wong

In response to the call for voluntary participation in the Notice of Pilot Program published in the Federal Register Vol. 75 31800-31803, DSM Nutritional Products is hereby submitting in triplicate a Notification of the Generally Recognized As Safe use of the 6-phytase, Ronozyme HiPhos®, in swine feed. This enzyme improves the availability of phosphorus found in plant based feeds by cleaving the myo-inositol - phosphate bond.

DSM Nutritional Products gathered the appropriate information on the safety and utility of the notified substance which was provided to an independent panel of experts in the field for their evaluation. The enclosed dossier contains the safety and efficacy study data that was provided to the panel. Information on the identity of the production organism, manufacture of the commercial forms, and the panel's signed conclusion statement were proved to CVM in AGRN#14. Also included are copies of the pertinent literature and the peer reviewed publications addressing the safety of Ronozyme HiPhos® and its performance in a variety of swine feeds indicative of those commercially fed in the United States.

DSM Nutritional Products has concluded that Ronozyme HiPhos® is GRAS through scientific procedures and is therefore exempt from the requirement for premarket approval noted in Section 201 (s) of the Federal Food Drug and Cosmetic Act.

The complete data and information that are the basis of the GRAS Notification are available to the Food and Drug Administration for review and copying upon request during normal business hours.

Sincerely DSM Nutritional Products,

James La Marta, Ph.D.

Senior Manager Regulatory Affairs

GRAS Notification for A 6-phytase preparation produced by an Aspergillus oryzae strain expressing a synthetic gene coding for a 6-phytase from Citrobacter braakii For Use in Swine Nutrition

James La Marta Parsippany, NJ

Jean-François Hecquet Kaiseraugst, Switzerland

TABLE OF CONTENTS

1	1 Introduction	3
1.1	Name and Address of Notifier	
1.2	Name and Address of Manufacturer	
1.3	Name and Address of the Exclusive Distributor	
1.4	Common or Usual Name of the Substance	
1.5	Applicable Condition of Use	
1.6	AAFCO Definition O.P. 2011	
1.7	Description of ingredient	
2	Production Organism, Enzyme Manufacturing Process	
3	Safety Studies	
3.1	Tolerance study with IPA Mash Phytase [RONOZYME® HiPhos (M)] in weaned piglets (Czech Republic 2008) Report 00000962	
3.2	Tolerance study with IPA Mash Phytase in gestating and lactating sows (Germany 2009) Report 00003288	
3.3	Target animal safety factors calculations	
4	Efficacy Studies	
4.1	Diet formulation	
4.2	Ingredient Selection	
4.3	OVERVIEW OF EFFICACY STUDIES IN WEANED PIGLETS	
4.4	OVERVIEW OF EFFICACY STUDIES IN GROWING - FINISHING PIGS	
4.5	OVERVIEW OF EFFICACY STUDIES IN SOWS	
4.6	Evaluation of the effects of graduated amounts of RONOZYME® HiPhos in the weaned piglet (France 2009) Report 2500761	
4.7	Efficacy of IPA phytase (RONOZYME® HiPhos) in piglets (Spain 2009) Report	. 25
4.8	Effects of a novel phytase (RONOZYME® HiPhos) in corn-soybean meal diets fed t	o . 27
4.9	Effects of graduated amounts of RONOZYME® HiPhos on the fecal digestibility and excretion of phosphorus, calcium and zinc in growing pigs (France 2009) Report 2500672	i . 29
4.10	Effects of a novel phytase (RONOZYME® HiPhos) in com-soybean meal diets fed to	
4.11	Efficacy of IPA phytase (RONOZYME® HiPhos) in growing pigs (Spain 2009) Repo 00001789	rt
4.12	Dose response study with a new phytase (IPA Mash Phytase, RONOZYME® HiPho in lactating sows (Germany 2009) Report 00003282	os) . 37
4.13	Efficacy study with IPA Mash Phytase (RONOZYME® HiPhos) in gestating sows (Germany 2009) Report 00003285	. 38
4.14	Evaluation of the effect of IPA Mash phytase (RONOZYME® HiPhos) on the nutrier digestibility in gestating sows (Slovak Republic 2009) Report 00003286	nt . 40
4.15	Efficacy Study with IPA Mash Phytase (RONOZYME® HiPhos) in gestating sows, Report 00015939	
4.16	Phytase Usage and its impact on bone properties	
4.17	Summary	
5	Human and Environmental Safety	. 47
6	Annexes	
7	References	. 4 9

1 Introduction

Phosphate is a key nutrient for animals and an increase in dietary phosphate has been shown to be beneficial to swine health, Ref. 1. Phytic acid, present in plant based feed ingredients such as soy beans, is a known anti-nutrient that chelates divalent cations and is a cause of eutrification of waterways by acting as a phosphate source for algae, Ref. 2. In October of 2012 DSM Nutritional Products submitted a GRAS notification to the Center for Veterinary Medicine for a 6-phytase enzyme, RONOZYME® HiPhos, in poultry feeds for the purpose of improving the digestibility of phytic acid present in plant based feed ingredients was GRAS, AGRN#14. DSM has also performed multiple studies to assess the safety and efficacy of the addition of RONOZYME® HiPhos to the feeds of swine for the same purpose. The panel of experts determined that this use is GRAS as noted in their report included in AGRN #14. The results of the target animal studies have been in the public domain for over six months.

1.1 Name and Address of Notifier

DSM Nutritional Products 45 Waterview Blvd. Parsippany, New Jersey, 07054, USA Tel: 973-257-8500

Person responsible for the dossier:

Alberto Davidovich, DVM, Ph.D. 45 Waterview Boulevard Parsippany, New Jersey 07054 Tel: 973-257-8325

1.2 Name and Address of Manufacturer

Novozymes A/S
(b) (4)

Novozymes A/S
(b) (4)

Novozymes A/S
(b) (4)

Novozymes North America Inc.
(b) (4)

1.3 Name and Address of the Exclusive Distributor

DSM Nutritional Products 45 Waterview Blvd. Parsippany, New Jersey, 07054, USA Tel: 973-257-8294

1.4 Common or Usual Name of the Substance

DSM's phytase enzyme preparation is obtained from a Genetically Engineered strain of Aspergillus oryzae produced by (b) (4) fermentation. The common or usual name of the substance is "phytase". It is produced and sold in three forms; a liquid, a micro-granulate and a thermo-tolerant granulate. The trade name of the enzyme is RONOZYME® HiPhos.

1.5 Applicable Condition of Use

RONOZYME® HiPhos will be included in swine feed for the nutritional purpose of increasing the digestibility of phytate. The recommended use level of RONOZYME® HiPhos is 500 FYT to 4000 FYT/Kg of swine feed; where one FYT is the amount of enzyme that releases 1 μmol of inorganic phosphorous from phytate per minute at 37°C and pH 6.5.

1.6 AAFCO Definition O.P. 2011

Phytase derived from Aspergillus niger variants and Aspergillus oryzae variants are permissible as feed ingredients in swine and poultry diets. See reference 3.

Table 30.1 Enzymes/Source Organisms Acceptable for Use in Animal Feeds

Phytase	Aspergillus niger, var. Aspergillus oryzae, var.	Corn, soybean meal, sunflower meal, hominy, tapioca, plant by- products	Hydrolyzes phytate	Increases the digestibility of phytin-bound phosphorus in swine and poultry diets
---------	---	---	-----------------------	---

1.7 Description of ingredient

Three product forms of RONOZYME® HiPhos will be available, two dry forms and a liquid form. RONOZYME® HiPhos (GT) is a granulated thermo-tolerant form with a minimum enzyme activity of 10,000 FYT/gram. RONOZYME® HiPhos (M) is a micro granulated form with a minimum enzyme activity of 50,000 FYT/gram. RONOZYME® HiPhos (L) is an aqueous liquid with a minimum enzyme activity of 20,000 FYT/g. Additional forms may be manufactured with ingredients suitable for feed use if there are additional market needs.

2 Production Organism, Enzyme Manufacturing Process

Detailed information regarding the production organism, the enzyme and the manufacturing methods, raw materials and toxicology studies was provided in the GRAS Notification for the use of RONOZYME® HiPhos, a 6-phytase preparation produced by an *Aspergillus oryzae* strain expressing a synthetic gene coding for a 6-phytase from *Citrobacter braakii* for use in poultry nutrition, AGRN #14.

3 Safety Studies

The summary of the swine safety and efficacy studies presented below was placed in the public domain on 25 May 2012 in the Journal of Animal Science Advances, Ref. 4. The diets conformed to the recommendations of the National Research Council (NRC 1988).

Diet Formulations

Diets were formulated to meet the NRC guidelines for nutrients per class of swine with the exception of phosphorus as noted in the study reports.

3.1 Tolerance study with IPA Mash Phytase [RONOZYME[®] HiPhos (M)] in weaned piglets (Czech Republic 2008) Report 00000962

The purpose of the trial conducted by was to study the tolerance of piglets towards RONOZYME* HiPhos during 6 weeks. The study was conducted in compliance with the requirements of current, international Good Laboratory Practice. See Annex 1.

Experimental conditions

The study was performed with a total 48 early weaned piglets, crossbreeds Large White x Landrace of both sexes. The animals were housed in pairs in litterless boxes at (b) (4) facilities that conformed to welfare regulations. Shortly after delivery the weight of piglets was determined and animals were randomly allocated to three groups A, B, C (16 piglets each, 8 castrated males and 8 females).

Pre-starter and starter diets based on wheat, barley and soybean meal as the main feed ingredients were formulated to meet NRC nutrient recommendations except for total and non-phytate P. Diet was provided to animals in mash form. Pre-starter diet was fed from day 0 until day 13 and starter diet from day 14 until day 42 of the Study. Hematological and biochemical examinations were performed in all animals. See also the complete report in the Annexes.

The treatment groups were the following:

Group A: Control non-treated group (basal diet, no enzyme added)

Group B.: basal diet + phytase at 4000 FYT/kg diet Group C: basal diet + phytase at 40 000 FYT/kg diet

Composition and nutrient content of the diet

Starter diet
35.0
24.0
13.0
16.83
-
14.35
0.98

Main ingredients (%)	Pre-starter diet	Starter diet
Calcium	0.65	0.70
Total Phosphorus	0.54	0.54
Digestible Phosphorus	0.38	0.22

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Target	Pre-Starter	Pre-Starter	Pre-Starter	Starter	Starter	Starter
	0	4000	40,000	0	4000	40,000
Analyzed	477*	5090	43,513	383*	4491	38,201

^{*:} means no contamination but native activity in feed

Results

Performance parameters

Treatments	Initial body weight (kg)	Final body weight (kg) Day 42	Daily weight gain (g) Day 0-42	FCR Day 0 - 42
A (control)	10.57	27.61a	406	2.75a
B (4000 FYT/kg)	10.66	31.09b	486	2.18b
C (40,000 FYT/kg)	10.35	30.93b	490	2.20b

a,b - mean values with a different superscript differ significantly at P<0.05

Biochemical and haematological parameters

Treatments	Alkaline phosphatase (µkat/l)	Hematocrit (%)	Monocytes (%)	Lymphocytes (%)
A (control)	3.779d	33.38d	4.063	51.13
B (4000 FYT/kg)	4.546a	36.25a	3.438	54.63
C (40,000 FYT/kg)	4.545a	36.00a	3.563	53.75

a,d: means significant difference versus control (P<0.05)

RBC: red blood cell, HCT: hematocrit, MCV: mean corpuscular volume, PLT: blood platelet, WBC: white blood cell, ALB: albumin, GLU: glucose, P: phosphorus, ALT: alanine transaminase, CPK: creatine phosphokinase, HGB: haemoglobin, EO: eosinophil, BA: basophil, LY: lymphocytes, MO: monocytes

Selected haematological and biochemical blood parameters

Treatments	RBC (x10 ⁶ /µL)	HGB (g/100mL)	MCV (fl)	PLT (x10³/μL)	WBC (x10 ³ /μL)
A (control)	7.03	9.66	47.69	235.8	15.97
B (4000 FYT/kg)	7.18	10.23	50.38	216.4	13.57
C (40,000 FYT/kg)	7.00	10.17	51.56	218.9	16.14
Phys. range	5-7	9-13	52-62	200-500	11-22

Selected haematological and biochemical blood parameters

Treatments	ALB (g/L)	Glu (mmol/L)	P (mmol/L)	ALT (µkat/L)*	CPK (µkat/L)
A (control)	25.8	6.20	3.66	3.52	32.5
B (4000 FYT/kg)	26.5	6.15	3.35	3.53	28.3
C (40,000 FYT/kg)	26.6	5.80	3.35	3.72	38.8
Phys. range	19-42	4-8.1	2.25-3.44	0.55-1.31	1-20.85

^{*}µkat/L - microkatal per liter, one µkat = 59 enzyme units

Selected haematological and biochemical blood parameters

	EO	BA
	(%)	(%)
B (4000 FYT/kg)	2.0	0.38
C (40,000 FYT/kg)	2.8	0.63
A (control)	2.3	0.63
Phys. range	0-11	0-2

Discussion

Dietary administration of RONOZYME® HiPhos resulted in beneficial effects on performance of the piglets. The final body weight of the piglets receiving 4000 and 40,000 FYT/kg diet was significantly increased by more than 12% when compared to the negative control. The feed conversion ratio was also significantly improved from 2.75 (control) to 2.18 and 2.20, respectively. No mortality occurred during the study. Furthermore, no pathological changes were observed in piglets during the post-mortem necropsy. No unfavourable effects due to dietary administration of RONOZYME® HiPhos were observed.

The blood biochemistry examination revealed that the values of ALT were increased in all examined animals of all groups; values of CPK were increased in 15 piglets of Group A, in 9

piglets of Group B and 11 piglets of Group C. The values for ALT and CPK did not differentiate phytase treated pigs from the controls. Although the MCV was below normal for all groups the treatment groups were higher than the control and closer to the normal range.

The amount of serum phosphorus was increased above physiological range in 12 animals of control Group A, in 4 piglets of Group B and 5 piglets of Group C. The other followed biochemical parameters were within physiological ranges or deviations were diagnosed sporadically.

The hematological examination revealed that the amount of RBC in animals of all groups was higher (Group A 10, Group B 12 and Group C 8 piglets), value of HCT was increased in some animals in Groups B and Group C, in animals of Group A corresponded to the physiological range. The amount of WBC in 1 piglet of Group A and one piglet of Group C was above physiological range. The other followed hematological parameters were either in or bellow physiological ranges. These changes were within the normal range.

Conclusions

In spite of significant differences among treatment groups for some biochemical and haematological parameters, no remarkable or significant differences between the maximum recommended dose and the overdose of RONOZYME® HiPhos phytase were noted for all relevant parameters.

Based on the above results it is possible to state that RONOZYME® HiPhos Phytase is well tolerated by weaned piglets when used at the maximum recommended and ten times higher doses.

3.2 Tolerance study with IPA Mash Phytase in gestating and lactating sows (Germany 2009) Report 00003288

The purpose of the trial conducted by

(b) (4) was to study the tolerance of gestating and lactating sows towards

RONOZYME® HiPhos during one reproduction cycle (day 1 of pregnancy to successful service after weaning of the litter). See Annex 2.

Experimental conditions

A total of 36 multiparous sows (EUROC line) in the body weight range 160 to 210 kg and with comparable litter numbers were allocated to the experimental groups. After being assigned to the treatment groups the sows were artificially inseminated with sperm from Pietrain boar. The piglets of the litter were therefore crossbreeds (EUROC x Pietrain). After successful artificial insemination the sows were kept until day 108 of pregnancy at individual sow feeding pens with straw bedding. From 109 days of pregnancy onwards sows were transferred to an environmentally controlled farrowing stable with straw bedding and three compartments (A, B, C) with 12 pens each.

The dose levels of RONOZYME® HiPhos phytase in complete diets for gestating and lactating sows were 0 FYT/kg feed (control), 4,000 FYT/kg of feed (maximum recommended level) and 40,000 FYT/kg of feed (10 times the maximum recommended level).

Composition and nutrient content of the diet

645.4
168.0
17.07
5.42
3.73
0.98
0.70

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Treatment	A	В	C
	0 FYT/kg	4000 FYT/kg	40,000 FYT/kg
Gestation diet	325*	4911	45,895
Lactation diet	409*	4313	40,435

^{*:} does not mean contamination but native activity in feed

Results

Performance of sows during the gestation period and lactation period, performance of piglets during the 28-day suckling period, haematological results in sows at 24 days after farrowing

Treatments	A 0 FYT/kg	B 4000 FYT/kg	C 40,000 FYT/kg	Oneway Anova
Gestation (1st to 114th day)				
Body weight 1 st day (kg)	185.3	185.4	182.3	0.705
Body weight 112 th day (kg)	235.8	236.8	240.1	0.618
Number of piglets overall	12.7	13.2	13.5	0.669
Body weight (28 th day lactation) (kg)	202.9a	211.3ab	214.2b	0.026
Body weight loss (kg)	-32.9a	-25.6b	-25.9b	0.001
Feed intake (1st to 28th d) (total kg)	129.3	127.2	129.1	0.867
Litter size (corrected)	10.5	10.3	10.5	0.640
Rearing losses (%)	3.52	3.80	4.50	0.910
Body weight gain of piglets (1 st to 28 th day of age) (kg) Feed intake overall (kg)	4.84a 0.89a	4.77a 0.87a	6.02b 1.05b	<0.001 0.004
Erythrocytes (terra/l)	5.72ab	5.91a	4.91b	0.049
Leukocytes (giga/l)	17.19	16.08	14.87	0.171
Haemoglobin (mmol/l)	7.38	7.31	6.86	0.129
Hematocrit (%)	39.1	38.8	37.0	0.112
Mean corpuscular volume (fl)	68.0	65.7	69.3	0.048

Treatments	A 0 FYT/kg	B 4000 FYT/kg	C 40,000 FYT/kg	Oneway Anova	
Alkaline phosphatase (µkat/l)	0.79	0.64	0.79	0.421	
Gamma-glutamyl transferase (µkat/l)	1.22	0.91	0.95	0.220	
Alanine-amino transferase (µkat/l)	1.03	1.15	1.24	0.121	
Urea in plasma (µmol/l)	4.79a	4.11a	7.49b	< 0.001	
Glucose (mmol/l)	2.64ab	2.45a	2.91b	0.015	
Albumin (g/l)	40.8	39.5	69.8	0.693	
Inorganic phosphate (mmol/l)	1.93	1.72	2.20	0.006	
Weaning to service interval (days)	6.4	6.8	6.5	0.708	

a,b mean values with a different superscript differ significantly at P<0.05

Discussion

Gestating period:

The sows weighed 184 kg on average at the start of the trial. By day 112 of gestation an average body weight of 237.6 kg was recorded which corresponded to a body weight gain of 53.6 kg per sow. Sows fed with RONOZYME® HiPhos Phytase tended dose dependently to slightly higher body weight gains. However, these changes were not significant. The sows consumed on average 3.13 kg feed per head and day during the 114-day pregnancy period. Consequently, detrimental effects of the overdose on feed intake could be excluded.

Lactation period:

Neither the number of piglets born alive nor the number of stillborn piglets showed any significant treatment-related differences. The body weights at the end of the lactation period were in the range of 209.5 kg. Sows fed with RONOZYME® HiPhos Phytase tended to higher body weights when compared to sows fed without RONOZYME® HiPhos Phytase. Body weight gain of piglets from sows fed without or with RONOZYME® HiPhos Phytase at the level of 4,000 FYT/kg amounted to 4.80 kg. Piglets weight from sows fed with the ten-fold overdose (40,000 FYT/kg) was significantly improved by 25.4% when compared to piglets of sows fed without or with 4,000 FYT/kg RONOZYME® HiPhos Phytase.

Hematological parameters:

To further confirm the safety of IPA Mash Phytase blood examinations were conducted at the 24th day after farrowing which corresponded to a 140-day supplementation period. It was observed that all mean values were within the physiological range. With feeding RONOZYME® HiPhos Phytase at the tenfold level, the mean for erythrocytes was significantly lower than those of sows fed with the maximum recommended dose level. The significantly higher means of inorganic phosphate, total cholesterol, urea and glucose were mainly reflecting the higher performance status when compared to sows fed without or with RONOZYME® HiPhos Phytase at the maximum recommended level (4,000 FYT/kg). However, all differences between the treatments were still within normal limits. Therefore, RONOZYME® HiPhos is characterized by a high level of safety.

Fertility parameters:

In addition to rearing performance, the weaning to service interval, i.e. the number of days from weaning to successful service was measured. The differences did not attain statistical significance. None of the inseminated sows showed signs of return rate up to the 35th day of pregnancy. From this result it can be concluded that with adding RONOZYME® HiPhos Phytase at levels of 4,000 or 40,000 FYT/kg no negative effects on fertility of sows occurred.

Conclusions

It can be concluded that the long term supplementation of RONOZYME® HiPhos at 10X level (40,000 FYT/kg) in sow diets during an overall reproductive cycle, including the successful service after weaning, induced lower estimated body weight losses during the 28-day lactation period and significantly improved body weight gains of piglets compared to the control diet without RONOZYME® HiPhos. Additionally blood examinations and the weaning to service interval of sows fed with the tenfold overdose level of RONOZYME® HiPhos showed no negative health or fertility relevant effects.

3.3 Target animal safety factors calculations

The product RONOZYME® HiPhos is intended for use in swine feeds. The standard recommended dose range of the product is 4,000 FYT/kg feed.

Based on the NOAEL of 860 mg TOS/kg bw-day (590985 FYT/Kg/day) derived from the 13 weeks study in rats and typical feed intake values as derived from NRC¹ feeding tables, the following safety margins can be calculated for the different categories of animals:

Table 1 Consumption estimation and safety factors in target species

Target species	Body Typical feed intake kg feed/ day1		HiPhos u	ZYME [®] shighest se lendation	High expe enzyme	Safety margin	
			FYT/ kg feed	mg TOS/ kg feed	FYT/ day	mg TOS/ kg-bw day	(NOAEL / highest intake)
Piglets, 6-7 weeks old	15.0	0.950	4,000	6.6	3,800	0.418	2057
Growing pigs, 13- 14 Weeks old	50.0	3.110	4,000	6.6	12,440	0.411	2092
Pregnant sows	200	1.9 -2.5	4,000	6.6	10,000	0.083	10360
Lactating sows	200	5.3 - 7.0	4,000	6.6	28,000	0.231	3723

¹ National Research Council, Nutrient Requirements of Swine. Ninth Revised Edition, National Academy Press, Washington, D.C., 1988. Ref. 5

Discussion:

The safety factors as derived from the NOAEL in rats are comfortably large, in excess of three to four orders of magnitude.

The safety in the target species was confirmed by tolerance studies in piglets for fattening, and gestating/lactating sows using up to 40,000 FYT/kg feed, 10 times the highest recommended dose in FYT. The excessive dose did not produce any adverse effect on body weight gain, reproductive parameters (litter weight), blood cell counts, blood chemistry and gross pathology.

Because of the large safety margins, no regulatory maximum dose for RONOZYME® HiPhos in feed is necessary. However with cost-benefit and marketing considerations and in order to allow flexibility in feed formulation, the following upper dose is recommended: 4000 FYT/kg feed.

4 Efficacy Studies

In addition to the studies presented below another study series was performed by (b) (4) using diets indicative of some current US practices; corn /soy with distiller grains products, Ref. 6.

4.1 Diet formulation

A total of nine efficacy studies were performed using a variety of diets in an effort to capture the diversity of possible ingredients used in swine feed production in Europe and North America. All the diets met the NRC recommendations as presented in the tables below.

Piglets:

	Piglet	Study 1	Piglet	Study 2	Pigle	Study 3	NRC
Ingredient	RPT 2500761		RPT 0	0001788	RPT 0	Piglet	
	w/o P	w/ di CaP	w/o P	w/ di CaP	w/o P	w/ di CaP	Diet
Corn	68.52	68.125	40	40	60.6	60.6	
Corn Starch			0.19		1.65		
Barley			24.68	24.68			
Sweet Milk whey			13.72	13.72			
Soybean Meal 48% CP	15.1	15.1	9.84	9.84	32	32	
Potato protein concentrate			7.23	7.23			
Rapeseed Meal	12.5	12.5					
Salt	0.55	0.55	0.14	0.14	0.4	0.4	
Lard			1.49	1.49			
Soy Oil	1	1			3	3	
Calcium carbonate	1.56	0.355	1.21	0.83	0.9	0.9	
DiCalcium phosphate	0	1.6	0.42	1		1.65	
Micronutrient supplement	0.77	0.77	1.08	1.08	1.45	1.45	
Crude Protein - N x 6.25	15.5	15.5	18.56	18.56	17.96	18.33	18
Lysine %	0.96	0.96	0.91	0.91	1.21	1.18	0.95
Methionine + cysteine %	0.54	0.54	0.84	0.84	0.66	0.6	0.48
Calcium - % Dry Matter	0.82	1.24	0.75	0.75	0.48	0.86	0.69
Phosphorus - % Dry Matter	0.45	0.78	0.42	0.52	0.36	0.66	0.6
Theoretical Available P - %	0.12	0.35					0.32
Observed available P - %	0.11	0.32					
Phytic P - calculated %	0.28	0.54					
Estimated digestible energy - MJ/Kg	13.31	13.31	13.85	13.82	13.81	13.81	
Estimated digestible energy - Kcal/Kg	3180	3180	3300	3300	3300	3300	3220

Growers:

	Grower	Study 1	Grower S	Study 2	Grower	Study 3	NRC	
Ingredient	RPT:	2500672	RPT 0	0001789	RPT 0	0003283	Grower	
	w/o P	w/ di CaP	w/o P	w/ di CaP	w/o P	w/ di CaP	Diet	
Corn	53	53	35	35	65.8	65.8		
Corn Starch			0.18		1.05			
Barley	13.9	13.9	41.35	41.35				
Oat Meal	6	6						
Wheat Bran	5.4	5.4						
Soybean Meal 48% CP	18	18	18.95	18.95	29.5	29.5		
Potato protein concentrate			0	0				
Salt			0.35	0.35	0.4	0.4		
Lard			2.3	2.3				
Soy Oil	1	1			2	2		
Calcium carbonate			1.3	0.92	0.95	0.95		
DiCalcium phosphate	0	1.2		0.55		1.05		
Micronutrient supplement	2.7	2.7	0.57	0.57	0.3	0.3		
Crude Protein - N x 6.25	15.5	15.5	16.11	18.56	17.96	18.33	15	
Lysine %	0.96	0.96	0.1	0.91	1.06	1.08	0.75	
Methionine + cysteine %	0.54	0.54	0.65	0.84	0.59	0.59	0.41	
Calcium - % Dry Matter	0.7	0.8	0.6	0.75	0.58	0.79	0.6	
Phosphorus - % Dry Matter	0.42	0.62	0.35	0.45	0.33	0.56	0.5	
Theoretical Available P - %	0.12	1.86					0.23	
Phytic P - calculated %	0.28	0.28						
Estimated digestible energy - MJ/Kg	13.31	13.31	13.4	13.4	13.81	13.81	13.61	
Estimated digestible energy - Kcal/Kg	3180	3180	3200	3200	3300	3300	3250	

Sows:

	Sow Study 1	Sow Study 2	Sow Study 3	NRC
Ingredient	Rpt 00003286	RPT 00003285	RPT 00003282	Sows
	w/o P	w/o P	w/o P	Diet
Maize	47	34.04	30	
Optigrain		23		
Triticale		10		
Barley	20		10	
Oats			4	
Wheat	1	12	8	
Wheat Bran			8.1	
Soybean Meal 48% CP	11.8	12.5	23	
Rapeseed Meal	8			
Sunfower meal	6.4			
Peas			9	
Salt	0.17	0.1	0.51	
Cellulose	1	4.5		
Sunflower Oil	1.5			
Soy Oil		0.5	3.3	
Calcium carbonate		1.66	1.6	
MonoCalcium Phosphate			1.2	
DiCalcium phosphate				
Micronutrient supplement	2.9*	1.2	0.3	
Crude Protein - N x 6.25	17.17	14.44	17.96	13
Lysine %	0.96	0.64	1.06	0.6
Methionine + cysteine %	0.63	0.42	0.59	0.36
Calcium - % Dry Matter	0.8	0.7	0.58	0.75
Phosphorus - % Dry Matter	0.6	0.34	0.33	0.6
Theoretical Available P - %	0.24			0.35
Phytic P - calculated %				
Estimated digestible energy - MJ/Kg	12.7	12.86	13.81	13.43
Estimated digestible energy - Kcal/Kg	3035	3070	3300	3210

^{*}contain Calcium and Phosphorus

4.2 Ingredient Selection

The global economic situation of the past ten years as well as the evolving bio-fuels policy, have permanently altered the once standard corn/soybean meal diet. The drivers of ingredient selection are now formulation economics, availability, geography, milling and processing characteristics, and nutrient quality. All these factors are data inputs for computerized formulation software packages that generate a least cost ration based upon the data, which can vary on a daily basis. First and foremost, the ingredients utilized in the feed formulation software evaluations must meet and/or exceed the minimum NRC requirements for the age and production status of the animal, but economics and ingredient availability quickly take precedence in the assessment of whether or not to feed a certain feedstuff and in what amounts, depending upon the ability to transport, store, and utilize the given ingredient. For example. DDGS did not factor into the formulation equation in North Carolina until the economics were favorable, the mill bin space was available, and the mill had a viable and timely method of unloading the unwieldy ingredient from the railcars. A strong crop of canola along with favorable rail rates can make canola meal available deep into the southeastern parts of the Unted States when it was normally only found in the Dakotas. Nursery pig diets have become so complex that a combination of numerous ingredients (potato proteins, whey and other lactose sources, oat fiber sources, etc.) are regularly utilized to supply the necessary nutrients and gastrointestinal benefits while minimizing the effects of various antinutritional factors. Smaller toll mills in the Midwest will typically be able to source grains such as wheat, barley, triticale, milo, and others to meet the needs of the swine customer base that they serve. Pennsylvania feed millers have access to various bakery-type ingredients emanating from the production of potato chips, cookies, candy, bread, and chocolate products. Depending upon the success of the winter wheat crop in the Carolinas, producers in the region will at times feed all wheat as the sole grain source as long as the local crop volume holds out. The variety of feedstuffs across the U.S. continues to increase as pork producers seek out alternatives to expensive corn, soybean meal, and fat. Given the current U.S. climate in terms of available feedstuffs, the goals of a research trial diet formulation are to 1) provide the animal with a diet that nutritionally meets and/or exceeds the minimum requirements for growth and performance and 2) provides ample amounts of the dietary substrate being studied in the specific trial. Educational guides from universities inform farmers and feed mills about which ingredients are suitable and how to utilize them in feed formulation. Wheat, barley, millet and various distiller's grains products are now commonly added to swine feed. See Ref. 7 & 8.

In the case of phytase evaluations, the goal is to provide enough of the phytate-P substrate to confirm the effects of the enzyme being studied.

4.3 OVERVIEW OF EFFICACY STUDIES IN WEANED PIGLETS

Report	Animal	Trial	Dos	sage	Negati	ive Control→ RO	NOZYME® Tre	atments	
	Numbers / Species	Dura- tion (wks)	FYT per	kg feed	Effect on Phosphorus Utilization Measured by				
			as targe- ted	As ana- lyzed					
2500761	120 piglets	5			Daily weight	Apparent fecal	Fecal P	Bone	
Evaluation of the effects of graduated amounts of RONOZYME® HiPhos					gain (g)	P digestibility (%)	excretion (mg/g)	strength (N)	
in the weaned piglet	n=12		0 (NC)	108*	220	24.1	3.43	272.8	
(France 2009)	n=12		250	374	254	26.9	3.80	334.6	
Com and soybean	n=12		500	601	249	40.0++	2.73++	476.1++	
meal and rapeseed meal diet	n=12		1000	1097	249	42.7++	2.58++	384.1	
medi diet	n=12		1500	1611	271	50.7++	2.24++	500.3++	
	n=12		2000	2225	296	56.0++	2.03++	523.5++	
	n=12		3000	3098	300	55.1++	2.02++	476.5++	
	n=12		4000	4030	274	61.8++	1.76++	542.2++	
	n=12		8000	8238	268	60.1++	1.80++	604.1++	
	n=12		0 (PC)	108*	257	40.8++	4.62++	615.5++	
00001788	144 piglets	6	1	2 - 2 - 2	FCR	Apparent	Apparent	P in feces	
Efficacy of IPA phytase (RONOZYME® HiPhos) in piglets					Day 0 -42	fecal P digestibility (%)	fecal Ca digestibility (%)	(g/kg DM)	
(Spain 2009)	n=24		0(NC)	<loq< td=""><td>1.68bc</td><td>37.3e</td><td>58.7d</td><td>18.7a</td></loq<>	1.68bc	37.3e	58.7d	18.7a	
Corn, barley and	n=24		500	669	1.64bc	60.5c	70.8bc	10.7b	
soybean meal	n=24		1000	1082	1.55ab	68.2b	73.3bc	10.0bc	
	n=24		2000	2128	1.54a	71.0b	75.0ab	8.9c	
	n=24		4000	4301	1.61ab	79.3a	81.7a	6.6d	
	n=24		0 (PC)	137*	1.76c	47.9d	66.5cd	17.2a	
00003284	48 piglets	10 d			Apparent	P in feces (%)	P output	P absorption	
Effects of a novel phytase in cornsolvean meal diets fed to weanling pigs			0 (NC)	80*	Total tract digestibility (%) 40.46++	2.30++	(g/day)	(g/day)	
(USA 2009)			500	440	61.56++	1.51++	0.87++		
Corn-soybean meal diet			1000		65.07++	1.51++		1.39++	
77.5			2227	958	22127	1.46++	0.81++	1.0	
			2000	1743	68.74++		0.71++	1.54++	
			4000	3974	68.04++	1.10++	0.68++	1.46++	
			0 (PC)	91*	60.48++	2.53++	1.68++	2.58++	

abcd: means within one column not sharing a common letter index differ with statistical significance * means no contamination but some native activity in feed

^{++:} means statistically different from non ++ values
NC = negative control PC =positive control

4.4 OVERVIEW OF EFFICACY STUDIES IN GROWING - FINISHING PIGS

Report	Animal Numbers /	Trial Dura-		kg feed	1		NOZYME [®] Trea		
	Species	tion (wks)	T T PC	ng recu	Measured by				
			as targe- ted	As ana- lyzed					
2500672	36 pigs	5			Apparent	Fecal Zn	Fecal P	Apparent	
Effects of graduated amounts of a microbial phytase (RONOZYME®					fecal P digestibility (%)	digestibility (%)	Excretion (mg/g DM)	fecal Ca digestibilit (%)	
HiPhos) on the fecal	n=4		0 NC	225*	29.3	11.4	2.99	60.2	
digestibility and	n=4		500	678	50.4+	25.5+	2.11+	68.8+	
excretion of phosphorus, calcium	n=4		1000	1179	57.8+	21.4+	1.79+	73.0+	
and zinc in growing	n=4		1500	1723	59.8+	17.3++	1.71+	72.8+	
pigs (France 2009)	n=4		1750	1985	61.3+	25.0+	1.62+	75.7+	
Corn, soybean and	n=4		2000	2232	61.5+	21.6+	1.63+	75.3+	
barleyl diet	n=4		2500	2798	66.6+	17.5++	1.40+	86.7+	
	n=4		3000	3329	68.0+	18.1++	1.34+	81.8+	
	n=4		PC	219*	47.2+	16.7	3.29+	61.1	
00003283	24 pigs	10d			Apparent	P in feces	Apparent	Ca in fece	
Effects of a novel phytase (=RONOZYME® HiPhos) in cornsoybean meal diets					Total tract p digestibility (%)	(%)	Total tract Ca digestibility (%)	(%)	
fed to growing pigs (USA 2009)	n=4		0	41*	39.83	2.44	67.30	2.33	
Corn, soybean diet	n=4		500	373	59.36**	1.82**	81.44**	2.45**	
Corri, Soybeari diet	n=4		1000	984	65.43**	1.52**	82.62**	1.40**	
	n=4		2000	1773	69.09**	1.31**	82.36**	1.29**	
	n=4		4000	3681	72.76**	1.09**	85.58**	1.22**	
	n=4		PC	39*	59.36**	2.59**	72.90**	0.91**	
00001789 Efficacy of IPA phytase (=RONOZYME® HiPhos) in growing pigs (Spain 2009)	48 pigs	3			Apparent fecal Ca digestibility (%)	P in feces (g/kg DM)	Apparent fecal P digestibility (%)	P in blood (mg/100ml	
corn-barley diet	n=8		0	150*	55.3c	13.78c	39.6c	6.69a	
corr-barrey diet	n=8		500	671	62.0bc	10.98b	35.6bc	7.12ab	
	n=8		1000	1529	70.6ab	10.49b	42.5b	7.63bc	
	n=8		2000	2659	75.9a	8.11a	56.1a	8.04c	
	n=8		4000	4448	61.3bc	7.69a	62.4a	7.75c	
	n=8		PC	114*	58.0c	14.82c	37.5bc	7.66c	

abcd: means within one column not sharing a common letter index differ with statistical significance * means no contamination but some native activity in feed, † significant differences versus negative control at level P<0.001, ** * significant differences versus negative control at level P<0.05

4.5 OVERVIEW OF EFFICACY STUDIES IN SOWS

Report	Animal	Trial	Dos	sage	Negati	ve Control→ RO	NOZYME® Trea	atments		
	Numbers / Species	Dura- tion (wks)	FYT per	r kg feed		Effect on Phosphorus Utilization Measured by				
			as targe- ted	As ana- lyzed						
00003282	28 sows	2			Р			Ca		
Dose response study with a new phytase (IPA Mash Phytase) in lactating sows (Germany 2009)	n=7		0	<50	digestibility (%)			digestibility (%)		
Corn and soybean	n=7		500	589	23.3ab			37.5		
meal diet	n=7		1000	1027	32.5bc			37.6		
	n=7		2000	2125	34.1c			33.6		
00003285	24 sows	2			Fecal conc.	Fecal conc. P	Ca apparent	P apparent		
Efficacy study with IPA Mash Phytase in gestating sows (Germany 2009)					Ca (g/kg DM)	(g/kg DM)	Digestibility (%)	Digestibility (%)		
Corn, soybean meal,	n=6		0	211*	37.1a	18.6a	30.57a	26.51a		
wheat and triticale diet	n=6		500	786	34.3ab	17.8a	35.93b	33.52ab		
	n=6		1000	1262	32.4ab	15.4ab	39.08bc	38.59b		
	n=6		2000	2440	28.8b	13.9b	41.14c	39.87b		
00003286	24 sows	2			DM	Fecal conc. P	Ca	Р		
Evaluation of the effect of IPA Mash phytase on the nutrient digestibility in					Digestibility (%)	(%)	Digestibility (%)	Digestibility (%)		
gestating sows	n=6		0	124*	83.1a	27.90a	35.5a	26.7a		
(Slovak republic	n=6		500	531	83.7ab	26.1b	41.6b	33.6b		
2009)	n=6		1000	898	84.7c	26.1b	47.8c	39.0c		
Com, soybean meal, barley, rapeseed meal, sunflower meal diet	n=6		2000	1890	84.2bc	25.7b	44.1b	37.2bc		
00015939	45 sows	3			DM	Р				
Assessment of the effects of phytase (Ronozyme® HiPhos) to improve nutrient					Digestibility (%)	Digestibility (%)				
digestibility in lactating	n=15		0 NC	127*	80.5b	33.9b				
sows (Canada 2012)	n=15		500	764	81.8a	46.0a				
Wheat, soybean meal, barley, Canola meal	n=15		0 PC	<loq< td=""><td>78.8c</td><td>29.7b</td><td></td><td></td></loq<>	78.8c	29.7b				

a,b,c Values without a common superscript are significantly different according to test (P ≤ 0.05)

^{*} means no contamination but some native activity in feed

4.6 Evaluation of the effects of graduated amounts of RONOZYME® HiPhos in the weaned piglet (France 2009) Report 2500761

The purpose of the trial conducted at Village-Neuf (France) was to determine the effects of graduated amounts of RONOZYME® HiPhos on the performance, blood mineral concentrations, digestibility of phosphorus (P), calcium (Ca), bone mineralization and strength in the weaned piglet. The basal diet, without addition of mineral P, was based on corn, soybean meal and rapeseed meal. See Annex 3.

Experimental conditions

One hundred and twenty Large White x Landrace weaner piglets having an initial body weight of 8.03 ± 1.09 kg were used. The animals were allocated to 10 equal groups of 12 animals each and housed in floor-pen cages.

The piglets were fed, throughout a 32 days observation period, a basal diet in mash form without addition of mineral P (group A) or the diet A supplemented with 16 g/kg of DiCalcium Phosphate (DCP) (group B) or with RONOZYME® HiPhos (L) phytase at the levels of 250 FYT/kg (group C), 500 FYT/kg (group D), 1000 FYT/kg (group E), 1500 FYT/kg (group F), 2000 FYT/kg (group G), 3000 FYT/kg (group H), 4000 FYT/kg (group I) and 8000 FYT/kg (group J).

The basal diet A was formulated to provide P exclusively from vegetable origin and to meet, with the exception of the available P supply, the animals' requirements according to Henry et al. (1989) and NRC (1998).

Performance was evaluated for the 32 days of the trial. Blood was collected by jugular puncture from all the animals at the 31st day of the experiment for the determination of the P, Ca, alkaline phosphatase and zinc (Zn) concentrations.

Composition and nutrient content of the diets

Main ingredients (%)	Basal diet (group A)	Basal diet with DCP (group B)
Corn	68.52	68.125
Soybean meal	15.1	15.1
Rapeseed meal	12.5	12.5
DCP	•	1.6
Nutrients		
Crude protein (%)	15.5	15.5
Ca- analysed (% in DM)	0.82	1.24
Lysine (%)	0.96	0.96
P- analysed (% in DM)	0.45	0.78
Theoretical available P (%)	0.12	0.35
Observed available P (%)	0.11	0.32
Phytic P – calculated (%)	0.28	0.54
Estimated digestible energy (MJ/kg)	13.31	13.31

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Target	Basal diet Group A	Basal diet + DCP Group B	С	D	E	F	G	Н		J
Target (nominal)	0 FYT/kg feed	0 FYT/kg feed	250	500	1000	1500	2000	3000	4000	8000
Analyzed	108*	108*	374	601	1097	1611	2225	3098	4030	8238
Actually added	-	-	266	493	989	1503	2117	2990	3922	8130
Average % of target	-	-	106	99	99	100	106	100	98	102

^{*:} does not mean contamination but native phytase activity in feed

Results

Daily weight gain, total weight gain, feed conversion ratio, fecal P concentration and excretion, apparent fecal digestibility of P, apparent fecal digestibility of Ca and fecal excretion, bone ash and resistance

Target	Basal diet Group A	Basal diet + DCP Group B	С	D	E	F	G	H	t	J
Treatments	0 FYT/kg	0 FYT/kg	250	500	1000	1500	2000	3000	4000	8000
Daily weight gain (g)	220	257	254	249	249	271	296	300	274	268
Total weight gain (kg)	7.04	8.22	8.12	7.96	7.98	8.66	9.46	9.61	8.77	8.56
FCR	2.448	1.914	1.981	1.985	1.931	1.835	1.819	1.793	1.834	1.865
fecal P concentration (mg/g DM)	22.4	24.6 P<0.001	20.8 P<0.05	16.3 P<0.001	16.4 P<0.001	14.1 P<0.001	12.8 P<0.001	12.5 P<0.001	11.5 P<0.001	11.2 P<0.001
fecal P apparent digestibility (%)	24.1	40.8 P<0.001	26.9 NS	40,0 P<0.001	42.7 P<0.001	50.7 P<0.001	56.0 P<0.001	55.1 P<0.001	61.8 P<0.001	60.1 P<0.001
fecal P excretion (mg/g)	3.43	4.62 P<0.001	3.30 NS	2.73 P<0.001	2.58 P<0.001	2.24 P<0.001	2.03 P<0.001	2.02 P<0.001	1.76 P<0.001	1.80 P<0.001
Ca apparent digestibility (%)	58.7	49.2 P<0.001	53.5 P<0.05	62.9 NS	61.8 NS	68.1 P<0.001	73.6 P<0.001	65.7 P<0.05	73.4 P<0.001	68.4 P<0.001
fecal Ca excretion (mg/g)	3.38	6.31 P<0.001	3.81 P<0.05	3.12 NS	3.14 NS	2.63 P<0.001	2.13 P<0.001	2.71 P<0.001	2.04 P<0.001	2.50 P<0.001
Bone strength (N)	272.8	615.5 P<0.001	334.6 NS	476.1 P<0.001	384.1 NS	500.3 P<0.001	523.5 P<0.001	476.5 P<0.001	542.2 P<0.001	604.1 P<0.001
Bone ash (%)	62.17	63.70 P<0.05	62.38 NS	65.19 P<0.001	65.67 P<0.001	65.80 P<0.001	64.85 P<0.001	65.70 P<0.001	66.36 P<0.001	65.24 P<0.001

DCP = Dicalcium phosphate

P values are determined in comparison to the negative control A

Discussion

Effects on performance

All the groups receiving phytase supplements and the group supplemented with 16 g/kg of DCP (dicalcium phosphate) had higher daily weight gain (DWG) and lower feed conversion ratio (FCR) than those observed for the control group. The highest DWG and the best FCR were observed for the group with 3000 FYT/kg. The performance of the group supplemented with DCP was equivalent to those of the group receiving 1000 FYT/kg of phytase.

Supplementation with graduated amounts of RONOZYME® HiPhos phytase in piglets induced an increased performance in a dose dependent manner. Inclusion levels over 1000 FYT/kg were more efficient than the DCP supplementation.

• Effects on Phosphorus digestion

The mean P fecal concentration of the enzyme supplemented animals was very significantly lower than that measured in the animals receiving the control diet. There was a decrease of the P faecal concentration with the increasing consumption of RONOZYME® HiPhos phytase. The lowest fecal P concentration was observed in the animals receiving phytase at 8000 FYT/kg and represented half of that of the control group.

The P digestibility was dose dependent and highly significantly improved with the exception of the lowest RONOZYME® HiPhos inclusion level. The increases represented in comparison to the control group 12, 66, 77, 110, 132, 129, 156 and 149 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 FYT/kg RONOZYME® HiPhos phytase supplemented groups respectively. The digestibility of P in the DCP supplemented diet was also significantly higher than that of the control by 69 % and very similar to the enzyme supplementation at 500 FYT/kg.

The fecal excretion of P was significantly reduced by 4, 20, 25, 34, 41, 41, 49 and 48 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 FYT/kg phytase supplemented groups respectively. It was increased by 35 % with the DCP supplemented group.

The apparent absorbed P was 1.22, 1.82, 1.93, 2.31, 2.59, 2.48, 2.84 and 2.71 g/kg feed in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 FYT/kg RONOZYME® HiPhos supplemented groups, respectively and 3.18 g/kg feed in the DCP supplemented group. It was significantly increased in all the supplemented groups with the exception of the lowest inclusion level in comparison to the control diet (1.09 g/kg).

• Effects on Calcium digestion

The Ca digestibility was improved in the supplemented groups with the exception of the DCP group and the 250 FYT/kg phytase group. The variations were -9, 7, 5, 16, 26, 12, 25 and 17 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 FYT/kg phytase supplemented groups respectively and significant for the five highest concentrations. The Ca digestibility of the DCP supplemented diet was decreased by 16 % comparatively to the control group.

The fecal excretion of Ca was reduced by 8, 7, 22, 37, 20, 40, and 26 % with RONOZYME® HiPhos phytase in the 500, 1000, 1500, 2000, 3000, 4000 and 8000 FYT/kg supplemented groups respectively and significantly with the five highest concentrations. It was significantly increased by 13 % and 87 % with the 250 FYT/kg phytase and DCP groups respectively.

· Effects on bone resistance and ash

The phytase supplements strongly influenced the bone strength. For the RONOZYME® HiPhos inclusion level of 8000 FYT/kg the increase of the femur resistance was similar to that of DCP. It represented 121 % and 126 % respectively of that observed for the animals receiving the basal diet. The increases were significant in all supplemented groups except for the 250 FYT/kg and 1000 FYT/kg phytase inclusion levels. The low bone resistance values for the 250 and 1000 FYT inclusion levels do not follow the general trend. The variation in breaking force values within the treatments show the same general coefficient of variability as do the other treatments however the standard deviation for the 250 FYT treatment group is the lowest of all the treatments. Inspection for outliers and reanalysis of the data did not change the outcome. No other measured variables, such as body weight or bone ash reveal a causative relationship. The sensitivity of the force measurements to analytic technique and sample handling are also confounding factors. Consequently it is not possible to assign an exact reason for the recorded differences.

The ash content of the femur was increased in a significant way by the phytase except for the lowest dosage and by the DCP. Nevertheless, the addition of graduated amounts of RONOZYME® HiPhos phytase resulted in a non-linear increase of the ash content of the femur. The addition of 500, 1000, 1500, 3000, 4000 and 8000 FYT/Kg of feed were significantly different, P<0.05.

Conclusion

It can be concluded that the RONOZYME® HiPhos phytase improved the digestibility and the apparent absorption of P and Ca, reduced the fecal P excretion, restored phosphataemia, calcaemia and phosphatasaemia to physiological values, increased bone mineralization and resistance and improved the zootechnical performance in the weaned piglet fed on a diet containing P exclusively from vegetable origin. There was a dose dependent effect of RONOZYME® HiPhos phytase on the availability of the dietary P and was significantly different for all doses, P<0.001

4.7 Efficacy of IPA phytase (RONOZYME® HiPhos) in piglets (Spain 2009) Report 00001788

The purpose of the trial conducted at amounts of RONOZYME® HiPhos on the performance, mineral blood concentrations, and digestibility of phosphorus (P), calcium (Ca). The basal diet, without addition of mineral P, was based on corn, soybean meal. See Annex 4.

Experimental conditions

144 (Landrace X Pietrain) piglets having an initial body weight of 7.10 Kg were used. and remained on the experimental treatments for 6 weeks. The animals were divided into eight blocks of 6 pens.

The experimental treatments consisted of a basal, low-P, control diet which was supplemented with RONOZYME® HiPhos (M) at 500, 1000, 2000, or 4000 FYT/kg, and a positive control diet supplemented with 1 g of inorganic P/kg as dicalcium phosphate. Each dietary treatment was assigned to 8 replicate groups.

Body weight gain, feed intake and feed conversion ratio were measured for each pen at 14, 28 and 42 days of trial. At day 14, fresh faeces were sampled from each pen and the apparent

digestibility of dry matter, ash, organic matter, Ca and P was measured using titanium dioxide as indicator. At the end of trial, a blood sample was also obtained from each piglet and analysed for alkaline phosphatase activity and inorganic P and Ca concentrations.

Composition and nutrient content of the diets

Main ingredients (%)	Basal diet	Basal diet with DCP
Corn	40.00	40.00
Soybean meal	9.84	9.84
Barley	24.68	24.68
Calculated nutrients		
Crude protein (%)	18.56	18.56
Ca (%)	0.75	0.75
Lysine (%)	1.40	1.40
Total P (%)	0.42	0.52
Non-phytic P (g/kg)	0.26	0.36
Energy (MJ ME /kg)	13.85	13.82

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Treatment	Low-P diet T1	T2	Т3	T4	T5	Basal diet + DCP T6
Target	0	500	1000	2000	4000	0
Analyzed	<loq< td=""><td>669</td><td>1082</td><td>2128</td><td>4301</td><td>137*</td></loq<>	669	1082	2128	4301	137*

^{*:} native activity in feed

Results

Feed conversion ratio between 0 and 42 days, apparent fecal digestibility of P and Ca, P in feces

Treatment	FCR 0-42 days	Apparent fecal digestibility P %	Apparent fecal digestibility Ca %	P in feces (g/kg DM)
NC	1.68bc	37.3e	58.7d	18.7a
500 FYT/kg	1.64bc	60.5c	70.8bc	10.7b
1000 FYT/kg	1.55ab	68.2b	73.3bc	10.0bc
2000FYT/kg	1.54a	71.0b	75.0ab	8.9c
4000 FYT/kg	1.61ab	79.3a	81.7a	6.6d
PC	1.76c	47.9d	66.5cd	17.2a

NC: negative control, PC: positive control

a,b,c, d,e: Mean values without a common letter indicate significant differences (p < 0.05)

Discussion

Over the whole experimental period (0-42 days), the addition of RONOZYME® HiPhos at 2000 FYT/kg improved feed to gain ratio over the negative and positive control diets. The supplementation with RONOZYME® HiPhos (at all doses) significantly improved the apparent fecal digestibility for ash, P and Ca in a dose response manner, relative to the negative and positive control diets. RONOZYME® HiPhos also reduced the P concentration in feces (statistically significant at all levels of supplementation) in a dose response manner.

Conclusion

It can be concluded that the RONOZYME® HiPhos phytase improved the digestibility of P and Ca, and reduced the fecal P excretion in a dose response manner.

4.8 Effects of a novel phytase (RONOZYME® HiPhos) in corn-soybean meal diets fed to weanling pigs (USA 2009) Report 00003284

The purpose of the trial conducted at the Department of Animal Sciences of University of Illinois was to determine the effects of graduated amounts of RONOZYME® HiPhos on the apparent total tract digestibility (ATTD) of phosphorus in corn-soybean meal diets fed to weaned piglets. See Annex 5.

Experimental conditions

A total of 48 weaned piglets (initial BW: 13.5 ± 2.45 kg) were used in a randomized complete block design. Piglets were crossbreeds from Landrace X Large White x Duroc. Piglets were randomly allotted to the 6 dietary treatments in 8 blocks and placed in metabolism cages equipped with a feeder and a nipple drinker that allowed for total collection of feces.

The positive control diet was a corn-soybean meal diet that contained quantities of Ca and P sufficient to meet the requirement of Ca and P for piglets. This diet contained 0.66% P and 0.86% Ca. The negative control diet that was similar to the positive control diet with the exception that corn starch replaced dicalcium phosphate. This diet contained 0.36% P and 0.48% Ca.

The experimental treatments consisted of a basal, low-P, control diet which was supplemented with RONOZYME® HiPhos at 500, 1000, 2000, or 4000 FYT/kg, and a positive control diet. Feces were collected over a 5-day period after 5 days of adaptation to the diets.

Composition and nutrient content of the diets

Main ingredients (%)	Basal diet	Basal diet with DCP
Corn	60.60	60.60
Soybean meal (48% CP)	32.00	32.00
DCP		1.65
Nutrients (analysed)		
Crude protein (%)	17.96	18.33
Ca (%)	0.48	0.86
Lysine (%)	1.21	1.18
Total P (%)	0.36	0.66

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Treatment	Low-P diet	Basal diet + DCP	Low-P + 500	Low-P + 1000	Low-P + 2000	Low-P + 4000
Target	0 FYT/kg feed	0 FYT/kg feed	500	1000	2000	4000
Analyzed	80*	91*	440	958	1743	3974

^{*:} native activity in feed

Results

Effects of phytase on apparent total tract digestibility of P

Treatment	P intake (g/day)	P in feces (%)	P output (g/day)	ATTD of P (%)	P absorption (g/day)
Negative control	2.28	2.30	1.35	40.46	0.93
500 FYT/kg	2.26	1.51	0.87	61.56	1.39
1000 FYT/kg	2.33	1.46	0.81	65.07	1.51
2000FYT/kg	2.25	1.22	0.71	68.74	1.54
4000 FYT/kg	2.14	1.10	0.68	68.04	1.46
Positive control	4.26	2.53	1.68	60.48	2.58
P-value	0.494	<0.01	<0.01	<0.01	<0.01

Discussion

The concentration of P excreted in the faeces was lower (P < 0.05) for pigs fed the negative control diet than for pigs fed the positive control diet. Likewise, pigs that were fed phytase containing diets had lower concentration of P in faeces than pigs fed the negative control diet. The daily P output was also lower (P < 0.01) for pigs fed the negative control diet than for pigs fed the positive control diet, and the inclusion of increasing levels of phytase to the negative control diet caused linear and quadratic reductions (P < 0.01) in P output. The ATTD of P was greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet, but the ATTD of P increased as RONOZYME® HiPhos phytase was added to the negative control diet (61.56, 65.07, 68.74, and 68.04% for pigs fed diets containing 500, 1,000, 2,000, or 4,000 FYT/kg, respectively). Phosphorus absorption was greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet but the addition of RONOZYME® HiPhos phytase to the negative control diet increased P absorption to 1.39, 1.51, 1.54, and 1.46 g/d.

Conclusion

Results from the present experiment show that RONOZYME® HiPhos phytase may be used in corn-soybean meal diets to improve the ATTD of P in weaned piglets. In addition, RONOZYME® HiPhos phytase supplementation may also result in a reduction of P excretion in the faeces of weaned piglets.

4.9 Effects of graduated amounts of RONOZYME® HiPhos on the fecal digestibility and excretion of phosphorus, calcium and zinc in growing pigs (France 2009) Report 2500672

The purpose of the trial conducted at Village-Neuf (France) was to determine the effects of graduated amounts of RONOZYME® HiPhos on phosphorus (P), calcium (Ca) and zinc (Zn) in the growing pig. The basal diet, without addition of mineral P, was based on soybean meal, Corn and barley. See Annex 6.

Experimental conditions

Thirty six Large White × Landrace pigs were used. The animals were housed in floor-pen cages in 9 groups of 4 animals each. The pigs were fed a basal diet without addition of mineral P (diet A) during an adaptive period of 16 days. After that period they were allocated into 9 equal groups and fed for 12 days the basal diet in mash form (group A) or the diet A supplemented with 12 g/kg of dicalcium phosphate (group B), with RONOZYME® HiPhos phytase at the levels of 500 FYT/kg feed (group C), 1000 FYT/kg feed (group D), 1500 FYT/kg feed (group E), 1750 FYT/kg feed (group F), 2000 FYT/kg feed (group G), 2500 FYT/kg feed (group H) and 3000 FYT/kg feed (group I).

The basal diet A was formulated to provide P exclusively from vegetable origin and to meet, with the exception of the available P supply, the animals requirements according to Henry et al. (1989) and NRC (1998).

Composition and nutrient content of the diets

Main ingredients (%)	Basal diet (group A)	Basal diet with DCP** (group B)
Corn	53.0	53.0
Soybean meal	18.0	18.0
Barley	13.9	13.0
Nutrients		
Crude protein (%)	15.5	15.5
Lysine (%)	0.96	0.96
Ca- calculated (% in DM*)	0.66	0.86
Ca- analysed (% in DM)	0.70	0.80
P- calculated (% in DM)	0.41	0.65
P- analysed (% in DM)	0.42	0.62
Theoretical P (%)	0.12	1.86
Phytic P – calculated (%)	0.28	0.28
Estimated digestible energy (MJ/kg)	13.31	13.31

*DM: dry matter

**DCP: DiCalcium Phosphate

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Target	Basal diet Group A	Basal diet + DCP Group B	C	D	E	F	G	Н	1
Target (nominal)	0 FYT/kg feed	0 FYT/kg feed	500	1000	1500	1750	2000	2500	3000
Analyzed	225*	219*	678	1179	1723	1985	2232	2798	3329
Actually added	-	-	453	954	1498	1760	2007	2573	3104
Average % of target	-	-	91	94	100	101	100	103	103

^{*:} does not mean contamination but native activity in feed

Results

P, Ca and Zn digestibility and excretion

Treatments	Basal diet Group A	Basal diet + DCP Group B	С	D	Е	F	G	н	1
Phytase dose (FYT/kg feed)	0	0	500	1000	1500	1750	2000	2500	3000
Fecal P concentration (% of DM)	1.59	1.67	1.19*	1.08*	0.97*	0.99*	0.94*	0.86*	0.83*
Apparent fecal digestibility of P (%)	29.3	47.2*	50.4*	57.8*	59.8*	61.3*	61.5*	66.6*	68.0*
Fecal P excretion (mg/g DM)	2.99	3.29*	2.11*	1.79*	1.71*	1.62*	1.63*	1.40*	1.34*
Apparent fecal Ca digestibility (%)	60.2	61.1	68.8*	73.0*	72.8*	75.7*	75.3*	86.7*	81.8*
Fecal Zn digestibility (%)	11.4	16.7	25.5*	21.4*	17.3**	25.0*	21.6*	17.5**	18.1**

^{*} significant differences versus negative control at level P<0.001
** significant differences versus negative control at level P<0.05

Results

P, Ca and Zn digestibility and excretion

Treatments	Basal diet Group A	Basal diet + DCP Group B	С	D	Е	F	G	Н	
Phytase dose (FYT/kg feed)	0	0	500	1000	1500	1750	2000	2500	3000
Fecal P concentration (% of DM)	1.59	1.67	1.19*	1.08*	0.97*	0.99*	0.94*	0.86*	0.83*
Apparent fecal digestibility of P (%)	29.3	47.2*	50.4*	57.8*	59.8*	61.3*	61.5*	66.6*	68.0*
Fecal P excretion (mg/g DM)	2.99	3.29*	2.11*	1.79*	1.71*	1.62*	1.63*	1.40*	1.34*
Apparent fecal Ca digestibility (%)	60.2	61.1	68.8*	73.0*	72.8*	75.7*	75.3*	86.7*	81.8*
Fecal Zn digestibility (%)	11.4	16.7	25.5*	21.4*	17.3**	25.0*	21.6*	17.5**	18.1**

^{*} significant differences versus negative control at level P<0.001
** significant differences versus negative control at level P<0.05

Discussion

The animals grew normally during the observation period to reach a final mean body weight of 44.84 ± 3.37 kg. Their daily weight gain was 679 ± 5 g. No mortality was observed during the experiment. Two animals from group H, receiving the diet supplemented with RONOZYME® HiPhos phytase at 2500 FTY/kg feed presented diarrhea during the sampling period, so that no feces could be collected from them. No statistical analysis was performed for this group as the total amount of feces samples was only half (n = 6) of the other groups (n = 12).

• Effects on Phosphorus digestion (not all results are displayed in the table above)

The mean fecal P concentration of the enzyme supplemented animals was significantly lower (P<0.001) than that measured in the animals receiving the control diet. There was a decrease of the fecal P concentration with the increasing amount of RONOZYME® HiPhos phytase. The lowest fecal P concentration was observed in the animals receiving phytase at 3000 FYT/kg feed.

The P digestibility was dose dependent and significantly improved by 21.1, 28.5, 30.5, 32.0, 32.2, 37.3 and 38.7 percentage units in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 FYT/kg phytase supplemented groups, respectively (P<0.001). The digestibility of P in the DCP supplemented diet was also significantly higher than that of the control by 17.9 percentage units and very similar to the enzyme supplementation at 500 FYT/kg feed (P<0.001).

The fecal excretion of P was significantly reduced by 29.3, 40.1, 42.8, 45.8, 45.6, 53.0, and 55.2 % with phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 FYT/kg supplemented group, respectively (P<0.001). It was increased by 10.1 % with the DCP supplemented group (P<0.001).

The apparent absorbed P was 2.15, 2.45, 2.54, 2.56, 2.60, 2.80 and 2.84 g/kg feed with phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 FYT/kg feed supplemented groups respectively and 2.93 g/kg feed in the DCP supplemented group. It was significantly increased (P<0.001). in all the supplemented groups in comparison to the control diet (1.24 g/kg). With the exception of the phytase 500 FYT/kg inclusion level, all other supplemented groups were over the recommended requirements of 2.25 g of digestible P per kg feed.

• Effects on Calcium digestion

The fecal Ca concentration of the animals receiving the basal diet supplemented or not with DCP was systematically higher than that of the animals receiving the diets supplemented with the phytase. The observed differences were statistically significant for all the enzyme supplemented groups.

The Ca digestibility was significantly improved (P<0.001), by the phytase and by all the inclusion levels of phytase. The improvements were 8.6, 12.8, 12.6, 15.5, 15.1, 26.5 and 21.6 percentage units in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 FYT/kg phytase supplemented groups, respectively.

The Ca digestibility of the phytase supplemented diets was more or less dose dependent. The fecal excretion of Ca was significantly reduced (P<0.001) by 23.9, 34.6, 36.8, 42.3, 41.7, 67.9,

and 57.0 % with RONOZYME® HiPhos phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 FYT/kg supplemented groups, respectively. It was increased by 12.1 % with the DCP supplemented group.

Conclusion

From the results of the present study, it can be concluded that the RONOZYME® HiPhos phytase improved the digestibility and the apparent absorption of P, Ca and Zn, and reduced the fecal P excretion in the pig fed on a diet containing P exclusively from vegetable origin. There was a dose dependent effect of RONOZYME® HiPhos phytase on the availability of the dietary Phosphorus.

4.10 Effects of a novel phytase (RONOZYME® HiPhos) in corn-soybean meal diets fed to growing pigs (USA 2009) Report 00003283

The purpose of the trial conducted at (b) (4) was to determine the effects of graduated amounts of RONOZYME® HiPhos on the digestibility of P in corn soybean meal diets fed to growing pigs. See Annex 7.

Experimental conditions

24 growing barrows were used in a 2 period crossover design. In period 1, barrows had an initial body weight of 36.2 ± 4.0 kg, while in period 2, they had an initial body weight of 47.3 ± 5.3 kg. The animals were placed in metabolism cages and randomly allotted to the 6 dietary treatments. The positive control diet was a corn-soybean meal diet that contained quantities of Ca and P sufficient to meet the requirement of Ca and P for growing pigs (NRC, 1998) with a total concentration of P at 0.56%. The negative control diet was similar to the positive control but contained only 0.33% P.

Composition and nutrient content of the diets

Main ingredients (%)	Basal diet	Basal diet with DCP
Corn	65.80	65.80
Soybean meal (48%)	29.50	29.50
Corn starch	1.05	-
DCP	-	1.05
Nutrients (analysed)		
Crude protein (%)	17.96	18.33
Lysine (%)	1.06	1.08
Ca (%)	0.58	0.79
P (%)	0.33	0.56

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Treatment	Basal diet N.C.	Basal diet + DCP P.C.	Basal diet + 500	Basal diet + 1000	Basal diet + 2000	Basal diet + 4000
Target (nominal)	0 FYT/kg feed	0 FYT/kg feed	500	1000	2000	4000
Analyzed	41*	39*	373	984	1773	3681

^{*:} does not mean contamination but native activity in feed

Results

Apparent total tract digestibility (ATTD) of P and Ca

Treatments	NC	PC	500	1000	2000	4000	NC versus HiPhos	P-value	
								L	Q
P in feces %	2.44	2.59	1.82	1.52	1.31	1.09	<0.01	<0.01	<0.01
P output g/day	2.87	3.41	2.12	1.76	1.54	1.36	<0.01	<0.01	<0.01
P absorption g/day	1.94	5.10	3.00	3.33	3.47	3.66	<0.01	<0.01	<0.01
ATTD of P %	39.83	59.36	58.10	65.43	69.09	72.76	<0.01	<0.01	<0.01
Ca in feces %	2.33	2.45	1.40	1.29	1.22	0.91	<0.01	<0.01	<0.01
Ca output g/day	2.74	3.20	1.62	1.50	1.46	1.13	<0.01	<0.01	<0.01
Ca absorption g/d	5.72	8.82	7.26	7.03	6.80	6.84	<0.01	0.376	0.122
ATTD of Ca %	67.30	72.90	81.44	82.62	82.36	85.84	<0.01	<0.01	<0.01

L: linear contrast, Q: quadratic contrast

Discussion

Throughout the experiment, pigs remained healthy and readily consumed their diets. No differences in feed intake were observed among treatments. Phosphorus intake was lower for pigs fed the negative control than for pigs fed the positive control diet.

The P concentration in feces was lower for pigs fed RONOZYME® HiPhos phytase containing diets than for pigs fed the negative control diet, and there was a linear and quadratic reduction (P < 0.01) in fecal P concentration as RONOZYME® HiPhos phytase was included in the diets.

The ATTD of P was lower (P < 0.01) for pigs fed the negative control diet than for pigs fed the positive control diet (39.83 vs. 59.36%). The addition of increasing levels of RONOZYME® HiPhos phytase to the negative control diet increased the ATTD of P (linearly and quadratically, P < 0.01). Phosphorus absorption was greater for pigs fed the positive control diet than for pigs fed the negative control diet (5.10 vs. 1.94 g/d), but absorption of P increased (linearly and quadratically, P < 0.01) as phytase was added to the negative control diet. Calcium intake was greater for pigs fed the positive control diet than for pigs fed the negative control diet (12.02 vs. 8.47 g/d). Calcium in the feces and total Ca output were lower (linear

and quadratic P < 0.01) for pigs fed phytase containing diets than for pigs fed the negative control diet. Addition of phytase to the negative control diet increased (linearly and quadratically, P < 0.01) the ATTD of Ca.

Conclusions

Results from the present experiment show that RONOZYME® HiPhos phytase is an effective phytase that may be used in Corn-soybean meal diets to improve the ATTD of P and Ca. The RONOZYME® HiPhos phytase will also result in a reduction in P excretion in the manure from pigs fed diets containing this enzyme.

4.11 Efficacy of IPA phytase (RONOZYME® HiPhos) in growing pigs (Spain 2009) Report 00001789

The purpose of the trial conducted at (b) (4) was to access the effect of RONOZYME® HiPhos on digestibility parameters in growing pigs. See Annex 8.

Experimental conditions

A total of 48 animals (Landrace x Pietrain) were involved. The pigs started on the trial at 51.6 kg body weight and remained on the experimental treatments for 3 weeks. They were divided into eight blocks of 6 animals, taking into account sex and initial body weight. The experimental treatments consisted of a basal, low-P, control diet which was supplemented with RONOZYME® HiPhos at 500, 1000, 2000, or 4000 FYT/kg, respectively, and a positive control diet supplemented with 1 g of inorganic P/kg as dicalcium phosphate. Each dietary treatment was assigned to 8 animals. At the end of the study, fresh feces were sampled for each pig and the apparent digestibility of dry matter, ash, organic matter, Ca and P was measured. A blood sample was also obtained from each pig and analyzed for alkaline phosphatase activity and inorganic P and Ca concentrations.

Composition and nutrient of the diets

Main ingredients (%)	Low P Basal diet	PC diet		
Com	35.00	35.00		
Soybean meal (48% CP)	18.95	18.95		
Barley	41.35	41.35		
DCP	0	0.55		
Nutrients (calculated)	d management of the			
Crude protein (%)	16.11	16.11		
Lysine (%)	1.00	1.00		
Ca (%)	0.60	0.60		
Total P (%)	0.349	0.446		
Non phytic P (%)	0.133	0.230		

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Treatment	Basal diet T1	Basal diet + DCP T6	T2	Т3	T4	T5
Target (nominal)	0 FYT/kg	0 FYT/kg feed	500	1000	2000	4000
Analyzed	150*	114*	671	1529	2659	4448

^{*} does not mean contamination but native activity in feed

Results

P in blood, P in feces, apparent fecal digestibility of P and Ca

Treatment	P in blood (mg/dl)	P in feces (g/kg Dry matter)	Apparent P digestibility (%)	Apparent Ca digestibility (%)
Negative Control	6.69a	13.78c	29.6c	55.3c
500 FYT/kg	7.12ab	10.98b	35.6bc	62.0bc
1000 FYT/kg	7.63bc	10.49b	42.5b	70.6ab
2000 FYT/kg	8.04c	8.11a	56.1a	75.9a
4000 FYT/kg	7.75c	7.69a	62.4a	61.3bc
Positive control	7.66c	14.82c	37.5bc	58.0c

a,b,c Mean values without a common letter indicate significant differences (p < 0.05)

Discussion

The supplementation of the basal diets with RONOZYME® HiPhos phytase significantly increased P concentration in blood at 1000, 2000 and 4000 FYT/kg diet, respectively. RONOZYME® HiPhos phytase at 500, 1000, 2000 and 4000 FYT/kg diet significantly improved the apparent fecal digestibility of P from 29.6% (negative control) to 35.6, 42.5 (P<0.05), 56.1 (P<0.05) and 62.4% (P<0.05), respectively. The apparent digestibility of Ca was improved as well and the effects were statistically significant for phytase supplementation at 1000 and 2000 FYT/kg diet, respectively. At all inclusion levels RONOZYME® HiPhos phytase reduced P concentration in feces in a statistically significant manner.

Conclusions

Results from the present experiment show that RONOZYME® HiPhos phytase is an effective phytase that may be used in corn meal diets to improve the digestibility of P and Ca and reduce the load of P in feces.

4.12 Dose response study with a new phytase (IPA Mash Phytase, RONOZYME® HiPhos) in lactating sows (Germany 2009) Report 00003282

The objective of the experiment carried out at the (b) (4) of the (b) (4) was to study the effects of RONOZYME® HiPhos phytase on the digestibility of P in lactating sows. See Annex 9.

Experimental conditions

A total of 28 sows (German Landrace) were used in the experiment. One week before partum the animals were moved into individual cages and were randomly assigned to one of the four treatments. The experimental diets were based on corn (660 g/kg) and soybean meal (270 g/kg) without a mineral P supplementation in order to achieve a sufficiently low basal P level.

In the pre-treatment period (7 days before and 2 to 11 d after parturition) all sows were fed an in-house lactation diet. The sows were then adjusted to the experimental diet by increasing the level of corn and soybean meal in the diet over a period of 3 to 6 days. A 5-day period of faeces collection followed a 7-day period of prefeeding the experimental diets.

Nutrient composition and RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Diet	Phytase activity intended (FYT/kg)	Analysed (FYT/kg)	Ash (g/kg DM)	Crude protein (g/kg DM)	Crude fat (g/kg DM)	P (g/kg DM)	Ca (g/kg DM)
A	0	<50	65	201	85	4.3	11.3
В	500	589	61	206	83	4.2	9.7
С	1000	1027	61	200	87	4.2	10.6
D	2000	2125	61	196	85	4.1	9.4

Results

Digestibility of dry matter, P and Ca

Treatment	Dry Matter digestibility (%)	P digestibility (%)	Ca digestibility (%)
Negative Control	86.9	20.5a	33.2
500 FYT/kg	86.9	23.3ab	37.5
1000 FYT/kg	87.4	32.5bc*	37.6
2000 FYT/kg	86.8	34.1c*	33.6
P	0.38	0.02	0.23

^{*} Means are significantly different from the unsupplemented treatment A according to Dunnett test.

^{a,b,c} Values without a common superscript are significantly different according to t-test ($P \le 0.05$).

Discussion

Digestibility of P was significantly improved from 21 % to 34 % with increasing RONOZYME® HiPhos supplementation ($P \le 0.05$). The mean digestibility of Ca was similar in the diets, at an average of 35.5%.

Conclusions

In conclusion, RONOZYME® HiPhos has beneficial effects on phosphorus digestibility in lactating sows.

4.13 Efficacy study with IPA Mash Phytase (RONOZYME® HiPhos) in gestating sows (Germany 2009) Report 00003285

The purpose of the trial run at the (b) (4) (Germany) was to assess the efficacy of graduated levels of RONOZYME® HiPhos on apparent digestibility of crude ash, calcium and phosphorus in gestating multiparous sows. See Annex 10.

Experimental conditions

24 multiparous sows (EUROC line) in the body weight range of 190 to 210 kg and the same reproduction stage (29th to 33rd day of pregnancy) were used in the experiment.

Four treatments were imposed to the gestating sows from the 45th to 58th day of pregnancy after a 12-day pre-treatment period (31st to 44th day of pregnancy). Six sows per treatment were used. The first treatment (A) was the negative control diet, a low-phosphorus based diet without RONOZYME® HiPhos phytase. Treatments B, C and D were identical to the negative control but supplemented with RONOZYME® HiPhos Phytase at dose levels of 500, 1000 and 2000 FYT/kg of diet, respectively.

Composition and nutrient content of the diets

Treatment period		
34.04		
23.00		
12.50		
12.00		
11.00		

Nutrients (calculated) (g/kg)	
Metabolizable energy (MJ/kg)	12.86
Crude protein	144.42
Lysine	6.40
Methionine	2.00
Cystine	2.20
Са	7.00
P	3.40

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Treatment	Basal diet A	В	С	D
Target (nominal)	0 FYT/kg feed	500	1000	2000
Analyzed	211*	786	1262	2440

^{*} does not mean contamination but native activity in feed

Results

Fecal concentrations of calcium and phosphorus, apparent digestibility of crude ash, calcium and phosphorus from days 54 to 58 of gestation

Treatment	Fecal concentration of Ca (g/kg DM)	Fecal concentration of P (g/kg DM)	Crude ash apparent digestibility (%)	Ca apparent digestibility (%)	P apparent digestibility (%)
Negative Control	37.1a	18.6a	29.44a	30.57a	26.51a
500 FYT/kg	34.3ab	17.8a	33.76b	35.93b	33.52ab
1000 FYT/kg	32.4ab	15.4ab	35.77bc	39.08bc	38.59b
2000 FYT/kg	28.8b	13.9b	39.29c	41.14c	39.87b
Anova	0.016	0.007	<0.001	<0.001	<0.001

ab Means with different superscripts within the same line differed significantly

Discussion

The apparent crude ash digestibility of sows fed without RONOZYME® HiPhos Phytase supplementation was 29.4%. With supplementation of RONOZYME® HiPhos at the dose levels of 500, 1000 and 2000 FYT/kg of feed the apparent digestibility increased significantly. The highest response was recorded for the addition of 2000 FYT/kg of feed.

The apparent calcium digestibility of sows fed with RONOZYME® HiPhos Phytase was significantly improved with increasing dose levels when compared to sows fed without RONOZYME® HiPhos by 17.5 (500 FYT/kg), 27.8 (1000 FYT/kg) and 34.6% (2000 FYT/kg) when compared to sows fed without RONOZYME® HiPhos. The highest response was shown for sows fed with 2000 FYT/kg feed.

The apparent digestibility of phosphorus in sows fed without RONOZYME® HiPhos amounted to 26.5%. For sows fed with RONOZYME® HiPhos Phytase the respective means were significantly improved (P<0.001) with inclusion of 1000 and 2000 FYT/kg of feed by 45.6 and 50.4%, respectively. The addition of RONOZYME® HiPhos Phytase at 500 FYT/kg feed was less effective and due to the high standard deviations the differences compared to sows fed without RONOZYME® HiPhos Phytase were not significant at this concentration.

Conclusions

It can be concluded that RONOZYME® HiPhos phytase is effective in improving the apparent digestibility for crude ash, calcium and phosphorus, when using diets deficient in phosphorus supply.

4.14 Evaluation of the effect of IPA Mash phytase (RONOZYME® HiPhos) on the nutrient digestibility in gestating sows (Slovak Republic 2009) Report 00003286

The purpose of the study run at the evaluate the effects of RONOZYME® HiPhos on total tract digestibility of organic matter (OM), nitrogen (N), phosphorus (P) and calcium (Ca). See Annex 11.

Experimental conditions

24 gestating sows (Large White x Landrace) with initial mean body weight 239.8 kg at the start of the experiment, in the range from 3rd to 5th parity and in the last third of pregnancy among 98th and 113th day of pregnancy were used for the experiment.

There were four dietary experimental treatments to which the sows were allocated according to body weight and parity. Six sows per treatment were used. The first treatment (F0) was the negative control diet, low-phosphorus basal diet without RONOZYME® HiPhos Phytase. Treatments F1, F2, F3 were identical to the negative control but supplemented with RONOZYME® HiPhos Phytase at dose levels 500, 1000 and 2000 FYT/kg in the diets, respectively.

On day 95 of pregnancy the sows were housed in 24 individual pens. From 95 to 98 day of pregnancy there was an adaptation period in which the sows were fed with a commercial diet for pregnant sows. After the 10 day preliminary period (from 98 to 108 day of pregnancy) in

which the animals were fed with the experimental diets, followed the 5 days collection period (from 108 to 113 days of pregnancy) during which the feces were collected. The experiment was finished after 15 days.

Composition and nutrient content of the diets

Ingredients (%)	Basal diet		
Corn	47.05		
Barley	20.00		
Soybean meal (46% CP)	11.80		
Rapeseed meal (33% CP)	8.00		
Calculated nutrients (g/kg)			
Metabolizable energy (MJ/kg)	12.7		
Crude protein	171.7 9.6		
Lysine			
Methionine + Cystine	6.3		
P total	6.0		
Са	8.0		
P digestible	2.4		

RONOZYME® HiPhos assay in FYT/kg feed, after mixing

Treatment	Basal diet F0	F1	F2	F3
Target (nominal)	0 FYT/kg feed	500	1000	2000
Analyzed	124*	531	898	1890

^{*} does not mean contamination but native activity in feed

Results

Digestibility of calcium and phosphorus

Treatment	DM digestibility (%)	P in feces (g/kg DM)	Ca digestibility (%)	P digestibility (%)
F0 - Negative Control	83.1a	27.9a	35.5a	26.7a
F1 - 500 FYT/kg	83.7ab	26.1b	41.6b	33.6b
F2 - 1000 FYT/kg	84.7c	26.1b	47.8c	39.0c
F3 - 2000 FYT/kg	84.2bc	25.7b	44.1b	37.2bc

abc Means within a column followed by the different superscript are significantly different (P<0.05)

Discussion

The digestibility of both P and Ca significantly increased as a result of RONOZYME® HiPhos supplementation. The highest effect was observed in diet F2. In comparison to the control group, the total tract digestibility of P increased by 25.81, 46.27 and 39.27 % in diets F1, F2 and F3, respectively. The digestibility of Ca was significantly different from the control diet without added phytase (P<0.05), increasing in diets supplemented with 500, 1000 and 2000 FYT/kg by 17.06, 34.52 and 24.23 %, respectively.

As a result of improved nutrient digestibility due to the RONOZYME® HiPhos supplementation, concentration of nutrients in feces was reduced. In comparison to the control diet F0, the reduction of P and Ca concentration in the feces ranged from 6.51% (F1), 6.55% (F2) and 7.9% (F3) in P and 8.3% (F1), 8.6% (F2) and 7.0% (F3) in Ca.

Conclusions

It can be concluded that RONOZYME® HiPhos is efficient in increasing plant phosphorus and calcium digestibility and in reducing the concentration of P in feces.

4.15 Efficacy Study with IPA Mash Phytase (RONOZYME® HiPhos) in gestating sows, Report 00015939

The purpose of the study run at the (b) (4) was to evaluate the effects of RONOZYME® HiPhos on nutrient digestibility and performance at 500 FYT/kg feed.

Experimental conditions

45 gestating sows (Large White x Landrace) were individually kept but within five rooms, each having nine sows at the same stage of farrowing and lactation. The sows were allocated to one of the three experimental diets (15 sows per diet). During the experiment the sows were offered lactation obtained from a commercial source) in crumbles form, which were identical except for the amount of total phosphorus.

The three experimental groups were as follows:

PC: Positive control (regular lactation diet containing 0.77% total P)

NC: Negative control diet (containing 0.45 % total P)

NC+P: Negative control diet plus 500 FYT/kg diet (Ronozyme® HiPhos)

Diets were fortified to meet vitamin and mineral requirements.

Composition and nutrient content of the diets

Ingredients (%)	Lactation diets		
Wheat	51.7 - 53.5		
Soybean meal	13.9 – 13.3		
Canola meal	6.5		
Analysed nutrients			
Gross energy (Kcal/kg)	4038 - 4051		
Crude protein (%)	23.2 – 23.3		
Phosphorus (%)	0.590 - 0.860 (PC)		
Calculated nutrients (%)			
Lysine	1.070		
Methionine	0.360		
P total	0.450 - 0.770 (PC)		
P digestible	0.202 – 0.517 (PC)		

RONOZYME® HiPhos recoveries in FYT/kg feed

Treatment	NC	NC + HiPhos	PC
Target (nominal)	0	500	0
Analyzed	127*	764	<loq< td=""></loq<>

^{*} does not mean contamination but native activity in feed LOQ: limit of quantification

Results

Digestibility of phosphorus and dry matter,

Treatment	DM digestibility d15 (%)	Feed consumed (total) (kg)	P digestibility d15 (%)
Negative Control	80.5b	114.5	33.9b
500 FYT/kg	81.8a	102.4	46.0a
Positive control	78.8c	109.4	29.7b

abc Means within a column followed by the different superscript are significantly different (P<0.05)

d15: 15 days post farrowing

Comments

The supplementation of RONOZYME® HiPhos to low P diet increased the Apparent Total Tract Digestibility (ATTD) of phosphorus on day 15 post farrowing. Specifically, supplementation of RONOZYME® HiPhos to the Negative Control diet increased the ATTD of phosphorus by 17% on day 8 and by 35% on day 15 post farrowing as compared with the NC diet. Feeding the three test diets did not affect (P>0.05) total feed consumption, milk production and BW changes of sows during the lactation and liter weight gain of piglets. There was a trend (P = 0.067) of 10% reduced daily feed consumption in sows fed with RONOZYME® HiPhos supplemented diets, while keeping all other parameters similar.

Conclusions

It can be concluded that RONOZYME® HiPhos is efficient as to the increase of plant phosphorus digestibility at 500 FYT/kg feed. See Annex 12

4.16 Phytase Usage and its impact on bone properties

Phytases increase the availability of phosphorous in the diet and since phosphorus is a major component of bone, a change in available phosphorous is expected to have an impact on bone composition. Common measurements utilized to define bone quality are bone ash and bone strength. Bone strength is expressed as the force necessary to break a specific bone of the animal; the tibia in poultry and the femur or metatarsal of swine. (Crenshaw et al 1981) Ref. 9 Bone strength values are variable, dependent upon species, age of the animal, diet and analytic technique. (Aerssens et al 1998) Ref..10. Bone ash is determined by ashing the bone sample in a muffle oven after preparing and drying the sample for > 24 hours at 100° C.

RONOZYME® HiPhos is classified as a histidine acetate phytase. A recent article presenting a new phytase notes that the commercial phytases, RONOZYME® P. RONOZYME® NP, Phyzyme and Optiphos also fall within this enzyme classification. (Ariza et al 2013) Ref..11.

Brana et al (2006) Ref. 12 compared the bone ash and mineral digestibility in piglets and growing swine when the feed was fortified with the phytase enzymes Phyzyme, a 6-phytase (as is HiPhos) or Naturphos, a 3-Phytase. Both enzymes were effective in maintaining fibular ash levels similar to the positive control with the effect being more pronounced in the growers. Phosphorous digestibility values for the Phyzyme treatment group were comparable to or

better than the optimum mineral ratio control. The Phyzyme treatment groups experienced a positive effect in both apparent fecal digestibility of phosphorous and bone ash. Jones et al (2010) Ref. 13 evaluated the bone ash of piglets fed diets containing different commercial phytases; RONOZYME® P, Phyzyme XP and OptiPhos 2000. For each enzyme, in a phosphorous deficient diet, increasing enzyme concentration was correlated to increasing percent bone ash in a statistically significant manner. The enzyme supplemented phosphorus deficient diets all achieved percent bone ash values equivalent to the 0.14% phosphorous control.

A DSM internal comparison study of bone properties revealed that RONOZYME® HiPhos supplemented diets were similar to diets supplemented with other commercial histidine acetate phytases with respect to bone breaking force and percent bone ash. See Annex 13.

Bnestreigh and imealization in the going gigfel a die without or with DE dicalcium os patier differet by tase.

ems p goupstandard diation,

% of variation from group Control (-))

Treatment groups (n = 8	Contro I (-)	DCP RONOZYME® 12 HiPhos (M) g/kg		The state of the s	Phyzyme®XP 4000 TPT		OptiPhos® 2000 PF	
animals)	A	В	C	D	E ⁽¹⁾	F	G	H
Planned phytase addition (U/kg)	0	0	1000	1500	500	750	500	750
Breaking force for the external metacarpal bone (N)	83ª ± 31	246 ^d ± 44 +197	148 ^{bc} ± 23 +79	182° ± 46 +119	149 ^{bc} ± 32 +80	177 ^c ± 24 +113	129 ^b ± 29 +55	138 ^b ± 35 +66
External metacarpal bone mineralization (% of ash in DM)	57.80 ^a ± 2.07	62.53 ^b ± 0.85 + 8.2	58.66 ^a ± 1.80 + 1.5	61.27 ^b ± 0.85 + 6.0	58.68 ^a ± 0.55 + 1.5	58.45 ^a ± 1.62 + 1.1	57.43 ^a ± 3.32 - 0.6	59.12 ^a ± 1.53 + 2.3
Breaking force for the external metatarsal bone (N)	77 ^a ± 32	223 ^d ± 53 +191	140 ^{bc} ± 38 +82	155° ± 51 +102	122 ^{bc} ± 34 +59	129 ^{bc} ± 26 +68	96 ^{ab} ± 34 +25	125 ^{bc} ± 30 +62
External metatarsal bone mineralization (% of ash in DM)	56.96 ^a ± 3.19	62.47 ^d ± 0.82 + 9.7	57.68 ^{ab} ± 2.38 + 1.3	60.53 ^{cd} ± 1.47 + 6.3	59.26 ^{bc} ± 1.45 + 4.0	59.61 ^{bc} ± 1.56 + 4.7	57.99 ^{ab} ± 2.29 + 1.8	59.70 ^{bc} ± 1.63 + 4.8
Mean breaking force for both bones (N)	80 ^a ± 31	235° ± 48 +195	144 ^{cd} ± 31 +81	169 ^d ± 49 +112	136b° ± 35 +70	152 ^{cd} ± 35 +90	112 ^b ± 35 +40	132 ^{bc} ± 32 +66

(1)n = 7 animals

a, b, c, d, e Means within the same row without a common letter are significantly different (P<0.05)

Conclusion

This internal study shows that swine feed low in phosphorous supplemented with RONOZYME® HiPhos achieved bone breaking force and percent bone ash values greater than the negative control and comparable to the phosphate fortified feed and the other commercial phytase supplemented feeds. These results are similar to published results for other histidine acetate phytases, see Ref. 12 & 13.

4.17 Summary

The efficacy studies summarized in the preceding sections support the purpose of RONOZYME® HiPhos, to increase the availability of phytate bound phosphate in swine feed and does so with no adverse effects as noted in the target animal studies.

Published studies of other histidine acetate phytases, including those undertaken by DSM, support the efficacy of phytase supplemented swine diets based upon the more traditional bone property parameters. Since RONOZYME® HiPhos is a histidine acetate phytase it would be anticipated that this enzyme would provide similar results. The recent internal study presented in section 4.16 supports this presumption where swine feed low in phosphorous supplemented with RONOZYME® HiPhos achieved bone breaking force and percent bone ash values greater than the negative control and comparable to the phosphate fortified feed and the other commercial phytase supplemented feeds.

When viewed in total, the safety and efficacy studies show that RONOZYME® HiPhos safely provides the intended effect of increased phosphorus release from phytic acid in swine feed composed of a broad range of plant based ingredients. This broad suitability coupled with demonstrated safety means RONOZYME® HiPhos can be used for swine in all stages of development in all regions of the United States.

5 Human and Environmental Safety

The human and environmental safety of the enzyme was addressed in the GRAS Notification of RONOZYME® HiPhos, a 6-phytase preparation produced by an Aspergillus oryzae strain expressing a synthetic gene coding for a 6-phytase from Citrobacter braakii for use in poultry nutrition, AGRN #14.

6 Annexes

- (b) (4) et al. (2009). Report No. 00000962: Tolerance study with IPA Mash Phytase [RONOZYME® HiPhos (M)] in weaned piglets. 2008
- 2. (b) (4) et al. (2009). Report No. 00003288: Tolerance study with IPA Mash Phytase in gestating and lactating sows, 2009
- Guggenbull et al. (2009). Report No. 2500761: Evaluation of the effects of graded amounts of a microbial phytase (RONOZYME® HiPhos) in the weaned piglet. 2009
- (b) (4) and Broz, J. (2009). Report No. 00001788: Efficacy of IPA phytase (RONOZYME[®] HiPhos) in piglets. 2009
- 5. (b) (4) et al. (2009). Report No. 00003284: Effects of a novel phytase (RONOZYME® HiPhos) in corn-soybean meal diets fed to weanling pigs. 2009
- Guggenbull et al. (2009). Report No. 2500672: Effects of graded amounts of a microbial phytase (RONOZYME® HiPhos) on the fecal digestibility and excretion of phosphorus, calcium and zinc in growing pigs. 2009
- 7. (b) (4) et al. (2009). Report No. 00003283 Effects of a novel phytase (RONOZYME® HiPhos) in corn-soybean meal diets fed to growing pigs. 2009
- (b) (4) and Broz, J. (2009). Report No. 00001789: Efficacy of IPA phytase (RONOZYME® HiPhos) in growing pigs. 2009
- 9. (b) (4) and Broz, J. (2009). Report No. 00003282: Dose response study with a new phytase (IPA Mash Phytase RONOZYME® HiPhos) in lactating sows. 2009
- 10. (a) (b) (4) et al. (2009). Report No. 00003285: Efficacy study with IPA Mash Phytase (RONOZYME® HiPhos) in gestating sows. 2009
- 11. (b) (4) and Broz, J. (2009). Report No. 00003286: Evaluation of the effect of IPA Mash (RONOZYME® HiPhos) on the nutrient digestibility in gestating sows. 2009
- 12. Zijlstra, R.T., Nasir, Z. and Broz, J. (2012) Report No. 00015939. Assessment of the effects of phytase (RONOZYME® HiPhos) to improve nutrient digestibility in lactating sows. 2012
- 13. Guggenbull et al (2012). Excerpt from Report 00013767: Comparative effects of Ronozyme® HiPhos (M), Phyzyme® XP 4000 TPT and OptiPhos® 2000 PF on the zootechnical performance and mineral utilization in the growing pig: Bone Properties.

7 References

- 1. Fammatre, C. A., Mahan, D. C., Fetter, A. W., Grifo, A. P. and Judy, J.K. (1977): Effects of Dietary protein, Calcium and Phosphorus Levels for Growing and Finishing Pigs. J. Animal Sci. 44:65 71 (1977).
- 2. Hidvegi, M. and Lazitty, R. (2002): Phytic Acid Content of Cereals and Legumes and Interaction with Proteins. Periodica Polytechnica Ser. Chem. Eng. Vol. 46, NO. 1–2, PP. 59–64 (2002).
- 3. AAFCO Official Publication Association of American Feed Control Officials Incorporated (2011): Feed ingredients Definitions. Chapter 5: 394
- Guggenbuhl P., Torrallardona D., Cechova I., Simoes Nunes C., Wache Y., Fru F., Broz J. (2012): The efficacy of a novel microbial 6-phytase expressed in Aspergillus oryzae on the performance and phosphorus utilization in swine. J. Animal Sci. Adv. 2(5) 1-15 (2012).
- 5. National Research Council, Nutrient Requirements of Swine. Ninth Revised Edition, National Academy Press, Washington, D.C., 1988 p 50-51.
- Almeida, F.N. and Stein, H.H. (2012): Effects of graded levels of microbial phytase on the standardized total tract digestibility of phosphorus in corn and corn coproducts fed to pigs. J. Animal Sci. 90:1262-1269 (2012).
- 7. DeRouchey, J.M., Dritz, S.S., Goodband, R.D., Nelssen, J.L. and Tokach, M.D. Kansas State University, General Nutrition Principles for Swine. MF-2298 (2007).
- 8. Marston, T., DeRouchey, J.M. Kansas State University, Feeding Low-Test-Weight and Sprouted Wheat MF-2659 (2004).
- Crenshaw, T.D., Pero, E.R., Lewis, A.J. and Moser, B.D. (1981): Bone Strength As A Trait For Assesing Mineralization I Swine: A Critical Review of Techniques Involved. J. Animal Sci. 53:824-835 (1981).
- Aerssens, J., Boonen, S., Lowet, G. and Dequeker, J. (1998): Interspecies Differences In Bone Composition, Density, and Quality: Potential Implications for *in vitro* Bone Research. Endocrinology 139 (2): 663-670 (1998).
- 11. Ariza, A., Moroz, O.V., Blagova, E.V., Turkenburg, J.P., Waterman, J., Roberts, S.M., Vind, J., Sjoholm, C, Lassen, S., De Maria, L., Glitsoe, V., Skov, L.K., and Wilson, K.S. (2013): Degradation of Phytate by the 6-Phytase from *Hafnia alvei*: A Combined Structural and Solution Study. PLOS I one 8 (5): 1-13 (2013)

- Brana, D.V., Ellis, M., Castaneda, E.O., Sands, J.S. and Baker, D.H. (2006): Effect of a Novel Phytase on the Growth Performance, Bone Ash, and Mineral Digestibility in Nursery and Grower-Finisher Pigs. J. Animal Sci. 84:1839-1849 (2006).
- 13. Jones, C.K., Tokach, M.D., Dritz, S.S., Ratliff, B.W., Horn, N.L., Goodband, R.D., DeRouchey, J.M., Sulabo, R.C. and Nelssen, J.L. (2010): Efficacy of Different Commercial Phytase Enzymes and Development of an Available Phosphorous Release Curve for *Escherichia coli* Derived Phytases in Nursery Pigs. J Animal Sci. 88:3631-3644 (2010).

Annex 1

Tolerance study with IPA Mash phytase in weaned piglets REPORT No. 00000962

REPORT No. 00000962 Regulatory Document

Document Date:

18 August, 2009

Author(s):

(b)(4)

(b) (4)

² Animal Nutrition and Health R&D, DSM Nutritional Products Ltd, Basel

Title:

Tolerance study with IPA Mash phytase in weaned piglets

Project No.

6106

Summary

A 6-week study involving 48 weaned piglets (Large White x Landrace) was conducted in order to evaluate their tolerance to IPA Mash phytase when used at the maximum recommended dose and a 10 times overdose. Prestarter and starter diets based on wheat, barley and soybean meal as the main feed ingredients, formulated to meet NRC nutrient recommendations except for total and digestible P, were used. The experiment involved 3 treatment groups as follows: A control, non-treated group; B - treated group receiving IPA Mash phytase at 4,000 U/kg diet; C - treated group receiving IPA Mash phytase at 40,000 U/kg diet (overdose group). Each treatment was assigned to 16 piglets (8 times castrated males and 8 times females). Live weight, live weight gain, feed intake, feed conversion ratio (feed/gain) and mortality were monitored as performance parameters during the experimental period. At the termination of study haematological and biochemical examinations were performed using blood samples from all 48 animals. Dietary administration of IPA Mash phytase resulted in beneficial effects of the post-weaning performance. The final body weight of piglets (day 42) receiving the phytase at 4,000 and 40,000 U/kg diet was significantly increased by more than 12% when compared to the negative control. Due to this markedly increased growth rate in both phytase supplemented groups the overall feed conversion ratio was significantly improved from 2.75 (control) to 2.18 and 2.20, respectively. Mild diarrhoea was observed in some animals of all 3 groups during the first weak of trial, but no mortality occurred during this study. Furthermore, no pathological changes were observed in piglets during the post-mortem necropsy. Haematological and biochemical examination did not reveal any obvious changes due to dietary administration of IPA Mash phytase. In conclusion, this particular study confirmed a full tolerance of IPA Mash phytase in weaned piglets when used at the 10 times overdose.

This report consists of Pages I – II and 1 - 46

Distribution

Dr. M. Eggersdorfer, NRD

Dr. F. Fru, NRD/PA

Mr. J.-F. Hecquet, NBD/RG

Dr. A.-M. Klünter, NRD/CA

Dr. J. Pheiffer, NRD/PA

Dr. P. Philipps, NRD/CA

Approved

Name Main Author	Signature signed by	<u>Date</u>
Dr. J. Broz, NRD/CA Principal Scientist / Competence Mgr	J. Broz signed by	18.08.2009
Dr. J. Broz, NRD/CA Research Center Head	J. Broz signed by	18.08.2009
Dr. AM. Klünter, NRD/CA Project Manager	AM. Klünter signed by	21.08.2009
Dr. F. Fru, NRD/PA	F. Fru	19.08.2009

Regulatory Document

DSM Nutritional Products Ltd

Page I of II

Nomenclature and Structural Formula

IPA Mash phytase (M), enzyme product containing bacterial 6-phytase ((b) (4)), produced by a (b) (4) fermentation of a genetically modified Aspergillus oryzae strain. Lot PPQ 28656 was used in this study, manufactured by Novozymes A/S, (b) (4).

Regulatory Document DSM Nutritional Products Ltd Page II of II

Study Code: 253/2008

Tolerance Study with IPA Mash Phytase in Weaned Piglets Final Report

Prepared by (b) (4)

August 2009

Contents

List of Abbreviations and Terms Used	4
1. Summary	5
2. Identification of the Study, the Test Item and Reference Item	8
2.1. Descriptive Title	8
2.2. Statement which Reveals the Nature and Purpose of the Study	
2.3. Species	
2.4. Regulatory Compliance	
2.5. Identification of the Test Item	9
2.6. Identification of the Reference Item	9
3. Information Concerning the Sponsor and the Test Facility	10
3.1. Sponsor	10
3.2. Test Facility	10
3.3. Principal Investigators and the Delegated Phases of the Study	
4. Dates	
4.1. Final Report Approval	
4.2. The Proposed Starting and Completion Dates	
5. Statements	13
5.1. Study Director Statement	13
5.2. Quality Assurance Statement	
6. Test Methods, Monitoring, Equipment	15
6.1. Monitoring	15
6.2. Equipment	15
7. Issues	16
7.1. The Justification for Selection of the Test System	16
7.2. Characterisation of the Test System	
7.2.1. Experimental Animals	
7.2.2. Clinical Signs	
7.2.3. Housing	
7.2.4. Inclusion and Exclusion Criteria	
7.2.5. Allocation to Groups	
7.2.6. Feeding and Drinking Conditions	
7.2.7. Weighing of Animals	
7.2.8. Disposal of Experimental Animals	
7.3. Method of Administration and Reason for Its Choice	
7.4. Dose Levels, Frequency and Duration of Administration	
7.5. Concurrent Treatment	
7.6. Sacrifice and Sampling	
7.6.1. Heamatological and Biochemical Examinations	
7.6.2. Pathologicall Examination.	
7.7. Detailed Time Schedule	

8. Results	21
8.1. Clinical Examination	21
8.2. Body Weight	21
8.3. Body Weight Gains	21
8.4. Feed Consumption and Feed Conversion	21
8.5. Gross Necropsy	
8.6. Biochemical and Heamatological Examinations	22
9. Conclusions	23
10. Conduct of the Study	24
11. Storage of Records and Materials	24
12. References	25
13. Enclosures	26
13.1. Tables	26
Table 1 – Characteristics of the Piglets	27
Table 2 - Individual Body Weight and Body Weight Gains of Piglets - Group A	28
Table 3 - Individual Body Weight and Body Weight Gains of Piglets - Group B	
Table 4 - Individual Body Weight and Body Weight Gains of Piglets - Group C	
Table 5 – Consumption of Feed per Box – Group A	
Table 6 - Consumption of Feed per Box - Group B	
Table 7 – Consumption of Feed per Box – Group C	
Table 8 - Mean Values of Individual Piglet Body Weights - Summary	
Table 9 - Mean Values of Individual Piglet Body Weights Gains - Summary	
Table 10 - Mean Values of Feed Consumption - Summary	
Table 11 - Composition and Nutrient Content of the Used Basal Diets	
Table 12 – Control Analysis of the Used Basal Diet	
Table 13 – Biochemical Parameters of Animals – Group A	
Table 14 – Biochemical Parameters of Animals – Group B	
Table 15 – Biochemical Parameters of Animals – Group C	
Table 16 – Haematological Parameters of Animals – Group A Table 17 – Haematological Parameters of Animals – Group B	20
Table 18 – Haematological Parameters of Animals – Group C	40
Table 19 – Statistical Evaluation of Body Weight and Feed Conversion	
Table 20 – Statistical Evaluation of Biochemical Parameters	
Table 21 – Statistical Evaluation of Haematological Parameters	
13.2. Certificates	
13.2.1. Control Analysis of Diet – Pre-starter	
13.2.2. Control Analysis of Diet – Starter	

List of Abbreviations and Terms Used

ALP Alkaline phosphatase ALT Alanine transaminase

AMS Amylase

AST Aspartate aminotransferase

BA Basofiles bw Body weight

CPK Creatine phosphokinase

Cre Creatinine

CRF Case Report Form
CV Coefficient of Variation
D Day of the Study
EC European Commission

EFSA European Food Safety Authority

EMEA The European Agency for the Evaluation of Medicinal Products

EO Eosinofiles g Gram

GLP Good Laboratory Practice GMP Good Manufacture Practice

HCT Hematocrit HGB Hemoglobin kg Kilogram LY Lymphocytes

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular hemoglobin concentration

MCV Mean cell volume

mL Millilitre

µg Microgram

MO Monocytes

NE Neutrophils

No. Number

NRC National Research Council

OECD Organisation for Economic Co-operation and Development

PLT Platelets

QA Quality Assurance RBC Red blood cells count SD Standard deviation

SG Segments

SOP Standard Operating Procedure

T Temperature
Tbil Total bilirubin
TI Test Item
U Unit
Ur Urea

VICH Veterinary International Cooperation on Harmonisation

WBC White blood cell count

1. Summary

The aim of the Study was to establish that there are no unfavourable effects of the TI to the intended species in maximum recommended and multiplicated (ten times) recommended doses. The TI was admixed to the basal diet and was fed in standard way *ad libitum*. Maximum recommended dose of TI was 4,000 U/kg of diet, corresponding to 67.2 ppm of the formulated product. Tolerance Study in weaned piglets was performed for 42 consecutive days.

The Study was performed in a total 48 early weaned piglets (crossbreds Large white x Landrace), both sexes, origin (b) (4). The animals were housed in pairs in litterless boxes at BIOPHARM facilities conform to welfare regulations. Shortly after delivery the weight of piglets was determined and animals were randomly allocated to three groups A, B, C (16 piglets each, 8 castrated males and 8 females).

Pre-starter and starter diets based on wheat, barley and soybean meal as the main feed ingredients, formulated to meet NRC nutrient recommendations except of total and non-phytate P were used. The basal diet was prepared according to formula approved by the Sponsor prior the start of the Study. Diet was provided to animals in mash form and fed *ad libitum*, namely pre-starter was fed from D 0 till D 13, starter than from D 14 till D 42 of the Study.

Experimental treatments:

- A. Control, non-treated group basal diet, no enzyme added
 B. Treated group, recommended dose of the TI basal diet + TI at 4,000 U/kg diet
- C. Treated group, ten times multiplicated dose of the TI basal diet + TI at 40,000 U/kg diet

Drinking water was available ad libitum.

Animals of the Group A served as a negative control and were fed with the basal diet, without enzyme *ad libitum* 24 hour a day for the duration of the Study (42 consecutive days, from D 0 till D 42).

Animals of the Group B were treated at the recommended dosage of 4,000 U of the TI (i.e. 67.2 ppm of IPA Mash Phytase) admixed into 1 kg of feed, administered *ad libitum* 24 hour a day for the duration of the Study (the same way as piglets of group A).

Animals of the Group C were treated at the ten times multiplicated dose of 40,000 U of the TI (i.e. 672 ppm of IPA Mash Phytase) admixed into 1 kg of feed, administered *ad libitum* 24 hour a day for the duration of the Study (the same way as piglets of group A).

The TI dose really obtained was calculated from the total medicated feed consumption during administration period. Consumption of feed was measured daily and calculated in one-week period, i.e. on D 7, 14, 21, 28, 35 and 42. Feed conversion (feed/gain) was calculated for the overall trial period.

Weighing of piglets was performed at the start of administration on D 0, further in 2-week period on D 14, 28 and 42.

The animals were stunned and killed by rapid exsanguination at the BIOPHARM facility. Cadavers were post-mortem examined by a veterinarian and biological samples were collected.

Heamatological and biochemical examinations were performed in all animals, i.e. in 16 piglets per group (total number of examined samples was 48). A standard haematological analysis (amount of red blood cell (RBC), haemoglobin concentration (HGB), haematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), amount of blood platelets (PLT), amount of white blood cell (WBC)) total and differential and analysis of following serum variables such as chloride, calcium, phosphorus, total protein, albumin, glucose, AMS, urea, creatinine, ALP, ALT, AST, CPK and total bilirubin were performed.

The gross pathological examination was focused mainly on the examination of the gastro-intestinal tract and lymph nodes, liver, kidney, lung, heart and spleen.

Mild diarrhoea was diagnosed in some animals of all groups in time interval from D 4 till D 13, namely in Group A in 11 animals, in Group B in 7 animals and in Group C 7 animals. The symptoms of diarrhoea persisted in piglets for 2-8 days. The elevated temperature, changes of behaviour or other disorders were not found out.

Mean body weights of animals of treated groups were higher in comparison with mean body weights of the animals of control group on D 28 and D 42. Dietary administration of IPA Mash phytase at 4,000 and 40,000 U/kg diet increased the mean final weight (D42) of piglets from 27.61 kg (control) to 31.09 and 30.85 kg, respectively.

Mean body weight gains of animals of treated groups were higher in comparison with mean body weight gains of the animals of control group in all followed intervals.

Mean feed consumptions in piglets of treated groups were lower in comparison with mean feed consumptions of the animals of control group in time intervals D 7 – D 14 and D 35 – D 42. As a consequence of markedly increased growth rate and comparable or lower feed intake, the overall feed conversion ratio was improved in both groups receiving IPA Mash phytase. This improvement was significant for treatment group B.

No pathological changes were diagnosed in any animals. As macroscopically abnormal organs were not found the histological examination was not performed.

At biochemical examination the values of ALT were increased in all examined animals of all groups, values of CPK were increased in 15 piglets of Group A, in 9 piglets of Group B and 11 piglets of Group C, Tbil values were increased above physiological range in 3 piglets of Group A, in 11 piglets of Groups B and in 11 piglets in Group C, AMS was increased in 4 piglets of Group A, in 8 piglets of Group B and 6 piglets of Group C, TP was decreased in 6 piglets of Group A and in 2 piglets of Groups B. Amount of phosphorus was increased above physiological range in 12 animals of control Group A, in 4 piglets of Group B and 5 piglets of Group C. The values of calcium were lower in 4 animals of Group C, they were in physiological range in Groups A and B. Chlorides showed increase in 10 piglets of Group A, in 9 piglets of Groups B and in 4 piglets in Group C

The others followed biochemical parameters were either in physiological ranges or deviations were diagnosed sporadically.

At haematological examination the amount of RBC in animals of all groups was higher (Group A 10, Group B 12 and Group C 8 piglets), value of HCT was increased in some animals in Groups B and Group C, in animals of Group A corresponded with the physiological range. The amount of WBC in 1 piglet of Group A and one piglet of Group C was above physiological range.

The others followed haematological parameters were either in or bellow physiological ranges.

Based on the abovementioned results it is possible to declare that there were no unfavourable effects of the IPA Mash Phytase (TI) to intended species in maximum recommended and multiplicated (ten times) recommended doses.

2. Identification of the Study, the Test Item and Reference Item

2.1. Descriptive Title

Tolerance Study with IPA Mash Phytase in Weaned Piglets

Study Code: 253/2008

2.2. Statement which Reveals the Nature and Purpose of the Study

The aim of the Study was to establish that there were no unfavourable effects of the IPA Mash Phytase (TI) to intended species in maximum recommended and multiplicated (ten times) recommended doses. The TI was admixed to the basal diet and was fed in standard way *ad libitum* in weaned piglets. Maximum recommended dose of TI was 4,000 U/kg of diet, corresponding to 67.2 ppm of the formulated product. Tolerance Study in piglets was performed for 42 consecutive days.

2.3. Species

The biological test system weaned piglets was selected because Sus scrofa domestica is the likely target species for the use of the Test Item.

2.4. Regulatory Compliance

The Study was conducted by the Study Director and her staff according to the GLP recommendations of the OECD (OECD, 1998), The tolerance of IPA Mash Phytase (M) in the recommended and multiplicated doses in piglets were confirmed to obtain data for brand specific approval according to EC 1831/2003 and Guidelines for the assessment of additives in feedingstuff: Part II. Enzymes and micro-organisms (EFSA, 2006).

This *in-vivo* tolerance study in target animal species (weaned piglets – *Sus scrofa domestica*) aimed to assess the tolerance of the TI in piglets was conducted in accordance with the following guidelines:

Good Clinical Practice (VICH GL9 – GCP) adopted by CVMP in June 2000; Guidelines for the assessment of additives in feedingstuff: Part II. Enzymes and micro-organisms (EFSA, 2006);

National animal welfare requirements;

Section IV of the Commission Directive 94/40/EC amending Council Directive 87/153/EEC fixing guidelines for the assessment of additives in animal nutrition lines out the required studies concerning the safety use of the additive.

Study Code: 253/2008

2.5. Identification of the Test Item

Name of the TI: IPA Mash Phytase (M)

Producer: DSM Nutritional Products Ltd.

> Wurmisweg 576 CH-4303 Kaiseraugst **SWITZERLAND**

Batch No .: PPQ 28656

Date of manufacture: August 2008

Characterisation: IPA Mash Phytase (M), enzyme product containing bacterial 6-phytase,

expressed in a genetically modified strain of Aspergillus oryzae.

Active substance: Enzyme 6-phytase

The used mash form contains 60,700 U/g

Pharmaceutical form: Dry powder

Administration route: Oral

Stability: Minimum 12 months at room temperature

Storage conditions: Cool storage recommended

Identity of the Test Item was confirmed by analytical laboratory of the Test Facility. Analyses of medicated feed were performed by analytical laboratory of the Sponsor

2.6. Identification of the Reference Item

Not applicable for this kind of Study.

3. Information Concerning the Sponsor and the Test Facility

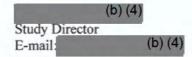
3.1. Sponsor

DSM Nutritional Products Ltd. Wurmisweg 576 CH-4303 Kaiseraugst SWITZERLAND

Phone: +41 61 688 69 09 Fax: +41 61 687 43 99 E-mail: jiri.broz@dsm.com


Responsible Person

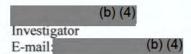
Jiri Broz MSc PhD DVM Phone: +41 61 815 87 35 Fax: +41 61 815 88 70 E-mail: jiri.broz@dsm.com


3.2. Test Facility

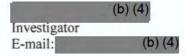
(b) (4)

¹ Hereinafter referred to as (b) (4) only

3.3. Principal Investigators and the Delegated Phases of the Study


Elaboration of the Study Plan and the Final Report. Responsibility for the overall conduct of the Study. Administration of TI, clinical and physical examinations and clinical observations, blood sampling, tissue sampling, pathological examination, histological examination, data management and evaluation of the results.

December 1	(b) (4)
Principal Investigator	
E-mail:	(b) $(4)_{CZ}$


Overall conduct of the Study, data management, animals identification, determination of body weights, administration of the TI, clinical observations of animals, blood sampling, tissue sampling, data evaluation, assistance to the Study director.

Contract of the Contract of th	(b) (4) ₀ vá
Investigator	
E-mail:	(b) (4)

Biochemical examinations, data evaluation.

Haematological examinations, data evaluation.

Statistical evaluation.

All with (b) (4)

4. Dates

4.1. Final Report Approval

Name	Date	Signature
Director of the Test Facility (b) (4)		
Study Director (b) (4) M		
Quality Assurance (b) (4)	*************	
Sponsor (b) (4)		

4.2. The Proposed Starting and Completion Dates

Study initiation date:

Experimental starting date:	04-03-2009
Experimental completion date:	17-04-2009
Study completion date by:	18-08-2009

23-02-2009

(b)(4)

5. Statements

5.1. Study Director Statement

Study: Tolerance Study with IPA Mash Phytase in Weaned Piglets

Study Code: 253/2008

Test Facility Director:

Study Director:

Principal Investigators:

QA Personnel:

The aforementioned Study was done according to the described working procedures and according to the planned schedule set in the Study Plan.

The data stated in protocols are in agreement with reality.

The data in this Final Report correspond with the original protocols.

The study was performed under the OECD/GLP regimen as far as it can be applied to this kind of study.

Date:

(b) (4)

(b) (4)

5.2. Quality Assurance Statement

Study: Tolerance Study with IPA Mash Phytase in Weaned Piglets

Study Code: 253/2008

Test Facility Director:

Study Director:

Principal Investigators:

QA Personnel:

Quality Assurance program for the aforementioned study was designed and performed as follows:

Study Plan inspection

The Study Plan was inspected on 23-02-2009. It was verified that the Study Plan contained all information required for its compliance with the principles of Good Laboratory Practice (OECD/GLP).

Facility and Study-based inspection

Animal handling, housing, labelling, weighing and application of the Test Item were inspected on 06-03-2009. Necropsy procedure and blood sampling were inspected on 15-04-2009. They were found to be in compliance with the principles of OECD/GLP and the Study Plan.

Final Report

The Final Report was inspected on 14-05-2009. It was found that methods and procedures used as well as all observations were completely and accurately described, and the results reflected the raw data obtained during the course of the study. It was stated that the Study was conducted in accordance with the principles of OECD/GLP as far as it can be applied to this kind of study.

The inspection outcomes were reported to the Study Director and the Company Management on the same days.

Date:

(b) (4)

6. Test Methods, Monitoring, Equipment

The Study was conducted by the Study Director and her staff according to the GLP recommendations The Guidelines for the Testing of Veterinary Medicinal Products in European Community, The Rules Governing Medicinal Products in the European Community Vol. VI. Detailed methodical schedule and spectrum of parameters studied were performed according to Sponsor's requests.

6.1. Monitoring

The Study was monitored by the Sponsor on his own decision and charge and by Test Facility Quality Assurance personnel.

6.2. Equipment

Al Cellcounter, model 2000 (Al Systeme, Germany);

Centrifuge Eppendorf 5702R (Eppendorf, Germany);

Disposable Sterican needles Luer Lock (BRAUN, Germany);

Disposable 10-mL syringes (BRAUN, Germany);

Electronic medical thermometer with precision 0.1 °C (Paul Hartmann, Germany);

Finnpipette 2 (200 – 1,000 μL) (Labsystems, Finland);

Liasys - Biochemical analyser (AMS, Assel, Italy);

Laboratory balance Kern (Fisher Scientific, Czech Republic);

Livestock balance, scale up to 1,000 kg with precision 0.1 kg, TRUE-TEST, Czech Republic;

Microscope Opton Standard WL-89 (Opton, Germany);

Plastic tubes 10 mL (Deltalab, Spain);

Plastic tubes 5.0 mL (Eurotubo, Italy);

Suspension digital scale HTR 30 with precision 0.01 kg (Nagata, Taiwan);

Analytic balance, capacity 180 g, precision, 0.1 mg, ER 180 A (A&D, Japan);

Staining machine VARISTAIN (Shandon, UK);

Rotary tissue processor JUNG-HISTOKINETTE 2000 (LEICA, Austria)

Sliding microtome Reichert (Reichert, Austria);

Sliding microtome JUNG SM 2000 (LEICA, Austria);

Microscope Jenamed histology (Carl Zeiss, Germany);

AF Zoom 28-80/3.5-5.6 (Minolta, Japan);

AF Macro Zoom 3x - 1x/1.7 - 2.8 (Minolta, Japan);

Macro Flash 1200 AF set (Minolta, Japan).

7. Issues

7.1. The Justification for Selection of the Test System

The biological test system weaned piglets was selected because Sus scrofa domestica is the likely target species for the use of the Test Item.

7.2. Characterisation of the Test System

7.2.1. Experimental Animals

A total of 48 early weaned piglets (crossbreds Large White x Landrace), both sexes were included in the Study.

(b) (4)

7.2.2. Clinical Signs

Clinical observation of animals was performed daily during the whole Study. Observations and recording of adverse effects after the administration the TI, morbidity and mortality were performed. Moreover, each animal was physically examined at the start of the administration period on D 0, 14, 28 and 42.

7.2.3. Housing

The animals were housed at BIOPHARM facilities conform to welfare regulations of animals (Council Directive 86/609/EEC). Piglets were housed in pairs in litterless boxes throughout the Study. Each box was identified by label containing the Study code, group identification, the animal identification, detailed time schedule of the Study and the name and signature of the Study Director. Maintenance and cleaning of the stable were performed daily. Environmental conditions (temperature and relative moisture) were monitored and recorded daily and these data will be retained in the archives of BIOPHARM.

7.2.4. Inclusion and Exclusion Criteria

Animals must be clinically healthy and none of them should have been treated with any drug before the trial start. In case of illness, the animal was excluded from the Study. Replacement with another healthy animal was consulted with Sponsor. No treatment other than the TI was given during the Study.

7.2.5. Allocation to Groups

Shortly after delivery (D 0) the weight of piglets was determined and animals were randomly allocated to three groups A, B, C (16 piglets each, 8 castrated males and 8 females).

Animals were assigned to groups according to their body weight criteria. At the commencement of the Study the body weight variation did not exceed \pm 20 % of the mean body weight of piglets in each group. Each animal was individually identified by an ear tag. Moreover, the animals from each group were marked on their backs by smears of different colours.

Group codes, list of animal numbers and colour were attached to each box. The following identification of animals was used.

	Cuoun No	Animal Identification Number		Colour
Group No.		castrated males	females	
A	Control group (basal diet, no enzyme added)	1 – 8	9 – 16	Green
В	Treated group (basal diet + TI at 4,000 U/kg diet)	17 – 24	25 – 32	Blue
C	Treated group (basal diet + TI at 40,000 U/kg diet)	33 – 40	41 – 48	Red

7.2.6. Feeding and Drinking Conditions

Pre-starter and starter diets based on wheat, barley and soybean meal as the main feed ingredients, formulated to meet NRC nutrient recommendations except of total and non-phytate P, were used. The basal diet was prepared according to formula approved by the Sponsor prior the start of the Study. Diet was provided to animals in mash form and fed *ad libitum*, namely pre-starter was fed from D 0 till D 13, starter than from D 14 till D 42 of the Study. Drinking water was available *ad libitum*.

Experimental treatments:

A. Control, non-treated group

B. Treated group, recommended dose of the TI

C. Treated group, ten times multiplicated dose of the TI

- basal diet, no enzyme added
- basal diet + TI at 4,000 U/kg diet
- basal diet + TI at 40,000 U/kg diet

7.2.7. Weighing of Animals

Weighing of piglets was performed on livestock balance (with precision 0.1 kg) at the start of administration on D 0, further in 2-week period on D 14, 28 and 42.

7.2.8. Disposal of Experimental Animals

Slaughtered animals and their products were excluded from consumption and were moved to rendering plant.

7.3. Method of Administration and Reason for Its Choice

The Test Item was administered orally via medicated feed for 42 consecutive days.

7.4. Dose Levels, Frequency and Duration of Administration

7.4.1. Treatment Frequency and Dose Level

Animals of the Group A served as a negative control and were fed with the basal diet, without enzyme *ad libitum* 24 hour a day for the duration of the Study (42 consequent days, from D 0 till D 42).

Animals of the Group B were treated at the recommended dosage of 4,000 U of the TI (i.e. 67.2 ppm of IPA Mash Phytase) admixed into 1 kg of feed, administered *ad libitum* 24 hour a day for the duration of the Study (the same way as piglets of Group A).

Animals of the Group C were treated at the ten times multiplicated dose of 40,000 U of the TI (i.e. 672 ppm of IPA Mash Phytase) admixed into 1 kg of feed, administered *ad libitum* 24 hour a day for the duration of the Study (the same way as piglets of Group A).

The TI dose really obtained was calculated from the total medicated feed consumption during administration period. Consumption of feed was checked daily and calculated in one-week period, i.e. on D 7, 14, 21, 28, 35 and 42. The feed conversion ratio (feed/gain) was calculated for the overall trial period.

7.4.2. Method of Dose Administration

The TI was delivered in its ready-to-use form in original packaging.

Appropriate amount of the TI was admixed into feed and fed up through individual feeders (one feeder per box) during the administration period. Medicated feed was the only source of feed during all trial.

7.4.3. Dose Preparation

Medicated feed was prepared according to recommended dosage by the Manufacturing Unit for Medicated Premixes and Medicated Feedstuffs of BIOPHARM. This unit has GMP Certificate by the State Institute for Control of Drugs of Czech Republic (Detailed formula of diets see Table 11). The control analyses of the added test product in the medicated pre-starter and starter diets were performed by analytical laboratory BIOPRACT GmbH, Berlin, Germany (see Enclosures 13.2.1. and 13.2.2.)

7.5. Concurrent Treatment

No concurrent treatment was allowed during the Study without approval of the Study Director and the Sponsor. Any concurrent medications given were recorded in the raw data, giving identity of the materials, reason for use, route of administration and dosage.

7.6. Sacrifice and Sampling

The animals were stunned and killed by rapid exsanguination at the BIOPHARM facility. Cadavers were post-mortem examined by a veterinarian and biological samples were collected.

7.6.1. Heamatological and Biochemical Examinations

Heamatological and biochemical examinations were performed in all animals, i.e. in 16 piglets per group (total number of examined samples was 48).

Approximately 10-mL blood sample was taken (Groups A, B, C) for haematological and biochemical analyses on D 42.

The blood was collected into one test tube for biochemical examinations and one EDTA test tube for haematological analysis and was transported immediately to haematological laboratories. After centrifugation of biochemical samples their serum was divided in two aliquots. Blood sample processing was performed in accordance with BIOPHARM SOP ODB-001.

One sample of blood serum or EDTA blood was analysed, the other (duplicate) was kept just for case it would be necessary to repeat the analyses. The duplicate samples of blood were stored at +5 °C at BIOPHARM premises for 24 hours. The duplicate serum samples were stored at -20 °C at BIOPHARM premises for 24 hours. Samples were discarded after this period.

Study code, group and animal number were recorded on the test tubes.

A standard haematological analysis (amount of red blood cell (RBC), haemoglobin concentration (HGB), haematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), amount of blood platelets (PLT), amount of white blood cell (WBC): total and differential) and analysis of following serum variables: Chloride, calcium, phosphorus, total protein, albumin, glucose, AMS, urea, creatinine, ALP, ALT, AST, CPK and total bilirubin was performed.

7.6.2. Pathologicall Examination

The gross pathological examination was focused mainly on the examination of the gastro-intestinal tract and lymph nodes, liver, kidney, lung, heart and spleen.

7.7. Detailed Time Schedule

Administration Period (D 0 till D 42)

DO		04-03-2009
Do	7:00 a.m.	Weighing of individual doses of medicated feed
	7:30 a.m.	Clinical observation (general appearance, behaviour and appetite), weighing of animals, allocation to groups, physical examination (state of health, behaviour, body temperature)
til	11 8:00 a.m.	Administration of medicated feed
		Start of observation of adverse effects
D I ti	III D 13	04-03-2009 till 17-03-2009
	7:00 a.m.	Clinical observation (general appearance, behaviour and appetite, adverse effects)
	8:00 a.m.	Measuring of consumption of medicated feed
D 14		18-03-2009
	7:00 a.m.	Clinical observation (general appearance, behaviour and appetite), weighing of animals, physical examination (state of health, behaviour, body temperature)
	8:00 a.m.	Measuring of consumption of medicated feed
D 15	till D 27	19-03-2009 till 31-03-2009
	7:00 a.m.	Clinical observation (general appearance, behaviour and appetite, adverse effects)
	8:00 a.m.	Measuring of consumption of medicated feed
D 28		01-04-2009
	7:00 a.m.	Clinical observation (general appearance, behaviour and appetite), weighing of animals, physical examination (state of health, behaviour, body temperature)
	8:00 a.m.	Measuring of consumption of medicated feed
D 29	till D 41	02-04-2009 till 14-04-2009
	7:00 a.m.	Clinical observation (general appearance, behaviour and appetite, adverse effects)
	8:00 a.m.	Measuring of consumption of medicated feed
D 42		15-04-2009
	7:00 a.m.	Clinical observation (general appearance, behaviour and appetite), weighing of animals, physical examination (state of health, behaviour, body temperature)
	8:00 a.m.	End of administration of medicated feed
		Measuring of consumption of medicated feed Slaughter, gross necropsy, blood and tissue sampling of animals of Groups A ,
		B, C

Dispatching of blood samples to haematological laboratory

8. Results

8.1. Clinical Examination

Characteristics of the piglets are presented in Table 1.

Mild diarrhoea was diagnosed in some animals of all groups in time interval from D 4 till D 13, namely in Group A in 11 animals (Nos. 1, 2, 4, 5, 6, 7, 8, 9, 12, 15, 16), in Group B in 7 animals (Nos. 20, 21, 22, 24, 30, 31, 32) and in Group C 7 animals (Nos. 33, 34, 36, 39, 40, 43, 46). The symptoms of diarrhoea persisted in piglets for 2 - 8 days. The elevated temperature, changes of behaviour or other disorders were not found out.

8.2. Body Weight

Individual body weights of males and females in Groups A, B and C, mean and SD are given in Tables 2 – 4. Mean values of individual piglet body weights per groups are presented in Table 8. The results of statistical evaluation of initial and final body weight are presented in Table 19. Dietary administration of IPA Mash phytase at 4,000 and 40,000 U/kg diet markedly increased the mean final weight by 12.6% (P<0.05) and 12.0%, respectively, when compared to the negative control.

8.3. Body Weight Gains

Individual body weight gains of males and females in Groups A, B and C, mean and SD are given in Tables 2 – 4. Mean values of individual piglet body weight gains per groups are presented in Table 9.

Mean body weight gains of animals of treated groups were higher in comparison with mean body weight gains of the animals of control group in all followed intervals.

8.4. Feed Consumption and Feed Conversion

The feed consumptions (per box – two piglets) during the followed interval are presented in Tables 5-7. Mean feed consumptions in control and treated groups (per box) is in Table 10.

Mean feed consumptions in piglets of treated groups were lower in comparison with mean feed consumptions of the animals of control group in time intervals D 7 – D 14 and D 35 – D 42. Feed conversion ratio was calculated for the overall trial period (see Table 19) and it was improved in both groups receiving IPA Mash phytase from 2.75 (control) to 2.18 (P<0.05) and 2.20, respectively.

Composition and nutrient content of the used basal diet are given in Table 11 and results of control analysis of selected parameters are presented in Table 12.

8.5. Gross Necropsy

No pathological changes were diagnosed in any animals. As macroscopically abnormal organs were not found the histological examination was not performed.

8.6. Biochemical and Heamatological Examinations

Biochemical and heamatological examinations were performed all 16 piglets per group (total number of examined samples was 48).

The values of biochemical parameters of piglets of Groups A, B and C and their physiological ranges are given in Tables 11 - 13, values of haematological parameters with physiological ranges are presented in Tables 14 - 16.

At biochemical examination the values of ALT were increased in all examined animals of all groups, values of CPK were increased in 15 piglets of Group A, in 9 piglets of Group B and 11 piglets of Group C, Tbil values were increased above physiological range in 3 piglets of Group A, in 11 piglets of Groups B and in 11 piglets in Group C, AMS was increased in 4 piglets of Group A, in 8 piglets of Group B and 6 piglets of Group C, TP was decreased in 6 piglets of Group A and in 2 piglets of Groups B. Amount of serum phosphorus was increased above physiological range in 12 animals of control Group A, in 4 piglets of Group B and 5 piglets of Group C. The values of calcium were lower in 4 animals of Group C, they were in physiological range in Groups A and B. Chlorides showed increase in 10 piglets of Group A, in 9 piglets of Groups B and in 4 piglets in Group C

The others followed biochemical parameters were or in physiological ranges or deviations were diagnosed sporadically.

At haematological examination the amount of RBC in animals of all groups was higher (Group A 10, Group B 12 and Group C 8 piglets), value of HCT was increased in some animals in Groups B and Group C, in animals of Group A corresponded with the physiological range. The amount of WBC in 1 piglet of Group A and one piglet of Group C was above physiological range.

The others followed haematological parameters were either in or bellow physiological ranges.

9. Conclusions

Mild diarrhoea was diagnosed in some animals of all groups in time interval from D 4 till D 13, namely in Group A in 11 animals, in Group B in 7 animals and in Group C 7 animals. The symptoms of diarrhoea persisted in piglets for 2-8 days. The elevated temperature, changes of behaviour or other disorders were not found out.

Dietary administration of IPA Mash phytase at 4,000 and 40,000 U/kg diet increased the **mean final** weight (D42) of piglets from 27.61 kg (control) to 31.09 and 30.85 kg, respectively.

Mean body weight gains of animals of treated groups were higher in comparison with mean body weight gains of the animals of control group in all followed intervals.

Mean feed consumptions in piglets of treated groups were lower in comparison with mean feed consumptions of the animals of control group in time intervals D 7 – D 14 and D 35 – D 42. As a consequence of the increased growth rate and comparable or even lower feed intake, the overall feed conversion ratio was improved in both groups receiving IPA Mash phytase.

No pathological changes were diagnosed in any animals. As macroscopically abnormal organs were not found the histological examination was not performed.

In spite of significant differences among treatment groups for some biochemical and haematological parameters (see Tables 20 and 21) no remarkable and significant differences between the maximum recommended dose (treatment B) and the overdose of IPA Mash phytase (treatment C) were noted for all relevant parameters.

Based on the abovementioned results it is possible to declare that there were no unfavourable effects of the IPA Mash Phytase (TI) in weaned piglets when used in the maximum recommended and multiplicated (ten times) recommended doses.

10. Conduct of the Study

The Study was conducted by the Study Director and her staff according to the GLP recommendations of OECD (OECD, 1998), guidelines for the assessment of additives in feedstuffs – part II. (EC, 2001), guidelines focused to target animal safety for veterinary pharmaceuticals products (VICH, 2006), EFSA's Proposal on Guidelines/Guidance for the Assessment of Additives for Use in Animals Nutrition (EFSA, 2006) and other regulations, recommendations and guidelines and their principles reported in the Chapter 11 (References) of this Study Plan.

11. Storage of Records and Materials

The Study Plan, raw data, records of all QA inspections and the Final Report of the Study will be stored in the archives of BIOPHARM for a period of 10 years. After this period, the Sponsor will be contacted for instructions of transfer, retention or disposal of all materials. All data will be available for inspections by competent authorities.

The sample of the TI will be stored for 12 months after its expiry period. After this period samples will be discarded. Unused remains of the TI will be disposed immediately after termination of the Study.

12. References

- EC (1986): Council directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provision of the Member States regarding the protection of animals used for experimental and other scientific purposes. OJ Eur. Comm., No. L358: 1-28.
- EC (1994): Commission Directive 94/40/EC of 22 July 1994 amending Council Directive 87/153/EEC fixing guidelines for the assessment of additives in animal nutrition. OJ Eur. Comm., No. L 208, 15 – 26.
- 3) EC (1997A): The rules governing medicinal products in the European Union, Volume 7AE1a: Good clinical practice for the conduct of clinical trials on veterinary medicinal products in the European Union, Brussels, 87 100.
- 4) EC (1997B): The rules governing medicinal products in the Euopean Union, Volume 7AE2a: Evaluation of the safety of veterinary medicinal Products for the Target Animals, Brussels, 103 – 108.
- 5) EC (2001): Directive 2001/82/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to veterinary medicinal product. OJ Eur. Comm., No. L311: 1 - 27.
- 6) EFSA (2006): EFSA's Proposal of Guidelines/Guidance for the Assessment of Additives For Use in Animal Nutrition in accordance with Regulation (EC) No 1831/2003. Consolidated version September 2006.
- OECD (1998): ENV/MC/CHEM (98)17 OECD Principles of Good Laboratory Practices, In: Series on Principles of Good Laboratory Practice and Compliance Monitoring No. 1. Environment Directorate of the OECD, Paris, 41 pp.

13. Enclosures

13.1. Tables

Table 1 - Characteristics of the Piglets

C	Box	Animal Identi	fication Number			
Group	Identification Number	males	females	General tolerance	Gross exam	
A	1 – 8	1 – 8	9-16	Mild diarrhoea from D 4 till D12	No significant lesion	
В	9 – 16	17 – 24	25 – 32	Mild diarrhoea from D 5 till D13	No significant lesion	
С	17 – 24	33 – 40	41 – 48	Mild diarrhoea from D 5 till D13	No significant lesion	

Table 2 - Individual Body Weight and Body Weight Gains of Piglets - Group A

	Box	Animal		Body we	eight (kg)		Body	weight gai	ns (kg)
Group	No.	No.	D 0	D 14	D 28	D 42	D 0 till D 14	D 14 till D 28	D 28 till D 42
	1	1	11.8	13.2	15.5	23.7	1.4	2.3	8.2
	1	2	10.6	13.5	20.4	31.5	2.9	6.9	11.1
	2	3	11.9	14.8	23.8	35.0	2.9	9.0	11.2
	2	4	10.2	10.2	15.5	23.5	0.0	5.3	8.0
	3	5	9.1	10.0	15.0	23.7	0.9	5.0	8.7
	3	6	7.6	11.6	16.2	25.3	4.0	4.6	9.1
	4	7	11.0	12.5	14.8	20.3	1.5	2.3	5.5
		8	11.9	12.6	19.0	26.4	0.7	6.4	7.4
A	5	9	11.5	13.0	17.6	27.8	1.5	4.6	10.2
	5	10	12.1	16.6	22.9	34.5	4.5	6.3	11.6
	,	11	10.9	15.0	23.0	32.7	4.1	8.0	9.7
	6	12	7.8	9.8	14.0	20.2	2.0	4.2	6.2
	7	13	12.0	17.5	26.2	36.9	5.5	8.7	10.7
	/	14	11.1	13.7	15.6	25.8	2.6	1.9	10.2
		15	9.7	12.3	19.5	29.6	2.6	7.2	10.1
	8	16	9.9	12.5	17.0	24.8	2.6	4.5	7.8
		Mean	10.6	13.1	18.5	27.6	2.5	5.5	9.1
		SD	1.4	2.2	3.8	5.2	1.5	2.2	1.8

Table 3 – Individual Body Weight and Body Weight Gains of Piglets – Group B

	Box	Animal		Body we	eight (kg)		Body	weight gai	ns (kg)
Group	No.	No.	D 0	D 14	D 28	D 42	D 0 till D 14	D 14 till D 28	D 28 till D 42
	9	17	8.6	11.5	20.1	32.0	2.9	8.6	11.9
	9	18	8.5	11.2	17.9	28.9	2.7	6.7	11.0
	10	19	9.2	12.5	16.0	24.8	3.3	3.5	8.8
	10	20	8.9	12.5	19.0	32.1	3.6	6.5	13.1
	11	21	9.8	10.1	16.1	26.8	0.3	6.0	10.7
-	11	22	12.0	13.6	22.7	30.3	1.6	9.1	7.6
	10	23	12.3	17.7	27.9	28.6	5.4	10.2	0.7
	12	24	12.2	13.2	21.8	31.7	1.0	8.6	9.9
В	12	25	7.4	11.6	15.7	22.1	4.2	4.1	6.4
	13	26	11.8	15.4	23.5	35.2	3.6	8.1	11.7
	44	27	12.0	16.5	25.5	36.1	4.5	9.0	10.6
	14	28	11.4	15.2	21.4	30.5	3.8	6.2	9.1
	15	29	12.3	17.1	26.2	38.1	4.8	9.1	11.9
15	15	30	10.9	13.7	23.4	32.3	2.8	9.7	8.9
	16	31	11.9	14.5	22.8	36.0	2.6	8.3	13.2
	16	32	11.3	12.8	21.0	31.9	1.5	8.2	10.9
		Mean	10.7	13.7	21.3	31.1	3.0	7.6	9.8
		SD	1.6	2.2	3.7	4.2	1.4	1.9	3.1

Table 4 - Individual Body Weight and Body Weight Gains of Piglets - Group C

	Box	Animal		Body we	ight (kg)		Body	weight gai	in (kg)
Group	No.	No.	D 0	D 14	D 28	D 42	D 0 till D 14	D 14 till D 28	D 28 till D 42
	17	33	11.7	12.2	19.6	28.2	0.5	7.4	8.6
	17	34	10.4	13.1	21.0	31.5	2.7	7.9	10.5
	10	35	10.6	14.5	23.5	33.7	3.9	9.0	10.2
	18	36	9.2	10.2	12.6	28.1	1.0	2.4	15.5
		37	10.1	13.0	20.9	29.3	2.9	7.9	8.4
	19	38	9.5	11.4	18.3	28.1	1.9	6.9	9.8
	20	39	9.8	11.7	20.8	31.2	1.9	9.1	10.4
	20	40	11.4	13.3	22.3	34.5	1.9	9.0	12.2
С	21	41	8.9	12.5	19.2	28.6	3.6	6.7	9.4
	21	42	7.1	10.6	19.7	30.8	3.5	9.1	11.1
	22	43	11.8	12.4	20.0	28.1	0.6	7.6	8.1
	22	44	10.8	13.6	19.5	27.8	2.8	5.9	8.3
	22	45	12.3	18.0	24.9	36.2	5.7	6.9	11.3
23	23	46	10.6	14.7	24.7	34.0	4.1	10.0	9.3
	24	47	11.2	14.2	22.5	33.8	3.0	8.3	11.3
	24	48	10.2	13.6	21.4	30.9	3.4	7.8	9.5
		Mean	10.4	13.1	20.7	30.9	2.7	7.6	10.2
		SD	1.3	1.9	2.9	2.8	1.4	1.8	1.9

Table 5 - Consumption of Feed per Box - Group A

Group	Box	Consumption of feed per box (g)								
Group	No.	D 0 till D 7	D 7 till D 14	D 14 till D 21	D 21 till D 28	D 28 till D 35	D 35 till D 42			
	1	8,751	14,994	15,978	18,609	20,602	25,623			
	2	7,542	12,863	12,264	14,826	20,592	26,679			
	3	3,970	9,548	12,678	13,151	16,534	21,480			
	4	8,586	12,808	15,303	18,757	20,644	26,911			
A	5	6,998	10,968	11,872	14,825	18,028	20,835			
	6	4,162	7,925	11,822	17,969	21,346	28,987			
	7	7,532	10,666	14,047	14,902	20,283	25,261			
	8	4,877	9,390	11,902	13,736	17,587	21,387			
1	Mean	6,552.3	11,145.3	13,233.3	15,846.9	19,452.0	24,645.4			
	SD	1,938.2	2,292.6	1,662.4	2,245.8	1,786.5	3,038.1			

Table 6 - Consumption of Feed per Box - Group B

Croup	Box		Const	amption of	feed per b	oox (g)	
Group	No.	D 0 till D 7	D7 till D14	D 14 till D 21	D 21 till D 28	D 28 till D 35	D 35 till D 42
	9	7,992	12,031	13,780	14,214	19,488	22,634
	10	5,017	8,952	10,318	11,945	16,721	20,742
	11	6,582	8,585	11,423	15,174	18,839	22,129
D	12	6,829	9,983	14,484	18,511	21,529	25,767
В	13	7,904	9,655	12,867	14,974	19,700	21,707
	14	6,342	9,203	14,370	15,789	19,599	22,661
	15	7,272	12,875	15,174	19,139	20,606	25,039
	16	4,639	7,990	14,793	16,960	20,344	23,888
1	Mean	6,572.1	9,909.3	13,401.1	15,838.3	19,603.3	23,070.9
	SD	1,227.9	1,699.6	1,733.7	2,338.6	1,423.1	1,704.6

Table 7 - Consumption of Feed per Box - Group C

Group	Box No.		Consumption of feed per box (g)								
Group		D 0 till D 7	D 7 till D 14	D 14 till D 21	D 21 till D 28	D 28 till D 35	D 35 till D 42				
	17	7,387	12,002	14,745	17,437	19,868	23,090				
	18	6,503	9,333	11,993	15,059	19,939	23,622				
	19	6,217	7,804	12,414	13,312	15,826	19,073				
C	20	7,995	8,832	13,268	18,436	20,629	26,357				
	21	5,296	9,464	15,229	18,338	20,592	26,736				
	22	6,338	10,997	15,197	18,127	20,768	23,129				
	23	8,313	9,768	13,879	16,138	19,720	22,799				
	24	4,644	9,254	11,299	15,466	20,075	22,476				
1	Mean	6,586.6	9,681.8	13,503.0	16,539.1	19,677.1	23,410.3				
	SD	1,267.7	1,294.0	1,507.7	1,854.7	1,604.9	2,391.3				

Table 8 - Mean Values of Individual Piglet Body Weights - Summary

Group-	D 0		D 14		Da	D 28		D 42	
	MBW	SD	MBW	SD	MBW	SD	MBW	SD	
A	10.6	1.4	13.1	2.2	18.5	3.8	27.6	5.2	
В	10.7	1.6	13.7	2.2	21.3	3.7	31.1	4.2	
С	10.4	1.3	13.1	1.9	20.7	2.9	30.9	2.8	

Legend: MBW – Mean of body weights (g) SD – Standard deviation

Table 9 - Mean Values of Individual Piglet Body Weights Gains - Summary

C	D 0 til	I D 14	D 14 ti	II D 28	D 28 ti	D 28 till D 42		
Group	MG	SD	MG	SD	MG	SD		
A	2.5	1.5	5.5	2.2	9.1	1.8		
В	3.0	1.4	7.6	1.9	9.8	3.1		
C	2.7	1.4	7.6	1.8	10.2	1.9		

Legend: MG - Mean of body weight gains (g)

SD - Standard deviation

Table 10 - Mean Values of Feed Consumption - Summary

C	D 0 ti	IID7	D 7 till D 14		D 14 till D 21		D 21 till D 28	
Group	MF	SD	MF	SD	MF	SD	MF	SD
A	6,552.3	1,938.2	11,145.3	2,292.6	13,233.3	1,662.4	15,846.9	2,245.8
В	6,572.1	1,227.9	9,909.3	1,699.6	13,401.1	1,733.7	15,838.3	2,338.6
C	6,586.6	1,267.7	9,681.8	1,294.0	13,503.0	1,507.7	16,539.1	1,854.7

Group	D 28 ti	II D 35	D 35 till D 42			
Group	MF	SD	MF	SD		
A	19,452.0	1,786.5	24,645.4	3,038.1		
В	19,603.3	1,423.1	23,070.9	1,704.6		
C	19,677.1	1,604.9	23,410.3	2,391.3		

Legend: MF – Mean of medicated feed consumption per box (g) SD – Standard deviation

Table 11 - Composition and Nutrient Content of the Used Basal Diets

Feed ingredients (in %)	Pre-starter diet*	Starter diet
Wheat	31.10	35.00
Barley	25.00	24.00
Maize	-	8.00
Soybean meal (48% CP)	14.00	13.00
Wheat flour	8.70	8.89
Dried whey	5.00	2
Potato protein	4.60	-
Soya oil	4.00	4.00
Dried yeast	3.00	4.00
Limestone	0.20	1.50
Salt	0.11	0.43
Monocalcium phosphate	-	0.38
Vitamin & mineral premixes	4.29	0.80
Calculated nutrients		
Crude protein (%)	20.08	16.83
Metabolizable energy (MJ/kg)	14.00	
Digestible energy (MJ/kg)	-	14.35
Lysine (%)	1.40	0.98
Methionine (%)	0.52	0.29
Calcium (%)	0.65	0.70
Total phosphorus (%)	0.54	0.54
Digestible phosphorus (%)	0.38	0.22

^{*} Seltek COS Medipharm (commercial formula)

Table 12 - Control Analysis of the Used Basal Diet

	Pre-star	Starter diet		
Analysed items	Expected value	Result	Result Expected value	
Lysine (%)	1.40	1.45	0.98	0.97
Ash (%)	4.53	4.23	5.00	4.96
Humidity (%)	12.00	10.40	10.90	9.91
Crude protein (%)	20.08	19.25	16.83	16.79

Table 13 - Biochemical Parameters of Animals - Group A

Animal No.	ALB (g/L)	TP (g/L)	U (mmol/L)	Glu (mmol/L)	ALP (µkat/L)	ALT (μkat/L)	AST (µkat/L)	AMS (µkat/L)	CPK (µkat/L)	Cre (µmol/L)	Ca (mmol/L)	P (mmol/L)	Cl (mmol/L)	TBil (µmol/L)
1	22.4	49.8	4.29	5.07	3.35	3.45	1.52	74.90	31.42	114	2.37	3.49	114.0	0.0
2	27.4	57.1	4.18	6.09	3.74	3.00	1.35	97.30	31.19	84	2.55	3.52	114.9	4.9
3	27.9	55.4	6.28	7.18	3.45	3.14	1.81	69.92	30.15	100	2.53	4.00	103.9	0.0
4	23.8	55.0	5.12	6.47	2.97	2.72	1.28	97.53	32.33	81	2.33	3.66	102.4	0.1
5	24.0	51.4	4.94	6.14	3.51	4.26	1.15	62.26	31.50	72	2.60	3.20	112.4	0.0
6	25.8	55.6	5.17	5.82	4.73	4.99	2.99	46.09	30.39	78	2.41	3.10	101.0	1.9
7	23.9	53.0	7.88	5.57	4.51	3.29	1.73	75.13	31.05	132	2.75	4.12	103.9	0.0
8	25.2	48.6	6.22	5.88	3.73	3.93	1.15	65.23	31.67	103	2.45	3.53	117.1	3.5
9	24.4	47.2	4.41	6.62	4.08	3.67	1.36	96.47	30.40	86	2.44	3.43	115.1	0.0
10	28.4	57.5	5.17	5.98	3.77	3.74	1.26	74.62	29.86	109	2.77	3.90	113.1	0.0
11	30.5	57.5	7.10	6.16	2.61	3.14	1.09	47.90	30.65	99	2.66	3.64	101.8	4.8
12	27.3	55.8	6.16	5.92	3.58	3.20	0.68	52.38	13.40	97	2.64	4.78	112.7	0.0
13	25.6	50.5	6.29	6.44	4.03	4.13	2.23	62.44	33.76	120	2.34	3.26	114.3	0.9
14	25.5	56.3	5.01	6.65	4.25	2.48	0.99	67.03	31.34	70	2.80	3.61	115.0	0.2
15	27.2	56.8	4.53	6.99	4.67	3.26	2.13	47.31	30.01	86	2.52	3.46	102.7	0.6
16	22.9	49.9	5.75	6.19	3.49	3.98	1.15	101.06	71.05	90	2.35	3.86	113.1	0.0
Phys. range	19	52	2.7	4	3	0.55	0.52	15.22	1	77	2.16	2.25	97.1	0
Phys.	42	83	9.6	8.1	13.55	1.31	1.36	77.1	20.85	165	2.92	3.44	106.4	3.4

Table 14 - Biochemical Parameters of Animals - Group B

Animal No.	ALB (g/L)	TP (g/L)	U (mmol/L)	Glu (mmol/L)	ALP (μkat/L)	ALT (µkat/L)	AST (µkat/L)	AMS (µkat/L)	CPK (μkat/L)	Cre (µmol/L)	Ca (mmol/L)	P (mmol/L)	Cl (mmol/L)	TBil (μmol/L)
17	27.5	63.2	4.88	6.48	4.25	4.24	0.69	68.39	72.47	90	2.34	3.20	104.6	2.5
18	21.9	51.5	2.65	6.47	5.32	4.43	1.52	97.58	27.66	84	2.38	3.34	108.0	3.7
19	23.5	51.3	5.37	5.64	4.90	3.29	0.83	65.33	8.59	100	2.34	3.17	103.3	1.6
20	27.3	64.6	3.57	5.10	3.95	2.90	1.11	93.82	18.08	89	2.43	3.33	104.2	5.0
21	23.8	57.1	5.71	6.18	7.85	4.21	1.54	96.84	49.32	100	2.90	3.67	106.6	5.0
22	24.8	58.3	3.53	6.52	3.54	3.23	0.85	90.31	20.12	90	2.47	3.60	106.5	4.2
23	31.0	63.8	5.51	6.49	4.55	3.58	1.10	94.11	33.78	125	2.27	3.30	104.5	7.5
24	26.8	56.3	5.82	6.20	3.59	3.17	0.74	36.70	6.39	117	2.45	3.30	107.8	3.6
25	22.6	58.0	4.45	5.17	4.66	3.59	1.19	95.90	14.54	104	2.21	3.12	102.6	4.3
26	26.0	59.4	3.25	7.11	5.00	3.00	1.12	64.73	36.48	78	2.30	3.69	108.2	4.9
27	27.8	58.7	4.18	6.52	3.43	1.92	0.65	63.78	14.01	104	2.42	3.43	108.3	2.5
28	25.7	53.1	3.79	6.14	4.21	4.73	1.14	61.82	23.32	115	2.43	3.30	108.6	4.0
29	28.9	61.2	3.69	6.14	4.26	3.34	1.42	65.94	27.73	125	2.38	3,49	109.6	1.6
30	30.4	65.3	3.60	5.97	4.09	3.49	0.85	62.71	7.48	115	2.45	3.16	105.5	3.8
31	28.8	60.1	3.77	6.20	5.14	3.89	1.02	87.36	31.52	102	2.39	3.21	107.3	4.9
32	27.3	62.6	4.23	6.01	4.00	3.43	1.58	89.22	61.86	97	2.33	3.33	105.8	2.3
ys.	19	52	2.7	4	3	0.55	0.52	15.22	1	77	2.16	2.25	97.1	0
Phys.	42	83	9.6	8.1	13.55	1.31	1.36	77.1	20.85	165	2.92	3,44	106.4	3.4

Table 15 - Biochemical Parameters of Animals - Group C

Animal No.	ALB (g/L)	TP (g/L)	U (mmol/L)	Glu (mmol/L)	ALP (μkat/L)	ALT (µkat/L)	AST (μkat/L)	AMS (μkat/L)	CPK (μkat/L)	Cre (µmol/L)	Ca (mmol/L)	P (mmol/L)	Cl (mmol/L)	TBil (µmol/L)
33	27.0	54.3	3.29	5.99	4.19	3.22	0.89	84.34	64.87	98	2.42	3.08	105.6	2.7
34	26.8	58.2	5.60	5.69	6.19	3.68	1.37	79.72	22.31	85	2.44	3.67	102.9	6.4
35	26.4	53.8	4.10	5.89	4.29	3.29	1.74	103.39	106.70	112	2.45	3.91	104.0	4.6
36	22.9	57.4	3.99	5.19	5.16	3.53	0.76	86.84	18.47	66	2.45	3.68	105.2	3.7
37	21.5	57.3	5.41	5.27	4.01	3.75	1.11	66.46	28.63	105	2.04	3.39	107.2	5.1
38	24.0	54.6	3.76	6.17	4.57	5.14	1.11	105.38	23.36	115	2.31	3.56	105.8	4.0
39	26.7	56.9	4.00	6.13	4.06	3.28	0.78	48.80	15.47	95	2.43	3.93	106.7	2.1
40	27.4	56.8	4.84	6.35	5.32	3.78	1.23	49.06	38.21	95	2.41	3.38	105.4	1.2
41	24.8	53.1	5.20	5.18	5.36	4.26	1.20	72.45	23.76	105	2.30	3.24	106.7	2.4
42	27.0	63.9	4.22	5.73	5.25	3.37	0.95	63.12	9.87	99	1.70	3.23	105.6	6.9
43	27.8	56.9	3.40	5.78	4.02	3.96	1.23	39.47	26.28	100	2.52	2.97	104.5	4.6
44	29.2	61.7	2.97	4.43	2.43	3.47	2.02	55.72	126.18	109	2.05	2.86	105.0	8.3
45	26.1	59.4	4.22	6.73	4.07	4.98	1.11	40.27	41.59	116	2.26	3.39	105.3	2.5
46	30.2	64.4	5.04	5.98	4.96	3.58	0.98	69.77	18.49	124	2.25	3.12	104.8	3.7
47	29.2	70.0	3.94	6.78	5.36	2.87	0.74	68.54	37.89	105	2.32	2.97	107.1	3.8
48	27.8	61.3	5.48	5.60	3.48	3.31	0.83	84.09	19.24	94	2.12	3.25	105.8	3.7
ys.	19	52	2.7	4	3	0.55	0.52	15.22	1	77	2.16	2.25	97.1	0
Phys.	42	83	9.6	8.1	13.55	1.31	1.36	77.1	20.85	165	2.92	3.44	106.4	3.4

Table 16 - Haematological Parameters of Animals - Group A

Animal No.	RBC (x10%/ul)	HCT	MCV (fl)	PLT (x10%ul)	MCH (pg/l)	MCHC (gl)	WBC (x103/ul)	HGB (g/100ml)
1	6.95	32	47	327	12	263	19.9	8.4
2	7.16	34	48	104	13	276	16	9.4
3	7.23	34	47	312	14	291	17.1	9.9
4	7.09	33	47	306	13	288	10.8	9.5
5	6.38	31	49	342	14	290	15	9
6	7.13	34	47	60	14	285	14.3	9.7
7	7.87	32	41	325	12	294	28.4	9.4
8	7.15	33	46	241	13	288	15.5	9.5
9	6.84	34	50	185	14	288	18.6	9.8
10	7.08	35	49	197	15	297	19.8	10.4
11	6.57	33	50	118	15	303	12.9	10
12	6.89	34	50	229	15	294	12	10
13	7.07	33	47	212	14	303	20.9	10
14	6.74	32	47	282	14	294	13.8	9.4
15	7.21	36	50	275	14	283	9.4	10.2
16	7.08	34	48	257	14	294	11.1	10
Phys.	5	26	52	200	17.0	290	11.0	9.0
range	7	35	62	500	24.0	340	22.0	13.0

Animal	N	E	EO	BA	LY	MO
No.	SG (%)	T (%)	(%)	(%)	(%)	(%)
1	45	1	2	1	48	3
2	37	0	5	1	50	7
3	47	1	2	0	47	3
4	46	1	1	1	46	5
5	39	0	2	0	56	3
6	45	0	2	0	50	3
7	50	1	0	1	46	2
8	46	0	1	0	49	4
9	44	0	2	1	45	8
10	35	0	2	0	59	4
11	34	0	2	0	61	3
12	45	1	4	1	45	4
13	34	0	3	0	58	5
14	42	0	2	0	52	4
15	39	0	2	0	56	3
16	46	0	0	0	50	4
Phys.	28	0	0	0	36	2
range	47	4	11	2	92	10

Table 17 – Haematological Parameters of Animals – Group B

Animal No.	RBC (x10%il)	HCT	MCV (fl)	PLT (x103/x1)	MCH (pg/l)	MCHC (gf)	WBC (x10³/ul)	HGB (g/100ml)
17	7.1	38	54	207	14	253	11.6	9.6
18	7.03	35	50	264	14	283	14.3	9.9
19	6.84	34	49	208	14	285	10.2	9.7
20	7.8	38	48	330	14	284	11.3	10.8
21	7.37	37	50	218	15	289	13.3	10.7
22	7.33	35	48	248	14	291	12.1	10.2
23	7.29	38	52	208	15	279	13.2	10.6
24	7.34	36	49	264	14	286	18.3	10.3
25	6.68	34	51	242	15	285	11	9.7
26	7.4	37	50	235	14	278	14.4	10.3
27	7.31	38	52	211	15	279	14.1	10.6
28	7.85	36	45	233	13	281	16.4	10.1
29	6.79	36	53	110	15	289	14.8	10.4
30	7.06	37	52	183	15	289	18.7	10.7
31	6.46	36	55	148	16	283	10.1	10.2
32	7.15	35	48	154	14	283	13.3	9.9
Phys.	5	26	52	200	17.0	290	11.0	9.0
range	7	35	62	500	24.0	340	22.0	13.0

Animal	N	E	EO	BA	LY	MO
No.	SG (%)	T (%)	(%)	(%)	(%)	(%)
17	33	0	1	1	62	3
18	33	0	3	0	59	5
19	42	0	6	1	48	3
20	37	0	3	0	56	4
21	35	0	5	0	56	4
22	33	0	1	1	62	3
23	46	0	1	0	46	7
24	53	0	2	0	41	4
25	51	0	2	2	42	3
26	42	0	1	1	52	4
27	36	0	4	0	58	2
28	33	1	6	1	57	2
29	33	0	2	0	62	3
30	50	1	3	1	43	2
31	29	0	4	0	64	3
32	28	0	1	2	66	3
Phys.	28	0	0	0	36	2
range	47	4	11	2	92	10

Table 18 - Haematological Parameters of Animals - Group C

Animal No.	RBC (x10 ⁶ /ul)	HCT	MCV (fl)	PLT (x103/ul)	MCH (pgf)	MCHC (gf)	WBC (x10³/ul)	HGB (g/100ml)
33	6.8	35	52	163	15	283	16	9.9
34	7.04	37	53	148	15	281	14.5	10.4
35	7.18	38	53	172	15	279	16.1	10.6
36	7.22	36	51	232	14	289	16.8	10.4
37	7.68	38	49	222	14	276	15.6	10.5
38	7.03	36	51	270	14	278	13.5	10
39	7	35	49	204	14	274	18.9	9.6
40	6.79	34	51	176	15	291	14.1	9.9
41	6.36	33	53	179	15	285	18.9	9.4
42	6.69	36	53	262	14	269	17.1	9.7
43	6.85	35	51	317	14	280	14.3	9.8
44	6.51	34	52	272	15	288	22.1	9.8
45	7.38	36	49	190	14	283	16.6	10.2
46	7.04	38	54	177	16	297	15.4	11.3
47	6.82	37	54	189	15	281	11.8	10.4
48	7.62	38	50	329	14	284	16.5	10.8
Phys.	5	26	52	200	17.0	290	11.0	9.0
range	7	35	62	500	24.0	340	22.0	13.0

Animal	NI	£	EO	BA	LY	MO
No.	SG (%)	T (%)	(%)	(%)	(%)	(%)
33	24	0	2	2	68	4
34	45	0	1	2	49	3
35	22	0	5	1	67	5
36	50	0	3	2	43	2
37	27	0	1	0	68	4
38	43	0	1	0	53	3
39	47	0	2	0	49	2
40	40	0	2	0	54	4
41	50	1	1	1	43	4
42	47	0	2	2	47	2
43	45	0	2	0	48	5
44	56	1	3	0	38	2
45	20	0	5	0	70	5
46	43	0	4	0	49	4
47	40	0	1	0	55	4
48	35	0	2	0	59	4
Phys.	28	0	0	0	36	2
range	47	4	11	2	92	10

Table 19 - Statistical Evaluation of Body Weight and Feed Conversion

	Body	Weight	Feed Conversion
	D0	D42	D 0 till D42
P (ANOVA)	0.831	0.039	0.044
P (Kruskal-Wallis ANOVA)	0.563	0.068	0.037
Group A			
N	16	16	8
Mean	10.57	27.61 b	2.75 b
Median	10.95	26.10	2.50
SD	1.43	5.21	0.72
Group B			
N	16	16	8
Mean	10.66	31.09 a	2.18 a
Median	11.35	31.80	2.09
SD	1.65	4.25	0.26
Group C			
N	16	16	8
Mean	10.35	30.93	2.20
Median	10.50	30.85	2.10
SD	1.29	2.78	0.33

P probability with significance level α=0.05 highlighted in bold a significant difference between group and control group A b significant difference between group and group B

Table 20 - Statistical Evaluation of Biochemical Parameters

	ALB	TP	U	Glu	ALP	ALT	AST
P (ANOVA)	0.586	0.001	0.000	0.100	0.023	0.628	0.018
P (Kruskal-Wallis ANOVA)	0.546	0.001	0.002	0.112	0.012	0.591	0.032
Group A							
N	16	16	16	16	16	16	16
Mean	25.76	53.59 d	5.531 d	6.198	3.779 d	3.524	1.492
Median	25.55	55.20 d	5.170 d	6.150	3.735°	3.370	1.315
SD	2.21	3.49	1.055	0.527	0.584	0.635	0.572
Group B							
N	16	16	16	16	16	16	16
Mean	26.51	59.03 a	4.250 a	6.146	4.546 a	3.528	1.084
Median	27.05	59.05 a	3.985ª	6.190	4.255	3.460	1.105
SD	2.67	4.43	0.952	0.510	1.050	0.681	0.307
Group C			7779				
N	16	16	16	16	16	16	16
Mean	26.55	58.75 a	4.341 a	5,806	4.545 a	3.717	1.128
Median	26.90	57.35 a	4.160 a	5.835	4.430 a	3.555	1.110
SD	2.31	4.54	0.824	0.601	0.913	0.617	0.352

	AMS	CPK	Cre	Ca	P	Cl	TBil
P (ANOVA)	0.513	0.438	0.355	0.001	0.012	0.004	0.000
P (Kruskal-Wallis ANOVA)	0.665	0.329	0.289	0.002	0.031	0.207	0.000
Group A		1					
N	16	16	16	16	16	16	16
Mean	71.10	32.51	95.06	2.532°	3.660 d	109.8 d	1.056
Median	68.48	31.12	93.50	2.525°	3.570	112.9	0.050
SD	18.72	11.23	17.53	0.158	0.410	5.9	1.757
Group B							
N	16	16	16	16	16	16	16
Mean	77.16	28.33	102.19	2.406	3.353 a	106.3 a	3.838
Median	77.88	25.49	101.00	2.385	3.315	106.6	3.900
SD	18.07	19.18	14.19	0.150	0.179	2.1	1.523
Group C							
N	16	16	16	16	16	16	16
Mean	69.84	38.83	101.44	2.279 a	3.352ª	105.5 a	4.106
Median	69.16	25.02	102.50	2.315 a	3.315	105.5	3.750
SD	20.21	33.19	13.65	0.212	0.327	1.1	1.874

P probability with significance level α=0.05 highlighted in bold a significant difference between group and control group A b significant difference between group and group B significant difference between group and group C d significant difference between group and both other groups

Table 21 - Statistical Evaluation of Haematological Parameters

	RBC	HCT	MCV	PLT	MCH	MCHC	WBC
P (ANOVA)	0.334	0.000	0.000	0.670	0.010	0.034	0.073
P (Kruskal-Wallis ANOVA)	0.264	0.000	0.000	0.448	0.025	0.010	0.033
Group A							
N	16	16	16	16	16	16	16
Mean	7.028	33.38 d	47.69 d	235.8	13.75 d	289.4 d	15.97
Median	7.080	33.50 d	47.50 d	249.0	14.00	290.5°	15.25
SD	0.328	1.26	2.24	85.4	0.93	9.9	4.79
Group B							
N	16	16	16	16	16	16	16
Mean	7.175	36.25 a	50.38 a	216.4	14.44ª	282.3 a	13.57
Median	7.220	36.00 a	50.00 a	214.5	14.00	283.5	13.30
SD	0.372	1.39	2.58	52.3	0.73	8.7	2.60
Group C							
N	16	16	16	16	16	16	16
Mean	7.001	36.00 a	51.56ª	218.9	14.56 a	282.4 a	16.14
Median	7.015	36.00 a	51.50 a	197.0	14.50	282.0°	16.05
SD	0.362	1.59	1.71	55.8	0.63	6.8	2.44

	HGB	SG	T	EO	BA	LY	MO
P (ANOVA)	0.002	0.439	0.306	0.300	0.529	0.451	0.376
P (Kruskal-Wallis ANOVA)	0.006	0.348	0.300	0.506	0.666	0.504	0.441
Group A							
N	16	16	16	16	16	16	16
Mean	9.66 d	42.13	0.313	2.000	0.375	51.13	4.063
Median	9.75 d	44.50	0.000	2.000	0.000	50.00	4.000
SD	0.49	5.08	0.479	1.265	0.500	5.28	1.569
Group B							
N	16	16	16	16	16	16	16
Mean	10.23 a	38.38	0.125	2.813	0.625	54.63	3.438
Median	10.25 a	35.50	0.000	2.500	0.500	56.50	3.000
SD	0.39	7.97	0.342	1.760	0.719	8.27	1.263
Group C							
N	16	16	16	16	16	16	16
Mean	10.17°	39.63	0.125	2.313	0.625	53.75	3.563
Median	10.10 a	43.00	0.000	2.000	0.000	51.00	4.000
SD	0.50	10.94	0.342	1.352	0.885	10.00	1.094

P probability with significance level α=0.05 highlighted in bold a significant difference between group and control group A b significant difference between group and group B c significant difference between group and group C d significant difference between group and both other groups

13.2. Certificates

13.2.1. Control Analysis of Diet - Pre-starter

(b)(4)

Report of Analysis

09. Mrz. 09

DSM Nutritional Products Ltd

Dr. J. Broz

P.O. Box 3255, VFA, B. 241/867

CH-4002

Basel

Switzerland

Parameter: Phytase

Product: IPA Mash Phytase

Request No: 05/2009 Theme No: 6106

Batch used: PPQ28656

Registration date: 04.03.2009 Customer/Manufacturer:Biopharm a.s.

Sample Number	Sample Label	Declaration U/kg	Found U/kg	Average	STDEV	CV	
01	Group A - M	< 50	544			***	
01	Group		404	474	99	21%	
01	Group A - M	< 50	462				
01 rep. Group A - M	Gloup A - M	496	479	24	5%		
	Group B - M	4000	4602			7.00	
02	Gloup 1		5579	5090	691	14%	
0.2	Group C - M	40000	45495				
03	Gloup C		41531	43513	2802	6%	

E - expanded Page 1 of 1 M - mash

Responsible Analyst

J. König

P - pellet F - flour C - crumb

PM - premix

TQ -Tel Quel

LOD - Limit of Detection

LOQ - Limit of Quantification

Page 45 of 46

13.2.2. Control Analysis of Diet - Starter

(b)(4)

Report of Analysis

27. Mrz. 09

DSM Nutritional Products Ltd

Dr. J. Broz

P.O. Box 3255, VFA, B. 241/867

CH-4002

Basel

Switzerland

Parameter: Phytase

Product: IPA Mash Phytase

Request No: 08/2009 Theme No: 6106

Batch used: PPQ28656

Registration date: 25.03.2009 Customer/Manufacturer:Biopharm a.s.

Sample Number	Sample Label	Declaration U/kg	Found U/kg	Average	STDEV	CV
01	Group A - M	< 50	397		MALE TO SERVICE THE SERVICE TO	
			368	383	20	5%
02	Group B - M	4000	4008			
			4974	4491	680	15%
03	Group C - M	40000	38068			
			38343	38206	190	0%

M - mash

E - expanded

Page 1 of 1

Responsible Analyst

P - pellet

F - flour

LOD - Limit of Detection

J. König

TQ -Tel Quel

C - crumb PM - premix

LOQ - Limit of Quantification

Page 46 of 46

FEEDAP UNIT

ANNEX C ¹ TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA Mash phytase (M)		Batch number: PPQ 28656				
Trial ID: 253/2008		Location: (b) (4)				
Start date and exact duration of the study: 04/03/2009, 6 weeks						
Number of treatment groups (+ control(s	Replicates per group: 8					
Total number of animals: 48		Animals per replicate: 2				
Dose(s) of the additive/active substance(s)/agent(s) (mg/Units of activity/CFU kg ⁻¹ complete feed/L ⁻¹ water)						
Intended: <50, 4000, 40 000 U/kg	Analysed: 479 43 513/38 206	9/383 (native activity) 5090/4491,				
+	43 3 13/30 200	ONE				
Substances used for comparative purpor	ses:					
Intended dose:	Analysed:					
Animal species/category: weaned pigle	ts					
Breed: Large White x Landrace	Identification p	rocedure: ear number, box label				
Sex: both sexes Age at start: 4	weeks Bo	ody weight at start: 10.6 kg				
Physiological stage: post-weaning	General health	n: good				
Additional information for field trials:						
Location and size of herd or flock:						
Feeding and rearing conditions:						
Method of feeding:						
Diets (type(s)): prestarter and starter d	iets					
Presentation of the diet: Mash	Pellet □	Extruded Other				
Composition (main feedingstuffs): wheat	t, barley, soybeaı	n meal, wheat flour				
Nutrient content (relevant nutrients and e	energy content)					
Intended values: prestater: 20.08% CI	P, 1.40% lysine; s	starter: 18.83% CP, 0.98% lysine				
Analysed values: prestater: 19.25% C	P, 1.45% lysine;	starter: 16.79% CP, 0.97% lysine				
Date and nature of the examinations per	formed: blood an	alyses, post mortem necropsy				
Method(s) of statistical evaluation used: analysis of variance, LSD procedure						
Therapeutic/preventive treatments (reason, timing, kind, duration): none						
Timing and prevalence of any undesirable consequences of treatment: none						
	re Study Director	J. Bro-				
In case the concentration of the additive in complete feed/water may reflect insufficient accuracy, the dose of the additive can be given per animal day or mg kg body weight or as concentration in complementary feed.						

¹ Please submit this form using a common word processing format (e.g. MS Word).

Annex 2

Tolerance study with IPA Mash Phytase in gestating and lactating sows

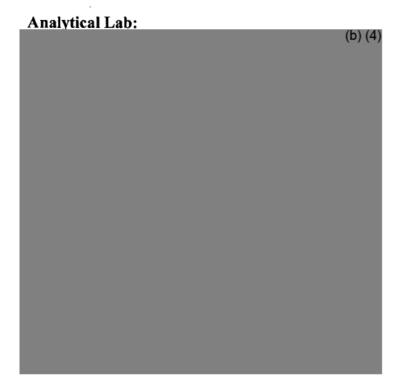
REPORT No. 00003288

Report

Title:

Tolerance study with IPA Mash Phytase in gestating and lactating sows

Institute number: SL 1/09 Notification number: A 0298/97


Sponsor:

DSM Nutritional Products Ltd Animal Nutrition and Health R & D CH-4002 Basel

Investigator:
(b) (4)

Responsibilities

Study director:	
	(b) (4)
Study monitor:	
	(b) (4)
Feed producers:	4
	(b) (4)
Trial site and research facility personnel:	
(b) (4)	
Veterinary surgeon:	
	(b) (4)
Documentation and biostatistics:	
	(b) (4)

Table of contents

1	Summary	Ü
2	General information	7
2.1	Study	7
2.2	Animals	7
2.3	Feed	7
2.4	Test products	7
2.5	Trial site	7
2.6	Study personnel	7
2.7	Time schedule	7
3	Introduction	8
4	Study description	8
5	Animals and housing	8
5.1	Animals	8
5.2	Housing	9
5.3	Feeding	11
5.4	Measured variables	14
5.4.1	Body weight	14
5.4.2	Feed intake	14
5.4.3	Heath status	14
5.4.4	Blood examination	15
5.5	Analyses	15
5.6	Statistical evaluation	15
6	Results	15

6.1	Performance data during pregnancy	16
6.2	Performance data during lactation	17
6.2.1	Sows	17
6.2.2	Piglets	19
6.3	Blood constituents	20
6.4	Fertility parameters of sows after weaning	23
7	Discussion	23
8	Conclusions	24

Tolerance study with IPA Mash Phytase in gestating and lactating sows

1 Abstract

A tolerance study was conducted for IPA Mash Phytase in diets for sows during one reproduction cycle (day 1 of pregnancy to successful service after weaning of the 3rd lactation period). The enzyme test product was containing a 3-phytase derived from Citrobacter braakii, expressed in a genetically modified strain of Aspergillus oryzae. For this reason standard diets during pregnancy, lactation and the following service period after weaning were offered during a overall 152-day feeding period unsupplemented or supplemented with the maximum recommended level (4 000 U/kg corresponding to 70.1 ppm) or with a tenfold overdose (40 000 U/kg corresponding to 701 ppm) of IPA Mash Phytase, respectively. The tolerance study was carried out on a commercial farrows-to-weaned piglet farm with a breeding stock of 500 sows. Two days before the expected beginning of return of heat after the 2nd farrowing a total of 36 multiparous sows were randomly assigned to three groups of 12 animals each. After successful artificial insemination the sows were kept until day 108 of pregnancy at individual sow feeding pens with straw bedding. From 109 days of pregnancy onwards sows were transferred to an environmentally controlled farrowing stable with straw bedding and three compartments with 12 pens each. The potential preventing of crosscontamination as far as possible was assured by one free row between each occupied compartment. Housing systems and climate quality were in accordance to standard conditions in commercial pig breeding farms. The feed allowance during pregnancy was geared towards the optimal body conditioning score (BCS: 3.5). During the first 6 days after farrowing the amount of lactation diet was enhanced continuously from 3.1 kg in daily increments of 0.5 kg per sow until maximum feeding capacity was reached. From day 25 of lactation onwards the lactation diet was continuously reduced to 2 kg at the day of weaning. During the following 10-day service period after weaning sows were transferred to the pregnancy house and offered daily 3.1 kg of the lactation diet. The piglets (EUROC x Pietrain) were weaned at 28 days and received a supplement without IPA Mash Phytase from day 11 to day 28 of the suckling period. Tolerance of IPA Mash Phytase was assessed by weight development of the sows (pregnancy: days 1, 112; lactation: days 28), feed intake and, in the piglets, litter weight development (at 1 and 28 days of age) and consumption of prestarter diet. In addition, faecal consistency of sows and piglets was analysed daily and haematological and biochemical blood parameters were analysed for sows at day 24 of lactation. With regard to the overall reproductive cycle the overdose of IPA Mash Phytase (40000 U/kg) led to no detrimental effects on relevant performance and health parameters when compared to sows fed without or with IPA Mash Phytase at the maximum recommended level (4000 U/kg). Body weight losses during the lactation period were significantly 88.6% lower than those of sows fed without IPA Mash Phytase. Body weight gains of suckling piglets from sows fed with the overdose level were significantly improved by 24.4% when compared to sows fed without IPA Mash Phytase. Additionally the tenfold overdose level of IPA Mash Phytase showed no negative effects on the interval from weaning to onset of oestrus as well as on faecal consistency. Haematological and biochemical blood parameters were also within the respective reference range. It summary it can be concluded that IPA Mash Phytase fed at the tenfold overdose level is a safe feed additive with positive effects on sow performance (significantly reduced body weight losses during lactation as well as significantly improved litter weight gains) without any negative health or fertility relevant effect characterized by blood examination, faecal consistency and weaning to service interval.

Tolerance study with IPA Mash Phytase in gestating and lactating sows

2 General information

2. 1 Study

Efficacy and tolerance study with IPA Mash Phytase at the maximum recommended and tenfold overdose level in diets for sows offered during the complete reproductive cycle (day 1 of pregnancy to successful service after weaning of the third litter) involving performance parameters, health status and blood haematology.

2.2 Animals:

- 36 sows (EUROC line) (Hülsenberger Zuchtschweine GmbH, 33803 Steinhagen);
- 380 piglets of both sexes (EUROC x Pietrain).

2.3 Feed:

- Complete diet for gestating sows pregnancy: days 1 to 108
- Complete diet for lactating sows
 <u>pregnancy</u>: days 109 to 114; <u>lactation</u>: days 1 to 28
 <u>weaning to successful service</u>: days 1 to 10
- Prestarter diet for suckling piglets 11th to 28th day of age.

2.4 Test product:

IPA Mash Phytase (bacterial 3-phytase derived from Citrobacter braakii expressed in Aspergillus oryzae)

Batch: LOT PPQ 28656

Dose levels in complete diets for gestating and lactating

sows:

4 000 U/kg of feed (corresponding to 70.1 ppm) 40 000 U/kg of feed (corresponding to 701 ppm).

2.5 Trial site:

(b) (4)

2.6 Study personnel:

(b) (4)

2.7 Time schedule:

Start of experiment: 15th July 2009 End of experiment: 30th October 2009.

Tolerance study with IPA Mash Phytase in gestating and lactating sows

3 Introduction

The objective of the present study was to evaluate the tolerance of IPA Mash Phytase in diets for sows during one reproduction cycle (day 1 of pregnancy to successful service after weaning of the 3rd litter). This study was required for an EU registration in accordance with the Commission Regulation (EC) No. 429/2008. The enzyme test product was containing a 3-phytase derived from *Citrobacter braakii*, expressed in a genetically modified strain of *Aspergillus oryzae*. For this reason standard basal diets for sows during pregnancy, lactation and successful service after weaning were offered unsupplemented or supplemented at the maximum recommended level (4 000 U/kg) or at the tenfold overdose level (40 000 U/kg) of IPA Mash Phytase, respectively. Performance data were monitored during the complete reproductive cycle of sows and their piglets. Additionally blood haematology of sows as well as health status of sows and piglets was recorded.

4 Study descriptions

The study was carried out on a commercial farrows-to-weaned piglet farm with a breeding stock of 500 sows. Two days before the expected beginning of return of heat after farrowing a total of 36 multiparous sows with comparably litter numbers were allocated to the experimental groups. Details of the study design are shown in Table 1. Additionally three sows were assigned for each treatment group as resources in the case of possible negative ultrasonic pregnancy test with the experimental sows after 22 days of insemination.

Table 1: Study design

Treatment group	A	В	C
Total number of sows (n)	12	12	12
Litter size (number of piglets)	10 to 12	10 to 12	10 to 12
Overall feeding period (days)	152	152	152
Feeding schedule for sows			
• diet for gestating sows	1 to 108	1 to 108	1 to 108
(days of experiment)			
• diet for lactating sows	109 to 152	109 to 152	109 to 152
(days of experiment)	10, 10 10 1	105 00 102	
Feeding schedule for piglets			
• prestarter diet (days of age)	11 to 28	11 to 28	11 to 28
IPA Mash Phytase (U/kg feed)			
• diet for gestating sows	0	4 000	40 000
• diet for lactating sows	0	4 000	40 000
• prestarter diet	0	0	0

5 Animals and methods

5.1 Animals

A total of 36 multiparous sows (EUROC line) in the body weight range 160 to 210 kg were obtained before service after weaning from a pool of fifty sows of the breeder farm after the 2nd to 4th lactation period with regard to body weight as well as litter number and litter size during the foregoing lactation period. After assigning to the treatment groups and determine

of heat the sows were artificially inseminated with sperm from Pietrain. The piglets of the following litter number were therefore crossbreds (EUROC x Pietrain).

5.2 Housing

After successful artificial insemination the sows were kept until day 108 of pregnancy at individual sow feeding pens with straw bedding. From 109 days of pregnancy onwards sows were transferred to an environmentally controlled farrowing stable with straw bedding and three compartments (A, B, C) with 12 pens each. The potential preventing of crosscontamination as far as possible was assured by one free row between each occupied compartment. Housing system and climate quality were in accordance to standard conditions in commercial pig breeding farms. The average house temperature at sow level was maintained at the temperature range 20 to 22 °C. The temperature in the piglet lying area was set at about 32° C for the entire 28-day suckling period using infrared heaters. In order to avoid overheating of the sows the heaters were mounted on the side wall in the far third of each pen. The relative humidity was in the range of 55 to 60%. Details of daily measured environmental temperature as well as relative humidity are presented in Figures 1 to 4. The calculated ventilation capacity was in the range of 2.0 changes per hour. Feed was offered in automatic feeders. Fresh drinking water was continuously supplied by drinking bowls for sows and piglets. In order to eliminate potential handling-related contaminations all daily management tasks were performed starting with the unsupplemented control group.

Figure 1. Temperature in the pregnancy stable

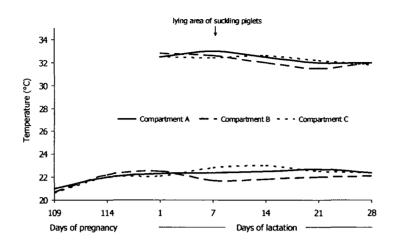


Figure 2. Temperature in the farrowing stable

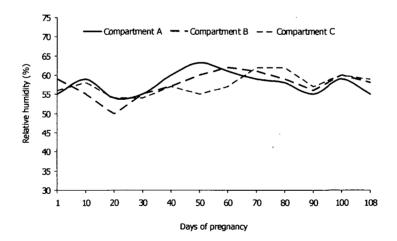


Figure 3. Relative humidity in the pregnancy stable

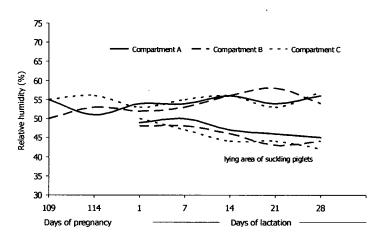


Figure 4. Relative humiditiy in the farrowing stable

5.3 Feeding

During the complete reproductive cycle sows were fed with basal diets for gestating and lactating sows which were following the recommendations of the German Society for Nutrition Physiology for pigs (GfE 2006). All experimental diets for sows were manufactured in a compound feed mill (Gerswalder Mühle GmbH). The composition of the diets for sows is given in Tables 2 and 3, respectively. From day 1 until day 114 of pregnancy 3.1 kg (diet for pregnant sows: days 1 to 108; diet for lactating sows: days 109 to 114) was offered semi-daily per sow. The feed allowance during pregnancy was geared towards the optimal body conditioning score (BCS: 3.5). During the first 6 days after farrowing the amount of lactation diet was enhanced continuously from 3.1 kg in daily increments of 0.5 kg per sow until maximum feeding capacity was reached, which was defined in this trial as the amount resulting in daily leftovers in the trough of about 100 g after the 1:00 pm feeding. Amounts of feed dispensed and any leftovers and losses were recorded daily. From day 25 of lactation onwards the lactation diet was continuously reduced to 2 kg at the day of weaning. During the following 10-day service period after weaning sows were offered daily 3.1 kg of the lactation diet.

The piglet prestarter diet was manufactured in the feed mill owned by the institute (registration number: DE-BE-100001) and offered ad libitum from day 11 of the suckling period via automatic feeders accessible only for the piglets. The composition of the piglet prestarter is shown in Table 4. The diet was manufactured in one batch of 500 kg without phytase enzyme supplementation or other feed additives with exception of trace minerals, amino acids and vitamins.

Basal diets for sows were also prepared without inclusion of feed additives with exception of trace elements, amino acids as well as vitamins and were mixed in three lots of 4500 and 1800 kg each and were subsequently divided into equal parts for IPA Mash Phytase addition either at the maximum recommended dose level of 4 000 U/kg or at the tenfold overdose level (40 000 U/kg), respectively. All diets for sows and piglets were offered in mash form and made at least two weeks before the trial start to allow time for checking the content of IPA Mash

Phytase in the sow diets and were stored in a cool dry place until required. Representative samples (2 x 800 g) from each diet batch manufactured for the trial were collected, labelled and identified. One sample was analysed for nutritional composition. The second sample was analysed for phytase activity.

Table 2. Composition and calculated metabolisable energy (ME) and nutrient concentrations of the basal diet for gestating sows

Treatment group		Basal diet (A, B, C)
Composition:		
Barley	g/kg	450.00
Wheat	g/kg	180.00
Wheat bran	g/kg	140.00
Soybean meal (CP: 48%)	g/kg	60.00
Oat bran	g/kg	60.00
Dried sugar beet pulp	g/kg	40.00
Premix*	g/kg	27.00
Plant oil	g/kg	15.00
Calcium carbonate	g/kg	13.00
Beet molasses	g/kg	10.00
Sodium chloride	g/kg	5.00
Calculation:		•
ME	MJ/kg	11.57
Crude protein	g/kg	135.11
Crude fiber	g/kg	75.00
Crude fat	g/kg	35.00
Starch	g/kg	347.10
Total sugar	g/kg	35.90
Lysine	g/kg	6.80
Methionine	g/kg	2.20
Methionine/Cystine	g/kg	4.66
Threonine	g/kg	4.60
Tryptophan	g/kg	1.60
Calcium	g/kg	6.80
Phosphorus	g/kg	4:50
Digestible phosphorus	g/kg	1.90
Sodium	g/kg	2.20

^{*} Contents per kg feed: 14.500 IU vit. A; 1600 IU vit.D₃; 80 mg vit. E; 2,7 mg vit. K₃; 2 mg vit. B₁; 6,2 mg vit. B₂; 25,5 mg niacin; 4,0 mg vit. B₆; 34 μ g vit. B₁₂; 567 μ g Biotin; 15 mg pantothenic acid; 1,5 mg folic acid; 200 mg betaine; 1,6 g Mg; 121 mg Zn; 220 mg Fe; 120 mg Mn; 16 mg Cu; 2,7 mg J; 0,8 mg Co; 0,28 mg Se.

Table 3. Composition and calculated metabolisable energy (ME) and nutrient concentrations of the basal diet for lactating sows

Treatment group		Basal diet (A, B, C)
Composition:		
Barley, clean	g/kg	645.40
Soybean meal (CP: 48%)	g/kg	168.00
Wheat bran	g/kg	80.00
Wheat, cleaned	g/kg	50.00
Monocalcium phosphate	g/kg	11.00
Beet molasses	g/kg	10.00
Soya oil	g/kg	10.00
Premix*	g/kg	10.00
Calcium carbonate	g/kg	8.60
Sodium chloride	g/kg	5.20
L-Lysine	g/kg	1.80
Calculation:		
ME	MJ/kg	12.37
Crude protein	g/kg	165.30
Crude fiber	g/kg	55.00
Crude fat	g/kg	35.50
Starch	g/kg	374.20
Total sugar	g/kg	40.10
Lysine	g/kg	8.98
Methionine	g/kg	2.48
Methionine/Cystine	g/kg	5.46
Threonine	g/kg	5.75
Tryptophan	g/kg	2.08
Calcium	g/kg	8.80
Phosphorus	g/kg	6.70
Digestible phosphorus	g/kg	2.90
Sodium	g/kg	2.30

^{*} Contents per kg feed: 17.996 IU vit. A; 2000 IU vit.D₃; 100 mg vit. E; 2,7 mg vit. K₃; 2 mg vit. B₁; 6,2 mg vit. B₂; 25,5 mg niacin; 4,0 mg vit. B₆; 34 μ g vit. B₁₂; 567 μ g Biotin; 15 mg pantothenic acid; 1,5 mg folic acid; 200 mg betaine; 1,6 g Mg; 121 mg Zn; 220 mg Fe; 120 mg Mn; 20 mg Cu; 2,7 mg J; 0,6 mg Co; 0,38 mg Se.

Table 4. Composition and calculated metabolisable energy (ME) and nutrient concentrations of the prestarter for suckling piglets (11th to 28th day of age)

Treatment group		Prestarter diet (A, B, C)
Composition:		
Wheat	g/kg	440.70
Soybean meal (HP: 48%)	g/kg	274.00
Skimmed-milk powder	g/kg	120.00
Rolled oats	g/kg	100.00
Calcium carbonate	g/kg	12.70
Premix*	g/kg	12.00
Monocalcium phosphate	g/kg	11.30
Soya oil	g/kg	10.00
L-Lysine	g/kg	3.00
DL-Methionine	g/kg	1.60
L-Tryptophan	g/kg	0.70
Sucrose	g/kg	14.00
Calculation:		
ME	MJ/kg	13.97
Crude protein	g/kg	249.30.
Crude fibre	g/kg	22.90
Crude fat	g/kg	30.10
Starch	g/kg	334.80
Total sugar	g/kg	111.70
Lysine	g/kg	16.40
Methionine/Cystine	g/kg	9.90
Threonine	g/kg	9.70
Tryptophan	g/kg	3.80
Calcium	g/kg	9.50
Phosphorus	g/kg	7.60
Digestible phosphorus	g/kg .	5.80
Sodium	g/kg	1.60

^{*} Contents per kg feed: 20000 IU Vit. A; 3200 IUg/kg Vit. D3; 91 mg Vit. E; 3 mg Vit. K3; 3 mg Vit. B1; 5.5 mg Vit. B2; 36 mg niacin; 5.2 mg Vit. B6; 39 µg Vit. B12; 2g/kg60 µg biotin; 23.4 mg pantothenic acid; 2.0 mg folic acid; 40 mg Zn; 210 mg Fe; 150 mg Zn, 110 mg Mn; 24 mg/kgg Cu; 1.3 mg Co; 0.5 mg Se; 2.0 g Mg. g/kg

5.4 Measured variables

5.4.1 Body weight

All sows were weighed at the time of insemination (1st day of pregnancy), before farrowing (112th day of pregnancy) and at the end of the lactating period (day 28 after farrowing). All piglets were weighed individually per litter during the 28 day suckling period at 1 and 28 days of age.

5.4.2 Feed intake

During pregnancy, lactation and service after weaning daily feed intakes of sows were calculated with regard to possible leftovers. The averaged prestarter intake of suckling piglet was recorded daily per litter between 11 and 28 days of age.

5.4.3 Health status

All sows and piglets were checked daily throughout the trial for their health status (visual inspection). Any necessary treatments and deviations from normal health status were

recorded. Finally, a diarrhoea score on litter basis was calculated after a daily monitoring of each litter.

Faecal consistency scores was used as follows:

1	=	normal	(DM > 25%)
2	=	pasty	(DM 24 to 18%)
3	=	watery	(DM < 18%)
4	=	watery with colour changes	(DM < 18%)

5.4.4 Blood examination

In order to exclude possible health risks of IPA Mash Phytase blood examinations in sows receiving normal standard diets with phytase activities at 4 000 or 40 000 U/kg were compared to those which were fed with the normal standard diet without supplementation of IPA Mash Phytase. Blood was taken by all experimental sows from the vena cranialis at the 24th day after farrowing for measuring cell counts of erythrocytes, leukocytes and thrombocytes as well as means corpuscular volume (MCV), mean corpuscular haemaglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC). Additionally electrolytes (sodium, potassium, chloride, phosphorus, and calcium), triglycerides, cholesterol, urea, glucose, albumin, total protein, and enzymes (alanine-amino-transferas = ALAT, aspartate-amino-transferase = ASAT, gamma-glutamyl-transferase = GGT, alkaline phosphatase) were analysed in blood or plasma, respectively. The samples were obtained by "Landeslabor Berlin Brandenburg".

5.5 Analyses

Diets were analysed after milling (sieve size: 0.25 mm) by the Weender technique, including starch, total sugars, calcium, phosphorus and sodium determination, in accordance to the official VDLUFA methodology (dry matter: VDLUFA 3.1; crude protein: VDLUFA 4.1.2 modified according to macro-N determination (vario Max CN); crude fibre: VDLUFA 6.1.1; crude ash: VDLUFA 8.1; crude fat: VDLUFA 5.1.1; starch: VDLUFA 7.2.5; total sugars: VDLUFA 7.1.1; calcium: VDLUFA 10.3.1 modified according to DIN EN ISO 11885; phosphorus: VDLUFA 10.6.1 modified according to DIN EN ISO 11885; sodium: VDLUFA modified according to DIN EN ISO 11885) by the institute. Parallel feed samples of diets for pregnant and lactating sows were used for measuring the activity of IPA Mash Phytase by DSM-Biopract GmbH.

5.6 Statistical evaluation

Results are presented as means \pm standard deviation. Data analysis was based on "Oneway ANOVA". Statistical analyses was performed with the software package SPSS (SPSS, Inc. Chicago, IL). After checking the homogeneity of the variances means were compared by the usual test procedures (Sheffe test, Tukey test). The significance level was set at p < 0.05.

6 Results

The trial proceeded without incidents on the whole. The results of the feed analyses are presented in Table 5. They confirm the values assumed for ration formulation purposes. Table 6 shows the averaged enzyme activity for IPA Mash Phytase in both sow diets. The enzyme equivalents were only slightly higher (gestation) or lower than intended (lactation), but especially with regard to the native phytase activity of 325 (gestation) and 409 U/kg (lactation) still within the intended range.

Table 5. Analysed nutrient concentrations in the sow diets and prestarter diet (means referred to original matter)

Diets (treatment A, B, C)		Gestation	Lactation	Prestarter
Dry matter	%	89.10	90.17	90.79
Crude protein	%	13.91	17.07	24.97
Crude fiber	%	6.87	5.42	2.20
Crude ash	%	6.15	5.16	6.12
Crude fat	%	3.88	3.73	3.10
Starch	%	36.01	37.62	33.43
Total sugar	%	4.05	4.21	10.12
Calcium	%	0.75	0.98	0.97
Phosphorus	%	0.53	0.70	0.79
Sodium	%	0.19	0.21	0.25

Table 6. Analytical results of the sow diets

Treatment		A	В	С
ISP Mash Phytase	U/kg			
Gestation				
• intended		0	4 000	40 000
• analysed		325 (native)	4 911	45 895
Lactation				
• intended		0	4 000	40 000
• analysed		409 (native)	4 313	40 435

6.1 Performance data during pregnancy

The performance data generated during the overall pregnancy period are presented in Table 7. The sows weighed 184 kg on average at the start of the trial. By day 112 of pregnancy an average body weight of 237.6 kg was recorded which corresponded to a body weight gain of 53.6 kg per sow. Sows fed with ISP Mash Phytase tended dose dependently to slightly higher body weight gains. However, significant treatment effects could not be monitored.

The sows consumed on average 3.13 kg feed per head and day during the 114-day pregnancy period. Consequently, detrimental effects of the overdose on feed intake could be excluded.

The scores for daily faecal consistency were within a range that did not indicate any adverse health effects at any time. The overall average was slightly above 1 thus reflecting only few changes in the physiological faecal consistency (dry matter > 25%). Diarrhoea with liquid faeces was not seen in either feeding group.

The incidence of sickness was mainly characterized by claw injuries and absesses. Respective treatments were in accordance to the veterinarian practice. Treatment-related effects could be excluded.

Table 7. Performance and health status of sows during the pregnancy period

Treatment		A	В	С	Oneway Anova
ISP Mash Phytase	U/kg	0	4 000	40 000	
Sows	n	12	12	12	P
Replicates	n	12	12	12	
• Pregnancy 1st to 114th day of pregnancy					
→ Body weight	kg				
- 1 st day		185.3 ± 12.2	185.4 ± 9.9	182.3 ± 9.2	0.705
- 112 th day	1	235.8 ± 9.9	236.8 ± 11.8	240.1 ± 11.3	0.618
→ Feed intake (1st to 114th day)	kg		:		
- overall		357 ± 0	357 ± 0	357 ± 0	1.000
- daily		3.13 ± 0	3.13 ± 0	3.13 ± 0	1.000
→ Faecal score* (1 st to 114 th day)	n	1.12 ± 0.06	1.04 ± 0.08	1.07 ± 0.08	0.064
→ Incidences of sickness					Ì
- Claw injuries	n	2	1	2	
- Abscesses	n	1	1	2	.

*Scores: 1 = normal (DM > 25%); 2 = pasty (DM 24 -18%),3 = liquid (DM < 18%); 4 = liquid (DM < 18%) + colour changes

6.2 Performance data during lactation period

6.2.1 Sows

The performance data recorded during the 28-day lactation period have been summarised in Table 8. Neither the number of piglets born alive nor the number of stillborn piglets showed any significant treatment-related differences. In order to minimize litter size effects during the suckling period litter sizes were slightly equalized. The body weights at the end of the lactation period were in the range of 209.5 kg. Sows fed with ISP Mash Phytase tended to higher body weights when compared to sows fed without ISP Mash Phytase. Taking into account, that the conceptus losses are normally in the range of 25 kg (GfE 2006) the overall body weight losses during the 28-day lactation period amounted to 7.9 kg in sows fed without and 0.75 kg in sows fed with ISP Mash Phytase at both dose levels. However, the differences were not significant. The reduced body weight losses of sows fed with ISP Mash Phytase were not characterized by different amounts of feed intake, as presented in Figure 5. The overall fed intake was 128.5 kg or 4.59 kg per sow and day, respectively. Sows fed with IPA Mash Phytase at the level of 4 000 U/kg tended to slightly lower feed intake by 1.6% when compared to sows fed without or with IPA Mash Phytase at the level of 40 000 U/kg.

Rectal body temperatures measured on the first three days after farrowing averaged 39.23 °C and were therefore 0.6 °C higher when compared to the respective rectal body temperatures at the end of pregnancy. Differences between sows fed without or with IPA Mash Phytase could not be found.

The scores for daily faecal consistency were within a range that did not indicate any adverse health effects at any time. The overall average was slightly above 1 thus reflecting only few changes in the physiological faecal consistency (dry matter > 25%). Diarrhoea with liquid faeces was not seen in either feeding group.

The incidence of sickness was mainly characterized by MMA and claw injuries. Respective treatments were in accordance to the veterinarian practise. Sows fed with ISP Mash Phytase tended to a lower MMA incidence. However, the overall number of MMA was too small for

characterizing a positive health potential of ISP Mash Phytase at both dose levels. Therefore treatment-related effects could be excluded.

Table 8. Performance and health status of sows during the lactation period

Treatment		A	В	С	Oneway Anova
ISP Mash Phytase	U/kg	0	4 000	40 000	1111014
Sows	n	12	12	12	_ !
Litter number	n	3.2 ± 0.6	3.3 ± 0.6	3.2 ± 0.7	P
Replicates	n	12	12	12	
Number of piglets					
Overall	n	12.7 ± 2.0	13.2 ± 2.2	13.5 ± 2.6	0.669
stillborn		2.0 ± 1.8	2.6 ± 20.4	2.3 ± 2.1	0.796
- born alive	n	10.7 ± 0.9	10.6 ± 1.3	11.2 ± 0.8	0.339
- corrected		10.8 ± 0.8	$10.7 \pm .0.5$	11.0 ± 0.7	0.517
Weaned		10.5 ± 0.5	10.3 ± 0.6	10.5 ± 0.8	0.640
Body weight	kg				
- 112 th day of pregnancy		235.8 ± 9.9	236.8 ± 11.8	240.1 ± 11.3	0.618
- 28 th day of lactation		202.9 ± 9.8^{a}	211.3 ± 7.6^{ab}	214.2 ± 12.1^{b}	0.026
 Body weight loss 	kg	-32.9 ± 4.7^{a}	-25.6 ± 6.0^{b}	$-25.9 \pm 3.6^{\circ}$	0.001
• Feed intake (1st to 28th d)	kg				
- total		129.3 ± 12.6	127.2 ± 5.5	129.1 ± 11.9	0.867
- per sow and day		4.6 ± 0.5	4.5 ± 0.2	4.6 ± 0.4	0.867
Body temperature (rectal)	°C				
- 114 th day of pregnancy		38.9 ± 0.3	38.6 ± 0.3	38.6 ± 0.4	0.426
- 1 st day of lactation		38.5 ± 0.3	39.2 ± 0.4	39.2 ± 0.5	0.999
- 2 nd day of lactation		39.2 ± 0.4	39.3 ± 0.4	39.3 ± 0.6	0.724
- 3 rd day of lactation		39.2 ± 0.4	39.1 ± 0.4	09.2 ± 0.3	0.781
• Faecal score*	n		,		
- 1st week of lactation		1.08 ± 0.08^{a}	1.13 ± 0.06^{ab}	1.16 ± 0.06^{b}	0.029
- 2 nd week of lactation		1.10 ± 0.10	1.13 ± 0.10	1.12 ± 0.07	0.772
- 3 rd week of lactation		1.01 ± 0.03^{a}	1.07 ± 0.08^{ab}	1.09 ± 0.07^{b}	0.010
- 4 th week of lactation		1.10 ± 0.08	1.08 ± 0.06	1.08 ± 0.08	0.623
Incidence of sickness					
- Mastitis, Metritis, Agalacty	n	2	1	1 .	
- Claw injuries	n	2	1	2	
- Abscess	n	1	1	2	

^{*} Scores: 1 = normal (DM > 25%); 2 = pasty (DM 24 -18%), 3 = liquid (DM < 18%); 4 = liquid (DM < 18%) + colour changes

ab Means with different superscripts within a row differ significantly (P<0.05)

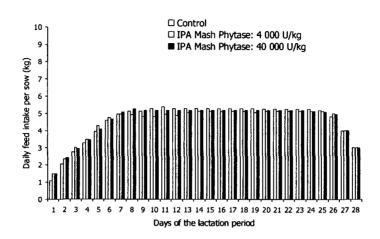


Figure 5. Daily feed intake of sows during the 28-day lactation period

6.2.2 Piglets

The performance of piglets from sows fed without or with supplementation of IPA Mash Phytase at levels of 4 000 and 40 000 U/kg feed is shown in Table 9.

Table 9. Performance of piglets during the 28-day suckling period

Treatment		A	В	С	Oneway Anova
Sows: ISP Mash Phytase	U/kg	0	4 000	40 000	
Litters	n	12	12	12	P
Overall piglets (corrected)	n	130	128	132	
• Litter size (corrected)	n				
- 1 st suckling day		10.8 ± 0.9	10.7 ± 0.5	11.0 ± 0.7	0.517
- 28 th suckling day		10.5 ± 0.5	10.3 ± 0.6	10.5 ± 0.8	0.640
Rearing losses	%	3.52 ± 0.22	3.80 ± 0.24	4.50 ± 0.2	0.910
Body weight	kg				
- 1 st day of age		$1.48 \pm 0,22^{a}$	1.46 ± 0.29^{a}	1.78 ± 0.13^{b}	< 0.001
- 28th day of age		6.32 ± 0.56^{a}	6.23 ± 0.78^{a}	7.80 ± 0.26^{b}	< 0.001
 Body weight gain 	kg				
- 1 st to 28 th day of age		4.84 ± 0.54^{a}	4.77 ± 0.78^{a}	6.02 ± 0.24^{b}	< 0.001
Feed intake				<u> </u>	
- overall	kg	0.89 ± 0.12^{a}	0.87 ± 0.16^{a}	1.05 ± 0.10^{b}	0.004
- daily	g	49.4 ± 6.8^{a}	48.2 ± 9.1^{a}	58.1 ± 5.3^{b}	0.004
• Faecal score*					
- 1st week of age		1.41 ± 0.10	1.56 ± 0.22	1.45 ± 0.11	0.057
- 2 nd week of age	·	1.39 ± 0.12	1.38 ± 0.20	1.46 ± 0.09	0.350
- 3rd week of age		1.46 ± 0.10	1.48 ± 0.16	1.43 ± 0.08	0.545
- 4 th week of age		1.54 ± 0.24	1.43 ± 0.12	1.45 ± 0.11	0.216
Incidence of sickness					
- Funiculitis	n	3	4	3	
- Polyarthritis	n	2	1	1	

^{*}Scores: 1 = normal (DM > 25%); 2 = pasty (DM 24 -18%); 3 = liquid (DM < 18%); 4 = liquid (DM < 18%) + colour changes

^{ab}Means with different superscripts within a line differ significantly (P<0.05)

In order to minimize litter size effects during the suckling period litter sizes were slightly equalized (s. Table 8). The rearing losses of only 3.94% were reflecting the optimal management and health conditions at the farm. Body weight gain of piglets from sows fed without or with IPA Mash Phytase at the level of 4 000 U/kg amounted to 4.80 kg. Piglets from sows fed with the tenfold overdose (40 000 U/kg) were significantly improved by 25.4% when compared to piglets of sows fed without or with 4 000 U/kg IPA Mash Phytase. As shown in Table 9 and Figure 6 the daily intake of the prestarter diet by piglets from sows fed with the tenfold overdose (40 000 U/kg) was on average 19.3% higher than in piglets from sows without or with supplementation of IPA Mash Phytase at the maximum recommended level (4 000 U/kg). When calculated with reference to the content of metabolisable energy in the supplement (13.97 MJ ME/kg), this means that each piglet consumed 2.37 MJ ME more energy. As the estimated energy requirement per kg of weight gain is 21.74 MJ ME (GfE 2006), the feed induced higher body weight gain of piglets from sows fed with IPA Mash Phytase at the overdose level (40 000 U/kg) amounted about to 110 g. Therefore the significantly improved body weight gain was only by about 9% attributable to the higher consumption of the prestarter diet.

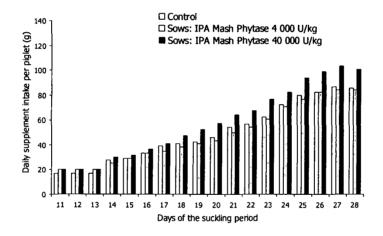


Figure 6. Daily feed intake of the prestarter diet averaged per piglet and litter

The faecal consistency score showed no health-relevant differences. Consequently differences attained no statistical significance. Some piglets showed signs of funiculitis and polyarthritis. Treatment effects could be excluded.

6.3 Blood constituents

For further identifying safety of IPA Mash Phytase blood examinations were used at the 26th day after farrowing which was corresponding to a 140-day supplementation period The results are given in Table 10. For better appraisal the respective reference values given by the literature are additionally shown in Table 11. It was observed that all means were within the physiological range. With feeding IPA Mash Phytase at the tenfold overdose level means for erythrocytes were significantly lower than those of sows fed with the maximum recommended dose level. The significantly higher means of inorganic phosphate, total

cholesterol, urea and glucose were mainly reflecting the higher performance status when compared to sows fed without or with IPA Mash Phytase at the maximum recommended level (4 000 U/kg). However, all differences between the treatments were still within the reference range. Therefore, IPA Mash Phytase is characterized by a high safety potential.

Table 10. Haematological results in sows fed control or IPA Mash Phytase supplements at 24 days after farrowing

Treatment		A	В	С	Oneway Anova
Sows	n	12	12	12	
Replicates	n		·		P
ISP Mash Phytase	U/kg	0	4000	40000	
Blood cell numbers					
- Erythrocytes	terra/l	$5,72 \pm 0.84^{ab}$	5.91 ± 0.43^{a}	4.91 ± 1.41^{b}	0.049
- Leukocytes	giga/l	17.19 ± 3.84	16.08 ± 1.76	14.87 ± 2.60	0.171
- Thrombocytes	giga/l	241.3 ± 162.8	234.0 ± 84.7	161.8 ± 66.3	0.261
Blood					
- Haemoglobin	mmol/l	7.38 ± 0.49	7.31 ± 0.49	6.86 ± 0.22	0.129
- haematocrit	%	39.1 ± 4.2	38.8 ± 2.5	37.0 ± 9.9	0.112
- MCV 1)	fl	68.0 ± 4.4^{ab}	65.7 ± 2.8^{a}	69.3 ± 2.6^{b}	0.048
- MCH ²⁾	fmol	1.30 ± 0.08^{ab}	1.24 ± 0.07^{a}	1.30 ± 0.05^{b}	0.046
- MCHC 3)	Mmol/l	19.1 ± 0.5^{ab}	18.8 ± 0.4^{a}	18.7 ± 0.3^{b}	0.046
• Electrolytes (plasma)					
- Sodium	mmol/l	138.3 ± 2.7	137.5 ± 2.8	136.5 ± 2.5	0.329
- Potassium	mmol/l	7.83 ± 2.89	9.60 ± 3.35	8.25 ± 3.81	0.414
- Chloride	mmol/l	100.7 ± 2.3	99.8 ± 2.2	99.3 ± 2.2	0.326
- Calcium	mmol/l	2.31 ± 0.32	1.83 ± 0.86	$2,24 \pm 0.21$	0.131
- Inorganic phosphate	mmol/l	1.93 ± 0.35^{a}	1.72 ± 0.40^{a}	2.20 ± 0.21^{b}	0.006
• Enzymes (plasma)					
- ALAT*	μkat/l	1.03 ± 0.24	1.15 ± 0.27	1.24 ± 0.19	0.121
- ASAT**	μkat/l	0.76 ± 0.30	0.61 ± 0.17	0.53 ± 0.16	0.054
- GGT***	ukat/l	1.22 ± 0.46	0.91 ± 0.13	0.95 ± 0.65	0.220
- Alkaline Phosphatase	ukat/l	0.79 ± 0.34	0.64 ± 0.23	0.79 ± 0.39	0.421
Metabolites (plasma)	•				
- Total cholesterol	mmol/l	1.40 ± 0.16^{a}	1.59 ± 0.31^{a}	1.84 ± 0.22^{b}	0.001
- Triglycerides	mmol/l	0.87 ± 0.46	0.56 ± 0.25	0.66 ± 0.33	0.110
- Creatinine	mmol/l	176.8 ± 28.2	157.9 ± 19.8	152.9 ± 26.1	0.065
- Urea	μmol/l	4.79 ± 1.17^{a}	4.11 ± 0.72^{a}	6.93 ± 2.15^{b}	< 0.001
- Bilirubin	μmol/l	1.75 ± 0.68	1.85 ± 0.87	1.57 ± 0.52	0.644
- Glucose	mmol/l	2.64 ± 0.23^{ab}	2.45 ± 0.40^{a}	2.91 ± 0.40^{b}	0.015
- Albumin	g/l	40.8 ± 3.7	39.5 ± 5.6	36.8 ± 10.0	0.693
- Total protein	g/l	81.1 ± 8.3	86.0 ± 8.8	83.1 ± 4.9	0.295

^{*} Alanine-Amino-Transferase ** Aspartate-Amino-Transferase *** Gamma-Glutamyl-Transferase

1) Mean cellular volume; 2) mean cellular haemoglobin; 3) mean haemoglobin concentration

ab Means with different superscripts within the same line differed significantly

Table 11. Reference values for selected blood parameters in sows

			T					
Treatment		Reference range	Literature					
Blood cell numbers								
- Erythrocytes	terra/l	5.5 - 8.1	Kraft and Dürr (2005)					
- Leukocytes	giga/l	10 - 25	Kraft and Dürr (2005)					
- Thrombocytes	giga/l	100 - 320	Kraft and Dürr (2005)					
• Blood			` ,					
- Haemoglobin	mmol/l	6.7 - 9.2	Kraft and Dürr (2005)					
- Haematocrit	%	33 45	Kraft and Dürr (2005)					
- MCV 1)	fl	50 - 65	Lahrmann (2009)					
- MCH ²⁾	fmol	1.0 - 1.3	Lahrmann (2009)					
- MCHC 3)	mmol/l	19 - 22	Lahrmann (2009)					
• Electrolytes (plasma)			. (,					
- Sodium	mmol/l	140 - 160	Kraft and Dürr (2005)					
- Potassium	mmol/I	4.0 - 5.0	Kraft and Dürr (2005)					
- Chloride	mmol/l	102 - 106	Kraft and Dürr (2005)					
- Calcium	mmol/l	2.4 - 3.0	Kraft and Dürr (2005)					
- Inorganic phosphate	mmol/l	2.1 - 3.3	Kraft and Dürr (2005)					
• Enzymes (plasma)		-	(,					
- ALAT*	μkat/l	< 1.1	Kraft and Dürr (2005)					
- ASAT**	ukat/l	< 0.6	Kraft and Dürr (2005)					
- GGT***	μkat/l	< 4.3	Kraft and Dürr (2005)					
- Alkaline Phosphatase	ukat/l	< 2.9	Kraft and Dürr (2005)					
Metabolites (plasma)	,							
- Total cholesterol	mmol/l	1.5 - 3.3	Plonait und Bickhardt (1988)					
- Triglycerides	mmol/l	0.2 - 2.0	Kraft and Dürr (2005)					
- Creatinine	mmol/l	100 - 2000	Kraft and Dürr (2005)					
- Urea	mmol/l	3.3 - 8.3	Kraft and Dürr (2005)					
- Bilirubin	mmol/l	< 4.3	Kraft and Dürr (2005)					
- Glucose	mmol/l	2.2 - 6.4	Kraft and Dürr (2005)					
- Albumin	g/l	18 - 45	Plonait und Bickhardt (1988)					
- Total protein	g/l	< 86	Kraft and Dürr (2005)					
* Alanina Amina Transference #								

^{*} Alanine-Amino-Transferase; ** Aspartate-Amino-Transferase; *** Gamma-Glutamyl-Transferase

1) Mean cellular volume; 2) mean cellular haemoglobin; 3) mean haemoglobin concentration

6.4 Fertility parameters of sows after weaning

In addition to rearing performance the weaning to service interval, i.e. the number of days from weaning to successful service was measured. The results are presented in Table 12. The differences did not attain statistical significance. None of the inseminated sows showed signs of return rate up to the 35th day of pregnancy. From the results it could be concluded, that with adding IPA Mash Phytase at levels of 4 000 or 40 000 U/kg no negative effects on fertility of sows occurred.

Table 12. Effect of ISP Mash Phytase on fertility parameters of sows

Group		A	В	C	Oneway Anova
Sows	n	12	12	12	
Replicates	n	12	12	12	P
ISP Mash Phytase	U/kg	0	4 000	40 000	
Weaning to service interval	days	6.4 ± 1.1	6.8 ± 1.0	6.5 ± 1.0	0.708

7 Discussion

The objective of this long-term study, which extended over the third complete reproductive cycle up to the successful service after weaning, was to investigate whether the continuous overdosed supplementation of IPA Mash Phytase at the level of 40 000 U/kg in sow diets (gestation, lactation) is without any negative performance-, reproductive- or health-related effect when compared to sows fed without supplementation of IPA Mash Phytase or with IPA Mash Phytase at the maximum recommended level of 4 000 U/kg, respectively. Performance data of sows were demonstrating that adding overdosed IPA Mash Phytase in diets for sows showed with regard to the tested health- and performance-relevant parameters not any negative effect. The body weight losses during the lactation period were significantly by 88.6% lower than those estimated for sows fed without IPA Mash Phytase. Additionally the body weight gain of piglets from sows fed with the tenfold overdose level were significantly improved when compared to sows fed without or with IPA Mash Phytase at the maximum recommended level of 4 000 U/kg. As the estimated energy requirement per kg of weight gain is 21.74 MJ ME (GfE 2006), the feed induced higher body weight gain of piglets from sows fed with IPA Mash Phytase at the overdose level (40 000 U/kg) amounted only to 110 g body weight gain during the suckling period. Therefore the significantly improved body weight gain was only by about 9% attributable to the higher consumption of the prestarter diet. Reasons for the significantly improved body weight gain of piglets remain speculative, because the trial was only designed for excluding possible negative effects at the overdose level. By the fact that the feed intake of sows was nearly identical between the different treatment groups, and the body weight losses of sows fed with IPA Mash Phytase were lower when compared to sows without feeding IPA Mash Phytase, the results were obviously reflecting additionally positive enzyme effects in sows.

The potential for efficacy of IPA Mash Phytase at the maximum recommended level (4 000 U/kg was only focussed on lower body weight losses of sows during the 28-day lactation period. In contrast to the tenfold overdose level no further positive response on body weight gain of suckling piglets was monitored. The positive effects on reduced body weight losses of sows during the 28-day lactation period were obviously reflecting the enzyme induced improvements. However a definitive elucidation of the mode of action must be part of further experiments, because the tested enzyme induced improvements, as found in former trials, on the availability of calcium, phosphorus, zinc and iron can only partly be responsible for the reduced body weight losses during lactation. Probably effects of improvements in apparent ileal digestibility of amino acids have to be taken into account.

The results of the blood examination, faecal score and the weaning to service interval showed that IPA Mash Phytase had no negative health or fertility relevant effects at the tenfold overdose level. Differences in blood parameters (partly significant) found between IPA Mash Phytase treated sows and sows fed without IPA Mash Phytase were still within the reference range given by the literature.

8 Conclusions

It summary it can be concluded that the long term supplementation of IPA Mash Phytase at the overdose level (40 000 U/kg) in sow diets during a overall reproductive cycle including the successful service after weaning induced lower estimated body weight losses during the 28-day lactation period and significantly improved body weight gains of piglets which were fed a prestarter diet without IPA Mash Phytase. Additionally blood examinations, faecal consistency and the weaning to service interval of sows fed with the tenfold overdose level of IPA Mash Phytase showed no negative health or fertility relevant effects. To that extend a sufficient safety-factor for possible metering mistakes by adding IPA Mash Phytase in diets for sows can be guaranteed.

(b) (4) November 2006

(b) (4)

2

Annex 3

Evaluation of the effects of graded amounts of a microbial phytase in the weaner piglet

REPORT No. 2500761

REPORT No. 2500761 Regulatory Document

Document Date: 11-Jun-2009

Author(s): P. Guggenbuhl, C. Simões Nunes,

(b) (4)

DSM Nutritional Products France, BP 170, 68305 Saint Louis, France

Title: Evaluation of the effects of graded amounts of a microbial phytase in the weaner

piglet.

Project No. 6106

Compound No.

Summary

The aim of the present study (S12-08 VN) was to evaluate the effects of graded amounts of a microbial phytase (IPA) on the zootechnical performance, mineral blood concentrations, digestibility of phosphorus (P) and calcium (Ca) and bone mineralisation and resistance in the weaned piglet. The basal diet, without addition of mineral P, was based on maize, soybean meal and rapeseed meal. IPA phytase was included in the diet at the levels of 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg. A dietary treatment was based in the very slightly modified control diet containing the recommended available P by addition of dicalcium phosphate (diCaP). Supplementation with graded amounts of IPA phytase in piglets induced an increased performance in a dose dependant manner. Inclusion levels over 1000 U/kg were more efficient than the diCaP supplementation. IPA phytase restored dose dependently phosphataemia, calcaemia and phosphatasaemia to physiological levels comparatively to the controls. The mean P faecal concentration of the enzyme supplemented animals was significantly lower than that observed for the animals ingesting the control diet. All the phytase inclusion levels increased the bioavailability of P and accordingly reduced the piglet quantitative faecal excretion of P comparatively to the basal diet. The P digestibility was dose dependant and highly significantly improved with the exception of the lowest phytase inclusion level. The increases represented in comparison to the control group 12, 66, 77, 110, 132, 129, 156 and 149 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively. The P equivalencies, considered as supplemental P digested comparatively to the non-supplemented control, of 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg of the phytase were 0.13, 0.73, 0.84, 1.22, 1.50, 1.39, 1.75 and 1.62 g of full available P/kg feed respectively. Ca digestibility was improved by all the inclusion levels of the phytase. IPA phytase supplements improved bone mineralisation and bone resistance comparatively to the non-supplemented animals. In conclusion the IPA phytase improved the digestibility and the apparent absorption of P and Ca, reduced the P faecal excretion, restored phosphataemia, calcaemia and phosphatasaemia to physiologic values, increased bone mineralisation and resistance and improved the zootechnical performance in the weaned piglet fed on a diet containing P exclusively from vegetable origin.

Distribution

Dr. J. Broz, NRD/CA Dr. J.-P. Ruckebusch, ANH/EE

Dr. M. Eggersdorfer, NRD Dr. G. Kau, NBD/A

Dr. A.-M. Klünter, NRD/CA Dr. J.-F. Hecquet, NBD/RA-GM

Dr. F. Fru, NRD/PA Dr. E. Schmidt Marcussen, Novozymes A/S

Dr. J. Pheiffer, NRD/PA

Approved Name Main Author

Name Signature Date

Dr. P. Guggenbuhl, NRD/CA 15/1 11. 06. 2009

Principal Scientist / Competence Mgr
Dr. C. Simões Nunes, NRD/CA

16.16.01

Research Center Head
Dr. A-M Klünter, NRD/CA

A. M. U.C. Le

11. 96. 09

Project Manager

Dr. F. Fru, NRD/PA

Research Project Document

DSM Nutritional Products Ltd

Nomenclature and Structural Formula (if available)

Liquid form IPA phytase expressed in Aspergillus oryzae, batch PPQ28432, activity at pH 5.5 of 26500 U/g.

1. INTRODUCTION

The aim of the present study (S12-08 VN) was to evaluate the effects of graded amounts of a microbial phytase (IPA) on the zootechnical performance, mineral blood concentrations, digestibility of phosphorus (P) and calcium (Ca) and bone mineralisation and resistance in the weaned piglet.

The experiment was performed in July-August 2008 in the facilities of the Centre de Recherche en Nutrition Animale (CRNA), DSM Nutritional Products France, BP 170, 68305 Saint-Louis cedex, France. It has been performed according to the French legal regulations on experiments with live animals.

2. MATERIAL AND METHODS

2.1. Test compounds

The used IPA phytase was expressed in Aspergillus oryzae, batch PPQ28432, had an activity at pH 5.5 of 26500 U/g and was in a liquid form.

NRD/CM measured the phytase activity in the enzyme preparation and in the feed. One unit of phytase is defined as the quantity of enzyme which sets free 1 μ mole of inorganic phosphate per minute from 0.005 moles per litre sodium phytate at pH 5.5 and at 37°C.

Di-calcium phosphate (diCaP), batch S1784 6212, was supplied by TIMAC Industries and had a P concentration of 18.2 % and a Ca concentration of 24 %.

2.2. Animal trial

One hundred and twenty Large White \times Landrace weaner piglets having an initial body weight of 8.03 ± 1.09 kg were used. The animals were allocated to 10 equal groups of 12 animals each and housed in floor-pen cages in two sub-groups (1 of 7 animals and 1 of 5 animals) in an environmentally controlled room. Each pen had a plastic-coated welded wire floor and was equipped with four water nipples and four stainless-steel individualised feeders. Room temperature was initially 27°C and was lowered weekly by about 2°C until 21-22° C and humidity percentage was 50 %.

The piglets were fed, throughout a 32 days observation period, a basal diet without addition of mineral P (group A) or the diet A supplemented with 16 g/kg of diCaP (group B) or with IPA phytase at the levels of 250 U/kg (group C), 500 U/kg (group D), 1000 U/kg (group E), 1500 U/kg (group F), 2000 U/kg (group G), 3000 U/kg (group H), 4000 U/kg (group I) and 8000 U/kg (group J).

The basal diet A was formulated to provide P exclusively from vegetable origin and to meet, with the exception of the available P supply, the animals' requirements according to Henry *et al.* (1989) and NRC (1998). The basal diet A (table 1) had a theoretical P content of 0.41 % and an analysed content of 0.45 %. The theoretical available P in the diet was 1.20 g/kg and the observed availability of 1.09 g/kg.

An indigestible tracer (chromium oxide) was added at a concentration of 0.4 % to all the diets allowing calculation of the digestibility of P and Ca. The feed was distributed ad libitum in mash form, under pen feed consumption control, and the animals had free access to drinking water.

Regulatory Document
DSM Nutritional Products Ltd

Page 3 of 26

The digestibility of Ca was not corrected for Ca intake with the drinking water. Mean Ca content of the drinking water in the region is 120 mg/L.

Performance was evaluated for the 32 days of the trial duration. Blood was collected by jugular puncture from all the animals at the 31st day of the experiment for the determination of the P, Ca, alkaline phosphatase and zinc (Zn) concentrations.

Faecal P, Ca and Cr concentrations were measured at the 32nd day of the second period. Faeces were sampled per pen, in approximately the same amount at the same time of the day, during the last 3 days preceding that date. Thus, for each dietary treatment and for each criterion a total of 6 individual determinations have been performed. All minerals were determined according to standard Association of Official Analytical Chemists (1990) methods using a Vista-MPX ICP-OES spectrometer (Varian Australia Pty Ltd, Mulgrave Victoria, 3170 Australia). The apparent digestibility (% of the intake) of the minerals was calculated for the mentioned 3 day period.

At the end of the evaluation all animals were slaughtered after tranquilization and stunning for the right femur collection. Samples of the collected bones were prepared immediately after slaughter. After careful dissection and removal of the soft tissue, a diaphysis section was obtained by sawing each bone. The obtained sections of about 3.5-cm long were immediately subjected to compression in order to determine the force in Newton necessary to break them (maximal-breaking force at the fracture point). The measurements were performed with a LR10K compression machine, using a XLC/10K/A1 force captor and a compression device TH23-196/AL (Lloyd Instruments, Fareham, UK). The broken bones were then used for the determination of the ash content, which was measured after 72-h incineration at 550°C.

2.3. Statistical analysis

Statistical treatment of the results involved the calculation of the mean and of the standard deviation of the mean as well as a two-factor hierarchical analysis of variance. The mathematical model was:

$$Yijk = \mu + Ai + Bij + Zijk$$

where μ is the mean, Ai is the diet effect, Bij is the combined effect of the diet and animal or pen and Zijk is the residual term. The analysis of variance was followed by a Duncan multiple range test when a significant Ai effect without Bij effect was observed (Snedecor and Cochran, 1989). These calculations were performed using StatGraphics Plus 5.1 (Manugistics, Rockville, U.S.A. 2001).

3. RESULTS AND DISCUSION

3.1. Phytase and animals

The observed phytase activity in the supplemented feed used was in general excellent agreement with the programmed inclusion levels (table 2). The basal diet without addition of mineral P (group A) and with diCaP (group B) had an endogenous phytase activity of 108 ± 34 U/kg.

The animals grew normally during the observation period to reach a final mean body weight of 16.45 ± 2.85 kg. Three animals, one in the control group, one in the 2000 U/kg and one in the 3000 U/kg phytase supplemented groups had to be euthanized during the early stage of the trial after leg injuries. No mortality was observed during the rest of the experiment.

All the groups ingesting phytase supplements and the group supplemented with 16 g/kg of diCaP had higher daily weight gain (DWG) and lower feed conversion ratio (FCR) than those observed for the control group (table 3). The highest DWG and the best FCR were observed for the group ingesting 3000 U/kg. The performances of the group supplemented with diCaP were equivalent to those of the group receiving 1000 U/kg of phytase.

Supplementation with graded amounts of IPA phytase in piglets induced an increased performance in a dose dependant manner. Inclusion levels over 1000 U/kg were more efficient than the diCaP supplementation.

3.2. Effects on plasma mineral and alkaline phosphatase concentrations

Phosphataemia was increased dose dependently in the phytase supplemented groups in comparison to the control group (table 4). The increases were highly significant with the exception of the lowest inclusion level. The group supplemented with diCaP presented also a high significant increase of the phosphataemia but at a lower level than the 4000 and 8000 U/kg phytase supplemented groups. The consumption of phytate rich diets like the control one induced hypophosphataemia. IPA phytase restored the physiological P blood level confirming the sensitiveness of phosphataemia to the dietary available P.

Comparatively to the control group, calcaemia was decreased in all the phytase supplemented animals (table 4). The effects of the phytase were dose dependant although the curve levelled off from the 2000 U/kg inclusion and highly significant with the exception of the lowest inclusion level. As observed in the control group, hypophosphataemia is generally associated with hypercalcaemia in swine. In the present study, calcaemia in the animals ingesting the basal diet supplemented with diCaP or with phytase was within the normal piglet values.

Zincaemia was not significantly influenced by the supplementation of phytase or diCaP, although these treatment groups presented higher mean concentrations than the control group (table 4). Zn is well known to bind to phytate and generally its digestibility is improved by phytases in growing pigs. Nevertheless, it seems that in piglet the blood Zn concentration is not altered by the dietary treatments used in the present experiment.

Compared to the control group, phosphatasaemia was decreased dose dependently in the phytase supplemented groups (table 5). The decreases were only significant at the 500 and 8000 U/kg inclusion levels. The group supplemented with diCaP presented also a decrease of the phosphatasaemia at a level similar to that observed with 1500 U/kg phytase supplemented group. Alkaline phosphatase plays an important role in bone metabolism. As observed in the control non-supplemented group, hypophosphataemia induces osteoblasts

Regulatory Document
DSM Nutritional Products Ltd

Page 5 of 26

heperphosphatasaemia in response to an increased activity of osteoclasts in bone. In the present study, phosphatasaemia of the phytase supplemented animals was systematically lower than that of the control clearly indicating restored normal bone function.

3.3. Effects on phosphorus digestion

The mean P faecal concentration of the enzyme supplemented animals was very significantly lower than that measured in the animals ingesting the control diet (table 6). There was a decrease of the P faecal concentration with the increasing allowance of IPA phytase. The lowest P faecal concentration was observed in the animals ingesting phytase at 8000 U/kg and represented the half of that of the control group.

The P digestibility was dose dependant and highly significantly improved with the exception of the lowest phytase inclusion level. The increases represented in comparison to the control group 12, 66, 77, 110, 132, 129, 156 and 149 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively (table 7, figure 1). The digestibility of P in the diCaP supplemented diet was also significantly higher than that of the control by 69.% and very similar to the enzyme supplementation at 500 U/kg.

The faecal excretion of P was significantly reduced by 4, 20, 25, 34, 41, 41, 49 and 48 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively. It was increased by 35 % with the diCa-P supplemented group (table 8, figure 2).

The apparent absorbed P was 1.22, 1.82, 1.93, 2.31, 2.59, 2.48, 2.84 and 2.71 g/kg feed in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively and 3.18 g/kg feed in the diCaP supplemented group (table 9). It was significantly increased in all the supplemented groups with the exception of the lowest phytase inclusion level in comparison to the control diet (1.09 g/kg). The highest inclusion levels of IPA phytase were in accordance with the recommended requirements of 2.80 g of digestible P per kg feed for piglets.

The P equivalencies, considered as supplemental P digested comparatively to the non-supplemented control, of 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase were 0.13, 0.73, 0.84, 1.22, 1.50, 1.39, 1.75 and 1.62 g of full available P/kg feed respectively (table 10, figure 3). In comparison the P equivalency of diCaP supplemented diet was 2.10 g of full available P/kg feed.

In the present study, using the equation of the tendency curve the calculated inclusion level to reach 1.5 g of full available P/kg feed was 3109 U/kg feed of IPA phytase (y = $167.21e^{1.9488x}$, R² = 0.8897) but was reached experimentally with the 2000 U/kg inclusion level.

In general on all the P parameters, IPA phytase showed high dose dependant potency.

3.3. Effects on calcium digestion

The Ca faecal concentration of the animals ingesting the non-supplemented diet was higher than that of the animals ingesting the phytase, with the exception of the lowest inclusion level (table 11). The observed differences were statistically significant for the enzyme supplemented groups excepted for the 250 and 1000 U/kg inclusion levels. The highest Ca faecal concentration was observed in the diCaP supplemented group.

The Ca digestibility was improved in the supplemented groups with the exception of the diCaP group and the 250 U/kg phytase group (table 12). The variations were -9, 7, 5, 16, 26, 12, 25 and 17 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively and significant for the five highest concentrations. The Ca digestibility of the diCaP supplemented diet was decreased by 16 % comparatively to the control group.

The faecal excretion of Ca was reduced by 8, 7, 22, 37, 20, 40, and 26 % with the IPA phytase in the 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg supplemented groups respectively and significantly with the five highest concentrations. It was significantly increased by 13 % and 87 % with the 250 U/kg phytase and diCaP groups respectively (table 13).

The apparent absorbed Ca was 4.38, 5.28, 5.08, 5.61, 5.94, 5.20, 5.63 and 5.42 g/kg feed with the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively and 6.10 g/kg feed in the diCa-P group (table 14). It was significantly increased in all the 1500, 2000, 4000 and 8000 U/kg phytase and diCaP supplemented groups and significantly decreased in the 250 U/kg phytase inclusion level in comparison to the Ca apparent absorption in the control diet (4.79 g/kg).

3.4. Bone resistance and bone ash

The phytase supplements strongly influenced the bone strength (table 15). For the IPA phytase inclusion level of 8000 U/kg the increase of the femur resistance was similar to that of diCaP. It represented 121 % and 126 % respectively of that observed for the animals ingesting the basal diet. The increases were significant in all supplemented groups excepted for the 250 U/kg and 1000 U/kg phytase inclusion levels.

The ash content of the femur was increased in a significant way by the phytase excepted for the lowest dosage and by the diCaP (table 15). Nevertheless, the addition of graded amounts of IPA phytase resulted in a non-linear increase of the ash content of the femur.

In the present study IPA phytase supplements in young pigs confirmed the positive effects of phytases on the improvement of bone resistance and the positive but moderate effect on bone mineralisation of animals fed diets containing P exclusively from vegetable origin.

The bone mineralisation data were in agreement with the improvements in P digestibility and with P and Ca blood concentrations.

4. CONCLUSION

It can be concluded that the IPA phytase improved the digestibility and the apparent absorption of P and Ca, reduced the P faecal excretion, restored phosphataemia, calcaemia and phosphatasaemia to physiologic values, increased bone mineralisation and resistance and improved the zootechnical performance in the weaned piglet fed on a diet containing P exclusively from vegetable origin. There was a dose dependant effect of the IPA phytase on the availability of the dietary P.

Table 1 - Composition (%) of the basal diet (A) and of that supplemented with diCa-P

INGREDIENTS	Basal diet without P (%)	Basal diet with diCA-P (%)		
Maize	68.52	68.125		
Soybean meal	15.1	15.1		
Rapeseed meal	12.5	12.5		
Salt	0.55	0.55		
Soya oil	1.0	1.0		
Calcium carbonate	1.56	0.355		
Di-calcium phosphorus		1.6		
Minerals ⁽¹⁾ , vitamins and synthetic aa	0.77	0.77		
Crude Protein – N x 6.25	15.5	15.5		
Lysine - %	0.96	0.96		
Methionine + cystine - %	0.54	0.54		
Ca - analyzed - % in DM	0.82	1.24		
P - analyzed - % in DM	0.45	0.78		
Theoritically available P - %	0.12 (2)	0.35 (3)		
Observed available P - %	0.11	0.32		
Phytic P – calculated - %	0.28	0.54		
Estimated digestible energy – MJ/kg	13.31	13.31		
Phytase activity – U (4)/kg	108 ± 34	108 ± 34		

⁽¹⁾ Mixture without mineral P;
(2) Estimated from the mean P digestibility of the previous realized trials
(3) Sum of the theoretically available P and 80 % of added mineral P as generally accepted (4) Quantity of enzyme that sets free 1 µmole of inorganic phosphate per minute from 0.005 mole per litre sodium phytate at pH 5.5 and at 37°C.

Table 2 - Phytase activity (U^(a)/kg) and % of the target in the different diets.

Treatment groups	Basal Diet	Basal Diet + diCa-P	IPA phytase									
	A	В	C	D	E	F	G	Н	1	J		
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000		
Measured phytase addition (U/kg) (1)	108 ± 34	108 ± 34	374 ± 111	601 ± 25	1097 ± 21	1611 ± 41	2225 ± 45	3098 ± 104	4030 ± 208	8238 ± 283		
Actually added phytase (U/kg)	-	-	266	493	989	1503	2117	2990	3922	8130		
% of target	-	-	106	99	99	100	106	100	98	102		

^(a) Quantity of enzyme that sets free 1 μ mole of inorganic phosphate per minute from 5 mM sodium phytate at pH 3.2 and at 37°C. ⁽¹⁾ Mean \pm standard deviation of 4 determinations.

<u>Table 3</u> – Effects on the zootechnical performances in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups	Basal Diet	Basal Diet + diCa-P	IPA phytase									
(n = 12 animals)	A	В	C	D	E	F	G	Н		J		
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000		
Initial Body Weight (kg)	8.03 ± 1.13	8.02 ± 1.13	8.02 ± 0.84	8.03 ± 1.27	8.03 ± 1.52	8.03 ± 1.08	8.03 ± 0.86	8.02 ± 1.04	8.03 ± 1.19	8.02 ± 1.16		
Final Body Weight (kg)	15.20 ⁽¹⁾ ± 2.10 (100)	16.24 ± 3.11 (107)	16.14 ± 1.99 (106)	15.98 ± 4.13 (105)	16.01 ± 3.58 (105)	16.69 ± 3.14 (110)	17.44 ⁽¹⁾ ± 2.86 (115)	17.48 ⁽¹⁾ ± 2.29 (115)	16.79 ± 2.51 (110)	16.58 ± 2.38 (109)		
Total Weight Gain (kg)	7.04 ⁽¹⁾ ± 2.32 (100)	8.22 ± 2.25 (117)	8.12 ± 1.64 (115)	7.96 ± 3.09 (113)	7.98 ± 2.71 (113)	8.66 ± 2.30 (123)	9.46 ⁽¹⁾ ± 2.24 (134)	9.61 ⁽¹⁾ ± 1.86 (137)	8.77 ± 1.94 (125)	8.56 ± 2.03 (122)		
Daily Weight Gain (g)	220 ⁽¹⁾ ± 73 (100)	257 ± 70 (117)	254 ± 51 (115)	249 ± 97 (113)	249 ± 85 (113)	271 ± 72 (123)	296 ⁽¹⁾ ± 70 (134)	300 ⁽¹⁾ ± 58 (137)	274 ± 61 (125)	268 ± 63 (122)		
Feed intake (g/day) ⁽²⁾	468 ⁽¹⁾ ± 16 (100)	484 ± 55 (103)	499 ± 40 (107)	475 ± 136 (101)	478 ± 34 (102)	489 ± 99 (104)	510 ⁽¹⁾ ± 42 (109)	523 ⁽¹⁾ ± 57 (112)	497 ± 36 (106)	491 ± 55 (105)		
Feed Conversion Ratio (kg/kg) (2)	2.448 ⁽¹⁾ ± 0.220 (100)	1.914 ± 0.014 (78)	1.981 ± 0.032 (81)	1.985 ± 0.048 (81)	1.931 ± 0.002 (79)	1.835 ± 0.068 (75)	1.819 ⁽¹⁾ ± 0.064 (74)	1.793 ⁽¹⁾ ± 0.013 (73)	1.834 ± 0.021 (75)	1.865 ± 0.023 (76)		
Mortality	1	0	0	0	0	0	1	1	0	0		

⁽¹⁾ n = 11 animals; (2) n = 2 pens

Table 4 - Effects on plasma mineral concentrations in the weaning pig fed a diet without or with diCaP or graded amounts of IPA

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P								
	A ⁽¹⁾	В	C	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
P plasma levels (mg/dl)	5.11 ± 1.15 (100)	7.69 ± 1.03 (151)	5.53 ± 0.86 (108)	6.23 ± 0.82 (122)	6.59 ± 1.00 (129)	7.07 ± 1.03 (138)	7.23 ± 1.32 (141)	7.33 ± 0.86 (144)	8.10 ± 0.91 (159)	7.97 ± 0.90 (156)
				Statistical a						
	A-	P<0.001	NS	P<0.05	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		8-	P<0.001	P<0.001	NS	NS	NS	NS	NS	NS
			C-	NS	P<0.05	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
				D-	NS	NS	NS	NS	P<0.001	P<0.001
					E.	NS	NS	NS	P<0.001	P<0.001
						F-	NS	NS	P<0.05	P<0.05
							G-	NS	P<0.05	P<0.05
								H-	NS	NS
									1.	NS
Co please levels	13.34	11.06	13.17	12.18	12.05	11.67	11.76	11.61	11.62	11.56
The state of the s	± 0.69	± 0.21	± 0.87	± 0.60	± 0.85	± 0.48	± 0.47	± 0.55	± 0.86	± 0.41
(mg/dl)	(100)	(83)	(99)	(91)	(90)	(88)	(88)	(87)	(87)	(87)
			and the same of th	Statistical a						
	A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	P<0.001	P<0.001	NS	NS	NS	NS	NS
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
				D-	NS	NS	NS	NS	NS	NS
		ALCO DE LOS DE			E-	NS	NS	NS	NS	NS
			-			F-	NS	NS	NS	NS
		Company of the Company				12-15 S. 15 S.	G-	NS	NS	NS
	MARKET BETTE							H-	NS	NS
									1-	NS
Ca plasma levels mg/dl) In plasma levels µg/dl)	65.99 ± 12.65	70.93 ± 14.72	78.28 ± 7.03	71.99 ± 14.94	70.50 ± 12.65	75.27 ± 9.52	69.82 ± 11.27	70.50 ± 10.62	68.20 ± 11.62	71.01 ± 10.78
(µg/ui)	(100)	(108)	(119)	(109)	(107)	(114)	(106)	(107)	(103)	(108)
				N	lo statistical	differences				

(1) n = 11 animals

NS : non significant

<u>Table 5</u> – Effects on plasma alkaline phosphatase concentrations in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	et + IPA phytase									
	A ⁽¹⁾	В	C	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J		
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000		
ALP plasma levels (U/L)	325.1 ± 96.1	239.4 ± 50.4	285.9 ± 46.7	223.4 ± 48.0	280.3 ± 78.4	237.4 ± 90.7	255.5 ± 104.8	255.7 ± 85.8	251.5 ± 57.5	202.3 ± 47.5		
Variation from A (%)	100.0	73.7	87.9	68.7	86.2	73.0	78.6	78.6	77.4	62.2		
				Statistical a	nalysis					3 171		
	A-	NS	NS	P<0.05	NS	NS	NS	NS	NS	P<0.001		
		B-	NS	NS	NS	NS	NS	NS	NS	NS		
			C-	NS	NS	NS	NS	NS	NS	NS		
				D-	NS	NS	NS	NS	NS	NS		
	FIRST				E-	NS	NS	NS	NS	NS		
			100 m			F-	NS	NS	NS	NS		
							G-	NS	NS	NS		
	Plant in				Me a m			H-	NS	NS		
									1-	NS		

⁽¹⁾ n = 11 animals

NS: non significant

<u>Table 6</u> - Effects on the faecal concentration of phosphorus in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	iet + IPA phytase							
	A ⁽¹⁾	В	C	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
P fecal concentration (mg/g DM)	22.4 ± 0.6	24.6 ± 2.6	20.8 ± 1.3	16.3 ± 1.1	16.4 ± 0.6	14.1 ± 1.0	12.8 ± 0.6	12.5 ± 1.1	11.5 ± 1.2	11.2 ± 0.7
Variation from A (%)	100.0	110.0	93.2	73.1	73.5	63.0	57.1	55.8	51.6	49.9
				Statistical a	nalysis	NAME OF THE OWNER, OWNE			- EUE	
	A-	P<0.001	P<0.05	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
				D-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
					E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
						F-	NS	NS	P<0.001	P<0.001
							G-	NS	NS	NS
						GHE OLD		H-	NS	NS
									1-	NS

⁽¹⁾ n = 11 animals

NS : non significant

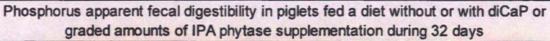
<u>Table 7</u> - Effects on the total apparent digestibility of phosphorus in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
	A ⁽¹⁾	В	C	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
P fecal apparent digestibility (%)	24.1 ± 1.5	40.8 ± 5.1	26.9 ± 3.5	40.0 ± 3.6	42.7 ± 2.4	50.7 ± 5.4	56.0 ± 1.9	55.1 ± 3.6	61.8 ± 3.5	60.1 ± 4.8
Variation from A (%)	100	169	112	166	177	210	232	229	256	249
				Statistical a	nalysis					
	A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	NS	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
AT THE SECTION			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
	E-Mari			D-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
MARKET STATE OF					E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
MANAGEMENT TO S				E E LOS		F-	NS	NS	P<0.001	P<0.001
			Market Mile			TE HORS	G-	NS	P<0.05	NS
								H-	P<0.05	NS
							F. FEE ST		1-	NS

⁽¹⁾ n = 11 animals

<u>Table 8</u> - Effects on the faecal excretion of phosphorus in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
P fecal excretion (mg/g)	3.43 ± 0.07	4.62 ± 0.40	3.30 ± 0.16	2.73 ± 0.17	2.58 ± 0.11	2.24 ± 0.25	2.03 ± 0.09	2.02 ± 0.16	1.76 ± 0.16	1.80 ± 0.22
Variation from A (%)	100	135	96	80	75	66	59	59	51	52
				Statistical a	nalysis					
	A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
A EUR PROMISE		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
THE THE RESIDENCE		September 1		D-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
	3 - 20		The same of		E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		SECTION SECTION				F-	NS	NS	P<0.001	P<0.001
	THE WE		Mark TE				G-	NS	NS	NS
								H-	NS	NS
									1-	NS


⁽¹⁾ n = 11 animals

<u>Table 9</u> - Effects on the faecal apparent absorption of phosphorus in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
P fecal apparent absorption (mg/g)	1.09 ± 0.07	3.18 ± 0.40	1.22 ± 0.16	1.82 ± 0.17	1.93 ± 0.11	2.31 ± 0.25	2.59 ± 0.09	2.48 ± 0.16	2.84 ± 0.16	2.71 ± 0.22
Variation from A (%)	100	292	112	168	177	212	238	228	261	249
				Statistical a	nalysis				128	
	A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			MARKET !	D-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
					E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
						F-	NS	NS	P<0.001	P<0.05
							G-	NS	NS	NS
						Light of		H-	P<0.05	NS
									1-	NS

⁽¹⁾ n = 11 animals

Figure 1

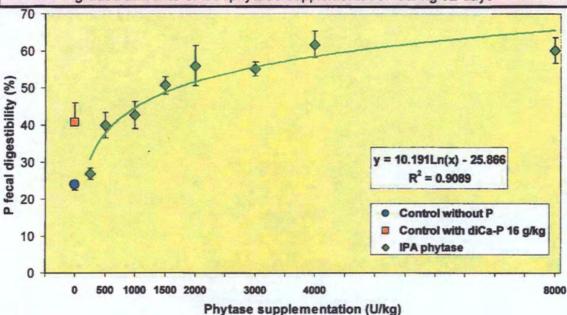
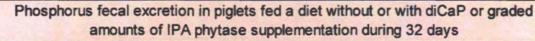
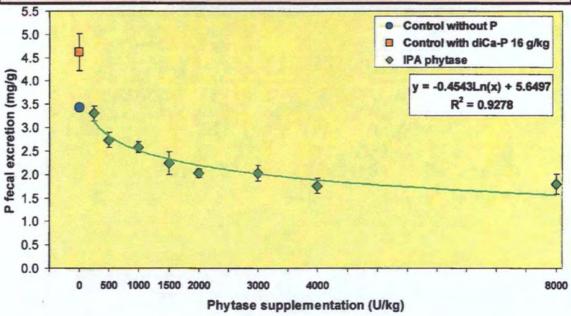
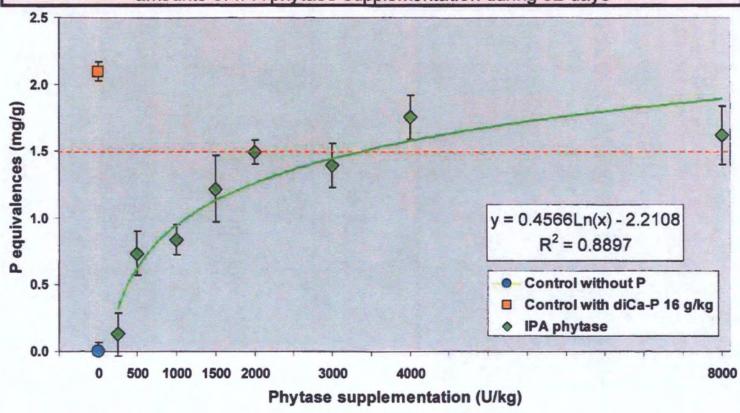




Figure 2


<u>Table 10</u> - Phosphorus equivalencies (g of full available supplemental P per kg of feed comparatively to the non-supplemented control) in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
P equivalence (mg/g)	0.00 ± 0.07	2.10 ± 0.40	0.13 ± 0.16	0.73 ± 0.17	0.84 ± 0.11	1.22 ± 0.25	1.50 ± 0.09	1.39 ± 0.16	1.75 ± 0.16	1.62 ± 0.22
Variation from C (%)	-		100	577	659	957	1177	1096	1378	1272
				Statistical a	nalysis	CHE DE LA				
	A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
	P. L. L. K.			D-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		No.			E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
	Maka					F-	NS	NS	P<0.001	P<0.05
					Ministra III		G-	NS	NS	NS
							22 333	H-	P<0.05	NS
									1-	NS

⁽¹⁾ n = 11 animals

Figure 3

Phosphorus equivalences in piglets fed a diet without or with diCaP or graded amounts of IPA phytase supplementation during 32 days

<u>Table 11</u> - Effects on the faecal concentration of calcium in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Ca fecal concentration (mg/g DM)	22.1 ± 1.3	33.6 ± 3.3	24.0 ± 1.6	18.6 ± 2.1	20.0 ± 0.8	16.5 ± 1.4	13.4 ± 0.7	16.6 ± 1.4	13.3 ± 1.2	15.6 ± 2.2
Variation from A (%)	100.0	152.4	108.7	84.4	90.5	74.8	60.5	75.3	60.4	70.5
				Statistical a	nalysis	Tales	3			
	Α-	P<0.001	NS	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
				D-	NS	NS	P<0.001	NS	P<0.001	P<0.05
					E-	P<0.05	P<0.001	P<0.05	P<0.001	P<0.001
						F-	P<0.05	NS	P<0.05	NS
							G-	P<0.05	NS	NS
								H-	P<0.05	NS
		Es Es							1-	NS

⁽¹⁾ n = 11 animals

<u>Table 12</u> - Effects on the total apparent digestibility of calcium in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Ca fecal apparent digestibility (%)	58.7 ± 1.2	49.2 ± 3.7	53.5 ± 3.5	62.9 ± 4.3	61.8 ± 3.6	68.1 ± 3.6	73.6 ± 2.6	65.7 ± 4.5	73.4 ± 3.2	68.4 ± 5.1
Variation from A (%)	100	84	91	107	105	116	126	112	125	117
				Statistical a	nalysis					
	A -	P<0.001	P<0.05	NS	NS	P<0.001	P<0.001	P<0.05	P<0.001	P<0.001
		B-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
				D-	NS	NS	P<0.001	NS	P<0.001	NS
					E-	P<0.05	P<0.001	NS	P<0.001	P<0.05
				Part S		F-	NS	NS	NS	NS
							G-	P<0.001	NS	NS
								H-	P<0.001	NS
		No. of the last of the							1-	NS

⁽¹⁾ n = 11 animals

NS: non significant

<u>Table 13</u> - Effects on the faecal excretion of calcium in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Ca fecal excretion (mg/g)	3.38 ± 0.10	6.31 ± 0.46	3.81 ± 0.29	3.12 ± 0.36	3.14 ± 0.13	2.63 ± 0.29	2.13 ± 0.21	2.71 ± 0.36	2.04 ± 0.25	2.50 ± 0.41
Variation from A (%)	100	187	113	92	93	78	63	80	60	74
				Statistical a	nalysis				5.0.	
	A-	P<0.001	P<0.05	NS	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
				D-	NS	NS	P<0.001	NS	P<0.001	P<0.05
					E-	NS	P<0.001	NS	P<0.001	P<0.05
						F-	P<0.05	NS	P<0.05	NS
				MARKET STATE			G-	P<0.05	NS	NS
		32 37	the S					H-	P<0.001	NS
		VEL 1	7 4 1						1-	NS

⁽¹⁾ n = 11 animals

<u>Table 14</u> - Effects on the faecal apparent absorption of calcium in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
	A ⁽¹⁾	В	C	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Ca fecal apparent absorption (mg/g)	4.79 ± 0.10	6.10 ± 0.46	4.38 ± 0.29	5.28 ± 0.36	5.08 ± 0.13	5.61 ± 0.29	5.94 ± 0.21	5.20 ± 0.36	5.63 ± 0.25	5.42 ± 0.41
Variation from A (%)	100	127	92	110	106	117	124	109	109	113
				Statistical a	nalysis		100			
	A-	P<0.001	P<0.05	NS	NS	P<0.001	P<0.001	NS	P<0.001	P<0.05
		B-	P<0.001	P<0.001	P<0.001	NS	NS	P<0.001	NS	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
	Man and			D-	NS	NS	P<0.001	NS	NS	NS
					E-	NS	P<0.001	NS	NS	NS
						F-	NS	NS	NS	NS
	Tene						G-	P<0.001	NS	P<0.05
			No.					H-	NS	NS
			The same						1-	NS

⁽¹⁾ n = 11 animals

Table 15 - Effects on bone ash and bone resistance in the weaning pig fed a diet without or with diCaP or graded amounts of IPA

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
	A ⁽¹⁾	В	C	D	E	F	G ⁽¹⁾	H ⁽¹⁾	P	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Bone resistance maximal strength (N)	272.8 ± 88.7	615.5 ± 179.1	334.6 ± 76.0	476.1 ± 124.4	384.1 ± 77.2	500.3 ± 118.7	523.5 ± 157.7	476.5 ± 97.1	542.2 ± 108.7	604.1 ± 119.2
Variation from A (%)	100	226	123	175	141	183	192	175	199	221
				Statistical an	alysis				3 (12.00)	- / /
	A-	P<0.001	NS	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	NS	P<0.001	NS	NS	NS	NS	NS
		200	C-	NS	NS	NS	P<0.05	NS	P<0.05	P<0.001
				D-	NS	NS	NS	NS	NS	NS
				100	E-	NS	NS	NS	NS	P<0.001
						F-	NS	NS	NS	NS
			REPORTED IN			No. of the last of	G-	NS	NS	NS
		The state of the state of						H-	NS	NS
									1-	NS
Bone ash (%)	62.17 ± 1.91	63.70 ± 1.58	62.38 ± 1.88	65.19 ± 0.94	65.67 ± 0.95	65.80 ± 1.70	64.85 ± 1.55	65.70 ± 1.06	66.36 ± 1.21	65.24 ± 1.78
Variation from A (%)	100	103	100	105	106	106	104	106	107	105
	William Control			Statistical an	alysis	A DESCRIPTION OF THE PERSON OF				
	A-	P<0.05	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
	UKS IN THE	B-	P<0.05	NS	P<0.05	P<0.05	NS	P<0.05	P<0.001	NS
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		E THE SHIP		D-	NS	NS	NS	NS	NS	NS
					E-	NS	NS	NS	NS	NS
					41	F-	NS	NS	NS	NS
							G-	NS	NS	NS
								H-	NS	NS
							F-1-5-		1-	NS

⁽¹⁾ n = 11 animals

NS: non significant

REFERENCES

Association of Official Analytical Chemists, 1990. Official methods of analysis. 15th edition, Association of Official Analytical Chemists, Arlington.

Ernandoréna, V., Gaudré, D., Granier, R. 2008. Quelle teneur en phosphore digestible alimentaire retenir pour le porc en phases de croissance et de finition ? 40es Journées de la Recherche Porcine, Paris.

Henry Y., Perez J.M., Sève B., 1989. In: L'alimentation des animaux domestiques - porc, lapin, volailles (ed. INRA), 2ème édition, INRA, Paris, 49-76.

NRC, 1998. Nutrient requirements of swine, 10th revised edition, National Academic Press, Washington.

Snedecor G.W., Cochran W.G., 1989. Statistical methods, 8th edition, Iowa University Press, Ames.

Groupe A	Porcelet	Polds	GP	GMQ	Cons. Moy. Ind./Jour	IC/ Lot
A 1	551	17.057	7.778	0.243		
	529	13.074	3.877	0.121		
	524 525	17.914 11.010	8.995 2.293	0.281		
	534	18.103	9.446	0.295	1	
	526	14.292	5.668	0.177		
	535	15.153	6.567	0.205	0.457	2.292
A 11	527	15.007	7,400 7,063	0.231	1	
	531 569	14.508 16.285	9.348	0.221		
	528	10.200		0.232	1	
	530	14.818	8.971	0.280	0.479	2.604
B 2	586	20.933	10.750	0.336		
	543	21.077	11.513	0.360		
	545 538	18.604 16.933	10.052 8.534	0.314 0.267	-	
	595	17.028	8.670	0.271	- 	
	547	13.936	5.800	0.181		
	542	14.257	6.237	0.195	0.523	1.904
B 12	537	17.251	9.350	0.292	ļ	
	539	17.085 12.808	9.924	0.310		
	566 541	11.147	5.748 4.466	0.180 0.140		
	540	13.816	7.536	0.236	0.445	1.923
C 3	557	15.389	6.179	0.193		
	556	17.656	8.503	0.266	1	
······	550	19.748	10.630	0.332	-	
	555 532	15.734 17.917	7.238 9.705	0.226	+	
	549	15.760	7.682	0.240	 	
	553	16.841	9.044	0.283	0.528	2.004
C 13	552	17.498	9.807	0.306		
	559	14.828	7.321	0.229	-	
	554 558	12.005 15.858	4.825 8.807	0.151 0.275	1	
	548	14.474	7.691	0.213	0.471	1.958
D 4	561	23.364	13.012	0.407	1	
	567	17.659	8.465	0.265		
	642	19.957	10.926	0.341		
	570 571	17.668	8.869	0.277		
	565	18.034 15.279	9.422 6.842	0.294	1	
	568	16.134	7.951	0.248	0.571	1.952
D 14	563	13.474	6.224	0.195		
	564	14.196	7.297	0.228		
	560	17.515	10.737	0.336		
	533 544	7.723	4.180 1.573	0.131 0.049	0.379	2.019
E 5	588	20.147	9.765	0.305	0.573	2.013
	621	20.443	10.803	0.338		
	577	18.385	9.193	0.287		
	579	11.647	2.466	0.077		
	581	21.223 15.762	12.341 7.260	0.386	+	
	576 573	14.136	6.349	0.227	0.502	1.932
E 15	572	16.857	9.367	0.293	1 0.002	
	578	17.255	9.821	0.307		
	575	12.013	5.850	0.183		
	580	12.414	6.560	0.205	0.454	1.000
F 6	583 590	11.843 22.327	6.028 12,850	0.188	0.454	1.930
	593	19.510	10.119	0.316	 	
	594	19.230	10.379	0.324		
	536	16.214	7.503	0.234		
	584	15.576	6.934	0.217	 	
	591 631	17.981 16.986	9.691 8.969	0.303 0.280	0.558	1.883
F 16	574	15.707	7.937	0.248	0.000	1.003
	589	18.000	10.428	0.326		
	585	15.848	9.018	0.282		
	592	11.884	5.356	0.167		
G 7	587 604	10.991 20.936	4.760	0.149	0.419	1.787
<u> </u>	600	21.090	11.509 11.869	0.360	 	
	605	22.392	13.664	0.427		······
	601	17.931	9.229	0.288		
	607			L		
	598	14.229	6.410	0.200	1	1 000
G 17	599 606	15.830 15.489	8.080 7.951	0.253 0.248	0.540	1.865
9 17	596	16.169	8.679	0.248	 	
	597	14.179	6.960	0.218	 	
	639	17.811	10.817	0.338		
	603	15.816	8.889	0.278	0.480	1.774
H 8	612	24.045	40.470	0.000	+	
	611	21.615 19.252	12.470 10.612	0.390	+	
	619	19.252 18.10 3 D/		0.332 1570.303	+	
		20.422	12.061	0.377		

	617	17.545	9.242	0.289		
	608	16.738	8.763	0.274	0.563	1.783
H 18	614	15,200	7.250	0.227		
	582	14.012	6.099	0.191		
	615	17.438	10.320	0.323		
	610	16.611	9.599	0.300		
	613	15.302	9.567	0.299	0.483	1.802
19	630	20.113	10.500	0.328		
	625	18.614	9.404	0.294		
	562	16.777	7.691	0.240		
	626	17.032	7.950	0.248		
	616	17,977	9.300	0.291		
	546	19.335	11.183	0.349		
	629	16.133	8.332	0.260	0.523	1.819
I 19	627	18.284	10.562	0.330		
	628	16.478	8.822	0.276		
	620	11.662	4.370	0.137		
	623	16.508	10.411	0.325		
	637	12.589	6.662	0.208	0.472	2.868
J 10	622	19.107	9,177	0.287		
	640	16.330	6.986	0.218		
	624	14.946	5.777	0.181		
	602	18.971	10.115	0.316		
	643	19.117	10.756	0.336		
	634	17.568	9.535	0.298		
	638	19.740	11.901	0.372	0.530	1.849
J 20	635	13.779	6.172	0.193		
	633	17.025	9.816	0.307		
	632	13.374	6.170	0.193		
	641	15.744	9.169	0.287		
	636	13.290	7.156	0.224	0.453	1.881

S12/08

<u>BILAN</u>

				Zinc
Traitement	ALP	PHOSPHORE	CALCIUM	(mg/dL)
.,	(U/L)	mg/dl	(mg/dl)	(1199-02)
A	197.10	6.05	12.88	0.06403
A	406.58	6.55	12.43	0.06767
	232.39	6.65	13.32	0.08153
<u>^</u>	328.08	5.03	13.68	0.06679
Â	287.52	5.87	13.88	
A				0.09008
A	301.20	4.90	13.61	0.06588
A	202.01 349.51	5.77	12.33	0.07292
A	472.13	4.52	13.36	0.06328
A		3.70	13.13	0.04488
	328.41	3.60	13.36	0.05312
A	474.40	3.50		
	471.18	3.59	14.80	0.05572
В	201.91	8.12	11.24	0.07588
B)	174.50	9.54	10.78	0.07316
В	203.48	7.86	10.89	0.10568
В	234.97	7.93	11.02	0.07648
В	209.87	8.55	10.75	0.07624
В	338.96	7.20	10.93	0.06288
В	311.92	8.13	11.00	0.06564
В	192.74	8.09	11.32	0.05928
<u>B</u>	237.69	7.90	11.34	0.07764
В	289.05	6.26	11.36	0.06452
В	252.83	5.61	11.00	0.04312
В	225.36	7.12	11.11	0.07068
С	247.85	5.40	13.75	0.07152
С	246.38	6.54	11.49	0.08032
С	317.77	6.17	12.55	0.08116
c	315.11	6.42	12.65	0.08532
С	300.62	5.97	13.84	0.09372
С	217.59	6.03	12.08	0.07468
С	330.44	6.06	13.28	0.08404
С	307.47	4.75	14.03	0.07684
С	315.89	5.65	14.01	0.07584
С	194.15	5.33	12.58	0.06784
С	331.96	4.18	13.97	0.07412
С	305.57	3.91	13.78	0.07416
D	186.44	7.40	12.26	0.08232
D	281.86	6.15	11.80	0.06784
D	209.97	7.42	12.10	0.09392
D	236.47	5.98	12.94	0.08532
D	181.51	6.79	11.87	0.08368
D	144.16	6.02	11.77	0.06028
D	223.03	7.14	12.51	0.07832
D	254.58	5.51	12.78	0.07644
D	267.09	6.16	12.35	0.07208
D	268.59	5.40	12.69	0.06440
D	273.13	5.96	12.46	0.06144
D	154.01	4.81	10.71	0.03780
E	205.74	7.89	11.59	0.07992
Е	339.14	7.87	11.02	0.08692
Ē	174.16	5.91	12.27	0.06376
E	246.97	5.46	10.90	0.03904

<u>S12/08</u>

Ei	316.12	8.01	11.64	0.00440
E	316.12	6.09	11.64	0.08448
- E	232.89	4.92	12.92 12.24	0.07248
E	317.19	6.81		0.06908
E			12.18	
├ ─ <u></u> ह्	455.35 280.24	6.45	14.00	0.07404
-	194.77	6.84	12.15	0.07176
E	264.86	7.03	11.42	
F		5.78	12.34	0.05964
F	255.08	6.64	11.94	0.07844
F	194,47	7.72	11.50	0.07516
	180.88	8.18	11.63	0.08888
F	219.67	5.54	11.48	0.07336
	260.24	5.91	11.02	0.06496
F	512.17	7.62	11.59	0.07828
F	205.23	6.56	12.66	0.08768
F	225.21	7.77	12.14	0.07984
F	213.06	8.09	10.91	0.07464
F	190.60	8.55	11.43	0.08096
F	169.27	6.12	11.89	0.06500
F	222.57	6.14	11.92	0.05604
6	497.55	6.35	11.33	0.08268
6	185.40	7.83	12.57	0.07824
G	233.11	6.87	12.26	0.08420
G	412.84	6.09	11.27	0.06508
G		ļ		
G	277.09	5.17	12.44	0.07100
G	176.53	8.83	11.81	0.06024
G	198.81	9.52	11.75	0.07620
G	189.82	7.65	11.60	0.06284
G	221.58	5.76	11.67	0.04900
6	233.53	7.66	11.18	0.05956
6	184.06	7.78	11.51	0.07896
Н				
H	444.61	8.08	11.70	0.05916
H	171.77	8.53	11.25	0.05456
н	346.47	7.06	11.59	0.06900
H	204.17	7.47	12.25	0.07204
н	273.47	8.01	10.68	0.08304
Н	257.50	5.83	11.36	0.06040
Н		8.05	11.28	0.08764
Н	255.67	7.33	11.61	0.07050
Н	267.03	7.01	12.60	0.07548
Н	192.62	6.27	11.48	0.06700
Н	230.48	7.05	11.93	0.07664
I	281.58	8.59	11.44	0.08556
I	231.98	8.45	11.23	0.08108
I	209.13	8.22	11.05	0.06108
I	312.47	8.16	10.62	0.06856
I	252.58	8.52	11.91	0.07836
I	289.83	7.44	11.15	0.06980
I	356.04	7.84	10.55	0.06700
I	256.24	8.26	12.38	0.07604
I	196.20	7.72	12.38	0.06276
I	139.10	6.86	11.02	0.04148
I	219.94	10.31	13.33	0.06532

BILAN

S12/08

I	273.48	6.88	12.46	0.06136
J	166.06	7.63	11.31	0.07812
J	210.52	7.03	11.66	0.07236
J	202.04	6.09	12.01	0.06408
J	215.30	8.42	11.42	0.07412
J	199.44	7.55	11.59	0.07628
J	198.55	9.20	11.94	0.07548
J	197.00	8.28	11.10	0.08844
Ĵ	325.61	8.15	11.48	0.07616
J	147.96	9.13	10.79	0.05056
J	220.65	8.87	11.29	0.07712
J	134.12	7.67	12.21	0.05348
J	210.67	7.60	11.92	0.06588

Diet	Treatment	FECES (mg/g DM)	DIGESTIBILITY (%)	Absorbed (mg/g)	Excreted (mg/g)
A1		23.522	57.5	4.700	3.472
A1	_ 0	20.524	59.8	4.889	3.283
A1	Control without P	22.861	58.5	4.778	3.394
A11	£ 6	23.152	56.8	4.641	3.532
A11	0.2	20.083	59.9	4.894	3.279
A11		22.335	59.4	4.857	3.315
B12	£	38.592	44.7	5.552	6.864
B12	i o o	35.725	46.4	5.758	6.659
B12 B2	Control with diCa-P 16 g/kg	31.685	50.2	6.237	6.179
B2	0 0 1	29.055	55.4	6.881	5.535
B2	0	33.152	49.1	6.091	6.325
C13		25.321	49.1	4.021	4.171
C13	0 5	24.771	51.9	4.248	3.944
213	IPA Phytase 250 U/kg	24.661	49.8	4.076	4.116
C3	IPA hyta 50 U/	24.971	55.8	4.568	3.624
C3	2 %	23.502	55.8	4.572	3.620
C3		20.718	58.9	4.823	3.369
014		18.704	63.3	5.313	3.080
D14	9 5	19.429	59.2	4.970	3.424
D14	IPA Phytase 500 U/kg	17.398	64.2	5.387	3.007
D4	F 70	22.444	55.7	4.673	3.721
D4	P 55	15.429	67.8	5.691	2.703
D4		18.351	67.1	5.629	2.765
E15		19.319	61.3	5.043	3.177
E15	9 6	19.615	63.2	5.193	3.028
E15	Phytase 000 U/kg	20.150	60.8	5.000	3.221
E5	IPA hyta	21.621	59.2	4.864	3.356
E5	00	19.730	63.3	5.207	3.014
E5		19.426	63.1	5.191	3.029
16		18.203	65.7	5.411	2.825
16	e 5	14.611	74.2	6.110	2.126
16	A sas	17.973	67.5	5.556	2.680
F6	IPA Phytase 500 U/kg	15.786	69.3	5.706	2.530
F6	7 5	17.277	62.5	5.151	3.085
F6		15.209	69.3	5.704	2.531
317		13.105	75.5	6.097	1.976
317	9 5	12.035	77.7	6.274	1.799
317	A	13.778	74.7	6.033	2.040
G7	Phytase	14.162	70.2	5.665	2.407
G7	20 P	13.369	72.7	5.866	2.206
G7		13.671	71.0	5.731	2.341
H18		17.467	64.2	5.083	2.835
H18	0 0	13.509	74.5	5.901	2.017
H18	IPA Phytase 000 U/kg	17.903	66.9	5.299	2.619
Н8	9 70	16.764	60.5	4.794	3.124
Н8	30C	17.082	61.8	4.896	3.021
H8		17.090	66.3	5.246	2.672
119		14.068	74.7	5.721	1.941
119	. 5	10.763	78.6	6.023	1.639
119	A SE	14.697	70.8	5.425	2.237
19	500	13.691	70.0	5.364	2.298
19	P 00	13.555	70.5	5.403	2.259
19	*	13.277	75.9	5.818	1.844
J10		18.050	59.8	4.734	3.181
J10	. 5	14.826	67.6	5.349	2.566
J10	A JIK	15.392	71.2	5.635	2.281
J20	IPA nyta	11.471	77.0	6.093	1.822
	02	11,411	67.7	5.361	2.554

| J20 | | 18.140 | 67.3 | 5.327 | 2.589

Diet	Treatment	P in FEES (mgg DM)	DIESTIBLTY (%	Absorbed (mgg)	Exreted (mgg)	eqivalence (mgg)
A1		23.143	24.3	1.099	3.416	0.010
A1		22.165	21.5	0.969	3.546	-0.119
A1	0 ±	22.730	25.3	1.140	3.375	0.052
A11	Gntrol Whout P	22.637	23.5	1.062	3.453	-0.027
A11	0 3	21.114	23.7	1.068	3.447	-0.021
A11		22.370	26.5	1.194	3.321	0.106
B12		28.366	35.3	2.756	5.045	1.667
B12	_	26.519	36.6	2.859	4.943	1.770
B12 B2	Gntrol Wh dis.P	24.149	39.6	3.092	4.709	2.003
B2	10 4	20.690	49.5	3.860	3.942	2.771
B2	6	23.304	43.0	3.355	4.446	2.267
C13		20.864	24.0	1.083	3.437	-0.006
C13	0 0	21.555	24.1	1.088	3.432	-0.001
C13	A Bas	20.470	24.4	1.103	3.416	0.014
C3	IPA Phytase 250 U/kg	22.466	27.9	1.259	3.260	0.170
C3	Ph	21.356	27.2	1.230	3.289	0.141
C3		18.360	33.9	1.534	2.986	0.445
D14		15.963	42.3	1.929	2.629	0.840
D14	0 0	16.233	37.2	1.697	2.861	0.608
D14	IPA Phytase 500 U/kg	14.475	45.1	2.056	2.502	0.967
D4	IPA nyta	17.895	34.9	1.591	2.967	0.502
D4	P 50	16.252	37.5	1.710	2.847	0.621
D4		17.258	42.9	1.957	2.600	0.869
E15		16.450	40.0	1.803	2.705	0.714
E15	0 5	16.356	44.0	1.983	2.525	0.894
E15	A SE	15.592	44.7	2.016	2.492	0.927
E5	IPA Phytase 1000 U/kg	17.542	39.6	1.785	2.723	0.696
E5	100	15.861	46.3	2.086	2.423	0.997
E5		16.787	41.9	1.891	2.618	0.802
F16		15.252	48.0	2.184	2.367	1.095
F16	0 5	12.924	58.7	2.671	1.880	1.582
F16	as a	12.861	57.9	2.633	1.918	1.544
F6	IPA Phytase 1500 U/kg	14.904	47.5	2.162	2.388	1.073
F6	P 50	13.580	46.7	2.126	2.425	1.037
F6		14.933	45.4	2.065	2.485	0.976
G17		12.771	58.3	2.690	1.925	1.601
G17	0 5	12.705	58.9	2.716	1.899	1.628
G17	IPA Phytase 2000 U/kg	13.975	55.2	2.546	2.069	1.458
G7	IPA hyta	12.138	55.3	2.552	2.063	1.463
G7	20 P	12.501	55.3	2.552	2.063	1.463
G7	.,	12.573	53.3	2.462	2.153	1.373
H18		14.327	48.4	2.181	2.325	1.092
H18	0 5	12.242	59.4	2.679	1.828	1.590
H18	IPA Phytase 1000 U/kg	13.358	56.6	2.552	1.954	1.463
Н8	IPA hyta:	11.460	52.6	2.371	2.136	1.282
Н8	30 8	11.210	56.0	2.524	1.983	1.435
H8		12.234	57.6	2.593	1.913	1.505
119		13.426	59.7	2.745	1.853	1.656
119	0 5	9.403	68.9	3.166	1.432	2.077
119	IPA Phytase 4000 U/kg	12.051	60.1	2.763	1.834	1.674
19	IPA hyta:	11.329	58.6	2.696	1.902	1.607
19	400	11.020	60.1	2.761	1.837	1.672
19		12.058	63.6	2.922	1.675	1.834
J10		12.463	51.2	2.306	2.196	1.217
J10	. 0	10.780	58.6	2.636	1.866	1.547
J10	IPA hytase 00 U/kg	10.812	64.4	2.900	1.602	1.811
J20	0 20	10.231	63.9	2.877	1.625	1.788

 J20
 4
 58.0
 2.612
 1.891
 1.523

 J20
 11.146
 64.7
 2.912
 1.590
 1.823

Box Traitement	N° Porc	N° Creuset	% Cendres 100% MS	Traitement	Force maximale (N)	
Α	530	1	60.85	535 Tr:A	256.7426249	
	527	2	61.14	529 Tr:A	340.1596004	
	531	3	62.39	526 Tr:A	258.093239	
	569	4	58.03	525 Tr:A	186.7291519	
	524	5	62.41	551 Tr:A	530.3761638	
	534	6	63.20	534 Tr:A	384.5513903	
	551	8	65.18	524 Tr:A	323.8680103	
	525	11	64.52	569 Tr:A	115.666211	
	526	12	62.62	531 Tr:A	266.7461561	
	529	13	61.33	527 Tr.A	164.2895492	
	535	14	62.18	530 Tr:A	173.7323481	
						272.8140
В	539	15	63.33	538 Tr:B	540.0311813	
	541	16	66.00	545 Tr:B	834.7405529	
	540	17	63.14	547 Tr.B	427.9822428	
	566	18	60.89	542 Tr:B	591.1987166	
	537	19	63.01	543 Tr:B	921.8980087	
	586	20	62.92	595 Tr:B	778.6862945	
	595	21	63.14	586 Tr.B	539.8671732	
	543	22	63.82	537 Tr.B	439.0113013	
	542	23	66.26	566 Tr.B	334.4434488	
	547	25	62.02	540 Tr.B	845.074253	
	545	26	65.06	541 Tr:B	361.5372753	
	538	27	64.82	539 Tr.B	771.7388637	615.51744
С	552	28	64.15	557 Tr:C	402.801209	
	548	29	64.05	553 Tr:C	344.8880304	
	559	30	60.78	555 Tr:C	470.3058998	
	558	31	61.32	532 Tr:C	312.6604302	
	554	32	65.66	556 Tr:C	297.0565641	
ĺ	550	33	64.14	549 Tr:C	263.1132889	
	549	35	59.85	550 Tr:C	528.383459	
	556	36	60.93	554 Tr:C	235.6361231	
	532	38	62.49	558 Tr:C	354.6941817	
	555	39	60.27	559 Tr:C	362.5725794	
	553	42	61.36	548 Tr.C	185.7726641	
	557	44	63.60	552 Tr:C	257.5002348	334.61538
D	564	45	65.63	565 Tr:D	363.321649	
	570	47	65.87	561 Tr.D	688.0720657	
	563	48	63.56	567 Tr:D	532.6939528	
	560	49	63.99	571 Tr:D	648.9839943	
	533	50	65.08	642 Tr:D	341.1408643	
	567	51	65.48	568 Tr:D	487.1100546	
	561	52	66.53	570 Tr:D	663.1119311	
	565	53	65.64	564 Tr.D	537.1049144	
	544	54	65.35	563 Tr:D	257.0583716	
	568	46	63.83	560 Tr:D	475.6459217	
	642	55	65.08	533 Tr:D	521.6086111	
	571	56	66.19	544 Tr:D	197.1909669	
E	578	57	65.33	621 Tr.E	481.3788921	
-	583	58	66.36	581 Tr.E		
			65.92		456.2503067	
	575	60	64.07	577 Tr.E 579 Tr.E	400.4909892 497.5923086	

	572	61	64.41	588 Tr:E	491.1624503
	576	62	65.03	573 Tr:E	279.9124038
	573	63	66.28	576 Tr:E	332.075501
	588	65	65.89	572 Tr:E	339.4116251
	579	66	67.40	580 Tr:E	225.6324171
	577	67	65.86	575 Tr.E	323.5987187
	581	68	66.56	583 Tr:E	340.8468524
1	621	69	64.89	578 Tr:E	441.0039327
F	594	70	66.23	590 Tr:F	733.3963922
	593	74	67.11	631 Tr:F	732.8905364
1	536	73	65.67	584 Tr:F	381.1834395
	584	76	66.58	536 Tr.F	441.4039541
	631	78	67.75	593 Tr:F	575.2005417
	590	79	66.44	594 Tr:F	480.4039022
1	589	80	66.22	591 Tr:F	366.3464737
				i	
i	574	81	65.38	587 Tr:F	355.7700955
	585	82	63.74	592 Tr:F	442.8848729
	592	96	66.22	585 Tr.F	471.6250791
	587	5	66.85	574 Tr:F	350.7080104
	591	20	61.42	589 Tr.F	672.300791
G	639	25	66.03	605 Tr.G	677.2170074
	603	29	64.90	600 Tr.G	674.3742296
į	596	38	65.40	601 Tr.G	346.47432
5	606	75	63.87	599 Tr.G	579.8156437
	604	79	65.48	598 Tr:G	771.2172716
Į.	598	80	66.78	604 Tr:G	419.0117661
	597	82	65.19	606 Tr:G	340.948089
	599	86	60.91	596 Tr:G	437.8630664
į	601	88	64.20	597 Tr:G	366.4934948
	600	94	65.93	603 Tr:G	363.1637289
	605	103	64.68	639 Tr:G	782.2427814
<u> </u>	1 040	407	64.57	040 T-11	054 0005540
"	613	107	64.57	618 Tr:H	651.9685548
	610	109	65.77	611 Tr:H	474.3866234
	615	110	66.69	609 Tr:H	456.6356886
	582	111	63.84	619 Tr:H	278.1951272
	614	113	65.98	608 Tr:H	382.0124437
	617	117	66.06	617 Tr:H	478.0334909
	618	119	65.10	614 Tr:H	832.5413146
	611	148	66.14	582 Tr:H	413.9346984
	608	155	65.77	615 Tr:H	346.0081756
	619	175	65.00	610 Tr:H	450.7266936
	609	197	67.77	613 Tr:H	477.3702603
<u> </u>	620	100	65.49	620 Tel	386.0671629
'	629	199		629 Tr:I	
	562	221	67.45	562 Tr:I	737.3985065
	546	280	66.35	546 Tr:I	713.7054483
	628	304	67.12	630 Tr:l -	544.540216
	627	308	66.84	618 Tr:I	649.0371071
	630	331	69.05	625 Tr:I	525.0902763
	616	336	66.68	626 Tr:I	588.7252952
	625	338	65.67	637 Tr:I	448.852972
	637	339	65.56	620 Tr:I	317.7936126
I	626	342	66.47	623 Tr:I	454.9275191

	620	343	64.71
	623	352	64.90
j	638	355	65.55
	624	357	63.06
	602	362	62.64
	633	365	67.79
	640	390	67.05
	643	25	67.37
	622	52	64.99
	634	55	65.44
	632	68	63.47
	641	70	63.68
	636	80	64.88
	635	58	66.97

627 Tr:I	468.0993745
628 Tr:I	672.3203289
643 Tr:J	811.7108032
640 Tr:J	623.5242283
622 Tr:J	630.5928393
634 Tr:J	649.8534942
624 Tr:J	481.5921059
638 Tr:J	670.7008961
602 Tr:J	410.3670993
633 Tr:J	927.3685516
636 Tr:J	488.385717
635 Tr:J	506.7045849
632 Tr:J	418.3187809
641 Tr.J	629 8908135

FEEDAP UNIT

ANNEX C 1

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA phytase	Batch number: PPQ28432
Trial ID: S 12-08 VN	Location:
	DSM Nutritional Products France
	Centre de Recherche en Nutrition
	Animale
	BP 170
Charles and a series of the state I	68305 Saint-Louis cedex, France
Start date and exact duration of the study: Ju	
Number of treatment groups (+ control(s)): 8	
Total number of animals: 120	Animals per replicate: 7 + 5 = 12
Dose(s) of the additive/active substance(s)/agwater)	gent(s) (mg/Units of activity/CFU kg ⁻¹ complete feed/L ⁻¹
2000 / 3000 / 4000 / 8000 U/kg 1	nalysed: 108 (endogenous activity) / 374 / 601 / 1097 / 611 / 2225 / 3098 / 4030 / 8238 U/kg
*	
Substances used for comparative purposes:	Dicalcium phosphate
	nalysed: 3.3 g of additional P per kg of feed in a dry natter basis
Animal species/category: Swine / weaners	
Breed: Large White x Landrace	dentification procedure: Pen and individual earring
Sex: Males Age at start: 28 day	ys Body weight at start: 8.03 ± 1.09 kg
w	seneral health: Three animals presented leg injuries and sere euthanized. No clinical sings were observed in the rest f the animals
Additional information for field trials:	
Location and size of herd or flock:	
Feeding and rearing conditions:	
Method of feeding:	
Diets (type(s)): Basal diet formulated to provid the NRC	le P exclusively from vegetable origin and according to
Presentation of the diet: Mash	Pellet D Extruded D Other
Composition (main feedingstuffs): Maize - 68.5	52%, soybean meal - 15.1% and rapeseed meal - 12.5%
Nutrient content (relevant nutrients and energ	
and the second s	ne - 0.96%, methionine + cystine - 0.54%, P - 0.41% in
Analysed values: Ca - 0.82% in D.M. and P -	0.45% in D.M.

Please submit this form using a common word processing format (e.g. MS Word).

FEEDAP UNIT

Date and nature of the examinations performed:

July 3rd and August 4th - weight measurement

July 29th, 30th and 31st - faecal sampling per pen

July 31st - individual blood sampling

Method(s) of statistical evaluation used: Two-factor analysis of variance (diet and diet + animal or pen) followed by a Duncan multiple range test

Therapeutic/preventive treatments (reason, timing, kind, duration): No therapeutic / preventive treatments were used

Timing and prevalence of any undesirable consequences of treatment: Nothing to report

Date 22.02.2010

Signature Study Director

Dr P. GUGGENBUHL

In case the concentration of the additive in complete feed/water may reflect insufficient accuracy, the dose of the additive can be given per animal day or mg kg body weight or as concentration in complementary feed.

FDA / CVM 0171

Annex 4 Efficacy of IPA phytase in piglets REPORT No. 00001788

REPORT No. 00001788 Regulatory Document

Document Date:

18 September, 2009

Author(s):

(b) (A) and J. Broz2

-

(b)(4)

Animal Nutrition and Health R&D, DSM Nutritional Products Ltd, Basel

Title:

Efficacy of IPA phytase in piglets

Project No.

6106

Summary

A trial was conducted to study the efficacy of IPA phytase at different doses in weaned piglets. A total of 144 animals (Landrace x Pietrain) were involved. The piglets started on the trial at 7.1 kg live weight and remained on the experimental treatments for 6 weeks. The animals were divided into eight blocks of 6 pens (3 animals per pen), as similar as possible, taking into account initial body weight and pen location. The experimental treatments consisted of a basal, low-P, control diet (T-1), which was supplemented with IPA phytase (M) at 500, 1000, 2000, or 4000 U/kg (T-2, T-3, T-4 and T-5, respectively), and a positive control diet supplemented with 1 g of inorganic P/kg as dicalcium phosphate (T-6). Each dietary treatment was assigned to 8 replicate groups. Body weight gain, feed intake and feed conversion ratio were measured for each pen at 14, 28 and 42 days of trial. At day 14, fresh faeces were sampled from each pen and the apparent digestibility of dry matter. ash, organic matter, Ca and P was measured using titanium dioxide as indicator. At the end of trial, a blood sample was also obtained from each piglet and analysed for alkaline phosphatase activity and inorganic P and Ca concentrations. Over the whole trial, the addition of IPA phytase at 2000 and 4000 U/kg significantly improved average daily weight gain when compared to both controls. IPA phytase significantly improved the apparent faecal digestibility of ash, P and Ca in a dose response manner. The supplementation of the basal diet with different doses of IPA phytase increased P blood concentration and reduced the activity of alkaline phosphatase to the values comparable with the positive control, Finally, IPA phytase also significantly reduced the P concentration in faeces at all inclusion levels.

This report consists of Pages I - II and 1 - 28

Distribution

Dr. M. Eggersdorfer, NRD

Dr. F. Fru, NRD/PA

Mr. J.-F. Hecquet, NBD/RG

Dr. A.-M. Klünter, NRD/CA

Dr. J. Pheiffer, NRD/PA

Mr. J-P. Ruckebusch, ANH/GM

Dr. C. Simoes Nunes, NRD/CA

Approved

Signature signed by	<u>Date</u>
J. Broz	18.09.2009
signed by	-
J. Broz	18.09.2009
signed by	
AM. Klünter	21.09.2009
signed by F. Fru	23.09.2009
	signed by J. Broz signed by J. Broz signed by AM. Klünter signed by

Regulatory Document

DSM Nutritional Products Ltd

Page I of II

Nomenclature and Structural Formula

IPA phytase (M), enzyme product containing bacterial 6-phytase ((b) (4)), produced by (b) (4) fermentation of a genetically modified Aspergillus oryzae strain. Lot PPQ 28656 was used in this study, manufactured by Novozymes A/S, (b) (4)

Regulatory Document
DSM Nutritional Products Ltd

FINAL REPORT OF THE CONTRACT SIGNED WITH:

Company: DSM Nutritional Products

Title: EFFICACY OF IPA PHYTASE IN PIGLETS

Experiment number: P-393

Contract Code:

2 2 5 3 9

Organic Code:

0 6 0 2

<u>Author:</u> (b) (4)

<u>Center:</u> (b) (4)

Number of pages: 28

Date: 14/09/2009

Nothing from this issue may be reproduced and/or published by print, photoprint, microfilm or any other means without previous written consent from (b) (4). Submitting the report for inspection to parties directly interested is permitted.

In case this report was drafted under instruction, the rights and obligations of contracting parties are subject to either the "Standard Conditions for Research Instructions given to (b) (4)" or relevant agreement concluded between the contracting parties on account of the research subject involved.

(b) (4)

TABLE OF CONTENTS

SUMMARY	.3
RESPONSIBILITIES	.4
Study researcher	
Study monitor	.4
Daily monitors	
Stockworkers	.4
Feed preparation	.4
Laboratory analysis	
In feed enzyme analysis	
OBJECTIVES	. 5
METHODOLOGY	. 5
Site of the experiment	
Location and housing	
Animals	
Feeding program	
Tested product	
Treatments and experimental design	
Controls	
Dates	
STATISTICAL ANALYSIS	
INCIDENCES	
RESULTS AND DISCUSSION	
TABLES AND FIGURES	
ANNEX-I (RAW DATA)	
ANNEX-II (EFSA)	
71 1 (2 01)	-
Table 1 Composition of the basal experimental diets (%)	12
Table 2 Estimated nutritive composition of the experimental diets	12
Table 3 Analyses of the experimental diets	13
Table 4 Productive parameters of animals between 0-14 days of experiment	13
Table 5 Productive parameters of animals between 14-28 days of experiment	14
Table 6 Productive parameters of animals between 28-42 days of experiment	14
Table 7 Productive parameters of animals between 14-42 days of experiment	15
Table 8 Productive parameters of animals between 0-28 days of experiment	15
Table 9 Productive parameters of animals between 0-42 days of experiment	16
Table 10 Body weight of animals at different days of experiment calculated using individual	
values	16
Table 11 Average daily weight gain of animals at different experimental periods calculated	
using individual values	17
Table 12 Average daily weight gain of animals at different experimental periods calculated	
using individual values	17
Table 13 Effect of different doses of IPA phytase on the apparent faecal digestibility of dry	
matter, ash, organic matter, phosphorous and calcium in weaned piglets (%)	18
Table 14 Alkaline phosphatase (AP) activity, Ca and P concentration in blood and P	
concentration in faeces of weaned piglets receiving different doses of IPA phytase	18

SUMMARY

A trial was conducted to study the efficacy of IPA phytase at different doses in weaned piglets. A total of 144 animals (Landrace x Pietrain) were involved. The piglets started on the trial at 7.1 kg BW (4 weeks of age) and remained on the experimental treatments for 6 weeks. Pigs were divided into eight groups (blocks) of 6 pens (3 animals per pen), as similar as possible, taking into account initial body weight and pen location, to which six experimental treatments were assigned. The experimental treatments consisted of a basal, low-P, control diet (T-1), which was supplemented with 500, 1,000, 2,000, or 4,000 U/kg of IPA phytase (M) (T-2, T-3, T-4 and T-5, respectively), and a positive control diet supplemented with 1 g of inorganic P/kg as dicalcium phosphate (T-6). Body weight gain, feed intake and feed conversion rate were measured for each pen at 14, 28 and 42 days of trial. At day 14, fresh faeces were sampled from each pen and the apparent faecal digestibility of dry matter, ash, organic matter, Ca, and P was measured using titanium oxide as indigestible marker. At the end of the trial (day 42), a blood sample was also obtained from each pig and analysed for alkaline phosphatase activity and inorganic phosphorous and calcium concentrations. Over the whole trial, the addition of 2,000 and 4,000 U/kg IPA phytase improved average daily weight gain over the negative control diet. The addition of 2,000 U/kg IPA phytase also improved feed to gain ratio over the negative and positive control diets and that of 4,000 U/kg IPA phytase improved feed to gain ratio over the positive control diet. IPA phytase significantly improved the apparent faecal digestibility for ash, P and Ca in a dose response manner, relative to the negative and positive control diets. The supplementation of the negative control diet with different doses of IPA phytase reduced Ca blood concentration (at all levels of supplementation), and it increased P blood concentration in a dose response manner. The increased alkaline phosphatase activity in the negative control treatment was significantly reduced to the positive control values at all levels of IPA phytase supplementation. Finally, IPA phytase reduced the P concentration in faeces (at all levels of supplementation) in a dose response manner. It is concluded that supplementing a low-P diet with IPA phytase improves weight gain and feed to gain ratio in weaned piglets, it improves the apparent faecal digestibility for ash, P and Ca, it increases the P concentration in blood and it reduces the P concentration in faeces.

Final report P-393 Page 3 of 28 173

RESPONSIBILITIES

Study researcher	
	(b) (4)
Study monitor Dr. Jiri Broz DSM Nutritional Products Animal Nutrition and Health R&D, CH-4002 Basel, Switzerland	nd
Daily monitors	
	(b) (4)
Stockworkers	
ATT A TOTAL CONTRACTOR OF THE PARTY OF THE P	(b) (4)
Feed preparation	
	(b) (4)
Laboratory analysis	
	(b) (4)
In feed enzyme analysis	
(b) (4)	

Final report P-393

OBJECTIVES

The objective of this experiment was to evaluate the efficacy of **IPA phytase** in the feeding of weaned piglets at the different dosages when compared to negative and positive controls. A low phosphorous diet was used as basal diet.

METHODOLOGY

Site of the experiment

The trial was conducted in the post-weaning unit of the (b) (4)

Location and housing

The trial was conducted using piglets from (b) (4)s experimental farm at (b) (4) site. The piglets were housed in two weaning rooms with 24 pens each. The rooms are provided with automatic heating, forced ventilation and completely slatted floors. Feed was distributed ad libitum.

Animals

A total of one hundred and forty four piglets (*Landrace x Pietrain*) of four weeks of age were used. Their average initial body weight was 7.1 (SD 1.49) kg. Piglets were randomly distributed by initial body weight into eight blocks, and each block consisted of six pens with three piglets each.

Feeding program

There was a unique dietary composition (13.8 MJ ME; 1.4% Lysine) for the whole experiment. Feed was presented in mash form and offered *ad libitum*. The composition of the diets is presented in Tables 1 and 2. During the first two weeks of trial, feed included 0.5% of titanium oxide as indigestible marker.

Final report P-393 Page 5 of 28 175

Tested product

Name: IPA phytase (M)

Description: bacterial 6-phytase expressed in Aspergillus oryzae

Produced by: Novozymes A/S, (b) (4)

Provided by: DSM Nutritional Products Ltd, Basel, Switzerland

Lot No: PPQ 28656

Activity: 57 085 U/g product

Dosages: 500, 1000, 2000 and 4000 U/kg diet, corresponding to 8.8,

17.6, 35.2, and 70.4 ppm, respectively.

Treatments and experimental design

There were six experimental treatments:

T-1: Negative control (NC; a low-P basal diet)

T-2: NC + IPA phytase at 8.8 mg/kg, corresponding to 500 U/kg diet

T-3: NC + IPA phytase at 17.6 mg/kg, corresponding to 1000 U/kg diet

T-4: NC + IPA phytase at 35.2 mg/kg, corresponding to 2000 U/kg diet

T-5: NC + IPA phytase at 70.4 mg/kg, corresponding to 4000 U/kg diet

T-6: Positive control (PC, diet with an additional 1 g of inorganic P/kg from DCP)

The negative control diet was low in available phosphorous, and different doses of phytase were added via a premix using maize starch as the carrier to create the different experimental treatments.

For the first two weeks of trial, 0.5% titanium oxide was added to the diet as indigestible marker in order to perform Ca and P faecal digestibility measurements. Infeed analytical determination of the added phytase was conducted by Biopract GmbH, Berlin (Germany), on behalf of DSM Nutritional Products.

The piglets were housed in 48 pens of 3 piglets each. The animals were randomly distributed by initial weight into 8 blocks. Each block therefore consisted of 6 pens (3 pigs per pen). Within each block, one of the six treatments was randomly adjudicated to each pen.

Controls

Feed and piglets were weighed at the start, at 14 days, 28 days and at the end of the experiment (42 days). Initial and final body weight, daily weight gain, feed intake and feed conversion rate were calculated.

At the end of the second week of trial, fresh faeces were sampled from each pen. Diet and faeces were analysed for TiO₂, ash, Ca and P, and the apparent faecal digestibility was calculated.

After the conclusion of the trial, on day 42, a blood sample was obtained from one piglet from each pen and was analysed for alkaline phosphatase activity and inorganic phosphorous and calcium concentrations.

Dates

The trial started on September 18th 2008 and was completed on October 30th, 2008, lasting a total of 42 days.

STATISTICAL ANALYSIS

The parameters measured were compared among treatments using the GLM procedure of the statistical package SAS. Average pen values were used as the experimental unit. For statistical analysis, a randomized block design was used. The mean values for each treatment were calculated and they were compared taking into account the block effect (initial weight and pen location).

INCIDENCES

Three piglets died due to pneumonia during the second and third weeks of trial. They belonged to treatments T-4, T-6 and T-2. The data of these animals was not used for the calculations. Their feed intake was estimated from the feed intake of the pen until their withdrawal, their weight gain and the weight gain of their pen mates.

RESULTS AND DISCUSSION

The analysed composition of the experimental diets is shown in Table 3. The results of phytase analytics confirmed the proper addition of test product. The negative and positive basal diets fed to control pigs contained either non-detectable (T-1) or a low level of phytase (137 U/kg) which represents native phytase activity present in the used feed ingredients. Phytase activity in the supplemented diets were 669 (treatment T-2), 1082 (treatment T-3), 2128 (treatment T-4), and 4301 (treatment T-5) U/kg.

The performance results are shown in Tables 4-12.

Between 0-14 days, no significant differences in performance were observed among treatments. Feed to gain ratio, however, was numerically improved with the addition of 2,000 U/kg IPA phytase (T-4) relative to the positive control diet (T-6).

Between 14-28 days, the addition of 2,000 and 4,000 U/kg IPA phytase (T-4) improved average daily weight gain over the negative control diet (T-1) and the diet supplemented with 500 U/kg IPA phytase. Similarly the addition of 2,000 U/kg IPA phytase (T-4) resulted in better weight gain than the addition of 1,000 U/kg IPA phytase. No differences were observed between the low-P diets supplemented with either 2,000 or 4,000 U/kg IPA phytase and the positive control diet.

Between 28-42 days, the addition of 2,000 or 4,000 U/kg IPA phytase (T-4 and T-5) improved average daily weight gain over the negative control diet (T-1) and the diet supplemented with 1,000 U/kg IPA phytase.

Between 14-42 days, the addition of 2,000 or 4,000 U/kg IPA phytase (T-4 and T-5) improved average daily weight gain over the negative control diet (T-1) and the diets supplemented with 500 or 1,000 U/kg IPA phytase. Furthermore, the addition of 1,000 or 2,000 U/kg IPA phytase (T-3 and T-4) improved feed to gain ratio over the negative and positive control diets (T-1 and T-6).

Over the whole experimental period (0-42 days), the addition of 2,000 U/kg IPA phytase (T-4) improved average daily weight gain over the negative control diet (T-1) and the diets supplemented with 500 or 1,000 U/kg IPA phytase, and it improved feed to gain ratio over the negative and positive control diets (T-1 and T-6) and the diet supplemented with 500 U/kg IPA phytase (T-2).

The effect of the different doses of IPA phytase on the apparent faecal digestibility of dry matter, ash, organic matter, phosphorous and calcium is shown in Table 13. The apparent faecal digestibility of the negative control diet (T-1) was significantly lower than that of the positive control diet (T-1) for P (P<0.05) and numerically lower for ash and Ca. This was probably due to the removal of dicalcium phosphate from the positive control diet. The supplementation with IPA phytase (at all doses) significantly improved the apparent faecal digestibility for ash, P and Ca in a dose response manner, relative to the negative and positive control diets.

The effect of the different doses of IPA phytase on alkaline phosphatase activity, Ca and P concentration in blood and P concentration in faeces is shown in Table 14. The negative control diet increased Ca and reduced P concentration, and increased alkaline phosphatase activity in blood (P<0.05), relative to the positive control diet (T-6). No difference was observed between these two diets in the P concentration in faeces. The supplementation of the negative control diet with different doses of IPA phytase resulted in a reduced Ca concentration in blood (statistically significant at all levels of supplementation), that was not significantly different from that in the positive control diet at inclusion doses of 1,000, 2,000 and 4,000 U/kg. The supplementation of the negative control diet with IPA phytase also increased P concentration in blood (statistically significant at all levels of supplementation) in a dose response manner. The concentrations observed were equivalent to or higher than those found for the positive control diet. The increased alkaline phosphatase activity in the negative control diet was significantly reduced to the positive control diet values with all levels of IPA phytase supplementation. Finally, IPA phytase also reduced the P concentration in faeces (statistically significant at all levels of supplementation) in a dose response manner.

It is concluded that the supplementation of a low-P diet with IPA phytase improves weight gain and feed to gain ratio in weaned piglets. Under the current conditions the best performances were obtained with the addition of 2,000 U/kg of IPA phytase. IPA phytase improved the apparent faecal digestibility for ash, P and Ca, increased P concentration in blood and reduced the P concentration in faeces, in a dose response manner, relative to both control diets.

Final report P-393 Page 9 of 28 179

(b) (4)

Contract code: 2 2 5 3 9

Signatures:

(b) (4)

Date: T 8-2009 Date: 1/42009 Date: 7.08.2009

Best Copy Available

180

(b) (4)

Contract code: 2 2 5 3 9

TABLES AND FIGURES

Table 1 Composition of the basal experimental diets (%)

Ingredients	Low P Basal diet	STD P diet	
Maize	40.00	40.00	
Barley	24.68	24.68	
Sweet milk whey	13.72	13.72	
Soybean meal, 48% CP	9.84	9.84	
Potato protein concentrate	7.23	7.23	
Lard	1.49	1.49	
Dicalcium phosphate	0.42	1.00	
Calcium carbonate	1.21	0.83	
Salt	0.14	0.14	
L-Lysine-HCl	0.40	0.40	
DL-Methionine	0.18	0.18	
L-Threonine	0.08	0.08	
L-Tryptophan	0.02	0.02	
Vit-Min complex*	0.40	0.40	
Maize starch	0.19	-	

^{*} Providing per kg of diet: vitamin A: 10000 IU; vitamin D₃: 2000 IU; vitamin E: 15 mg; thiamin: 1,3 mg; riboflavin: 3,5 mg; vitamin B₁₂: 0.025 mg; vitamin B₆: 1,5 mg; calcium pantothenate: 10 mg; nicotinic acid: 15 mg; biotin: 0.1 mg; folic acid: 0.6 mg; vitamin K₃: 2 mg; Fe: 80 mg as iron sulfate; Cu: 140 mg as copper sulfate; Co: 0.75 mg as cobalt sulfate; Zn: 185 mg as zinc oxide; Mn: 60 mg as manganese sulfate; I: 0.75 mg as potassium iodate; Se: 0.10 mg as sodium selenite; ethoxiquin: 0.15 g.

Table 2 Estimated nutritive composition of the experimental diets

Nutrients	Low P Basal diet	STD P diet	
Moisture (%)	12.23	12.77	
Crude Protein (%)	18.56	18.56	
Crude Fibre (%)	2.45	2.45	
Fat (%)	3.78	3.78	
Ash (%)	4.63	4.81	
Energy (MJ ME/kg)	13.85	13.82	
Calcium (g/kg)	7.50	7.50	
Total phosphorous (g/kg)	4.21	5.21	
Non-phytic P (g/kg)	2.60	3.60	
Lysine (g/kg)	14.00	14.00	
Threonine (g/kg)	9.10	9.10	
Methionine (g/kg)	5.13	5.13	
Methionine+Cystine (g/kg)	8.40	8.40	
Tryptophan (g/kg)	2.52	2.52	

Table 3 Analyses of the experimental diets

Nutrients	T-1	T-2	T-3	T-4	T-5	T-6
Dry matter (%)	89.05	89.02	89.06	89.07	89.02	89.10
Crude protein (%)	19.02	18.91	18.72	18.83	18.53	18.75
Crude fibre (%)	2.14	2.19	2.17	2.12	2.18	2.06
Fat (%)	3.72	3.59	3.64	3.49	3.63	3.56
Ash (%)	4.52	4.66	4.52	4.58	4.53	4.65
Phosphorous (g/kg)	4.08	3.94	3.97	4.05	4.02	5.03
Calcium (g/kg)	6.85	6.90	6.85	7.00	7.05	6.90
Phytase activity (U/kg)	BDL*	669	1082	2128	4301	137

^{*} BDL = Below detection limit

Table 4 Productive parameters of animals between 0-14 days of experiment

	Initial weight (kg)	Final weight (kg)	Weight gain (g/d)	Feed intake (g/d)	Feed to gain ratio
T-1 Negative control (low P)	7.70	9.66	140	250	1.84
T-2 IPA phytase (500 U/kg)	7.76	10.05	164	266	1.76
T-3 IPA phytase (1,000 U/kg)	7.75	9.97	158	264	1.79
T-4 IPA phytase (2,000 U/kg)	7.70	10.27	184	296	1.68
T-5 IPA phytase (4,000 U/kg)	7.66	9.83	155	255	1.84
T-6 Positive control (DCP)	7.74	9.95	158	310	2.12
Root MSE	0.086	0.827	57.9	70.6	0.428
Block Effect (Pr>F)	***	***	**	*	**
Treat. Effect (Pr>F)	NS	NS	NS	NS	NS

abc Values in the same column with different letters are significantly different (P<0.05).

Table 5 Productive parameters of animals between 14-28 days of experiment

	Initial weight (kg)	Final weight (kg)	Weight gain (g/d)	Feed intake (g/d)	Feed to gain ratio
T-1 Negative control (low P)	9.66	16.04	456c	694	1.53
T-2 IPA phytase (500 U/kg)	10.05	16.23	441c	662	1.50
T-3 IPA phytase (1,000 U/kg)	9.97	16.50	467bc	654	1.41
T-4 IPA phytase (2,000 U/kg)	10.27	17.74	533a	735	1.38
T-5 IPA phytase (4,000 U/kg)	9.83	17.03	515ab	740	1.45
T-6 Positive control (DCP)	9.95	16.78	488abc	754	1.55
Root MSE	0.827	1.469	57.0	95.4	0.145
Block Effect (Pr>F)	***	***	***	*	NS
Treat. Effect (Pr>F)	NS	NS	*	NS	NS

abc Values in the same column with different letters are significantly different (P<0.05).

NS P>0.1; † P<0.1; * P<0.05; ** P<0.01; *** P<0.001

Table 6 Productive parameters of animals between 28-42 days of experiment

	Initial weight (kg)	Final weight (kg)	Weight gain (g/d)	Feed intake (g/d)	Feed to gain ratio
T-1 Negative control (low P)	16.04	24.08c	574b	1011	1.76
T-2 IPA phytase (500 U/kg)	16.23	24.90bc	619ab	1076	1.73
T-3 IPA phytase (1,000 U/kg)	16.50	24.95bc	603b	980	1.62
T-4 IPA phytase (2,000 U/kg)	17.74	27.29a	682a	1119	1.64
T-5 IPA phytase (4,000 U/kg)	17.03	26.54ab	679a	1158	1.71
T-6 Positive control (DCP)	16.78	25.36abc	613ab	1125	1.86
Root MSE	1.469	2.299	71.5	157.0	0.173
Block Effect (Pr>F)	***	***	***	†	NS
Treat. Effect (Pr>F)	NS	†	*	NS	NS

abc Values in the same column with different letters are significantly different (P<0.05).

Table 7 Productive parameters of animals between 14-42 days of experiment

	Initial weight (kg)	Final weight (kg)	Weight gain (g/d)	Feed intake (g/d)	Feed to gain ratio
T-1 Negative control (low P)	9.66	24.08c	515b	852	1.66bc
T-2 IPA phytase (500 U/kg)	10.05	24.90bc	530b	869	1.64abc
T-3 IPA phytase (1,000 U/kg)	9.97	24.95bc	535b	817	1.53a
T-4 IPA phytase (2,000 U/kg)	10.27	27.29a	608a	927	1.53a
T-5 IPA phytase (4,000 U/kg)	9.83	26.54ab	597a	949	1.60ab
T-6 Positive control (DCP)	9.95	25.36abc	550ab	940	1.72c
Root MSE	0.827	2.299	58.9	114.9	0.122
Block Effect (Pr>F)	***	***	***	*	NS
Treat. Effect (Pr>F)	NS	†	*	NS	*

abc Values in the same column with different letters are significantly different (P<0.05).

NS P>0.1; † P<0.1; * P<0.05; ** P<0.01; *** P<0.001

Table 8 Productive parameters of animals between 0-28 days of experiment

	Initial weight (kg)	Final weight (kg)	Weight gain (g/d)	Feed intake (g/d)	Feed to gain ratio
T-1 Negative control (low P)	7.70	16.04	298	472	1.60
T-2 IPA phytase (500 U/kg)	7.76	16.23	303	464	1.55
T-3 IPA phytase (1,000 U/kg)	7.75	16.50	313	459	1.49
T-4 IPA phytase (2,000 U/kg)	7.70	17.74	359	516	1.44
T-5 IPA phytase (4,000 U/kg)	7.66	17.03	335	497	1.51
T-6 Positive control (DCP)	7.74	16.78	323	532	1.67
Root MSE	0.086	1.469	51.8	79.5	0.165
Block Effect (Pr>F)	***	***	***	*	†
Treat. Effect (Pr>F)	NS	NS	NS	NS	NS

abc Values in the same column with different letters are significantly different (P<0.05).

Table 9 Productive parameters of animals between 0-42 days of experiment

	Initial weight (kg)	Final weight (kg)	Weight gain (g/d)	Feed intake (g/d)	Feed to gain ratio
T-1 Negative control (low P)	7.70	24.08c	390c	652	1.68bc
T-2 IPA phytase (500 U/kg)	7.76	24.90bc	408bc	668	1.64bc
T-3 IPA phytase (1,000 U/kg)	7.75	24.95bc	410bc	633	1.55ab
T-4 IPA phytase (2,000 U/kg)	7.70	27.29a	466a	717	1.54a
T-5 IPA phytase (4,000 U/kg)	7.66	26.54ab	450ab	717	1.61ab
T-6 Positive control (DCP)	7.74	25.36abc	420abc	730	1.76c
Root MSE	0.086	2.299	54.2	93.9	0.128
Block Effect (Pr>F)	***	***	***	*	†
Treat. Effect (Pr>F)	NS	Ť	†	NS	*

abc Values in the same column with different letters are significantly different (P<0.05).

NS P>0.1; † P<0.1; * P<0.05; ** P<0.01; *** P<0.001

Table 10 Body weight of animals at different days of experiment calculated using individual values

	BW	BW	BW
	day 14	day 28	day 42
	(kg)	(kg)	(kg)
T-1 Negative control (low P)	9.73	16.13b	24.20c
T-2 IPA phytase (500 U/kg)	10.08	16.38b	25.15bc
T-3 IPA phytase (1,000 U/kg)	9.96	16.53b	24.96bc
T-4 IPA phytase (2,000 U/kg)	10.36	17.84a	27.42a
T-5 IPA phytase (4,000 U/kg)	9.96	17.19ab	26.74ab
T-6 Positive control (DCP)	9.99	16.76ab	25.36bc
Root MSE	1.082	2.177	3.328
BW day 0 Effect (Pr>F)	***	***	***
Sex Effect (Pr>F)	NS	NS	NS
Treat. Effect (Pr>F)	NS	†	*

abc Values in the same column with different letters are significantly different (P<0.05).

Table 11 Average daily weight gain of animals at different experimental periods calculated using individual values

	Weight gain 0-14 days (g/d)	Weight gain 14-28 days (g/d)	Weight gain 28-42 days (g/d)
T-1 Negative control (low P)	141	457c	577b
T-2 IPA phytase (500 U/kg)	166	450c	626ab
T-3 IPA phytase (1,000 U/kg)	157	468bc	602b
T-4 IPA phytase (2,000 U/kg)	186	534a	684a
T-5 IPA phytase (4,000 U/kg)	157	517ab	682a
T-6 Positive control (DCP)	159	484abc	614ab
Root MSE	77.3	100.6	119.8
BW day 0 Effect (Pr>F)	***	***	***
Sex Effect (Pr>F)	NS	NS	NS
Treat. Effect (Pr>F)	NS	*	**

Table 12 Average daily weight gain of animals at different experimental periods calculated using individual values

	Weight gain 14-42 days (g/d)	Weight gain 0-28 days (g/d)	Weight gain 0-42 days (g/d)
T-1 Negative control (low P)	517c	299Ь	391c
T-2 IPA phytase (500 U/kg)	538c	308b	414bc
T-3 IPA phytase (1,000 U/kg)	536c	313b	410bc
T-4 IPA phytase (2,000 U/kg)	609a	360a	468a
T-5 IPA phytase (4,000 U/kg)	600ab	337ab	452ab
T-6 Positive control (DCP)	549bc	322ab	419bc
Root MSE	96.1	77.8	79.3
BW day 0 Effect (Pr>F)	***	***	***
Sex Effect (Pr>F)	NS	NS	NS
Treat. Effect (Pr>F)	**	†	*

Table 13 Effect of different doses of IPA phytase on the apparent faecal digestibility of dry matter, ash, organic matter, phosphorous and calcium in weaned piglets (%)

	Dry	40.00	Organic		-
	matter	Ash	matter	P	Ca
T-1 Negative control (low P)	84.2	51.0c	86.1	37.3e	58.7d
T-2 IPA phytase (500 U/kg)	84.1	60.8b	85.5	60.5c	70.8bc
T-3 IPA phytase (1,000 U/kg)	86.0	61.3b	87.4	68.2b	73.3bc
T-4 IPA phytase (2,000 U/kg)	84.9	63.9ab	86.1	71.0b	75.0ab
T-5 IPA phytase (4,000 U/kg)	85.7	68.6a	86.6	79.3a	81.7a
T-6 Positive control (DCP)	82.8	53.3c	84.5	47.9d	66.5cd
Standard Error	2.60	5.58	2.52	6.94	8.22
Block Effect (Pr>F)	†	NS	†	NS	NS
Treat. Effect (Pr>F)	NS	***	NS	***	***

NS P>0.1; † P<0.1; * P<0.05; ** P<0.01; *** P<0.001

abc Values in the same column with different letters are significantly different (P<0.05)

Table 14 Alkaline phosphatase (AP) activity, Ca and P concentration in blood and P concentration in faeces of weaned piglets receiving different doses of IPA phytase

	Ca in blood (mg/dL)	P in blood (mg/dL)	AP in blood (U/L)	P in faeces (g/kg DM)
T-1 Negative control (low P)	12.36a	6.72c	900a	18.7a
T-2 IPA phytase (500 U/kg)	11.56b	8.76b	763b	10.7b
T-3 IPA phytase (1,000 U/kg)	11.09bc	8.84b	675b	10.0bc
T-4 IPA phytase (2,000 U/kg)	11.05bc	9.08ab	678b	8.9c
T-5 IPA phytase (4,000 U/kg)	10.30d	9.77a	694b	6.6d
T-6 Positive control (DCP)	10.74cd	8.71b	719b	17.2a
Standard Error	0.657	0.884	119.5	1.65
Block Effect (Pr>F)	NS	NS	NS	**
Treat. Effect (Pr>F)	***	***	**	***

NS P>0.1; † P<0.1; * P<0.05; ** P<0.01; *** P<0.001

abc Values in the same column with different letters are significantly different (P<0.05)

(b) (4)

Contract code: 2 2 5 3 9

ANNEX-I (RAW DATA)

PEN	BLOCK	TREAT	BW 0	BW 14	BW 28	BW 42	ADG 014	ADI 014	FGR 014	ADG 1428
1	1	2	10292	13974	21737	32153	263	388	1.476	554
2	1	6	10171	12910	20534	30247	196	272	1.392	545
3	1	5	9812	12724	20787	31060	208	291	1.397	576
4	1	1	10171	13401	21362	30347	231	359	1.554	569
5	1	4	9887	11790	18989	28300	136	254	1.867	514
6	1	3	10152	14474	22656	33500	309	437	1.415	584
7	2	6	9070	11645	18649	27633	184	320	1.740	500
8	2	4	9059	12328	19599	29753	234	321	1.373	519
9	2	5	9108	12168	20692	31100	219	317	1.451	609
10	2	2	9072	10385	16179	25300	94	183	1.950	414
11	2	3	9132	12808	20782	30680	263	336	1.279	570
12	2	1	9108	10727	17461	26947	116	233	2.018	481
13	3	3	8667	9985	15003	20113	94	217	2.307	358
14	3	4	8670	12522	20627	31160	275	376	1.366	579
15	3	6	8718	11566	18637	28280	203	360	1.768	505
16	3	5	8675	10900	18869	28473	159	315	1.984	569
17	3	1	8676	11432	18363	27000	197	323	1.640	495
18	3	2	8659	13556	21485	32480	350	513	1.466	566
19	4	1	8045	9425	15857	24093	99	171	1.735	459
20	4	3	8037	10027	17000	27173	142	236	1.662	498
21	4	2	7887	9570	16366	24613	120	216	1.797	485
22	4	5	7864	10766	18469	28647	207	300	1.445	550
23	4	4	8016	11001	18928	28640	213	294	1.377	566
24	4	6	7946	10231	17471	27087	163	287	1.756	517
25	5	2	7476	10287	17103	26480	201	282	1.407	487
26	5	3	7482	8875	16267	25533	100	171	1.723	528
27	5	6	7433	9386	16346	24253	140	359	2.570	497
28	5	4	7451	10521	17821	27707	219	376	1.716	521
29	5	5	7431	8670	16587	25980	89	158	1.780	565
30	5	1	7446	8936	14447	22227	106	196	1.839	394
31	6	2	6997	7918	11653	17270	66	137	2.086	267
32	6	1	6859	8183	14151	21420	95	222	2.346	426
33	6	5	6912	8698	14991	23933	128	252	1.974	449
34	6	4	6820	8874	16200	24907	147	241	1.646	523
35	6	6	6908	9408	15339	22513	179	317	1.776	424
36	6	3	6892	8391	13503	20907	107	242	2.264	365
37	7	2	6241	7229	12990	21240	71	156	2.207	411
38	7	1	6086	8011	14589	21893	138	227	1.652	470
39	7	3	6279	8348	15219	22333	148	304	2.059	491
40	7	4	6309	8162	15950	25640	132	251	1.892	556
41	7	5	6164	6914	12121	20173	54	183	3.418	372
42	7	6	6158	7335	13803	21720	84	327	3.894	462
43	8	5	5347	7803	13760	22933	175	220	1.257	426
44	8	2	5460	7486	12343	19667	145	250	1.724	347
45	8	3	5361	6822	11574	19333	104	166	1.593	339
46	8	6	5496	7121	13464	21130	116	239	2.057	453
47	8	4	5354	6966	13813	22190	115	254	2.205	489
48	8	1	5234	7134	12127	18720	136	268	1.975	357

PEN	BLOCK	TREAT	ADI 1428	FGR 1428	ADG 2842	ADI 2842	FGR 2842	ADG 028	ADI 028	FGR 028
1	1	2	858	1.548	744	1320	1.773	409	623	1.52
2	1	6	710	1.304	694	1090	1.572	370	491	1.32
3	1	5	754	1.310	734	1253	1.708	392	522	1.33
4	1	1	788	1.387	642	1134	1.768	400	573	1.43
5	1	4	683	1.328	665	1166	1.753	325	468	1.44
6	1	3	817	1.397	775	1327	1.713	447	627	1.40
7	2	6	687	1.373	642	1006	1.568	342	504	1.47
8	2	4	713	1.372	725	1137	1.567	376	517	1.37
9	2	5	839	1.377	743	1143	1.537	414	578	1.39
10	2	2	583	1.409	652	1012	1.553	254	383	1.50
11	2	3	781	1.372	707	1193	1.688	416	559	1.34
12	2	1	716	1.488	678	1243	1.834	298	475	1.59
13	3	3	530	1.478	365	609	1.668	226	373	1.65
14	3	4	772	1.333	752	1139	1.513	427	574	1.34
15	3	6	760	1.505	689	1140	1.656	354	560	1.58
16	3	5	819	1.438	686	1193	1.739	364	567	1.55
17	3	1	750	1.514	617	1107	1.794	346	536	1.55
18	3	2	892	1.576	785	1452	1.849	458	703	1.53
19	4	1	642	1.398	588	940	1.599	279	407	1.45
20	4	3	742	1.490	727	1118	1.539	320	489	1.52
21	4	2	701	1.443	589	1007	1.709	303	458	1.51
22	4	5	792	1.440	727	1231	1.693	379	546	1.44
23	4	4	755	1.333	694	1125	1.622	390	524	1.34
24	4	6	744	1.439	687	1207	1.758	340	515	1.51
25	5	2	712	1.463	670	1167	1.742	344	497	1.44
26	5	3	657	1.245	662	1037	1.567	314	414	1.32
27	5	6	864	1.738	565	1112	1.969	318	611	1.92
28	5	4	901	1.728	706	1252	1.773	370	639	1.72
29	5	5	796	1.407	671	1290	1.923	327	477	1.45
30	5	1	606	1.539	556	906	1.630	250	401	1.60
31	6	2	420	1.575	401	701	1.748	166	279	1.67
32	6	1	637	1.494	519	971	1.871	260	429	1.64
33	6	5	691	1.538	639	1012	1.584	289	472	1.63
34	6	4	679	1.298	622	1038	1.669	335	460	1.37
35	6	6	657	1.551	512	858	1.674	301	487	1.61
36	6	3	568	1.555	529	836	1.580	236	405	1.71
37	7	2	544	1.323	589	1027	1.742	241	350	1.45
38	7	1	745	1.586	522	968	1.855	304	486	1.60
39	7	3	674	1.373	508	849	1.670	319	489	1.53
40	7	4	728	1.308	692	1144	1.653	344	489	1.42
41	7	5	607	1.632	575	1041	1.811	213	395	1.85
42	7	6	935	2.023	566	1127	1.992	273	631	2.31
43	8	5	621	1.459	655	1099	1.677	300	421	1.40
44	8	2	589	1.697	523	920	1.759	246	419	1.70
45	8	3	460	1.355	554	870	1.570	222	313	1.41
46	8	6	675	1.489	548	1462	2.670	285	457	1.60
47	8	4	652	1.333	598	951	1.589	302	453	1.49
48	8	1	668	1.873	471	815	1.731	246	468	1.90

PEN	BLOCK	TREAT	ADG 042	ADI 042	FGR 042	ADG 1442	ADI 1442	FGR 1442	Blood Ca	Blood
1	1	2	521	855	1.643	649	1089	1.677	11.2	10.14
2	1	6	478	691	1,446	619	900	1.454	10.7	9.42
3	1	5	506	766	1.514	655	1004	1.533	10	9.04
4	1	1	480	760	1.583	605	961	1.589	12.9	6.36
5	1	4	438	701	1.598	590	924	1.567	10.9	9.29
6	1	3	556	860	1.547	680	1072	1.577	12.5	9.58
7	2	6	442	671	1.518	571	847	1.483	11.1	7.47
8	2	4	493	723	1.468	622	925	1.486	11.2	9.58
9	2	5	524	766	1.463	676	991	1.465	10.9	9.71
10	2	2	386	593	1.534	533	797	1.497	12.4	7.52
11	2	3	513	770	1.501	638	987	1.547	10.7	8.94
12	2	1	425	731	1.720	579	979	1.690	11.5	7.87
13	3	3	273	452	1.658	362	569	1.574	10.9	9.49
14	3	4	535	762	1.423	666	955	1.435	10.8	9.14
15	3	6	466	753	1.618	597	950	1.592	11	8.88
16	3	5	471	776	1.645	628	1006	1.602	10.6	9.25
17	3	1	436	726	1.665	556	928	1.669	12.6	7.14
18	3	2	567	952	1.679	676	1172	1.734	11.1	9.59
19	4	1	382	585	1.530	524	791	1.511	12.7	6.68
20	4	3	456	699	1.534	612	930	1.519	10.8	9.08
21	4	2	398	641	1.610	537	854	1.519	11.9	9.68
22	4	5	495	774	1.564	639	1011	The second second	10.8	
23	4	4	495	725		630	940	1.584		9.3
24	4	6	456	746	1.476	602	976		11.6	8.65
25	5	2	452	720	1.592	578		1.621	11	9.67
26	5	3	432				940	1.625		9.27
27	5	6		622	1.447	595	847	1.424	11.3	8.06
			400	778		531	988	1.861	10.9	7.42
28	5	4	482	843	1.748	614	1077	1.754	10.4	9.81
29	5	5	442	748	1.694	618	1043	1.687	10.2	9.73
30	5	1	352	569	1.617	475	756	1.592	12.8	6.19
31	6	2	245	420	1.716	334	561	1.679	11.1	7.21
32	6	1	347	610	1.759	473	804	1.701	13	6.41
33	6	5	405	652	1.608	544	851	1.565	10.3	9.44
34	6	4	431	653	1.516	573	859	1.499	11.1	9.09
35	6	6	372	611	1.643	468	757	1.618	9.5	8.59
36	6	3	334	549	1.644	447	702	1.570	9.9	8.95
37	7	2	357	576	1.612	500	785	1.570	12.5	9.54
38	7	1	376	647	1.718	496	856	1.727	12.2	6.58
39	7	3	382	609	1.593	499	761	1.524	10.6	7.99
40	7	4	460	707	1.537	624	936	1.499	10.7	9.12
41	7	5	334	610	1.830	474	824	1.741	9.2	9.72
42	7	6	371	796	2.149	514	1031	2.006	11.5	10.1
43	8	5	419	647	1.544	540	860	1.591	10.4	11.94
44	8	2	338	586	1.733	435	754	1.734	11.3	7.1
45	8	3	333	499	1.499	447	665	1.488	12	8.62
46	8	6	372	792	2.127	500	1068	2.135	10.8	8.14
47	8	4	401	619	1.544	544	801	1.474	11.7	7.98
48	8	1	321	584	1.818	414	742	1.792	11.2	6.53

PEN	BLOCK	TREAT	Blood AP	Faeces P	Dig DM	Dig Ash	Dig OM	Dig P	Dig Ca
1	1_	2	902	10.858	84.90	61.33	86.26	61.86	75.37
2	1	6	873	16.787	87.59	65.89	88.86	62.99	74.66
3	1	5	647	6.109	89.00	75.74	89.76	85.07	84.43
4	1	1	798	18.878	83.84	44.64	86.09	33.65	60.96
5	1	4	565	8.805	87.28	71.16	88.24	75.72	82.73
6	1	3	619	11.645	88.64	60.98	90.20	69.78	69.38
7	2	6	807	16.830	83.22	55.69	84.83	49.82	75.96
8	2	4	857	11.097	85.72	58.90	87.32	65.65	75.29
9	2	5	618	8.707	85.75	62.60	87.07	72.44	75.84
10	2	2	840	9.983	83.67	61.23	84.97	62.09	67.25
11	2	3	536	12.873	89.23	61.82	90.76	68.30	59.04
12	2	1	939	19.058	85.98	53.74	87.83	41.89	59.78
13	3	3	543	10.884	84.09	59.49	85.47	60.43	77.86
14	3	4	611	9.823	87.10	62.59	88.56	72.53	78.44
15	3	6	538	18.865	86.10	55.65	87.88	53.41	59.97
16	3	5	763	6.280	87.55	73.04	88.38	82.63	83.13
17	3	1	852	17.289	81.73	46.58	83.74	31.29	56.74
18	3	2	635	10.513	82.65	53.98	84.30	57.56	61.76
19	4	1	1060	22.159	86.92	56.51	88.66	36.95	75.53
20	4	3	780	9.339	79.01	52.45	80.50	55.20	66.90
21	4	2	551	10.681	85.95	69.73	86.89	65.10	76.77
22	4	5	753	6.201	83.87	66.08	84.88	77.78	80.42
23	4	4	632	5.894	82.29	64.92	83.32	77.37	76.20
24	4	6	843	17.954	81.35	46.46	83.39	40.50	50.16
25	5	2	687	9.382	85.13	63.93	86.35	67.54	72.77
26	5	3	739	9.907	86.32	68.44	87.32	69.02	80.60
27	5	6	579	16.197	81.41	54.09	83.01	46.49	73.34
28	5	4	540	9.272	84.18	59.44	85.65	68.20	68.90
29	5	5	427	6.552	84.13	66.95	85.12	76.91	82.86
30	5	1	950	19.613	86.17	58.07	87.79	41.02	65.40
31	6	2	793	12.903	86.47	63.11	87.82	59.40	75.51
32	6	1	893	20.937	87.07	53.69	88.99	41.14	52.76
33	6	5	907	8.054	86.75	68.96	87.77	76.30	85.28
34	6	4	617	10.524	83.73	63.12	84.96	62.89	64.23
35	6	6	541	18.365	85.40	54.77	87.19	52.36	69.79
36	6	3	664	9.399	85.82	67.52	86.84	69.53	82.05
37	7	2	877	11.331	81.43	53.34	83.05	51.05	62.87
38	7	1	879	19.849	82.57	45.23	84.71	24.75	48.29
39	7	3	737	11.892	87.45	54.95	89.27	65.89	64.68
40	7	4	756	8.005	85.82	67.84	86.89	75.39	86.86
41	7	5	714	6.591	87.80	73.82	88.59	82.13	86.32
42	7	6	666	16.614	75.39	39.43	77.50	27.35	58.79
43	8	5	725	4.348	80.48	61.96	81.53	81.14	75.38
44	8	2	822	10.141	82.88	59.38	84.24	59.62	74.21
45	8	3	783	4.315	87.46	64.66	88.74	87.64	86.26
46	8	6	907	15.756	82.10	54.49	83.71	49.88	69.38
47	8	4	844	8.048	82.91	63.38	84.07	70.18	67.38
48	8	1	832	11.593	79.36	49.44	81.08	47.97	50.29

PEN	PIG	SEX	BLOCK	TREAT	BW 0	BW 14	BW 28	BW 42	ADG 014	ADG 1428	ADG 2842	ADG 028	ADG 042	ADG 1442
1	3655	2	1	2	10203	14020	21547	27900	273	538	454	405	421	496
1	3664	2	1	2	11060	14375	22275	34540	237	564	876	401	559	720
1	3675	1	1	2	9613	13528	21388	34020	280	561	902	421	581	732
2	3561	2	1	6	9400	12260	21011	31680	204	625	762	415	530	694
2	3652	1	1	6	10184	13171	19495	28460	213	452	640	333	435	546
2	3671	1	1	6	10928	13300	21097	30600	169	557	679	363	468	618
3	3589	2	1	5	10240	11443	17015	28020	86	398	786	242	423	592
3	3639	1	1	5	9450	13480	22560	32100	288	649	681	468	539	665
3	3640	2	1	5	9745	13248	22786	33060	250	681	734	466	555	708
4	3641	2	1	1	9367	12856	20993	29980	249	581	642	415	491	612
4	3647	2	1	1	10096	12867	20204	29520	198	524	665	361	462	595
4	3658	1	1	1	11050	14480	22888	31540	245	601	618	423	488	609
5	3538	2	1	4	9540	11680	19311	28020	153	545	622	349	440	584
5	3543	2	1	4	10260	12514	19023	29400	161	465	741	313	456	603
5	3663	2	1	4	9860	11174	18633	27480	94	533	632	313	420	582
6	3583	2	1	3	9377	17040	26994	38380	547	711	813	629	691	762
6	3654	1	1	3	11269	14730	22060	32400	247	524	739	385	503	631
6	3673	2	1	3	9810	11651	18913	29720	131	519	772	325	474	645
7	3580	1	2	6	9168	12369	20648	29380	229	591	624	410	481	608
7	3585	1	2	6	9047	12465	22600	32120	244	724	680	484	549	702
7	3659	1	2	6	8995	10100	12700	21400	79	186	621	132	295	404
8	3547	1	2	4	9020	11768	17863	29040	196	435	798	316	477	617
8	3595	2	2	4	9240	12200	20120	29460	211	566	667	389	481	616
8	3636	2	2	4	8917	13017	20813	30760	293	557	710	425	520	634
9	3540	1	2	5	9093	11184	20849	32200	149	690	811	420	550	751
9	3553	2	2	5	8964	13388	21724	31020	316	595	664	456	525	630
9	3643	2	2	5	9268	11933	19503	30080	190	541	755	366	496	648
10	3563	1	2	2	9200	10916	18493	27860	123	541	669	332	444	605
10	3565	1	2	2	8984	8738	11400	20880	-18	190	677	86	283	434
10	3649	1	2	2	9032	11500	18643	27160	176	510	608	343	432	559
11	3530	2	2	3	9287	12320	20624	29900	217	593	663	405	491	628
11	3549	2	2	3	9107	13027	20680	32640	280	547	854	413	560	700
11	3633	1	2	3	9003	13077	21043	29500	291	569	604	430	488	587
12	3581	2	2	1	9000	12117	19389	28640	223	519	661	371	468	590
12	3630	2	2	1	9240	10207	18343	28120	69	581	698	325	450	640
12	3661	2	2	1	9084	9856	14652	24080	55	343	673	199	357	508
13	3593	2	3	3	8497	8750	10890	8720	18	153	-155	85	5	-1
13	3642	1	3	3	8745	11152	20178	30560	172	645	742	408	519	693
13	3651	1	3	3	8760	10053	13940	21060	92	278	509	185	293	393
14	3534	1	3	4	8464	11610	18545	28020	225	495	677	360	466	586
14	3552	1	3	4	8685	13655	21917	32380	355	590	747	473	564	669
14	3599	1	3	4	8860	12300	21420	33080	246	651	833	449	577	742
15	3546	2	3	6	8814	12207	20168	31340	242	569	798	405	536	683
15	3564	1	3	6	8650	11220	17591	27160	184	455	683	319	441	569
15	3632	2	3	6	8690	11270	18153	26340	184	492	585	338	420	538
16	3619	1	3	5	8444	10780	18383	27640	167	543	661	355	457	602
16	3662	1	3	5	8856	10543	18497	28140	120	568	689	344	459	628
16	3668	1	3	5	8725	11376	19729	29640	189	597	708	393	498	652

PEN	PIG	SEX	BLOCK	TREAT	BW 0	BW 14	BW 28	BW 42	ADG 014	ADG 1428	ADG 2842	ADG 028	ADG 042	ADG 1442
17	3537	2	3	1	8860	11020	18308	27480	154	521	655	337	443	588
17	3590	2	3	1	8457	11026	17555	26140	184	466	613	325	421	540
17	3648	1	3	1	8712	12250	19227	27380	253	498	582	376	444	540
18	3570	1	3	2	8753	13980	21137	31900	373	511	769	442	551	640
18	3656	2	3	2	8760	13233	20736	30880	319	536	725	428	527	630
18	3669	1	3	2	8463	13454	22583	34660	356	652	863	504	624	757
19	3529	2	4	1	7755	9502	16296	24580	125	485	592	305	401	538
19	3558	1	4	1	8420	11106	19329	29020	192	587	692	390	490	640
19	3594	1	4	1	7960	7666	11946	18680	-21	306	481	142	255	393
20	3567	2	4	3	8093	11680	18477	28720	256	486	732	371	491	609
20	3568	1	4	3	7710	9177	17197	27880	105	573	763	339	480	668
20	3615	1	4	3	8307	9223	15327	24920	65	436	685	251	396	561
21	3569	2	4	2	7760	9690	14784	23400	138	364	615	251	372	490
21	3584	1	4	2	8247	9584	16792	24600	96	515	558	305	389	536
21	3629	2	4	2	7655	9437	17523	25840	127	578	594	352	433	586
22	3544	2	4	5	7680	11832	21015	32120	297	656	793	476	582	725
22	3555	1	4	5	8124	10760	19468	28840	188	622	669	405	493	646
22	3607	1	4	5	7788	9706	14923	24980	137	373	718	255	409	546
23	3556	2	4	4	8240	10584	18013	28120	167	531	722	349	473	626
23	3587	1	4	4	8103	12251	20853	30940	296	614	721	455	544	667
23	3609	1	4	4	7703	10168	17918	26860	176	554	639	365	456	596
24	3533	2	4	6	8093	9955	15023	24200	133	362	656	247	383	509
24	3625	2	4	6	7632	10062	17791	26720	174	552	638	363	454	595
24	3660	2	4	6	8113	10676	19600	30340	183	637	767	410	529	702
25	3545	1	5	2	7467	10329	16103	25040	204	412	638	308	418	525
25	3627	1	5	2	7390	10554	17660	27720	226	508	719	367	484	613
25	3628	2	5	2	7572	9977	17548	26680	172	541	652	356	455	597
26	3542	1	5	3	7400	8895	15702	25000	107	486	664	297	419	575
26	3551	1	5	3	7590	9207	16677	26100	116	534	673	325	441	603
26	3605	1	5	3	7456	8523	16423	25500	76	564	648	320	430	606
27	3575	2	5	6	7465	8697	14706	19560	88	429	347	259	288	388
27	3617	2	5	6	7523	10257	18513	27860	195	590	668	393	484	629
27	3644	2	5	6	7310	9205	15819	25340	135	472	680	304	429	576
28	3562	2	5	4	7347	9817	15977	25900	176	440	709	308	442	574
28	3638	1	5	4	7560	10585	18517	27640	216	567	652	391	478	609
28	3667	1	5	4	7447	11160	18969	29580	265	558	758	412	527	658
29	3637	2	5	5	7496	8464	16260	25460	69	557	657	313	428	607
29	3646	2	5	5	7560	9100	16923	26380	110	559	676	334	448	617
29	3672	2	5	5	7236	8447	16577	26100	86	581	680	334	449	630
30	3602	2	5	1	7572	9471	15869	23760	136	457	564	296	385	510
30	3608	1	5	1	7267	8060	13580	21260	57	394	549	225	333	471
30	3650	1	5	1	7500	9277	13892	21660	127	330	555	228	337	442
31	3606	1	6	2		0						4		
31	3645	1	6	2	6833	7890	12656	17980	75	340	380	208	265	360
31	3677	1	6	2	7160	7947	10649	16560	56	193	422	125	224	308
32	3596	2	6	1	7104	8528	14838	22340	102	451	536	276	363	493
32	3635	1	6	1	6620	8757	15733	22520	153	498	485	325	379	492
32	3666	2	6	1	6852	7264	11883	19400	29	330	537	180	299	433

PEN	PIG	SEX	BLOCK	TREAT	BW 0	BW 14	BW 28	BW 42	ADG 014	ADG 1428	ADG 2842	ADG 028	ADG 042	ADG 1442
33	3535	2	6	5	7020	7980	14846	23480	69	490	617	279	392	554
33	3536	2	6	5	7180	8978	15277	23560	128	450	592	289	390	521
33	3621	1	6	5	6536	9137	14850	24760	186	408	708	297	434	558
34	3557	2	6	4	6817	8087	15893	24720	91	558	631	324	426	594
34	3591	1	6	4	6444	8638	15512	24800	157	491	663	324	437	577
34	3598	2	6	4	7200	9897	17195	25200	193	521	572	357	429	547
35	3539	2	6	6	6560	7998	15120	25260	103	509	724	306	445	616
35	3566	1	6	6	7197	9963	16304	26860	198	453	754	325	468	603
35	3600	2	6	6	6967	10263	14593	15420	235	309	59	272	201	184
36	3573	1	6	3	6940	8804	13603	21000	133	343	528	238	335	436
36	3618	1	6	3	7184	8480	11949	17820	93	248	419	170	253	334
36	3626	1	6	3	6552	7889	14957	23900	95	505	639	300	413	572
37	3541	2	7	2	6443	7378	12560	20160	67	370	543	218	327	457
37	3550	2	7	2	6050	6883	13205	22040	59	452	631	256	381	541
37	3670	2	7	2	6230	7427	13205	21520	85	413	594	249	364	503
38	3559	2	7	1	6207	8518	15791	24100	165	520	593	342	426	557
38	3597	1	7	1	6327	8647	15393	23000	166	482	543	324	397	513
38	3612	2	7	1	5725	6869	12583	18580	82	408	428	245	306	418
39	3582	1	7	3	6160	8880	16215	23900	194	524	549	359	422	536
39	3634	1	7	3	6376	7720	13834	20580	96	437	482	266	338	459
39	3653	1	7	3	6300	8443	15607	22520	153	512	494	332	386	503
40	3531	1	7	4	6323	7930	15576	26040	115	546	747	330	469	647
40	3586	2	7	4	6417	8465	15800	25140	146	524	667	335	446	596
40	3610	2	7	4	6187	8091	16475	25740	136	599	662	367	466	630
41	3560	1	7	5	6240	6689	13100	23360	32	458	733	245	408	595
41	3588	1	7	5	6380	7840	12390	18020	104	325	402	215	277	364
41	3604	2	7	5	5873	6212	10872	19140	24	333	591	179	316	462
42	3576	2	7	6	5817	7389	14308	23020	112	494	622	303	410	558
42	3622	2	7	6	6272	7267	13666	21840	71	457	584	264	371	520
42	3676	2	7	6	6387	7349	13435	20300	69	435	490	252	331	463
43	3601	2	8	5	5713	9153	16978	27500	246	559	752	402	519	655
43	3614	2	8	5	5513	8054	14180	22520	181	438	596	310	405	517
43	3674	1	8	5	4813	6203	10122	18780	99	280	618	190	333	449
44	3577	1	8	2	5457	7593	12929	20360	153	381	531	267	355	456
44	3603	1	8	2	5277	7103	11931	19280	130	345	525	238	333	435
44	3623	1	8	2	5647	7763	12170	19360	151	315	514	233	327	414
45	3548	2	8	3	5000	5940	11170	19680	67	374	608	220	350	491
45	3613	1	8	3	5440	7811	12326	19420	169	322	507	246	333	415
45	3616	2	8	3	5643	6713	11227	18900	76	322	548	199	316	435
46	3572	2	8	6	5611	7940	15985	25020	166	575	645	371	462	610
46	3611	2	8	6	5380	6303	10942	17240	66	331	450	199	282	391
46	3631	2	8	6										
47	3571	1	8	4	5123	6570	12500	20900	103	424	600	263	376	512
47	3592	2	8	4	5584	7363	15126	23480	127	555	597	341	426	576
47	3657	1	8	4									.20	213
48	3532	1	8	1	5580	7330	12635	19900	125	379	519	252	341	449
48	3554	2	8	1	5377	7205	11668	18180	131	319	465	225	305	392
48	3579	1	8	1	4744	6866	12078	18080	152	372	429	262	318	401

(b) (4)

Contract code: 2 2 5 3 9

ANNEX-II (EFSA)

Final report P-393 Page 27 of 28 197

FEEDAP UNIT

ANNEX C

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA phytase (M)	Batch number: PPQ 28656
Trial ID: P-393	Location: (b) (4)
Start date and exact duration of the study: November	18th 2008, 17days
Number of treatment groups (+ control(s)): 6	Replicates per group: 8
Total number of animals: 48	Animals per replicate: 3
Dose(s) of the additive/active substance(s)/agent(s) water) Intended: 500, 1000, 2000 and 4000 U/kg Analysed	
•	
Substances used for comparative purposes: Dicalciu	m phosphate in positive control
Intended dose: 1 g P/kg Analysed	1: 1.02 g P/kg
Animal species/category: Weanling pigs	
Breed: Landrace x Pietrain Identifica	tion procedure: Ear tags
Sex: Males and Females Age at start: 4 weeks	Body weight at start: 7.1 kg
Physiological stage: Weanling General	health: optimal
Additional information for field trials:	
Location and size of herd or flock: Feeding and rearing conditions: Method of feeding:	
Diets (type(s)): Low and adequate P diets for grow	ver pigs
Presentation of the diet: Mash 🛛 Pell	et D Extruded D Other
Composition (main feedingstuffs): Maize, barley, sweet concentrate	et milk whey, soybean meal-48, potato protein
Nutrient content (relevant nutrients and energy conte	ent)
Intended values: 18.6% CP, 3945 kcal/kg GE, 4.63 &	& 4.81% ash, 0.42 & 0.52% total P, 0.75% Ca
Analysed values: 18.8% CP, 3970 kcal/kg GE, 4.56	& 4.65% ash, 0.40 & 0.50% total P, 0.69% Ca
Date and nature of the examinations performed: Perfaces and apparent faccal digestibility of P and Ca	formance, P and Ca concentration in blood and
Method(s) of statistical evaluation used: Analysis of v	ariance (GLM procedure)
Therapeutic/preventive treatments (reason, timing, ki	ind, duration): not relevant
Timing and prevalence of any undesirable conseque	
Date Signature Study Dire	(b) (4)
~	

198

¹ Please submit this form using a common word processing format (e.g. MS Word).

5

Annex 5

Effects of a novel phytase in corn-soybean meal diets fed to weanling pigs

REPORT No. 00003284

REPORT No. 00003284 Regulatory Document

(b)(4)

Document Date:

9 December, 2009

Author(s):

(b) (4), D.-R. Campbell² and J. Broz³

² DSM Nutritional Products, Inc. Parsippany (USA)

³ Animal Nutrition and Health R&D, DSM Nutritional Products Ltd, Basel

Title:

Effects of a novel phytase in corn-soybean meal diets fed to weanling pigs

Project No.

6106

Summary

An experiment was conducted in order to evaluate the effects of a novel microbial phytase (IPA Mash phytase) on the apparent total tract digestibility (ATTD) of P in corn-soybean meal diets fed to weanling pigs. Six different diets were formulated for this study. The positive control diet was based on corn and soybean meal and contained dicalcium phosphate to bring the total concentration of P to 0.66%. A negative, low-P control diet without dicalcium phosphate was formulated to contain 0.36% P. Four additional diets were similar to the negative control diet with the exception that IPA Mash phytase was included at 500, 1000, 2000 and 4000 U/kg diet, respectively. A total of 48 weanling pigs (mean body weight of 13.5 kg) were placed in metabolism cages and randomly allotted to the 6 dietary treatments in a randomized complete block design. Faeces were collected over a 5-day period after 5 days of adaptation to the diets. The total P output and P concentration in faeces were reduced (linear and quadratic, P<0.01) as phytase was added to the negative control diet. The ATTD of P was greater (P<0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P<0.01) as graded phytase inclusions were added to the negative control diet from 40.5% to 61.6, 65.1, 68.7, and 68.0%, respectively. The breakpoint for ATTD of P (68.4%) was reached at a phytase inclusion level of 1016 U/kg diet. In conclusion, IPA Mash phytase reduced the amount of P excreted in the faeces and increased the ATTD of P in weanling pigs.

This report consists of Pages I – II and 1 – 22, raw data & Annex C

Distribution

Dr. M. Eggersdorfer, NRD Dr. F. Fru, NRD/PA Mr. J.-F. Hecquet, NBD/RG Dr. P. Guggenbuhl, NRD/CA Dr. A.-M. Klünter, NRD/CA Dr. J. Pheiffer, NRD/CA Mr. J.-P. Ruckebusch, ANH/GM Dr. C. Simoes Nunes, NRD/CA Dr. D.-R. Campbell, DNP Parsippany

Approved

Name Main Author	Signature signed by	<u>Date</u>
Dr. J. Broz, NRD/CA	J. Broz	09.12.2009
Principal Scientist / Competence Mgr	signed by	
Dr. J. Broz, NRD/CA	J. Broz	09.12.2009
Research Center Head	signed by	
Dr. AM. Klünter, NRD/CA	AM. Klünter	10.12.2009
Project Manager	signed by	
Dr. F. Fru, NRD/PA	F. Fru	11.12.2009

Regulatory Document
DSM Nutritional Products Ltd

Page I of II

Nomenclature and Structural Formula

IPA phytase (M), enzyme product containing bacterial 6-phytase ((b) (4)), produced by (b) (4) fermentation of a genetically modified Aspergillus oryzae strain. Lot PPQ 28683 was used in this study, manufactured by Novozymes A/S, (b) (4).

Regulatory Document
DSM Nutritional Products Ltd

Running head: Effect of a novel phytase on apparent digestibility of P Effects of a novel phytase in corn-soybean meal diets fed to weanling pigs¹ (b) (4)

¹ This research was financially supported by DSM Nutritional Products, Parsippany, NJ.

² Corresponding author (b) (4)

22 ABSTRACT: An experiment was conducted to evaluate the effects of a novel microbial phytase 23 on the apparent total tract digestibility (ATTD) of P in corn-soybean meal diets fed to weanling 24 pigs. Six diets were formulated. The positive control diet was a corn-soybean meal diet that 25 contained dicalcium phosphate to bring the total concentration of P to 0.66%. A negative control 26 diet (0.36% P) without dicalcium phosphate was also formulated. Four additional diets that were 27 similar to the negative control diet were formulated to contain microbial phytase (IPA Mash, 28 DSM Nutritional Products, Parsippany, NJ) at levels of 500, 1,000, 2,000, or 4,000 phytase units 29 (FTU) per kg. Forty eight weanling pigs (initial BW: 13.5 ± 2.45 kg) were placed in metabolism cages and randomly allotted to the 6 dietary treatments in a randomized complete block design. 30 31 Feces were collected over a 5-d period after 5 d of adaptation to the diets. The total P output and P concentration in feces were reduced (linear and quadratic, P < 0.01) as phytase was added to 32 the negative control diet. The ATTD of P was greater (P < 0.01) for the positive control diet 33 (60.48%) than for the negative control diet (40.46%), but increased (linear and quadratic, P < 34 0.01) as phytase was added to the negative control diet (40.46 vs. 61.56, 65.07, 68.74, and 35 68.04%). The breakpoint for ATTD of P (68.39%) was reached at a phytase inclusion level of 36 1016 FTU/kg. In conclusion, IPA mash phytase reduced the amount of P excreted in the feces 37 and increased the ATTD of P in weanling pigs. 38 Key words: digestibility, phosphorus, pigs, phytase 39

2

INTRODUCTION

Most of the P in cereal grains and oilseeds is in the form of phytate (Erdman, 1979).

Because pigs lack endogenous phytases, phytate cannot be digested in the small intestine (Selle and Ravindran, 2008). As a consequence, large amounts of P are excreted in the manure, which may potentially cause environmental pollution. Divalent cations such as Ca likely form insoluble phytate complexes, which may reduce the hydrolysis of phytate. Phytases are enzymes capable of hydrolyzing the phytate molecule, which results in the release of phytate-P as well as Ca, which can then be utilized by pigs (Selle and Ravindran, 2008), and addition of microbial phytase to swine diets improve P utilization by pigs (Akinmusire and Adeola, 2009). Several microbial phytases are commercially available and the inclusion of exogenous phytase to swine diets has become a routine practice, but new and more efficient microbial phytases are constantly being developed. Therefore, an experiment was conducted with the objective of measuring the effect of a novel microbial phytase (IPA Mash, DSM Nutritional Products) on the digestibility of P and Ca in corn-soybean meal diets fed to weanling pigs.

MATERIALS AND METHODS

Diets, Animals, and Experimental Design

Six diets were formulated (Tables 1 and 2). The positive control diet was a corn-soybean meal diet that contained quantities of Ca and P sufficient to meet the requirement of Ca and P for weanling (10-20 kg) pigs (NRC, 1998). Dicalcium phosphate and limestone were used to bring the total concentration of P and Ca in this diet to 0.66 and 0.86%, respectively. A negative control diet that was similar to the positive control diet with the exception that cornstarch

replaced dicalcium phosphate was also formulated. This diet contained 0.36% P and 0.48% Ca.

64 Four additional diets that were similar to the negative control diet with the exception that

65 microbial phytase (IPA Mash, DSM Nutritional Products, Parsippany, NJ) was included in the

amounts of 500, 1,000, 2,000, or 4,000 phytase units (FTU) were also formulated.

A total of 48 weanling pigs (initial BW: 13.5 ± 2.45 kg) were used in a randomized complete block design. Pigs were the offspring of Landrace boars that were mated to Large White x Duroc sows (Pig Improvement Company, Hendersonville, TN). Pigs were blocked by BW and randomly allotted to the 6 dietary treatments in 8 blocks using the Experimental Animal Allotment Program (Kim and Lindemann, 2007). Pigs were placed in metabolism cages

equipped with a feeder and a nipple drinker that allowed for total collection of feces.

Feeding and Sample Collection

The amount of feed provided daily was calculated as 3 times the estimated requirement for maintenance energy (i.e., 106 kcal ME per kg ^{0.75}; NRC, 1998) and divided into 2 equal meals. Water was available at all times. The initial 5 d were considered an adaptation period to the diet. From d 6 to 11, fecal materials were collected according to the marker to marker approach (Adeola, 2001). Chromic oxide and ferric oxide were used to determine the beginning and the conclusion of collections, respectively. Fecal samples were stored at -20°C immediately after collection.

Sample Analysis and Data Processing

At the conclusion of the experiment, fecal samples were dried in a forced air oven and finely ground. Fecal samples and diets were analyzed for Ca and P by inductively coupled plasma (ICP) spectroscopy (method 985.01; AOAC Int., 2007) after wet ash sample preparation (method 975.03; AOAC Int., 2007). Diets were also analyzed for AA (method 982.30 E (a, b, c);

86 AOAC Int., 2007), ADF (method 973.18; AOAC Int., 2007), NDF (Holst, 1973), DM by oven

87 drying at 135°C for 2 h (method 930.15; AOAC Int., 2007), ash (method 942.05; AOAC Int.,

88 2007), CP (method 990.03; AOAC Int., 2007) using an Elementar Rapid N-cube protein/nitrogen

apparatus (Elementar Americas Inc., Mt. Laurel, NJ), and for phytase activity (DSM Nutritional

90 Products, Parsippany, NJ).

The apparent total tract digestibility (ATTD) of P in each diet was calculated according to the following equation:

 $ATTD(\%) = [(Pi - Pf)/Pi] \times 100,$

where Pi = total P intake (g) from d 6 to 11 and Pf = total fecal P output (g) originating from the feed that was provided from d 6 to 11(Petersen and Stein., 2006).

Data were analyzed as a randomized complete block design using the Proc Mixed Procedure in SAS. The UNIVARIATE procedure was used to verify homogeneity of variances and to identify outliers. The model included diet as the main effect and block as a random effect. The effect of block was not significant and, therefore, removed from the final model. A contrast of the positive control diet vs. the negative control diet was performed to analyze the effects of removing inorganic P from the diets, and orthogonal polynomial contrasts were conducted to test linear and quadratic responses to the inclusion of phytase in the diets. Appropriate coefficients for unequally spaced concentrations of supplemental phytase were obtained using the interactive matrix language procedure (Proc IML) of SAS. Treatments were considered different when P < 0.05 and the pig was the experimental unit for all analyses. The minimum level of phytase that was needed to maximize the ATTD of P and Ca were estimated by subjecting the treatment means to a least squares broken-line analysis as described by Robbins et al. (2006). The pig was

the experimental unit for all analyses and an alpha level of 0.05 was used to assess significance among means.

110 RESULTS

108

109

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

There was no difference in feed intake and in fecal output among treatments (Table 3). Phosphorus intake was greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet. The concentration of P excreted in the feces was lower (P < 0.05) for pigs fed the negative control diet than for pigs fed the positive control diet. Likewise, pigs that were fed phytase containing diets had lower (linear and quadratic, P < 0.01) concentration of P in feces than pigs fed the negative control diet. The daily P output was also lower (P < 0.01) for pigs fed the negative control diet than for pigs fed the positive control diet, and the inclusion of increasing levels of phytase to the negative control diet caused linear and quadratic reductions (P < 0.01) in P output. The ATTD of P was greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet (60.48 vs. 40.46%), but the ATTD of P increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (61.56, 65.07, 68.74, and 68.04% for pigs fed diets containing 500, 1,000, 2,000, or 4,000 FTU of phytase, respectively). Phosphorus absorption was greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet (2.58 vs. 0.93 g/d), but the addition of phytase to the negative control diet increased (linear and quadratic, P < 0.01) P absorption to 1.39, 1.51, 1.54, and 1.46 g/d. The breakpoint for phytase concentration resulted in an ATTD of P of 68.39%, which was reached when 1,015.8 FTU/kg of phytase was added to the diet (Figure 1). Calcium intake was greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet (5.55 vs. 3.04 g/d). Pigs that were fed phytase containing diets

tended (P = 0.06) to have a greater Ca intake than pigs fed the negative control diet.

Concentration of Ca in feces was greater (P < 0.05) for pigs fed the positive control diet compared with pigs fed the negative control diet (2.29 vs. 1.86%), but pigs fed phytase containing diets had lower Ca concentration in feces than pigs fed the negative control diet (linear and quadratic, P < 0.01). The daily Ca output was also greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet (1.52 vs. 1.09 g/d), but the addition of 500, 1,000, 2,000, or 4,000 FTU/kg of phytase to the negative control diet reduced (linear and quadratic, P < 0.01) Ca output to 0.80, 0.60, 0.52, and 0.50%, respectively. The ATTD of Ca was greater (P < 0.05) for pigs fed the positive control diet than for pigs fed the negative control diet (72.45 vs. 63.90%), but pigs fed diets containing 500, 1,000, 2,000, or 4,000 FTU/kg of phytase had greater (linear and quadratic, P < 0.01) ATTD of Ca than pigs fed the negative control diet (73.71, 81.66, 84.81, and 84.63%). The absorption of Ca was reduced (P < 0.01) from 4.02 to 1.95 g/d for pigs fed the negative control diet rather than the positive control diet, but Ca absorption was increased (linear and quadratic, P < 0.01) for pigs fed phytase containing diets compared with pigs fed the negative control diet (1.95 vs. 2.22, 2.69, 2.97, and 2.74 g/d). The breakpoint for phytase concentration was reached when 1,154.8 FTU/kg of phytase was added to the diet. This inclusion level resulted in an ATTD of Ca of 84.72% (Figure 2).

148

150

151

152

153

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

149 DISCUSSION

Phytase supplementation increased P digestibility, which was expected because phytase is capable of hydrolyzing the phytate molecule in corn and SBM, and therefore, release some of the P that is bound to the phytate molecule (Cromwell et al., 1993). The beneficial effect of phytase supplementation on the ATTD of P has been demonstrated (Pallauf et al., 1992; Kwon et

al., 1995). The values for the ATTD of P measured in the present experiment for weanling pigs are in agreement with those measured by Lei et al. (1993) and Qian et al. (1996). Our research demonstrated that P digestibility reached a plateau at a level of 1,015.8 FTU/kg, which is in agreement with previous work showing maximum responses to phytase at levels around 1,000 FTU/kg in corn-SBM diets (Beers and Jongbloed, 1992; Kornegay and Qian, 1996; Yi et al., 1996). Because P is better utilized by pigs when phytase is supplemented to corn-soybean meal diets it is expected that phytase supplementation also causes a reduction in P excretion. Our results showed that P excretion is reduced if a corn-soybean meal diet containing no inorganic P is supplemented with phytase, which is in agreement with Selle and Ravindran (2008).

The concentration of Ca in the feces was reduced by the addition of phytase to the diets because the ATTD of Ca was increased as phytase was included in the diets. These results are in agreement with results observed by Pallauf et al. (1992), and Lei et al. (1993). The Ca digestibility values that were measured in the present experiments are comparable with those measured by Qian et al. (1996). To our knowledge, no previous studies have shown the effects of graded levels of phytase on Ca digestibility. One possible reason for the increase in Ca digestibility with supplemental phytase is that in the process of phytate hydrolysis, phytate esters are reduced and as a consequence, the ability of phytate to chelate Ca is also reduced. Therefore, Ca digestibility increases when exogenous phytase is supplemented to the diet (Selle et al., 2009). As expected, Ca absorption was increased with the inclusion of exogenous phytase to the diets. Adeola et al. (1995) also reported that Ca absorption is increased when phytase is supplemented to corn-soybean meal diets.

Conclusions

Results from the present experiment show that IPA Mash phytase may be used in cornsoybean meal diets to improve the ATTD of P and Ca in weanling pigs. Apparently, inclusion levels of 1,000 FTU/kg of phytase to diets will result in maximum ATTD of P and no further increases in ATTD of P is achieved by supplementing IPA Mash phytase at levels greater than 1,000 FTU/kg. In addition, IPA Mash phytase supplementation may also result in a reduction of P and Ca excretion in the feces of weanling pigs.

_	_	_
1	o	7

183	LITERATURE CITED
184	Adeola, L. 2001. Digestion and balance techniques in pigs. Pages 903-916 in Swine Nutrition. A
185	J. Lewis and L. L. Southern, eds. CRC Press, Washington, DC. Swine Nutrition, 2nd ed.
186	CRC Press, N. Y.
187	Adeola, O., B. V. Lawrence, A. L. Sutton, and T. R. Cline. 1995. Phytase-induced changes in
188	mineral utilization in zinc-supplemented diets for pigs. J. Anim. Sci. 73:3384-3391.
189	Akinmusire, A. S., and O. Adeola. 2009. True digestibility of phosphorus in canola and soybean
190	meals for growing pigs: Influence of microbial phytase. J. Anim. Sci. 87:2766-2775.
191	AOAC Int. 2007. Official Methods of Analysis .18th ed. Rev. 2. W. Howitz, and G. W. Latimer
192	Jr., ed. AOAC Int., Gaithersburg, MD.
193	Beers, S., and A. W. Jongbloed. 1992. Effect of supplementary Aspergillus niger phytase in diets
194	for piglets on their performance and apparent digestibility of phosphorus. Anim. Prod.
195	55:425-430.
196	Cromwell, G. L., T. S. Stahly, R. D. Coffey, H. J. Monegue, and J. H. Randolph. 1993. Efficacy
197	of phytase in improving the bioavailability of phosphorus in soybean meal and corn-
198	soybean meal diets for pigs. J. Anim. Sci. 71:1831-1840.
199	Erdman, J. W., Jr. 1979. Oilseed Phytates: Nutritional implication. J. Am. Oil. Chem. Soc. 56:
200	736-741.
201	Holst, D. O. 1973. Holst filtration apparatus for Van Soest detergent fiber analysis. J. AOAC
202	56:1352–1356.
203	Kim, B. G., and M. D. Lindemann. 2007. A new spreadsheet method for the experimental animal
204	allotment. J. Anim. Sci. 85 (Suppl. 2):218. (Abstr.)

205 Kornegay, E. T., and H. Qian. 1996. Replacement of inorganic phosphorus by microbial phytase 206 for young pigs fed on a maize-soyabean-meal diet. Br. J. Nutr. 76:563-578. 207 Kwon, K., I. K. Han, K. S. Sohn, C. H. Kown. 1995. Effects of microbial phytase on 208 performance, nutrient digestibility and phosphorus excretion in weaning-growing pigs fed 209 corn-soy diets. Kor. J. Anim. Sci. 37:341-352. 210 Lei, X. G., P. K. Ku, E. R. Miller, and M. T. Yokoyama. 1993. Supplementing corn-soybean 211 meal diets with microbial phytase linearly improves phytate phosphorus utilization by 212 weanling pigs. J. Anim. Sci. 71:3359-3367. 213 NRC. 1998. Nutrient requirements of swine. 10th rev. ed. Natl. Acad. Press, Washington, DC. 214 Pallauf, J., D. Hohler, G. Rimback and H. Neusser. 1992. Effect of microbial phytase 215 supplementation to a maize-soya-diet on the apparent absorption of phosphorus and calcium in piglets. J. Anim. Physiol. Anim. Nutr. 67:30-40. 216 Petersen, G. I., and H. H. Stein. 2006. Novel procedure for estimating endogenous losses and 217 218 measurement of apparent and true digestibility of phosphorus by growing pigs. J. Anim. Sci. 84:2126-2132. 219 220 Qian, H., E. T. Kornegay, and D. E. Conner, Jr. 1996. Adverse effects of wide calcium:phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two 221 222 dietary phosphorus levels. J. Anim. Sci 74:1288-1297. Robbins, K. R., A. M. Saxton, and L. L. Southern. 2006. Estimation of nutrient requirements 223 using broken-line regression analysis. J. Anim. Sci. 84:155-165. 224 225 Selle, P. H., A. J. Cowieson, and V. Ravindran. 2009. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. doi:10.1016/j.livsci.2009.01.006. 226

Selle, P. H., and V. Ravindran. 2008. Phytate-degrading enzymes in pig nutrition. Livest. Sci.
 113:99-122.
 Yi, Z., E. T. Kornegay, V. Ravindran, M. D. Lindemann, and J. H. Wilson. 1996. Effectiveness of Natuphos[®] phytase in improving the bioavailabilities of phosphorus and other nutrients in soybean meal based semipurified diets for young pigs. J. Anim. Sci. 74:1601-1611.

232 Table 1. Composition (as-is basis) of experimental diets

	••		Di	et		
Ingredient, %	Positive	Negative	500 phytase	1000	2000	4000
	Control	Control		phytase	phytase	phytase
Ground corn	60.60	60.60	60.60	60.60	60.60	60.60
Soybean meal, 48%	32.00	32.00	32.00	32.00	32.00	32.00
Soybean oil	3.00	3.00	3.00	3.00	3.00	3.00
Ground limestone	0.90	0.90	0.90	0.90	0.90	0.90
Dicalcium phosphate	1.65	-	-	-	-	-
Cornstarch	-	1.65	1.625	1.60	1.55	1.45
L-lysine HCL	0.15	0.15	0.15	0.15	0.15	0.15
Salt	0.40	0.40	0.40	0.40	0.40	0.40
Phytase premix ¹	-	-	0.025	0.05	0.10	0.20
Vit. mineral premix ²	0.30	0.30	0.30	0.30	0.30	0.30
Mecadox premix ³	1.00	1.00	1.00	1.00	1.00	1.00
Total .	100.00	100.00	100.00	100.00	100.00	100.00

¹IPA Mash, DSM Nutritional Products, Parsippany, NJ. Produced by mixing 3.4% of

concentrated phytase (58,700 units/g) and 96.6% cornstarch.

² Provided the following quantities of vitamins and micro minerals per kilogram of complete diet: Vitamin A, 11,128 IU; vitamin D₃, 2,204 IU; vitamin E, 66 IU; vitamin K, 1.42 mg; thiamin, 0.24 mg; riboflavin, 6.58 mg; pyridoxine, 0.24 mg; vitamin B₁₂, 0.03 mg; D-pantothenic acid, 23.5 mg; niacin, 44 mg; folic acid, 1.58 mg; biotin, 0.44 mg; Cu, 10 mg as copper sulfate; Fe, 125 mg as iron sulfate; I, 1.26 mg as potassium iodate; Mn, 60 mg as manganese sulfate; Se, 0.3 mg as sodium selenite; and Zn, 100 mg as zinc oxide.

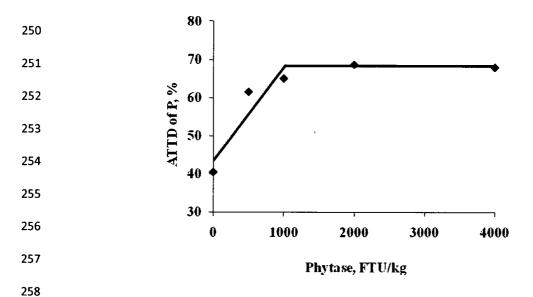
³The Mecadox premix (Phibro Animal Health, NJ) provided 55 mg per kg of Carbadox to the complete diet.

Table 2. Analyzed nutrient composition of diets (as-fed basis)

			D	iet		
Item	Positive	Negative	500	1,000	2,000	4,000
	control	control	phytase	phytase	phytase	phytase
ADF, %	2.70	2.98	2.79	3.04	2.95	2.72
NDF, %	8.44	9.50	9.84	10.09	8.91	9.55
P, %	0.66	0.36	0.36	0.36	0.36	0.35
Ca, %	0.86	0.48	0.48	0.51	0.56	0.53
CP, %	18.33	17.96	17.24	18.03	19.24	18.27
DM, %	87.42	88.02	87.97	88.08	88.25	88.15
Ash, %	5.74	4.99	4.43	4.27	4.08	4.10
Phytase, FTU/kg ¹	91	80	440	958	1743	3974
Indispensible AA, %						
Arg	1.26	1.30	1.28	1.19	1.22	1.24
His	0.50	0.53	0.52	0.49	0.50	0.51
Ile	0.80	0.84	0.85	0.81	0.81	0.84
Leu	1.60	1.66	1.64	1.57	1.57	1.60

Lys	1.18	1.21	1.20	1.13	1.15	1.20
Met	0.29	0.32	0.31	0.29	0.29	0.30
Phe	0.92	0.95	0.95	0.90	0.90	0.93
Thr	0.71	0.75	0.71	0.67	0.69	0.69
Trp	0.24	0.24	0.24	0.24	0.23	0.24
Val	0.92	0.96	0.97	0.93	0.92	0.96
Dispensible AA, %						
Ala	0.93	0.97	0.94	0.91	0.91	0.93
Asp	1.92	2.03	1.98	1.87	1.91	1.95
Cys	0.31	0.34	0.32	0.29	0.30	0.30
Glu	3.19	3.32	3.26	3.12	3.14	3.20
Gly	0.79	0.83	0.81	0.76	0.77	0.79
Pro	0.94	1.10	1.05	1.02	1.04	1.04
Ser	0.83	0.86	0.79	0.76	0.78	0.76
Tyr	0.63	0.61	0.61	0.56	0.57	0.57

¹FTU = phytase units.


Table 3. Effects of phytase on apparent total tract digestibility (ATTD) of P and Ca in weanling pigs¹

		***************************************	Die	ts		···········		P-v	alue	P-va	alue ²
Item	Positive	Negative	500	1,000	2,000	4,000	SEM	Positive	Negative	L	Q
	control	control	phytase	phytase	phytase	phytase		vs.	VS.		
								Negative	Phytase		
Feed intake, g/d	645	633	629	646	624	611	18.06	0.646	0.769	0.277	0.685
P intake, g/d	4.26	2.28	2.26	2.33	2.25	2.14	0.08	< 0.01	0.676	0.122	0.494
Fecal output, g/d	66.48	58.79	58.06	56.11	57.15	62.61	3.77	0.157	0.942	0.370	0.361
P in feces, %	2.53	2.30	1.51	1.46	1.22	1.10	0.07	0.023	< 0.01	< 0.01	< 0.01
P output, g/d	1.68	1.35	0.87	0.81	0.71	0.68	0.07	< 0.01	< 0.01	< 0.01	< 0.01
ATTD of P, %	60.48	40.46	61.56	65.07	68.74	68.04	2.34	< 0.01	< 0.01	< 0.01	< 0.01
P absorption, g/d	2.58	0.93	1.39	1.51	1.54	1.46	0.07	< 0.01	< 0.01	< 0.01	< 0.01
Ca intake, g/d	5.55	3.04	3.02	3.30	3.49	3.23	0.10	< 0.01	0.068	0.072	< 0.01

Ca in feces, %	2.29	1.86	1.37	1.11	0.94	0.79	0.13	0.019	< 0.01	< 0.01	< 0.01
Ca output, g/d	1.52	1.09	0.80	0.60	0.52	0.50	0.08	< 0.01	< 0.01	< 0.01	< 0.01
ATTD of Ca, %	72.45	63.90	73.71	81.66	84.81	84.63	2.30	0.012	< 0.01	< 0.01	< 0.01
Ca absorption, g/d	4.02	1.95	2.22	2.69	2.97	2.74	0.12	< 0.01	< 0.01	< 0.01	< 0.01

Data are means of 8 observations per treatment.

 $^{^{2}}L = linear contrast; Q = quadratic contrast.$

Figure 1. Fitted broken-line plot of ATTD of P as a function of dietary phytase level with observed treatment mean values (n = 8 observations per treatment mean). The minimal dietary phytase level determined by broken-line analysis using least squares methodology was 1015.8 FTU/kg (Y plateau = 68.39; slope below breakpoint = -0.025; Adjusted $R^2 = 0.873$).

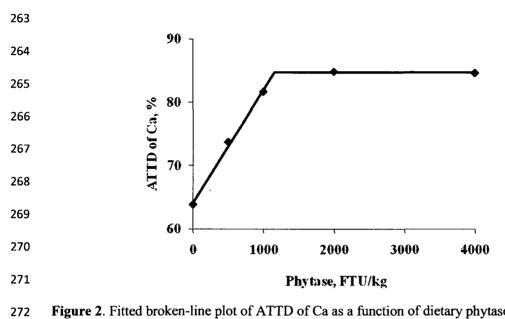


Figure 2. Fitted broken-line plot of ATTD of Ca as a function of dietary phytase level with observed treatment mean values (n = 8 observations per treatment mean). The minimal dietary phytase level determined by broken-line analysis using least squares methodology was 1154.8 FTU/kg (Y plateau = 84.72; slope below breakpoint = -0.0178; Adjusted $R^2 = 0.997$).

Exp. 186, Data

Trt	Rep	ID	Fl_gpd	P in feed	_intake_gp	Feces gpd	P in feces	P_out_gpd	ATTD_P	Ca in feed	a intake gp	Ca in feces	Ca_out_gpd	ATTD Ca	P abs gpd	Ca abs gpd
18601	1	18612	705.64	0.66	4.66	74.74	2.61	1.95	58.11	0.86	6.07	2.30	1.72	71.67	2.71	4.35
18601	2	18616	688.33	0.66	4.54	68.44	2.98	2.04	55.11	0.86	5.92	2.56	1.75	70.40	2.50	4.17
18601	3	18622	664.03	0.66	4.38	59.92	2.08	1.25	71.56	0.86	5.71	1.64	0.98	82.79	3.14	4.73
18601	4	18626	664.76	0.66	4.39	68.72	2.63	1.81	58.81	0.86	5.72	2.52	1.73	69.71	2.58	3.99
18601	5	18634	659.19	0.66	4.35	65.74	2.40	1.58	63.73	0.86	5.67	1.92	1.26	77.73	2.77	4.41
18601	6	18642	607.98	0.66	4.01	75.12	2.29	1.72	57.13	0.86	5.23	2.09	1.57	69.97	2.29	3.66
18601	7	18649	622.02	0.66	4.11	61.46	2.61	1.60	60.93	0.86	5.35	3.14	1.93	63.92	2.50	3.42
18601	8	18651	549.02	0.66	3.62	57.66	2.61	1.50	58.47	0.86	4.72	2.18	1.26	73.38	2.12	3.46
18602	1	18609	713.00	0.36	2.57	57.48	1.74	1.00	61.03	0.48	3.42	1.36	0.78	77.16	1.57	2.64
18602	2	18614	689.49	0.36	2.48	67.48	2.17	1.46	41.01	0.48	3.31	1.91	1.29	61.06	1.02	2.02
18602	3	18620	612.32	0.36	2.20	52.62	2.62	1.38	37.46	0.48	2.94	2.03	1.07	63.66	0.83	1.87
18602	4	18630	637.36	0.36	2.29	62.24	2.32	1.44	37.07	0.48	3.06	1.83	1.14	62.77	0.85	1.92
18602	5	18633	630.41	0.36	2.27	63.44	2.38	1.51	33.47	0.48	3.03	1.88	1.19	60.59	0.76	1.83
18602	6	18640	637.16	0.36	2.29	63.52	2.48	1.58	31.32	0.48	3.06	1.94	1.23	59.71	0.72	1.83
18602	7	18644	572.61	0.36	2.06	51.1	2.35	1.20	41.75	0.48	2.75	1.99	1.02	63.00	0.86	1.73
18602	8	18653	574.03	0.36	2.07	52.48	2.34	1.23	40.57	0.48	2.76	1.93	1.01	63.24	0.84	1.74
18603	1	18613	719.50	0.36	2.59	68.12	1.51	1.03	60.29	0.48	3.45	1.22	0.83	75.94	1.56	2.62
18603	2	18617	650.78	0.36	2.34	75.3	1.44	1.08	53.72	0.48	3.12	1.15	0.87	72.28	1.26	2.26
18603	3	18623	679.89	0.36	2.45	57.38	1.54	0.88	63.90	0.48	3.26	1.17	0.67	79.43	1.56	2.59
18603	4	18631	662.91	0.36	2.39	66.12	1.58	1.04	56.22	0.48	3.18	2.24	1.48	53.45	1.34	1.70
18603	5	18636	584.40	0.36	2.10	49.54	1.63	0.81	61.62	0.48	2.81	2.03	1.01	64.15	1.30	1.80
18603	6	18643	586.63	0.36	2.11	54.62	1.30	0.71	66.38	0.48	2.82	0.97	0.53	81.18	1.40	2.29
18603	7	18645	577.73	0.36	2.08	49.54	1.58	0.78	62.37	0.48	2.77	0.84	0.42	84.99	1.30	2.36
18603	8	18654	566.57	0.36	2.04	43.84	1.49	0.65	67.97	0.48	2.72	1.35	0.59	78.24	1.39	2.13
18604	1	18608	674.43	0.36	2.43	56.84	1.43	0.81	66.52	0.51	3.44	1.45	0.82	76.04	1.62	2.62
18604	2	18618	686.09	0.36	2.47	63.34	1.36	0.86	65.12	0.51	3.50	1.61	1.02	70.86	1.61	2.48
18604	3	18624	707.24	0.36	2.55	71.16	1.48	1.05	58.64	0.51	3.61	0.72	0.51	85.80	1.49	3.09
18604	4	18627	679.16	0.36	2.44	65.66	1.31	0.86	64.82	0.51	3.46	0.59	0.39	88.82	1.58	3.08
18604	5	18635	639.17	0.36	2.30	56.22	1.37	0.77	66.53	0.51	3.26	0.72	0.40	87.58	1.53	2.85
18604	6	18639	636.41	0.36	2.29	53.56	1.55	0.83	63.76	0.51	3.25	1.11	0.59	81.68	1.46	2.65
18604	7	18646	579.58	0.36	2.09	36.02	1.38	0.50	76.18	0.51	2.96	1.37	0.49	83.31	1.59	2.46
18604	8	18655	568.39	0.36	2.05	46.08	1.82	0.84	59.01	0.51	2.90	1.31	0.60	79.18	1.21	2.30
18605	1	18611	618.01	0.36	2.22	77.42	1.33	1.03	53.72	0.56	3.46	0.83	0.64	81.43	1.20	2.82
18605	2	18619	697.22	0.36	2.51	74.02	1.36	1.01	59.89	0.56	3.90	0.79	0.58	85.02	1.50	3.32
18605	3	18621	688.29	0.36	2.48	56.46	1.29	0.73	70.61	0.56	3.85	0.84	0.47	87.70	1.75	3.38
18605	4	18629	620.25	0.36	2.23	48.28	0.93	0.45	79.89	0.56	3.47	1.20	0.58	83.32	1.78	2.89
18605	5	18632	613.02	0.36	2.21	58.42	1.04	0.61	72.47	0.56	3.43	0.74	0.43	87.41	1.60	3.00
18605	6	18641	614.70	0.36	2.21	46.42	1.30	0.60	72.73	0.56	3.44	0.72	0.33	90.29	1.61	3.11
18605	7	18648	598.94	0.36	2.16	50.52	1.38	0.70	67.67	0.56	3.35	0.88	0.44	86.75	1.46	2.91
18605	8	18650	539.04	0.36	1.94	45.7	1.15	0.53	72.92	0.56	3.02	1.55	0.71	76.53	1.42	2.31
18606	1	18610	701.68	0.35	2.46	77.98	1.10	0.86	65.07	0.53	3.72	0.63	0.49	86.79	1.60	3.23
18606	2	18615	572.75	0.35	2.00	57.68	1.15	0.66	66.91	0.53	3.04	1.09	0.63	79.29	1.34	2.41
18606	3	18625	612,65	0.35	2.14	55.72	1.03	0.57	73.23	0.53	3.25	0.64	0.36	89.02	1.57	2.89
18606	4	18628	629,67	0.35	2.20	54.42	0.98	0.53	75.80	0.53	3.34	0.69	0.38	88.75	1.67	2.96
18606	5	18637	640.88	0.35	2.24	70.12	1.00	0.70	68.74	0.53	3.40	1.04	0.73	78.53	1.54	2.67
18606	6	18638	579.88	0.35	2.03	87.64	0.99	0.87	57.25	0.53	3.07	0.80	0.70	77.19	1.16	2.37
18606	7	18647	606.39	0.35	2.12	49.74	1.22	0.61	71.41	0.53	3.21	0.60	0.30	90.71	1.52	2.92
18606	8	18652	542.18	0.35	1.90	47.62	1.36	0.65	65.87	0.53	2.87	0.80	0.38	86.74	1.25	2.49
	-	_	_													

FEEDAP UNIT

ANNEX C 1

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Trial ID: Experiment 186 Start date and exact duration of the stud Number of treatment groups (+ control(s	Location: (b) (4)
	v .luna 16 2009 for 2 weeks
lumber of treatment groups (+ control/s	7. Can 10, 2005 for 2 weeks
vulliber of treatment groups (+ control(s)): 6 Replicates per group: 8
Total number of animals: 48	Animals per replicate: 1 per Trt Group
Dose(s) of the additive/active substance water)	(s)/agent(s) (mg/Units of activity/CFU kg ⁻¹ complete feed/L ⁻¹
Intended: 500, 1000, 2000, & 4000 FYT/kg Complete Feed	Analysed: 440, 958, 1743, & 3974 FYT/kg
Substances used for comparative purpor	
Intended dose:	Analysed:
Animal species/category: Swine	
Breed: PIC	Identification procedure: Ear Notch
Sex: Barrows Age at start: 6	6-7 Weeks Body weight at start: 13.5 kg
Physiological stage: Weanling Pigs	General health: Excellent
Additional information for field trials:	
Location and size of herd or flock: 240 : Feeding and rearing conditions: Individ Method of feeding: Limit Feeding	
Diets (type(s)): Typical Commercial Corn	n-Say Diet
Presentation of the diet: Mash D	☑ Pellet ☐ Extruded ☐ Other
Composition (main feedingstuffs): Corn,	Soybean meal, & Soy oil
Nutrient content (relevant nutrients and	energy content)
Commercial Strategies and Commercial Strateg	6 in Others; P-PC70 & 0.39 % in Others - ME-3500 Mcal/kg
Analysed values: Ca - PC-0.86 NC-0.48	
	& 0.36, 0.36, 0.36 & 0.35% in Test Diets
Date and nature of the examinations per	formed: None
Method(s) of statistical evaluation used:	SAS UNIVARIATE & Proc Mixed Procedures
Therapeutic/preventive treatments (reas	on, timing, kind, duration): None
The state of the s	The state of the s
liming and prevalence of any undesirab	

¹ Please submit this form using a common word processing format (e.g. MS Word).

Annex 6

Evaluation of graded amounts of a microbial phytase on the faecal digestibility and excretion of phosphorus, calcium and zinc in growing pigs

REPORT No. 2500672

REPORT No. 2500672 Regulatory Document

Document Date: 10-Jun-2009

Author(s): Guggenbuhl P, Simões Nunes C, Piñón Quintana A, Portier C, Kurtz N and

Lehmann A

Title: Evaluation of graded amounts of a microbial phytase on the faecal digestibility

and excretion of phosphorus, calcium and zinc in growing pigs.

6106 Project No.

Compound No.

Summary

The aim of the present study (S 05-08 VN) was to evaluate the effects of graded amounts of a microbial phytase (IPA) on the digestibility

of phosphorus (P), calcium (Ca) and zinc (Zn) in the growing pig.

The basal diet, without addition of mineral P, was based on soybean meal, maize and barley. IPA phytase was included in the diet at the levels of 500 U/kg, 1000 U/kg, 1500 U/kg, 1750 U/kg, 2000 U/kg, 2500 U/kg and 3000 U/kg. A dietary treatment was based in the very slightly modified control diet containing the recommended available P by addition of dicalcium phosphate (diCa-P).

The mean P faecal concentration of the enzyme supplemented animals was significantly lower than that observed for the animals ingesting the control diet.

All the phytase inclusion levels increased the bioavailability of P and accordingly reduced the growing pig quantitative faecal excretion of

P comparatively to the basal diet.

The P digestibility was dose dependent and highly significantly improved by 21.1, 28.5, 30.5, 32.0, 32.2, 37.3 and 38.7 % in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively. The digestibility of P in the diCa-P supplemented diet was also significantly higher than that of the control.

The faecal excretion of P was significantly reduced by 29.3, 40.1, 42.8, 45.8, 45.6, 53.0, and 55.2 % with IPA phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively. It was increased by 10.1 % with the diCa-P supplemented

The P equivalencies, considered as supplemental P digested comparatively to the non-supplemented control of 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg were 0.91, 1.22, 1.30, 1.32, 1.36, 1.56 and 1.60 g of full available P/kg feed respectively. In comparison the P equivalency of the diCa-P supplemented diet was 1.70 g of full available P/kg feed.

Ca and Zn digestibilities were significantly improved by all the inclusion levels of the phytase.

It can be concluded that the IPA phytase improved the digestibility and the apparent absorption of P, Ca and Zn, and reduced the P faecal excretion in the pig fed on a diet containing P exclusively from vegetable origin.

There was a dose dependant increase of the effects of the enzyme on the availability of the dietary P.

This report consists of 22 pages

Distribution

Dr. J. Broz, NRD/CA

Dr. M. Eggersdorfer, NRD

Dr. F. Fru, NRD/PA

Dr. A.M. Klünter, NRD/CA

Dr. J. Pheiffer, NRD/PA

Dr. J.-P. Ruckebusch, ANH/EE

Dr. G. Kau, NBD/A

Dr. J.-F. Hecquet, NBD/RA-GM

Dr. E. Schmidt Marcussen, Novozymes A/S

Date

Approved

Signature Name Main Author

Dr. P. Guggenbuhl, NRD/CA

Principal Scientist / Competence Mgr

Dr. C. Simões Nunes, NRD/CA Research Center Head

Dr. A.-M. Klünter, NRD/CA Project Manager 15.06-07 Dr. F.Fru, NRD/PA

Regulatory Document

DSM Nutritional Products Ltd

Nomenclature and Structural Formula (if available)

Liquid form IPA phytase expressed in Aspergillus oryzae, batch PPQ27987, activity at pH 5.5 of 24850 U/g.

1. INTRODUCTION

The aim of the present study (S 05-08 VN) was to evaluate the effects of graded amounts of a microbial phytase (IPA) on the digestibility of phosphorus (P), calcium (Ca) and zinc (Zn) in the growing pig. The basal diet, without addition of mineral P, was based on soybean meal, maize and barley. IPA phytase was included in the diet at the levels of 500 U/kg, 1000 U/kg, 1500 U/kg, 1750 U/kg, 2000 U/kg, 2500 U/kg and 3000 U/kg. A dietary treatment was based in the very slightly modified control diet containing the recommended available P by addition of dicalcium phosphate (diCa-P).

The experiment was performed in March-April 2008 in the facilities of the Centre de Recherche en Nutrition Animale (CRNA), DSM Nutritional Products France, BP 170, 68305 Saint-Louis cedex, France. It has been performed according to the French legal regulations on experiments with live animals.

2. MATERIAL AND METHODS

2.1. Test enzymes

The used IPA phytase was expressed in *Aspergillus oryzae*, batch PPQ27987, had an activity at pH 5.5 of 24850 U/g and was in a liquid form.

NRD/CM measured the phytase activity in the enzyme preparation and in the feed. One unit of phytase is defined as the quantity of enzyme which sets free 1 µmole of inorganic phosphate per minute from 0.005 moles per litre sodium phytate at pH 5.5 and at 37°C.

2.2. Animal trial

Thirty six Large White \times Landrace pigs having an initial body weight of 19.06 \pm 1.82 kg were used. The animals were housed in floor-pen cages in 9 groups of 4 animals each in an environmentally controlled room. Each pen had a plastic-coated welded wire floor and was equipped with two water nipples and four stainless-steel individualised feeders. Room temperature was 21-22° C and humidity percentage was 50 %.

The pigs were fed a basal diet without addition of mineral P (diet A) during an adaptive period of 16 days. After that period they were allocated into 9 equal groups and fed for 12 days the basal diet (group A) or the diet A supplemented with 12 g/kg of dicalcium phosphate (group B) or with IPA phytase at the levels of 500 U/kg (group C), 1000 U/kg (group D), 1500 U/kg (group E), 1750 U/kg (group F), 2000 U/kg (group G), 2500 U/kg (group H), 3000 U/kg (group I).

The basal diet A was formulated to provide P exclusively from vegetable origin and to meet, with the exception of the available P supply, the animals' requirements according to Henry *et al.* (1989) and NRC (1998). The basal diet A (table 1) had a theoretical P content of 0.41 % and an analysed content of 0.42 %. The theoretical available P in the diet was 1.20 g/kg and the observed availability of 1.24 g/kg.

An indigestible tracer (chromium oxide) was added at a concentration of 0.4 % to all the diets allowing calculation of the digestibility of P, Ca and Zn. The feed was distributed ad libitum in mash form, under pen feed consumption control, and the animals had free access to drinking water. The digestibility of Ca was not corrected for Ca intake with the drinking water. Mean Ca content of the drinking water in the region is 120 mg/L.

Regulatory Document
DSM Nutritional Products Ltd

Page 3 of 22

Faecal P, Ca, Zn and Cr concentrations were measured at the 12th day of the second period. Faeces were sampled individually, in approximately the same amount at the same time of the day, during the last 3 days preceding that date. Thus, for each dietary treatment and for each criterion a total of 12 individual determinations have been performed. All minerals were determined according to standard Association of Official Analytical Chemists (1990) methods using a Vista-MPX ICP-OES spectrometer (Varian Australia Pty Ltd, Mulgrave Victoria, 3170 Australia). The apparent digestibility (% of the intake) of the minerals was calculated for the mentioned 3 day period.

2.3. Statistical analysis

Statistical treatment of the results involved the calculation of the mean and of the standard deviation of the mean as well as a two-factor hierarchical analysis of variance. The mathematical model was:

Yijk =
$$\mu$$
+Ai+Bij+Zijk,

where μ is the mean, Ai is the diet effect, Bij is the combined effect of the diet and animal or pen and Zijk is the residual term. The analysis of variance was followed by a Duncan multiple range test when a significant Ai effect without Bij effect was observed (Snedecor and Cochran, 1989). These calculations were performed using StatGraphics Plus 5.1 (Manugistics, Rockville, U.S.A. 2001).

3. RESULTS

3.1. Phytase and animals

The observed IPA phytase activity in the supplemented feed used was in general in excellent agreement with the programmed inclusion levels (table 2).

The animals grew normally during the observation period to reach a final mean body weight of 44.84 ± 3.37 kg. Their daily weight gain was of 679 ± 5 g. No mortality was observed during the experiment.

Two animals from group H, receiving the diet supplemented with IPA phytase at 2500 U/kg presented diarrhoea during the sampling period, so that no faeces could be collected from them. No statistical analysis was performed for this group as the total amount of faeces samples was only the half (n = 6) of the other groups (n = 12).

3.2. Effects on phosphorus

The mean P faecal concentration of the enzyme supplemented animals was very significantly lower than that measured in the animals ingesting the control diet (table 3). There was a decrease of the P faecal concentration with the increasing allowance of IPA phytase. The lowest P faecal concentration was observed in the animals ingesting IPA phytase at 3000 U/kg feed.

The P digestibility was dose dependent and highly significantly improved by 21.1, 28.5, 30.5, 32.0, 32.2, 37.3 and 38.7 percentage units in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg IPA phytase supplemented groups respectively (table 4, figure 2).

The digestibility of P in the diCa-P supplemented diet was also significantly higher than that of the control by 17.9 percentage units and very similar to the enzyme supplementation at 500 U/kg.

Regulatory Document
DSM Nutritional Products Ltd

Page 4 of 22

The faecal excretion of P was significantly reduced by 29.3, 40.1, 42.8, 45.8, 45.6, 53.0, and 55.2 % with IPA phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively. It was increased by 10.1 % with the diCa-P supplemented group (table 5, figure 2).

The apparent absorbed P was 2.15, 2.45, 2.54, 2.56, 2.60, 2.80 and 2.84 g/kg feed with IPA phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively and 2.93 g/kg feed in the diCa-P supplemented group. It was significantly increased in all the supplemented groups in comparison to the control diet (1.24 g/kg). With the exception of the IPA phytase 500 U/kg inclusion level, all other supplemented groups were over the recommended requirements of 2.25 g of digestible P per kg feed (Ernandoréna et al., 2008).

The P equivalencies, considered as supplemental P digested comparatively to the non-supplemented control, of 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg of IPA phytase were 0.91, 1.22, 1.30, 1.32, 1.36, 1.56 and 1.60 g of full available P/kg feed respectively (table 6, figure 3). In comparison the P equivalency of the diCa-P supplemented diet was 1.70 g of full available P/kg feed.

In the present study, using the equation of the tendency curve the calculated inclusion level to reach 1.5 g of full available P/kg feed was 2412 U/kg feed of IPA phytase ($y = 48.982e^{2.5978x}$, R² = 0.9597).

3.3. Effects on calcium

The Ca faecal concentration of the animals ingesting the basal diet supplemented or not with diCa-P was systematically higher than that of the animals ingesting the diets supplemented with the phytase (table 7). The observed differences were statistically significant for all the enzyme supplemented groups.

The Ca digestibility was significantly improved by the phytase and by all the inclusion levels of IPA phytase (table 8, figure 4). The improvements were 8.6, 12.8, 12.6, 15.5, 15.1, 26.5 and 21.6 percentage units in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg IPA phytase supplemented groups respectively.

The Ca digestibility of the IPA phytase supplemented diets was more or less dose dependant.

The faecal excretion of Ca was significantly reduced by 23.9, 34.6, 36.8, 42.3, 41.7, 67.9, and 57.0 % with IPA phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively. It was increased by 12.1 % with the diCa-P supplemented group (table 9, figure 5).

3.3. Effects on zinc

The Zn faecal concentration of the animals ingesting the non-supplemented control diet was systematically higher than that of the animals ingesting the diets supplemented with phytase with the exception of the two highest dosage of IPA phytase (table 10). The observed differences were not statistically significant for all the supplemented groups.

The Zn digestibility was significantly improved by the phytase for all inclusion levels in comparison to the basal diet (table 11). The Zn digestibility of the IPA phytase supplemented diets presented high biological variations from one group to the others giving no regularity in the dose curve.

Regulatory Document
DSM Nutritional Products Ltd

Page 5 of 22

The faecal excretion of Zn was significantly reduced in the phytase supplemented groups (table 12). IPA phytase presented inconsistency in the faecal Zn excretion reduction in regard to the increasing inclusion levels.

4. CONCLUSION

It can be concluded that the IPA phytase improved the digestibility and the apparent absorption of P, Ca and Zn, and reduced the P faecal excretion in the pig fed on a diet containing P exclusively from vegetable origin. There was a dose dependant effect of the IPA phytase on the availability of the dietary P.

Table 1 - Composition (%) of the basal diet (A) and of that supplemented with diCa-P (B)

INGREDIENTS	Basal diet A without P (%)	Basal diet B with diCa-P (%)
Maize	53	53
Soybean meal	18	18
Barley	13.9	13
Oat meal	6	6
Wheat bran	5.4	5.4
Soya oil	1	1
diCa-P	-	1.2
Minerals (1), vitamins and synthetic aa	2.7	2.4
Crude protein - N x 6.25 - %	15.5	15.5
Lysine - %	0.96	0.96
Methionine + cystine - %	0.54	0.54
Ca - calculated - % in DM	0.66	0.86
Ca - analysed in - % in DM	0.70	0.80
P - calculated - % in DM	0.41	0.65
P - analysed - % in DM	0.42	0.62
Theoretically available P - %	0.12 (2)	1.86 (3)
Phytic-P - calculated - %	0.28	0.28
Estimated digestible energy - MJ / kg	13.31	13.31
Phytase activity - U ⁽⁴⁾ / kg	225 ± 4	219 ± 4

⁽¹⁾ Mixture without mineral P;

⁽²⁾ Estimated from the mean P digestibility of the previous realized trials
(3) Sum of the theoretically available P and 80 % of added mineral P as generally accepted

⁽⁴⁾ Quantity of enzyme that sets free 1 µmole of inorganic phosphate per minute from 0.005 mole per litre sodium phytate at pH 5.5 and at 37°C.

Table 2 - Phytase activity (U(a)/kg) and % of the target in the different diets.

Treatment groups	Basal Diet	Basal Diet + diCa-P			IP.	A phytas	se		
	A	В	C	D	E	F	G	Н	1
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000
Measured phytase addition (U/kg) (1)	225 ± 4	219 ± 4	678 ± 6	1179 ± 24	1723 ± 13	1985 ± 8	2232 ± 34	2798 ± 35	3329 ± 54
Actually added phytase (U/kg)	-	-	453	954	1498	1760	2007	2573	3104
% of target	-		91	94	100	101	100	103	103

Quantity of enzyme that sets free 1 μ mole of inorganic phosphate per minute from 5 mM sodium phytate at pH 3.2 and at 37°C. (1) Mean \pm standard deviation of 2 determinations.

Table 3 - Effects of the IPA phytase on the faecal concentration of phosphorus in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P			IP	A phyta	se		
(11 – 12)	A	В	C	D	E	F	G	Н	1
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000
Faecal P concentration (%of DM) (1)	1.59 ± 0.25	1.67 ± 0.37	1.19 ± 0.13	1.08 ± 0.10	0.97 ± 0.10	0.99 ± 0.17	0.94 ± 0.14	0.86 ⁽²⁾ ± 0.18	0.83 ± 0.18
Variation from A (%)	100	105.6	74.8	68.2	61.4	62.2	59.2	54.5	52.6
			Statis	stical analys	is		100	FE 1	
	A-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
			C-	NS	NS	NS	P<0.05		P<0.001
				D-	NS	NS	NS		P<0.05
					E-	NS	NS		NS
						F-	NS		NS
							G-		NS
								H-	100

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations.

Table 4 - Effects of the IPA phytase on the total apparent digestibility of phosphorus in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P			IP	A phyta	se		
(11 - 12)	A	В	C	D	E	F	G	Н	1
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000
Faecal P digestibility (%) (1)	29.3 ± 5.5	47.2 ± 7.9	50.4 ± 5.6	57.8 ± 3.9	59.8 ± 3.5	61.3 ± 3.9	61.5 ± 3.3	66.6 ⁽²⁾ ± 4.2	68.0 ± 6.2
Variation from A (%)	-	61.0	72.2	97.5	104.1	109.2	110.0	127.2	132.0
			Statis	stical analys	is				
	A-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
		B-	NS	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
				D-	NS	NS	NS		P<0.001
					E-	NS	NS		P<0.001
						F-	NS		P<0.05
							G-		P<0.05
					En all			H-	

Regulatory Document
DSM Nutritional Products Ltd

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations. NS: non significant

Table 5 - Effects of the IPA phytase on the faecal excretion of phosphorus in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P			IP	A phyta:	se		
(11 - 12)	A	В	C	D	E	F	G	Н	1
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000
Faecal P excretion (mg/g DM) ⁽¹⁾	2.99 ± 0.23	3.29 ± 0.49	2.11 ± 0.24	1.79 ± 0.16	1.71 ± 0.15	1.62 ± 0.16	1.63 ± 0.14	1.40 ⁽²⁾ ± 0.18	1.34 ± 0.26
Variation from A (%)	100	110.1	70.7	59.9	57.2	54.2	54.4	47.0	44.8
		Table 1881	Statis	tical analys	is				
	A-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
The Land Andrews		TO BE THE		D-	NS	NS	NS		P<0.001
					E.	NS	NS		P<0.001
						F-	NS	\$23 B	P<0.05
							G-		P<0.05
								H-	Berry

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations. NS: non significant

Figure 1

Effects on phosphorus total digestibility of graded amounts of IPA phytase in growing pigs

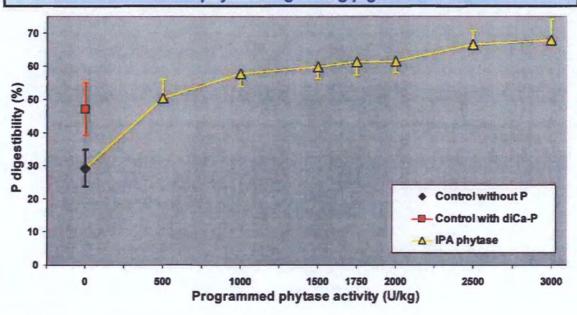


Figure 2

Effects on phosphorus faecal excretion of graded amounts of IPA phytase in growing pigs

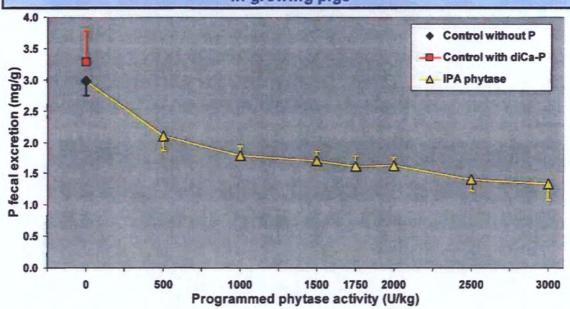


Table 6 - Phosphorus equivalencies (g of full available supplemental P per kg of feed comparatively to the nonsupplemented control) of the IPA phytase in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet	Basal Diet + diCa-P			IP	A phyta	se		
	A	В	C	D	E	F	G	Н		
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000	
P equivalence (g/kg feed)	0.00 ± 0.23	1.70 ± 0.49	0.91 ± 0.24	1.22 ± 0.16	1.30 ± 0.15	1.32 ± 0.16	1.36 ± 0.14	1.56 ⁽²⁾ ± 0.18	1.60 ± 0.26	
P eq. variation from C (%)	-	-	100	133.5	143.1	145.2	149.3	171.0	175.7	
			Statis	tical analys	is				100	
	A -	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001	
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		NS	
			C-	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001	
				D-	NS	NS	NS		P<0.001	
				F. 10 12 12 12 12 12 12 12 12 12 12 12 12 12	E-	NS	NS		P<0.05	
						F-	NS		P<0.05	
							G-		NS	
								H-		

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean ± standard deviation of the mean of 12 determinations.

Figure 3

Effects on phosphorus equivalency of graded amounts of IPA phytase in growing pigs

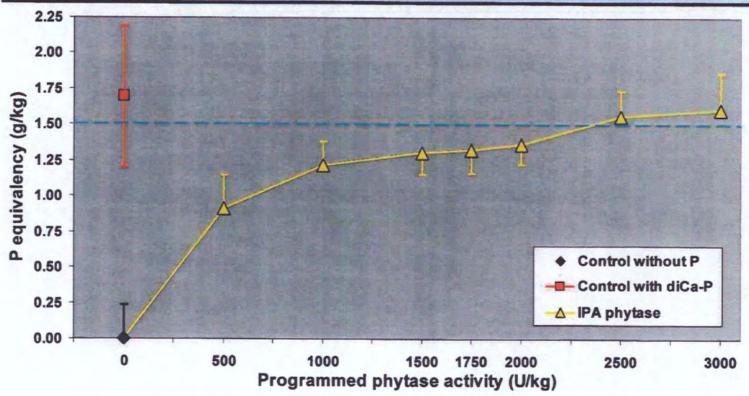


Table 7 - Effects of the IPA phytase on the faecal concentration of calcium in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P			IP	A phyta	se						
	A	В	C	D	E	F	G	Н	1				
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000				
Faecal Ca concentration (% of DM) ⁽¹⁾	1.48 ± 0.30	1.58 ± 0.38	1.18 ± 0.20	1.09 ± 0.21	1.00 ± 0.22	0.97 ± 0.16	0.93 ± 0.15	0.54 ⁽²⁾ ± 0.17	0.74 ± 0.30				
Variation from A (%)	100	106.9	79.8	73.7	67.6	65.5	63.0	36.7	49.8				
			Statis	stical analys	is								
	A -	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001				
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001				
			C-	NS	NS	NS	NS		P<0.001				
				D-	NS	NS	NS		P<0.05				
					E-	NS	NS		NS				
						F-	NS		NS				
							G-		NS				
								H-					

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean ± standard deviation of the mean of 12 determinations.

(2) Mean ± standard deviation of the mean of 6 determinations. NS: non significant

Table 8 - Effects of the IPA phytase on the total apparent digestibility of calcium in the growing pig.

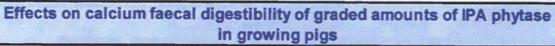
Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P			IP	A phyta	se		
	A	В	C	D	E	F	G	Н	
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000
Faecal Ca digestibility (%) (1)	60.2 ± 3.7	61.1 ± 7.1	68.8 ± 5.9	73.0 ± 5.8	72.8 ± 5.5	75.7 ± 3.6	75.3 ± 2.7	86.7 ⁽²⁾ ± 4.2	81.8 ± 7.9
Variation from A (%)	100	101.5	114.3	121.2	120.9	125.7	125.1	143.9	135.8
			Statis	stical analys	is				
	A -	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
			C-	NS	NS	P<0.05	P<0.05		P<0.001
				D-	NS	NS	NS		P<0.001
					E-	NS	NS		P<0.001
la se						F-	NS		NS
							G-		NS
					NAME OF			H-	

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations.

Table 9 - Effects of the IPA phytase on the faecal excretion of calcium in the growing pig.


Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P			IP	A phyta	se		
	A	В	C	D	E	F	G	Н	1
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000
Faecal Ca excretion (mg/g DM) ⁽¹⁾	2.77 ± 0.26	3.11 ± 0.57	2.11 ± 0.40	1.81 ± 0.39	1.75 ± 0.35	1.60 ± 0.23	1.62 ± 0.18	0.89 ⁽²⁾ ± 0.28	1.19 ± 0.52
Variation from A (%)	100	112.1	76.1	65.4	63.2	57.7	58.3	32.1	43.0
			Statis	stical analys	is				
	Α-	P<0.05	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	m n	P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
			C-	NS	NS	P<0.05	P<0.05		P<0.001
				D-	NS	NS	NS		P<0.001
					E-	NS	NS		P<0.05
						F-	NS		NS
							G-		NS
								H-	

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean ± standard deviation of the mean of 12 determinations.

(2) Mean ± standard deviation of the mean of 6 determinations.

Figure 4

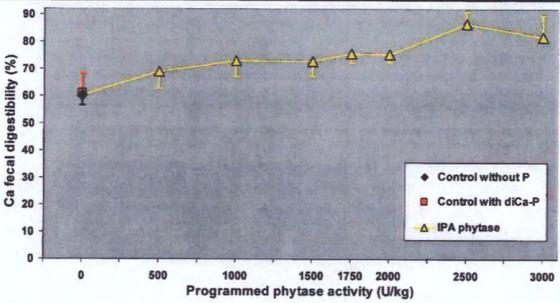


Figure 5

Effects on calcium faecal excretion of graded amounts of IPA phytase in growing pigs

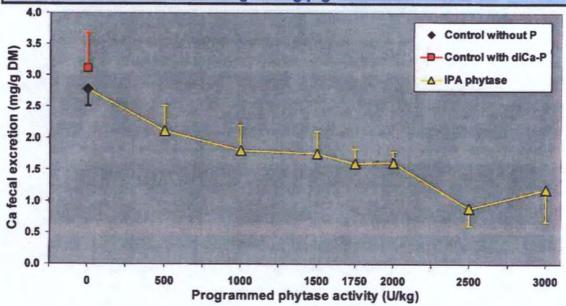


Table 10 - Effects of the IPA phytase on the faecal concentration of zinc in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P	IPA phytase								
	A	В	C	D	E	F	G	Н	1		
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000		
Faecal Zn concentration (% of DM) ⁽¹⁾	0.48 ± 0.09	0.46 ± 0.11	0.40 ± 0.06	0.45 ± 0.04	0.42 ± 0.06	0.42 ± 0.06	0.44 ± 0.06	0.49 ⁽²⁾ ± 0.06	0.49 ± 0.08		
Variation from A (%)	100	96.0	83.4	93.5	89.0	89.2	92.1	103.1	102.9		
		124	Statis	stical analys	is	Les se					
			No si	gnificant dif	ferences be	tween the g	roups				

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean ± standard deviation of the mean of 12 determinations.

(2) Mean ± standard deviation of the mean of 6 determinations.

Table 11 - Effects of the IPA phytase on the total apparent digestibility of zinc in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet	Basal Diet	Basal Diet	Basal Diet + diCa-P			IP	A phytas	se		
	A	В	C	D	E	F	G	Н				
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000			
Faecal Zn digestibility (%) (1)	11.4 ± 5.6	16.7 ± 9.4	25.5 ± 7.0	21.4 ± 6.5	17.3 ± 8.7	25.0 ± 6.2	21.6 ± 4.8	17.5 ⁽²⁾ ± 3.7	18.1 ± 9.7			
Variation from A (%)	100	146.8	223.6	187.8	151.5	119.1	189.3	153.5	158.4			
			Statis	stical analysi	s				Refer			
	A -	NS	P<0.001	P<0.001	P<0.05	P<0.001	P<0.001		P<0.05			
		B-	P<0.05	NS	NS	P<0.05	NS		NS			
			C-	NS	NS	NS	NS		NS			
				D-	NS	NS	NS		NS			
					E-	NS	NS		NS			
			TO VETE			F-	NS		NS			
							G-		NS			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					A MARKET			H-				

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations.

Table 12 - Effects of the IPA phytase on the faecal excretion of zinc in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P				(b) phyta	se		
(11 – 12)	A	В	C	D	E	F	G	Н	
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000
Faecal Zn excretion (mg/g DM) ⁽¹⁾	0.086 ± 0.005	0.083 ± 0.009	0.070 ± 0.007	0.074 ± 0.006	0.074 ± 0.008	0.070 ± 0.006	0.076 ± 0.005	0.080 ⁽²⁾ ± 0.004	0.078 ± 0.009
Variation from A (%)	100	97.1	81.6	85.6	86.3	81.1	88.2	93.1	91.2
			Statis	stical analys	is			New York	
	Α-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.05
			C-	NS	NS	NS	NS		NS
			NOTE THE PERSON	D-	NS	NS	NS		NS
					E-	NS	NS		NS
						F-	NS		NS
							G-		NS
		F 32 70 12 1						H-	

NS: non significant

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations.

REFERENCES

Association of Official Analytical Chemists, 1990. Official methods of analysis. 15th edition, Association of Official Analytical Chemists, Arlington.

Ernandoréna, V., Gaudré, D., Granier, R. 2008. Quelle teneur en phosphore digestible alimentaire retenir pour le porc en phases de croissance et de finition ? 40es Journées de la Recherche Porcine, Paris.

Henry Y., Perez J.M., Sève B., 1989. In: L'alimentation des animaux domestiques - porc, lapin, volailles (ed. INRA), 2ème édition, INRA, Paris, 49-76.

NRC, 1998. Nutrient requirements of swine, 10th revised edition, National Academic Press, Washington.

Snedecor G.W., Cochran W.G., 1989. Statistical methods, 8th edition, Iowa University Press, Ames.

Diet	Treatment	Pig	P conc feces	DIESTIBLY	EXBETION	EOY
A1		178	19.187	31.7	2.886	0.102
A1		241	15.024	25.0	3.168	-0.181
A1	Δ.	236	16.071	31.0	2.916	0.072
A1		223	13.467	27.4	3.066	-0.079
	Gntrol without		0.533.576.5	31.1	0.0000	
A1	2	178	16.404	2.77	2.912	0.075
A1	至	241	15.654	30.0	2.957	0.030
A1	>	236	17.975	24.2	3.202	-0.214
A1	=	223	16.308	24.6	3.185	-0.198
A1	5	178	16.587	34.6	2.761	0.226
A1	=	241	11.013	39.2	2.570	0.417
A1	0	236	12.479	34.8	2.756	0.231
A1		223	20.102	17.9	3.470	-0.482
B2	-	176	13.837	54.5	2.833	2.153
B2		234	18.579	43.4	3.523	1.462
B2		175	13.603	58.0	2.613	2.373
B2	69	189	15.302	47.8	3.251	1.734
	Ontrol with di-GP	4.000000	7.2 (3) (4)	2 2 4 5 7 5 7 5	77.757.75	
B2	ਰ	176	18.533	43.6	3.510	1.476
B2	5	234	17.179	46.5	3.328	1.658
B2	=	175	15.308	54.3	2.844	2.142
B2	>	189	13.966	51.2	3.036	1.950
B2	0	176	29.555			
B2	5	234	17.068	45.7	3.377	1.609
B2	25	175	26.962	26.5	4.571	0.415
B2		189	13.884	47.1	3.291	1.695
C3	U/kg	225	9.399	55.9	1.878	1.144
C3	*	217	12.208	54.1	1.954	1.068
C3	2	197	11.358	51.5	2.065	0.958
C3	phytase 500	235	13.257	38.0	2.642	0.381
	20				1.50	
C3	0	225	12.841	43.7	2.398	0.625
C3	S	217	11.169	56.5	1.851	1.171
C3	ta ta	197	10.128	55.0	1.916	1.106
C3	>	235	11.057	53.4	1.987	1.035
C3	4	225	14.088	47.8	2.222	0.800
C3		217	12.227	54.5	1.938	1.085
C3	IPA	197	12.354	50.4	2.114	0.908
C3	=	235	12.179	44.4	2.369	0.654
D4	N/A	212	8.947	66.0	1.442	1.563
D4	3	232	11.004	56.4	1.849	1.156
D4		237	12.150	56.0	1.866	1.139
	0	100 200		54.4	1.936	1.069
D4	2	208	10.965			
D4	ytase 1000	212	11.029	54.1	1.947	1.058
D4	S	232	10.821	63.0	1.568	1.437
D4	to to	237	9.794	59.0	1.738	1.268
D4		208	12.390	54.9	1.914	1.091
D4	hd	212	9.734	59.7	1.711	1.295
D4		232	11.989	51.9	2.041	0.965
D4	IPA	237	11.100	58.6	1.758	1.247
D4	=	208	9.861	60.1	1.691	1.315
E5	×	198	9.496	61.5	1.638	1.375
E5	U/K	192	8.921	60.9	1.662	1.351
E5		195	9.277	58.5	1.764	1.249
	0	227		58.2	200000000000000000000000000000000000000	1.249
E5	15	100000000000000000000000000000000000000	9.381	V9-51/97	1.777	
E5	C)	198	11.231	56.1	1.868	1.145
E5	S	192	8.647	61.0	1.658	1.355
	2	195	10.438	56.4	1.854	1.159
E5	2	227	12.158	52.4	2.025	0.988
E5		198	9.383	60.8	1.667	1.346
	40		0.004	63.0	1.574	1.439
E5	1 ph	192	8.864		1 1/10/01/	
E5 E5	A ph	192 195	9.039	65.1	1.485	1.528
E5 E5 E5	IPA phytase 1500	195	9.039	65.1 63.8	703.000	
E5 E5 E5 E5 E5		195 227	9.039 10.026	63.8	1.539	1.474
E5 E5 E5 E5 E5 F6		195 227 233	9.039 10.026 9.341	63.8 57.1	1.539 1.792	1.474
E5 E5 E5 E5 E5	750 U/k IPA ph	195 227	9.039 10.026	63.8	1.539	1.474

F6	233	9.422	60.0	1.671	1.270
F6	218 210 202 233	12.510	58.6	1.729	1.212
F6	210	9.288	64.5	1.482	1.459
F6	202	8.302	67.7	1.349	1.593
F6	233	7.052	67.8	1.348	1.594
		9.947	63.5	1.525	1.417
F6	210	9.289	62.3	1.574	1.367
F6	202	9.204	62.3	1.577	1.365
G7	182 186	10.983	60.7	1.659	1.327
		7.560	59.7	1.700	1.286
G7	201 238 182	8.009	63.4	1.547	1.439
G7	238	10.804	55.5	1.881	1.105
		11.341	59.1	1.725	1.260
G7	186	9.281	62.3	1.591	1.394
G7	201	9.497	60.0	1.689	1.297
G7	238	9.942	59.4	1.714	1.272
G7	186 201 238 182	10.900	63.2	1.555	1.431
		8.860	60.2	1.682	1.304
G7	201	7.358	68.4	1.333	1.653
01	230	8.150	66.2	1.427	1.559
19	203	7.513	68.4	1.319	1.621
		10.379	58.1	1.752	1.188
19	216 228 203	8.043	69.0	1.297	1.643
19	228	6.691	75.1	1.040	1.900
		11.186	63.4	1.530	1.410
19	9 191	7.644	73.8	1.096	1.844
19	191 216 228 203	12.326	56.6	1.813	1.127
19	228	7.707	72.9	1.132	1.808
19	203	6.726	70.5	1.231	1.709
		7.081	66.3	1.407	1.533
19	216	8.003	64.6	1.478	1.462
19	228	6.736	76.8	0.970	1.970

Diet	Treatment	Pig	₫ conc feces
A1		178	0.617
A1		241	0.389
A1	0.	236	0.435
A1	Ontrol without P	223	0.358
A1	2	178	
	2		0.526
A1	至	241	0.522
A1	≥	236	0.558
A1	_	223	0.481
A1	2	178	0.498
A1	=	241	0.360
A1	Ø	236	0.382
A1		223	0.591
B2		176	0.416
B2		234	0.472
B2	_	175	0.382
B2	- B	189	0.362
	Ξ.		
B2	ъ	176	0.511
B2	_	234	0.455
B2	=	175	0.394
B2	>	189	0.324
B2	_	176	0.636
B2	=	234	0.445
B2	25	175	0.691
B2	Ontrol with di-GP	189	0.311
C3	0)	225	0.297
	×	217	0.511
C3	2	197	0.432
CO	0		
C3 C3	20	235	0.322
C3	0	225	0.396
C3	S	217	0.433
C3	T.	197	0.350
C3	5	235	0.361
C3	4	225	0.496
C3	_	217	0.429
C3	Z.	197	0.411
C3	U/k IPA phytase 500 U/kg	235	0.332
D4	8	212	0.412
D4	3	232	0.474
D4	0	237	0.532
D4	0		0.432
D4	2	208	
D4	(I)	212	0.449
D4	rtase 1	232	0.434
D4	ta	237	0.389
D4	_	208	0.509
D4	40	212	0.437
D4	-	232	0.407
D4	0	237	0.423
D4	=	208	0.448
E5	8	198	0.370
E5	3	192	0.354
E5	0	195	0.334
E5	0		
	15	227	0.439
E5	O)	198	0.495
E5	S	192	0.311
E5	To the	195	0.462
E5	5	227	0.444
E5	40	198	0.444
E5	=	192	0.381
E5	S.	195	0.453
E5	=	227	0.505
F6	×	233	0.338
	3		
F6	_	218	0.531
FC		040	0.055
F6 F6	750 U/k IPA phytase 1500 U/k IPA ph;	210 202	0.355 0.495

F6	-	233	0.383
F6	0	218	0.493
F6	SE	210	0.435
F6	2	202	0.453
F6	IPA phytase	233	0.345
F6	0	218	0.456
F6	×	210	0.403
F6		202	0.470
G7	N/A	182	0.520
G7	5	186	0.356
G7	9	201	0.356
G7	IPA phytase 2000	238	0.476
G7	~	182	0.504
G7	Se	186	0.440
G7	, co	201	0.367
G7	2	238	0.449
G7	40	182	0.553
G7	=	186	0.406
G7	0	201	0.407
G7	=	238	0.434
19	*	203	0.410
19	2	191	0.539
19	8	216	0.360
19	Ö	228	0.525
19	9	203	0.615
19	Se	191	0.508
19	rtase 3000	216	0.585
19	>	228	0.487
19	d	203	0.477
19	A	191	0.347
19	IPA	216	0.465
19		228	0.569

Diet	Treatment	Pig	& conc feces	DIESTIBLTY	EXRETION
A1		178	21.336	54.0	3.209
A1		241	12.427	62.4	2.621
A1		236	17.477	54.5	3.171
A1	=	223	11.727	61.7	2.670
A1	Ontrol without	178	16.467	58.1	2.924
A1	£	241	13.977	62.1	2.640
A1	2	236	15.386	60.7	2.740
A1		223	14.497	59.4	2.831
A1	2	178	17.083	59.2	2.843
A1	=	241	9.301	68.9	2.170
A1	Ø	236	12.362	60.8	2.730
A1		223	15.809	60.9	2.729
B2		176	13.976	64.2	2.862
B2		234	18.635	55.8	3.534
B2	0.	175	10.803	74.0	2.075
B2	di-iB	189	13.075	65.2	2.778
B2	÷	176	19.201	54.5	3.636
B2	-	234	18.229	55.8	3.531
B2	主	175	14.121	67.2	2.623
B2	Gntrol with	189	11.664	68.3	2.535
B2	-	176	27.817	77,07.5	
B2	E	234	18.470	54.3	3.655
B2	<u> </u>	175	23.651	49.8	4.010
B2	0	189	12.441	63.1	2.949
C3	U/kg	225	7.638	77.5	1.526
C3	1	217	9.837	76.7	1.574
C3)	197	14.526	61.0	2.641
C3	phytase 500	235	12.320	63.7	2.455
C3	2	225	12.918	64.4	2.412
C3	0	217	10.172	75.1	1.686
C3	as	197	10.570	70.5	2.000
C3	2	235	11.404	69.7	2.049
C3	h.	225	13.207	69.2	2.083
C3	Q	217	10.847	74.6	1.719
C3	A	197	14.809	62.6	2.534
C3	IPA	235	13.639	60.8	2.653
D4	2	212	8.469	79.6	1.365
D4	U/k	232	7.761	80.6	1.304
D4		237	10.888	75.1	1.672
D4	9	208	13.246	65.1	2.339
D4	2	212	13.582	64.2	2.398
D4	0	232	9.169	80.2	1.329
D4	ytase 1000	237	8.329	78.0	1.478
D4	7	208	14.545	66.5	2.247
D4		212	11.571	69.7	2.034
D4	IPA ph	232	12.311	68.8	2.034
D4	A	237	9.823	76.8	1.556
D4	9	208	11.296	71.1	1.937
E5		198		67.1	
E5	5	198	12.281		2.118
E5	0	192	7.312 9.466	78.9 72.1	1.362 1.800
	0	227			
E5	15	198	9.605	71.8	1.819
E5 E5	Ф	198	13.378	65.5	2.225
E5	35	192	5.460 12.292	83.8 66.1	1.047 2.184
	75				
E5	\$	227	10.661	72.4	1.776
E5	Q	198	11.869	67.3	2.108
E5	A	192	8.501	76.6	1.509
E5	9	195	10.140	74.2	1.666
E5	U/k IPA phytase 1500 U/k	227	9.186	78.1	1.410
F6	\$	233	9.202	73.2	1.766
	~	218	11.122	77.0	1.514
F6					
F6 F6	750	210 202	9.710 12.653	72.9 69.1	1.788 2.038

F6	-	233	9.337	74.9	1.656
F6	Se	218	11.409	76.1	1.577
F6	CO.	210	7.560	81.7	1.206
F6	phytase	202	10.317	74.6	1.676
F6	4	233	7.299	78.8	1.395
F6	-	218	8.234	80.9	1.262
F6	IPA	210	8.739	77.5	1.481
F6		202	10.832	71.9	1.856
G7	C/k	182	9.346	78.4	1.411
G7		186	7.755	73.4	1.744
G7	2000	201	7.522	77.8	1.452
G7	8	238	10.873	71.1	1.893
G7		182	11.464	73.4	1.744
G7	e e	186	9.151	76.0	1.569
G7	Ö	201	10.123	72.5	1.800
G7	IPA phytase	238	10.358	72.7	1.785
G7	5	182	11.731	74.4	1.673
G7	-	186	8.378	75.7	1.591
G7	6	201	7.316	79.8	1.325
G7		238	8.021	78.5	1.405
19	UK	203	5.349	85.6	0.939
19	2	191	15.007	61.3	2.533
19	9	216	6.003	85.2	0.968
19	3000	228	4.263	89.9	0.663
19		203	9.177	80.8	1.255
19	9	191	5.547	87.8	0.795
19	co.	216	10.626	76.1	1.563
19	phytase	228	5.887	86.8	0.864
19	4	203	3.795	89.4	0.695
19	-	191	8.966	72.8	1.781
19	IPA	216	6.298	82.2	1.163
19	=	228	7.616	83.2	1.097

FEEDAP UNIT

ANNEX C 1

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA phytase		Batch number: PPQ27987
Trial ID: S 05-08 VN		Location:
		DSM Nutritional Products France
		Centre de Recherche en Nutrition
		Animale
		BP 170
		68305 Saint-Louis cedex, France
Start date and exact duration of the study	: March 10th 2	008 - 38 days
Number of treatment groups (+ control(s)): 7 + (2)	Replicates per group: 1
Total number of animals: 36		Animals per replicate: 4
Dose(s) of the additive/active substance(swater)	s)/agent(s) (m	g/Units of activity/CFU kg ⁻¹ complete feed/L ⁻¹
Intended: 0 / 500 / 1000 / 1500 / 1750 / 2000 / 2500 / 3000 U/kg		25 (endogenous activity) / 678 / 1179 / 1723 / / 2798 / 3329 U/kg
•		
Substances used for comparative purpos	es: Dicalcium	phosphate
Intended dose: 12 g per kg of feed. Equivalent to 2.4 g of additional P per kg of feed in a dry matter basis	Analysed: 2 matter basis	.0 g of additional P per kg of feed in a dry
Animal species/category: Swine / growers		
Breed: Large White x Landrace	Identification	n procedure: Pen and individual earring
Sex: Males Age at start: 90	days	Body weight at start: 19.06 ± 1.82 kg
Physiological stage: Growing pigs	General hea	alth: Normal - no clinical signs were observed
Additional information for field trials:		
Location and size of herd or flock:		
Feeding and rearing conditions:		
Method of feeding:		
Diets (type(s)): Basal diet formulated to pr	ovide P exclusi	vely from vegetable origin and according to
Presentation of the diet: Mash	Pellet	☐ Extruded ☐ Other
Composition (main feedingstuffs): Maize -	53%, soybean	meal - 18% and barley - 13.9%
Nutrient content (relevant nutrients and er	nergy content)	
Intended values: Crude protein - 15.5% 0.66% in D.M., P - 0.41% in D.M. and d		
Analysed values: Ca - 0.70% in D.M. and		
Date and nature of the examinations perfo		

¹ Please submit this form using a common word processing format (e.g. MS Word).

FEEDAP UNIT

March 10th and April 17th - weight measurement

March 10th and March 19th - acclimatation period

March 20th and April 4th - 1st period

April 5th and April 17th - 2nd period

April 15th, 16th and 17th - individual faecal sampling

Method(s) of statistical evaluation used: Two-factor analysis of variance (diet and diet + animal or pen) followed by a Duncan multiple range test

Therapeutic/preventive treatments (reason, timing, kind, duration): No therapeutic / preventive treatments were used

Timing and prevalence of any undesirable consequences of treatment: Nothing to report

Date 22.02.2010

Signature Study Director

Dr P. GUGGENBUHL

In case the concentration of the additive in complete feed/water may reflect insufficient accuracy, the dose of the additive can be given per animal day or mg kg body weight or as concentration in complementary feed.

Best Copy Available

Annex 7

Effects of a novel phytase in corn-soybean meal diets fed to growing pigs

REPORT No. 00003283

REPORT No. 00003283 Regulatory Document

Document Date:

9 December, 2009

Author(s):

(b) (4), D.-R. Campbell² and J. Broz³

(b) (4)

³ Animal Nutrition and Health R&D, DSM Nutritional Products Ltd, Basel

Title:

Effects of a novel phytase in corn-soybean meal diets fed to growing pigs

Project No.

6106

Summary

An experiment was conducted in order to measure the effect of a novel phytase (IPA Mash phytase) on the digestibility of P in corn-soybean meal diets fed to growing pigs. Six different diets were formulated for this study. The positive control diet was based on corn and soybean meal and contained dicalcium phosphate to bring the total concentration of P to 0.56%. A negative, low-P control diet was formulated by replacing dicalcium phosphate by corn starch and it contained 0.33% P. Four additional diets were similar to the negative control diet with the exception that IPA Mash phytase was included at 500, 1000, 2000 and 4000 U/kg diet, respectively. A total of 24 growing pigs (mean body weight of 36.2 kg) were used in a 2 period crossover design. Pigs were placed in metabolism cages and randomly allotted to the 6 dietary treatments. After a 5-day adaptation period, faeces were collected for 5 days. The P concentration in faeces was lower (P<0.01) in pigs fed phytase containing diets than in pigs fed the negative control diet. Pigs fed phytase containing diets also had lower (P<0.01) total P output that the control pigs and the inclusion of phytase reduced (linear and quadratic, P<0.01) the excretion of P. The addition of graded levels of phytase resulted in a significant increase of the apparent total tract digestibility of P from 39.8 to 72.8% (linear and quadratic, P<0.01), Phosphorus absorption was greater (P<0.01) in pigs fed the positive control diet than in pigs fed the negative control diets (5.10 vs. 1.94 g/d). Pigs fed phytase containing diets had greater (P<0.01) absorption of P than pigs fed the negative control diet, and P absorption increased (linear and quadratic, P<0.01) as phytase was added to the control diet from 1.94 to 3.66 g/d. Phytase addition to the negative control diet also increased (linear and quadratic, P<0.01) the apparent total tract digestibility of Ca.

This report consists of Pages I – II and 1 – 16, raw data & Annex C

Distribution

Dr. M. Eggersdorfer, NRD Dr. F. Fru, NRD/PA Mr. J.-F. Hecquet, NBD/RG Dr. P. Guggenbuhl, NRD/CA Dr. A.-M. Klünter, NRD/CA Dr. J. Pheiffer, NRD/CA Mr. J.-P. Ruckebusch, ANH/GM Dr. C. Simoes Nunes, NRD/CA Dr. D.-R. Campbell, DNP Parsippany

Approved

Name Main Author	Signature signed by	<u>Date</u>
Dr. J. Broz, NRD/CA	J. Broz	09.12.2009
Principal Scientist / Competence Mgr Dr. J. Broz, NRD/CA	signed by J. Broz	09.12.2009
Research Center Head	signed by	00.12.2000
Dr. AM. Klünter, NRD/CA	AM. Klünter	10.12.2009
Project Manager	signed by	
Dr. F. Fru, NRD/PA	F. Fru	11.12.2009

Regulatory Document
DSM Nutritional Products Ltd

Page I of II

Nomenclature and Structural Formula

IPA phytase (M), enzyme product containing bacterial 6-phytase ((b) (4)), produced by (b) (4) fermentation of a genetically modified Aspergillus oryzae strain. Lot PPQ 28683 was used in this study, manufactured by Novozymes A/S, (b) (4)

Regulatory Document
DSM Nutritional Products Ltd

Page II of II

Running head: Apparent digestibility of P Effects of a novel phytase in corn-soybean meal diets fed to growing pigs (b) (4) (b) (4)

¹ Corresponding author: (b) (4)

ABSTRACT: An experiment was conducted with the objective of measuring the effect of a 17 novel microbial phytase on the digestibility of P in corn soybean meal diets fed to growing pigs. 18 Six diets were formulated. The positive control diet was a corn-soybean meal diet that contained 19 20 dicalcium phosphate to bring the total concentration of P in this diet to 0.56%. A negative control diet was also formulated. This diet was similar to the positive control diet with the exception that 21 22 cornstarch replaced dicalcium phosphate and contained 0.33% P. Four additional diets that were 23 similar to the negative control diet with the exception that microbial phytase (IPA Mash, DSM Nutritional Products, Parsippany, NJ) in the amounts of 500, 1,000, 2,000, and 4,000 units per kg 24 25 was included in the diets were also formulated. A total of 24 growing pigs (initial BW of $36.2 \pm$ 26 4.0 kg) were used in a 2 period crossover design. Pigs were placed in metabolism cages and 27 randomly allotted to the 6 dietary treatments. Fecal materials were collected for 5 d. The P concentration in feces was lower (P < 0.01) for pigs fed phytase containing diets than for pigs 28 29 fed the negative control diet and there was a linear and quadratic reduction (P < 0.01) in fecal P concentration as phytase was included in the diets. Pigs fed phytase containing diets also had 30 31 lower (P < 0.01) total P output than pigs fed the negative control diet, and inclusion of phytase to the negative control diet reduced (linearly and quadratically, P < 0.01) the excretion of P. Pigs 32 fed phytase containing diets had greater (P < 0.01) apparent total tract digestibility (ATTD) of P 33 than pigs fed the negative control diet, and the addition of increasing levels of phytase to the 34 negative control diet increased the ATTD of P from 39.83 to 72.76% (linear and quadratic, P < 35 36 0.01). Phosphorus absorption was greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet (5.10 vs. 1.94 g/d). Pigs that were fed phytase containing diets 37 had greater (P < 0.01) absorption of P than pigs fed the negative control diet, and P absorption 38 increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet from 39

40	1.94 to 3.66 g/d. The addition of phytase to the negative control diet also increased (linear and
41	quadratic, $P < 0.01$) the ATTD of Ca. Pigs fed phytase containing diets had greater ($P < 0.01$) Ca
42	absorption than pigs fed the negative control diet. In conclusion, IPA Mash improved the ATTD
43	of P and Ca and reduced P excretion. At levels of 500 or 1000 units per kg IPA Mash seems to
44	have a greater effect on Ca and P digestibility.
45	Key words: digestibility, phosphorus, pigs, phytase
46	
47	INTRODUCTION
48	Most of the P present in cereal grains and oilseeds is in the form of phytate (Erdman,
49	1979). Because pigs lack endogenous phytases, phytate cannot be digested (Selle and Ravindran,
50	2008). As a consequence, large amounts of P are excreted in the manure potentially causing
51	environmental pollution. Phytases are enzymes capable of hydrolyzing the phytate molecule and
52	releasing phytate-P, which can then be utilized by pigs (Selle and Ravindran, 2008), and addition
53	of microbial phytase to swine diets improve P utilization (Akinmusire and Adeola, 2009).
54	Several microbial phytases are available, but new and more efficient phytases are being
55	developed. Therefore, the objective of this experiment was to measure the effect of a novel
56	microbial phytase (IPA Mash, DSM Nutritional Products) on the digestibility of P and Ca in
57	corn-soybean meal diets fed to growing pigs.
58	
59	MATERIALS AND METHODS
60	Diets, Animals, and Experimental Design
61	Six diets were formulated (Tables 1 and 2). The positive control diet was a corn-soybean
62	meal diet that contained quantities of Ca and P sufficient to meet the requirement of Ca and P for

growing pigs (NRC, 1998). Dicalcium phosphate was used to bring the total concentration of P
in this diet to 0.56%. A negative control diet that was similar to the positive control diet with the
exception that cornstarch replaced dicalcium phosphate was also formulated. This diet contained
0.33% P. Four additional diets that were similar to the negative control diet with the exception
that microbial phytase (IPA Mash, DSM Nutritional Products, Parsippany, NJ) was included in
the amounts of 500, 1,000, 2,000, or 4,000 units per kg were also formulated.

A total of 24 growing barrows were used in a 2 period crossover design. In period 1, barrows had an initial BW of 36.2 ± 4.0 kg, while in period 2, they had an initial BW of 47.3 ± 5.3 kg. Pigs were placed in metabolism cages and randomly allotted to the 6 dietary treatments. The cages were equipped with a feeder and a nipple drinker that allowed for total collection of feces.

Feeding and Sample Collection

The amount of feed provided daily was calculated as 3 times the estimated requirement for maintenance energy (i.e., 106 kcal ME per kg ^{0.75}; NRC, 1998) and divided into 2 equal meals. Water was available at all times. The initial 5 d were considered an adaptation period to the diet. From d 6 to 11, fecal materials were collected according to the marker to marker approach (Adeola, 2001). Chromic oxide and ferric oxide were used to determine the beginning and the end of collection, respectively. Fecal samples were stored at -20°C immediately after collection.

Sample Analysis and Data Processing

At the conclusion of the experiment, fecal samples were dried in a forced air oven and finely ground prior to analysis. Fecal samples and diets were analyzed for Ca and P by inductively coupled plasma (ICP) spectroscopy method (method 985.01; AOAC, 2005) after wet

ash sample preparation (method 975.03; AOAC Int., 2005). Diets were also analyzed for AA

(method 982.30 E (a, b, c); AOAC, 2005), ADF (method 973.18; AOAC, 2005), NDF (Holst,

1973), CP by combustion (Elementar, Rapid N cube; method 990.03; AOAC, 2005), and for

phytase activity (DSM Nutritional Products, Parsippany, NJ). The ATTD (%) of P in each diet

was calculated according to the following equation:

ATTD (%) = $[(Pi - Pf)/Pi] \times 100$.

where $Pi = total\ P$ intake (g) from d 6 to 11 and Pf = total fecal P output (g) originating from the feed that was provided from d 6 to 11. Data were analyzed as a crossover design using the Proc Mixed Procedure in SAS. The UNIVARIATE procedure was used to verify homogeneity of variances and to identify outliers. One outlier was identified and removed from the data set. The model included diet as the main effect, while block, period, and pig were random effects. Block, period, and pig were, however, not significant and, therefore, sequentially removed from the model. Orthogonal polynomial contrasts were conducted to test linear and quadratic responses to the inclusion of phytase to the negative control diet. Appropriate coefficients for unequally spaced concentrations of supplemental phytase were obtained using the interactive matrix language procedure (Proc IML) of SAS. Treatments were considered different when P < 0.05 and the pig was the experimental unit for all analyses.

104 RESULTS

Throughout the experiment, pigs remained healthy and readily consumed their diets. No differences in feed intake were observed among treatments (Table 3). Phosphorus intake was lower (P < 0.01) for pigs fed the negative control than for pigs fed the positive control diet. Fecal output tended (P = 0.07) to be greater for pigs fed the positive control diet than for pigs fed the

negative control diet. The P concentration in feces was lower (P < 0.01) for pigs fed phytase containing diets than for pigs fed the negative control diet, and there was a linear and quadratic reduction (P < 0.01) in fecal P concentration as phytase was included in the diets. Phosphorus output was lower (P < 0.01) for pigs fed the negative control diet than for pigs fed the positive control diet (2.87 vs. 3.41 g/d). Likewise, pigs fed phytase containing diets had lower (P < 0.01) P output than pigs fed the negative control diet, and inclusion of phytase to the negative control diet reduced (linearly and quadratically, P < 0.01) the excretion of P. The ATTD of P was lower (P < 0.01) for pigs fed the negative control diet than for pigs fed the positive control diet (39.83 vs. 59.36%). The addition of increasing levels of phytase to the negative control diet increased the ATTD of P (linearly and quadratically, P < 0.01). Phosphorus absorption was greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet (5.10 vs. 1.94 g/d), but absorption of P increased (linearly and quadratically, P < 0.01) as phytase was added to the negative control diet.

Calcium intake was greater (P < 0.01) for pigs fed the positive control diet than for pigs fed the negative control diet (12.02 vs. 8.47 g/d). Calcium in the feces and total Ca output were lower (linear and quadratic P < 0.01) for pigs fed phytase containing diets than for pigs fed the negative control diet. There was also a tendency (P = 0.07) for pigs fed the negative control diet to have a lower Ca output than pigs fed the positive control diet. Addition of phytase to the negative control diet increased (linearly and quadratically, P < 0.01) the ATTD of Ca. There was also a tendency (P = 0.07) for pigs fed the positive control diet to have a greater ATTD of Ca than for pigs fed the negative control diet. Calcium absorption was greater (P < 0.01) for pigs fed the positive control diet. Likewise, pigs fed phytase containing diets had greater (P < 0.01) absorption of Ca than pigs fed the negative control diet.

DISCUSSION

The ATTD of P and Ca that were measured in the positive control diet agree with previous values for ATTD of P in corn-soybean meal diets (Johnston et al., 2004; Stein et al., 2008). Phytase supplementation increased P digestibility, which was expected because phytase can hydrolyze the bonds that bind P to the phytate molecule in corn and SBM, and therefore, release some of the P that is bound to the phytate molecule (Cromwell et al., 1993). Our results show that P excretion is reduced if corn-soybean meal diets are supplemented with phytase, which is in agreement with Selle and Ravindran, 2008. However, the linear effect of addition of phytase to the diets indicate that a plateau for P digestibility or P absorption was not reached in the present experiment even though the highest inclusion rate of phytase was 4,000 units per kg. This observation indicates that the present phytase is capable of continuing to hydrolyzing bonds on the phytate molecule and thus continue to release more P as the concentration of phytase is increased. Further experiments are needed to investigate which concentration of phytase is needed to reach a plateau for ATTD and absorption of P.

The ATTD of Ca was increased as phytase was included in the diets. This result is in agreement with results that were observed by Guggenbuhl et al. 2007. Possibly, in the process of phytate hydrolysis, phytate esters are reduced and as a consequence the ability of phytate to chelate Ca is also reduced. Therefore, Ca digestibility increases when exogenous phytase is supplemented to the diet (Selle et al., 2009).

Conclusions

Results from the present experiment show that IPA Mash phytase is an effective phytase that may be used in corn-soybean meal diets to improve the ATTD of P and Ca. The IPA Mash

- phytase will also result in a reduction in P excretion in the manure from pigs fed diets containing
- this enzyme.

156	REFERENCES
157	Adeola, L. 2001. Digestion and balance techniques in pigs. Pages 903-916 in Swine Nutrition. A
158	J. Lewis and L. L. Southern, eds. CRC Press, Washington, DC. Swine Nutrition, 2nd ed.
159	CRC Press, N. Y.
160	Akinmusire, A. S., and O. Adeola. 2009. True digestibility of phosphorus in canola and soybean
161	meals for growing pigs: Influence of microbial phytase. J. Anim. Sci. 87:2766-2775.
162	AOAC Int. 2005. Official Methods of Analysis. 18th ed. Assoc. Offic. Anal. Chem. Arlington,
163	VA.
164	Cromwell, G. L., T. S. Stahly, R. D. Coffey, H. J. Monegue, and J. H. Randolph. 1993. Efficacy
165	of phytase in improving the bioavailability of phosphorus in soybean meal and com-
166	soybean meal diets for pigs. J. Anim. Sci. 71:1831-1840.
167	Erdman, J. W., Jr. 1979. Oilseed Phytates: Nutritional implication. J. Am. Oil. Chem. Soc. 56:
168	736-741.
169	Guggenbuhl, P., P. Quintana, and C. S. Nunes. 2007. Comparative effects of three phytases on
170	phosphorus and calcium digestibility in the growing pig. Livest. Sci. 109:258-260.
L71	Holst, D. O. 1973. Holst filtration apparatus for Van Soest detergent fiber analysis. J. AOAC
L72	56:1352–1356.
L73	Johnston, S. L., S. B. Williams, L. L. Southern, T. D. Bidner, L. D. Bunting, J. O. Matthews, and
L74	B. M. Olcott. 2004. Effect of phytase addition and dietary calcium and phosphorus levels
L75	on plasma metabolites and ileal and total-tract nutrient digestibility in pigs. J. Anim. Sci.
L76	82:705-714.
177	NRC, 1998, Nutrient requirements of swine, 10th rev. ed. Natl. Acad. Press, Washington, DC

178	Selle, P. H., A. J. Cowieson, and V. Ravindran. 2009. Consequences of calcium interactions with
179	phytate and phytase for poultry and pigs. Livest. Sci. doi:10.1016/j.livsci.2009.01.006.
180	Selle, P. H., and V. Ravindran. 2008. Phytate-degrading enzymes in pig nutrition. Livest. Sci.
181	113:99-122.
182	Stein, H. H., C. T. Kadzere, S. W. Kim, and P. S. Miller. 2008. Influence of dietary phosphorus
183	concentration on the digestibility of phosphorus in monocalcium phosphate by growing
184	pigs. J. Anim. Sci. 86:1861-1867.
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	
197	
198	
199	
200	

Table 1. Composition (as-is basis) of experimental diets ¹

	Diet									
Item	Positive	Negative	500	1,000	2,000	4,000				
	control	control	phytase	phytase	phytase	phytase				
Ingredient, %										
Ground corn	65.80	65.80	65.80	65.80	65.80	65.80				
Soybean meal, 48%	29.50	29.50	29.50	29.50	29.50	29.50				
Soybean oil	2.00	2.00	2.00	2.00	2.00	2.00				
Limestone	0.95	0.95	0.95	0.95	0.95	0.95				
Dicalcium phosphate	1.05	-	-	-	-	-				
Cornstarch	-	1.05	1.025	1.00	0.975	0.95				
Salt	0.40	0.40	0.40	0.40	0.40	0.40				
Phytase premix ¹	-	-	0.025	0.05	0.075	0.10				
Vit. mineral premix ²	0.30	0.30	0.30	0.30	0.30	0.30				
Total	100.00	100.00	100.00	100.00	100.00	100.00				

¹IPA Mash, DSM Nutritional Products, Parsippany, NJ. Produced by mixing 3.4% of concentrated phytase (58,700 units/g) and 96.6% cornstarch.

²The vitamin-micromineral premix provided the following quantities of vitamins and micro minerals per kilogram of complete diet: Vitamin A, 11,128 IU; vitamin D₃, 2,204 IU;

vitamin E, 66 IU; vitamin K, 1.42 mg; thiamin, 0.24 mg; riboflavin, 6.58 mg; pyridoxine, 0.24 mg; vitamin B₁₂, 0.03 mg; D-pantothenic acid, 23.5 mg; niacin, 44 mg; folic acid, 1.58 mg; biotin, 0.44 mg; Cu, 10 mg as copper sulfate; Fe, 125 mg as iron sulfate; I, 1.26 mg as potassium iodate; Mn, 60 mg as manganese sulfate; Se, 0.3 mg as sodium selenite; and Zn, 100 mg as zinc oxide.

212 Table 2. Analyzed nutrient composition of diets (as-fed basis)

			D	iet		
Item	Positive	Negative	500	1,000	2,000	4,000
	control	control	phytase	phytase	phytase	phytase
CP, %	18.33	17.96	17.24	18.03	17.93	18.27
ADF, %	2.64	2.63	2.61	2.64	2.67	2.84
NDF, %	12.11	8.02	8.81	7.71	7.80	8.52
P, %	0.56	0.33	0.34	0.34	0.34	0.34
Ca, %	0.79	0.58	0.59	0.57	0.56	0.54
Phytase, FTU/kg ¹	39	41	373	984	1773	3681
Indispensible AA, %						
Arg	1.23	1.22	1.17	1.23	1.23	1.26
His	0.53	0.50	0.50	0.50	0.50	0.51
Île	0.84	0.81	0.78	0.81	0.82	0.84
Leu	1.63	1.58	1.54	1.60	1.59	1.62
Lys	1.08	1.06	1.02	1.07	1.07	1.09
Met	0.30	0.29	0.28	0.29	0.29	0.29

Phe	0.92	0.90	0.86	0.90	0.90	0.92
Thr	0.70	0.70	0.65	0.70	0.68	0.69
Trp	0.25	0.24	0.25	0.25	0.24	0.25
Val	0.95	0.91	0.89	0.91	0.94	0.95
Dispensible AA, %						
Ala	0.94	0.92	0.88	0.92	0.91	0.94
Asp	1.91	1.87	1.79	1.88	1.88	1.92
Cys	0.29	0.30	0.28	0.30	0.30	0.29
Glu	3.39	3.31	3.18	3.32	3.32	3.37
Gly	0.79	0.77	0.74	0.77	0.78	0.80
Pro	1.10	1.10	1.01	1.06	1.03	1.07
Ser	0.79	0.80	0.74	0.82	0.76	0.77
Туг	0.57	0.57	0.57	0.59	0.57	0.59

¹FTU = phytase units (g/kg).

Table 3. Effects of phytase on apparent total tract digestibility (ATTD) of P and Ca¹

	Diets							P-v	alue	P-value ²	
Item	Positive	Negative	500	1,000	2,000	4,000	SEM	Positive	Negative	L	Q
+	control	control	phytase	phytase	phytase	phytase		vs.	VS.		
		,						Negative	Phytase		
Feed intake, g/d	1521	1460	1506	1497	1476	1476	58.08	0.471	0.674	0.930	0.808
P intake, g/d	8.52	4.82	5.12	5.09	5.02	5.02	0.23	< 0.01	0.368	0.825	0.582
Fecal output, g/d	132.86	118.24	116.94	115.95	117.48	123.99	5.48	0.076	0.957	0.356	0.529
P in feces, %	2.59	2.44	1.82	1.52	1.31	1.09	0.07	0.170	< 0.01	< 0.01	< 0.01
P output, g/d	3.41	2.87	2.12	1.76	1.54	1.36	0.10	< 0.01	< 0.01	< 0.01	< 0.01
ATTD of P, %	59.36	39.83	58.10	65.43	69.09	72.76	2.25	< 0.01	< 0.01	< 0.01	< 0.01
P absorption, g/d	5.10	1.94	3.00	3.33	3.47	3.66	0.24	< 0.01	< 0.01	< 0.01	< 0.01
Ca intake, g/d	12.02	8.47	8.89	8.53	8.26	7.97	0.36	< 0.01	0.902	0.128	0.838

Ca in feces, %	2.45	2.33	1.40	1.29	1.22	0.91	0.13	0.539	< 0.01	< 0.01	< 0.01
Ca output, g/d	3.20	2.74	1.62	1.50	1.46	1.13	0.16	0.068	< 0.01	< 0.01	< 0.01
ATTD of Ca, %	72.90	67.30	81.44	82.62	82.36	85.58	2.05	0.069	< 0.01	< 0.01	< 0.01
Ca absorption, g/d	8.82	5.72	7.26	7.03	6.80	6.84	0.39	< 0.01	< 0.01	0.376	0.122

Data are means of 8 observations per treatment.

²¹⁶ $^{2}L = linear contrast; Q = quadratic contrast.$

Exp 195

Exp. 195, Calculations

Dict	Period	Animal	Sample	Sample	FI_5d	CainDict_pcnt	PinDiet_pent	Calntake_g	Pintake g	Feces_g	CainFeces_pent	PinFeces_pen	Caout g	Pout g	ATTD Ca	ATTD P
19501	1	6	19515	19515F	7121.06	0.79	0.56	56.26	39.88	545.40	3.03	2.66	16.51	14.51	70.64	63.61
19501	1	12	19521	19521F	7052.78	0.79	0.56	55.72	39.50	637.60	3.32	2.90	21.18	18.52	61.98	53.12
19501	1	17	19526	19526F	6851.22	0.79	0.56	54.12	38.37	660.80	2.14	2.68	14.13	17.70	73.89	53.88
19501	1	20	19529	19529F	6439.72	0.79	0.56	50.87	36.06	647.90	2.65	2.70	17.14	17.47	66.30	51.56
19501	2	3	19536	19536F	9072.31	0.79	0.56	71.67	50.80	738.60	1.93	1.96	14.28	14.48	80.08	71.49
19501	2	11	19544	19544F	8356.44	0.79	0.56	66.02	46.80	731.30	1.90	2.60	13.89	19.04	78.95	59.32
19501	2	18	19551	19551F	8009.60	0.79	0.56	63.28	44.85	601.50	2.58	2.90	15.51	17.41	75.49	61.18
19501	2	24	19557	19557F	7953.12	0.79	0.56	62.83	44.54	751.40	2.02	2.33	15.17	17.50	75.85	60.71
19502	1	4	19513	19513F	7104.10	0.58	0.33	41.20	23.44	701.20	2.36	2.30	16.53	16.15	59.89	31.12
19502	1	11	19520	19520F	6967.08	0.58	0.33	40.41	22.99	672.50	2.64	2.41	17.75	16.19	56.06	29.57
19502	1	14	19523	19523F	6548.77	0.58	0.33	37.98	21.61	445.70	2.67	2.56	11.91	11.41	68.65	47.20
19502	1	23	19532	19532F	6285.56	0.58	0.33	36.46	20.74	512.10	2.26	2.73	11.55	14.00	68.31	32.53
19502	2	6	19539	19539F	8366.79	0.58	0.33	48.53	27.61	560.80	2.25	2.25	12.62	12.62	74.00	54.28
19502	2	9	19542	19542F	8448.00	0.58	0.33	49.00	27.88	327.90	1.96	2.37	6.43	7.77	86.88	72.11
19502	2	16	19549	19549F	8235.61	0.58	0.33	47.77	27.18	611.50	2.29	2.59	14.01	15.84	70.67	41.72
19502	2	21	19554	19554F	7578.67	0.58	0.33	43.96	25.01	634.70	1.83	2.27	11.62	14.40	73.56	42.42
19503	1	2	19511	19511F	7256.57	0.59	0.34	42.81	24.67	631.40	1.61	1.88	10.14	11.86	76.32	51.94
19503	1	8	19517	19517F	6856.21	0.59	0.34	40.45	23.31	577.30	1.52	1.92	8.80	11.07	78.25	52.50
19503	1	18	19527	19527F	6637.11	0.59	0.34	39.16	22.57	521.60	1.96	2.25	10.22	11.72	73.91	48.06
19503	1	21	19530	19530F	6374.39	0.59	0.34	37.61	21.67	539.10	1.25	1.72	6.73	9.26	82.11	57.27
19503	2	1	19534	19534F	8899.85	0.59	0.34	52.51	30.26	698.50	1.36	1.53	9.49	10.68	81.92	64.71
19503	2	7	19540	19540F	8262.18	0.59	0.34	48.75	28.09	544.80	1.61	1.92	8.78	10.47	81.98	62.73
19503	2	17	19550	19550F	8056.93	0.59	0.34	47.54	27.39	552.70	0.94	1.74	5.20	9.59	89.06	64.97
19503	2	22	19555	19555F	7916.12	0.59	0.34	46.71	26.91	612.20	0.92	1.64	5.61	10.06	87.98	62.63
19504	1	1	19510	19510F	7311.98	0.57	0.34	41.68	24.86	608.40	0.84	1.22	5.11	7.40	87.74	70.24
19504	1	10	19519	19519F	7020.73	0.57	0.34	40.02	23.87	553.30	0.85	1.25	4.70	6.92	88.25	71.00
19504	1	15	19524	19524F	6763.02	0.57	0.34	38.55	22.99	574.70	1,26	1.51	7.22	8.66	81,28	62.34
19504	1	24	19533	19533F	6175.07	0.57	0.34	35.20	21.00	519.00	1.22	1.52	6.31	7.91	82.07	62.33
19504	2	5	19538	19538F	8717.23	0.57	0.34	49.69	29.64	644.40	1.69	1.61	10.92	10.38	78.03	64.97
19504	2	12	19545	19545F	8304.28	0.57	0.34	47.33	28.23	653.10	1.65	1.72	10.76	11.22	77.28	60.26
19504	2	13	19546	19546F	7977.02	0.57	0.34	45.47	27.12	528.30	1.66	1.66	8.75	8.78	80.75	67.65
19504	2	23	19556	19556F	7591.84	0.57	0.34	43.27	25.81	556.90	1.12	1.64	6.23	9.12	85.60	64.68
19505	1	5	19514	19514F	7182.03	0.56	0.34	40.22	24.42	596.20	1,42	1.55	8.45	9.22	78.99	62.23
19505	1	7	19516	19516F	6802.95	0.56	0.34	38.10	23.13	636.10	1.56	1.39	9.92	8.85	73.95	61.72
19505	1	16	19525	19525F	6689.65	0.56	0.34	37.46	22.74	510.40	1.29	1.28	6.57	6.55	82,47	71.19
19505	1	19	19528	19528F	6152.12	0.56	0.34	34.45	20.92	456.10	0.75	1.23	3.44	5.61	90.02	73.16
19505	2	2	19535	19535F	8570.51	0.56	0.34	47.99	29.14	673.30	1,59	1.24	10.71	8.32	77.68	71.46
19505	2	10	19543	19543F	8312.09	0.56	0.34	46.55	28.26	640.20	0.68	1.06	4.38	6.80	90.59	75.94
19505	2	14	19547	19547F	7752.40	0.56	0.34	43.41	26.36	522.80	1.02	1.36	5.35	7.09	87.67	73.08
19505	2	20	19553	19553F	7562.42	0.56	0.34	42.35	25.71	663.90	1.43	1.40	9.51	9.27	77.54	63.93
19506	1	3	19512	19512F	7303.47	0.54	0.34	39.44	24.83	433.40	0.79	0.99	3.42	4.31	91.34	82.65
19506	1	9	19518	19518F	6815.34	0.54	0.34	36.80	23.17	576.50	1.07	1.10	6.17	6.36	83.22	72.56
19506	1	13	19522	19522F	6771.59	0.54	0.34	36.57	23.02	686.00	1,44	1.29	9.90	8.87	72.93	61.47
19506	1	22	19531	19531F	6385.27	0.54	0.34	34.48	21.71	565.10	0.89	1.06	5.01	5.97	85.48	72.49
19506	2	4	19537	19537F	8122.29	0.54	0.34	43.86	27.62	775.90	0.70	0.98	5.41	7.62	87.67	72.41
19506	2	8	19541	19541F	8074.32	0.54	0.34	43.60	27.45	674.80	0.78	1.12	5.26	7.55	87.93	72.49
19506	2	15	19548	19548F	7980.97	0.54	0.34	43.10	27.14	639.30	0.90	1.04	5.74	6.67	86.68	75.40
19506	2	19	19552	19552F	7584.90	0.54	0.34	40.96	25.79	608.60	0.72	1.16	4.36	7.06	89.36	72.62

FEEDAP UNIT

ANNEX C

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive:	IPA Mash Phytase	Batch number: PPQ 28683				
Trial ID: Experiment 195		Location: (b) (4)				
Start date and exact duration	of the study: April 2,	2009 for 4 Weeks				
Number of treatment groups	(+ control(s)): 6	Replicates per group: 8				
Total number of animals: 24		Animals per replicate: 1 per Trt Group				
Dose(s) of the additive/active water) Intended: 500, 1000, 2000 & FYT/kg in Complete Feed	4000	ent(s) (mg/Units of activity/CFU kg ⁻¹ complete feed/L ⁻¹ nalysed: 373, 984, 1773, & 3681 FYT/kg				
+						
Substances used for compar	rative purposes:					
Intended dose:	Analyse	ed:				
Animal species/category: Sw	ine					
Breed: PIC	Identific	cation procedure: Ear Notch				
Sex: Barrows Ag	ge at start: 12 Weeks	Body weight at start: 36.2 kg				
Physiological stage: Grewer	Pigs Genera	al health: Excellent				
Additional information for	field trials:					
Location and size of herd o Feeding and rearing conditi Method of feeding: Limit Fe	ions: Individually and	w to Finish at the (b) (4) Housed in Metabolism Cages				
Diets (type(s)): Typical Comm	nercial Corn-Soy Diet					
Presentation of the diet: Composition (main feedingst Nutrient content (relevant nut	uffs): Corn, Soybean m					
Intended values: Ca-PC-0.7 Analysed values: Ca-PC-0.7	1 & 0.48 % in Others; 79 NC 0.58 & 0.59, 0.57	P-PC 0.58 & 0.39 % in Others - ME-3450 Mcal/kg 7, 0.56, & 0.54 % in Test Diets 4, 0.34, & 0.34 % in Test Diets				
Date and nature of the exami	inations performed: No	one				
Method(s) of statistical evaluation	ation used: SAS UNIV	ARIATE & Proc Mixed Procedures				
Therapeutic/preventive treatr	ments (reason, timing,	kind, duration): None				
Timing and prevalence of any	y undesirable consequ	uences of treatment: None				
Date November 23, 2009	Signature Study Di	Pirector				
		(b) (4)				

¹ Please submit this form using a common word processing format (e.g. MS Word).

SUIBMIISSION

CONTINUED

IN

NEXT VOLUME

SUBMISSION

CONTINUED FROM PREVIOUS

VOLUME

8

Annex 8 Efficacy of IPA phytase in growing pigs REPORT No. 00001789

REPORT No. 00001789 Regulatory Document

Document Date:

18 September, 2009

Author(s):

(b) (4)1 and J. Broz2

(b)(4)² Animal Nutrition and Health R&D, DSM Nutritional Products Ltd, Basel

Title:

Efficacy of IPA phytase in growing pigs

Project No.

6106

Summary

A trial was conducted to study the efficacy of IPA phytase at different doses in growing pigs. A total of 48 animals (Landrace x Pietrain) were involved. The pigs started on the trial at 51.6 kg body weight and remained on the experimental treatments for 3 weeks. They were divided into eight blocks of 6 animals, as similar as possible, taking into account sex and initial body weight. The experimental treatments consisted of a basal, low-P, control diet (T-1), which was supplemented with IPA phytase (M) at 500, 1000, 2000, or 4000 U/kg (T-2, T-3, T-4 and T-5, respectively), and a positive control diet supplemented with 1 g of inorganic P/kg as dicalcium phosphate (T-6). Each dietary treatment was assigned to 8 animals. At the end of trial, fresh faeces were sampled for each pig and the apparent digestibility of dry matter, ash, organic matter, Ca and P was measured using titanium dioxide as indicator. A blood sample was also obtained from each pig and analysed for alkaline phosphatase activity and inorganic P and Ca concentrations. The supplementation of the basal diets with IPA phytase significantly increased P concentration in blood at 1000, 2000 and 4000 U/kg diet, respectively. IPA phytase at 500, 1000, 2000 and 4000 U/kg diet significantly improved the apparent faecal digestibility of P from 29.6% (negative control) to 35.6, 42.5 (P<0.05), 56.1 (P<0.05) and 62.4% (P<0.05), respectively. The apparent digestibility of Ca was improved as well and the effects were significant for phytase supplementation at 1000 and 2000 U/kg diet, respectively. At all inclusion levels IPA phytase also significantly reduced P concentration in faeces.

This report consists of Pages I - II and 1 - 17

Distribution

Dr. M. Eggersdorfer, NRD

Dr. C. Simoes Nunes, NRD/CA

Dr. F. Fru, NRD/PA

Mr. J.-F. Hecquet, NBD/RG

Dr. A.-M. Klünter, NRD/CA

Dr. J. Pheiffer, NRD/PA

Mr. J-P. Ruckebusch, ANH/GM

Approved

<u>Name</u> Main Author	Signature signed by	<u>Date</u>
Dr. J. Broz, NRD/CA Principal Scientist / Competence Mgr	J. Broz	18.09.2009
Dr. J. Broz, NRD/CA	J. Broz	18.09.2009
Research Center Head Dr. AM. Klünter, NRD/CA	signed by AM. Klünter	21.09.2009
Project Manager Dr. F. Fru, NRD/PA	signed by F. Fru	23.09.2009

Regulatory Document

DSM Nutritional Products Ltd

Page I of II

Nomenclature and Structural Formula

PA phytase (M), enzyme product containing bacterial 6-phytase (b) (4), produced by (b) (4) fermentation of a genetically modified Aspergillus oryzae strain. Lot PPQ 28656 was used in this study, manufactured by Novozymes A/S, (b) (4).

Regulatory Document DSM Nutritional Products Ltd Page II of II

FINAL REPORT OF THE CONTRACT SIGNED WITH:

Company: DSM Nutritional Products

Title: EFFICACY OF IPA PHYTASE IN GROWING PIGS

Experiment number: P-396

Contract Code:

2 2 5 4 7

Organic Code:

0 6 0 2

Author: (b) (4)

Center: (b) (4)

Number of pages: 17

Date: 14/09/2009

Nothing from this issue may be reproduced and/or published by print, photoprint, microfilm or any other means without previous written consent from (b) (4) Submitting the report for inspection to parties directly interested is permitted.

In case this report was drafted under instruction, the rights and obligations of contracting parties are subject to either the "Standard Conditions for Research Instructions given to (b) (4)" or relevant agreement concluded between the contracting parties on account of the research subject involved.

(b) (4)

TABLE OF CONTENTS

SUMMARY	_
RESPONSIBILITIES	4
Study researcher	4
Study monitor	4
Daily monitor	4
Stockworkers	4
Feed preparation	4
Laboratory analysis	4
OBJECTIVE	5
METHODOLOGY	5
Site of the experiment	5
Location and housing	5
Animals	5
Feeding program	5
Tested product	6
Treatments and experimental design	6
Controls	7
Dates	7
STATISTICAL ANALYSIS	
RESULTS AND DISCUSSION	
TABLES AND FIGURES	
ANNEX-I (RAW DATA)	
ANNEX-II (EFSA)	6
Table 1 Composition of the experimental diets (%)	1
Table 2 Estimated nutritive composition of the experimental diets	
Table 3 Analyses of the experimental diets	
Table 4 Performance of the pigs receiving different doses of IPA Phytase	
Table 5 Alkaline phosphatase (AP) activity, Ca and P concentration in blood and I	
concentration in faeces of pigs receiving different doses of IPA Phytase	
Table 6 Effect of different doses of IPA Phytase on the apparent faecal digestibility of	
dry matter, ash, organic matter, phosphorous and calcium in growing pigs (%) 13	3

SUMMARY

A trial was conducted to study the efficacy of IPA phytase at different doses in growing pigs. A total of 48 growing pigs (Landrace x Pietrain) were involved. The pigs started on the trial at 51.6 kg BW and remained on the experimental treatments for 3 weeks. Pigs were divided into eight groups (blocks) of 6 animals, as similar as possible, taking into account sex and initial body weight, to which six experimental treatments were assigned. The experimental treatments consisted of a basal, low-P, control diet (T-1), which was supplemented with 500, 1,000, 2,000, or 4,000 U/kg of IPA phytase (M) (T-2, T-3, T-4 and T-5, respectively), and a positive control diet supplemented with 1 g of inorganic P/kg as dicalcium phosphate (T-6). At the end of the trial, fresh faeces were sampled for each animal and the apparent faecal digestibility of dry matter, ash, organic matter, Ca, and P was measured using titanium oxide as indigestible marker. A blood sample was also obtained from each pig and analysed for alkaline phosphatase activity and inorganic phosphorous and calcium concentrations. Increased Ca and reduced P blood concentrations (P<0.05) were observed for the negative control diet (T-1), relative to the positive control diet (T-6). The supplementation of the negative control diet with IPA phytase reduced Ca concentration in blood (statistically significant at 4,000 U/kg), increased P concentration in blood (statistically significant at 1,000, 2,000 and 4,000 U/kg), and reduced P concentration in faeces (statistically significant at all levels of supplementation). IPA phytase improved the faecal digestibility of ash (statistically significant at 2,000 U/kg), P (statistically significant at 1,000, 2,000 and 4,000 U/kg), and Ca (statistically significant at 1,000 and 2,000 U/kg). It is concluded that IPA phytase improves the apparent faecal digestibility of phosphorous in growing pigs, resulting in higher P blood concentrations and lower P faecal excretion. It appears that, within the doses tested, the responses to IPA phytase increased with the inclusion level.

Final report P-396 Page 3 of 17 283

RESPONSIBILITIES

Study researcher	(b) (4)
Study monitor	
Dr. Jiri Broz	
DSM Nutritional Products Ltd	
Monogastric Nutrition and Health R&D, CH-4002 Basel, Sw	itzerland
Daily monitor	
Dully monitor	(b) (4)
Stockworkers	
	(b) (4)
Feed preparation	
	(b) (4)
Laboratory analysis	
Laboratory analysis	(b) (4)
	(-)(-)

Final report P-396 Page 4 of 17 284

OBJECTIVE

The objective of this experiment was to evaluate the efficacy of **IPA phytase** in the feeding of grower pigs at the different dosages when compared to negative and positive controls. A low phosphorous diet was used as basal diet.

METHODOLOGY

Site of the experiment

The trial was conducted in the pig experimental farm of the (b) (4)

Location and housing

The trial was conducted using grower pigs from (b) (4) experimental farm at site. The pigs were housed in two rooms with 24 pens each. The rooms are provided with automatic heating, forced ventilation and completely slatted floors. Feed and water were distributed ad libitum.

Animals

Forty eight pigs were kept individually in the 48 pens. Landrace x Pietrain pigs of 51.6 (SD 5.27) kg body weight were used. Animals were randomly distributed by initial body weight and sex into 8 blocks and each block consisted of six pigs (3 males and 3 females).

Feeding program

There was a unique dietary composition (13.4 MJ ME; 1.0% Lysine) for the whole experiment. Feed was presented in mash form and offered *ad libitum*. The composition of the diets is presented in Tables 1 and 2. Feed included 0.5% of titanium oxide as indigestible marker.

Final report P-396 Page 5 of 17 285

Tested product

Name: IPA phytase (M)

Description: bacterial 6-phytase expressed in Aspergillus oryzae

Produced by: Novozymes A/S (b) (4)

Provided by: DSM Nutritional Products Ltd, Basel, Switzerland

Lot No: PPQ 28656

Activity: 57 085 U/g product

Dosages: 500, 1000, 2000 and 4000 U/kg diet, corresponding to 8.8,

17.6, 35.2, and 70.4 ppm, respectively.

Treatments and experimental design

There were six experimental treatments:

T-1: Negative control (NC; a low-P basal diet)

T-2: NC + IPA phytase at 8.8 mg/kg, corresponding to 500 U/kg diet

T-3: NC + IPA phytase at 17.6 mg/kg, corresponding to 1000 U/kg diet

T-4: NC + IPA phytase at 35.2 mg/kg, corresponding to 2000 U/kg diet

T-5: NC + IPA phytase at 70.4 mg/kg, corresponding to 4000 U/kg diet

T-6: Positive control (PC, diet with an additional 1 g of inorganic P/kg from DCP)

The negative control diet was low in available phosphorous, and different doses of phytase were added via a premix using maize starch as the carrier to create the different experimental treatments.

For the whole trial 0.5% titanium oxide was added to the diet as indigestible marker in order to perform Ca and P faecal digestibility measurements. In-feed analytical determination of the added phytase was conducted by Biopract GmbH, Berlin (Germany), on behalf of DSM Nutritional Products.

The pigs were individually housed in 48 pens. The animals were randomly distributed by initial weight and sex into 8 blocks. Each block therefore consisted of 6 pigs (3 males and 3 females). Within each block, one of the six treatments was randomly adjudicated to each pig.

Controls

On the third week of trial, fresh faeces were sampled from the floor of the pens. Diet and faeces were analysed for DM, TiO₂, ash, Ca and P, and the apparent faecal digestibility was calculated. The P concentration per kg DM in faeces was also calculated.

A blood sample was also obtained from each pig on the third week of trial and analysed for alkaline phosphatase activity and inorganic phosphorous and calcium concentrations.

Dates

The animals started the trial on November 18th 2008, and completed it on December 5th, 2008.

STATISTICAL ANALYSIS

The parameters measured were compared among treatments using the GLM procedure of the statistical package SAS. The individual pigs were used as the experimental unit.

For statistical analysis, the GLM procedure of SAS was used, considering the effect of sex and using initial body weight as covariable. The measurements for each pig were used to calculate the mean values for each treatment, and they were compared taking into account the effects of sex and initial body weight. The values presented are least squares means.

Outlier values that were identified with the "Smirnoff-Grubbs's" test¹ were not considered for the analyses.

-

¹ Grubbs, F.E. (1969) Procedures for Detecting Outlying Observations Samples, Technometrics Vol. 11, No.1, 1-12.

RESULTS AND DISCUSSION

The analysed composition of the experimental diets is shown in Table 3. The results of phytase analytics confirmed the proper addition of test product. The negative and positive basal diets fed to control pigs (treatments T-1 and T-6) contained a low level of phytase (150 and 114 U/kg) which represents native phytase activity present in the used feed ingredients. Phytase activity in the supplemented diets were 671 (treatment T-2), 1529 (treatment T-3), 2659 (treatment T-4), and 4448 (treatment T-5) U/kg.

No statistically significant differences in body weight gain and feed intake were observed for the different doses of IPA phytase (Table 4). Feed to gain ratio was numerically improved in the diets supplemented with IPA phytase relative to the negative control diet.

The effect of the different doses of IPA phytase on alkaline phosphatase activity, Ca and P concentration in blood and P concentration in faeces is shown in Table 5. The negative control diet increased Ca and reduced P concentration in blood (P<0.05), relative to the positive control diet (T-6). Also, the alkaline phosphatase activity in blood increased numerically in the negative control diet, and no difference was observed between these two diets in the P concentration in faeces. The supplementation of the negative control diet with different doses of IPA phytase resulted in a reduced Ca concentration in blood (statistically significant at 4,000 U/kg), an increased P concentration in blood (statistically significant at 1,000, 2,000 and 4,000 U/kg), and a reduced P concentration in faeces (statistically significant at all levels of supplementation). A numerical increase in alkaline phosphatase activity was observed at 500 and 1,000 U/kg, whereas this parameter was numerically reduced at 2,000 and 4,000 U/kg of IPA phytase supplementation.

The effect of the different doses of IPA phytase on the apparent faecal digestibility of dry matter, ash, organic matter, phosphorous and calcium is shown in Table 6. No statistically significant differences in digestibility for any of the nutrients studied were observed between the negative (T-1) and the positive (T-6) control diets. There was however, a numerical improvement in ash, Ca and P digestibility for the positive control diet, probably due to the addition of dicalcium phosphate in diet T-6. The supplementation of the negative control diet with different doses of IPA phytase resulted in improved digestibility for ash (statistically significant at 2,000 U/kg), P (statistically significant at 1,000, 2,000 and 4,000 U/kg), and Ca (statistically significant at 1,000 and 2,000 U/kg).

(b) (4)

Contract code: 2 2 5 4 7

It is concluded that IPA phytase improves the apparent faecal digestibility of phosphorous in growing pigs, resulting in higher P blood concentrations and lower P faecal excretion. It appears that, within the doses tested, the responses to IPA phytase increased with the inclusion level.

Signatures:

(b) (4)

Date: 5 8 2009 Date: 4/2009 Date: 7-03-2009

Best Copy Available

289

(b) (4)

Contract code: 2 2 5 4 7

TABLES AND FIGURES

Table 1 Composition of the experimental diets (%)

Ingredients	Low P Basal diet	STD P diet	
Maize	35.00	35.00	
Barley	41.35	41.35	
Soyabean meal, 48% CP	18.95	18.95	
Lard	2.30	2.30	
Dicalcium phosphate	0	0.55	
Calcium carbonate	1.30	0.92	
Salt	0.35	0.35	
L-Lysine-HCl	0.16	0.16	
DL-Methionine	0.01	0.01	
Vit-Min complex*	0.40	0.40	
Maize starch	0.18	0	

^{*} Providing per kg of diet: vitamin A: 5000 IU; vitamin D₃: 1000 IU; vitamin E: 15 mg; thiamin: 1,3 mg; riboflavin: 3,5 mg; vitamin B₁₂: 0.025 mg; vitamin B₆: 1,5 mg; calcium pantothenate: 10 mg; nicotinic acid: 15 mg; biotin: 0.1 mg; folic acid: 0.6 mg; vitamin K₃: 2 mg; Fe: 80 mg as iron sulfate; Cu: 140 mg as copper sulfate; Co: 0.75 mg as cobalt sulfate; Zn: 60 mg as zinc oxide; Mn: 30 mg as manganese sulfate; I: 0.75 mg as potassium iodate; Se: 0.10 mg as sodium selenite; ethoxiquin: 0.15 g.

Table 2 Estimated nutritive composition of the experimental diets

Nutrients	Low P Basal diet	STD P diet
Moisture (%)	13.39	13.92
Crude Protein (%)	16.11	16.11
Crude Fibre (%)	3.41	3.41
Fat (%)	4.63	4.63
Ash (%)	4.16	4.34
Energy (MJ ME/kg)	13.4	13.4
Calcium (g/kg)	6.00	6.00
Total phosphorous (g/kg)	3.49	4.46
Non-phytic P (g/kg)	1.33	2.30
Lysine (g/kg)	10.00	10.00
Threonine (g/kg)	6.70	6.70
Methionine (g/kg)	3.00	3.00
Methionine+Cystine (g/kg)	6.47	6.47
Tryptophan (g/kg)	2.14	2.14

Table 3 Analyses of the experimental diets

Nutrients	T-1	T-2	T-3	T-4	T-5	T-6
Dry matter (%)	88.14	88.41	88.40	88.22	88.29	88.40
Crude protein (%)	17.5	18.0	17.9	17.9	18.3	18.5
Crude fibre (%)	3.36	3.32	3.44	3.45	3.28	3.39
Fat (%)	4.12	4.52	4.46	4.04	4.12	4.00
Ash (%)	4.53	4.58	4.56	4.74	4.75	4.91
Phosphorous (g/kg)	3.0	2.9	3.0	2.9	3.3	4.2
Calcium (g/kg)	5.9	6.3	6.4	6.0	6.0	5.9
Phytase activity (U/kg)	150	671	1529	2659	4448	114

Table 4 Performance of the pigs receiving different doses of IPA phytase

	Weight gain (g/day)	Feed intake (g/day)	Feed to gain ratio
T-1 Negative control (low P)	791	2489	3.20
T-2 IPA phytase (500 U/kg)	893	2323	2.63
T-3 IPA phytase (1,000 U/kg)	879	2035	2.31
T-4 IPA phytase (2,000 U/kg)	907	2188	2.43
T-5 IPA phytase (4,000 U/kg)	804	2126	2.67
T-6 Positive control (DCP)	881	2224	2.61
Standard Error	128.1	455.4	0.602
Initial BW Effect (Pr>F)	NS	NS	NS
Sex Effect (Pr>F)	NS	NS	NS
Treat. Effect (Pr>F)	NS	NS	NS

NS P>0.1; † P<0.1; * P<0.05; ** P<0.01; *** P<0.001

abc Values in the same column with different letters are significantly different (P<0.05)

Table 5 Alkaline phosphatase (AP) activity, Ca and P concentration in blood and P concentration in faeces of pigs receiving different doses of IPA phytase

	Ca in blood (mg/dL)	P in blood (mg/dL)	AP in blood (U/L)	P in faeces (g/kg DM)
T-1 Negative control (low P)	10.85 a	6.69a	509	13.78c
T-2 IPA phytase (500 U/kg)	10.67ab	7.12ab	555	10.98b
T-3 IPA phytase (1,000 U/kg)	10.50ab	7.63bc	554	10.49b
T-4 IPA phytase (2,000 U/kg)	10.45ab	8.04c	487	8.11a
T-5 IPA phytase (4,000 U/kg)	9.89c	7.75c	476	7.69a
T-6 Positive control (DCP)	10.21b	7.66c	425	14.82c
Standard Error	0.454	0.502	100.9	1.685
Initial BW Effect (Pr>F)	NS	NS	NS	NS
Sex Effect (Pr>F)	NS	NS	NS	NS
Treat. Effect (Pr>F)	**	***	NS	***

NS P>0.1; † P<0.1; * P<0.05; ** P<0.01; *** P<0.001

abc Values in the same column with different letters are significantly different (P<0.05)

Table 6 Effect of different doses of IPA phytase on the apparent faecal digestibility of dry matter, ash, organic matter, phosphorous and calcium in growing pigs (%)

	Dry matter	Ash	Organic matter	P	Ca
T 1 Negative central (lew P)	81.6	46.4b	83.5	29.6c	55.3c
T-1 Negative control (low P)					
T-2 IPA phytase (500 U/kg)	81.1	50.0b	82.8	35.6bc	62.0bc
T-3 IPA phytase (1,000 U/kg)	82.0	52.8ab	83.6	42.5b	70.6ab
T-4 IPA phytase (2,000 U/kg)	81.9	57.7a	83.3	56.1a	75.9a
T-5 IPA phytase (4,000 U/kg)	79.3	51.3ab	80.9	62.4a	61.3bc
T-6 Positive control (DCP)	80.6	48.5b	82.5	37.5bc	58.0c
Standard Error	2.50	6.97	2.40	8.27	9.73
Initial BW Effect (Pr>F)	NS	NS	NS	NS	*
Sex Effect (Pr>F)	NS	NS	NS	NS	NS
Treat. Effect (Pr>F)	NS	*	NS	***	**

NS P>0.1; † P<0.1; * P<0.05; ** P<0.01; *** P<0.001

abc Values in the same column with different letters are significantly different (P<0.05)

ANNEX-I (RAW DATA)

PIG	SEX	BL	TR	ADG	ADI	FGR	Blood Ca	Blood	Blood	Faeces P	Dig DM	Dig Ash	Dig OM	Dig P	Dig Ca
1	M	1	3	941	2165	2.300	9.9	8.46	504	10.650	80.99	48.73	82.74	40.33	
2	M	1	6	951	1779	1.871	10.6	7.72	492	15.647	78.91	39.09	81.25	30.53	62.57
3	M	1	1	973	2376	2.443	11.4	6.88	417	10.913	77.84	49.67	79.37	28.96	57.79
4	M	1	5	896	2591	2.890	10	8.05	457	9.428	82.51	55.20	84.06	55.87	53.83
5	M	1	2	799	2981	3.732	10.4	6.81	628	13.720	82.22	53.38	83.79	25.62	75.25
6	M	1	4	795	1973	2.481	10.9	7.97	439	8.370	85.86	65.67	87.01	63.99	71.44
7	M	2	5	522	1700	3.255	9.2	6.69	372	9.817	75.31	48.91	76.81		54.97
8	M	2	2	965	2160	2.239	10.6	7.07	545	11.996	84.79	56.55	86.33	44.37	75.09
9	M	2	3	916	1673	1.825	10.5	7.79	661	10.076	82.85	60.36	84.08	49.09	74.37
10	M	2	6	1186	2107	1.777	9.5	8.09	538	14.167	84.67	62.16	85.99	54.28	75.43
11	M	2	1	746	2056	2.757	11	6.38	630	16.017	83.83	51.35	85.59	23.93	70.07
12	M	2	4	1039	2141	2.061	10.5	8.32	664	7.561	82.85	59.93	84.15	60.55	79.21
13	M	3	1	615	2567	4.172	9.5	7.07	347	13.175	81.45	47.08	83.31	28.18	43.03
14	M	3	3	875	1927	2.202	11	6.83	740	12.063	81.59	46.51	83.50	34.56	57.44
15	M	3	5	896	1860	2.075	10.2	7.38	531	7.399	77.98	42.33	80.01	56.42	71.88
16	M	3	4	1041	2135	2.051	10.7	8.44	533	10.508	84.48	57.18	86.03	50.39	76.62
17	M	3	6	739	2612	3.535	9.9	7.78	389	15.352	78.26	46.12	80.15	29.74	45.78
18	M	3	2	1067	2142	2.008	10.7	6.93	646	10.238	78.20	43.55	80.09	31.96	47.33
19	M	4	2	1016	3219	3.167	10.9	7.38	562	9.650	81.30	55.12	82.73	44.98	75.81
20	M	4	1	782	3067	3.920	10.9	6.48	450	11.784	79.86	46.89	81.65	30.27	53.52
21	M	4	3	892	1992	2.234	10.7	7.32	430	9.115	80.12	58.89	81.27	46.60	81.64
22	M	4	5				9.1	7.09			76.28	36.40	78.54		43.29
23	M	4	4	825	2028	2.459	9.9	8.51	410	6.977	81.78	63.66	82.81	61.33	81.39
24	M	4	6				10.2	6.63	248		83.63	49.52	85.63	37.06	73.79
25	F	5	2				11.4	7.52	547	11.749	81.49	48.49	83.30	33.71	72.72
26	F	5	3	829	2145	2.586	10.5	8.38	426	13.455	84.36	51.94	86.13	38.00	59.46
27	F	5	6	869	2629	3.024	9.9	8.32	368	14.435	83.44	55.97	85.05	49.68	62.02
28	F	5	1	964	2080	2.159	11.3	6.59	500	13.884	83.48	49.25	85.34	32.62	59.43
29	F	5	5	827	2820	3.410	10.5	8.71	392	6.564	80.88	57.28	82.22	66.42	58.58
30	F	5	4	821	2412	2.937	10.6	7.56	436	6.585	80.99	60.45	82.16	61.92	79.11
31	F	6	5	972	2426	2.496	9.8	8.01	591	7.391	81.53	55.54	83.01	63.48	62.43
32	F	6	4	894	1912	2.138	10.6	7.41	404	8.480	76.74	44.48	78.58	40.01	
33	F	6	3				10.2	7.75	584	7.753	83.89	61.94	85.08		68.11
34	F	6	1	664	2473	3.727	10.4	7.31	456	11.500	79.27	43.53	81.21	29.97	46.10
35	F	6	2	841	2058	2.446	10.9	7.59	499	8.316	80.42	50.95	82.03	50.35	66.81
36	F	6	6	847	1731	2.043	10.8	7.92	534	15.895	81.35	49.46	83.23	37.61	60.54
37	F	7	5	621	1299	2.091	10	8.27	426	5.559	78.82	56.18	80.11	68.50	79.68
38	F	7	2	748	2146	2.868	10.5	6.96		11.024	82.67	54.45	84.21	41.75	61.61
39	F	7	1	719	1772	2.465	10.6	6.51	466	13.911	82.71	44.85	84.76	29.32	53.52
40	F	7	4	848	2240	2.641	9.7	7.89	424	8.512	80.76	55.23	82.21	50.17	68.27
41	F	7	6	674	1809	2.684	10.3	7.33	465	15.077	74.97	34.63	77.35	20.58	35.13
42	F	7	3	836	2022	2.418	10.6	7.45	421	9.835	80.90	47.42	82.73	44.66	75.62
43	F	8	1	869	3342	3.844	11.5	6.31	755	18.041	83.44	37.31	85.94		48.35
44	F	8	4	993	2572	2.590	10.6	8.21	558	7.396	81.72	54.63	83.25	58.86	74.14
45	F	8	3	887	2234	2.519	10.4	7.09	603	9.921	80.48	44.87	82.41	42.93	65.37
46	F	8	5	869	2126	2.445	10.2	7.8	537	7.132	80.78	57.84	82.08	63.32	58.91
47	F	8	2	840	1779	2.118	10.4	6.6	599	13.473	80.02	41.01	82.15	17.94	46.12
48	F	8	6	873	3094	3.544	10.6	7.43	397	13.916	80.11	52.41	81.74	41.75	55.08

Final report P-396 Page 15 of 17 295

ANNEX-II (EFSA)

FEEDAP UNIT

ANNEX C'

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA phytase (N	1) Batch number: PPQ 28656
Trial ID: P-396	Location: (b) (4)
Start date and exact duration of the study: N	November 18th 2008, 17days
Number of treatment groups (+ control(s)):	Replicates per group: 8
Total number of animals: 48	Animals per replicate: 1
Dose(s) of the additive/active substance(s)/water) Intended: 500, 1000, 2000 and 4000 U/kg +	agent(s) (mg/Units of activity/CFU kg ⁻¹ complete feed/L ⁻¹ Analysed: 671, 1529, 2659 and 4448 U/kg
Substances used for comparative purposes	Dicalcium phosphate in positive control
Intended dose: 1 g P/kg	Analysed: 1.18 g P/kg
Animal species/category: Growing pigs	
Breed: Landrace x Pietrain	Identification procedure: Ear tags
Sex: Males and Females Age at start: 15 v	veeks Body weight at start: 51.6 kg
Physiological stage: Growing	General health: optimal
Additional information for field trials:	
Location and size of herd or flock: Feeding and rearing conditions: Method of feeding:	
Diets (type(s)): Low and adequate P diets	for grower pigs
Presentation of the diet: Mash 🖂 Composition (main feedingstuffs): Maize, ba	Pellet
Nutrient content (relevant nutrients and ene	ergy content)
Intended values: 16.1% CP, 3932 kcal/kg (GE, 4.16 & 4.34% ash, 0.35 & 0.45% total P, 0.60% Ca
Analysed values: 18.0% CP, 4005 kcal/kg	GE, 4.63 & 4.91% ash, 0.30 & 0.42% total P, 0.61% Ca
Date and nature of the examinations perfor apparent faecal digestibility of P and Ca	med: P and Ca concentration in blood and faeces and
Method(s) of statistical evaluation used: An	alysis of variance (GLM procedure)
Therapeutic/preventive treatments (reason,	timing, kind, duration): not relevant
Timing and prevalence of any undesirable of	consequences of treatment: no adverse effects observed
Date Signature S	Study Director (b) (4)
7-08 2009	(b) (4)

In case the concentration of the additive in complete feed/water may reflect insufficient accuracy, the dose of the additive can be given per animal day⁻¹ or mg kg⁻¹ body weight or as concentration in complementary feed.

Please submit this form using a common word processing format (e.g. MS Word).

1 A B

FDA / CVM 0310

Annex 9

Dose response study with a new phytase (IPA Mash Phytase)
in lactating sows
REPORT No. 00003282

REPORT No. 00003282 Regulatory Document

Document Date: 9 December, 2009

Author(s):

(b) (4) and J. Broz²

1

² Animal Nutrition and Health R&D, DSM Nutritional Products Ltd, Basel

Title:

Dose response study with a new phytase (IPA Mash Phytase)

in lactating sows

Project No.

6106

Summary

A digestibility experiment with lactating sows was carried out to study the efficacy of a new bacterial 6-phytase (IPA Mash Phytase). Twenty eight sows (German Landrace) were involved and randomly assigned to one of four dietary treatments. The control treatment was a low-P diet based on maize and soybean meal and was not supplemented with inorganic P source or phytase. This basal diet was formulated to contain 4.2 g total P and 10.2 g Ca per kg. Treatments B, C and D received the same basal diets supplemented with phytase at the inclusion levels of 500, 1000 and 2000 U/kg diet, respectively. The faeces of the sows were collected on 5 consecutive days during the 3rd and 4th week of lactation. The digestibility of P and Ca was calculated using the indigestible marker TiO₂. The apparent faecal digestibility of P in the control diet was on a very low level as expected (20.5%) and it was improved by phytase supplementation in a non-linear manner to a maximum of 34.1% at the highest level of supplementation. The increase in P digestibility was significant for treatments C and D in comparison to treatment A (negative control). The Ca digestibility was similar across all treatments and not significantly affected by phytase supplementation. In conclusion, the new phytase product showed beneficial effects on P digestibility in lactating sows and its dietary supplementation will lead to a reduction of the faecal P excretion.

This report consists of Pages I – II and 1 – 11 & Annex C

Distribution

Dr. M. Eggersdorfer, NRD Dr. F. Fru, NRD/PA Mr. J.-F. Hecquet, NBD/RG Dr. P. Guggenbuhl, NRD/CA Dr. A.-M. Klünter, NRD/CA

Dr. J. Pheiffer, NRD/CA

Mr. J.-P. Ruckebusch, ANH/GM Dr. C. Simoes Nunes, NRD/CA

Approved

Name Main Author	Signature signed by	<u>Date</u>
Dr. J. Broz, NRD/CA Principal Scientist / Competence Mgr	J. Broz	09.12.2009
Dr. J. Broz, NRD/CA Research Center Head	J. Broz signed by	09.12.2009
Dr. AM. Klünter, NRD/CA	AM. Klünter	10.12.2009
Project Manager Dr. F. Fru, NRD/PA	signed by F. Fru	11.12.2009

Regulatory Document
DSM Nutritional Products Ltd

Page I of II

Nomenclature and Structural Formula

IPA phytase (M), enzyme product containing bacterial 6-phytase (b) (4), produced by (b) (4) fermentation of a genetically modified Aspergillus oryzae strain. Lot PPQ 28683 was used in this study, manufactured by Novozymes A/S, (b) (4).

Regulatory Document
DSM Nutritional Products Ltd

Page II of II

Dose response study with a new phytase (IPA Mash Phytase) in lactating sows

Report to DSM Nutritional Products, Basel

(b) (4)

Introduction

The majority of total phosphorus (P) in plant seeds is contained in the form of phytate. Single-stomached animals have only marginal intrinsic phytase activity, which means that such animals are unable to effectively hydrolyse phytate in the digestive tract.

Studies with piglets and growing-finishing pigs showed that microbial phytase added to the feed has a positive effect on P digestibility. Only few reports have been published on the effectiveness of phytases in lactating sows. However, especially during lactation, large quantities of calcium (Ca) and P are required by the animal. Also, the effect of supplemental microbial phytase on P and Ca digestibility may differ in dependence on the source of phytase, the dietary contents of Ca, P and vitamin D₃, and the level of intrinsic phytase activity of the feed ingredients.

It was the objective of the present experiment to study the effects of a new phytase product on the digestibility of P in lactating sows.

Material and methods

Diets

Diet preparation was done in the certified feed mill facilities of

(b)(4)

y.

The experimental diets were based on maize (660 g/kg) and solvent-extracted soybean meal from dehulled seed (270 g/kg) without a mineral P supplementation in order to achieve a sufficiently low basal P level in combination with negligibly low intrinsic phytase activity. In addition, soybean oil (36 g/kg), calcium carbonate (4 g/kg), and a P-free vitamin and mineral mix (25 g/kg) were included. The diets contained TiO₂ as indigestible marker (5 g/kg). The diets were calculated to be adequate in ME and all nutrients excluding P according to DLG¹.

The total amount of feed needed for the experiment was mixed in one lot and subsequently divided into 4 equal parts. The basal diet (treatment A) remained without the supplement. Treatments B, C and D comprised supplements of 500, 1000 and 2000 U of phytase per kg of diet, respectively. The product was added in the intended concentrations to the diets and they were mixed again. Diets were not pelleted but fed in mash form.

The test product was a bacterial 6-phytase (IPA Mash Phytase) and was supplied by DSM Nutritional Products, Basel, Switzerland. It was expressed in a genetically modified strain of *Aspergillus oryzae*. The lot number was PPQ 28683 and the product was provided in a powder form containing 58,753 U/g.

¹ Deutsche Landwirtschafts-Gesellschaft (DLG). 2008. Empfehlungen zur Sauen- und Ferkelfütterung. 1/2008. DLG-Information. DLG-Verlag, Frankfurt/Main.

Intended phytase activities as well as P and Ca concentrations were confirmed by analyses - (Table 1).

Table 1: Intended and analysed phytase activity and analysed concentrations of crude nutrients, P and Ca in the experimental diets

Diet	Phytase act	ivity (U/kg)	Ash	Crude protein	Crude fibre	Crude fat	P	Ca
	Intended	Analysed			g/kg dry	matter		
Α	0	< 50	65	201	26	85	4.3	11.3
В	500	589	61	206	27	83	4.2	9.7
C	1000	1027	61	200	27	87	4.2	10.6
D	2000	2125	62	196	29	85	4.1	9.4

Animals, housing and sampling

The experiment (institutional ID: 2009-10) was conducted in the (b)

between July 27, 2009 and September 26, 2009. A total of 28 sows (1st to 9th parity), all from the same genotype (German Landrace), were used in the experiment. One week before partum the animals were moved into individual cages with a farrowing rail on a perforated sheet floor and were randomly assigned to one of the four treatments. The animals had free access to water from nipple drinkers. Sows were weighed at the beginning and the end of the faeces collection period.

In the pre-treatment period (7 days before and 2 to 11 d after parturition) all sows were fed an in-house lactation diet (annex table A1). The sows were then adjusted to the experimental diet by increasing the level of maize and soybean meal in the diet over a period of 3 to 6 days.

A 5-day period of faeces collection followed a 7-day period of prefeeding the experimental diets. During these 12 days the experimental diets were offered for *ad libitum* intake twice a day together with some water. The feed consumption was determined during the 5 days of collection. Feed residues were collected twice a day before feeding, pooled for each sow and stored at -20°C. Faeces were sampled immediately after being voided from a rubber inlet on the floor element behind each animal, pooled per sow and stored at -20°C. Because the design of the cages and the floor did not allow for a complete collection of all faeces, the calculation of digestibilities was made applying the indicator technique. Later the samples of feed residues and faeces were thawed, homogenized and dried at 65°C for 48 h prior to analyses.

During the pre-treatment period, a pyretotherapy was done with seven sows (1, 2, 3, and 1 animals in treatment A, B, C, and D, respectively) using antipyretics and antibiotics. No other medical treatment was necessary.

Analyses and data evaluation

Concentrations of dry matter and crude nutrients were determined according to VDLUFA standard methods². Samples of feed and faeces were ground through a sieve with 0.5-mm pore size and treated in the institute's laboratory for analyses of P, Ca, and Ti according to Boguhn et al. (2009)³.

Measurements of P, Ca, and Ti were made using an inductively coupled plasma spectrometer (ICP-OES). Phytase activity in the feed was determined according to Engelen et al. (1994)⁴ by Biopract GmbH, Berlin, Germany.

Digestibility (y) was calculated based on the ratio of P or Ca and TiO₂ in diet and faeces according to the generally accepted equation:

$$y(\%) = 100 - 100 \times \frac{\text{TiO}_2 \text{ in the diet (g/kg)}}{\text{TiO}_2 \text{ in faeces (g/kg)}} \times \frac{\text{P or Ca in faeces (g/kg)}}{\text{P or Ca in diet (g/kg)}}$$

Data were subjected to *glm* procedure using the software package SAS for Windows 9.2. In case of a significant treatment effect means were compared using t-test. The Dunnett test was used to test the individual differences found between each supplemented diet and the control diet without phytase supplementation.

Non-linear regression analysis was performed with the program GraphPad Prism 5.02. An exponential model of the following type was fitted to the data:

$$y = a \times (1 - e^{(-c \times x)}) + b$$

with a: response (y value) at zero phytase supplementation

b: maximum response to supplemented phytase (a + b = upper asymptote)

c: parameter describing the steepness of the curve

y: concentration of digestible P in the diet (g/kg dry matter)

x: supplemented phytase (U/kg).

Calculations were made with calculated phytase levels. In order to describe the 'marginal' efficacy of the phytase, the first derivative of the equation was used. This derivative describes the amount of digestible P which is additionally released by each incremental unit of phytase⁵.

² Naumann, C. and R. Bassler. 1976. VDLUFA-Methodenbuch, Vol. III. Die chemische Untersuchung von Futtermitteln with supplements 1983, 1988, 1993, 1997, 2004, and 2006. VDLUFA-Verlag, Darmstadt.

³ Boguhn, J., T. Baumgärtel, A. Dieckmann, and M. Rodehutscord. 2009. Determination of titanium dioxide supplements in different matrices using two methods involving photometer and inductively coupled plasma optical emission spectrometer measurements. Archives of Animal Nutrition 63, 337-342.

⁴ Engelen, A. J., F.C. van der Heeft, P.H. Randsdorp, and E.L.C. Smit. 1994. Simple and rapid determination of phytase activity. Journal of AOAC International 77, 760-764.

⁵ Paditz, K., H. Kluth, and M. Rodehutscord. 2004. Relationship between graded doses of three microbial phytases and digestible phosphorus in pigs. Animal Science 78, 429-438.

Results

The study could be run and finished without any problems. The temperature in the farrowing units could not be controlled and often followed the high outdoor temperatures during summer. This probably contributed to the relatively low feed intake that was observed.

The sows weighed on average 219 kg (SD = 38.7 kg) during the experimental period. The initial and final body weights as well as the feed consumption were not different between the treatments (Table 2).

Table 2: Number of parity and piglets, body weight (BW) and feed consumption of the sows in the 5-day experimental period (Means and ranges, n = 7 sows per treatment)

•	Treatment	Number of parity	Number of piglets	Initial BW	Final BW	Feed consumption
U/kg				kg	kg	kg/day
0	Α	4.6	9.7	236	231	7.1
		1 - 8	6 - 12	179 - 284	171 - 287	3.9 - 10.4
500	В	3.6	9.7	215	210	6.4
		2 - 7	7 - 11	155 - 272	149 - 268	3.5 - 9.3
1000	C	3.1	8.9	201	199	5.4
		2 - 5	5 - 11	144 - 243	143 - 244	4.1 - 8.4
2000	D	4.1	10.1	233	231	5.9
		1 - 9	7 - 12	154 - 273	145 - 276	4.9 - 7.6
<i>P</i>		-		0.29	0.35	0.40

The digestibility of dry matter averaged 87% without any treatment effect (Table 3). However, for one individual sow a dry matter digestibility of only 72% was calculated (see annex table A3) caused by a very low analysed TiO₂ concentration in the faeces. This was identified an outlier and the sow was excluded from the analysis of all digestibility data.

Digestibility of P was significantly improved from 21 % to 34 % with increasing phytase supplementation (Table 3). Similar levels of P digestibility were reported by Jongbloed et al. (2004)⁶ using a 6-phytase derived from *Peniophora lycii*. The mean digestibility of Ca was similar across all diets at on average 35.5% (Table 3).

⁶ Jongbloed, A.W., J.Th.M. van Diepen, P.A. Kemme, J. Broz. 2004. Efficacy of microbial phytase on mineral digestibility in diets for gestating and lactating sows. Livestock Production Science 91, 143-155.

Table 3: Digestibility of dry matter, P and Ca (Means and SD, n = 7 lactating sows per treatment)

Phytase	Treatment	Dig	estibility (%)	
U/kg		Dry matter	P	Са
0	Α	86.9	20.5 ^a	33.2
		0.87	13.1	3.2
500	В	86.9	23.3 ^{ab}	37.5
		0.46	7.8	4.9
1000	C	87.4	32.5*bc	37.6
		0.54	5.4	3.5
2000	$\mathbf{D}^{^{\#}}$	86.8	34.1*c	33.6
		0.62	5.0	7.9
P		0.38	0.02	0.23

 $^{^{\#}}$ n = 6

^{*} Means are significantly different from the unsupplemented treatment A according to Dunnett test.

 $^{^{}a,b,c}$ Values without a common superscript are significantly different according to t-test (P \leq 0.05).

The concentration of digestible P in the diet increased from an average of 0.86 g/kg dry matter in the unsupplemented control treatment up to 1.44 g/kg dry matter in the diet containing 2000 U phytase per kg (Figure 1). With each incremental unit of phytase, the increase in digestible P concentration became smaller. The marginal efficacy decreased from about 0.60 mg digestible P per unit of phytase at initial supplementation to about 0.13 mg in the upper range of supplementation.

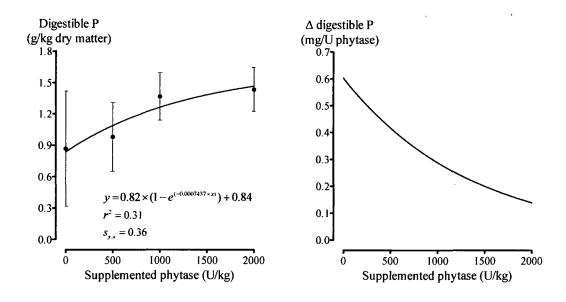


Figure 1: Concentration of digestible P in the diets depending on the level of supplementation of phytase (Means and SD, n = 7 lactating sows per treatment A, B, and C; n = 6 sows per treatment D; left) and marginal efficacy of supplemented phytase (right)

Summary and conclusions

An experiment with lactating sows was carried out to study the efficacy of a new 6-phytase (IPA Mash Phytase) derived from *Aspergillus oryzae*. Twenty eight sows (1st to 9th parity, initial body weight between 144 and 284 kg) were randomly assigned to one of four treatments. The control treatment was a low-P diet based on maize and soybean meal and was not supplemented with inorganic P or phytase. Treatments B, C, and D were the same as treatment A, except that phytase was added at levels of 500, 1000 and 2000 U per kg of diet. The P and Ca concentrations were 4.2 and 10.2 g/kg dry matter, respectively.

The faeces of the sows were collected on 5 consecutive days during the 3rd and 4th week of lactation. The digestibility of P and Ca was calculated based on the indigestible marker TiO₂.

No significant differences were found in the initial and final body weights of the sows as well as the feed consumption and dry matter digestibility. The digestibility of P in the control diet was on a very low level as expected (20.5%). P digestibility was improved by phytase supplementation in a non-linear manner to a maximum of 34.1% at the highest level of supplementation. The increase in P digestibility was significant for the treatments C and D in comparison to treatment A. The Ca digestibility was similar across all treatments at on average 35.5% and not significantly effected by phytase supplementation.

In conclusion, the new phytase product has beneficial effects in the feeding of lactating sows when added to the diet. By supplementing this phytase the faecal excretion of P can be reduced.

(b) (4) November 30, 2009

(b)(4)

Annex tables 1 to 3 are part of this report.

Annex table 1: Composition and calculated nutrients and energy concentration of the diets before experimental period (g/kg)

Components	Diet 7 d before until at least 2 d postpartum	Diet during adaptation period
Maize	-	300
Soybean meal, solvent extracted	90	230
Soybean oil	10	33
Oats	50	40
Wheat bran	62	80
Peas	100	90
Wheat	123	80
Triticale	200	-
Barley	330	100
Monocalcium phosphate	-	12
Mineral and vitamin mix	35 [†]	35#
Crude protein	156	191
Crude fibre	46	46
P	5.6	6.7
Ca	8.2	10.8
Lysine	9.5	9.8
Methionine and cystine	5.6	5.8
Threonine	6.0	6.9
Tryptophan	1.9	2.3
ME (MJ/kg feed)	12.7	13.4

[†] per kg: 456 g calcium carbonate; 153 g monocalcium phosphate; 146 g sodium chloride; 30 g magnesium oxide; 32 g wheat bran; 400,000 I.U. vitamin A; 2.5 g vitamin E; 57,000 I.U. vitamin D_3 ; 0.5 g copper; 17,500 FTU 3-phytase; 14.3 x 10^9 colony-forming unit lactic acid bacteria; with antioxidant food additives

^{*}P-free; per kg: 665 g calcium carbonate; 175 g sodium chloride; 40 g magnesium oxide; 5 g rape seed oil; 600,000 I.U. vitamin A; 86,000 I.U. vitamin E; 3 g zinc; 0.33 g copper; 13 mg selenium; with butylated hydroxytoluene as antioxidant food additive

Annex table 2: Number of parity and piglets, body weight (BW), and feed consumption of the sows in the 5-day experimental period (individual data)

Number of sow	Treatment	Number of parity	Number of piglets	Initial BW	Final BW	Feed consumption
				kg	kg	kg/d
1	0	6	11	224	222	6.53
2	500	2	11	155	149	3.54
3	1000	2	10	144	143	4.06
4	2000	2	10	206	203	6.37
5	500	2	9	189	189	4.73
6	0	4	11	218	213	6.36
7	2000	2	12	256	256	5.49
8	1000	4	9	194	189	6.42
9	0	5	9	279	269	3.94
10	500	6	11	229	226	5.76
11	1000	5	9	239	232	4.32
12	2000	4	10	232	231	5.17
13	0	2	11	224	216	7.36
14	500	2	10	207	199	4.68
15	1000	2	9	219	218	4.53
16	2000	9	7	242	236	4.89
17	0	8	6	284	287	10.30
18	500	4	9	235	227	7.40
19	1000	3	9	182	179	5.37
20	2000	7	11	272	274	6.61
21	0	6	8	243	239	10.38
22	500	7	7	272	268	9.19
23	1000	2	5	188	192	8.41
24	2000	1	9	154	145	5.24
25	0	1	12	179	171	5.05
26	500	2	11	217	216	9.34
27	1000	4	11	243	244	4.83
28	2000	4	12	273	276	7.56

Annex table 3: Digestibility of dry matter, P and Ca (individual data)

Number	Treatment		Digestibility	
of sow	reament	Dry matter	P	Ca
		%	%	%
1	0	87.4	18.9	37.7
2	500	86.3	22.4	46.6
3	1000	87.1	32.6	39.6
4	2000	86.5	38.3	38.3
5	500	86.8	29.5	38.2
6	0	85.9	13.7	32.9
7	2000	86.2	37.9	43.0
8	1000	86.6	35.0	34.9
9	0	88.4	9.2	29.7
10	500	87.0	25.6	32.4
11	1000	87.1	29.9	31.5
12	2000	87.5	33.0	30.3
13	0	87.1	22.7	32.5
14	500	87.8	24.7	39.2
15	1000	88.0	33.0	40.7
16	2000	86.0	27.7	19.9
17	0	86.1	33.4	33.3
18	500	86.7	15.5	34.2
19	1000	87.0	23.9	37.3
20	2000	87.1	28.7	. 33.8
21	0	87.2	41.3	29.3
22	500	86.7	11.2	33.2
23	1000	87.8	31.1	37.6
24#	2000	72.5	-60.8	-25.6
25	0	86.4	4.6	36.8
26	500	87.0	34.0	38.8
27	1000	87.9	41.7	41.5
28	2000	87.3	38.8	36.0

FEEDAP UNIT

ANNEX C 1

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA Ma	Batch number: PPQ 28683		
Trial ID: 2009-10	Location:	(b) (4)	
Start date and exact duration of the	study: 2009/07/27	- 2009/09/26	
Number of treatment groups (+ con	trol(s)): 4	Replicates per group: 7	
Total number of animals: 28		Animals per replicate: 1	
Dose(s) of the additive/active substant	ance(s)/agent(s) (r	mg/Units of activity/CFU kg ⁻¹ c	omplete feed/L ⁻¹
water) Intended: 500, 1000, 2000 U/kg fee	d Analysed	589, 1027, 2125 U/kg feed	
+	a ruidiyoca.	000, 1027, 2125 C/kg iccu	
Substances used for comparative p	urposes: none		
Intended dose:	Analysed:		
Animal species/category: Lactating			
Breed: German Landrace		ion procedure: ear number	
Sex: female Age at st		Body weight at start: 221 kg	
Physiological stage: normal		ealth: good	
Additional information for field tri			
Location and size of herd or flock:			
Feeding and rearing conditions:			
Method of feeding:			
Diets (type(s)): Maize/soybean meal-	based, low-P		
	sh 🛛 Pelle	et D Extruded D O	ther
Composition (main feedingstuffs): N	laize (66%), soyb	ean meal (27%), soybean oil	(3.6%)
Nutrient content (relevant nutrients	and energy conter	nt)	
Intended values: 21 % CP in DM,	0.40 % P in DM, 0	.92 % Ca in DM	
Analysed values: 20.1 % CP in DN	1, 0.42 % P in DM,	1.03 % Ca in DM	
Date and nature of the examination:	s performed: faece	s collection between 3 rd and 4 th	week of lactation
Method(s) of statistical evaluation us	sed: Standard ana	lytical methods, ANOVA, Regr	ession analysis
Therapeutic/preventive treatments (reason, timing, kin	nd, duration): Seven sows we	re medicated
before the experimental period ag Pyrogenin (alone or in combination)	jainst fever with	Matamizol, Tylosin, Metapyrin	, Trimethosel or
Timing and prevalence of any under	sirable consequen	ces of treatment:	
	nature Study Direc		
		(b) (4)	
Nov. 30, 2009			

Please submit this form using a common word processing format (e.g. MS Word).

1 A B

0

Annex 10 Efficacy study with IPA Mash Phytase in gestating sows REPORT No. 00003285

REPORT No. 00003285 Regulatory Document

Document Date:

15 December, 2009

Author(s):

(b) (4)¹ and J. Broz²

(b) (4)
Animal Nutrition and Health R&D, DSM Nutritional Products Ltd, Basel

Title:

Efficacy study with IPA Mash Phytase in gestating sows

Project No.

6106

Summary

An experiment involving 24 gestating sows (hybrid line Euroc) in the 3rd parity was conducted in order to evaluate the effects of IPA Mash phytase on the apparent faecal digestibility of crude ash, calcium and phosphorus. The animals were fed a gestation diet based on maize, wheat, triticale and soybean meal as the main ingredients, which provided about 2.2 g of available P per sow and day. This basal diet was supplemented with IPA Mash phytase at the inclusion levels of 0 (negative control), 500, 1000 and 2000 U/kg, respectively. Each dietary treatment was assigned to 6 animals. The basal, P-deficient diet was fed during a 14-day pre-treatment period and subsequently the experimental diets were provided during the following 14-day treatment period. Samples of faeces were collected during the last 5 days, on days 54 to 58 of pregnancy, and the apparent digestibility was measured by an indicator method, using chromium oxide. Dietary supplementation with IPA Mash phytase at 500, 1000 and 2000 U/kg improved the apparent faecal digestibility of P from 26.5% (control) to 33.5, 38.6 (P<0.05) and 39.9 % (P<0.05), respectively. All 3 phytase inclusion levels also improved significantly the apparent faecal Ca digestibility. The improvement of P digestibility was connected with a dose related reduction of its faecal concentration. At the highest inclusion level of IPA phytase the faecal P concentration was reduced by 25.3% in comparison with the control.

This report consists of Pages I – II and 1 – 20 & Annex C

Distribution

Dr. M. Eggersdorfer, NRD Dr. F. Fru, NRD/PA Mr. J.-F. Hecquet, NBD/RG Dr. P. Guggenbuhl, NRD/CA Dr. A.-M. Klünter, NRD/CA Dr. J. Pheiffer, NRD/PA Mr. J.-P. Ruckebusch, ANH/GM Dr. C. Simoes Nunes, NRD/CA

Approved

Name Main Author	Signature signed by	<u>Date</u>
Dr. J. Broz, NRD/CA	J. Broz	15.12.2009
Principal Scientist / Competence Mgr	signed by	
Dr. J. Broz, NRD/CA	J. Broz	15.12.2009
Research Center Head	signed by	
Dr. AM. Klünter, NRD/CA	AM. Klünter	17.12.2009
Project Manager	signed by	
Dr. F. Fru, NRD/PA	F. Fru	16.12.2009

Regulatory Document

DSM Nutritional Products Ltd

Page I of II

Nomenclature

PA phytase (M), enzyme product containing bacterial 6-phytase (b) (4), produced by (b) (4) fermentation of a genetically modified Aspergillus oryzae strain. Lot PPQ 28684 was used in this study, manufactured by Novozymes A/S, (b) (4).

Regulatory Document DSM Nutritional Products Ltd Page II of II

Report

Title:

Efficacy study with IPA Mash Phytase in gestating sows

Institute number (b) (4)
Notification number (b) (4)

Sponsor:

DSM Nutritional Products Ltd Animal Nutrition and Health R & D CH-4002 Basel

Investigator:
(b) (4)

Responsibilities

Study director:	/L\ / <i>A</i> \
	(b) (4)
Study monitor:	
	(b) (4)
Feed producer:	
	(b) (4)
Trial site and research facility personnel: (b) (4)	
(b) (4)	
Veterinary surgeon:	/L\ / / \
	(b) (4)
Documentation and biostatistics:	
	(b) (4)
Analytical lab:	
Feed and faecal samples	
	(b) (4)
Phytase activity in diets	
Phytase activity in diets (b) (4)	_
Phytase activity in diets (b) (4)	
Phytase activity in diets (b) (4)	

Table of contents

1	Abstract	4
2	General Information	4
2.1	Study	5
2.1.1		
	Animals	
	Main feedstuffs	3
	Feed additive	5
2.1.4	Address of trial facility	5 5 5 5 5 5 5 5 5
2.3	Responsibility	3
2.4	Time schedule	
2. 4 3	Introduction	
<i>3</i> 4		6
4 4.1	Experimental procedure	6
4.1 4.2	Animals and housing	6
4.2 4.3	Experimental design Diets	7
4.3 4.4		7
	Measured parameters	9
	Body weight Feed intake	9
		9
	Apparent digestibility	9
	Health status	9
4.6	Analytical methods	10
4.7 5	Statistical analysis	10
5	Results	10
5.1	Weight gain and feed intake	11
	Body weight	11
	Feed intake	11
5. 2	-	11
5.3	Apparent faecal digestibility	12
	Dry matter concentration	12
	Crude ash	12
	Calcium	12
	Phosphorus	13
6	Discussion and Conclusions	13
7	Individual data determined for sows	17

1 Abstract

No efficacy studies with the novel IPA Mash Phytase, an enzyme product containing bacterial 3-Phytase, expressed in a genetically modified strain of Asperigillus oryzae, regarding the digestibility of crude ash, calcium and phosphorus in breeding sows were reported yet. Therefore, the study was performed with multiparous sows during the 3rd pregnancy period with different levels of IPA Mash Phytase to assess its efficacy and dose response. A total of 24 sows in the body weight range 190 to 210 kg were obtained from a pool of fifty sows of the breeder farm, which were of the same genotype (hybrid line Euroc) as well as in the same parity (3rd parity) and reproduction stage (29th to 33rd day of pregnancy). On day 31 of pregnancy (average value) the sows were allocated in eight blocks of three sows per pen in the gestation stable with individual feeding. Except for calcium and phosphorus the diets were calculated in accordance to the official recommendations for sows. Compared to the official recommendation of 2.4 g available phosphorus per sow and day the supply of sows fed with the phosphorus deficient diet offered in the daily amount of 2.23 kg was with 2.2 g available phosphorus 12.5% lower than the recommended daily supply of available phosphorus. The deficient diet was used for the 14-day depletion period (pre-treatment period) and during the following 14-day treatment period either as a negative control diet without phytase supplementation or with supplementation of IPA Mash Phytase at the levels of 500, 1000 and 2000 units per kg of feed in the period 45th to 58th day of pregnancy. Each treatment (without or with IPA Mash Phytase) consisted of 6 sows and 6 replicates, respectively. For performance data average body weight gain and feed intake were recorded. Scored faecal consistency was monitored by daily inspection. Chromium oxide (Cr₂O₃) at 5g/kg was supplemented as an inert indigestible indicator for apparent faecal digestibility measurements of crude ash, calcium and phosphorus, respectively. The faeces samples were collected by rectal sampling of all pigs at 24-h intervals during the 54th and 58th day of pregnancy. Compared to the unsupplemented control graded levels of IPA Mash Phytase enhanced the apparent digestibility of crude ash, calcium and phosphorus significantly by 33.5, 34.6 and 50.4% respectively. The dose response curves did not allow any overall calculation of the optimal phytase activity in the diets for sows during the faecal collection period at days 54 to 58 of pregnancy. However, based on the fact that the response between dose levels of 1000 and 2000 units per kg feed was not so pronounced than that between 500 and 1000 units per kg of feed it may be concluded that a sufficient dose response was achieved already with 1000 units per kg of feed.

It was concluded that IPA Mash Phytase is effective in improving the apparent digestibility for crude ash, calcium and phosphorus when using diets low in phosphorus supply. The regression equations did not allow any overall calculation of the optimal phytase activity in the diet for sows during the faecal collection period at days 54 to 58 of pregnancy. It was estimated that 500, 1000 and 2000 units of IPA Mash Phytase per kg of feed were equivalent to 1.21, 2.12 and 2.37 g of monocalcium phosphate, respectively.

2 General information 2.1 Study	
2.1.1 Trial type:	Efficacy study with IPA Mash Phytase at graded levels on apparent digestibility of crude ash, calcium as well as phosphorus in gestating multiparous sows from 31 st to 58 th day of pregnancy.
2.1.2 Animals:	24 multiparous sows (EUROC line) (Hülsenberger Zuchtschweine GmbH, 33803 Steinhagen).
2.1.3 Main feedstuffs:	Maize, optigrain, soybean meal.
2.1.4 Feed additive:	IPA Mash Phytase (bacterial 6-Phytase expressed in a genetically modified strain of <i>Aspergillus oryzae</i>); • Batch: PPQ 28684; • Activities: 59800 U/g; • Dose levels: 500 U/kg feed 1000 U/kg feed 2000 U/kg feed
2.2 Address of trial facility:	(b) (4)
2.3 Responsibility:	(b) (4

5

2.4 Time schedule:

Start of experiment: 2009-07-09 End of experiment: 2009-08-12

3 Introduction

The efficiency of the novel IPA Mash Phytase, an enzyme product containing bacterial 6-Phytase, expressed in a genetically modified strain of Aspergillus oryzae, as a feed additive in sows during lactation is not known. Therefore, and because of the request for approval of the enzyme as a feed additive, an experiment was carried out to study dose dependent effects of IPA Mash Phytase in sows during the first part of gestation fed diets with high phytin-P but deficient in available phosphorus. Effects on apparent digestibility of crude ash, calcium as well as phosphorus were evaluated by using an indicator method.

4 Experimental procedure

4.1 Animals and housing

A total of 24 multiparous sows in the body weight range 190 to 210 kg were obtained from a pool of fifty sows of the breeder farm, which were of the same genotype (hybrid line Euroc), parity (3rd parity) and reproduction stage (29th to 33rd day of pregnancy). On day 31 of pregnancy (average value) the sows were allocated in eight blocks of three sows per pen in the gestation stable with individual feeding. Environmental temperature was adjusted to about 21°C. The relative humidity was in the range of 65%. Details of daily measured temperatures as well as relative humidity are presented in Figures 1 and 2. The calculated ventilation capacity was in the range of 2.0 changes per hour. Feed was offered in automatic feeders. Fresh drinking water was continuously supplied by drinking bowls.

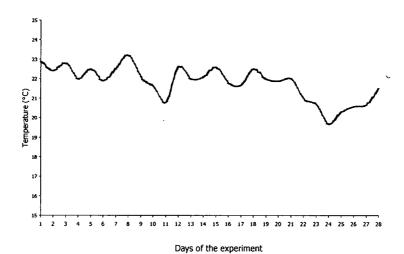


Figure 1. Daily temperatures in the gestation stable during the 28-day-experimental period measured in the animal area

Figure 2. Daily relative humidity in the gestation stable during the 28-day experimental period measured in the animal area

4.2 Experimental design

Four treatments were imposed to the gestating sows from the 45th to 58th day of pregnancy after a 12-day pre-treatment period (31st to 44th day of pregnancy). Six sows per treatment were used. The first treatment (A) was the negative control diet, a low-phosphorus basal diet without IPA Mash Phytase. Treatments B, C and D were identical to the negative control but supplemented with IPA Mash Phytase at levels of 500, 1000 and 2000 U/kg of diet, respectively. Details are presented in Table 1.

Table 1. Overview of the treatments applied to the sows

Treatment		A	В	C	D
Sows	n	6	6	6	6
Replicates	n	6	6	6 _	6
 Pre-treatment period 31st to 44th day of pregnancy IPA Mash Phytase 	U/kg	0	0	0	0
 Treatment period 45th to 58th day of pregnancy IPA Mash Phytase 	U/kg	0	500	1000	2000

4.3 Diets

Prior to the experimental period a basal low phosphorus diet without IPA Mash Phytase was offered from 31st to 44th day of pregnancy. After the pre-treatment period sows received the experimental diets, which were based on the diet fed during the foregoing depletion period, until the end of the experiment. The ingredients and calculated chemical composition of the basal diet are presented in Table 2. Major ingredients were maize, optigrain (heat treated grains: 50% wheat, 25% barley, 25% maize) and soybean meal. The basal ingredients for the diets were provided by the (b) (4). The quantities of all the basal ingredients and the IPA Mash Phytase required for the production of the diets were documented. Except for calcium and phosphorus the diets were calculated in accordance to the recommendations for sows published by GfE (2006). The phosphorus content of the basal diet was estimated to be 3.40 g per kg of feed which was equivalent to

0.88 g available phosphorus per kg of feed. The basal phosphorus deficient diet was manufactured in one batch of 2000 kg and than subdivided for the pre- and treatment period in amounts of 1000 kg, respectively.

Table 2: Composition of the diets and calculated nutrient concentration

		Pre-treatment		Treati	nent	
Treatment		A/B/C/D	A	В	C	D
Composition:	%					
Maize		34.54	34.04	34.04	34.04	34.04
Optigrain		23.00	23.00	23.00	23.00	23.00
Soyabean meal		12.50	12.50	12.50	12.50	12.50
Wheat		12.00	12.00	12.00	12.00	12.00
Triticale		10.00	10.00	10.00	10.00	10.00
Cellulose		4.50	4.50	4.50	4.50	4.50
Limestone		1.66	1.66	1.66	1.66	1.66
Premix*	į.	1.20	1.20	1.20	1.20	1.20
Soya oil		0.50	0.50	0.50	0.50	0.50
Chromium oxide		0	0.50	0.50	0.50	0.50
Sodium chloride		0.10	0.10	0.10	0.10	0.10
Calculated:						
ME _{BFS}	MJ/kg	12.93	12.86	12.86	12.86	12.86
Crude protein	g/kg	144.70	144.42	144.42	144.42	144.42
Lysine	g/kg	6.40	6.40	6.40	6.40	6.40
Methionine	g/kg	2.00	2.00	2.00	2.00	2.00
Cystine	g/kg	2.20	2.20	2.20	2.20	2.20
Threonine	g/kg	5.20	5.20	5.20	5.20	5.20
Tryptophan	g/kg	1.50	1.50	1.50	1.50	1.50
Crude fiber	g/kg	69.10	68.90	68.90	68.90	68.90
Crude fat	g/kg	30.30	30.00	30.00	30.00	30.00
Starch	g/kg	471.90	468.80	468.80	468.80	468.80
Sugars	g/kg	31.10	31.00	31.00	31.00	31.00
Calcium	g/kg	7.00	7.00	7.00	7.00	7.00
Phosphorus	g/kg	3.40	3.40	3.40	3.40	3.40
Sodium	g/kg	2.00	2.00	2.00	2.00	2.00

*Contents per kg Premix: 400000 IE Vit. A; 40000 IE Vit. D_3 ; 4200 mg Vit. E; 200 mg Vit. K_3 ; 200 mg Vit. B_1 ; 250 mg Vit. B_2 ; 3500 mg niacine; 400 mg Vit. B_6 ; 3000 μ g Vit. B_{12} ; 20000 μ g biotin; 1500 mg pantothenic acid; 150 mg folic acid; 80000 mg choline chloride; 5000 mg Zn; 2000 mg Fe; 5000 mg Mn; 1200 mg Cu; 40 mg Co; 35 mg Se; 50 mg J; 130 g Na; 50 g Mg.

The basal diet for the experimental period (overall 1000 kg) was subsequently divided into equal parts (250 kg each) without or with IPA Mash Phytase at levels of 500, 1000 and 2000 U/kg feed, respectively. Furthermore Cr₂O₃ was added at 0.5% in all diets fed during the 14-day treatment period. Diets were provided in mash form and produced at the licensed compound feed mill owned by the Institute (administrative allowance number: αDE-BE-100001; administrative registration number: DE-BE-100001). Each batch of the diets was bagged separately in 20 kg bags, which were identified with a label showing the study code number (SL 3/09) and the treatment letters (A, B, C, D). Complete records of diet mixing and test article inventory were maintained. All diets were prepared without addition of other feed additive with the exception of amino acids, vitamins and trace elements.

According to the recommendations and to local feeding schedule multiparous sows in the 3rd parity with an average body weight of 195 kg and a calculated body weight loss during the forgoing lactation period of 5 kg were offered 2.3 kg feed per sow and day, which corresponded to 30 MJ ME per sow and day. The daily estimated intake of available phosphorus was about 2 g, which was 16.7% lower than the recommended available phosphorus intake of 2.4 g per sow and day (GfE 2006).

4.4 Measured parameters

4.4.1 Body weight

All sows were weighed individually in two-weekly intervals at the start of the 14-day pretreatment and 14-day treatment period, respectively, as well as at the end of the experiment.

4.4.2 Feed intake

During the 14-day pre-treatment and 14-day treatment period daily feed intake and possible feed residues were recorded daily.

4.4.3 Apparent digestibility

Digestibility coefficients of crude ash and the minerals calcium and phosphorus were calculated using Cr₂O₃ at 5g/kg as an inert indigestible indicator. Experimental diets were offered from the 45th to 58th day of pregnancy. The faecal samples were obtained by rectal stimulation of the sows, which was done early in the morning just before feeding and in the afternoon around 15 h at 24-h intervals during the 54th and 58th day of pregnancy. All samples were stored at minus 20°C for subsequent lyophilization. Before blending respective samples collected for each sow were pooled. Calculations for the apparent digestibility of crude ash, calcium and phosphorus were based on the following formula:

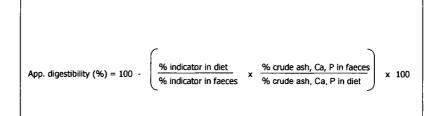


Figure 3: Formula for calculating the apparent digestibility for crude ash, calcium and phosphorus

4.5 Health status

Health status of the sows were monitored twice daily throughout the experiment. Additionally the appearance of faeces was ranked daily according to the following categories:

- 1 = normal (dry matter > 25%)
- 2 = pasty (dry matter 24 18%)
- 3 = watery (dry matter < 18%)
- 4 = watery with colour changes (dry matter < 18%)

4.6 Analytical methods

Diets were analysed by the Weender technique, including starch, total sugars, calcium, phosphorus and sodium determination, in accordance to the official VDLUFA methodology (dry matter: VDLUFA 3.1; crude protein: VDLUFA 4.1.2 modified according to macro-N determination (vario Max CN); crude fibre: VDLUFA 6.1.1; crude ash: VDLUFA 8.1; crude fat: VDLUFA 5.1.1; starch: VDLUFA 7.2.5; total sugars: VDLUFA 7.1.1; calcium: VDLUFA 10.3.1 modified according to DIN EN ISO 11885; phosphorus: VDLUFA 10.6.1 modified according to DIN EN ISO 11885; sodium: VDLUFA modified according to DIN EN ISO 11885) by (b) (4)). Faeces were analysed for dry matter, crude ash, calcium and phosphorus (dry matter: weighing before and after lyopholization as well as following dry matter examination according to VDLUFA 3.1; crude ash: VDLUFA 8.1; calcium: VDLUFA 10.3.1 modified according to DIN EN ISO 11885; phosphorus: VDLUFA 10.6.1 modified according to DIN EN ISO 11885). Chromium oxide in feed and faecal samples was measured by using the method described by Brisson (1956). Parallel feed samples were analysed for in-feed phytase activity by DSM Biopract before starting and after concluding the trial.

4.7 Statistical analysis

Results are presented as means \pm standard deviation. The statistical analyses was performed with the software package SPSS (SPSS, Inc. Chicago, IL). After checking the homogeneity of the variance the means were compared by the usual test procedures (Sheffe test, Tukey test). The significance level was set at p < 0.05.

5 Results

The trial was conducted without any technically disturbance. Additionally all sows were healthy and showed no obvious signs of disease. The analyses of the pre- and treatment diets confirmed the calculated values as shown in Table 3.

Table 3: The results of chemical analyses of the diets

		Pre-treatment	Treatment			
Experimental group		A/B/C/D	Α	В	C	D
Sows	n	24	6	6	6	6
Replicates	n	24	6	6	6	6
IPA Mash Phytase	U/kg	0	0	500	1000	2000
Crude protein	g/kg	142.1	138.5	140.1	141.6	140.3
Crude fibre	g/kg	81.1	80.6.	82.2	79.7	81.2
Crude fat	g/kg	32.6	31.9	31.5	32.4	32.6
Crude ash	g/kg	45.0	45.0	44.6	44.5	50.0
Starch	g/kg	453.0	461.5	467.8	465.0	462.7
Sugars	g/kg	32.0	32.7	32.4	31.9	31.5
Calcium	g/kg	7.4	7.4	7.2	7.4	7.2
Total Phosphorus	g/kg	3.5	3.5	3.6	3.5	3.4
Sodium	g/kg	1.94	1.94	1.94	1.94	1.94
Chromium oxide	g/kg	5.2	5.2	4.8	5.2	5.2

The in-feed phytase activities presented in Table 4 were only slightly higher (diet B and C) than intended, but when considering the native phytase activity of 211 U/kg still within the intended range.

Table 4. Results of in-feed phytase analytics of the diets

		Pre-treatment	Treatment			
Experimental group		A/B/C/D	A	В	C	D
IPA Mash Phytase	U/kg					
• intended		0	0	500	1000	2000
analysed		211 (native)	211 (native)	786	1262	2440

5.1 Weight gain and feed intake

Performance was monitored during the 14-day pre-treatment as well as the 14day- treatment period. The results are summarized in Table 5.

5.1.1 Body weight

During the 14-day pre-treatment period all sows received the basal diet containing 3.5 g total phosphorus per kg diet without phytase supplementation. The overall daily weight gain was 342 g per sow. During the following 14-day treatment period the body weight gain of sows fed the phosphorus deficient diet without supplemental phytase was 375 g per day. With supplementation of the diet deficient in phosphorus but with addition of IPA Mash Phytase at levels of 500, 1000 and 2000 units per kg of feed daily body weight gain increased slightly by 1.9, 9.6 and 11.5% when compared to sows fed without supplemental phytase.

5.1.2 Feed intake

The average daily feed intake during the pre-treatment period was 2.26 kg per sow and day. During the treatment period respective means for daily feed intake of sows fed without or with IPA Mash Phytase were recorded.

5.2 Faecal consistency

The scores for daily faecal consistency (Table 5) were within a range that did not indicate any adverse health effects at any time. The overall average was slightly above 1 thus reflecting only few changes in the physiological faecal consistency (dry matter > 25%). Diarrhoea with liquid faeces was not observed. There was a trend for slightly higher faecal consistency when adding IPA Mash Phytase; however, all means were still above the borderline of abnormal faecal consistency.

Table 5. Indices of performance and faecal consistency of gestating sows during the 14-day pre-treatment and 14-day treatment period for days 31 to 58 of pregnancy

Treatment		Α	В	С	D	Oneway Anova
Sows ,	n	6	6	6	6	
Replicates	n	6	6	6	6	
Pre-treatment period			1	ļ		
Sows	n	6	6	6	6	
Replicates	n	6	6	6	6	
- 31st to 44th day of pregnancy						
IPA Mash Phytase	U/kg	0	0	0	0	ļ
→ Body weight	kg	1		1		1
- start		192.3 ± 4.9	187.3 ± 6.6	190.2 ± 3.1	190.8 ± 6.4	0.462
- end		197.2 ± 4.1	192.0 ± 6.4	195.0 ± 3.5	195.7 ± 6.2	0.393
→ Body weight gain	kg	4.9 ± 1.0	4.7 ± 0.8	4.8 ± 0.8	4.9 ± 0.7	0.980
→ Feed intake	kg	31.83 ± 0.41	31.67 ± 0.82	31.50 ± 1.22	31.67 ± 0.82	0.930
→ Faecal score		1.25 ± 0.05	1.28 ± 0.04	1.30 ± 0.07	1.25 ± 0.05	0.311
Treatment period						
Sows	n	6	6	6	6	
Replicates	n	6	6	6	6	
- 45th to 58th day of pregnancy						
IPA Mash Phytase	U/kg	0	500	1000	2000	
→ Body weight	kg					
- start	_	197.2 ± 4.1	192.0 ± 6.4	195.0 ± 3.5	195.7 ± 6.2	0.393
- end		202.4 ± 4.2	197.3 ± 6.1	200.7 ± 3.6	201.5 ± 6.3	0.371
→ Body weight gain	kg	5.2 ± 0.4	5.3 ± 0.5	5.7 ± 1.0	5.8 ± 0.5	0.373
→ Feed intake	kg	31.58 ± 0.49	31.42 ± 0.49	31.83 ± 0.41	31.90 ± 0.30	0.389
→ Faecal score		1.22 ± 0.05	1.28 ± 0.04	1.30 ± 0.07	1.25 ± 0.05	0.193

5.3 Apparent faecal digestibility

The results obtained during the 5-day sampling period are presented in Table 6.

5.3.1 Dry matter concentration

The overall dry matter of the faeces sampled during the 5-day period was on average 34.2% and was reflecting the fact that no abnormalities concerning the faecal consistency were observed during the 14-day treatment period. Sows fed with IPA Mash Phytase at the levels of 500 to 2000 units per kg of feed showed slightly reduced means with increasing levels of IPA Mash Phytase in the range of 1.3 to 4.6% when compared to sows fed without supplemental phytase.

5.3.2 Crude ash

The apparent crude ash digestibility of sows fed without phytase supplementation was 29.4%. With supplementation of IPA Mash Phytase at the levels of 500, 1000 and 2000 units per kg of feed the apparent digestibility increased significantly. The highest response was recorded for the addition of 2000 units per kg of feed.

5.3.3 Calcium

The apparent calcium digestibility of sows fed with IPA Mash Phytase was significantly improved with increasing levels when compared to sows fed without supplemental phytase by 17.5 (500 U/kg), 27.8 (1000 U/kg) and 34.6% (2000 U/kg), respectively. The highest response was shown for sows fed with 2000 units per kg of feed.

5.3.4 Phosphorus

The apparent digestibility of phosphorus in sows fed without supplemental phytase reached 26.5%. In sows fed with IPA Mash Phytase the respective means were significantly improved with inclusion of 1000 and 2000 units per kg of feed by 45.6 and 50.4%, respectively. The addition of IPA Mash Phytase at 500 units per kg of feed was less effective and due to the high standard deviations the difference compared to sows fed without supplemental phytase was not significant at this concentration.

Table 6. Indices of faecal dry matter and apparent digestibility of crude ash, calcium and phosphorus of gestating sows during the 5-day sampling period from days 54 to 58 of pregnancy

Treatment		Α	В	С	D	Oneway Anova
Sows	n	6	6	6	6	
Replicates	n	6	6	6	6	
IPA Mash Phytase	U/kg	<u></u>	500	1000	2000	
Dry matter	%	34.86 ± 0.72	34.42 ± 0.74	34.15 ± 0.99	33.25 ± 0.75	0.017
relative		100	98.7	98.0	95.4	
 Faecal concentrations 						
→ Crude ash	g/kg DM	229.3 ± 16.1	218.0 ± 38.6	205.1 ± 23.0	206.3 ± 10.8	0.305
relative	%	100	95.1	89.4	90.0	
→ Calcium	g/kg DM	37.1 ± 2.0 ^a	34.3 ± 6.9^{ab}	32.4 ± 3.5ab	28.8 ± 1.8 ^b	0.016
relative	%	100	92.5	87.3	77.6	
→ Phosphorus	g/kg DM	18.6 ± 0.7ª	17.8 ± 3.5^{a}	15.4 ± 2.0ab	13.9 ± 1.9 ^b	0.007
relative	%	100	95.7	82.8	74.7	
 Apparent digestibility 						
→ Crude ash	%	29.44 ± 3.32a	33.76 ± 2.18b	35.77 ± 2.96bc	39.29 ± 1.58°	< 0.001
relative	%	100	114.7	121.5	133.5	
→ Calcium	%	30.57 ± 3.18a	35.93 ± 0.95b	39.08 ± 2.21bc	41.14 ± 4.23°	< 0.001
relative	%	100	117.5	127.8	134.6	
→ Phosphorus	%	26.51 ± 2.93 ^a	33.52 ± 2.97ab	38.59 ± 6.04b	39.87 ± 5.95b	< 0.001
relative	%	100	126.4	145.6	150.4	

ab Means with different superscripts within the same line differed significantly

6 Discussion and Conclusions

The analysed total phosphorus content in the phosphorus deficient basal diet was 3.5 g. The monitored feed intake during the pre-treatment and treatment period was 2.26 kg per sow and day which was corresponding to a total phosphorus intake of 7.91 g per day. Therefore the total daily available phosphorus supply (calculated with the digestibility of phosphorus measured for the control group) amounted to 2.10 g available phosphorus intake per sow. This analysed amount was slightly higher than the calculated value. Compared to the official recommendations of 2.4 g available phosphorus per sow and day the supply of sows fed with the phosphorus deficient diet was still 12.5 % lower. From this point of view conditions for testing the efficacy of IPA Mash Phytase were sufficient.

The results of the trial show the potential of IPA Mash Phytase to improve the apparent digestibility of crude ash, calcium and phosphorus in sows. In Figures 4 to 6 the effects of dietary supplementation with IPA Mash Phytase were presented as dose response curves together with the respective regression equations and correlation coefficients.

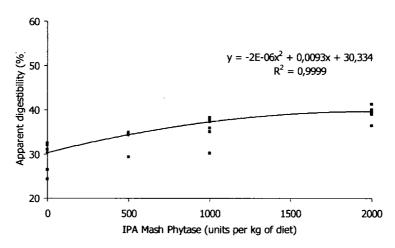


Figure 4. Effect of IPA Mash Phytase supplementation on apparent crude ash digestibility of multiparous sows from days 54 to 58 of pregnancy

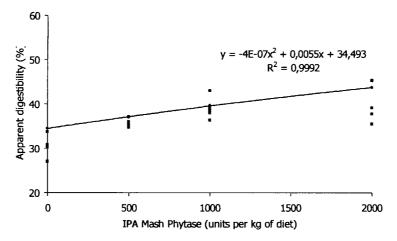


Figure 5. Effect of IPA Mash Phytase supplementation on apparent calcium digestibility of multiparous sows from days 54 to 58 of pregnancy



Figure 6. Effect of IPA Mash Phytase supplementation on apparent phosphorus digestibility of multiparous sows from days 54 to 58 of pregnancy

The response curves show that the most pronounced effects for apparent digestibility of crude ash, calcium and phosphorus could be demonstrated in the dose range from 1000 to 2000 U/kg feed. Based on the fact that the response between the dose levels of 1000 and 2000 units per kg feed was not so pronounced as that between 500 and 1000 units per kg feed the conclusion can be made that with regard to the tested dose levels a sufficient dose response was achieved with 1000 units per kg feed.

The daily calcium intake during the experimental period reached 16.5 g per sow. Consequently the intake exceeded the recommended supply according to "GfE" (2006) by 10.1 g per sow and day. Even so the positive effect on apparent digestibility of calcium in sows fed with IPA Mash Phytase was still evident at all phytase levels. Obviously the magnitude of the enzyme response was independent of the amount of calcium concentration in the chyme.

The economic impact of replacing inorganic phosphorus by supplementation with IPA Mash Phytase was evaluated by calculating the replacement of inorganic phosphorus as monocalcium phosphate (MCP) equivalents (MCP: 220 g total phosphorus per kg, 90% digestibility) by using the apparent phosphorus digestibility measurements recorded for sows fed without or with IPA Mash Phytase supplementation (Table 6). Based on these results it was estimated that 500, 1000 and 2000 units of IPA Mash Phytase per kg of feed were equivalent to 1.21, 2.12 and 2.37 g of monocalcium phosphate, respectively.

It can be concluded that IPA Mash Phytase is effective in improving the apparent digestibility for crude ash, calcium and phosphorus when using diets deficient in phosphorus supply. The regression equations did not allow any overall calculation of the optimal Phytase activity in the diet for sows during days 54 to 58 of pregnancy. However, with regard to the smaller differences in the efficiency between 1000 and 2000 units per kg feed than those between 500 and 1000 unite per kg of feed, the dose level of IPA Mash Phytase at 1000 units per kg of feed was obviously sufficient for improving significantly the apparent digestibility of crude ash, calcium and phosphorus in pregnant sows.

(b) (4) 2009-10-08

(b) (4

7 Individual data determined for sows

Treatment	BW start	BW start digest	BW end	BW-diff.	BWG/d
Α	184.00	190.00	195.50	5.50	0.39
	194.00	198.00	203.00	5.00	0.36
	191.00	196.00	201.00	5.00	0.36
	196.00	200.00	205.00	5.00	0.36
	198.00	202.00	208.00	6.00	0.43
	191.00	197.00	202.00	5.00	0.36
	192.33	197.17	202.42	5.25	0.38
	4.93	4.12	4.20	0.42	0.03
В	178.00	184.00	189.00	5.00	0.36
	181.00	185.00	191.00	6.00	0.43
	190.00	195.00	200.00	5.00	0.36
	188.00	192.00	198.00	6.00	0.43
	195.00	200.00	205.00	5.00	0.36
	192.00	196.00	200.90	4.90	0.35
	187.33	192.00	197.32	5.32	0.38
	6.56	6.36	6.14	0.53	0.04
С	194.30	200.50	205.00	4.50	0.32
	193.00	197.50	204.00	6.50	0.46
	190.00	194.00	199.00	5.00	0.36
	190.00	195.00	202.00	7.00	0.50
	186.00	191.00	196.00	5.00	0.36
	188.00	192.00	198.00	6.00	0.43
	190.22	195.00	200.67	5.67	0.40
	3.07	3.54	3.56	0.98	0.07
D	187.00	[`] 191.50	198.00	6.50	0.46
	186.00	191.80	197.00	5.20	0.37
	195.00	199.00	205.00	6.00	0.43
	192.00	196.50	202.00	5.50	0.39
	201.00	206.00	212.00	6.00	0.43
	184.00	189.30	195.00	5.70	0.41
	190.83	195.68	201.50	5.82	0.42
	6.43	6.19	6.28	0.45	0.03

	Feed-	Feed-		Faecal	Faecal	
Treatment	basis	dig.	Feed/d	score	score-dig.	Faeces DM
Α	32.00	32.00	2.29	1.30	1.25	34.58
	32.00	32.00	2.29	1.25	1.20	33.90
	32.00	32.00	2.29	1.20	1.30	35.10
	> 31.00	32.00	2.29	1.20	1.20	34.30
	32.00	31.50	2.25	1.30	1.15	35.70
	32.00	30.00	2.14	1.22	1.20	35.60
	31.83	31.58	2.26	1.25	1.22	34.86
	0.41	0.80	0.06	0.05	0.05	0.72
В	32.00	31.00	2.21	1.32	1.30	33.50
	32.00	31.50	2.25	1.28	1.28	34.14
	32.00	31.00	2.21	1.30	1.30	35.60
	30.00	32.00	2.29	1.20	1.25	34.80
	32.00	31.00	2.21	1.25	1.15	33.90
	32.00	32.00	2.29	1.30	1.25	34.60
	31.67	31.42	2.24	1.28	1.26	34.42
	0.82	0.49	0.04	0.04	0.06	0.74
С	32.00	32.00	2.29	1.30	1.30	33.70
	32.00	32.00	2.29	1.25	1.25	34.70
	32.00	32.00	2.29	1.40	1.30	35.77
	29.00	32.00	2.29	1.30	1.20	34.30
	32.00	32.00	2.29	1.35	1.30	33.25
	32.00	31.00	2.21	1.20	1.30	33.20
	31.50	31.83	2.27	1.30	1.28	34.15
	1.22	0.41	0.03	0.07	0.04	0.99
D	32.00	32.00	2.29	1.30	1.25	33.20
	30.00	32.00	2.29	1.25	1.30	31.80
	32.00	32.10	2.29	1.20	1.20	33.40
	32.00	32.00	2.29	1.20	1.30	33.69
	32.00	32.00	2.29	1.25	1.30	33.50
	32.00	31.30	2.24	1.32	1.25	33.90
	31.67	31.90	2.28	1.25	1.27	33.25
	0.82	0.30	0.02	0.05	0.04	0.75

Treatment	Feaces	ash %	P%	Ca%	Cr%	Feed	ash %	P%	Ca %	Cr %
Α		22.65	1.75	3.50	1.85		4.50	0.35	0.74	0.26
		22.45	1.90	3.98	1.89		4.50	0.35	0.74	0.26
		20.42	1.80	3.61	1.71		4.50	0.35	0.74	0.26
		23.86	1.93	3.94	1.97		4.50	0.35	0.74	0.26
		25.28	1.90	3.64	1.90		4.50	0.35	0.74	0.26
		22.90	1.85	3.57	1.77		4.50	0.35	0.74	0.26
		22.93	1.86	3.71	1.85		4.50	0.35	0.74	0.26
		1.61	0.07	0.20	0.09		0.00	0.00	0.00	0.00
В		25.65	2.01	3.98	2.14		4.46	0.36	0.72	0.24
		23.07	1.89	3.68	1.93		4.46	0.36	0.72	0.24
		22.40	1.79	3.55	1.88		4.46	0.36	0.72	0.24
		14.32	1.09	2.06	1.11		4.46	0.36	0.72	0.24
		23.01	1.87	3.68	1.93		4.46	0.36	0.72	0.24
		22.34	2.00	3.62	1.88		4.46	0.36	0.72	0.24
		21.80	1.78	3.43	1.81		4.46	0.36	0.72	0.24
		3.86	0.35	0.69	0.36		0.00	0.00	0.00	0.00
С		17.97	1.45	2.88	1.69		4.45	0.35	0.74	0.26
		23.65	1.93	3.64	2.26		4.45	0.35	0.74	0.26
		22.40	1.43	3.65	2.12		4.45	0.35	0.74	0.26
		20.48	1.57	3.11	1.73		4.45	0.35	0.74	0.26
		20.61	1.48	3.25	1.87		4.45	0.35	0.74	0.26
		17.94	1.38	2.89	1.65		4.45	0.35	0.74	0.26
		20.51	1.54	3.24	1.89		4.45	0.35	0.74	0.26
		2.30	0.20	0.35	0.25		0.00	0.00	0.00	0.00
D		21.13	1.28	2.84	1.80		5.00	0.34	0.72	0.26
		20.66	1.51	3.02	1.77		5.00	0.34	0.72	0.26
		20.11	1.35	2.61	1.70		5.00	0.34	0.72	0.26
		21.95	1.72	2.94	1.92		5.00	0.34	0.72	0.26
		21.11	1.24	3.11	1.78		5.00	0.34	0.72	0.26
		18.79	1.25	2.75	1.52		5.00	0.34	0.72	0.26
		20.63	1.39	2.88	1.75		5.00	0.34	0.72	0.26
		1.08	0.19	0.18	0.13		0.00	0.00	0.00	0.00

Treatment	Digest. P	Digest. Ca	Digest. ash
Α	30.81	34.55	30.35
	26.47	27.15	32.43
	23.01	26.97	32.07
	28.34	30.81	31.10
	26.86	33.72	24.31
	23.55	30.22	26.40
	26.51	30.57	29.44
	2.93	3.18	3.32
В	36.34	36.97	34.35
	33.63	35.38	34.53
	35.47	36.01	34.74
	33.44	37.11	29.34
	34.33	35.38	34.70
	27.90	34.75	34.92
	33.52	35.93	33.76
	2.97	0.95	2.18
С	35.77	39.66	37.34
	36.07	42.98	38.33
	49.51	39.04	37.73
	32.07	36.35	30.25
	40.75	38.47	35.06
	37.39	37.99	35.93
	38.59	39.08	35.77
	6.04	2.21	2.96
D	46.25	43.76	39.69
	35.52	39.18	40.03
	39.97	45.27	39.22
	32.29	45.42	41.26
	47.34	37.72	39.07
	37.84	35.51	36.49
	39.87	41.14	39.29
	5.95	4.23	1.58

FEEDAP UNIT

ANNEX C1

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA Mash Phytase		Batch number: PPQ 28684			
Trial ID: SL 3/09		Location:	Location:		
Start date and exact durat	ion of the study:	2009-07-09	to 2009-08-12		
Number of treatment group	os (+ control(s)):	41	Replicates per	group: 6	
Total number of animals: 2	14		Animals per re	plicate: 1	
Dose(s) of the additive/act water)					e feed/L ⁻¹
Intended: 0, 500, 1000, 2	2000 U/kg	Analysed	211 (native), 786, 126	2, 2440 U/kg	
Substances used for comp	parative purposes	B:			
Intended dose:		Analysed			
Animal species/category:	Gestating sows				
Breed: Hybrid line Euroc		Identifica	tion procedure:		
Sex: Female	Age at start: abo	out 555	Body weight at sta	rt 190 kg	
Physiological stage: 29th to pregnancy	33 rd d of	General I	nealth: normal		
Additional information for	or field trials:				
Location and size of hero Feeding and rearing con- Method of feeding: 2. 3 kg	ditions: Individua	l feeding			
Diets (type(s)): Complete	feed for gestati	ng sows			The Victoria
Presentation of the diet:	Mash 🛛	Pell	et Extruded	☐ Other	
Composition (main feeding	stuffs): Maize, o	ptigrain, so	yabean meal, wheat, t	riticale, premix	
Nutrient content (relevant					
Intended values: 12.93 M	J ME/kg 144 g ci	rude protei	n/kg, 3.4 g phosphorou	as /kg	
Analysed values: 140.5 g					
Date and nature of the exa				omium oxide	
Method(s) of statistical eva					
Therapeutic/preventive tre					
Timing and prevalence of					
Date 2009-12-15	Signature				
			(1	b) (4)	

FDA / CVM 0350

Please submit this form using a common word processing format (e.g. MS Word).

Annex 11

Evaluation of the effect of IPA Mash phytase on the nutrient digestibility in gestating sows

REPORT No. 00003286

REPORT No. 00003286 Regulatory Document

Document Date:

16 December, 2009

Author(s):

(b) (4).1 and J. Broz2

² Animal Nutrition and Health R&D, DSM Nutritional Products Ltd, Basel

Title:

Evaluation of the effect of IPA Mash phytase on the nutrient digestibility

in gestating sows

Project No.

6106

Summary

An experiment involving 24 gestating sows (Large White x Landrace) was conducted in order to evaluate the effects of IPA Mash phytase on the apparent total tract digestibility of organic matter, nitrogen, phosphorus and calcium. The animals were fed a gestation diet containing maize, barley, soybean meal and rapeseed meal as the main ingredients, which was formulated to contain 17.2% crude protein and 0.6% total P. This basal diet was supplemented with IPA Mash phytase at the inclusion levels of 0 (negative control), 500, 1000 and 2000 U/kg, respectively. Each dietary treatment was allocated to 6 animals. After 10 days of a preliminary period (day 98 to 108 of pregnancy), there was a 5-day faeces collection period (day 108 to 113 of pregnancy). Digestibility values were estimated using chromium oxide as a digestibility marker. Dietary supplementation with IPA Mash phytase significantly improved total tract digestibility of P and Ca (P<0.05) at all inclusion levels. Phytase inclusion levels at 500, 1000 and 2000 U/kg increased the digestibility of P from 26.7% (control) to 33.6, 39.0 and 37.2%, respectively. A significantly improved (P<0.05) digestibility of nitrogen and organic matter was observed in the diets supplemented with phytase at 1000 and 2000 U/kg. As a result of improved digestibility the concentration of P and Ca in the faeces of sows receiving phytase supplemented diets was significantly reduced.

This report consists of Pages I - II and 1 - 20 & Annex C

Distribution

Dr. M. Eggersdorfer, NRD Dr. F. Fru, NRD/PA

Mr. J.-F. Hecquet, NBD/RG Dr. P. Guggenbuhl, NRD/CA Dr. A.-M. Klünter, NRD/CA

Dr. J. Pheiffer, NRD/PA

Mr. J.-P. Ruckebusch, ANH/GM Dr. C. Simoes Nunes, NRD/CA

Approved

Name Main Author	Signature signed by	<u>Date</u>
Dr. J. Broz, NRD/CA Principal Scientist / Competence Mgr	J. Broz signed by	16.12.2009
Dr. J. Broz, NRD/CA Research Center Head	J. Broz	16.12.2009
Dr. AM. Klünter, NRD/CA	AM. Klünter	17.12.2009
Project Manager Dr. F. Fru, NRD/PA	signed by F. Fru	17.12.2009

Regulatory Document

DSM Nutritional Products Ltd

Page I of II

Nomenclature

IPA phytase (M), enzyme product containing bacterial 6-phytase (b) (4), produced by (b) (4) fermentation of a genetically modified Aspergillus oryzae strain. Lot PPQ 28656 was used in this study, manufactured by Novozymes A/S, (b) (4).

Regulatory Document
DSM Nutritional Products Ltd

Page II of II

Evaluation of the effect of IPA Mash phytase on the nutrient digestibility in gestating sows

Final report

Principal investigator: (b) (4)
Investigators:

November 200

Summary

A digestibility experiment using 24 gestating sows (initial BW 239.8 kg) was carried out to study the effect of a novel microbial phytase (IPA Mash phytase) on total tract digestibility of organic matter (OM), nitrogen (N), phosphorus (P) and calcium (Ca). The enzyme was added to the diets for gestating sows at four inclusion levels (0, 500, 1000 and 2000 U/kg). The sows were in the range from the 3rd to the 5th parity and in the last third of pregnancy, between day 98 and 113 of pregnancy. There were four dietary treatments in the experiment and each dietary treatment was allocated to 6 animals. On the 95th day of pregnancy the sows were housed in individual pens and during following 3 days were fed with a commercial diet for gestating sows. After 10 days of preliminary period (from day 98 to 108 of pregnancy) in which were the animals fed with the experimental diets, there was a 5-day collection period (from day 108 to 113 of pregnancy) during which the faeces were collected. Digestibility values were estimated using Cr₂O₃ as a digestibility marker.

Dietary supplementation with IPA Mash phytase significantly improved total tract digestibility of P and Ca (P<0.05) at all inclusion levels. The strongest improvement was observed at the level of 1000 U/kg. Phytase supplementation resulted in a relative improvement of P digestibility by 25.8, 46.27 and 39.27 % in the diets supplemented with IPA Mash phytase at 500, 1000 and 2000 U/kg, respectively. The digestibility of Ca was higher in compare with the control diet by 17.6, 34.5 and 24.23 % in respectively experimental diets with different phytase level. A significantly improved (P<0.05) digestibility of N and OM was observed in the diets with phytase addition at 1000 and 2000 U/kg. As a result of improved digestibility the concentration of P and Ca in faeces of sows receiving phytase supplemented diets was significantly reduced when compared to the control diet (P<0.05).

1. Introduction

Microbial phytase is now an accepted feed additive that is used extensively in commercial diets for both pigs and poultry. It effectively improves the availability of plant phosphorus (P) as well as some other minerals and decreases P excretion, thus reducing environmental pollution. The efficiency of the novel IPA Mash phytase, an enzyme product containing bacterial 6-phytase expressed in a genetically modified strain of Aspergillus oryzae, as a feed additive in gestating sows is not yet known. Therefore the purpose of the present study was to evaluate the effect of this phytase preparation (IPA Mash phytase) on the availability of organic matter, nitrogen, P and Ca, when using a practical-type, P deficient diet for gestating sows during the last third of pregnancy.

2. Materials and methods

2.1. Animals and experimental design

A total of 24 sows in the mean body weight of 239.8 \pm 3.8 kg were selected for this study in a commercial breeding farm. The sows were of the same genotype (Large White x Landrace), in the range from 3rd to 5th parity (Table 13, Appendix) and in the last third of pregnancy, between days 98 and 113 of pregnancy.

Four dietary experimental treatments (F0, F1, F2, F3) were involved in this study, to which the sows were allocated according to their body weight and parity. Six sows per dietary treatment were used. The first treatment (F0) was the negative control receiving a low-phosphorus basal diet without IPA Mash phytase. Treatments F1, F2, F3 were identical to the negative control but supplemented with IPA Mash phytase at the levels of 500, 1000 and 2000 U/kg feed, respectively.

On day 95 of pregnancy the sows were housed in 24 individual pens allowing individual feeding. Drinking water was continuously supplied by drinking bowls. From day 95 to 98 of pregnancy there was an adaptation period in which the sows were fed with a commercial diet for gestating sows. After 10 days of preliminary period (from day 98 to 108 of pregnancy) in which the animals received the respective experimental diets, followed a 5-day collection period (from day 108 to 113 of pregnancy) during which the faeces were collected daily. The experiment was finished after 15 days.

Health status of the sows was monitored every day of experiment.

The experiment was carried out in June 2009. All experimental procedures were reviewed and approved by the Ethical Committee of the (b) (4)

2.2. Diets and feeding

The basal diet was formulated to contain maize, barley, soybean meal and rapeseed meal as the main ingredients. The basal, phosphorus deficient diet was mixed in one batch of 2000 kg. After that the basal diet was subsequently divided into equal parts (500 kg each), which were further mixed without or with IPA Mash phytase at the levels of 500, 1000 and 2000 U/kg feed, respectively. Each experimental diet was bagged separately in 40 kg bags which were identified with the label showing the

respective treatment (F0, F1, F2, F3). All diets were prepared without addition of other feed additives with the exception of amino acids, vitamins and trace elements. The nutrient composition of diets was according to the requirements for gestating sows (NRC 1998). Bacterial 6-phytase expressed in a genetically modified strain of Aspergillus oryzae (IPA Mash phytase, Lot No. PPQ28656, DSM Nutritional Products Ltd, Switzerland) was added to the basal diet via premix at three levels equivalent to 500, 1000 and 2000 U/kg feed, thus forming three experimental diets (F1, F2, F3). Chromic oxide and cellite were included in the diets as indigestible markers. The ingredient composition and calculated contents of nutrients of the basal diet are given in Table 1.

Table 1: Composition of basal diet and calculated nutrient concentration (g/ kg air dry basis)

Maize	470.50
Barley	200.00
Soybean meal (46 % CP)	118.00
Rapeseed meal (33 % CP)	80.00
Premix ¹	29.50
Cellite	10.00
Chromium oxide	3.00
Wheat flour T 39000	10.00
Sunflower meal (27 % CP)	64.00
Sunflower oil	15.00
Calculated values:	
Metabolizable energy (MJ/kg)	12.7
Crude protein	171.7
Fibre	55.0
Lysine	9.6
Threonine	6.7
Methionine + Cystine	6.3
Tryptophan	1.9
Calcium	8.0
Phosphorus total	6.0
Phosphorus digestible	2.4
Sodium	2.0

^TContent per kg premix: lysine 6 %; methionine 1 %; threonine 1 %; Ca 21 %; P 4.50 %; Na 6 %; Cu 650 mg; Fe 3500 mg; Zn 4500 mg; Mn 2500 mg; Co 40 mg; I 100 mg; Vit. A 370000 IU; Vit. D3 60000 IU; Vit. E (a–tocopherol) 2500 mg; Vit. K3 100 mg; Vit. B1 70 mg; Vit B2 150 mg; Vit. B6 100 mg; Vit. B12 1000 mcg; biotin 6 mg; niacin amid 900 mg; folic acid 40 mg; calcium pantothenate 600 mg; choline chloride 12500 mg; ethoxyquin (E321) 242 mg; citric acid (E330) 42 mg; silicic acid (E551a) 515 mg; propyl galate (E310) 33 mg; Pigortek 3350 mg.

The diets were fed twice daily at 6:00 and 16:00 hours, in two equal meals at a daily amount 3.6 kg/day. Water was offered ad libitum.

2.3. Experimental procedure

The experiment consisted of a 10-day preliminary period, followed by a 5-day collection period, during which faeces were collected.

The experimental schedule was as follows:

Day -3 - 0 Adaptation period
Day 1 - 10 Preliminary period
Day 11 - 15 Collection of faeces

Samples of faeces were stored at 4°C, homogenized and consequently analysed. For each sow 5 daily samples of faeces were analysed. The sows were weighed at the beginning of experimental period.

2.4. Chemical analyses

Air-dried samples of faeces and samples of diets were finely ground to pass through a 1-mm screen prior to the chemical analyses.

Analyses of diets and faeces for DM, N, P, Ca, ash and acid insoluble ash (AIA) were performed in accordance with standard methods of AOAC (1990).

Chromium oxide was analysed by atomic absorption spectrometry as described by Williams et al. (1962).

The phytase activity in diets was analysed by BIOPRACT GmbH, Berlin, Germany, on behalf of DSM Nutritional Products Ltd.

2.5. Calculations

Coefficients of total tract digestibility of nutrients were calculated using the following formula:

Digestibility (%) = $100 \times [1-(N_i \times M_d)/(N_d \times M_i)]$

where N_d = dietary concentration of the nutrient under study, M_d = dietary concentration of marker N_i = concentration of the nutrient in faeces and M_i = concentration of marker in faeces (all values in g.kg⁻¹ dry matter).

2.6. Statistical analysis

Data were subjected to ANOVA using Statgraphic Plus 3.1. package. When a significant value for treatment effect (P<0.05) was obtained, the differences between means were assessed using Fisher's LSD procedure. Regression analysis was used to evaluate the relationship between supplemental phytase level and nutrient digestibility.

3. Results and discussion

The experimental sows were in good health throughout the whole experiment and consumed the offered feed.

Analysed phytase activity in control and experimental diets was as follows: F0 - 124 (native activity), F1 - 531, F2 - 898 and F3 1890 U/kg. Considering the fact that the results obtained with chromium oxide as an indigestible marker were less variable than in case of acid insoluble ash, the digestibility coefficients were calculated only using chromium oxide. The primary data for individual sows from which the mean values were calculated are given in Appendix, Tables 9 - 12.

The mean values of total tract digestibility of DM, OM, N, Ca and P are given in Table 2. The analysis of variance showed that the graded levels of phytase supplementation had a significant effect on DM digestibility. The lowest digestibility was observed in diet F0. Digestibility of DM was improved relatively by 1.88 % and 1.30 % in diets F2 and F3, when compared to the negative control and those differences were significant. Similar results were obtained for digestibility of OM and significant relative improvements by 1.65 and 0.96 % were observed for diets supplemented with phytase at 1000 and 2000 U/kg, respectively.

The sows that received diets F2 and F3 had significantly higher digestibility of N in comparison with the sows that consumed diets F0 and F1. The digestibility in diets F2 and F3 was relatively higher by 4.16 % and 2.62 %, when compared to the control diet.

The digestibility of both P and Ca was significantly increased as a result of phytase supplementation. Again, the strongest effect was observed in diet F2. The total tract digestibility of P increased relatively by 25.81, 46.27 and 39.27 % in diets F1, F2 and F3, respectively, when compared to the control.

Furthermore, the digestibility of Ca was significantly increased in the diets supplemented with phytase at 500, 1000 and 2000 U/kg by 17.06, 34.52 and 24.23 %, respectively, when compared to the control diet.

Table 2: The effect of IPA Mash phytase on nutrient digestibility (%)

Phytase addition (U/kg diet)	DM	ОМ	N	Ca	Р
0	83.1ª	86.7 ^a	82.9 ^a	35.5ª	26.7ª
500	83.7 ^{ab}	87.1 ^{ab}	83.5 ^a	41.6 ^b	33.6 ^b
1000	84.7 ^c	88.1 ^c	86.3 ^b	47.8 ^c	39.0°
2000	84.2 ^{bc}	87.5 ^{bc}	85.1 ^b	44.1 ^b	37.2 ^{bc}
Pooled SEM	0.1	0.1	0.2	0.5	0.7

^{abc} Means within a column followed by the different superscript are significantly different (P<0.05)

The effects of dietary supplementation with IPA Mash phytase are presented in Figures 1 and 2 as dose-response curves together with the respective regression

equations and correlation coefficients. The curves show that the most pronounced effects on total tract digestibility of P and Ca were demonstrated in the dose range of IPA Mash Phytase from 1000 to 2000 U/kg feed.

A positive linear relationship between the digestibility of P (x) and Ca (y) was observed, which was described by the equation y = 0.87x + 12.562 (see Figure 3). Based on the correlation coefficient value, the relationship between the variables can be characterized as moderately strong in both cases.

Figure 1: Relationship between digestibility of P and phytase supplementation in sows

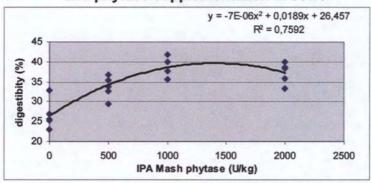


Figure 2: Relationship between digestibility of Ca and phytase supplementation in sows

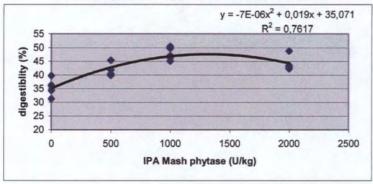
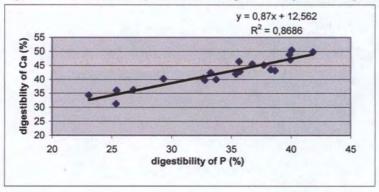



Figure 3: Relationship between digestibility of Ca and P

As a result of improved nutrient digestibility due to the phytase supplementation, concentration of nutrients in faeces was reduced (see Table 3). In comparison with the control diet, the reduction of P and Ca concentration ranged from 6.51 to 7.9% in case of P and from 7.0 to 8.6 % in case of Ca.

Table 3: The effect of phytase supplementation on the content of nutrients in faeces (g/kg DM)

Phytase addition (U/kg diet)	ОМ	N	Ca	Р
0	723.3ª	30.1 ^{ab}	35.2ª	27.9 ^a
500	733.4 ^b	31.4 ^b	32.3 ^b	26.1 ^b
1000	726.3 ^{ab}	28.9 ^a	32.2 ^b	26.1 ^b
2000	725.9 ^{ab}	29.4 ^{ab}	32.7 ^b	25.7b
Pooled SEM	1.4	0.4	0.3	0.2

^{ab} Means within a column followed by the different superscript are significantly different (P<0.05)

Conclusions

As shown in Table 4, summarizing the effect of IPA Mash phytase supplementation in diets for gestating sows, the added phytase significantly increased total tract digestibility of P and Ca when compared to the negative control. The strongest increase of digestibility for both P and Ca was observed in the diet supplemented phytase at 1000 U/kg. Similarly the digestibility of N was significantly higher in diets with added phytase at 1000 and 2000 U/kg, respectively. The response of P and Ca digestibility was linear until the phytase level of 1000 U/kg.

It can be concluded that the IPA Mash phytase efficiently increased the total tract digestibility of phosphorus and calcium and reduced the concentration of P in faeces.

Table 4: Summary of effects of IPA Mash phytase on the experimental parameters (expressed as % change relative to NC)

Parameter —	Phyta	3)	
Parameter —	500	1000	2000
Total tract digestibility (%):			
DM	0.67	1.88*	1.30*
OM	0.45	1.65*	0.96*
N	0.68	4.16*	2.62*
Ca	17.06*	34.52*	24.23*
P	25.81*	46.27*	39.27*
·			
Concentration of P in faeces (g/kg DM)	-6.51*	-6.56*	-7.99*

^{*} Denotes significant effect (P<0.05)

5. References

AOAC Method 920.36, 955.03, 962.11, 968.08. (1990) In: Official Methods of Analysis, 15th edition. Association of Official Analytical Chemists, Arlington, Virginia.

NRC (1998): Nutrient Requirements of Swine, 10th ed. National Academy Press, Washington, D.C.

Williams CH, David DJ, Lismoa O. (1962): The determination of chromic oxide in fecal samples by atomic absorption spectrophotometry. J. Agric. Sci. 59: 381-390.

Appendix

Tables of primary data used for the calculation of total tract digestibilities

Table 5: Nutrient digestibility in diet F0 (%)

Period	DM	ОМ	N	Са	Р
<u> </u>	83.7ª	87.2ª	81.2ª	36.2 ab	26.8 ab
II.	83.5 ^a	86.8°	82.4 a	39.7 ^b	32.8 ^b
III.	82.5 a	86.1 a	82.2 a	36.0 ab	25.4 ab
IV.	82.4 a	86.1ª	83.2 ab	31.3ª	25.4 ab
V.	83.5°	87.0°	85.5 ^b	34.4 ab	23.1 ^a
Pooled SEM	0.2	0.2	0.4	0.8	1.1

Table 6: Nutrient digestibility in diet F1 (%)

Period	DM	ОМ	N	Ca	Р
l.	83.8 ^a	87.0ª	82.2ª	42.0ª	35.4 a
II.	84.1ª	87.3ª	82.8 a	45.5 ^a	36.8ª
III.	83.4 ^a	86.9ª	83.7 a	40.4ª	32.7°
IV.	83.3°	86.8ª	83.9°	39.9ª	33.7ª
V.	83.9 ^a	87.3°	84.6 a	40.2ª	29.3ª
Pooled SEM	0.2	0.2	0.4	1.4	1.5

Table 7: Nutrient digestibility in diet F2 (%)

Period	DM	ОМ	N	Ca	Р
l.	84.3 ^a	87.4ª	84.0 ^a	46.4 ab	35.7°
11.	85.1 ^a	88.1°	85.5 ^{ab}	49.8 ^b	41.8 ^a
111.	85.7ª	88.7ª	86.7 bc	50.5 ^b	40.1 a
IV.	85.2 a	88.4 ^a	88.6°	47.1 ^{ab}	39.9ª
V.	84.6 a	87.9ª	86.9 bc	45.1 a	37.7°
Pooled SEM	0.3	0.3	0.4	0.7	1.5

Table 8: Nutrient digestibility in diet F3 (%)

Period	DM	ОМ	N	Ca	D
l.	85.3 ^b	88.4ª	85.0 ^{ab}	48.8ª	39.9 ^b
II.	83.8 ^{ab}	87.1 ^a	85.0 ^{ab}	42.8°	35.7 ^{ab}
111.	84.2 ab	87.5°	83.9ª	43.2 a	38.7 ^{ab}
IV.	84.2 ab	87.6 a	86.6 ^b	42.3ª	33.3 ª
V.	83.6 ^a	86.8 ^a	85.0 ab	43.5 a	38.3 ab
Pooled SEM	0.2	0.2	0.4	1.0	0,9

Table 9: Individual data for calculation of nutrient digestibility in diet F0 (g/kg DM)

	Diet F0								
	Cr	DM	ОМ	N	Ca	Р			
	2.05	1000.00	915.18	29.70	9.20	6.42			
		Di	et F0 faec	es					
Animal No.	Cr	DM	ОМ	N	Ca	Р			
		(Collection	1	·				
177	11.79	1000.00	730.75	36.18	37.66	29.94			
176	13.59	1000.00	716.70	26.93	36.56	29.95			
235	12.45	1000.00	724.60	37.39	35.22	29.69			
249	14.01	1000.00	698.62	32.57	37.53	27.29			
289	12.03	1000.00	718.99	36.39	35.07	30.26			
250	11.88	1000.00	730.58	35.01	34.11	25.70			
			Collection						
177	11.46	1000.00	744.73	36.14	31.57	23.69			
176	13.12	1000.00	733.53	27.89	32.75	27.16			
235	13.57	1000.00	715.17	27.33	37.59	29.13			
249	12.25	1000.00	721.91	39.02	33.06	27.15			
289	12.13	1000.00	748.13	28.88	31.64	24.60			
250	12.26	1000.00	719.91	30.33	35.47	25.73			
			Collection	3					
177	10.96	1000.00	740.31	27.43	32.48	27.07			
176	12.32	1000.00	727.40	31.82	33.17	24.62			
235	10.90	1000.00	746.14	30.07	31.53	27.35			
249	12.59	1000.00	726.49	33.72	31.86	27.12			
289	11.80	1000.00	717.07	28.81	35.95	28.96			
250	11.96	1000.00	702.49	30.08	37.14	29.09			
		(Collection -	4					
177	10.74	1000.00	730.01	25.90	34.17	27.19			
176	13.10	1000.00	705.53	31.25	36.94	27.77			
235	10.71	1000.00	726.39	29.93	36.00	28.87			
249	12.54	1000.00	721.69	29.79	32.96	26.05			
289	11.84	1000.00	714.75	29.18	38.07	29.25			
250	11.33	1000.00	720.03	24.76	37.38	24.16			
			Collection						
177	11.76	1000.00	740.05	28.95	34.01	29.81			
176	12.45	1000.00	726.04	27.47	35.96	30.77			
235	11.84	1000.00	714.47	26.88	37.10	30.86			
249	13.51	1000.00	705.26	21.54	37.00	30.63			
289	13.23	1000.00	703.33	27.99	38.82	29.30			
250	12.16	1000.00	728.31	23.60	37.48	28.63			

Nutrient digestibility in diet F0 (%)

	Diet F0									
Animal No.	DM	ОМ	N	Ca	Р					
	Collection 1									
177	82.61	86.11	78.81	28.82	18.90					
176	84.92	88.19	86.32	40.06	29.63					
235	83.54	86.97	79.27	36.98	23.87					
249	85.37	88.83	83.96	40.33	37.82					
289	82.96	86.61	79.12	35.04	19.68					
250	82.75	86.23	79.66	36.05	30.95					
		Colle	ction 2							
177	82.10	85.44	78.22	38.59	33.96					
176	84.37	87.47	85.32	44.37	33.88					
235	84.89	88.20	86.10	38.28	31.46					
249	83.26	86.80	78.01	39.86	29.22					
289	83.10	86.18	83.57	41.87	35.24					
250	83.28	86.84	82.92	35.52	32.97					
		Collec	ction 3							
177	81.30	84.87	82.72	33.97	21.14					
176	83.36	86.78	82.17	40.01	36.19					
235	81.19	84.67	80.95	35.55	19.88					
249	83.72	87.07	81.51	43.61	31.21					
289	82.63	86.39	83.15	32.13	21.65					
250	82.86	86.85	82.64	30.82	22.35					
		Collec	ction 4							
177	80.91	84.78	83.36	29.11	19.17					
176	84.35	87.94	83.53	37.16	32.31					
235	80.86	84.81	80.71	25.10	13.93					
249	83.65	87.11	83.60	41.43	33.67					
289	82.69	86.48	82.99	28.36	21.12					
250	81.91	85.77	84.92	26.52	31.94					
		Collec	ction 5							
177	82.56	85.90	83.00	35.54	19.04					
176	83.53	86.93	84.76	35.62	21.06					
235	82.68	86.48	84.33	30.17	16.76					
249	84.82	88.30	88.99	38.96	27.58					
289	84.50	88.09	85.39	34.61	29.28					
250	83.14	86.58	86.60	31.30	24.80					

Table 10: Individual data for calculation of nutrient digestibility in diet F1 (g/kg DM)

	Diet F1								
Animal No.	Cr	DM	ОМ	N	Са	Р			
	2.05	1000.00	924.35	30.91	9.2	6.42			
		Di	et F1 faec	es	•				
Animal No.	Cr	DM	ОМ	N	Са	Р			
		(Collection	1					
165	14.19	1000.00	733.77	34.47	34.98	24.21			
212	13.45	1000.00	725.73	33.05	37.69	29.64			
282	10.05	1000.00	740.96	32.92	37.56	28.18			
285	12.47	1000.00	747.28	34.07	27.86	23.27			
242	12.85	1000.00	743.66	37.53	27.84	22.55			
9470	13.72	1000.00	744.40	31.39	30.54	24.77			
			Collection						
165	13.20	1000.00	753.02	37.25	28.17	23.39			
212	13.81	1000.00	731.74	34.51	34.34	27.63			
282	13.15	1000.00	730.22	32.26	33.53	26.50			
285	12.94	1000.00	738.53	38.52	29.02	24.31			
242	11.34	1000.00	755.96	29.83	28.22	24.40			
9470	13.06	1000.00	723.81	28.66	36.36	26.82			
			Collection	3					
165	12.74	1000.00	722.97	35.84	31.06	25.54			
212	11.88	1000.00	735.72	32.79	34.87	28.87			
282	12.02	1000.00	739.75	33.53	32.86	26.88			
285	13.21	1000.00	720.16	29.54	31.55	22.21			
242	11.84	1000.00	746.58	21.44	31.49	25.83			
9470	12.56	1000.00	722.04	28.90	36.40	26.60			
		(Collection	4					
165	13.12	1000.00	722.76	29.51	32.88	26.34			
212	12.61	1000.00	726.09	31.72	35.55	27.75			
282	12.43	1000.00	734.85	30.75	31.97	25.21			
285	12.80	1000.00	726.59	33.58	30.50	21.20			
242	11.42	1000.00	751.01	26.28	29.97	24.25			
9470	11.44	1000.00	722.21	27.35	37.51	27.86			
			Collection						
165	13.08	1000.00	716.22	25.05	34.74	31.08			
212	12.97	1000.00	722.17	31.12	36.43	30.36			
282	11.71	1000.00	722.53	27.71	36.03	29.01			
285	12.79	1000.00	740.34	35.28	30.19	24.66			
242	12.17	1000.00	738.63	30.20	31.48	26.68			
9470	13.86	1000.00	722.94	27.93	36.11	27.23			

Nutrient digestibility in diet F1 (%)

	Diet F1								
Animal No.	DM	ОМ	N	Ca	Р				
		Collec	ction 1						
165	85.55	88.53	83.89	45.06	45.51				
212	84.75	88.03	83.70	37.54	29.61				
282	79.60	83.65	78.28	16.72	10.47				
285	83.57	86.71	81.89	50.24	40.44				
242	84.05	87.17	80.64	51.74	43.98				
9470	85.06	87.97	84.83	50.41	42.36				
		Collec	ction 2						
165	84.47	87.35	81.28	52.44	43.41				
212	85.16	88.25	83.43	44.60	36.12				
282	84.41	87.68	83.72	43.17	35.39				
285	84.15	87.34	80.25	50.01	39.99				
242	81.92	85.21	82.55	44.54	31.28				
9470	84.30	87.71	85.45	37.96	34.42				
		Collec	ction 3						
165	83.90	87.41	81.34	45.66	35.97				
212	82.75	86.27	81.70	34.62	22.43				
282	82.95	86.35	81.50	39.10	28.61				
285	84.49	87.91	85.17	46.80	46.33				
242	82.68	86.01	87.99	40.72	30.32				
9470	83.68	87.26	84.75	35.45	32.40				
		Collec	ction 4						
165	84.38	87.79	85.09	44.18	35.92				
212	83.74	87.23	83.31	37.17	29.71				
282	83.51	86.89	83.60	42.71	35.26				
285	83.98	87.41	82.59	46.89	47.10				
242	82.05	85.42	84.74	41.53	32.20				
9470	82.08	86.00	84.15	26.94	22.24				
		Collec	ction 5						
165	84.32	87.85	87.29	40.80	24.10				
212	84.20	87.66	84.09	37.43	25.28				
282	82.49	86.32	84.31	31.44	20.90				
285	83.98	87.17	81.71	47.42	38.46				
242	83.16	86.54	83.55	42.38	30.02				
9470	85.21	88.43	86.63	41.94	37.26				

Table 11: Individual data for calculation of nutrient digestibility in diet F2 (g/kg DM)

	Diet F2								
	Cr	DM	ОМ	N	Ca	Р			
	2.05	1000.00	917.71	31.60	9.2	6.42			
Animal No.	Cr	DM	ОМ	N	Ca	Р			
		(Collection	1		•			
179	15.19	1000.00	755.37	39.84	33.88	26.94			
167	13.29	1000.00	723.22	25.89	31.45	29.44			
287	11.88	1000.00	754.83	31.20	29.98	26.11			
217	12.30	1000.00	733.28	25.35	33.12	23.54			
152	13.64	1000.00	743.46	35.29	27.50	24.20			
5445	12.68	1000.00	716.50	37.46	33.04	28.12			
		(Collection :	2					
179	13.70	1000.00	754.07	34.99	28.16	23.69			
167	13.87	1000.00	719.65	32.23	30.23	27.95			
287	11.05	1000.00	766.11	33.55	25.44	23.14			
217	13.59	1000.00	712.69	25.89	34.11	27.60			
152	15.26	1000.00	708.24	29.08	34.57	23.66			
5445	16.03	1000.00	706.34	27.04	35.17	24.16			
		(Collection	3					
179	13.03	1000.00	746.63	30.40	29.68	29.68			
167	15.73	1000.00	702.01	27.69	34.00	31.94			
287	13.65	1000.00	751.24	33.46	28.42	25.50			
217	14.37	1000.00	724.22	29.27	31.94	26.88			
152	14.74	1000.00	723.30	26.22	31.82	23.16			
5445	14.71	1000.00	697.95	28.56	35.80	24.13			
			Collection 4	4					
179	13.42	1000.00	735.30	24.30	28.66	22.06			
167	14.63	1000.00	719.10	20.14	32.84	30.10			
287	12.25	1000.00	728.99	21.26	30.57	24.10			
217	13.38	1000.00	720.94	23.35	33.24	28.93			
152	14.71	1000.00	711.32	25.13	34.85	24.68			
5445	15.04	1000.00	698.08	26.43	37.95	26.73			
			Collection	5					
179	12.90	1000.00	734.36	31.64	30.78	25.38			
167	13.58	1000.00	720.13	26.10	32.40	31.42			
287	10.80	1000.00	754.53	32.72	28.40	22.60			
217	13.47	1000.00	701.19	29.57	35.47	30.76			
152	15.92	1000.00	710.64	24.42	35.13	23.59			
5445	14.51	1000.00	713.89	29.22	36.77	22.65			

Nutrient digestibility in diet F2 (%)

[Diet F2									
Animal No.	DM	ОМ	N	Ca	Р					
	Collection 1									
179	86.51	88.89	82.99	50.32	43.39					
167	84.57	87.84	87.36	47.27	29.26					
287	82.74	85.80	82.95	43.75	29.80					
217	83.34	86.69	86.63	40.02	38.91					
152	84.97	87.83	83.22	55.09	43.36					
5445	83.84	87.38	80.84	41.95	29.20					
		Colle	ction 2							
179	85.03	87.70	83.43	54.19	44.78					
167	85.22	88.41	84.92	51.42	35.64					
287	81.44	84.51	80.30	48.69	33.12					
217	84.92	88.29	87.64	44.08	35.16					
152	86.57	89.64	87.64	49.54	50.51					
5445	87.21	90.16	89.06	51.12	51.88					
			ction 3							
179	84.27	87.20	84.87	49.26	27.29					
167	86.97	90.03	88.58	51.84	35.16					
287	84.98	87.71	84.10	53.61	40.35					
217	85.68	88.68	86.68	50.48	40.05					
152	86.09	89.04	88.46	51.89	49.82					
5445	86.07	89.40	87.40	45.78	47.63					
		Collec	ction 4							
179	84.72	87.76	88.25	52.41	47.50					
167	85.98	89.02	88.64	49.97	34.29					
287	83.27	86.71	88.74	44.42	37.24					
217	84.68	87.97	88.68	44.66	30.98					
152	86.06	89.20	88.91	47.19	46.41					
5445	86.37	89.63	88.59	43.76	43.23					
		Collec	ction 5							
179	84.11	87.29	84.09	46.85	37.20					
167	84.90	88.15	87.53	46.82	26.10					
287	81.02	84.39	86.87	41.41	33.19					
217	84.78	88.37	85.76	41.31	27.06					
152	87.13	90.03	90.05	50.84	52.69					
5445	85.87	89.01	86.93	43.52	50.15					

Table 12: Individual data for calculation of nutrient digestibility in diet F3 (g/kg DM)

	Diet F3						
	Cr	DM	ОМ	N	Ca	Р	
	2.05	1000.00	918.03	31.15	9.20	6.42	
			et F3 faec	.	0.20	,	
Animal O. DM OM N O. D							
No.	Cr	DM	ОМ	N	Ca	Р	
		(Collection	1	,		
175	11.76	1000.00	745.75	30.26	31.61	25.48	
275	13.75	1000.00	716.21	32.13	34.73	27.34	
208	13.63	1000.00	729.91	32.61	25.45	25.45	
178	16.80	1000.00	678.37	31.52	41.58	30.16	
254	14.42	1000.00	732.79	37.61	30.74	25.09	
255	14.39	1000.00	731.62	27.12	30.36	25.04	
		(Collection 2	2			
175	10.52	1000.00	746.98	29.84	27.59	21.18	
275	13.85	1000.00	721.73	25.59	31.54	26.47	
208	12.47	1000.00	740.35	37.40	30.77	26.58	
178	13.38	1000.00	700.90	23.04	39.58	28.16	
, 254	13.25	1000.00	723.13	32.06	33.46	25.99	
255	12.89	1000.00	728.98	24.26	33.11	25.19	
		(Collection 3	3			
175	12.24	1000.00	748.29	30.42	30.57	23.26	
275	13.73	1000.00	725.36	29.39	31.30	23.30	
208	13.37	1000.00	718.75	35.20	31.76	28.36	
178	13.23	1000.00	692.13	29.78	39.58	26.42	
254	13.04	1000.00	722.75	30.78	32.75	23.41	
255	12.32	1000.00	731.99	34.47	32.27	24.79	
			Collection 4	4			
175	12.62	1000.00	750.53	27.45	31.53	23.99	
275	13.41	1000.00	697.40	24.83	34.67	28.05	
208	11.58	1000.00	738.05	26.75	29.80	25.65	
178	14.15	1000.00	684.49	25.81	40.40	33.09	
254	12.75	1000.00	737.78	26.71	33.20	27.19	
255	13.62	1000.00	718.51	26.14	32.58	25.33	
		(Collection (5			
175	11.62	1000.00	747.18	28.77	31.20	23.67	
275	11.03	1000.00	766.09	26.20	25.16	20.00	
208	13.00	1000.00	736.09	30.73	28.91	22.85	
178	13.19	1000.00	701.28	25.67	41.07	27.89	
254	12.88	1000.00	745.55	34.69	30.28	22.05	
255	13.63	1000.00	716.60	25.37	34.54	29.43	

Nutrient digestibility in diet F3 (%)

Diet F3					
Animal No.	DM	ОМ	N	Ca	Р
		Colle	ction 1	•	
175	82.56	85.84	83.06	40.09	30.79
275	85.09	88.37	84.62	43.71	36.50
208	84.96	88.04	84.25	58.40	40.38
178	87.80	90.98	87.65	44.85	42.67
254	85.78	88.65	82.83	52.50	44.44
255	85.75	88.64	87.59	52.98	44.42
	•	Colle	ction 2		
175	80.52	84.15	81.33	41.57	35.73
275	85.20	88.36	87.84	49.25	38.97
208	83.56	86.75	80.26	45.03	31.96
178	84.67	88.30	88.66	34.07	32.78
254	84.53	87.81	84.08	43.74	37.38
255	84.09	87.37	87.61	42.74	37.57
		Collec	ction 3		
175	83.25	86.34	83.64	44.33	39.30
275	85.07	88.20	85.91	49.20	45.81
208	84.67	88.00	82.67	47.08	32.28
178	84.50	88.32	85.18	33.32	36.22
254	84.28	87.62	84.46	44.02	42.66
255	83.36	86.73	81.58	41.62	35.73
		Collec	ction 4		
175	83.76	86.72	85.68	44.33	39.30
275	84.72	88.39	87.82	42.41	33.28
208	82.30	85.77	84.80	42.68	29.30
178	85.51	89.19	87.99	36.36	25.30
254	83.92	87.07	86.21	41.96	31.88
255	84.95	88.22	87.37	46.70	40.62
		Collec	ction 5		
175	82.36	85.65	83.71	40.19	34.98
275	81.41	84.48	84.36	49.15	42.08
208	84.24	87.36	84.44	50.47	43.90
178	84.46	88.13	87.19	30.63	32.49
254	84.09	87.08	82.28	47.62	45.34
255	84.96	88.26	87.75	43.53	31.04

Table 13: Characteristics of gestating sows involved in the digestibility study

Dietary treatment	Animal No.	Parity	Sow weight (kg)
	177	5	250
	176	5	255
	235	4	255
F0	249	4	255
	289	3	235
	250	3	245
_	mean	4	249.17
	165	5	253
	212	4	243
	282	3	215
F1	285	3	235
	242	4	220
	9470	3	225
	mean	3.67	231.83
	179	4	243
	167	5	265
	287	3	218
F2	217	4	265
	152	5	245
	5445	3	215
	mean	4	241.83
	175	5	262
	275	3	235
	208	4	202
F3	178	5	230
	254	4	235
	255	4	255
	mean	4.17	236.50

Table 14: Feed consumption during experiment (kg)

Dietary treatment	Feed consumption (kg)	Num. of animals in period	Feed consumption kg/animal
F0	320	6	53.3
F1	325	6	54.2
F2	327	6	54.5
F3	328	6	54.7

Best Copy Available

FEEDAP UNIT

ANNEX C '

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA Mash Phytase			Batch number: Lot PPQ 28656
Trial ID: GF 024			Location: (b) (4)
Start date and exact duration	on of the study: J	une 2009	18 days
Number of treatment group	os (+ control(s)): 4	4	Replicates per group: 6
Total number of animals: 2			Animals per replicate: 1
water)			ng/Units of activity/CFU kg ⁻¹ complete feed/L ⁻¹
Intended: 500, 1000 and	2000 U/kg	Analysed:	531, 898 and 1890 U/kg
Substances used for comp	arative purposes:	-	
Intended dose:		Analysed:	
Animal species/category: 0	Sestating sows		
Breed: Large White x Lan	drace	Identificati	on procedure: ear numbers
	Age at start: 2.5 - (3rd to 5th parity		Body weight at start: initial BW 239.8 kg
Physiological stage: pregra	ant	General he	ealth: very good
Additional information fo	r field trials:		
Location and size of herd	or flock:		(b) (4)
Location and size of herd Feeding and rearing cond		l housing	
	ditions: individua	l housing	
Feeding and rearing cond	ditions: individua es a day	l housing	
Feeding and rearing cond Method of feeding: 2 time	ditions: individua es a day	I housing	and feeding
Feeding and rearing cond Method of feeding: 2 time Diets (type(s)): Diet for ges Presentation of the diet:	ditions: individuales a day stating sows Mash	Pelle	and feeding
Feeding and rearing cond Method of feeding: 2 time Diets (type(s)): Diet for ges Presentation of the diet:	ditions: individuales a day stating sows Mash stuffs): Maize, ba	Pelle	and feeding t
Feeding and rearing cond Method of feeding: 2 time Diets (type(s)): Diet for ges Presentation of the diet: Composition (main feeding Nutrient content (relevant n	ditions: individuales a day stating sows Mash stuffs): Maize, ba	Pelle arley, soyl	and feeding t
Feeding and rearing cond Method of feeding: 2 time Diets (type(s)): Diet for ges Presentation of the diet: Composition (main feeding Nutrient content (relevant in Intended values: Crude p	itions: individual es a day stating sows Mash stuffs): Maize, ba nutrients and ener	Pelle arley, soyl rgy conten lkg; Ca - 8	and feeding t
Feeding and rearing cond Method of feeding: 2 time Diets (type(s)): Diet for ges Presentation of the diet: Composition (main feeding Nutrient content (relevant in Intended values: Crude p	ditions: individuales a day stating sows Mash Stuffs): Maize, bandrients and ener protein - 171.7 g/	Pelle arley, soyl rgy conten kg; Ca - 8 /kg DM, C	and feeding t
Feeding and rearing cond Method of feeding: 2 time Diets (type(s)): Diet for ges Presentation of the diet: Composition (main feeding Nutrient content (relevant in Intended values: Crude p	ditions: individual es a day stating sows Mash Stuffs): Maize, base outrients and energorotein - 171.7 g/protein - 192.7 g/minations perform	Pelle arley, soyl rgy conten kg; Ca - 8 /kg DM, C	and feeding Extruded Other Dean meal, rapeseed meal t) O g/kg; P total - 6.0 g/kg a - 9.2 g/kg DM, P total - 6.42 g/kg DM ction of faeces (day 10 to 15)
Feeding and rearing cond Method of feeding: 2 time Diets (type(s)): Diet for ges Presentation of the diet: Composition (main feeding Nutrient content (relevant in Intended values: Crude p Analysed values: Crude p Date and nature of the examp	stating sows Mash Stuffs): Maize, base orotein - 171.7 g/protein - 192.7 gaminations perform luation used: ANG	Pelle arley, soyl rgy conten kg; Ca - 8 /kg DM, C ned: Colle OVA, Fish	and feeding Extruded Other Dean meal, rapeseed meal t) O g/kg; P total - 6.0 g/kg a - 9.2 g/kg DM, P total - 6.42 g/kg DM ction of faeces (day 10 to 15) Der's LSD procedure
Feeding and rearing cond Method of feeding: 2 time Diets (type(s)): Diet for ges Presentation of the diet: Composition (main feeding Nutrient content (relevant in Intended values: Crude p Analysed values: Crude p Date and nature of the examed the method (s) of statistical evants.	ditions: individual es a day stating sows Mash Stuffs): Maize, batturients and energorotein - 171.7 g/protein - 192.7 g/minations perform luation used: ANG atments (reason, formations)	Peller arley, soyl rgy content (kg; Ca - 8 /kg DM, Coned: Coller OVA, Fishtiming, kin	and feeding t Extruded Other Dean meal, rapeseed meal t) .0 g/kg; P total - 6.0 g/kg a - 9.2 g/kg DM, P total - 6.42 g/kg DM ction of faeces (day 10 to 15) ter's LSD procedure d, duration): -

In case the concentration of the additive in complete feed/water may reflect insufficient accuracy, the dose of the additive can be given per animal day or mg kg body weight or as concentration in complementary feed.

Please submit this form using a common word processing format (e.g. MS Word). FDA / CVM 0375

1 A B

FDA / CVM 0376

Annex 12

Assessment of the effects of phytase (Ronozyme® HiPhos) to improve nutrient digestibility in lactating sows

REPORT No. 00015939

REPORT No. 00015939 Regulatory Document

Document Date: 6 December 2012

Author(s): R.T. Zijlstra¹, Z. Nasir¹ and J. Broz²

¹ Department of Agriculture, Food and Nutritional Sciences,

University of Alberta, Edmonton (Canada)

² Nutrition Innovation Center, R&D, Scientific Networks ANH, Basel

Title: Assessment of the effects of phytase (Ronozyme® HiPhos)

to improve nutrient digestibility in lactating sows

Project No. 6562

Summary

A digestibility study was conducted to determine the effects of Ronozyme® HiPhos phytase at the inclusion level of 500 U/kg diet on nutrient digestibility and various blood variables in lactating sows. A total of 45 gestating sows (Large White x Landrace) were used in the present study. The sows were individually kept and allocated one of the three experimental diets (15 sows per diet). The dietary treatments were as follows: 1) positive control fed a regular lactation diet containing 0.77% total P, with added monocalcium phosphate (PC); 2) negative control (NC) fed a diet with reduced available P (0.45% total P), without addition of monocalcium phosphate; 3) NC diet plus phytase at 500 U/kg (NC + P). Feacal samples were collected three times from each sow. First faecal sample was collected after moving the sows to farrowing pens, before switching them to experimental lactation diets. Second sample was collected on day 8 of lactation and third sample was collected on day 15 of lactation. Blood samples were collected from jugular vein from each sow both at farrowing and at the end of study (day 15). The apparent total tract digestibility (ATTD) of dry matter, crude protein, energy, calcium and phosphorus were calculated using titanium dioxide as an indigestible marker. Phytase supplementation to the low-P diet significantly increased (P<0.05) the ATTD of phosphorus on days 8 and 15 post-farrowing, when compared to the negative control. Specifically, supplementation of Ronozyme® HiPhos increased the ATTD of phosphorus from 36.0 to 42.1% on day 8, and from 33.9 to 46.0% on day 15. Digestibility values of crude protein, Ca, energy and organic matter were not affected significantly.

This report consists of 35 pages & Annex C

Distribution

Dr. F. Fru, NIC-IPM/A
Dr. P. Guggenbuhl, NIC-RD/AN
Mr. J.-F. Hecquet, NIC-GRA/AN
Dr. A.-M. Klünter, NIC-RD/AN
Mr. J.-P. Ruckebusch, ANH/GCM
Dr. G. Weber, NIC-RD/CS

Dr. G. Kau, NIC-RD

Approved

Name Main Author	Signature	<u>Date</u>
Dr. J. Broz, NIC-RD/NA	Signed by J. Broz	07.12.2012
DNP Corp. Scientist and/or Principal Scientist		
Dr. J. Broz, NIC-RD/NA	Signed by J. Broz	07.12.2012
R&D Director Dr. G. Kau, NIC-RD	Signed by G. Kau	11.12.2012
Innovation Project Manager Dr. F. Fru, NIC-IPM	Signed by F. Fru	14.12.2012

Study Report

Assessment of the effects of phytase (Ronozyme[®] HiPhos) to improve nutrient digestibility in lactating sows

Experiment code: RTZ/ZN-2011-Phytase

Principle Investigator: Dr. Ruurd T. Zijlstra

Professor,

Department of Agriculture, Food and Nutritional Science,

University of Alberta, Edmonton, Canada

Site Investigator: Dr. Zahid Nasir

Post doctoral fellow,

Department of Agriculture, Food and Nutritional Science,

University of Alberta, Edmonton, Canada

Report submitted to: Dr. Jiri Broz

DSM Nutritional Products, Ltd

CH- 4002 Basel,

Switzerland

UofA Animal Care #: 073/01/13 Exp #: RTZ/ZN-2011-Phytase

Study Title: Assessment of the effects of phytase (Ronozyme® HiPhos) to improve

nutrient digestibility in lactating sows

Test Facility: Swine Research & Technology Centre Phone:+1(780) 492-7688 F-62, Edmonton Research Station Fax: +1(780) 492-6990

F-62, Edmonton Research Station University of Alberta, Edmonton,

Canada

Site Investigator: Dr. Zahid Nasir, PhD Phone:+1(780) 902-8723
Postdoctoral fellow, AFNS E mail: zn@ualberta.ca

University of Alberta, Edmonton,

Canada

Principal Investigator: Dr. Ruurd T. Zijlstra, PhD Phone:+1(780) 492-8593

Professor, AFNS,

University of Alberta, Edmonton,

Canada

Study Technician: Kim Williams Phone:+1(780) 492-7688

E mail: kmw@ualberta.ca

E mail: ruurd.zijlstra@ualberta.ca

Facility Manager: James Willis, BSc Phone:+1(780) 492-7688
E mail: jay.willis@ualberta.ca

<u>july 11112000/1111010</u>

Sponsor(s): DSM Nutritional Products, Ltd

CH- 4002- Kaiseaugst, Switzerland

Test Article(s): Ronozyme[®] HiPhos

Lot ELN-09FlBo0031-2GT

Minimum phytase activity: 10,000 U/g

Control Article(s): Positive control diet (commercial)

Initiation Date: Date the protocol is signed by the

Principal Investigator:

Start Date: First date the test articles are applied: October 18, 2011

Termination date: Last day data are collected: <u>December 31, 2011</u>

Completion date: Date final report is signed:

1. Objectives

The objectives of the present study were to determine the effects of phytase (Ronozyme[®] HiPhos) at the inclusion level of 500 U/kg in diets of lactating sows on nutrient digestibility, performance and various blood variables.

2. Materials and methods

2.1 Test and control article

There were three diets: 1) positive control (the regular sow diet containing mono calcium phosphate), 2) negative control (NC) diet with reduced available P (without added mono calcium phosphate), and 3) NC diet plus 500 U of phytase/kg diet. Feed was obtained from a commercial source (Viterra Feeds, Sherwood Park, Alberta, Canada). Indigestible marker and phytase were added at the University of Alberta Feed Mill, Edmonton, Canada.

2.2 Animals and housing

The animal procedures were approved by the University of Alberta Animal Care and Use Committee for Livestock, and followed principles established by the Canadian Council on Animal Care (CCAC, 2009) and were conducted at the "Swine Research and Technology Centre (SRTC)". In total, 45 gestating sows (Large White x Landrace) were used for the present trial. The sows were individually kept and allocated one of the three experimental diets (15 sows per diet).

The sows were kept in five rooms (11.3 m long \times 7.62 m wide), each having nine sows at the same stage of farrowing and lactation. Each room is equipped with two parallel rows of five farrowing pens separated by a center alley (Figure 1). The individual farrowing pens measured 1.83 m wide \times 2.20 m long \times 0.50 m high. All four pen sides were made of solid plastic planking. Each pen

was longitudinally divided into three compartments with central farrowing crate and two pens for piglets.

Each farrowing crate (0.55 m wide x 2.20 m long x 1.0 m high) was equipped with a stainless steel, dry self-feeder attached to the front of the pen. The feeder was 0.35 m wide x 0.6 m high, 0.15 m off the floor. A single drinker was also attached to the right side wall of farrowing crate (0.76 m above pen floor) near the feeder, and a drinker closer to the pen floor for piglet access. Each pen was equipped with a heating pad and sprinkler for extreme temperature conditions. There were four gutters (0.56 m wide x 0.61 m deep) in each room, one located under the front and one running under the back of each row of pens. The slurry was removed by gravity to a holding tank.

The room uses negative pressure to ventilate, created by a single exhaust fan chimney located in the centre of the ceiling. Outside air flowed into the barn attic from below the barn side gutters. Air was pre-warmed in the attic and then drawn into the room through ten air inlets located along sidewalls of the room. Incoming air was further heated by contact flow with a re-circulating hot water pipe suspended under the air baffles. All components of the ventilation system including the water heating and ceiling fresh air inlets were integrated and controlled by one environmental controller. Artificial light was provided using three light fixtures equipped with two 40-watt fluorescent light tubes. Room lights were automatically controlled for 12 hours of light and 12 hours of dark.

2.3 Experiment design and diets

During this experiment, effects of phytase were studied in a randomized complete block design, where sows are either designated by parity (first, second, third and higher), and are randomized within each set of three sows. During the experiment sows were offered lactation diet

obtained from a commercial source (Viterra Feeds Sherwood Park, Alberta, Canada) in crumbles form, which were identical except for the amount of total phosphorus as:

- 1. PC: Positive control (regular lactation diet containing 0.77% total P)
- 2. NC: Negative control diet (containing 0.45 % total P)
- 3. NC+P: Negative control diet plus 500 units of phytase/kg diet (Ronozyme® HiPhos)

Diets were fortified to meet vitamin and mineral requirements (NRC, 1998); except for being marginally limiting in P. The indigestible marker titanium dioxide (TiO₂) was included in diets as well. Sows were the sampling and experimental unit for all measurements. The test diets were formulated to provide approximately 21% CP and exceeded NRC requirements for most nutrients. At the University of Alberta Feed Mill, feeds were mixed with marker (TiO₂) and phytase (Ronozyme[®] HiPhos). Prior to making the final batch for each diet, the phytase enzyme and marker were mixed with the same diet as carrier. Mixing time of diet were six minutes (based on the results obtained from Pre-experimental Mixer Efficiency Test). After mixing, representative samples (~ 1000 g) were collected from each test diet for nutrient analysis. The test diets were properly labelled and delivered in plastic, rodent-proof feed bins to SRTC. On arrival at the SRTC, the test diets were stored in the feed bins.

One grab sample (~100 g) of each test diet was collected at the barn at the start of each experimental phase (total ~ 500 g). These grab samples were thoroughly mixed using a beater mixer (Met Unit). A sub-sample (~250 g) of each composite test diet was used for laboratory analyses at the end of the study. The remaining sub-samples (~250g each) were stored in a freezer (approx. -20°C) at the SRTC for future analyses as may be required.

The null hypothesis is that the phytase will not affect the nutrient digestibility. If the probability is 5% or less than 5%, the null hypothesis will be rejected and the alternative hypothesis (that the phytase will affect the nutrient digestibility) will be accepted.

2.4 Experiment management

Acclimation to housing period:

Pregnant sows were weighed and moved to farrowing pens in the test room 5-7 days prior to

farrowing. Sows were continued to be offered gestation diet (SRTC diet specification) on the first

day in farrowing pens, which was changed to the specific lactation diet on the 2nd day. Before

changing gestation diet to lactation diet, faeces were collected from individual sows.

Throughout the entire experiment, sows had free access to water from a pen drinker at all

times. The temperature of the room was maintained at 21 ± 2.0 °C. Supplemental heat for piglets

was provided through heated floor pads present in each farrowing pen.

Diet adaptation:

In farrowing pens the sows were switched from the gestation diet to the experimental

lactation diet (Table 1). Once on the assigned test diet, sows were offered it for a minimum of 5 d

adaptation prior to farrowing. Prior to farrowing, sows were fed 3.0 kg of diet per day (SRTC

SOP). The test diets were offered once daily.

Collection of faecal samples:

Faecal samples were collected three times from each sow as:

First faeces sample: collected after moving the sows to farrowing pens, while fed gestation

diet. After collecting first faecal samples, diets of sows were switched to lactation diet.

Second faeces sample: collected on 8th day of lactation.

Third faeces sample: collected on 15th day of lactation.

Faecal samples were collected soon after excreted. The individual sow faecal collections were weighed (warm) and kept in bag in the freezer(s) at -20 °C. Each bag was labelled with the experiment number, sow ID and date of collection.

Collection of plasma samples:

Blood samples (15-20 ml) were collected from jugular vein (SRTC SOP # S-77) from each sow both at farrowing (day 1 of lactation) and at the end of experiment (day 15) using an anticoagulant (heparin). Immediately after collection, blood samples were centrifuged (3000 rpm, 10 minutes, 4°C) and plasma was separated. Plasma was stored at -80°C until further analysis.

2.5 Measurements and observations

Sows were individually weighed using standardized scales at the beginning of experiment, on the day 1 and 15 of lactation. Back fat measurements of the sows were performed on day 1 and 15 using ultrasonic instrument. All piglets in a litter were weighed together using standardized scales on 1, 8 and 15 day of age. Weight gain of piglets was used to estimate sow milk production.

During diet adaptation phase and specimen collection phase, the amount and consumption of each diet were confirmed and recorded once daily. After the daily health checks, room temperature and humidity were measured using a digital thermometer and hygrometer and recorded

2.6 Specimen processing, storage and analysis

Once the specimen collection was completed, the collected faecal samples were thawed and weighed. The faeces were thoroughly homogenized using a beater (SRTC Engineering Lab). Faeces were sub-sampled into shallow aluminium dishes in the barn. Two subsamples were carefully

weighed, frozen again and kept at approximately -20°C. Both the subsamples' container and lid were labelled with the experiment number, sow ID and period.

Frozen faecal samples were freeze-dried, equilibrated to room temperature and moisture, and subsequently ground through a 1 mm screen using a Retsch mill. Dried and ground faecal samples and subsamples of each of the test diets were packaged for lab analyses.

Analysis of gross energy, dry matter, crude protein (LECO), ash, marker (Titanium dioxide) and phosphorus in the diet and faeces were conducted at the Department of Agricultural, Food and Nutritional Science at the University of Alberta. Analysis of calcium, zinc, copper and magnesium in diet and faeces were conducted at the lab of department of Renewable Resources, University of Alberta, Edmonton, Canada. Plasma samples were analysed at Prairie Diagnostic Services, Saskatoon, Saskatchewan. Activity of phytase in diets was determined by DSM Biopract GmbH (Dr. J. König), Magnusstrasse 11, D-12489 Berlin, Germany.

2.7 Calculations and statistical analysis

The results of the diet and faecal laboratory analyses were transcribed checked and verified twice prior to initiating calculations. All digestibility calculations were made using the indicator method. The apparent total tract digestibility (ATTD) of dry matter (DM), crude protein, energy, calcium and phosphorus were calculated as follows:

Apparent digestibility, $\% = 100 - [100 \text{ x (concentration of TiO}_2 \text{ in feed x concentration of nutrient in faeces)} / (concentration of TiO}_2 \text{ in faeces x concentration of nutrient in feed)}]$

Data were analysed using the PROC MIXED procedure of SAS.

3. Results

Supplementation of phytase to low P diet increased (P < 0.05) ATTD of P on d 8 and 15 post farrowing (Table 3). Specifically, supplementation of Ronozyme[®] HiPhos to the NC diet increased (P < 0.05) the ATTD of P by 17% on d 8 and by 35% on d 15 as compared with NC diet. Supplementation of phytase did not affect (P > 0.05) ATTD of CP, Ca, GE and organic matter.

On d 1 and d 15 post-farrowing, plasma P was reduced (P<0.05) in sows fed the NC instead of the PC diet by 0.66 and 0.30 mmol/L, respectively (Table 4). On d 1 but not d 15, phytase supplementation increased (P<0.05) plasma P by 0.40 mmol/L in sows fed the NC diet. Phytase supplementation did not affect (P>0.05) plasma Ca and total protein or other plasma variables like Ca, Na, K, Cl, Mg, Mn, Fe, Co, Cu, Zn, Se, Mb, urea, creatinine, glucose, total protein, albumin, globulin and AG ratio on d 1 and d 15. Compared with NC diet, the sows fed phytase-supplemented diet had lower plasma bicarbonate (P<0.05) on d 15 and higher anion gap on day 1. However, all variables were in the normal physiological range.

Feeding the three test diets did not affect (P>0.05) total feed consumption, milk production, back fat thickness and BW changes of sows during the lactation and liter weight gain of piglets (Table 5). There was a trend (P = 0.067) of 10% reduced daily feed consumption in sows fed on phytase supplemented diets, while keeping all other parameters similar.

4. Conclusion

In conclusion, supplementation of Ronozyme[®] HiPhos phytase at 500 U/kg increased P digestibility with the potential to reduce P excretion in lactating sows. Thus, even supplementation of low doses of microbial phytase in the sow diets can reduce the environmental footprint of pig production.

Table 1. Composition (as-fed basis) of experimental diets¹

	Gestation diet		Lactation diets	ts
Ingredients, %	_	PC	NC	NC+P
Wheat	25.0	51.7	53.5	53.5
Barley	50.4	-	-	-
Soybean meal	-	13.9	13.3	13.3
Field peas	10.0	10.0	10.0	10.0
Corn DDGS	10.0	10.0	10.0	10.0
Meat and bone meal	2.20	-	-	-
Fat, downstream	-	2.50	2.50	2.50
Canola meal	-	6.50	6.50	6.50
Limestone / glass rock	1.40	1.86	2.50	2.50
Dicalcium phosphate (21%)	-	1.54	-	-
Fat, blend, tallow	-	0.437	-	-
Salt	0.42	0.435	0.437	0.437
L-Lysine HCL	0.02	0.401	0.412	0.412
Premix (UF Fort 510S-03)	0.25	0.250	0.250	0.250
L-Threonine	-	0.124	0.127	0.127
Biotin	0.150	-	-	-
Choline, Liq 70%	0.065	-	-	-
MHA (Alimet) ²	-	0.112	0.110	0.110
Xylanase ³	0.040	-	-	-
Selplex 2000 ⁴	0.010	-	-	-
Ethoxyquin (66%)	0.020	0.017	0.017	0.017
Folic acid (1.0%)	0.010	-	-	-
Marker (TiO ₂)	-	0.300	0.300	0.300
Phytase (%)	0.01	-	-	0.005
Calculated composition, %				
Dry matter, %	89.9	89.6	89.4	89.4
Crude fat, %	3.27	5.03	4.62	4.62

Crude fibre, %	6.23	4.02	4.04	4.04
Crude protein, %	14.9	20.5	20.5	20.5
DE (swine), Kcal	3102	3467	3479	3479
ME (swine), Kcal	2906	3285	3294	3294
NE (swine, sow), Kcal	2167	2424	2426	2426
SID Lysine, %	0.498	1.07	1.07	1.07
SID Methionine, %	0.178	0.36	0.36	0.36
Calcium, %	0.956	1.08	1.08	1.08
Total Phosphorus, %	0.720	0.770	0.450	0.450
Available Phosphorus, %	0.426	0.517	0.202	0.202
Analyzed composition				
Dry matter, %	90.9	90.1	90.2	89.8
Crude protein, %	18.4	23.3	23.2	23.2
Gross energy, Kcal/kg	3887	4051	4056	4038
Ash, %	7.00	9.05	7.54	7.54
Acid Insoluble Ash, %	0.558	0.600	0.631	0.631
Calcium, %	0.883	1.296	1.166	1.161
Phosphorus, %	0.690	0.860	0.590	0.590
Magnesium, %	0.252	0.209	0.218	0.228
Zinc, mg/kg	167	165	147	165
Copper, mg/kg	203	240	313	311

PC, positive control; NC, negative control; NC+P, negative control plus phytase.

²MHA (Alimet), Methionine Hydroxy-Analogue (2-Hydroxy-4-(Methylthio) Butanoic Acid, HMTBA), Novus International, Inc., USA

 $^{^3}$ Porzyme 9300, endo-1, 4- β -xylanase, minimum activity 4000 U/g, Danisco Animal Nutrition

⁴Selplex 2000, Selenium yeast feed additive, contains 0.3 ppm Selenium (Alltech, USA)

Table 2. Enzyme (Phytase) activity (U/kg) in experimental diets

Test Diets	Batch 1	Batch 2
nclusion level (mg/kg)	50	50
U/kg	500	500
ositive control (PC)	LOQ	LOQ
egative Control (NC)	124	129
C + Phytase	758*	771*

LOQ, below limit of quantification

^{*} Includes intrinsic phytase activity

Table 3. Effects of phytase on nutrient digestibility (%) and sow performance¹

Item ²	PC	NC	NC+P	SEM	P value
P digestibility, %					
d-5	42.0	41.6	40.5	1.672	0.779
d 8	34.9 ^b	36.0^{b}	42.1 ^a	2.756	0.044
d15	29.7 ^b	33.9 ^b	46.0 ^a	2.375	<.0001
Ca digestibility, %					
d-5	29.1	23.1	23.1	2.810	0.178
d 8	31.7	23.6	24.3	3.206	0.074
d 15	31.0	24.9	28.7	2.540	0.414
CP digestibility, %		,			
d-5	82.3	81.8	82.3	0.388	0.524
d 8	82.8	83.2	83.3	0.775	0.534
d15	81.0 ^b	82.6 ^a	82.6 ^a	0.708	0.008
GE digestibility, %					
d-5	80.1	80.0	80.1	0.251	0.844
d 8	83.1	82.9	82.9	0.638	0.758
d15	81.2 ^b	82.0^{ab}	82.6 ^a	0.648	0.007
DM digestibility, %					
d-5	80.4	80.5	80.8	0.257	0.331
d 8	81.0	81.6	82.1	0.723	0.104
d15	78.8 ^c	80.5 b	81.8 ^a	0.699	<.0001
Ash digestibility, %					
d-5	54.9	53.5	53.6	1.024	0.565
d 8	52.0 ^a	44.7 ^b	46.4 ^b	2.067	0.002
d15	46.6 ^a	41.8 ^b	45.7 ^a	1.976	0.010
OM digestibility, %					
d-5	84.0	83.7	83.8	0.186	0.491
d 8	85.3	85.3	85.9	0.590	0.385
d15	83.7 ^b	84.6 ^{ab}	85.3 ^a	0.591	0.007

¹PC, positive control; NC, negative control; NC+P, negative control plus phytase. ²d –5, 5 d before farrowing; d 8, 8 d post farrowing; d 15, 15 d post farrowing; CP, crude protein; DM, dry matter; OM, organic matter.

Table 4. Effects of phytase on plasma variables¹

Item ²		PC ¹	NC ²	NC+P ³	SEM	P value
P, mmol/l						
d :	1	2.33 ^a	1.67 ^b	2.07 ^a	0.106	< 0.001
d :	15	2.03^{a}	1.72 ^b	1.76 ^b	0.092	0.032
Ca, mmol/l						
d :		2.66	2.69	2.66	0.046	0.836
d :	15	2.73 ^b	2.88^a	2.79 ^{ab}	0.036	0.014
Na, mmol/l						
d :		147	147	148	0.935	0.555
d 1	15	146	144	144	0.991	0.234
K, mmol/l						
d :	[4.29	4.26	4.36	0.131	0.928
đ I	15	4.36	4.19	4.32	0.102	0.496
Chloride, mmol/l						
d 1		104	104	104	0.669	0.982
d 1	15	105ª	102 ^b	103 ^b	0.535	< 0.001
Bicarbonate, mmol/	1					
d 1	1	27.2	29.7	27.9	1.198	0.086
d 1	.5	26.9 ^c	30.1 ^a	28.6 ^b	0.843	0.001
Anion Gap, mmol/l						
d 1		19.7ª	16.7 ^b	20.0 ^a	1.615	0.049
d 1	.5	18.6	16.4	17.8	1.397	0.146
Mg, mmol/l						
d 1	. (0.837	0.792	0.834	0.019	0.131
d 1	.5 (0.936	0.911	0.938	0.017	0.451
Urea, mmol/l						
d 1		5.38	5.63	5.49	0.267	0.779
d 1	.5	7.53	8.43	8.16	0.363	0.185
Creatinine, mmol/l				1		
d 1		204	201	203	7.10	0.948
d 1	.5	151		153	6.84	0.238
Glucose, mmol/l						
d 1		4.75	4.71	4.93	0.171	0.521
d 1				4.76	0.183	0.985
	: -				3.200	3,200

Total Protein, (G/l					
	d 1	76.9	74.9	73.8	1.445	0.212
	d 15	79.3	80.3	78.9	1.227	0.627
Albumin, G/l						
	d 1	47.3	46.1	46.1	0.756	0.493
	d 15	46.3	46.2	46.8	0.655	0.794
Globulin, G/l						
	d 1	29.6	28.9	27.7	1.448	0.452
	d 15	33.0	34.1	33.1	1.213	0.447
AG ratio						
	d 1	1.65	1.66	1.78	0.110	0.511
	d 15	1.44	1.39	1.48	0.057	0.501
Mn, ppb						
	d 1	4.17	4.00	4.47	0.30	0.492
	d 15	4.53	4.50	5.30	0.50	0.591
Fe, ppm	•					
	d 1	2.20	2.22	2.08	0.213	0.861
	d 15	1.98	1.59	1.91	0.125	0.062
Co, ppb						
	d 1	0.635	0.808	0.649	0.101	0.289
	d 15	1.033	0.805	0.772	0.142	0.370
Cu, ppm						
	d 1	2.27	2.34	2.20	0.119	0.527
	d 15	1.72 ^b	1.89 ^a	1.77 ^{ab}	0.064	0.054
Zn, ppm						
	d 1	0.559	0.520	0.525	0.032	0.635
	d 15	0.814	0.807	0.814	0.053	0.997
Se, ppm						
	d 1	0.213	0.216	0.205	0.009	0.702
	d 15	0.240	0.262	0.253	0.014	0.175
Mb, ppm						
	d 1	0.011	0.013	0.012	0.001	0.431
	d 15	0.013	0.012	0.013	0.008	0.339

¹PC, positive control; NC, negative control; NC+P, negative control plus phytase

²d 1, 1 d post farrowing; d 15, 15 d post farrowing.

Table 5. Effects of phytase supplementation on sows and piglet performance and other variables¹

	PC	NC	NC+P	SEM	P value
Feed consumed (total), kg	109.4	114.5	102.4	4.504	0.117
Feed consumed (daily), kg	5.17	5.55	4.97	0.193	0.067
Sow's weight, kg					
d -5	252.1	256.9	239.5	9.021	0.382
d 1	241.1	246.4	234.8	9.213	0.673
d 15	238.5	242.1	230.5	8.992	0.651
d 19	233.6	238.7	222.5	9.156	0.448
Milk production, kg					
Total (d 1 to d 15)	144.2	135.2	127.0	14.01	0.416
daily	10.4	9.73	9.37	0.918	0.481
Weight loss, kg					
d 1 - (d-5)	-10.93 ^b	-10.71 ^b	-4.786 ^a	1.971	0.055
d 15 - (d-5)	-13.86	-15.00	-9.00	2.346	0.172
d 19 - (d-5)	-18.57	-18.36	-17.14	3.733	0.958
d 19 - d1	-7.54	-7.86	-12.49	3.892	0.600
Back fat measurements, mm					
d -5	18.4	18.8	19.4	0.833	0.700

	d 1	17.9	18.1	18.9	0.812	0.660				
	d 15	17.1	17.4	18.2	0.808	0.633				
	d 19	16.3	16.6	16.7	0.831	0.939				
Litter weight, kg										
	d 1	11.1	13.7	13.3	0.958	0.128				
	d 8	41.8	30.4	32.2	7.777	0.542				
	d 15	47.8	50.0	51.9	2.943	0.624				
	d 19	56.0	61.6	60.0	3.783	0.402				
Weight gain, kg										
	Litter	33.6	31.5	29.6	3.220	0.419				
	Piglet	3.44	3.13	3.00	0.305	0.447				

TPC, positive control; NC, negative control; NC+P, negative control plus phytase

²d −5, 5 d before farrowing; d 1, 1 d post farrowing; d 8, 8 d post farrowing; d 15, 15 d post farrowing, d 19, 19 d post farrowing (weaning day)

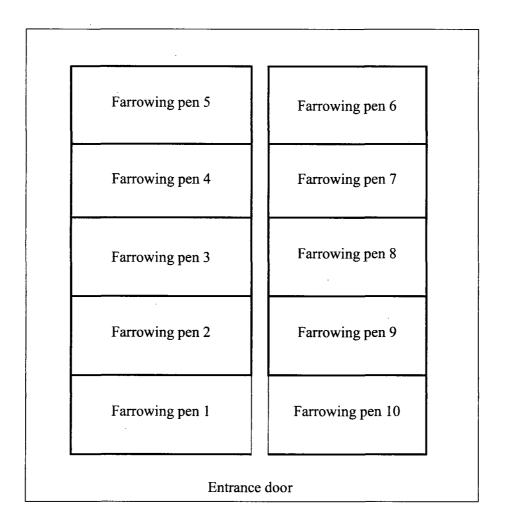
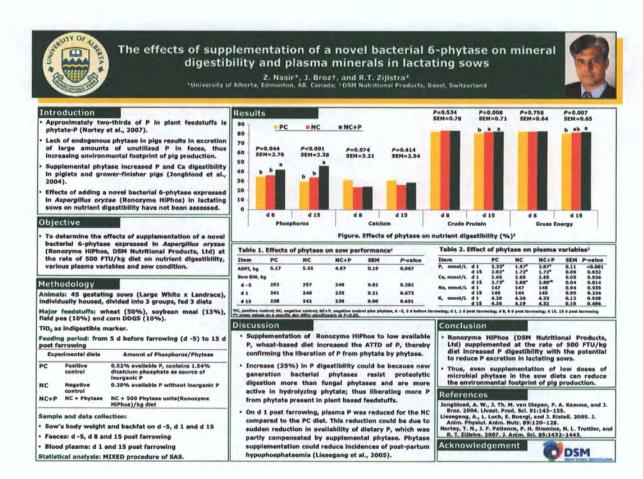



Figure 1. Layout of the farrowing rooms showing the location of the sows involved in the study. (Image not to scale)

Annex 1- Poster presented at Digestive Physiology of Pigs, (May 29 - June 1, 2012 Keystone,

Colorado, USA)

Best Copy Available

Annex II- Raw data

Assessment of the effects of phytase (Ronozyme® HiPhos) to improve nutrient digestibility in lactating sows

Experiment code: RTZ/ZN-2011-Phytase

Table 1. Effects of Phytase (Ronozyme® HiPhos) on Nutrient Digestibility (%)

Sow ID	Diet	Block	Day	P	Ca	СР	GE	DM	Ash	ОМ
65005	1	1	d -5	40.6	27.1	82.2	80.7	80.4	50.4	84.5
			d 8	44.1	38.0	85.9	85.8	83.9	56.2	87.9
			d 15	30.5	22.2	83.5	83.3	80.7	43.6	86.1
74202	2	1	d -5	42.8	28.3	82.0	79.7	79.7	52.4	83.6
			d 8	48.0	27.1	87.2	85.8	84.2	54.4	88.0
			d 15	48.1	33.0	85.3	84.6	82.9	51.9	86.8
56404	3	1	d -5	42.4	31.7	83.7	81.2	81.2	56.3	84.8
			d 8	50.3	24.1	86.9	85.7	84.8	56.9	88.4
	·		d 15	56.7	33.0	86.7	86.5	86.0	57.7	88.7
77102	1	1	d -5	46.6	39.1	82.1	79.8	80.4	58.7	83.7
			d 8	46.8	48.8	86.2	85.6	84.5	62.9	87.9
			d 15	43.5	35.7	83.6	83.8	81.3	53.1	85.8
75205	2	1	d -5	44.4	21.5	79.8	79.2	80.1	55.8	83.2
			d 8	36.8	23.0	81.5	81.9	81.1	50.5	84.7
			d 15	37.8	33.1	83.3	82.9	81.4	52.2	84.8
74705	3	1	d -5	29.0	20.2	81.3	78.7	78.7	48.3	82.8
			d 8	57.2	25.2	87.2	86.3	86.1	57.1	88.9
			d 15	53.1	41.1	85.1	85.0	84.5	54.5	87.9
74101	1	1	d -5	45.5	30.6	81.5	79.5	79.6	53.5	83.5
			d 8	50.9	36.7	86.1	86.9	85.1	60.4	87.8
			d 15	43.8	37.4	83.2	84.3	81.1	56.2	86.1
65202	2	1	d -5	36.0	30.0	81.6	80.1	79.8	46.3	83.8
			d 8	48.3	32.3	87.7	87.1	85.4	52.3	89.2
			d 15	40.7	23.3	84.1	83.6	81.9	43.4	86.4
69903	3	l	d -5	41.1	30.0	80.4	79.3	80.6	52.5	83.1
			d 8	53.0	29.6	84.5	84.4	84.2	55.3	87.4
			d 15	37.5	27.7	80.7	81.5	80.8	43.0	85.3
56903	1	2	d -5	37.3	28.2	81.6	80.5	80.4	53.1	84.0
			d 8	40.9	36.9	85.7	83.9	82.1	58.4	85.9
			d 15	41.8	44.1	86.8	82.5	83.6	58.0	87.1
57903	2	2	d -5	31.7	7.8	80.7	79.3	79.9	53.1	83.3
			d 8	46.8	26.8	86.4	85.3	84.4	52.4	87.7
			d 15	37.0	27.8	85.3	84.1	82.7	49.1	86.7
74001	3	2	d -5	37.7	26.6	81.1	79.4	79.9	55.2	83.1
			d 8	48.7	38.2	83.9	83.9	84.4	53.6	87.0
			d 15	50.5	37.7	83.5	82.7	82.0	50.3	84.5
71302	1 .	2	d -5	40.3	14.1	81.1	79.7	79.9	48.8	83.9
			d 8	39.5	39.3	83.6	83.2	81.9	59.0	85.6
			d 15	35.8	42.9	82.2	82.6	81.1	52.4	85.5
74510	2	2	d -5	51.3	28.3	83.0	80.4	81.1	58.6	83.9

Page 21 of 34

			d 8	45.8	36.2	84.5	84.2	83.2	51.3	86.2
			d 15	37.8	16.6	82.5	82.5	80.8	46.0	84.9
57203	3	2	d -5	39.6	18.8	82.4	80.5	80.9	53.4	84.2
			d 8	28.8		81.1	81.8	80.5	41.1	85.1
			d 15	43.1	29.4	81.5	82.7	82.1	47.4	85.2
74003	1	2	d -5	43.5	29.2	84.4	80.9	81.1	57.1	84.3
-			d 8	45.9	52.2	85.9	85.8	83.5	58.7	87.3
			d 15	34.9	38.4	81.7	82.9	79.7	52.8	84.0
72904	2	2	d -5	24.9		79.4	77.4	77.6	44.6	81.8
7-1			d 8	41.3	24.4	86.0	86.2	84.9	53.3	88.2
			d 15	34.2	28.9	84.1	84.2	83.3	49.6	87.2
77702	3	2	d -5	42.3	28.5	82.6	80.1	80.5	56.5	83.7
		,	d 8	39.1	16.5	82.9	82.1	81.0	46.2	85.1
			d 15	54.1	26.1	86.0	84.6	83.3	49.7	87.1
59203	1	3	d -5	39.6	16.5	82.5	80.2	80.2	53.9	83.8
			d 8	46.6	35.3	88.8	87.4	86.0	62.3	89.4
			d 15	40.2	43.1	83.6	82.7	81.3	55.7	83.3
74901	2	3	d -5	39.7	12.0	79.9	79.2	80.5	48.8	83.1
			d 8	33.7	26.8	82.5	81.8	80.2	45.7	83.5
			d 15	45.2		86.1	85.0	83.1	45.3	87.3
77601	3	3	d -5	44.6	25.9	85.1	80.9	80.9	56.9	84.2
			d 8	30.6		85.0	83.2	83.4	43.2	86.3
			d 15	60.8	30.9	86.1	84.6	84.0	52.4	87.8
68307	1	3	d -5	41.6	22.9	84.7	81.5	81.5	54.5	85.1
			d 8	33.8	33.7	83.7	84.0	81.3	53.1	85.6
			d 15	31.8	40.7	83.7	83.2	82.1	52.3	86.5
58802	2	3	d -5	37.4	13.7	82.9	79.7	80.0	52.3	83.6
			d 8	39.7	24.9	86.1	84.9	84.4	50.1	85.3
			d 15	32.2	25.5	85.7	85.1	83.0	50.4	85.7
68501	3	3	d -5	42.8	13.1	82.5	80.6	81.0	54.4	84.3
			d 8	36.8	10.2	80.9	81.6	80.2	44.0	83.7
			d 15	48.0	19.2	83.3	83.1	82.3	49.5	86.1
75304	1	3	d -5	26.8	20.6	80.8	79.8	80.2	57.1	83.5
			d 8	19.1	16.6	75.7	79.2	76.9	45.8	82.2
			d 15	24.3	21.5	77.6	81.5	78.1	43.2	84.1
78204	2	3	d -5	52.0	42.8	82.4	80.9	82.0	60.9	84.2
			d 8	34.9	27.4	79.7	78.3	78.2	45.8	81.2
			d 15	24.2	27.1	79.8	79.6	77.5	35.8	82.3
75704	3	3	d -5	44.8		80.4	78.7	80.8	50.7	82.7
			d 8	45.5	27.1	84.8	83.6	82.7	50.3	86.3
			d 15	58.0	20.4	85.1	85.0	84.0	53.5	87.4
60001	1	4	d -5	43.0	25.0	81.4	79.8	79.9	52.3	83.8
			d 8	15.6	31.0	79.3	79.9	76.3	38.3	81.5

Page 22 of 34

			d 15	22.6	20.6	77.5	79.6	75.2	36.9	81.2
58401	2	4	d -5	35.1	15.6	83.0	81.0	81.5	50.4	83.8
			d 8	3.7	20.0	81.3	81.1	77.1	22.7	82.5
	<u> </u>		d 15	26.0	21.1	80.5	80.8	78.5	34.6	82.4
75001	3	4	d -5	39.2	10.9	82.9	81.5	82.0	49.8	84.5
			d 8	39.0	20.4	81.5	81.6	79.3	42.0	84.1
			d 15	41.0	25.7	79.4	81.0	79.6	37.2	82.6
75302	1	4	d -5	39.2	22.3	83.0	80.8	81.0	54.5	84.2
			d 8	38.2	39.2	82.4	82.6	80.6	48.2	84.7
			d 15	17.4	44.2	77.4	79.3	75.7	41.7	81.1
75301	2	4	d -5	35.0	14.0	78.9	78.8	79.3	52.6	82.2
			d 8	30.2	20.0	80.7	81.2	79.3	41.9	83.5
			d 15	25.8	17.7	81.1	80.9	77.5	37.0	81.9
58301	3	4	d -5	39.2	14.3	83.3	81.2	83.0	54.0	84.7
			d 8	30.0	10.5	81.7	81.2	79.9	38.9	83.6
			d 15	26.8	25.5	80.2	79.9	78.4	33.1	80.6
75303	1	4	d -5	41.1	27.5	81.9	79.8	80.1	55.7	83.7
			d 8	16.3	22.5	78.0	79.4	75.3	39.2	81.1
			d 15	15.6	13.7	81.0	80.1	75.6	34.3	81.1
73104	2	4	d -5	42.6	13.2	80.8	79.7	81.2	49.8	83.7
			d 8	35.1	14.4	81.9	82.5	80.3	36.3	85.2
			d 15	34.3		81.6	80.4	79.1	31.0	84.1
78205	3	4	d -5	39.9	19.1	81.3	79.9	80.4	54.8	83.6
		ļ	d 8	39.1	22.5	80.2	80.7	79.8	34.9	85.7
			d 15	34.0	17.5	79.5	81.4	79.2	34.3	82.6
75505	1	5	d -5	54.4	41.0	85.2	81.6	81.9	63.1	84.9
			d 8	31.6	16.3	80.3	80.4	78.9	48.0	83.8
			d 15	26.3	16.4	78.2	77.5	76.2	40.9	81.2
73002	2	5	d -5	50.1	38.6	84.2	82.2	82.2	59.2	85.4
			d 8	28.4	15.5	80.2	81.0	79.4	37.6	84.6
			d 15	25.0	17.7	79.5	78.1	77.1	30.6	82.5
74802	3	5	d -5	33.0	15.5	82.0	80.4	82.1	48.6	84.3
			d 8	48.8	27.9	84.4	84.4	83.9	48.9	86.7
			d 15	50.4	29.5	83.6	83.6	82.3	43.4	85.7
64101	1	5	d -5	40.8	52.1	81.3	78.2	79.5	52.0	83.3
			d 8	29.5	18.8	82.5	82.1	80.0	44.6	85.3
			d 15	21.7	31.3	79.1	78.5	76.4	39.6	82.1
72602	2	5	d -5	46.1	38.7	85.1	81.6	81.5	58.5	84.8
			d 8	30.9		81.3	81.4	80.1	37.4	85.1
			d 15	31.7	35.5	79.6	79.1	79.1	35.4	83.2
69801	3	5	d -5	42.7	33.7	81.4	80.0	79.9	53.6	83.6
			d 8	40.4	34.0	83.4	82.5	81.2	43.1	85.9

Page 23 of 34

			d 15	42.9	35.9	79.9	79.7	79.9	42.9	83.8
77501	1	5	d -5	49.2	40.1	81.2	79.4	79.8	59.2	83.2
			d 8	24.4	10.0	78.5	80.1	78.5	44.4	83.8
			d 15	15.8	13.3	76.2	76.6	74.1	38.9	80.7
75005	2_	5	d -5	54.4	19.5	83.3	80.7	81.7	59.4	84.4
			d 8	35.9	11.4	81.4	80.7	81.5	39.2	84.2
			d 15	28.6	16.2	79.8	79.4	79.4	34.9	83.3
73201	3	5	d -5	49.3	34.3	83.6	79.9	80.2	59.4	83.4
			d 8	44.3	29.3	81.0	80.2	79.4	42.2	84.2
			d 15	33.1	31.0	78.7	77.7	78.4	37.2	83.7

¹d -5, 5 d before farrowing; d 1, 1 d post farrowing; d 8, 8 d post farrowing; d 15, 15 d post farrowing, d 19, 19 d post farrowing (weaning day)

P, Phosphorus; Ca, Calcium; CP, Crude protein, GE, Gross energy; DM, Dry matter; OM, organic matter

Table 2. Effects of Ronozyme[®] HiPhos supplementation on sows and piglet performance and other variables¹

	Sow ID	Block	Diet	Parity		Sow's w	eight, kg		Feed			Sow's l	Back f	at. mn						Pigle	ts		
					d -5	d1	d 15	d 19	consumed	d	-5	d 1			15	d	19	d	1	d		d	19
									(kg, daily)	L	R	L	R	L	R	L	R	No.	wt.	No.	wt	No.	wt.
1	65005	1	1_	4	284	270	268	267	5.32	_18	17	18	18	16	16	16	17	14	16.4	8	36	8	46
2	74202	1	2	2	252	235	232	235	6.07	18	18	17	17	18	17	15	16	17	21.2	11	51	11	76
3	56404	1	3	6	291	290	273	270	4.56	24	25	23	23	23	21	19	20	8	12.1	11	53	11	73
4	77102	1	11	11	228	211	210	206	4.34	16	17	17	18	18	19	17	17	18	19.7	12	44	12	61
5	75205	11	2	2	231	218	210	209	5.14	22	22	22	22	19	18	18	17	14	21.5	10_	48	10	66
6	74705	1	3	2	239	235	230	208	4.89	16	15	15	15	14	14	13	13	9	10.5	12_	56	12	70
7	74101	1	1	2	244	224	212	209	4.17	19	19	19	18	15	15	14	15	16	21	12_	62	12	80
8	65202	1	2	4	274	268	264	260	4.99	19	19	18	18	18	18	18	18	11	14.6	8	36	8	52
9	69903	1	3	3	265	255	254	250	5.89	18	19	18	18	17	17	16	16	12	20.3	10_	57	10	76
10	56903	2	1_	6	272	274	258	242	4.12	24	23	22	23	20	21	20	20	11	13.5	8	40	8	50
11	57903	2	2	6	294	289	283	279	5.92	23	25	24	24	22	22	20	21	11	16.3	10_	49	10	67
12	74001	2	3	2	235	221	215	191	4.23	19	18	20	18	17	16	13	13	12	16.4	11	55	11	68
13	71302	2	1	3	252	253	237	199	6.48	21	22	20	18	18	17	16	16	11	15.1	9	55	9	67
14	74510	2	2	2	252	242	240	232	5.42	18	18	18	17	18	18	16	16	13	17.4	10_	41	10	56
15	57203	2	3	6	280	276	271	236	5.41	26	26	26	26	26	26	25	25	15	17.5	10	43	10	58
16	74003	2	11	2	231	234	229	223	5.46	20	21	20	20	19	18	18	18	12	13.2	10_	48	10	62
17	72904	2	2	3	265	254	251	251	4.87	19	19	19	19	17	18	16	17	14	18.2	10	42	10	58
18	77702	2	3	11	192	189	180	176	4.33	15	16	16	16	15	16	14	14	18	17.5	11_	41	11	56
19	59203	3	11	6	301	283	288	288	4.13	23	22	22	22	22	21	20	20	18	21.1	9	36	9	55
20	74901	3	2	2	227	205	203	206	4.86	14	13	13	12	12	13	11	11	11	15.1	9_	45	9	61
21	77601	3	3	1	210	198	186	182	3.28	18	19	17	17	16	17	16	15	12	14.5	10	42	10	53
22	68307	3	1	4	254	232	223	224	4.13	16	15	14	13	13	12	10	11	15	22.1	10_	50	10	66
23	58802	3	2	6	298	297	294	300	5.85	24	23	23	23	23	22	23	22	10	12.3	10_	38	10	52
24	68501	3	3	4	269	266	251	238	5.42	_21	21	20	20	18	19	17	17	10	15.2	10_	54	10	72
25	75304	3	1	2	236	228	228	228	5.27	18	19	19	19	19	18	17	17	14	16.9	10_	44	10	53
26	78204	3	2	1	184	176	175	172	5.02	15	16	16	16	14	15	15	15	14	17.2	10_	39	10	50

			1					<u></u>									·		1				
27	75704	3	3	2	238	232	216	220	4.60	20	20	20	20	18	18	16	16	13	17.9	10	48	10	66
28	60001	4	1	5	285	266	270	272	4.57	16	15	15	15	15	14	15	14	13	17.4	12	47	10	58
29	58401	4	2	6	286	270	266	266	5.02	22	21	21	22	21	21	19	19	18	19.1	8	36	8	45
30	75001	4	3	2	214	213	231	235	5.75	18	17	17	16	17	17	17	17	5	6	8	44	8	55
31	75302	4	1	2	219	197	206	205	6.27	15	14	16	15	16	15	15	15	15	22.2	8	44	8	53
32	75301	4	2	2	217	207	190	184	6.29	21	20	20	20	18	17	16	16	9	14.2	12	61	12	75
33	58301	4	3	6	266	265	271	268	5.69	23	22	22	22	23	22	21	21	20	17.6	10	39	10	54
34	75303	4	1	2	230	205	213	215	6.22	14	13	13	13	13	13	11	11	16	20	11	51	11	70
35	73104	4	2	3	289	277	268	257	6.31	18	17	16	16	13	14	13	14	12	21.8	10	65	10	81
36	78205	4	3	1	192	184	192	189	4.65	20	19	20	19	20	19	18	17	10	12.9	10	39	10	56
37	75505	5	1	2	234	230	230	226	5.14	17	17	17	18	16	17	18	18	12	17.2	8	53	10	28
38	73002	5	2	3	265	257	258	250	6.01	18	19	17	17	18	18	19	19	10	16.8	9	53	9	63
39	74802	5	3	2	201	208	202	208	5.36	20	19	19	17	18	18	16	16	8	12.7	9	53	9	64
40	64101	5	1	4	308	298	290	290	6.02	22	22	20	21	19	19	19	19	15	17.8	12	58	12	79
41	72602	5	2	3	275	267	262	258	5.85	19	19	17	17	17	18	18	18	16	18.5	12	55	12	74
42	69801	5	3	4	258	246	249	244	5.80	17	16	17	16	17	15	16	14	14	20.3	10	53	10	73
43	77501	5	1	1	194	195	188	184	96.0	19	18	18	18	17	18	16	16	12	12	11	46	11	58
44	75005	5	2	2	216	206	202	190	5.47	16	16	16	15	14	14	13	12	12	19.9	12	65	12	83
45	73201	5	3	3	264	264	258	248	5.80	16	16	17	16	14	15	15	14	9	17	12	73	12	96
		· · · · · · ·	L	·					2.00	<u>`</u>		,	1.0						1	14		12	- 70

¹d -5, 5 d before farrowing; d 1, 1 d post farrowing; d 15, 15 d post farrowing, d 19, 19 d post farrowing (weaning day)

L, left; R, right; No, number; wt, weight (kg)

Table 3. Effects of Ronozyme® HiPhos supplementation on plasma variables1

	Sow ID	Diet	Block	Day	P	Ca	Mg	Mn	Fe	Co	Cu	Zn	Se	Mb	Na	K	Cl
					mmol/l	mmol/l	mmol/l	ppm	ppm	ppb	ppm	ppm	ppm	ppm	mmol/l	mmol/I	mmol/l
1	65005	1	1	d 1	2.36	2.67	0.81	0.005	2.040	0.770	2.140	0.670	0.200	0.012	151.0	5.20	108.0
2	65005			d15	1.96	2.67	0.92	0.010	1.800	4.300	2.170	1.120	0.320	0.008	147.0	4.80	105.0
3	74202	2	1	<u>d</u> 1	1.49	2.87	0.91	0.005	0.950	0.790	2.380	0.580	0.240	0.012	149.0	4.50	104.0
4	74202			d 15	1.43	3.04	0.89	0.005	1.570	1.090	1.870	0.890	0.320	0.012	148.0	3.90	104.0
5	56404	3	1	d 1	2.02	2.81	0.80	0.004	3.600	0.530	1.780	0.550	0.220	0.012	150.0	4.60	107.0
6	56404			d 15	1.47	2.91	0.86	0.004	2.350	0.960	1.830	1.100	0.340	0.009	149.0	3.90	106.0
7	77102	1	1	d 1	2.79	2.72	1.02	0.004	2.680	0.450	2.140	0.770	0.220	0.007	152.0	4.40	105.0
8	77102			d15	2.19	2.66	0.99	0.004	2.270	0.530	1.910	0.510	0.220	0.013	148.0	4.50	106.0
9	75205	2	1	d 1	1.73	3.00	0.78	0.004	4.310	1.590	2.440	0.890	0.270	0.009	150.0	4.40	108.0
10	75205			d 15	1.17	3.16	0.94	0.003	2.800	0.810	1.820	1.120	0.310	0.016	153.0	4.00	104.0
11	74705	3	1	d 1	2.59	2.71	0.96	0.005	1.880	0.670	2.270	0.720	0.190	0.008	154.0	4.60	104.0
12	74705			d 15	1.44	2.91	0.94	0.005	2.500	0.660	1.880	0.740	0.320	0.016	151.0	4.70	106.0
13	74101	1	1	d I	2.79	2.50	0.82	0.003	1.250	0.360	1.920	0.700	0.180	0.002	150.0	3.90	100.0
14	74101			d15	2.44	2.74	1.04	0.004	2.920	1.350	1.830	0.910	0.290	0.014	151.0	4.50	107.0
15	65202	2	1	d 1	2.06	2.56	0.80	0.003	1.460	0.780	2.450	0.480	0.250	0.012	153.0	4.40	108.0
16	65202			d 15	1.49	2.82	0.83	0.002	1.160	0.450	2.120	0.610	0.280	0.013	149.0	4.10	105.0
17	69903	3	1	d 1	2.47	2.62	0.93	0.006	1.530	0.590	1.510	0.440	0.180	0.009	152.0	4.70	105.0
18	69903			d 15	2.11	2.90	1.04	0.004	2.020	0.720	1.670	0.730	0.300	0.012	152.0	3.70	105.0
19	56903	1	2	d 1	2.40	3.07	0.90	0.004	3.380	0.680	2.040	0.660	0.310	0.009	153.0	3.90	107.0
20	56903			d15	1.96	2.69	0.94	0.004	1.780	0.540	1.640	0.710	0.290	0.005	150.0	3.90	106.0
21	57903	2	2	d 1	1.23	3.01	0.81	0.004	3.970	0.760	2.410	0.530	0.320	0.016	149.0	4.10	106.0
22	57903			d 15	1.23	3.20	1.00	0.005	2.260	1.240	2.290	0.780	0.390	0.014	148.0	4.20	100.0
23	74001	3	2	d 1	2.62	2.53	0.72	0.004	1.480	0.630	2.300	0.380	0.230	0.004	149.0	4.20	102.0
24	74001			d 15	1.63	2.96	0.97	0.004	1.580	1.030	2.030	0.870	0.320	0.012	146.0	4.20	101.0
25	71302	1	2	d 1	2.32	2.79	0.87	0.004	0.930	0.630	2.140	0.580	0.240	0.012	152.0	4.40	111.0
26	71302			d15	2.06	2.87	0.89	0.003	2.150	0.860	1.810	0.750	0.340	0.018	153.0	5.30	109.0

Page 27 of 34

27	74510	2	2	ا بد ا	1.81	244	0.86	0.002	1.270	0.605	1 2 205	1	0.174	اممرا	140.0	5.40	1020
28	74510			d 1	1.98	2.44	0.80	0.003	1.370	0.685	2.205	0.380	0.174	0.016	142.0	5.40	103.0
29	57203	3	2	 		2.66		0.004	1.205	0.865	1.910	0.855	0.242	0.010	141.0	4.50	100.0
h	57203			d 1	1.91	2.65	0.79		1.780	2.570	2.260	0.540	0.270	0.013	150.0	4.00	109.0
30	74003	1	2	d 15	1.81	2.75	1.09	0.003	2.150	0.600	1.970	0.790	0.350	0.012	149.0	4.10	105.0
31	74003	1		d 1	2.83	3.06	0.85	0.006	4.270	0.990	2.780	0.720	0.260	0.016	154.0	4.50	108.0
32	72904	2	2	d15	2.66	2.84	0.98	0.002	3.090	0.910	2.150	0.770	0.250	0.020	151.0	4.90	105.0
33			2	d 1	1.46	2.55	0.71	0.003	1.395	0.465	2.045	0.300	0.188	0.013	146.0	4.20	104.0
34	72904			d 15	1.81	2.80	0.80	0.004	1.745	1.055	1.570	0.715	0.279	0.012	142.0	4.20	101.0
35	77702	3	2	d l	2.49	2.78	0.89	0.003	2.230	0.275	2.170	0.585	0.235	0.015	146.0	5.00	102.0
36	77702			d 15	1.92	2.85	0.94	0.003	2.090	0.765	1,520	0.725	0.233	0.016	141.0	5.00	100.0
37	59203	1	3	d 1	2.11	2.57	0.85	0.003	3.095	0.865	1.485	0.505	0.176	0.015	140.0	5.80	102.0
38	59203			d15	1.74	2.80	1.01	0.003	1.820	0.720	1.440	0.775	0.230	0.011	143.0	4.60	105.0
39	74901	2	3	d l	2.76	2.39	0.72	0.006	2.140	0.705	2.030	0.510	0.181	0.005	147.0	4.40	105.0
40	74901			d 15	1.94	2.68	1.00	0.003	1.390	0.995	1.620	0.785	0.300	0.009	142.0	3.90	101.0
41	77601	3	3	d 1	2.46	2.62	0.97	0.009	1.695	0.385	2.420	0.660	0.202	0.011	144.0	4.90	101.0
42	77601			d 15	1.69	2.89	0.83	0.009	1.700	0.885	2.185	0.830	0.178	0.015	140.0	4.20	98.0
43	68307	1	3	d 1	1.88	2.36	0.85	0.002	1.715	0.350	2.205	0.445	0.166	0.009	142.0	4.10	103.0
44	68307			d15	1.91	2.61	0.99	0.003	1.670	1.175	1.850	0.775	0.236	0.008	143.0	4.10	103.0
45	58802	2	3	d 1	1.24	2.89	0.93	0.003	2.130	0.395	1.615	0.450	0.175	0.020	147.0	4.00	101.0
46	58802			d 15	1.65	2.83	0.91	0.006	2.020	0.800	1.765	0.790	0.218	0.009	143.0	3.90	103.0
47	68501	3	3	d 1	1.47	2.66	0.80	0.003	1.925	0.405	2.255	0.450	0.163	0.019	146.0	3.90	105.0
48	68501			d 15	1.50	2.53	0.87	0.004	1.780	0.630	1.640	0.830	0.233	0.015	141.0	4.30	103.0
49	75304	1	3	d 1	2.07	2.80	0.78	0.003	2.485	0.365	1.945	0.465	0.180	0.016	149.0	4.00	108.0
50	75304			d15	1.84	2.82	0.85	0.003	1.865	1.015	1.535	0.765	0.187	0.015	145.0	3.90	104.0
51	78204	2	3	d 1	2.02	2.90	0.85	0.005	2.345	1.440	2.600	0.665	0.204	0.014	150.0	4.70	106.0
52	78204			d 15	1.90	3.00	0.99	0.005	1.435	0.595	2.240	0.925	0.230	0.011	145.0	4.60	101.0
53	75704	3	3	d 1	1.98	2.87	0.86	0.005	2.450	0.390	1.740	0.605	0.195	0.018	148.0	4.10	103.0
54	75704			d 15	1.76	2.86	0.83	0.004	1.920	0.710	1.535	0.925	0.247	0.012	143.0	4.00	100.0
55	60001	1	,4	d l	2.24	2.56	0.80	0.008	1.185	1.055	2.385	0.480	0.225	0.013	144.0	4.20	103.0
لـــــا	·	L.,	·	·			····		1 1 1 1 1 1		1					: <u>=-</u>	

Page 28 of 34

56	60001]]	d15	1.67	2.69	0.98	0.006	1.545	0.710	1.600	0.590	0.196	0.015	141.0	4.50	104.0
57	58401	2	4	d 1	1.73	2.53	0.68	0.006	1.610	0.885	1.870	0.260	0.229	0.013	145.0	4.20	105.0
58	58401			d 15	2.94	2.67	0.86	0.004	0.325	0.880	2.015	0.450	0.260	0.006	141.0	4.80	98.0
59	75001	3	4	d 1	2.41	2.58	0.79	0.005	2.210	0.535	2.640	0.435	0.204	0.009	145.0	4.10	104.0
60	75001			d 15	2.37	2.80	1.01	0.006	1.815	0.730	1.570	0.665	0.236	0.013	140.0	4.90	101.0
61	75302	1	4	d 1	1.81	2.41	0.73	0.003	1.880	0.635	2.855	0.605	0.215	0.005	143.0	3.50	101.0
62	75302			d15	2.04	2.76	0.86	0.008	2.315	0.910	1.520	0.895	0.201	0.013	143.0	3.80	101.0
63	75301	2	4	d 1	1.44	2.64	0.78	0.003	2.535	0.800	1.925	0.585	0.186	0.014	146.0	3.60	102.0
64	75301			d 15	1.32	3.08	0.85	0.006	1.985	0.710	1.430	0.695	0.220	0.012	143.0	3.90	104.0
65	58301	3	4	d 1	1.38	2.42	0.89	0.005	2.195	0.445	1.640	0.505	0.183	0.016	142.0	3.80	103.0
66	58301			d 15	1.60	2.77	0.93	0.006	2.455	0.690	1.405	0.670	0.192	0.015	141.0	4.20	102.0
67	75303	1	4	d l	2.56	2.58	0.76	0.004	1.430	0.470	1.800	0.350	0.159	0.011	144.0	4.30	102.0
68	75303			d15	1.93	2.76	0.84	0.004	1.615	0.635	1.305	1.570	0.214	0.013	142.0	4.00	102.0
69	73104	2	4	d l	1.33	2.62	0.76	0.005	1.625	0.765	2.840	0.505	0.200	0.015	147.0	4.40	105.0
70	73104			d 15	1.24	2.61	0.88	0.007	1.490	0.795	1.875	1.300	0.234	0.012	141.0	4.40	101.0
71	78205	3	4	d 1	2.45	2.70	0.87	0.004	2.315	0.275	2.165	0.535	0.201	0.012	145.0	5.40	102.0
72	78205			d 15	2.38	2.81	0.90	0.014	1.360	1.080	1.820	1.100	0.221	0.010	145.0	4.80	102.0
73	75505	1	5	d l	2.24	2.54	0.83	0.008	1.980	0.615	3.285	0.470	0.195	0.011	147.0	4.30	104.0
74	75505			d15	2.05	2.69	0.89	0.006	1.790	0.650	1.875	0.730	0.203	0.011	143.0	3.90	103.0
75	73002	2	5	d 1	1.25	2.87	0.78	0.004	3,610	0.945	1.990	0.600	0.207	0.016	145.0	3.90	103.0
76	73002			d 15	1.51	2.73	0.96	0.006	1.695	0.590	2.330	0.910	0.193	0.009	145.0	3.70	104.0
77	74802	3	5	d 1	1.59	2.70	0.74	0.003	2.150	0.820	1.925	0.455	0.190	0.012	148.0	3.60	107.0
78	74802			d 15	1.51	2.68	0.97	0.004	1.880	0.770	1.905	0.955	0.203	0.012	142.0	4.50	102.0
79	64101	1	5	d 1	2.22	2.67	0.81	0.004	2.790	0.585	3.060	0.485	0.235	0.016	145.0	3.90	102.0
80	64101			d15	1.96	2.70	0.96	0.006	1.650	0.640	1.615	0.720	0.200	0.015	142.0	4.20	104.0
81	72602	2	5	d 1	1.12	2.65	0.79	0.004	2.350	0.610	3.065	0.565	0.210	0.011	147.0	3.70	104.0
82	72602			d 15	2.18	2.93	0.93	0.005	1.815	0.630	1.940	0.775	0.234	0.013	143.0	3.80	100.0
83	69801	3	5	d 1	2.00	2.72	0.80	0.005	2.175	0.615	2.845	0.495	0.200	0.014	149.0	4.80	104.0
84	69801		L	d 15	1.69	2.53	0.90	0.006	1.780	0.700	1.490	0.635	0.200	0.012	143.0	4.10	103.0

Page 29 of 34

85	77501	1	5	d 1	2.38	2.65_	0.87	0.003	1.840	0.710	1.900	0.485	0.230	0.013	142.0	4.00	101.0
86	77501			d15	1.97	2.62	0.90	0.004	1.400	0.555	1.525	0.615	0.233	0.016	142.0	4.50	104.0
87	75005	2	5	d 1	2.40	2.46	0.71	0.003	1.570	0.500	3.230	0.505	0.207	0.010	142.0	4.00	101.0
88	75005			d 15	2.07	2.95	0.92	0.004	0.905	0.565	1.590	0.500	0.225	0.018	140.0	5.00	101.0
89	73201	3	5	d 1	1.31	2.53	0.74	0.004	1.565	0.595	3.115	0.535	0.207	0.011	147.0	3.70	107.0
90	73201			d 15	1.50	2.71	0.99	0.005	1.230	0.655	1.790	0.735	0.226	0.018	142.0	4.20	103.0

											Albumin/Globulin
	Sow ID	Diet	Block	Day	Urea 1/1	Creatinine	Glucose	Total protein	Albumin	Globulin	ratio
1	65005	1	1	d l	mmol/1 4.20	mmol/l 217.0	mmol/l 5.60	G/L 83.0	G/L 43.0	G/L 40.0	1.08
2	65005		1	d15	7.50	142.0	4.50	91.0	43.0	48.0	0.90
3	74202	2	1	d 1	5.00	161.0			t		
	74202						4.20	88.0	48.0	40.0	1.20
4	56404	3	1	d 15	8.70	128.0	5.30	85.0	46.0	39.0	1.18
5		3	1	d 1	4.70	207.0	5.00	77.0	50.0	27.0	1.85
6	56404			d 15	5.50	165.0	5.10	85.0	50.0	35.0	1.42
7	77102	1	1	d 1	6.80	242.0	5.80	82.0	48.0	34.0	1.41
8	77102			d15	9.10	158.0	5.10	81.0	51.0	30.0	1.70
9	75205	2	1	d l	4.40	164.0	6.00	75.0	51.0	24.0	2.13
10	75205		ļ <u>.</u>	d 15	8.50	133.0	4.10	81.0	53.0	28.0	1.89
11	74705	3	1	d 1	7.50	216.0	4.30	78.0	42.0	36.0	1.17
12	74705			d 15	8.20	168.0	4.70	85.0	47.0	38.0	1.24
_13	74101	1	11	d 1	5.70	221.0	4.50	81.0	52.0	29.0	1.79
14	74101			d15	5.20	186.0	6.70	80.0	50.0	30.0	1.67
15	65202	2	1	d 1	6.70	234.0	4.80	80.0	47.0	33.0	1.42
16	65202			d 15	7.70	164.0	5.20	86.0	46.0	40.0	1.15
17	69903	3	1	d 1	5.40	228.0	4.50	74.0	43.0	31.0	1.39
18	69903			d 15	9.20	167.0	5.00	82.0	46.0	36.0	1.28
19	56903	1	2	d 1	4.30	170.0	5.20	80.0	49.0	31.0	1.58
20	56903			d15	5.80	152.0	4.20	79.0	47.0	32.0	1.47
21	57903	2	2	d 1	4.90	217.0	5.30	82.0	45.0	37.0	1.22
22	57903			d 15	11.50	160.0	6.10	87.0	47.0	40.0	1.17
23	74001	3	2	d 1	4.80	233.0	3.40	77.0	47.0	30.0	1.57
24	74001			d 15	7.60	169.0	4.40	83.0	48.0	35.0	1.37
25	71302	1	2	d 1	5.40	161.0	5.00	70.0	46.0	24.0	1.92
26	71302			d15	8.00	148.0	5.10	78.0	48.0	30.0	1.60

Page 31 of 34

27	74510	2	2	dı	5.80	164.0	4.00	72.0	40.0	32.0	1.25
28	74510			d 15	7.50	131.0	4.50	76.0	41.0	35.0	1.17
29	57203	3	2	d 1	5.50	239.0	5.70	74.0	45.0	29.0	1.55
30	57203			d 15	9.00	172.0	4.20	88.0	51.0	37.0	1.38
31	74003	1	2	d 1	6.60	178.0	4.40	81.0	52.0	29.0	1.79
32	74003			d15	8.90	145.0	4.90	78.0	47.0	31.0	1.52
33-	72904	2	2	d 1	4.60	191.0	4.50	73.0	44.0	29.0	1.52
34	72904			d 15	8.00	166.0	5.40	81.0	47.0	34.0	1.38
35	77702	3	2	d l	7.60	185.0	5.20	81.0	50.0	31.0	1.61
36	77702			d 15	10.70	167.0	5.10	80.0	48.0	32.0	1.50
37	59203	1	3	d 1	4.80	217.0	4.90	77.0	44.0	33.0	1.33
38	59203			d15	6.00	157.0	5.30	83.0	49.0	34.0	1.44
39	74901	2	3	d 1	6.10	225.0	3.30	76.0	48.0	28.0	1.71
40	74901			d 15	7.70	1.9	4.80	83.0	46.0	37.0	1.24
41	77601	3	3	d 1	6.50	207.0	5.00	78.0	50.0	28.0	1.79
42	77601			d 15	6.90	167.0	4.30	74.0	46.0	28.0	1.64
43	68307	1	3	d 1	4.20	194.0	4.30	75.0	49.0	26.0	1.88
44	68307		·	d15	5.60	145.0	4.20	84.0	45.0	39.0	1.15
45	58802	2	3	d 1	5.40	200.0	5.30	75.0	44.0	31.0	1.42
46	58802			d 15	7.40	143.0	3.60	82.0	48.0	34.0	1.41
47	68501	3	3	d 1	6.20	171.0	5.80	67.0	47.0	20.0	2.35
48	68501			d 15	9.30	133.0	4.80	70.0	44.0	26.0	1.69
49	75304	1	3	d 1	5.80	165.0	4.50	77.0	52.0	25.0	2.08
50	75304			d15	8.90	131.0	5.40	75.0	47.0	28.0	1.68
51	78204	2	3	d 1	5.20	195.0	4.00	77.0	47.0	30.0	1.57
52	78204			d 15	8.30	137.0	4.60	78.0	48.0	30.0	1.60
53	75704	3	3	d 1	5.40	177.0	5.30	77.0	47.0	30.0	1.57
54	75704			d 15	6.50	138.0	4.60	78.0	46.0	32.0	1.44
55	60001	1	4	d 1	6.70	272.0	4.70	69.0	46.0	23.0	2.00

Page 32 of 34

56	60001			d15	9.80	164.0	4.40	80.0	46.0	34.0	1.35
57	58401	2	4	d l	4.60	235.0	4.90	75.0	45.0	30.0	1.50
58	58401			d 15	6.00	137.0	3.20	89.0	45.0	44.0	1.02
59	75001	3	4	d l	4.00	189.0	4.80	61.0	46.0	15.0	3.07
60_	75001			d 15	9.60	128.0	5.20	72.0	46.0	26.0	1.77
61_	75302	1	4	d 1	4.80	221.0	3.10	77.0	48.0	29.0	1,66
62	75302			d15	7.60	133.0	4.60	77.0	47.0	30.0	1.57
63	75301	2	4	d 1	7.40	191.0	4.50	76.0	47.0	29.0	1.62
64	75301			d 15	7.90	155.0	7.00	76.0	44.0	32.0	1.38
65_	58301	3	4	d 1	6.00	202.0	4.90	76.0	42.0	34.0	1.24
66	58301			d 15	8.10	127.0	4.80	80.0	44.0	36.0	1.22
67	75303	1	4	d 1	6.10	203.0	4.40	70.0	41.0	29.0	1.41
68_	75303			d15	8.50	154.0	4.40	75.0	40.0	35.0	1.14
69	73104	2	4	d l	4.60	231.0	4.50	76.0	50.0	26.0	1.92
70_	73104			d 15	8.70	.167.0	4.20	77.0	47.0	30.0	1.57
71	78205	3	4	d 1	5.40	173.0	5.20	77.0	46.0	31.0	1.48
72	78205			d 15	7.70	135.0	5.10	76.0	47.0	29.0	1.62
73_	75505	1	5	<u>d</u> 1	3.80	192.0	5.30	74.0	44.0	30.0	1.47
74	75505			d15	7.70	139.0	4.20	73.0	43.0	30.0	1.43
75_	73002	2	5	<u>d</u> 1	7.10	209.0	5.00	69.0	44.0	25.0	1.76
76_	73002			d 15	7.80	150.0	4.70	75.0	42.0	33.0	1.27
77	74802	3	5	d 1	3.80	178.0	5.20	63.0	46.0	17.0	2.71
78_	74802			d 15	5.80	126.0	4.80	74.0	47.0	27.0	1.74
79_	64101	1	5	<u>d</u> 1	4.70	244.0	5.20	72.0	49.0	23.0	2.13
80_	64101			d15	7.90	164.0	4.70	77.0	48.0	29.0	1.66
81	72602	2	5	d 1	5.90	214.0	4.60	69.0	47.0	22.0	2.14
82_	72602			d 15	10.20	161.0	4.70	74.0	48.0	26.0	1.85
83_	69801	3	5	<u>d</u> 1	5.00	220.0	5.60	74.0	48.0	26.0	1.85
84	69801			d 15	9.10	155.0	4.80	78.0	47.0	31.0	1.52

Page 33 of 34

85	77501	1	5	d 1	6.80	160.0	4.30	85.0	46.0	39.0	1.18
86	77501			d15	6.50	147.0	4.70	79.0	44.0	35.0	1.26
87	75005	2	5	d 1	6.70	178.0	5.70	61.0	44.0	17.0	2.59
88	75005			d 15	10.60	129.0	5.00	74.0	45.0	29.0	1.55
89	73201	3	5	d 1	4.50	231.0	4.00	73.0	43.0	30.0	1.43
90	73201			d 15	9.20	183.0	4.50	78.0	45.0	33.0	1.36

¹d 1, 1 d post farrowing; d 15, 15 d post farrowing,

P, Phosphorus; Ca, Calcium; Mg, Magnesium; Mn, Manganese; Fe, Iron; Co, Cobalt; Zn, Zinc; Mb, Molybdenum; Na, Sodium; K, Potassium; Cl, Chloride;

Best Copy Available

FEEDAP UNIT

ANNEX C 1

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: F	lonozyme® l	HiPhos	Batch number: Lot ELN-09FIBo0031-2G			
Trial ID: RT7/ZN-2011-Phytase	•		search & Technology sity of Alberta, ada			
Start date and exact duration	of the study:	October 18, 201	1 (5 months, 12 days)			
Number of treatment groups (+ control(s)):	3	Replicates per grou	p: 15		
Total number of animals: 45			Animals per replica	te: 1		
Dose(s) of the additive/active water) Intended: 500 units of Phytas			U/kg, incl. intrinsic Ph			
Substances used for compara	tive purposes	3:				
Intended dose:		Analysed:				
Animal species/category: Swi	ne (lactating	sows)				
Breed: F1 sows (Large White x	Landrace)	Identification p	procedure: Ear tag an	d Pen number		
Sex: Female Age	e at start:	В	ody weight at start: 24	8 kg		
Physiological stage: Lactating		General health	h: Good			
Additional information for fi	eld trials:					
Location and size of herd or Station, University of Alberta Feeding and rearing condition	, Edmonton,	AB, Canada T6		Edmonton Research		
Method of feeding: Manual	- dies					
Diets (type(s)): Lactating sov		D-11-4 C	5	010		
Presentation of the diet:	Mash 🗌	Pellet	Extruded	Other Crumbles		
Composition (main feedingstu						
Nutrient content (relevant nutr						
Intended values: CP: 20.45%						
Analysed values: CP: 23.2%			-			
Date and nature of the examin				riables, perfromance		
Method(s) of statistical evalua	tion used: Pr	oc- Mixed Mod	eal (SAS)			
Therapeutic/preventive treatm	ents (reason,	timing, kind, d	uration): No			
Timing and prevalence of any			of treatment: No			
Date 2012 Jul 25	Signature	Study Director	_			
	1	Turch	Pilde			

Please submit this form using a common word processing format (e.g. MS Word).

FEEDAP UNIT

[†] In case the concentration of the additive in complete feed/water may reflect insufficient accuracy, the dose of the additive can be given per animal day ¹ or mg kg⁻¹ body weight or as concentration in complementary feed.

Best Copy Available

1 A B

3

Annex 13

Excerpt of

Comparative effects of RONOZYME® HiPhos (M), Phyzyme® XP 4000 TPT and OptiPhos® 2000 PF on the zootechnical performance and the mineral utilization in the growing pig.

REPORT No. 00013767

EXCERPT OF:

REPORT No. 00013767 Research Project Document

Document Date: 14-Mar-2012 Excerpt Date: 27-June-2013

Author(s): Guggenbuhl P, Waché Y, Simões Nunes C, Portier C, Kurtz N,

Lehmann A and Bilger M

Title: Comparative effects of RONOZYME® HiPhos (M), Phyzyme® XP 4000 TPT and OptiPhos® 2000 PF on the zootechnical performance and the mineral utilization in the growing pig.

Excerpt Contents: Bone Properties

Project No. 6106 Compound No. Summary

1. INTRODUCTION

The aim of the present study (S10-2010) was to evaluate the effects of the microbial 6-phytase, RONOZYME® HiPhos (M) comparatively to the phytases Phyzyme® XP 4000 TPT and OptiPhos® 2000 PF on the zootechnical performance, mineral blood concentrations and the utilisation of phosphorus (P) and calcium (Ca) in the growing pig. The experiment was performed during June-September 2010 in the facilities of the Centre de Recherche en Nutrition Animale (CRNA), DSM Nutritional Products France, BP 170, 68305 Saint-Louis cedex, France. It has been performed according to the French legal regulations on experiments with live animals.

2. MATERIAL AND METHODS

2.1. Test compounds

The used RONOZYME® HiPhos (M) phytase (batch PPQ 30595) was expressed in *Aspergillus oryzae*, had an activity at pH 5.5 of 63046 U/g and was in mash micro-granulated form. Phyzyme® XP 4000 TPT (batch 1248168) and OptiPhos® 2000 PF (batch 12248A01) had an activity at pH 5.5 of 5421 U/g and 5568 U/g, respectively. NIC-RD/A measured the phytase activity in the enzyme preparations and in the feed. One unit of phytase is defined as the quantity of enzyme which sets free 1 µmole of inorganic phosphate per minute from 0.005 moles per litre sodium phytate at pH 5.5 and at 37°C. Dicalcium phosphate (DCP), batch S1784 6212, was supplied by TIMAC Industries and had a P concentration of 18.2 % and a Ca concentration of 24 %.

2.2. Animal trial

Sixty four Large-White () x Redon () growing pigs having an initial body weight of 16.66 ± 1.54 kg were used. The animals were allocated to 8 equal groups of 8 animals each and housed in floor-pen cages in two sub-groups of 4 animals each in an environmentally controlled room. Each pen had a plastic-coated welded wire floor and was equipped with two water nipples and four stainless-steel individualized feeders. Room temperature was 21-22° C and humidity percentage was 50 %. The piglets were fed, throughout a 71-day observation period, a basal diet without addition of mineral P (group A: control(-)) or the diet A supplemented with 12 g/kg of DCP (group B: control(+)) or with RONOZYME® HiPhos (M) at the levels of 1000 U/kg (group C) and 1500 U/kg (group D), Phyzyme® XP 4000 TPT at the levels of 500 U/kg (group E) and 750 U/kg (group F) and OptiPhos® 2000 PF at the levels of 500 U/kg (group G) and 750 U/kg (group H). The basal diet A (Table 1) was formulated to provide P exclusively from vegetable origin and to meet, with the exception of the digestible P supply, the animals' requirements according to Henry *et al.* (1989) and NRC (1998). The total P content was of 0.38 % and of 0.81 % in control(-) diet and control(+) diet, respectively. According to the NRC tables the theoretical digestible P in the control(-) diet was 0.11 g/kg and 0.28 g/kg in the control(+) diet.

An indigestible marker, chromium oxide (Cr), was added at a concentration of 0.4 % to all the diets allowing calculation of the digestibility of P and Ca. The feed was distributed *ad libitum* in mash form, under pen feed consumption control, and the animals had free access to drinking water. The digestibility of Ca was not corrected for Ca intake with the drinking water. Mean Ca content of the drinking water in the region is 80 mg/L. Performance was evaluated after 29 days of experimentation and at the end of the 71 days of the trial duration. Blood was collected by jugular puncture from all the animals at the 28th day and 70th day of the experiment for the

determination of the P, Ca and alkaline phosphatase concentrations. Faecal P, Ca and Cr concentrations were measured at the 29th day and the 71st day of the second period. Faeces were sampled individually, in approximately the same amount at the same time of the day, during the last 3 days preceding that date. All minerals were determined according to standard Association of Official Analytical Chemists (1990) methods using a Vista-MPX ICP-OES spectrometer (Varian Australia Pty Ltd, Mulgrave Victoria, 3170 Australia). The apparent digestibility (% of the intake) of the minerals was calculated for the mentioned 3-day period. At the end of the evaluation the animals were slaughtered after tranquilization followed by electronarcosis for bone collection. The collected bones were the right external metacarpal and metatarsal. Samples were prepared from each of the collected bones immediately after slaughter. After careful dissection and removal of the soft tissue, a diaphysis section was obtained by sawing each bone. The obtained sections of about 3.5-cm long were immediately subjected to compression in order to determine the force in Newton necessary to break them (maximal-breaking force at the fracture point). The measurements were performed with a LR10K compression machine, using a XLC/10K/A1 force captor and a compression device TH23-196/AL (Lloyd Instruments, Fareham, UK).

The broken bones were then used for the determination of ash content, which was measured after 48-h incineration at 550°C.

2.3. Statistical analysis

Statistical treatment of the results involved the calculation of the mean and of the standard deviation of the mean as well as a two-factor hierarchical analysis of variance. The mathematical model was:

Yijk = μ +Ai+Bij+Zijk,

where μ is the mean, Ai is the diet effect, Bij is the combined effect of the diet and animal or pen and Zijk is the residual term. The analysis of variance was followed by a Duncan multiple range test when a significant Ai effect without Bij effect was observed (Snedecor and Cochran, 1989). These calculations were performed using StatGraphics Plus 5.1 (Manugistics, Rockville, U.S.A. 2001).

2.4. Effects on bone parameters

The results of the external metacarpal and external metatarsal bone resistance and mineralization are presented in Table 3. The bone resistance of the external metacarpal was dose dependently and significantly increased in all phytase supplemented groups as well as in that receiving DCP comparatively to the control(-). The DCP supplemented animals had an external metacarpal bone breaking force significantly higher than those of the control(-) and all phytases groups. In counter-part the external metacarpal bone mineralization was only significantly improved in the RONOZYME® HiPhos 1500 U/kg and control(+) fed pigs comparatively to the control(-) group. The differences to the control (-) of the external metatarsal bone resistance were dose dependently increased with the three tested phytases. The breaking force was significantly improved in all phytase supplemented groups with the exception of OptiPhos® 2000 PF 500 U/kg. The highest bone strength was observed for the animals receiving the control(+) diet and was significantly higher than those of the control(-) and all phytases groups. The external metatarsal bone mineralization of the RONOZYME® HiPhos 1000 U/kg and OptiPhos® 2000 PF 500 U/kg groups was similar to that of the control(-) fed animals. It was significantly improved in all other phytase supplemented groups. In the control(+) supplemented pigs the external metatarsal bone mineralization was significantly higher than in all other groups.

The mean breaking force of both bones, comparatively to the control (-) fed pigs (80 N), was dose dependently and significantly increased in the RONOZYME® HiPhos 1000 U/kg (144 N) and 1500 U/kg (169 N), Phyzyme® XP 4000 TPT 500 U/kg (136 N) and 750 U/kg (152 N) and OptiPhos® 2000 PF 500 U/kg (112 N) and 750 U/kg (132 N) by 81, 112, 70, 90, 40 and 66 %, respectively. That of the control (+) group (235 N) was significantly higher than the breaking force of all other groups.

Table 1 - Composition (%) of the control (-) diet and of control (+) diet supplemented with DCP.

INGREDIENTS	Control(-) diet without mineral P (%)	Control(+) diet with DCP (%)
Maize	58.0	58.0
Soybean meal	17.85	17.85
Rapeseed meal	14.15	14.15
Oat meal	6.0	6.0
Soya oil	1.0	1.0
Dicalcium phosphate		1.2
Minerals(1), vitamins and synthetic aa	3.0	1.8
Analyzed Crude Protein - %	18.28	18.43
Analyzed Crude Ash - %	4.93	6.21
Analyzed Lysine - %	1.13	1.10
Analyzed Threonine - %	0.54	0.56
Analyzed Methionine + cysteine - %	0.64	0.63
Analyzed total Ca - %	0.86	1.42
Analyzed total P - %	0.38	0.81
Analyzed Phytic P - %	0.11	0.11
Theoretically digestible P - %	0.11(2)	0.28(3)
Estimated digestible energy - MJ/kg	15.28	15.42

⁽¹⁾ Mixture without mineral P.

⁽²⁾ Digestible P estimated from the NRC tables.

⁽³⁾ Sum of the digestible P estimated from the NRC tables and 80 % of added mineral P as generally accepted.

Table 2 - Phytase activity $(U_{(a)}/kg)$ and % of the target in the different diets.

Treatment groups	Control (-)	DCP 12 g/kg	RONOZYME® HiPhos (M)		Phyzyme®XP 4000 TPT		OptiPhos® 2000 PF	
Programmed phytase addition (U/kg)	0	0	1000	1500	500	750	500	750
Measured phytase activity (U/kg)(1)	<l0q< td=""><td><l0q< td=""><td>1068 ±32</td><td>1568 ±30</td><td>520 ±41</td><td>753 ±22</td><td>377 ±173</td><td>702 ±27</td></l0q<></td></l0q<>	<l0q< td=""><td>1068 ±32</td><td>1568 ±30</td><td>520 ±41</td><td>753 ±22</td><td>377 ±173</td><td>702 ±27</td></l0q<>	1068 ±32	1568 ±30	520 ±41	753 ±22	377 ±173	702 ±27
Actually added phytase (U/kg)	2.		1068	1568	520	753	377	702
% of target	-	-	107	105	104	100	75	94

⁽a) Quantity of enzyme that sets free 1 µmole of inorganic phosphate per minute from 5 mM sodium phytate at pH 3.2 and at 37°C.

(1) Mean ± standard deviation of 4 determinations.

Table 3 - Bone strength and mineralization in the growing pig fed a diet without or with DCP or different phytases.

(means per group \pm standard deviation, % of variation from group Control (-)). (1) n=7 animals

Treatment groups (n = 8 animals)	Control (-)	DCP 12 g/kg	RONOZYM (M)	E®HiPhos	Phyzyme@ TPT	®XP 4000	OptiPhos® 2000 PF	
(II – o ariiriats)	Α	В	C	D	E ⁽¹⁾	F	G	Н
Planned phytase addition (U/kg)	0	0	1000	1500	500	750	500	750
Breaking force for the external metacarpal bone (N)	83a ± 31	246d ± 44 +197	148bc ± 23 +79	182c ± 46 +119	149bc ± 32 +80	177c ± 24 +113	129b ± 29 +55	138b ± 35 +66
External metacarpal bone	57.80a	62.53b	58.66a	61.27b	58.68a	58.45a	57.43a	59.12a
mineralization (% of ash	± 2.07	± 0.85	± 1.80	± 0.85	± 0.55	± 1.62	± 3.32	± 1.53
in DM)		+ 8.2	+ 1.5	+ 6.0	+ 1.5	+ 1.1	- 0.6	+ 2.3
Breaking force for the external metatarsal bone (N)	77a ± 32	223d ± 53 +191	140bc ± 38 +82	155c ± 51 +102	122bc ± 34 +59	129bc ± 26 +68	96ab ± 34 +25	125bc ± 30 +62
External metatarsal bone	56.96a	62.47d	57.68ab	60.53cd	59.26bc	59.61bc	57.99ab	59.70bc
mineralization (% of ash in DM)	± 3.19	± 0.82 + 9.7	± 2.38 + 1.3	± 1.47 + 6.3	± 1.45 + 4.0	± 1.56 + 4.7	± 2.29 + 1.8	± 1.63 + 4.8
Mean breaking force for both bones (N)	80a ± 31	235e ± 48 +195	144cd ± 31 +81	169d ± 49 +112	136bc ± 35 +70	152cd ± 35 +90	112b ± 35 +40	132bc ± 32 +66

⁽¹⁾ n = 7animals

a, b, c, d, e Means within the same row without a common letter are significantly different (P<0.05)

Pages FDA/CVM0424-576

have been removed in accordance with copyright laws.

1-2

Food and Drug Administration Division of Animal Feeds (HFV-224) Office of Surveillance and Compliance Center for Veterinary Medicine 7519 Standish Place Rockville, Maryland 20855

April 7, 2014

DSM Nutritional Products

45 Waterview Boulevard Parsippany NJ 07054 United States of America

phone +1 973 257 8347 fax +1 973 257 8414

Revision for GRAS Notification Of RONOZYME HiPhos® for Swine Feed Submitted by DSM Nutritional Products

Dear Mr. Wong,

Enclosed is the revision of page 5 of our GRAS Notice, AGRN 15 as discussed on April 4, 2014. In the applicable condition of use section the pH was incorrectly noted as pH 6.5 rather than the correct pH 5.5.

I have also included revised Annexes 3, 6 and 13 where the footnote to a table in each annex noted an incorrect pH for the enzyme activity; page 10, page 8 and page 5 respectively. We discussed adding these documents to the Notice as supplements.

Sincerely DSM Nutritional Products,

James La Marta, Ph.D., CFS

Senior Manager Regulatory Affairs

1.3 Name and Address of the Exclusive Distributor

DSM Nutritional Products 45 Waterview Blvd. Parsippany, New Jersey, 07054, USA Tel: 973-257-8294

1.4 Common or Usual Name of the Substance

DSM's phytase enzyme preparation is obtained from a Genetically Engineered strain of Aspergillus oryzae produced by (b) (4) fermentation. The common or usual name of the substance is "phytase". It is produced and sold in three forms; a liquid, a micro-granulate and a thermo-tolerant granulate. The trade name of the enzyme is RONOZYME® HiPhos.

1.5 Applicable Condition of Use

RONOZYME® HiPhos will be included in swine feed for the nutritional purpose of increasing the digestibility of phytate. The recommended use level of RONOZYME® HiPhos is 500 FYT to 4000 FYT/Kg of swine feed; where one FYT is the amount of enzyme that releases 1 µmol of inorganic phosphorous from phytate per minute at 37°C and pH 5.5.

1.6 AAFCO Definition O.P. 2011

Phytase derived from Aspergillus niger variants and Aspergillus oryzae variants are permissible as feed ingredients in swine and poultry diets. See reference 3.

Table 30.1 Enzymes/Source Organisms Acceptable for Use in Animal Feeds

Phytase	Aspergillus niger, var. Aspergillus oryzae, var.	Corn, soybean meal, sunflower meal, hominy,	Hydrolyzes phytate	Increases the digestibility of phytin-bound phosphorus in swine and poultry diets
		tapioca, plant by- products		

1.7 Description of ingredient

Three product forms of RONOZYME® HiPhos will be available, two dry forms and a liquid form. RONOZYME® HiPhos (GT) is a granulated thermo-tolerant form with a minimum enzyme activity of 10,000 FYT/gram. RONOZYME® HiPhos (M) is a micro granulated form with a minimum enzyme activity of 50,000 FYT/gram. RONOZYME® HiPhos (L) is an aqueous liquid with a minimum enzyme activity of 20,000 FYT/g. Additional forms may be manufactured with ingredients suitable for feed use if there are additional market needs.

Revised Annex 13 EXCERPT OF REPORT No. 00013767 Correction made on page 5

EXCERPT OF:

REPORT No. 00013767 Research Project Document

Document Date: 14-Mar-2012 Excerpt Date: 27-June-2013

Author(s): Guggenbuhl P, Waché Y, Simões Nunes C, Portier C, Kurtz N,

Lehmann A and Bilger M

Title: Comparative effects of RONOZYME® HiPhos (M), Phyzyme® XP 4000 TPT and OptiPhos® 2000 PF on the zootechnical performance and the mineral utilization in the growing pig.

Excerpt Contents: Bone Properties

Project No. 6106 Compound No. Summary

1. INTRODUCTION

The aim of the present study (S10-2010) was to evaluate the effects of the microbial 6-phytase, RONOZYME® HiPhos (M) comparatively to the phytases Phyzyme® XP 4000 TPT and OptiPhos® 2000 PF on the zootechnical performance, mineral blood concentrations and the utilisation of phosphorus (P) and calcium (Ca) in the growing pig. The experiment was performed during June-September 2010 in the facilities of the Centre de Recherche en Nutrition Animale (CRNA), DSM Nutritional Products France, BP 170, 68305 Saint-Louis cedex, France. It has been performed according to the French legal regulations on experiments with live animals.

2. MATERIAL AND METHODS

2.1. Test compounds

The used RONOZYME® HiPhos (M) phytase (batch PPQ 30595) was expressed in *Aspergillus oryzae*, had an activity at pH 5.5 of 63046 U/g and was in mash micro-granulated form. Phyzyme® XP 4000 TPT (batch 1248168) and OptiPhos® 2000 PF (batch 12248A01) had an activity at pH 5.5 of 5421 U/g and 5568 U/g, respectively. NIC-RD/A measured the phytase activity in the enzyme preparations and in the feed. One unit of phytase is defined as the quantity of enzyme which sets free 1 μ mole of inorganic phosphate per minute from 0.005 moles per litre sodium phytate at pH 5.5 and at 37°C. Dicalcium phosphate (DCP), batch S1784 6212, was supplied by TIMAC Industries and had a P concentration of 18.2 % and a Ca concentration of 24 %.

2.2. Animal trial

Sixty four Large-White () x Redon () growing pigs having an initial body weight of 16.66 ± 1.54 kg were used. The animals were allocated to 8 equal groups of 8 animals each and housed in floor-pen cages in two sub-groups of 4 animals each in an environmentally controlled room. Each pen had a plastic-coated welded wire floor and was equipped with two water nipples and four stainless-steel individualized feeders. Room temperature was 21-22° C and humidity percentage was 50 %. The piglets were fed, throughout a 71-day observation period, a basal diet without addition of mineral P (group A: control(-)) or the diet A supplemented with 12 g/kg of DCP (group B: control(+)) or with RONOZYME® HiPhos (M) at the levels of 1000 U/kg (group C) and 1500 U/kg (group D), Phyzyme® XP 4000 TPT at the levels of 500 U/kg (group E) and 750 U/kg (group F) and OptiPhos® 2000 PF at the levels of 500 U/kg (group G) and 750 U/kg (group H). The basal diet A (Table 1) was formulated to provide P exclusively from vegetable origin and to meet, with the exception of the digestible P supply, the animals' requirements according to Henry et al. (1989) and NRC (1998). The total P content was of 0.38 % and of 0.81 % in control(-) diet and control(+) diet, respectively. According to the NRC tables the theoretical digestible P in the control(-) diet was 0.11 g/kg and 0.28 g/kg in the control(+) diet.

An indigestible marker, chromium oxide (Cr), was added at a concentration of 0.4 % to all the diets allowing calculation of the digestibility of P and Ca. The feed was distributed *ad libitum* in mash form, under pen feed consumption control, and the animals had free access to drinking water. The digestibility of Ca was not corrected for Ca intake with the drinking water. Mean Ca content of the drinking water in the region is 80 mg/L. Performance was evaluated after 29 days of experimentation and at the end of the 71 days of the trial duration. Blood was collected by jugular puncture from all the animals at the 28th day and 70th day of the experiment for the

determination of the P, Ca and alkaline phosphatase concentrations. Faecal P, Ca and Cr concentrations were measured at the 29th day and the 71st day of the second period. Faeces were sampled individually, in approximately the same amount at the same time of the day, during the last 3 days preceding that date. All minerals were determined according to standard Association of Official Analytical Chemists (1990) methods using a Vista-MPX ICP-OES spectrometer (Varian Australia Pty Ltd, Mulgrave Victoria, 3170 Australia). The apparent digestibility (% of the intake) of the minerals was calculated for the mentioned 3-day period. At the end of the evaluation the animals were slaughtered after tranquilization followed by electronarcosis for bone collection. The collected bones were the right external metacarpal and metatarsal. Samples were prepared from each of the collected bones immediately after slaughter. After careful dissection and removal of the soft tissue, a diaphysis section was obtained by sawing each bone. The obtained sections of about 3.5-cm long were immediately subjected to compression in order to determine the force in Newton necessary to break them (maximal-breaking force at the fracture point). The measurements were performed with a LR10K compression machine, using a XLC/10K/A1 force captor and a compression device TH23-196/AL (Lloyd Instruments, Fareham, UK).

The broken bones were then used for the determination of ash content, which was measured after 48-h incineration at 550°C.

2.3. Statistical analysis

Statistical treatment of the results involved the calculation of the mean and of the standard deviation of the mean as well as a two-factor hierarchical analysis of variance. The mathematical model was:

$$Yijk = \mu + Ai + Bij + Zijk$$

where μ is the mean, Ai is the diet effect, Bij is the combined effect of the diet and animal or pen and Zijk is the residual term. The analysis of variance was followed by a Duncan multiple range test when a significant Ai effect without Bij effect was observed (Snedecor and Cochran, 1989). These calculations were performed using StatGraphics Plus 5.1 (Manugistics, Rockville, U.S.A. 2001).

2.4. Effects on bone parameters

The results of the external metacarpal and external metatarsal bone resistance and mineralization are presented in Table 3. The bone resistance of the external metacarpal was dose dependently and significantly increased in all phytase supplemented groups as well as in that receiving DCP comparatively to the control(-). The DCP supplemented animals had an external metacarpal bone breaking force significantly higher than those of the control(-) and all phytases groups. In counter-part the external metacarpal bone mineralization was only significantly improved in the RONOZYME® HiPhos 1500 U/kg and control(+) fed pigs comparatively to the control(-) group. The differences to the control (-) of the external metatarsal bone resistance were dose dependently increased with the three tested phytases. The breaking force was significantly improved in all phytase supplemented groups with the exception of OptiPhos® 2000 PF 500 U/kg. The highest bone strength was observed for the animals receiving the control(+) diet and was significantly higher than those of the control(-) and all phytases groups. The external metatarsal bone mineralization of the RONOZYME® HiPhos 1000 U/kg and OptiPhos® 2000 PF 500 U/kg groups was similar to that of the control(-) fed animals. It was significantly improved in all other phytase supplemented groups. In the control(+) supplemented pigs the external metatarsal bone mineralization was significantly higher than in all other groups.

The mean breaking force of both bones, comparatively to the control (-) fed pigs (80 N), was dose dependently and significantly increased in the RONOZYME® HiPhos 1000 U/kg (144 N) and 1500 U/kg (169 N), Phyzyme® XP 4000 TPT 500 U/kg (136 N) and 750 U/kg (152 N) and OptiPhos® 2000 PF 500 U/kg (112 N) and 750 U/kg (132 N) by 81, 112, 70, 90, 40 and 66 %, respectively. That of the control (+) group (235 N) was significantly higher than the breaking force of all other groups.

Table 1 - Composition (%) of the control (-) diet and of control (+) diet supplemented with DCP.

INGREDIENTS	Control(-) diet without mineral P (%)	Control(+) diet with DCP (%)
Maize	58.0	58.0
Soybean meal	17.85	17.85
Rapeseed meal	14.15	14.15
Oat meal	6.0	6.0
Soya oil	1.0	1.0
Dicalcium phosphate		1.2
Minerals(1), vitamins and synthetic aa	3.0	1.8
Analyzed Crude Protein - %	18.28	18.43
Analyzed Crude Ash - %	4.93	6.21
Analyzed Lysine - %	1.13	1.10
Analyzed Threonine - %	0.54	0.56
Analyzed Methionine + cysteine - %	0.64	0.63
Analyzed total Ca - %	0.86	1.42
Analyzed total P - %	0.38	0.81
Analyzed Phytic P - %	0.11	0.11
Theoretically digestible P - %	0.11(2)	0.28(3)
Estimated digestible energy - MJ/kg	15.28	15.42

⁽¹⁾ Mixture without mineral P.

⁽²⁾ Digestible P estimated from the NRC tables.

 $_{(3)}$ Sum of the digestible P estimated from the NRC tables and 80 % of added mineral P as generally accepted.

Table 2 - Phytase activity (U(a)/kg) and % of the target in the different diets.

Treatment groups	Control DCP 12 g/kg		RONOZYME® HiPhos (M)		Phyzyme®XP 4000 TPT		OptiPhos® 2000 PF	
Programmed phytase addition (U/kg)	0	0	1000	1500	500	750	500	750
Measured phytase activity (U/kg)(1)	<l0q< td=""><td><loq< td=""><td>1068 ±32</td><td>1568 ±30</td><td>520 ±41</td><td>753 ±22</td><td>377 ±173</td><td>702 ±27</td></loq<></td></l0q<>	<loq< td=""><td>1068 ±32</td><td>1568 ±30</td><td>520 ±41</td><td>753 ±22</td><td>377 ±173</td><td>702 ±27</td></loq<>	1068 ±32	1568 ±30	520 ±41	753 ±22	377 ±173	702 ±27
Actually added phytase (U/kg)		-	1068	1568	520	753	377	702
% of target		-	107	105	104	100	75	94

⁽a) Quantity of enzyme that sets free 1 µmole of inorganic phosphate per minute from 5 mM sodium phytate at pH 3.2 and at 37°C.

(1) Mean ± standard deviation of 4 determinations.

Erratum - footnote (a) should read 'Qualtity of enzyme that sets free 1 μmole of inorganic phosphate per minute from 5 mM sodium phytate at pH 5.5 and at 37 °C.'

This change was made on 7 April 2014 by James La Marta, Sr. Mgr. Regulatory Affairs after consultation with the lead author Dr. Peter Guggenbuhl.

Table 3 - Bone strength and mineralization in the growing pig fed a diet without or with DCP or different phytases.

(means per group \pm standard deviation, % of variation from group Control (-)).

Treatment groups (n = 8 animals)	Control (-)	DCP 12 g/kg	RONOZYM (M)	E®HiPhos _	Phyzyme@ TPT	®XP 4000	OptiPhos	2000 PF
(II - 0 allillats)	A	В	С	D	E ⁽¹⁾	F	G	Н
Planned phytase addition (U/kg)	0	0	1000	1500	500	750	500	750
Breaking force for the external metacarpal bone (N)	83a ± 31	246d ± 44 +197	148bc ± 23 +79	182c ± 46 +119	149bc ± 32 +80	177c ± 24 +113	129b ± 29 +55	138b ± 35 +66
External metacarpal bone	57.80a	62.53b	58.66a	61.27b	58.68a	58.45a	57.43a	59.12a
mineralization (% of ash	± 2.07	± 0.85	± 1.80	± 0.85	± 0.55	± 1.62	± 3.32	± 1.53
in DM)		+ 8.2	+ 1.5	+ 6.0	+ 1.5	+ 1.1	- 0.6	+ 2.3
Breaking force for the external metatarsal bone (N)	77a ± 32	223d ± 53 +191	140bc ± 38 +82	155c ± 51 +102	122bc ± 34 +59	129bc ± 26 +68	96ab ± 34 +25	125bc ± 30 +62
External metatarsal bone	56.96a	62.47d	57.68ab	60.53cd	59.26bc	59.61bc	57.99ab	59.70bc
mineralization (% of ash in DM)	± 3.19	± 0.82 + 9.7	± 2.38 + 1.3	± 1.47 + 6.3	± 1.45 + 4.0	± 1.56 + 4.7	± 2.29 + 1.8	± 1.63 + 4.8
Mean breaking force for both bones (N)	80a ± 31	235e ± 48 +195	144cd ± 31 +81	169d ± 49 +112	136bc ± 35 +70	152cd ± 35 +90	112b ± 35 +40	132bc ± 32 +66

⁽¹⁾ n = 7 animals

a, b, c, d, e Means within the same row without a common letter are significantly different (P<0.05)

Revised Annex 3 Internal Report 2500761 Correction made on page 10

REPORT No. 2500761 Regulatory Document

Document Date:

11-Jun-2009

Author(s):

P. Guggenbuhl, C. Simões Nunes, A. Piñón Quintana, C. Portier, N. Kurtz and A.

Lehmann NRD/CA

DSM Nutritional Products France, BP 170, 68305 Saint Louis, France

Title:

Evaluation of the effects of graded amounts of a microbial phytase in the weaner

piglet.

Project No.

6106

Compound No.

Summary

The aim of the present study (S12-08 VN) was to evaluate the effects of graded amounts of a microbial phytase (IPA) on the zootechnical performance, mineral blood concentrations, digestibility of phosphorus (P) and calcium (Ca) and bone mineralisation and resistance in the weaned piglet. The basal diet, without addition of mineral P, was based on maize, soybean meal and rapeseed meal. IPA phytase was included in the diet at the levels of 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg. A dietary treatment was based in the very slightly modified control diet containing the recommended available P by addition of dicalcium phosphate (diCaP). Supplementation with graded amounts of IPA phytase in piglets induced an increased performance in a dose dependant manner. Inclusion levels over 1000 U/kg were more efficient than the diCaP supplementation. IPA phytase restored dose dependently phosphataemia, calcaemia and phosphatasaemia to physiological levels comparatively to the controls. The mean P faecal concentration of the enzyme supplemented animals was significantly lower than that observed for the animals ingesting the control diet. All the phytase inclusion levels increased the bioavailability of P and accordingly reduced the piglet quantitative faecal excretion of P comparatively to the basal diet. The P digestibility was dose dependant and highly significantly improved with the exception of the lowest phytase inclusion level. The increases represented in comparison to the control group 12, 66, 77, 110, 132, 129, 156 and 149 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively. The P equivalencies, considered as supplemental P digested comparatively to the non-supplemented control, of 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg of the phytase were 0.13, 0.73, 0.84, 1.22, 1.50, 1.39, 1.75 and 1.62 g of full available P/kg feed respectively. Ca digestibility was improved by all the inclusion levels of the phytase. IPA phytase supplements improved bone mineralisation and bone resistance comparatively to the non-supplemented animals. In conclusion the IPA phytase improved the digestibility and the apparent absorption of P and Ca, reduced the P faecal excretion, restored phosphataemia, calcaemia and phosphatasaemia to physiologic values, increased bone mineralisation and resistance and improved the zootechnical performance in the weaned piglet fed on a diet containing P exclusively from vegetable origin.

Distribution

Dr. J. Broz. NRD/CA

Dr. J.-P. Ruckebusch, ANH/EE

Dr. M. Eggersdorfer, NRD

Dr. G. Kau, NBD/A

Dr. A.-M. Klünter, NRD/CA

Dr. J.-F. Hecquet, NBD/RA-GM

Dr. F. Fru, NRD/PA Dr. J. Pheiffer, NRD/PA Dr. E. Schmidt Marcussen, Novozymes A/S

Approved

Name Main Author Signature

Date

Dr. P. Guggenbuhl, NRD/CA

Principal Scientist / Competence Mgr

Dr. C. Simões Nunes, NRD/CA Research Center Head

Dr. A-M Klünter, NRD/CA

Project Manager

15.06.09

Dr. F. Fru, NRD/PA Research Project Document

DSM Nutritional Products Ltd

Nomenclature and Structural Formula (if available)

Liquid form IPA phytase expressed in Aspergillus oryzae, batch PPQ28432, activity at pH 5.5 of 26500 U/g.

1. INTRODUCTION

The aim of the present study (S12-08 VN) was to evaluate the effects of graded amounts of a microbial phytase (IPA) on the zootechnical performance, mineral blood concentrations, digestibility of phosphorus (P) and calcium (Ca) and bone mineralisation and resistance in the weaned piglet.

The experiment was performed in July-August 2008 in the facilities of the Centre de Recherche en Nutrition Animale (CRNA), DSM Nutritional Products France, BP 170, 68305 Saint-Louis cedex, France. It has been performed according to the French legal regulations on experiments with live animals.

2. MATERIAL AND METHODS

2.1. Test compounds

The used IPA phytase was expressed in *Aspergillus oryzae*, batch PPQ28432, had an activity at pH 5.5 of 26500 U/g and was in a liquid form.

NRD/CM measured the phytase activity in the enzyme preparation and in the feed. One unit of phytase is defined as the quantity of enzyme which sets free 1 μ mole of inorganic phosphate per minute from 0.005 moles per litre sodium phytate at pH 5.5 and at 37°C.

Di-calcium phosphate (diCaP), batch S1784 6212, was supplied by TIMAC Industries and had a P concentration of 18.2 % and a Ca concentration of 24 %.

2.2. Animal trial

One hundred and twenty Large White \times Landrace weaner piglets having an initial body weight of 8.03 ± 1.09 kg were used. The animals were allocated to 10 equal groups of 12 animals each and housed in floor-pen cages in two sub-groups (1 of 7 animals and 1 of 5 animals) in an environmentally controlled room. Each pen had a plastic-coated welded wire floor and was equipped with four water nipples and four stainless-steel individualised feeders. Room temperature was initially 27°C and was lowered weekly by about 2°C until 21-22° C and humidity percentage was 50 %.

The piglets were fed, throughout a 32 days observation period, a basal diet without addition of mineral P (group A) or the diet A supplemented with 16 g/kg of diCaP (group B) or with IPA phytase at the levels of 250 U/kg (group C), 500 U/kg (group D), 1000 U/kg (group E), 1500 U/kg (group F), 2000 U/kg (group G), 3000 U/kg (group H), 4000 U/kg (group I) and 8000 U/kg (group J).

The basal diet A was formulated to provide P exclusively from vegetable origin and to meet, with the exception of the available P supply, the animals' requirements according to Henry *et al.* (1989) and NRC (1998). The basal diet A (table 1) had a theoretical P content of 0.41 % and an analysed content of 0.45 %. The theoretical available P in the diet was 1.20 g/kg and the observed availability of 1.09 g/kg.

An indigestible tracer (chromium oxide) was added at a concentration of 0.4 % to all the diets allowing calculation of the digestibility of P and Ca. The feed was distributed ad *libitum* in mash form, under pen feed consumption control, and the animals had free access to drinking water.

Regulatory Document
DSM Nutritional Products Ltd

Page 3 of 26

The digestibility of Ca was not corrected for Ca intake with the drinking water. Mean Ca content of the drinking water in the region is 120 mg/L.

Performance was evaluated for the 32 days of the trial duration. Blood was collected by jugular puncture from all the animals at the 31st day of the experiment for the determination of the P, Ca, alkaline phosphatase and zinc (Zn) concentrations.

Faecal P, Ca and Cr concentrations were measured at the 32nd day of the second period. Faeces were sampled per pen, in approximately the same amount at the same time of the day, during the last 3 days preceding that date. Thus, for each dietary treatment and for each criterion a total of 6 individual determinations have been performed. All minerals were determined according to standard Association of Official Analytical Chemists (1990) methods using a Vista-MPX ICP-OES spectrometer (Varian Australia Pty Ltd, Mulgrave Victoria, 3170 Australia). The apparent digestibility (% of the intake) of the minerals was calculated for the mentioned 3 day period.

At the end of the evaluation all animals were slaughtered after tranquilization and stunning for the right femur collection. Samples of the collected bones were prepared immediately after slaughter. After careful dissection and removal of the soft tissue, a diaphysis section was obtained by sawing each bone. The obtained sections of about 3.5-cm long were immediately subjected to compression in order to determine the force in Newton necessary to break them (maximal-breaking force at the fracture point). The measurements were performed with a LR10K compression machine, using a XLC/10K/A1 force captor and a compression device TH23-196/AL (Lloyd Instruments, Fareham, UK). The broken bones were then used for the determination of the ash content, which was measured after 72-h incineration at 550°C.

2.3. Statistical analysis

Statistical treatment of the results involved the calculation of the mean and of the standard deviation of the mean as well as a two-factor hierarchical analysis of variance. The mathematical model was:

$$Yijk = \mu + Ai + Bij + Zijk$$

where μ is the mean, Ai is the diet effect, Bij is the combined effect of the diet and animal or pen and Zijk is the residual term. The analysis of variance was followed by a Duncan multiple range test when a significant Ai effect without Bij effect was observed (Snedecor and Cochran, 1989). These calculations were performed using StatGraphics Plus 5.1 (Manugistics, Rockville, U.S.A. 2001).

3. RESULTS AND DISCUSION

3.1. Phytase and animals

The observed phytase activity in the supplemented feed used was in general excellent agreement with the programmed inclusion levels (table 2). The basal diet without addition of mineral P (group A) and with diCaP (group B) had an endogenous phytase activity of 108 ± 34 U/kg.

The animals grew normally during the observation period to reach a final mean body weight of 16.45 ± 2.85 kg. Three animals, one in the control group, one in the 2000 U/kg and one in the 3000 U/kg phytase supplemented groups had to be euthanized during the early stage of the trial after leg injuries. No mortality was observed during the rest of the experiment.

All the groups ingesting phytase supplements and the group supplemented with 16 g/kg of diCaP had higher daily weight gain (DWG) and lower feed conversion ratio (FCR) than those observed for the control group (table 3). The highest DWG and the best FCR were observed for the group ingesting 3000 U/kg. The performances of the group supplemented with diCaP were equivalent to those of the group receiving 1000 U/kg of phytase.

Supplementation with graded amounts of IPA phytase in piglets induced an increased performance in a dose dependant manner. Inclusion levels over 1000 U/kg were more efficient than the diCaP supplementation.

3.2. Effects on plasma mineral and alkaline phosphatase concentrations

Phosphataemia was increased dose dependently in the phytase supplemented groups in comparison to the control group (table 4). The increases were highly significant with the exception of the lowest inclusion level. The group supplemented with diCaP presented also a high significant increase of the phosphataemia but at a lower level than the 4000 and 8000 U/kg phytase supplemented groups. The consumption of phytate rich diets like the control one induced hypophosphataemia. IPA phytase restored the physiological P blood level confirming the sensitiveness of phosphataemia to the dietary available P.

Comparatively to the control group, calcaemia was decreased in all the phytase supplemented animals (table 4). The effects of the phytase were dose dependant although the curve levelled off from the 2000 U/kg inclusion and highly significant with the exception of the lowest inclusion level. As observed in the control group, hypophosphataemia is generally associated with hypercalcaemia in swine. In the present study, calcaemia in the animals ingesting the basal diet supplemented with diCaP or with phytase was within the normal piglet values.

Zincaemia was not significantly influenced by the supplementation of phytase or diCaP, although these treatment groups presented higher mean concentrations than the control group (table 4). Zn is well known to bind to phytate and generally its digestibility is improved by phytases in growing pigs. Nevertheless, it seems that in piglet the blood Zn concentration is not altered by the dietary treatments used in the present experiment.

Compared to the control group, phosphatasaemia was decreased dose dependently in the phytase supplemented groups (table 5). The decreases were only significant at the 500 and 8000 U/kg inclusion levels. The group supplemented with diCaP presented also a decrease of the phosphatasaemia at a level similar to that observed with 1500 U/kg phytase supplemented group. Alkaline phosphatase plays an important role in bone metabolism. As observed in the control non-supplemented group, hypophosphataemia induces osteoblasts

Regulatory Document
DSM Nutritional Products Ltd

Page 5 of 26

heperphosphatasaemia in response to an increased activity of osteoclasts in bone. In the present study, phosphatasaemia of the phytase supplemented animals was systematically lower than that of the control clearly indicating restored normal bone function.

3.3. Effects on phosphorus digestion

The mean P faecal concentration of the enzyme supplemented animals was very significantly lower than that measured in the animals ingesting the control diet (table 6). There was a decrease of the P faecal concentration with the increasing allowance of IPA phytase. The lowest P faecal concentration was observed in the animals ingesting phytase at 8000 U/kg and represented the half of that of the control group.

The P digestibility was dose dependant and highly significantly improved with the exception of the lowest phytase inclusion level. The increases represented in comparison to the control group 12, 66, 77, 110, 132, 129, 156 and 149 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively (table 7, figure 1). The digestibility of P in the diCaP supplemented diet was also significantly higher than that of the control by 69 % and very similar to the enzyme supplementation at 500 U/kg.

The faecal excretion of P was significantly reduced by 4, 20, 25, 34, 41, 41, 49 and 48 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively. It was increased by 35 % with the diCa-P supplemented group (table 8, figure 2).

The apparent absorbed P was 1.22, 1.82, 1.93, 2.31, 2.59, 2.48, 2.84 and 2.71 g/kg feed in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively and 3.18 g/kg feed in the diCaP supplemented group (table 9). It was significantly increased in all the supplemented groups with the exception of the lowest phytase inclusion level in comparison to the control diet (1.09 g/kg). The highest inclusion levels of IPA phytase were in accordance with the recommended requirements of 2.80 g of digestible P per kg feed for piglets.

The P equivalencies, considered as supplemental P digested comparatively to the non-supplemented control, of 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase were 0.13, 0.73, 0.84, 1.22, 1.50, 1.39, 1.75 and 1.62 g of full available P/kg feed respectively (table 10, figure 3). In comparison the P equivalency of diCaP supplemented diet was 2.10 g of full available P/kg feed.

In the present study, using the equation of the tendency curve the calculated inclusion level to reach 1.5 g of full available P/kg feed was 3109 U/kg feed of IPA phytase ($y = 167.21e^{1.9486x}$, R² = 0.8897) but was reached experimentally with the 2000 U/kg inclusion level.

In general on all the P parameters, IPA phytase showed high dose dependant potency.

3.3. Effects on calcium digestion

The Ca faecal concentration of the animals ingesting the non-supplemented diet was higher than that of the animals ingesting the phytase, with the exception of the lowest inclusion level (table 11). The observed differences were statistically significant for the enzyme supplemented groups excepted for the 250 and 1000 U/kg inclusion levels. The highest Ca faecal concentration was observed in the diCaP supplemented group.

The Ca digestibility was improved in the supplemented groups with the exception of the diCaP group and the 250 U/kg phytase group (table 12). The variations were -9, 7, 5, 16, 26, 12, 25 and 17 % in the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively and significant for the five highest concentrations. The Ca digestibility of the diCaP supplemented diet was decreased by 16 % comparatively to the control group.

The faecal excretion of Ca was reduced by 8, 7, 22, 37, 20, 40, and 26 % with the IPA phytase in the 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg supplemented groups respectively and significantly with the five highest concentrations. It was significantly increased by 13 % and 87 % with the 250 U/kg phytase and diCaP groups respectively (table 13).

The apparent absorbed Ca was 4.38, 5.28, 5.08, 5.61, 5.94, 5.20, 5.63 and 5.42 g/kg feed with the 250, 500, 1000, 1500, 2000, 3000, 4000 and 8000 U/kg phytase supplemented groups respectively and 6.10 g/kg feed in the diCa-P group (table 14). It was significantly increased in all the 1500, 2000, 4000 and 8000 U/kg phytase and diCaP supplemented groups and significantly decreased in the 250 U/kg phytase inclusion level in comparison to the Ca apparent absorption in the control diet (4.79 g/kg).

3.4. Bone resistance and bone ash

The phytase supplements strongly influenced the bone strength (table 15). For the IPA phytase inclusion level of 8000 U/kg the increase of the femur resistance was similar to that of diCaP. It represented 121 % and 126 % respectively of that observed for the animals ingesting the basal diet. The increases were significant in all supplemented groups excepted for the 250 U/kg and 1000 U/kg phytase inclusion levels.

The ash content of the femur was increased in a significant way by the phytase excepted for the lowest dosage and by the diCaP (table 15). Nevertheless, the addition of graded amounts of IPA phytase resulted in a non-linear increase of the ash content of the femur.

In the present study IPA phytase supplements in young pigs confirmed the positive effects of phytases on the improvement of bone resistance and the positive but moderate effect on bone mineralisation of animals fed diets containing P exclusively from vegetable origin.

The bone mineralisation data were in agreement with the improvements in P digestibility and with P and Ca blood concentrations.

4. CONCLUSION

It can be concluded that the IPA phytase improved the digestibility and the apparent absorption of P and Ca, reduced the P faecal excretion, restored phosphataemia, calcaemia and phosphatasaemia to physiologic values, increased bone mineralisation and resistance and improved the zootechnical performance in the weaned piglet fed on a diet containing P exclusively from vegetable origin. There was a dose dependant effect of the IPA phytase on the availability of the dietary P.

Table 1 - Composition (%) of the basal diet (A) and of that supplemented with diCa-P

INGREDIENTS	Basal diet without P (%)	Basal diet with diCA-P (%)
Maize	68.52	68.125
Soybean meal	15.1	15.1
Rapeseed meal	12.5	12.5
Salt	0.55	0.55
Soya oil	1.0	1.0
Calcium carbonate	1.56	0.355
Di-calcium phosphorus		1.6
Minerals ⁽¹⁾ , vitamins and synthetic aa	0.77	0.77
Crude Protein – N x 6.25	15.5	15.5
Lysine - %	0.96	0.96
Methionine + cystine - %	0.54	0.54
Ca – analyzed - % in DM	0.82	1.24
P - analyzed - % in DM	0.45	0.78
Theoritically available P - %	0.12 (2)	0.35 (3)
Observed available P - %	0.11	0.32
Phytic P – calculated - %	0.28	0.54
Estimated digestible energy – MJ/kg	13.31	13.31
Phytase activity - U (4)/kg	108 ± 34	108 ± 34

 ⁽¹⁾ Mixture without mineral P;
 (2) Estimated from the mean P digestibility of the previous realized trials
 (3) Sum of the theoretically available P and 80 % of added mineral P as generally accepted

⁽⁴⁾ Quantity of enzyme that sets free 1 μmole of inorganic phosphate per minute from 0.005 mole per litre sodium phytate at pH 5.5 and at 37°C.

Table 2 - Phytase activity (U(a)/kg) and % of the target in the different diets.

Treatment groups	Basal Diet	Basal Diet + diCa-P	IPA phytase									
	A	В	C	D	E	F	G	Н	1	J		
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000		
Measured phytase addition (U/kg) (1)	108 ± 34	108 ± 34	374 ± 111	601 ± 25	1097 ± 21	1611 ± 41	2225 ± 45	3098 ± 104	4030 ± 208	8238 ± 283		
Actually added phytase (U/kg)	-	- 2	266	493	989	1503	2117	2990	3922	8130		
% of target	-	-	106	99	99	100	106	100	98	102		

 $^{^{(}a)}$ Quantity of enzyme that sets free 1 μ mole of inorganic phosphate per minute from 5 mM sodium phytate at pH 3.2 and at 37°C. $^{(1)}$ Mean \pm standard deviation of 4 determinations.

Erratum - footnote (a) should read 'Qualtity of enzyme that sets free 1 µmole of inorganic phosphate per minute from 5 mM sodium phytate at pH 5.5 and at 37 °C.'

This change was made on 7 April 2014 by James La Marta, Sr. Mgr. Regulatory Affairs after consultation with the lead author Dr. Peter Guggenbuhl.

<u>Table 3</u> – Effects on the zootechnical performances in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
(n = 12 animals)	A	В	C	D	E	F	G	Н	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Initial Body Weight (kg)	8.03 ± 1.13	8.02 ± 1.13	8.02 ± 0.84	8.03 ± 1.27	8.03 ± 1.52	8.03 ± 1.08	8.03 ± 0.86	8.02 ± 1.04	8.03 ± 1.19	8.02 ± 1.16
Final Body Weight (kg)	15.20 ⁽¹⁾ ± 2.10 (100)	16.24 ± 3.11 (107)	16.14 ± 1.99 (106)	15.98 ± 4.13 (105)	16.01 ± 3.58 (105)	16.69 ± 3.14 (110)	17.44 ⁽¹⁾ ± 2.86 (115)	17.48 ⁽¹⁾ ± 2.29 (115)	16.79 ± 2.51 (110)	16.58 ± 2.38 (109)
Total Weight Gain (kg)	7.04 ⁽¹⁾ ± 2.32 (100)	8.22 ± 2.25 (117)	8.12 ± 1.64 (115)	7.96 ± 3.09 (113)	7.98 ± 2.71 (113)	8.66 ± 2.30 (123)	9.46 ⁽¹⁾ ± 2.24 (134)	9.61 ⁽¹⁾ ± 1.86 (137)	8.77 ± 1.94 (125)	8.56 ± 2.03 (122)
Daily Weight Gain (g)	220 ⁽¹⁾ ± 73 (100)	257 ± 70 (117)	254 ± 51 (115)	249 ± 97 (113)	249 ± 85 (113)	271 ± 72 (123)	296 ⁽¹⁾ ± 70 (134)	300 ⁽¹⁾ ± 58 (137)	274 ± 61 (125)	268 ± 63 (122)
Feed intake (g/day) (2)	468 ⁽¹⁾ ± 16 (100)	484 ± 55 (103)	499 ± 40 (107)	475 ± 136 (101)	478 ± 34 (102)	489 ± 99 (104)	510 ⁽¹⁾ ± 42 (109)	523 ⁽¹⁾ ± 57 (112)	497 ± 36 (106)	491 ± 55 (105)
Feed Conversion Ratio (kg/kg) (2)	2.448 ⁽¹⁾ ± 0.220 (100)	1.914 ± 0.014 (78)	1.981 ± 0.032 (81)	1.985 ± 0.048 (81)	1.931 ± 0.002 (79)	1.835 ± 0.068 (75)	1.819 ⁽¹⁾ ± 0.064 (74)	1.793 ⁽¹⁾ ± 0.013 (73)	1.834 ± 0.021 (75)	1.865 ± 0.023 (76)
Mortality	1	0	0	0	0	0	1	1	0	0

⁽¹⁾ n = 11 animals; (2) n = 2 pens

Table 4 - Effects on plasma mineral concentrations in the weaning pig fed a diet without or with diCaP or graded amounts of IPA

E- NS NS NS P<0.001	Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	+ IPA phytase										
addition (U/kg) P plasma levels (mg/dl) \$\begin{array}{cccccccccccccccccccccccccccccccccccc		A ⁽¹⁾	В	C	D	E	F	G ⁽¹⁾	H ⁽¹⁾	T.	J			
P plasma levels		0	0	250	500	1000	1500	2000	3000	4000	8000			
Statistical analysis	A COLOR OF THE COL	± 1.15	± 1.03	± 0.86	± 0.82	± 1.00	± 1.03	± 1.32	± 0.86	± 0.91	7.97 ± 0.90 (156)			
A - P<0.001 NS P<0.05 P<0.001				THE RESERVE										
B - P<0.001 P<0.001 NS NS NS NS NS NS NS P<0.001 P<0		A-	P<0.001	NS			P<0.001	P<0.001	P<0.001	P<0.001	P<0.001			
C- NS P<0.05 P<0.001 P											NS			
D - NS NS NS NS P<0.001											P<0.001			
E- NS NS NS P<0.001		Carrier St.								P<0.001	P<0.001			
Table Tabl											P<0.001			
Ca plasma levels (mg/dl)		The second second		C. L. Stran	THE REAL PROPERTY.						P<0.05			
Ca plasma levels (mg/dl)								G-	NS	P<0.05	P<0.05			
Ca plasma levels (mg/dl)										NS	NS			
Ca plasma levels (mg/dl)										1-	NS			
Ca plasma levels (mg/dl)		13 34	11.06	13 17	12 18	12 05	11 67	11 76	11 61	11 62	11.56			
(100)	Ca plasma levels										± 0.41			
Statistical analysis	(mg/dl)													
A- P<0.001 NS P<0.001	(8)	(100)	(83)	(99)	(91)	(90)	(88)	(88)	(87)	(87)	(87)			
B-				· · · · · · · · · · · · · · · · · · ·	Statistical a	analysis								
C- P<0.001 P<0		A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001			P<0.001			
D- NS			B-	P<0.001	P<0.001	P<0.001	NS	NS	NS		NS			
E- NS				C-	P<0.001	P<0.001		P<0.001			P<0.001			
F- NS					D-						NS			
Zn plasma levels						E.					NS			
Zn plasma levels							F-				NS			
Zn plasma levels								G-			NS			
Zn plasma levels									Н-		NS			
2n plasma levels ± 12.65 ± 14.72 ± 7.03 ± 14.94 ± 12.65 ± 9.52 ± 11.27 ± 10.62 ± 11.62			and the			A FOREST					NS			
											71.01 ± 10.78			
(100) (100) (100) (100) (100)	(µg/dl)	(100)	(108)	(119)	(109)	(107)	(114)	(106)	(107)	(103)	(108)			

(1) n = 11 animals

NS : non significant

Regulatory Document
DSM Nutritional Products Ltd

Page 12 of 26

<u>Table 5</u> – Effects on plasma alkaline phosphatase concentrations in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	nytase			
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
ALP plasma levels (U/L)	325.1 ± 96.1	239.4 ± 50.4	285.9 ± 46.7	223.4 ± 48.0	280.3 ± 78.4	237.4 ± 90.7	255.5 ± 104.8	255.7 ± 85.8	251.5 ± 57.5	202.3 ± 47.5
Variation from A (%)	100.0	73.7	87.9	68.7	86.2	73.0	78.6	78.6	77.4	62.2
				Statistical a	nalysis					
	A-	NS	NS	P<0.05	NS	NS	NS	NS	NS	P<0.001
		B-	NS	NS	NS	NS	NS	NS	NS	NS
	1		C-	NS	NS	NS	NS	NS	NS	NS
	Mary Street			D-	NS	NS	NS	NS	NS	NS
					E-	NS	NS	NS	NS	NS
					The local	F-	NS	NS	NS	NS
							G-	NS	NS	NS
								H-	NS	NS
				100					1-	NS

⁽¹⁾ n = 11 animals

<u>Table 6</u> - Effects on the faecal concentration of phosphorus in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	IPA phytase									
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J		
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000		
P fecal concentration (mg/g DM)	22.4 ± 0.6	24.6 ± 2.6	20.8 ± 1.3	16.3 ± 1.1	16.4 ± 0.6	14.1 ± 1.0	12.8 ± 0.6	12.5 ± 1.1	11.5 ± 1.2	11.2 ± 0.7		
Variation from A (%)	100.0	110.0	93.2	73.1	73.5	63.0	57.1	55.8	51.6	49.9		
	1000			Statistical a	nalysis							
	A-	P<0.001	P<0.05	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
				D-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
					E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
						F-	NS	NS	P<0.001	P<0.001		
				2 775-3			G-	NS	NS	NS		
	E 7 3 16 17							H-	NS	NS		
	E U GE								1-	NS		

⁽¹⁾ n = 11 animals

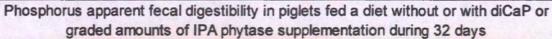
<u>Table 7</u> - Effects on the total apparent digestibility of phosphorus in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P	t+ IPA phytase								
	A ⁽¹⁾	В	C	D	E	F	G ⁽¹⁾	H ⁽¹⁾	I	J	
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000	
P fecal apparent digestibility (%)	24.1 ± 1.5	40.8 ± 5.1	26.9 ± 3.5	40.0 ± 3.6	42.7 ± 2.4	50.7 ± 5.4	56.0 ± 1.9	55.1 ± 3.6	61.8 ± 3.5	60.1 ± 4.8	
Variation from A (%)	100	169	112	166	177	210	232	229	256	249	
	THE AC			Statistical a	nalysis						
	A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	
		B-	P<0.001	NS	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	
				D.	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	
			TEL TO		E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	
		18.9				F-	NS	NS	P<0.001	P<0.001	
							G-	NS	P<0.05	NS	
								H-	P<0.05	NS	
									1-	NS	

⁽¹⁾ n = 11 animals

<u>Table 8</u> - Effects on the faecal excretion of phosphorus in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + IPA phytase diCa-P										
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J		
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000		
P fecal excretion (mg/g)	3.43 ± 0.07	4.62 ± 0.40	3.30 ± 0.16	2.73 ± 0.17	2.58 ± 0.11	2.24 ± 0.25	2.03 ± 0.09	2.02 ± 0.16	1.76 ± 0.16	1.80 ± 0.22		
Variation from A (%)	100	135	96	80	75	66	59	59	51	52		
				Statistical a	nalysis			1000	The second	7 5 6 5		
	A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
				D-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
					E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
						F-	NS	NS	P<0.001	P<0.001		
						Prince of	G-	NS	NS	NS		
								H-	NS	NS		
									1-	NS		


⁽¹⁾ n = 11 animals

<u>Table 9</u> - Effects on the faecal apparent absorption of phosphorus in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase		Line	
	A ⁽¹⁾	В	C	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
P fecal apparent absorption (mg/g)	1.09 ± 0.07	3.18 ± 0.40	1.22 ± 0.16	1.82 ± 0.17	1.93 ± 0.11	2.31 ± 0.25	2.59 ± 0.09	2.48 ± 0.16	2.84 ± 0.16	2.71 ± 0.22
Variation from A (%)	100	292	112	168	177	212	238	228	261	249
				Statistical a	nalysis					
	A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			HILL A	D-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			Cast PE		E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			Land Street			F-	NS	NS	P<0.001	P<0.05
							G-	NS	NS	NS
						A STATE		H-	P<0.05	NS
						TO THE			1-	NS

⁽¹⁾ n = 11 animals

Figure 1

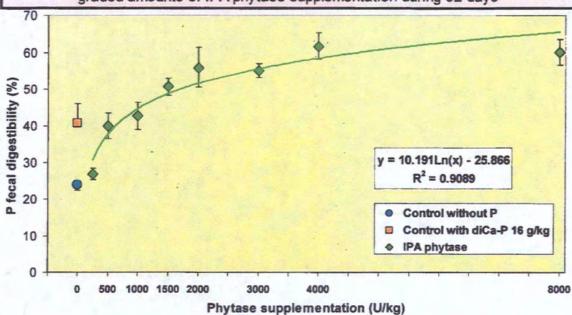
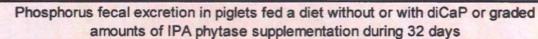
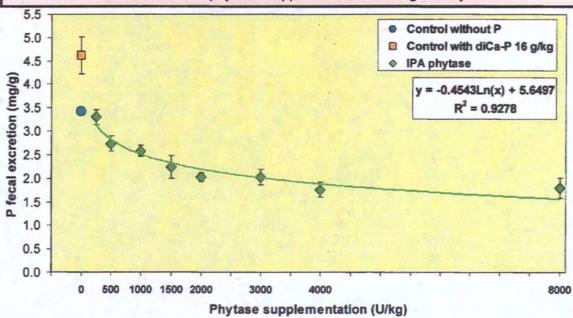
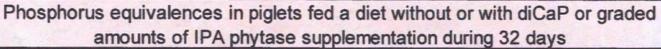
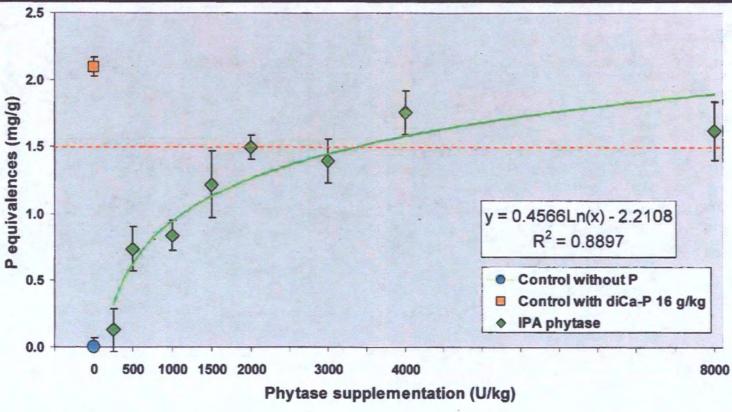




Figure 2




<u>Table 10</u> - Phosphorus equivalencies (g of full available supplemental P per kg of feed comparatively to the non-supplemented control) in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Diet +										
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J		
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000		
P equivalence (mg/g)	0.00 ± 0.07	2.10 ± 0.40	0.13 ± 0.16	0.73 ± 0.17	0.84 ± 0.11	1.22 ± 0.25	1.50 ± 0.09	1.39 ± 0.16	1.75 ± 0.16	1.62 ± 0.22		
Variation from C (%)	-47	-	100	577	659	957	1177	1096	1378	1272		
				Statistical a	nalysis							
	A-	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
				D-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
					E-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		
						F-	NS	NS	P<0.001	P<0.05		
							G-	NS	NS	NS		
								H-	P<0.05	NS		
			100						1-	NS		

⁽¹⁾ n = 11 animals

Figure 3

<u>Table 11</u> - Effects on the faecal concentration of calcium in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Ca fecal concentration (mg/g DM)	22.1 ± 1.3	33.6 ± 3.3	24.0 ± 1.6	18.6 ± 2.1	20.0 ± 0.8	16.5 ± 1.4	13.4 ± 0.7	16.6 ± 1.4	13.3 ± 1.2	15.6 ± 2.2
Variation from A (%)	100.0	152.4	108.7	84.4	90.5	74.8	60.5	75.3	60.4	70.5
				Statistical a	nalysis					
	Α-	P<0.001	NS	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			Contract of	D-	NS	NS	P<0.001	NS	P<0.001	P<0.05
					E-	P<0.05	P<0.001	P<0.05	P<0.001	P<0.001
			MEN TO SE			F-	P<0.05	NS	P<0.05	NS
							G-	P<0.05	NS	NS
			Same I					H-	P<0.05	NS
		F 7 - 1							1-	NS

⁽¹⁾ n = 11 animals

<u>Table 12</u> - Effects on the total apparent digestibility of calcium in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
	A ⁽¹⁾	В	С	D	Ε	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Ca fecal apparent digestibility (%)	58.7 ± 1.2	49.2 ± 3.7	53.5 ± 3.5	62.9 ± 4.3	61.8 ± 3.6	68.1 ± 3.6	73.6 ± 2.6	65.7 ± 4.5	73.4 ± 3.2	68.4 ± 5.1
Variation from A (%)	100	84	91	107	105	116	126	112	125	117
				Statistical a	nalysis				Law Inc.	
	A-	P<0.001	P<0.05	NS	NS	P<0.001	P<0.001	P<0.05	P<0.001	P<0.001
		B-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
				D-	NS	NS	P<0.001	NS	P<0.001	NS
					E-	P<0.05	P<0.001	NS	P<0.001	P<0.05
						F-	NS	NS	NS	NS
				The same of the sa			G-	P<0.001	NS	NS
								H-	P<0.001	NS
									1-	NS

⁽¹⁾ n = 11 animals

<u>Table 13</u> - Effects on the faecal excretion of calcium in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Ca fecal excretion (mg/g)	3.38 ± 0.10	6.31 ± 0.46	3.81 ± 0.29	3.12 ± 0.36	3.14 ± 0.13	2.63 ± 0.29	2.13 ± 0.21	2.71 ± 0.36	2.04 ± 0.25	2.50 ± 0.41
Variation from A (%)	100	187	113	92	93	78	63	80	60	74
				Statistical a	nalysis					
	A-	P<0.001	P<0.05	NS	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
	-			D-	NS	NS	P<0.001	NS	P<0.001	P<0.05
		Allers-			E-	NS	P<0.001	NS	P<0.001	P<0.05
						F-	P<0.05	NS	P<0.05	NS
							G-	P<0.05	NS	NS
						BOTANE.		H-	P<0.001	NS
		FEE							1-	NS

⁽¹⁾ n = 11 animals

<u>Table 14</u> - Effects on the faecal apparent absorption of calcium in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation, % of variation from group A).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
	A ⁽¹⁾	В	C	D	Е	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Ca fecal apparent absorption (mg/g)	4.79 ± 0.10	6.10 ± 0.46	4.38 ± 0.29	5.28 ± 0.36	5.08 ± 0.13	5.61 ± 0.29	5.94 ± 0.21	5.20 ± 0.36	5.63 ± 0.25	5.42 ± 0.41
Variation from A (%)	100	127	92	110	106	117	124	109	109	113
				Statistical a	nalysis				E (1) (4)	
	A-	P<0.001	P<0.05	NS	NS	P<0.001	P<0.001	NS	P<0.001	P<0.05
		B-	P<0.001	P<0.001	P<0.001	NS	NS	P<0.001	NS	P<0.001
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
				D-	NS	NS	P<0.001	NS	NS	NS
					E-	NS	P<0.001	NS	NS	NS
						F-	NS	NS	NS	NS
							G-	P<0.001	NS	P<0.05
								H-	NS	NS
									1-	NS

⁽¹⁾ n = 11 animals

Table 15 – Effects on bone ash and bone resistance in the weaning pig fed a diet without or with diCaP or graded amounts of IPA phytase (means per group ± standard deviation).

Treatment groups (n = 12 animals)	Basal Diet	Basal Diet + diCa-P				IPA ph	ytase			
	A ⁽¹⁾	В	С	D	E	F	G ⁽¹⁾	H ⁽¹⁾	1	J
Programmed phytase addition (U/kg)	0	0	250	500	1000	1500	2000	3000	4000	8000
Bone resistance maximal strength (N)	272.8 ± 88.7	615.5 ± 179.1	334.6 ± 76.0	476.1 ± 124.4	384.1 ± 77.2	500.3 ± 118.7	523.5 ± 157.7	476.5 ± 97.1	542.2 ± 108.7	604.1 ± 119.2
Variation from A (%)	100	226	123	175	141	183	192	175	199	221
				Statistical an	alvsis	1				
CONTRACTOR SECTION	Α-	P<0.001	NS	P<0.001	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.001	NS	P<0.001	NS	NS	NS	NS	NS
			C-	NS	NS	NS	P<0.05	NS	P<0.05	P<0.001
				D-	NS	NS	NS	NS	NS	NS
					E-	NS	NS	NS	NS	P<0.001
						F-	NS	NS	NS	NS
						THE ARMS	G-	NS	NS	NS
						OF STREET		Н-	NS	NS
									1-	NS
Bone ash (%)	62.17 ± 1.91	63.70 ± 1.58	62.38 ± 1.88	65.19 ± 0.94	65.67 ± 0.95	65.80 ± 1.70	64.85 ± 1.55	65.70 ± 1.06	66.36 ± 1.21	65.24 ± 1.78
Variation from A (%)	100	103	100	105	106	106	104	106	107	105
				Statistical an	alysis					
	A-	P<0.05	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		B-	P<0.05	NS	P<0.05	P<0.05	NS	P<0.05	P<0.001	NS
			C-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
			A STATE OF THE STA	D-	NS	NS	NS	NS	NS	NS
	LE SULM				E-	NS	NS	NS	NS	NS
						F-	NS	NS	NS	NS
							G-	NS	NS	NS
								H-	NS	NS
									1-	NS

(1) n = 11 animals

REFERENCES

Association of Official Analytical Chemists, 1990. Official methods of analysis. 15th edition, Association of Official Analytical Chemists, Arlington.

Ernandoréna, V., Gaudré, D., Granier, R. 2008. Quelle teneur en phosphore digestible alimentaire retenir pour le porc en phases de croissance et de finition ? 40es Journées de la Recherche Porcine, Paris.

Henry Y., Perez J.M., Sève B., 1989. In: L'alimentation des animaux domestiques - porc, lapin, volailles (ed. INRA), 2ème édition, INRA, Paris, 49-76.

NRC, 1998. Nutrient requirements of swine, 10th revised edition, National Academic Press, Washington.

Snedecor G.W., Cochran W.G., 1989. *Statistical methods*, 8th edition, Iowa University Press, Ames.

Groupe A	Porcelet	Poids	GP	GMQ	Cons. Moy. Ind./Jour	IC/ Lot
A 1	551	17.057	7.778	0.243		
	529	13.074	3.877	0.121		
	524	17.914	8.995	0.281		
	525	11.010	2.293	0.072		
	534	18.103	9.446	0.295		
	526	14.292	5.668	0.177		0.000
A 11	535 527	15.153 15.007	6.567 7.400	0.205 0.231	0.457	2.292
A !!	531	14.508	7.063	0.231	+	
	569	16.285	9.348	0.292		
	528	10.200	3.040	0.232	 	
	530	14.818	8.971	0.280	0.479	2.604
B 2	586	20.933	10.750	0.336		
	543	21.077	11.513	0.360	1	
	545	18.604	10.052	0.314		
	538	16.933	8.534	0.267		
	595	17.028	8.670	0.271		
	547	13.936	5.800	0.181		
	542	14.257	6.237	0.195	0.523	1.904
B 12	537	17.251	9.350	0.292		
	539	17.085	9.924	0.310		
	566	12.808	5.748	0.180		
	541	11.147	4.466	0.140	1	
	540	13.816	7.536	0.236	0.445	1.923
C 3	557	15.389	6.179	0.193		
· 	556	17.656	8.503	0.266		
****	550	19.748	10.630	0.332		
	555	15.734	7.238	0.226		
	532	17.917	9.705	0.303		
	549	15.760	7.682	0.240	· 	0.00
C 12	553	16.841	9.044	0.283	0.528	2.004
C 13	552 559	17.498 14.828	9.807 7.321	0.306	· -	~~~~
	554	12.005			- 	
	558	15.858	4.825 8.807	0.151 0.275	-}	
	548	14.474	7.691	0.273	0.471	1.958
D 4	561	23.364	13.012	0.407	0.471	1.930
	567	17.659	8.465	0.467	- 	
	642	19.957	10.926	0.341		
	570	17.668	8.869	0.277		
	571	18.034	9.422	0.294	 	
	565	15.279	6.842	0.214	·	
	568	16.134	7.951	0.248	0.571	1.952
D 14	563	13.474	6.224	0.195		
	564	14.196	7.297	0.228	1	
	560	17.515	10.737	0.336		
	533	10.798	4.180	0.131		
	544	7.723	1.573	0.049	0.379	2.019
E 5	588	20.147	9.765	0.305		
	621	20.443	10.803	0.338		
	577	18.385	9.193	0.287		
	579	11.647	2.466	0.077		
	581	21.223	12.341	0.386		
	576	15.762	7.260	0.227	-	
	573	14.136	6.349	0.198	0.502	1.932
E 15	572	16.857	9.367	0.293	 	
	578	17.255	9.821	0.307	ļl-	
	575	12.013	5.850	0.183		
	580	12.414	6.560	0.205	+ = = +	
	583	11.843	6.028	0.188	0.454	1.930
F 6	590	22.327	12.850	0.402		
	593	19.510	10.119	0.316	 	
	594	19.230	7 503	0.324	 	
	536	16.214	7.503	0.234	-	
	584	15.576	6.934	0.217	· 	
	591	17.981 16.986	9.691	0.303	1 0 EEO	1 003
F 16	631 574	15.707	8.969 7.937	0.280 0.248	0.558	1.883
	589	18.000	10.428	0.248	+	
	585	15.848	9.018	0.326	 	
	592	11.884	5.356	0.262	 	
	587	10.991	4.760	0.149	0.419	1.787
G 7	604	20.936	11.509	0.360	+- <u>*:</u> -!-	1.101
-	600	21.090	11.869	0.371	·	
	605	22.392	13.664	0.427	 	
	601	17.931	9.229	0.288	 	
	607		<u></u>	3.230	 	
	598	14.229	6.410	0.200	 	
	599	15.830	8.080	0.253	0.540	1.865
G 17	606	15.489	7.951	0.248	\	1.003
<u>~ ''</u>	596	16.169	8.679	0.271	 	
	597	14.179	6.960	0.218	 	
	639	17.811	10.817	0.338	 	
	603	15.816	8.889	0.338	0.480	1,774
Н8	612		5.003	J.210		,
	611	21.615	12.470	0.390	 	
	609	19.252	10.612	0.332	 	
					·{·	
	619	18.103)A_2/2 % M_(6103303	1	

	617	17.545	9.242	0.289	1	1
	608	16,738	8.763	0.274	0.562	4 700
H 18	614	15.200	7.250	0.274	0.563	1.783
						
	582	14.012	6.099	0.191	ļ	
	615	17.438	10.320	0.323	}]
	610	16.611	9.599	0.300		
	613	15.302	9.567	0.299	0.483	1.802
19	630	20.113	10.500	0.328	ļ	ļ
	625	18.614	9.404	0.294	<u> </u>	<u> </u>
	562	16.777	7.691	0.240		<u>;</u>
	626	17.032	7.950	0.248		ļ
	616	17.977	9.300	0.291		ļ
	546	19.335	11.183	0.349		<u> </u>
	629	16.133	8.332	0.260	0.523	1.819
l 19	627	18.284	10.562	0.330		
	628	16.478	8.822	0.276		
	620	11.662	4.370	0.137		!
	623	16.508	10.411	0.325		
	637	12.589	6.662	0.208	0.472	2.868
J 10	622	19.107	9.177	0.287		
	640	16.330	6.986	0.218		
	624	14.946	5.777	0.181		
	602	18.971	10.115	0.316		
	643	19.117	10.756	0.336		
	634	17.568	9.535	0.298		
	638	19.740	11.901	0.372	0.530	1.849
J 20	635	13.779	6.172	0.193		
	633	17.025	9.816	0.307		
	632	13.374	6.170	0.193		
	641	15.744	9.169	0.287		
	636	13.290	7.156	0.224	0.453	1.881

Traitement	ALP (U/L)	PHOSPHORE mg/dl	CALCIUM (mg/dl)	Zinc (mg/dL)
A	197.10	6.05	12.88	0.06403
A	406.58	6.55	12.43	0.06767
A	232.39	6.65	13.32	0.08153
A	328.08	5.03	13.68	0.06679
A	287.52	5.87	13.88	0.09008
Α	301.20	4.90	13.61	0.06588
A	202.01	5.77	12.33	0.07292
Α	349.51	4.52	13.36	0.06328
Α.	472.13	3.70	13.13	0.04488
A	328.41	3.60	13.36	0.05312
A				1
A	471.18	3.59	14.80	0.05572
B	201.91	8.12	11.24	0.07588
В	174.50	9.54	10.78	0.07316
8	203.48	7.86	10.89	0.10568
B	234.97	7.93	11.02	0.10368
В	209.87	8.55	10.75	0.07624
В	338.96	7.20	10.73	
В	311.92	8.13		0.06288
B			11.00	0.06564
B	192.74 237.69	8.09	11.32	0.05928
		7.90	11.34	0.07764
В	289.05	6.26	11.36	0.06452
В	252.83	5.61	11.00	0.04312
В	225.36	7.12	11.11	0.07068
C	247.85	5.40	13.75	0.07152
С	246.38	6.54	11.49	0.08032
C	317.77	6.17	12.55	0.08116
C	315.11	6.42	12.65	0.08532
С	300.62	5.97	13.84	0.09372
C	217.59	6.03	12.08	0.07468
C	330.44	6.06	13.28	0.08404
C	307.47	4.75	14.03	0.07664
С	315.89	5.65	14.01	0.07584
C	194.15	5.33	12.58	0.06784
C	331.96	4.18	13.97	0.07412
C	305.57	3.91	13.78	0.07416
D	186.44	7.40	12.26	0.08232
D	281.86	6.15	11.80	0.06784
D	209.97	7.42	12.10	0.09392
<u> </u>	236.47	5.98	12.94	0.08532
D	181.51	6.79	11.87	0.08368
Ď	144.16	6.02	11.77	0.06028
D	223.03	7.14	12.51	
<u> </u>		*		0.07832
	254.58	5.51	12.78	0.07644
D	267.09	6.16	12.35	0.07208
D	268.59	5.40	12.69	0.06440
D	273.13	5.96	12.46	0.06144
D	154.01	4.81	10.71	0.03780
E	205.74	7.89	11.59	0.07992
E	339.14	7.87	11.02	0.08692
E	174.16	5.91	12.27	0.06376
E	246.97	5.46	10.90	0.03904

E	316.12	8.01	11.64	0.08448
E	336.17	6.09	12.92	0.07248
E	232.89	4.92	12.24	0.06892
Ê	317.19	6.81	12.18	0.06908
Ē	455.35	6.45	14.00	0.07404
Ē	280.24	6.84	12.15	0.07176
E	194.77	7.03	11.42	0.07600
E	264.86	5.78	12.34	0.05964
F	255.08	6.64	11.94	0.07844
F	194.47	7.72	11.50	0.07516
F	180.88	8.18	11.63	0.08888
F	219.67	5.54	11.48	0.07336
-	260.24	5.91	11.02	
F	512.17	7.62	·	0.06496
F	205.23		11.59	0.07828
F		6.56	12.66	0.08768
	225.21	7.77	12.14	0.07984
<u>F</u>	213.06	8.09	10.91	0.07464
<u>F</u>	190.60	8.55	11.43	0.08096
<u> </u>	169.27	6.12	11.89	0.06500
<u>F</u>	222.57	6.14	11.92	0.05604
<u> </u>	497.55	6.35	11.33	0.08268
<u> </u>	185.40	7.83	12.57	0.07824
G	233.11	6.87	12.26	0.08420
6	412.84	6.09	11.27	0.06508
G				1
G	277.09	5.17	12.44	0.07100
G	176.53	8.83	11.81	0.06024
6	198.81	9.52	11.75	0.07620
G	189.82	7.65	11.60	0.06284
6	221.58	5.76	11.67	0.04900
G	233.53	7.66	11.18	0.05956
6	184.06	7.78	11.51	0.07896
Н				
Н	444.61	8.08	11.70	0.05916
Н	171.77	8.53	11.25	0.05456
H	346.47	7.06	11.59	0.06900
H	204.17	7.47	12.25	0.07204
H	273.47	8.01		
 Н	257.50	5.83	10.68	0.08304
H			11.36	0.06040
	168.62 255.67	8.05	11.28	0.08764
H		7.33	11.61	0.07050
	267.03	7.01	12.60	0.07548
н	192.62	6.27	11.48	0.06700
<u> </u>	230.48	7.05	11.93	0.07664
I	281.58	8.59	11.44	0.08556
I	231.98	8.45	11.23	0.08108
I	209.13	8.22	11.05	0.06108
1	312.47	8.16	10.62	0.06856
I	252.58	8.52	11.91	0.07836
I	289.83	7.44	11.15	0.06980
I	356.04	7.84	10.55	0.06700
Ī	256.24	8.26	12.38	0.07604
Ī	196.20	7.72	12.38	0.06276
	139.10	6.86	11.02	0.04148
I	133.10	0.00		

I	273.48	6.88	12.46	0.06136
J	166.06	7.63	11.31	0.07812
J	210.52	7.03	11.66	0.07236
J	202.04	6.09	12.01	0.06408
J	215.30	8.42	11.42	0.07412
J	199.44	7.55	11.59	0.07628
J	198.55	9.20	11.94	0.07548
J	197.00	8.28	11.10	0.08844
J	325.61	8.15	11.48	0.07616
J	147.96	9.13	10.79	0.05056
J	220.65	8.87	11.29	0.07712
J	134.12	7.67	12.21	0.05348
J	210.67	7.60	11.92	0.06588

		FECES	DIGESTIBILITY	Absorbed	Excreted
Diet	Treatment	(mg/g DM)	(%)	(mg/g)	(mg/g)
A1		23.522	57.5	4.700	3.472
A1	- 0	20.524	59.8	4.889	3.283
A1	Control without P	22.861	58.5	4.778	3.394
A11	j j	23.152	56.8	4.641	3.532
A11	0.3	20.083	59.9	4.894	3.279
A11		22.335	59.4	4.857	3.315
B12	=	38.592	44.7	5.552	6.864
B12	N d D	35.725	46.4	5.758	6.659
B12 B2	Control with diCa-P 16 g/kg	31.685	50.2	6.237	6.179
B2	di di	29.055	55.4	6.881	5.535
B2	0	33.152	49.1	6.091	6.325
C13		25.321	49.1	4.021	4.171
C13	9 5	24.771	51.9	4.248	3.944
C13	IPA hytas	24.661	49.8	4.076	4.116
C3	IPA Phytase 250 U/kg	24.971	55.8	4.568	3.624
C3	4 %	23.502	55.8	4.572	3.620
C3		20.718	58.9	4.823	3.369
D14		18.704	63.3	5.313	3.080
D14	kg	19.429	59.2	4.970	3.424
D14	IPA Phytase 500 U/kg	17.398	64.2	5.387	3.007
D4	= 400	22.444	55.7	4.673	3.721
D4	~ 6	15.429	67.8	5.691	2.703
D4		18.351	67.1	5.629 5.043	2.765 3.177
E15	- 5	19.319 19.615	61.3 63.2	5.043	3.028
E15	IPA Phytase 000 U/kg	20.150	60.8	5.000	3.020
E5	Phytase	21.621	59.2	4.864	3.356
E5	400	19.730	63.3	5.207	3.014
E5	-	19.426	63.1	5.191	3.029
F16		18.203	65.7	5.411	2.825
F16	0.5	14.611	74.2	6.110	2.126
F16	IPA Phytase 500 U/kg	17.973	67.5	5.556	2.680
F6	IPA nyta	15.786	69.3	5.706	2.530
F6	19 P	17.277	62.5	5.151	3.085
F6		15.209	69.3	5.704	2.531
G17		13.105	75.5	6.097	1.976
G17	e kg	12.035	77.7	6.274	1.799
G17	IPA Phytase 2000 U/kg	13.778	74.7	6.033	2.040
G7	F 70	14.162	70.2	5.665	2.407
G7	20 6	13.369	72.7	5.866	2.206
G7		13.671	71.0	5.731	2.341
H18		17.467	64.2	5.083	2.835
H18	Kg	13.509	74.5	5.901	2.017
H18	IPA Phytase 3000 U/kg	17.903	66.9	5.299	2.619
H8	7 40	16.764	60.5	4.794	3.124
H8	30	17.082	61.8	4.896	3.021
H8		17.090	66.3	5.246	2.672
119		14.068	74.7	5.721	1.941
119	IPA Phytase 1000 U/kg	10.763	78.6	6.023	1.639
119	A da	14.697	70.8	5.425	2.237
19	2000	13.691	70.0	5.364	2.298
19	7.4	13.555	70.5	5.403	2.259
19		13.277	75.9	5.818	1.844
J10	_	18.050	59.8	4.734	3.181
J10	se /kg	14.826	67.6	5.349	2.566
J10	IPA nyta	15.392	71.2	5.635	2.281
J20	1,400	11.471	77.0	6.093	1.822
J20	- 80	15.504	67.7	5.361	2.554

| J20 | | 18.140 | 67.3 | 5.327 | 2.589

Diet	Treatment	P in FECES (mg/g DM)	DIGESTIBILITY (%)	Absorbed (mg/g)	Excreted (mg/g)	equivalence (mg/g)
A1		23.143	24.3	1.099	3.416	0.010
A1	- a	22.165	21.5	0.969	3.546	-0.119
A1	Control without P	22.730	25.3	1.140	3.375	0.052
A11	‡ o	22.637	23.5	1.062	3.453	-0.027
A11	0.2	21.114	23.7	1.068	3.447	-0.021
A11		22.370	26.5	1.194	3.321	0.106
B12	_	28.366	35.3	2.756	5.045	1.667
B12	T A B	26.519	36.6	2.859	4.943	1.770
B12 B2	Control with diCa-P 16 g/kg	24.149	39.6	3.092	4.709	2.003
B2	9 4	20.690	49.5	3.860	3.942	2.771
B2	O	23.304	43.0	3.355	4.446	2.267
C13		20.864	24.0	1.083	3.437	-0.006
C13	0 0	21.555	24.1	1.088	3.432	-0.001
C13	IPA Phytase 250 U/kg	20.470	24.4	1.103	3.416	0.014
C3	IPA nyta	22.466	27.9	1.259	3.260	0.170
C3	Ph 256	21.356	27.2	1.230	3.289	0.141
C3		18.360	33.9	1.534	2.986	0.445
D14		15.963	42.3	1.929	2.629	0.840
D14		16.233	37.2	1.697	2.861	0.608
D14	IPA Phytase 500 U/kg	14.475	45.1	2.056	2.502	0.967
D4	IPA OU/	17.895	34.9	1.591	2.967	0.502
D4	144	16.252	37.5	1.710	2.847	0.621
D4	- 45		42.9	1.957	2.600	0.869
		17.258		The state of the s	The second second	0.714
E15	-	16.450	40.0	1.803	2.705	
E15	/kg	16.356	44.0	1.983	2.525	0.894
E15	PA Nyta	15.592	44.7	2.016	2.492	0.927
E5	IPA Phytase 1000 U/kg	17.542	39.6	1.785	2.723	0.696
E5	7.5	15.861	46.3	2.086	2.423	0.997
E5		16.787	41.9	1.891	2.618	0.802
F16		15.252	48.0	2.184	2.367	1.095
F16	IPA Phytase 500 U/kg	12.924	58.7	2.671	1.880	1.582
F16	IPA Phytase 500 U/kg	12.861	57.9	2.633	1.918	1.544
F6	# 400	14.904	47.5	2.162	2.388	1.073
F6	T 50	13.580	46.7	2.126	2.425	1.037
F6		14.933	45.4	2.065	2.485	0.976
G17		12.771	58.3	2.690	1.925	1.601
G17	IPA Phytase 2000 U/kg	12.705	58.9	2.716	1.899	1.628
G17	Phytase 000 U/kg	13.975	55.2	2.546	2.069	1.458
G7	F 78	12.138	55.3	2.552	2.063	1.463
G7	20 P	12.501	55.3	2.552	2.063	1.463
G7		12.573	53.3	2.462	2.153	1.373
H18		14.327	48.4	2.181	2.325	1.092
H18	0 5	12.242	59.4	2.679	1.828	1.590
H18	Phytase 000 U/kg	13.358	56.6	2.552	1.954	1.463
H8	IPA hyta:	11.460	52.6	2.371	2.136	1.282
H8	IPA Phytase 3000 U/kg	11.210	56.0	2.524	1.983	1.435
H8	.,	12.234	57.6	2.593	1.913	1.505
119		13.426	59.7	2.745	1.853	1.656
119	- 5	9.403	68.9	3.166	1.432	2.077
119	1 kg	12.051	60.1	2.763	1.834	1.674
	IPA Phytase 4000 U/kg	11.329	58.6	2.696	1.902	1.607
19	90		98.65.3	2.761	1.837	1.672
19	-4	11.020	60.1 63.6			
19		12.058		2.922	1.675	1.834
J10	_	12.463	51.2	2.306 2.636	2.196 1.866	1.217
140				7 15 315	1 2000	
J10 J10	IPA hytase 00 U/kg	10.780	58.6 64.4	2.900	1.602	1.811

J20	4 §	11.476	58.0	2.612	1.891	1.523	ı
J20		11.146	64.7	2.912	1.590	1.823	ı

Box Traitement	N° Porc	N° Creuset	% Cendres 100% MS	Traitement Force maximale (N)
Α	530	1	60.85	535 Tr:A 256.7426249
i	527	2	61.14	529 Tr:A 340.1596004
	531	3	62.39	526 Tr:A 258.093239
	569	4	58.03	525 Tr:A 186.7291519
	524	5	62.41	551 Tr:A 530.3761638
	534	6	63.20	534 Tr:A 384.5513903
	551	8	65.18	524 Tr:A 323.8680103
•	525	11	64.52	569 Tr:A 115.666211
	526	12	62.62	531 Tr:A 266.7461561
	529	13	61.33	527 Tr:A 164.2895492
	535	14	62.18	530 Tr:A 173.7323481
				272.8140
В	539	15	63.33	538 Tr:B 540.0311813
	541	16	66.00	545 Tr:B 834.7405529
	540	17	63.14	547 Tr:B 427.9822428
	566	18	60.89	542 Tr:B 591.1987166
	537	19	63.01	543 Tr:B 921.8980087
	586	20	62.92	595 Tr:B 778.6862945
	595	21	63.14	586 Tr:B 539.8671732
	543	22	63.82	537 Tr.B 439.0113013
	542	23	66.26	566 Tr:B 334.4434488
	547	25	62.02	540 Tr:B 845.074253
	545	26	65.06	541 Tr:B 361.5372753
	538	27	64.82	539 Tr:B 771.7388637 615.5174
С	552	28	64.15	557 Tr:C 402.801209
	548	29	64.05	553 Tr:C 344.8880304
ļ	559	30	60.78	555 Tr:C 470.3058998
	558	31	61.32	532 Tr:C 312.6604302
	554	32	65.66	556 Tr:C 297.0565641
	550	33	64.14	549 Tr:C 263.1132889
	549	35	59.85	550 Tr:C 528.383459
.	556	36	60.93	· 554 Tr:C 235.6361231
	532	38	62.49	558 Tr:C 354.6941817
	555	39	60.27	559 Tr:C 362.5725794
Ì	553	42	61.36	548 Tr:C 185.7726641
	557	44	63.60	552 Tr:C 257.5002348 334.6153
D	564	45	65.63	565 Tr:D 363.321649
_	570	47	65.87	561 Tr:D 688.0720657
	563	48	63.56	567 Tr:D 532.6939528
Ì	560	49	63.99	571 Tr:D 648.9839943
	533	50	65.08	
ļ	567		65.48	
		51 52		568 Tr:D 487.1100546
	561		66.53	570 Tr:D 663.1119311
ŀ	565 544	53	65.64	564 Tr:D 537.1049144
}	544	54	65.35	563 Tr:D 257.0583716
	568	46	63.83	560 Tr:D 475.6459217
ŀ		55	65.08	533 Tr:D 521.6086111
ļ	642 571	56	66 10	544 Tr:D 197.1909669
-	571	56	66.19	
E	571 578	57	65.33	621 Tr:E 481.3788921
E	571			

	572	61	64.41	588 Tr:E	491.1624503
	576	62	65.03	573 Tr:E	279.9124038
	573	63	66.28	576 Tr:E	332.075501
	588	65	65.89	572 Tr:E	339.4116251
	579	66	67.40	580 Tr:E	225.6324171
	577	67	65.86	575 Tr:E	323.5987187
	581	68	66.56	583 Tr:E	340.8468524
	621	69	64.89	578 Tr:E	441.0039327
F	594	70	66.23	590 Tr:F	733.3963922
	593	74	67.11	631 Tr:F	732.8905364
	536	73	65.67	584 Tr:F	381.1834395
	584	76	66.58	536 Tr:F	441.4039541
	631	78	67.75	593 Tr:F	575.2005417
	590	79	66.44	594 Tr:F	480.4039022
	589	80	66.22	591 Tr:F	366.3464737
	574	81	65.38	587 Tr:F	355.7700955
	585	82	63.74	592 Tr:F	442.8848729
	592	96	66.22	585 Tr:F	471.6250791
	587	5	66.85	574 Tr:F	350.7080104
	591	20	61.42_	589 Tr:F	672.300791
G	639	25	66.03	605 Tr:G	677.2170074
	603	29	64.90	600 Tr:G	674.3742296
	596	38	65.40	601 Tr:G	346.47432
	606	75	63.87	599 Tr:G	579.8156437
	604	79	65.48	598 Tr:G	771.2172716
	598	80	66.78	604 Tr:G	419.0117661
	597	82	65.19	606 Tr:G	340.948089
	599	86	60.91	596 Tr:G	437.8630664
	601	88	64.20	597 Tr:G	366.4934948
	600	94	65.93	603 Tr:G	363.1637289
	605	103	64.68	639 Tr:G	782.2427814
н	613	107	64.57	618 Tr:H	651.9685548
,	610	109	65.77	611 Tr:H	474.3866234
	615	110	66.69	609 Tr:H	456.6356886
	582	111	63.84	619 Tr:H	278.1951272
	614	113	65.98	608 Tr:H	382.0124437
	617	, ,		C47 T-:U	
	617	117	66.06	617 Tr:H	478.0334909
	618	117 119	66.06 65.10	614 Tr:H	
					832.5413146
	618	119	65.10	614 Tr:H	832.5413146 413.9346984
	618 611	119 148	65.10 66.14	614 Tr:H 582 Tr:H	832.5413146 413.9346984 346.0081756
	618 611 608	119 148 155	65.10 66.14 65.77	614 Tr:H 582 Tr:H 615 Tr:H	832.5413146 413.9346984 346.0081756 450.7266936
ı	618 611 608 619	119 148 155 175	65.10 66.14 65.77 65.00	614 Tr:H 582 Tr:H 615 Tr:H 610 Tr:H	832.5413146 413.9346984 346.0081756 450.7266936 477.3702603
1	618 611 608 619 609	119 148 155 175 197	65.10 66.14 65.77 65.00 67.77	614 Tr:H 582 Tr:H 615 Tr:H 610 Tr:H 613 Tr:H	832.5413146 413.9346984 346.0081756 450.7266936 477.3702603 386.0671629
i .	618 611 608 619 609	119 148 155 175 197	65.10 66.14 65.77 65.00 67.77	614 Tr:H 582 Tr:H 615 Tr:H 610 Tr:H 613 Tr:H	832.5413146 413.9346984 346.0081756 450.7266936 477.3702603 386.0671629 737.3985065
1 .	618 611 608 619 609 629 562	119 148 155 175 197 199 221	65.10 66.14 65.77 65.00 67.77 65.49 67.45 66.35	614 Tr:H 582 Tr:H 615 Tr:H 610 Tr:H 613 Tr:H 629 Tr:I 562 Tr:I	832.5413146 413.9346984 346.0081756 450.7266936 477.3702603 386.0671629 737.3985065
l .	618 611 608 619 609 629 562 546	119 148 155 175 197 199 221 280	65.10 66.14 65.77 65.00 67.77 65.49 67.45	614 Tr:H 582 Tr:H 615 Tr:H 610 Tr:H 613 Tr:H 629 Tr:I 562 Tr:I	832.5413146 413.9346984 346.0081756 450.7266936 477.3702603 386.0671629 737.3985065 713.7054483 544.540216
Î .	618 611 608 619 609 629 562 546 628	119 148 155 175 197 199 221 280 304	65.10 66.14 65.77 65.00 67.77 65.49 67.45 66.35 67.12	614 TriH 582 TriH 615 TriH 610 TriH 613 TriH 629 Tril 562 Tril 546 Tril 630 Tril	832.5413146 413.9346984 346.0081756 450.7266936 477.3702603 386.0671629 737.3985065 713.7054483 544.540216 649.0371071
į	618 611 608 619 609 562 546 628 627 630	119 148 155 175 197 199 221 280 304 308 331	65.10 66.14 65.77 65.00 67.77 65.49 67.45 66.35 67.12 66.84 69.05	614 Tr:H 582 Tr:H 615 Tr:H 610 Tr:H 613 Tr:H 629 Tr:I 562 Tr:I 546 Tr:I 630 Tr:I 618 Tr:I	832.5413146 413.9346984 346.0081756 450.7266936 477.3702603 386.0671629 737.3985065 713.7054483 544.540216 649.0371071 525.0902763
i .	618 611 608 619 609 562 546 628 627 630 616	119 148 155 175 197 199 221 280 304 308 331 336	65.10 66.14 65.77 65.00 67.77 65.49 67.45 66.35 67.12 66.84 69.05 66.68	614 Tr:H 582 Tr:H 615 Tr:H 610 Tr:H 613 Tr:H 629 Tr:I 562 Tr:I 546 Tr:I 630 Tr:I 618 Tr:I 625 Tr:I 626 Tr:I	832.5413146 413.9346984 346.0081756 450.7266936 477.3702603 386.0671629 737.3985065 713.7054483 544.540216 649.0371071 525.0902763 588.7252952
ı	618 611 608 619 609 562 546 628 627 630	119 148 155 175 197 199 221 280 304 308 331	65.10 66.14 65.77 65.00 67.77 65.49 67.45 66.35 67.12 66.84 69.05	614 Tr:H 582 Tr:H 615 Tr:H 610 Tr:H 613 Tr:H 629 Tr:I 562 Tr:I 546 Tr:I 630 Tr:I 618 Tr:I	478.0334909 832.5413146 413.9346984 346.0081756 450.7266936 477.3702603 386.0671629 737.3985065 713.7054483 544.540216 649.0371071 525.0902763 588.7252952 448.852972 317.7936126

	620	343	64.71
	623	352	64.90
J	638	355	65.55
	624	357	63.06
	602	362	62.64
	633	365	67.79
	640	390	67.05
	643	25	67.37
	622	52	64.99
	634	55	65.44
	632	68	63.47
	641	70	63.68
	636	80	64.88
	635	58	66.97

627 Tr:I	468.0993745
628 Tr:I	672.3203289
643 Tr:J	811.7108032
640 Tr:J	623.5242283
622 Tr:J	630.5928393
634 Tr:J	649.8534942
624 Tr:J	481.5921059
638 Tr:J	670.7008961
602 Tr:J	410.3670993
633 Tr:J	927.3685516
636 Tr:J	488.385717
635 Tr:J	506.7045849
632 Tr:J	418.3187809
641 Tr:J	629.8908135

FEEDAP UNIT

ANNEX C 1

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA phytase	Batch number: PPQ28432
Trial ID: S 12-08 VN	Location:
	DSM Nutritional Products France
	Centre de Recherche en Nutrition Animale
	BP 170
	68305 Saint-Louis cedex, France
Start date and exact duration of the study: July 3rd	2008 - 32 days
Number of treatment groups (+ control(s)): 8 + (2)	Replicates per group: 2
Total number of animals: 120	Animals per replicate: 7 + 5 = 12
water) Intended: 0 / 250 / 500 / 1000 / 1500 / Analys	s) (mg/Units of activity/CFU kg ⁻¹ complete feed/L ⁻¹ sed: 108 (endogenous activity) / 374 / 601 / 1097 / 2225 / 3098 / 4030 / 8238 U/kg
Substances used for comparative purposes: Dical	cium phosphate
Intended dose: 16 g per kg of feed. Equivalent to 3.2 g of additional P per kg of feed in a dry matter basis Analysis	sed: 3.3 g of additional P per kg of feed in a dry basis
Animal species/category: Swine / weaners	
Breed: Large White x Landrace Identif	cation procedure: Pen and individual earring
Sex: Males Age at start: 28 days	Body weight at start: 8.03 ± 1.09 kg
were e	al health: Three animals presented leg injuries and uthanized. No clinical sings were observed in the rest animals
Additional information for field trials:	
Location and size of herd or flock:	
Feeding and rearing conditions:	
Method of feeding:	
Diets (type(s)): Basal diet formulated to provide P e	xclusively from vegetable origin and according to
Presentation of the diet: Mash 🛛 P	ellet D Extruded D Other
Composition (main feedingstuffs): Maize - 68.52%,	soybean meal - 15.1% and rapeseed meal - 12.5%
Nutrient content (relevant nutrients and energy cor	ntent)
Intended values: Crude protein - 15.5%, lysine - 0 D.M. and digestible energy - 13.31 MJ/kg	
Analysed values: Ca - 0.82% in D.M. and P - 0.45	% in D.M.

Please submit this form using a common word processing format (e.g. MS Word).

FEEDAP UNIT

Date and nature of the examinations performed:

July 3rd and August 4th - weight measurement

July 29th, 30th and 31st - faecal sampling per pen

July 31st - individual blood sampling

Method(s) of statistical evaluation used: Two-factor analysis of variance (diet and diet + animal or pen) followed by a Duncan multiple range test

Therapeutic/preventive treatments (reason, timing, kind, duration): No therapeutic / preventive treatments were used

Timing and prevalence of any undesirable consequences of treatment: Nothing to report

Date 22.02.2010

Signature Study Director

Dr P. GUGGENBUHL

In case the concentration of the additive in complete feed/water may reflect insufficient accuracy, the dose of the additive can be given per animal day or mg kg body weight or as concentration in complementary feed.

Revised Annex 6 Internal Report 2500672 Change made to page 8 on 7 April 2014

REPORT No. 2500672 Regulatory Document

Document Date:

10-Jun-2009

Author(s):

Guggenbuhl P, Simões Nunes C, Piñón Quintana A, Portier C, Kurtz N and

Lehmann A

Title:

Evaluation of graded amounts of a microbial phytase on the faecal digestibility

and excretion of phosphorus, calcium and zinc in growing pigs.

Project No.

6106

Compound No.

Summary

The aim of the present study (S 05-08 VN) was to evaluate the effects of graded amounts of a microbial phytase (IPA) on the digestibility of phosphorus (P), calcium (Ca) and zinc (Zn) in the growing pig.

The basal diet, without addition of mineral P, was based on soybean meal, maize and barley. IPA phytase was included in the diet at the levels of 500 U/kg, 1000 U/kg, 1500 U/kg, 1750 U/kg, 2000 U/kg, 2500 U/kg and 3000 U/kg. A dietary treatment was based in the very slightly modified control diet containing the recommended available P by addition of dicalcium phosphate (diCa-P).

The mean P faecal concentration of the enzyme supplemented animals was significantly lower than that observed for the animals

ingesting the control diet.

All the phytase inclusion levels increased the bioavallability of P and accordingly reduced the growing pig quantitative faecal excretion of

P comparatively to the basal diet.

The P digestibility was dose dependant and highly significantly improved by 21.1, 28.5, 30.5, 32.0, 32.2, 37.3 and 38.7 % in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively. The digestibility of P in the diCa-P supplemented diet was also significantly higher than that of the control.

The faecal excretion of P was significantly reduced by 29.3, 40.1, 42.8, 45.8, 45.6, 53.0, and 55.2 % with IPA phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively. It was increased by 10.1 % with the diCa-P supplemented

The P equivalencies, considered as supplemental P digested comparatively to the non-supplemented control of 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg were 0.91, 1.22, 1.30, 1.32, 1.36, 1.56 and 1.60 g of full available P/kg feed respectively. In comparison the P equivalency of the diCa-P supplemented diet was 1.70 g of full available P/kg feed.

Ca and Zn digestibilities were significantly improved by all the inclusion levels of the phytase.

It can be concluded that the IPA phytase improved the digestibility and the apparent absorption of P, Ca and Zn, and reduced the P faecal excretion in the pig fed on a diet containing P exclusively from vegetable origin.

There was a dose dependant increase of the effects of the enzyme on the availability of the dietary P.

This report consists of 22 pages

Distribution

Dr. J. Broz, NRD/CA

Dr. M. Eggersdorfer, NRD

Dr. F. Fru, NRD/PA

Dr. A.M. Klünter, NRD/CA

Dr. J. Pheiffer, NRD/PA

Dr. J.-P. Ruckebusch, ANH/EE

Dr. G. Kau, NBD/A

Dr. J.-F. Hecquet, NBD/RA-GM

Dr. E. Schmidt Marcussen, Novozymes A/S

Approved

Name Main Author Signature

Date

Dr. P. Guggenbuhl, NRD/CA

Principal Scientist / Competence Mgr

Dr. C. Simões Nunes, NRD/CA

Research Center Head

Dr. A.-M. Klünter, NRD/CA

Project Manager

Dr. F.Fru, NRD/PA

15-06-09

Regulatory Document

DSM Nutritional Products Ltd

Nomenclature and Structural Formula (if available)

Liquid form IPA phytase expressed in Aspergillus oryzae, batch PPQ27987, activity at pH 5.5 of 24850 U/g.

1. INTRODUCTION

The aim of the present study (S 05-08 VN) was to evaluate the effects of graded amounts of a microbial phytase (IPA) on the digestibility of phosphorus (P), calcium (Ca) and zinc (Zn) in the growing pig. The basal diet, without addition of mineral P, was based on soybean meal, maize and barley. IPA phytase was included in the diet at the levels of 500 U/kg, 1000 U/kg, 1500 U/kg, 1750 U/kg, 2000 U/kg, 2500 U/kg and 3000 U/kg. A dietary treatment was based in the very slightly modified control diet containing the recommended available P by addition of dicalcium phosphate (diCa-P).

The experiment was performed in March-April 2008 in the facilities of the Centre de Recherche en Nutrition Animale (CRNA), DSM Nutritional Products France, BP 170, 68305 Saint-Louis cedex, France. It has been performed according to the French legal regulations on experiments with live animals.

2. MATERIAL AND METHODS

2.1. Test enzymes

The used IPA phytase was expressed in Aspergillus oryzae, batch PPQ27987, had an activity at pH 5.5 of 24850 U/g and was in a liquid form.

NRD/CM measured the phytase activity in the enzyme preparation and in the feed. One unit of phytase is defined as the quantity of enzyme which sets free 1 μ mole of inorganic phosphate per minute from 0.005 moles per litre sodium phytate at pH 5.5 and at 37°C.

2.2. Animal trial

Thirty six Large White × Landrace pigs having an initial body weight of 19.06 ± 1.82 kg were used. The animals were housed in floor-pen cages in 9 groups of 4 animals each in an environmentally controlled room. Each pen had a plastic-coated welded wire floor and was equipped with two water nipples and four stainless-steel individualised feeders. Room temperature was 21-22° C and humidity percentage was 50 %.

The pigs were fed a basal diet without addition of mineral P (diet A) during an adaptive period of 16 days. After that period they were allocated into 9 equal groups and fed for 12 days the basal diet (group A) or the diet A supplemented with 12 g/kg of dicalcium phosphate (group B) or with IPA phytase at the levels of 500 U/kg (group C), 1000 U/kg (group D), 1500 U/kg (group E), 1750 U/kg (group F), 2000 U/kg (group G), 2500 U/kg (group H), 3000 U/kg (group I).

The basal diet A was formulated to provide P exclusively from vegetable origin and to meet, with the exception of the available P supply, the animals' requirements according to Henry *et al.* (1989) and NRC (1998). The basal diet A (table 1) had a theoretical P content of 0.41 % and an analysed content of 0.42 %. The theoretical available P in the diet was 1.20 g/kg and the observed availability of 1.24 g/kg.

An indigestible tracer (chromium oxide) was added at a concentration of 0.4 % to all the diets allowing calculation of the digestibility of P, Ca and Zn. The feed was distributed ad libitum in mash form, under pen feed consumption control, and the animals had free access to drinking water. The digestibility of Ca was not corrected for Ca intake with the drinking water. Mean Ca content of the drinking water in the region is 120 mg/L.

Faecal P, Ca, Zn and Cr concentrations were measured at the 12th day of the second period. Faeces were sampled individually, in approximately the same amount at the same time of the day, during the last 3 days preceding that date. Thus, for each dietary treatment and for each criterion a total of 12 individual determinations have been performed. All minerals were determined according to standard Association of Official Analytical Chemists (1990) methods using a Vista-MPX ICP-OES spectrometer (Varian Australia Pty Ltd, Mulgrave Victoria, 3170 Australia). The apparent digestibility (% of the intake) of the minerals was calculated for the mentioned 3 day period.

2.3. Statistical analysis

Statistical treatment of the results involved the calculation of the mean and of the standard deviation of the mean as well as a two-factor hierarchical analysis of variance. The mathematical model was:

Yijk =
$$\mu$$
+Ai+Bij+Zijk,

where μ is the mean, Ai is the diet effect, Bij is the combined effect of the diet and animal or pen and Zijk is the residual term. The analysis of variance was followed by a Duncan multiple range test when a significant Ai effect without Bij effect was observed (Snedecor and Cochran, 1989). These calculations were performed using StatGraphics Plus 5.1 (Manugistics, Rockville, U.S.A. 2001).

3. RESULTS

3.1. Phytase and animals

The observed IPA phytase activity in the supplemented feed used was in general in excellent agreement with the programmed inclusion levels (table 2).

The animals grew normally during the observation period to reach a final mean body weight of 44.84 ± 3.37 kg. Their daily weight gain was of 679 ± 5 g. No mortality was observed during the experiment.

Two animals from group H, receiving the diet supplemented with IPA phytase at 2500 U/kg presented diarrhoea during the sampling period, so that no faeces could be collected from them. No statistical analysis was performed for this group as the total amount of faeces samples was only the half (n = 6) of the other groups (n = 12).

3.2. Effects on phosphorus

The mean P faecal concentration of the enzyme supplemented animals was very significantly lower than that measured in the animals ingesting the control diet (table 3). There was a decrease of the P faecal concentration with the increasing allowance of IPA phytase. The lowest P faecal concentration was observed in the animals ingesting IPA phytase at 3000 U/kg feed.

The P digestibility was dose dependent and highly significantly improved by 21.1, 28.5, 30.5, 32.0, 32.2, 37.3 and 38.7 percentage units in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg IPA phytase supplemented groups respectively (table 4, figure 2).

The digestibility of P in the diCa-P supplemented diet was also significantly higher than that of the control by 17.9 percentage units and very similar to the enzyme supplementation at 500 U/kg.

Regulatory Document
DSM Nutritional Products Ltd

Page 4 of 22

The faecal excretion of P was significantly reduced by 29.3, 40.1, 42.8, 45.8, 45.6, 53.0, and 55.2 % with IPA phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively. It was increased by 10.1 % with the diCa-P supplemented group (table 5, figure 2).

The apparent absorbed P was 2.15, 2.45, 2.54, 2.56, 2.60, 2.80 and 2.84 g/kg feed with IPA phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively and 2.93 g/kg feed in the diCa-P supplemented group. It was significantly increased in all the supplemented groups in comparison to the control diet (1.24 g/kg). With the exception of the IPA phytase 500 U/kg inclusion level, all other supplemented groups were over the recommended requirements of 2.25 g of digestible P per kg feed (Ernandoréna et al., 2008).

The P equivalencies, considered as supplemental P digested comparatively to the non-supplemented control, of 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg of IPA phytase were 0.91, 1.22, 1.30, 1.32, 1.36, 1.56 and 1.60 g of full available P/kg feed respectively (table 6, figure 3). In comparison the P equivalency of the diCa-P supplemented diet was 1.70 g of full available P/kg feed.

In the present study, using the equation of the tendency curve the calculated inclusion level to reach 1.5 g of full available P/kg feed was 2412 U/kg feed of IPA phytase (y = $48.982e^{2.5978x}$, R² = 0.9597).

3.3. Effects on calcium

The Ca faecal concentration of the animals ingesting the basal diet supplemented or not with diCa-P was systematically higher than that of the animals ingesting the diets supplemented with the phytase (table 7). The observed differences were statistically significant for all the enzyme supplemented groups.

The Ca digestibility was significantly improved by the phytase and by all the inclusion levels of IPA phytase (table 8, figure 4). The improvements were 8.6, 12.8, 12.6, 15.5, 15.1, 26.5 and 21.6 percentage units in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg IPA phytase supplemented groups respectively.

The Ca digestibility of the IPA phytase supplemented diets was more or less dose dependant.

The faecal excretion of Ca was significantly reduced by 23.9, 34.6, 36.8, 42.3, 41.7, 67.9, and 57.0 % with IPA phytase in the 500, 1000, 1500, 1750, 2000, 2500 and 3000 U/kg supplemented groups respectively. It was increased by 12.1 % with the diCa-P supplemented group (table 9, figure 5).

3.3. Effects on zinc

The Zn faecal concentration of the animals ingesting the non-supplemented control diet was systematically higher than that of the animals ingesting the diets supplemented with phytase with the exception of the two highest dosage of IPA phytase (table 10). The observed differences were not statistically significant for all the supplemented groups.

The Zn digestibility was significantly improved by the phytase for all inclusion levels in comparison to the basal diet (table 11). The Zn digestibility of the IPA phytase supplemented diets presented high biological variations from one group to the others giving no regularity in the dose curve.

Regulatory Document
DSM Nutritional Products Ltd

Page 5 of 22

The faecal excretion of Zn was significantly reduced in the phytase supplemented groups (table 12). IPA phytase presented inconsistency in the faecal Zn excretion reduction in regard to the increasing inclusion levels.

4. CONCLUSION

It can be concluded that the IPA phytase improved the digestibility and the apparent absorption of P, Ca and Zn, and reduced the P faecal excretion in the pig fed on a diet containing P exclusively from vegetable origin. There was a dose dependant effect of the IPA phytase on the availability of the dietary P.

<u>Table 1</u> - Composition (%) of the basal diet (A) and of that supplemented with diCa-P (B)

INGREDIENTS	Basal diet A without P (%)	Basal diet B with diCa-P (%)
Maize	53	53
Soybean meal	18	18
Barley	13.9	13
Oat meal	6	6
Wheat bran	5.4	5.4
Soya oil	1	1
diCa-P	-	1.2
Minerals (1), vitamins and synthetic aa	2.7	2.4
Crude protein - N x 6.25 - %	15.5	15.5
Lysine - %	0.96	0.96
Methionine + cystine - %	0.54	0.54
Ca - calculated - % in DM	0.66	0.86
Ca - analysed in - % in DM	0.70	0.80
P - calculated - % in DM	0.41	0.65
P - analysed - % in DM	0.42	0.62
Theoretically available P - %	0.12 (2)	1.86 ⁽³⁾
Phytic-P - calculated - %	0.28	0.28
Estimated digestible energy - MJ / kg	13.31	13.31
Phytase activity - U(4)/kg	225 ± 4	219 ± 4

⁽¹⁾ Mixture without mineral P;

⁽²⁾ Estimated from the mean P digestibility of the previous realized trials

⁽³⁾ Sum of the theoretically available P and 80 % of added mineral P as generally accepted

⁽⁴⁾ Quantity of enzyme that sets free 1 μmole of inorganic phosphate per minute from 0.005 mole per litre sodium phytate at pH 5.5 and at 37°C.

Table 2 - Phytase activity (U(a)/kg) and % of the target in the different diets.

Treatment groups	Basal Diet	Basal Diet + diCa-P	IPA phytase							
	Α	В	C	D	E	F	G	Н		
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000	
Measured phytase addition (U/kg) (1)	225 ± 4	219 ± 4	678 ± 6	1179 ± 24	1723 ± 13	1985 ± 8	2232 ± 34	2798 ± 35	3329 ± 54	
Actually added phytase (U/kg)	-	-	453	954	1498	1760	2007	2573	3104	
% of target	-	-	91	94	100	101	100	103	103	

^(a) Quantity of enzyme that sets free 1 μ mole of inorganic phosphate per minute from 5 mM sodium phytate at pH 3.2 and at 37°C. ⁽¹⁾ Mean \pm standard deviation of 2 determinations.

Erratum - footnote (a) should read 'Qualtity of enzyme that sets free 1 µmole of inorganic phosphate per minute from 5 mM sodium phytate at pH 5.5 and at 37 °C.'

This change was made by James La Marta, Sr. Mgr. regulatory Affairs, on 7 April 2014 after consultation with the lead author Dr. Peter Guggenbuhl.

Table 3 - Effects of the IPA phytase on the faecal concentration of phosphorus in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P IPA phytase							
(11 - 12)	A	В	C	D	E	F	G	Н	
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000
Faecal P concentration (%of DM) (1)	1.59 ± 0.25	1.67 ± 0.37	1.19 ± 0.13	1.08 ± 0.10	0.97 ± 0.10	0.99 ± 0.17	0.94 ± 0.14	0.86 ⁽²⁾ ± 0.18	0.83 ± 0.18
Variation from A (%)	100	105.6	74.8	68.2	61.4	62.2	59.2	54.5	52.6
			Statis	stical analys	is				
	A-	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
			C-	NS	NS	NS	P<0.05		P<0.001
				D-	NS	NS	NS		P<0.05
					E-	NS	- NS		NS
						F-	NS		NS
							G-		NS
				FIRE B				н-	

Animals: growing pigs of an initial body weight of $19.06 \pm 1.82 \text{ kg}$; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations.

Table 4 - Effects of the IPA phytase on the total apparent digestibility of phosphorus in the growing pig.

Treatment groups	Basal Diet	Basal Diet + diCa-P			IP	A phyta	se		
(11 - 12)	A	В	C	D	E	F	G	Н	1
Programmed phytase addition (U/kg)	Statistical analysis Sasal Diet + diCa-P	3000							
Faecal P digestibility (%) ⁽¹⁾		2.77							68.0 ± 6.2
Variation from A (%)	-	61.0	72.2	97.5	104.1	109.2	110.0	127.2	132.0
			Statis	stical analys	is			The Black of	
	A-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
		B-	NS	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
			. C-	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001
				D-	NS	NS	NS		P<0.001
					E-	NS	NS		P<0.001
						F-	NS		P<0.05
							G-		P<0.05
								H-	

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations.

Table 5 - Effects of the IPA phytase on the faecal excretion of phosphorus in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P			IP	A phyta:	se			
(11 - 12)	A	В	C	D	E	F	G	Н	1	
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000	
Faecal P excretion (mg/g DM) ⁽¹⁾	2.99 ± 0.23	3.29 ± 0.49	2.11 ± 0.24	1.79 ± 0.16	1.71 ± 0.15	1.62 ± 0.16	1.63 ± 0.14	1.40 ⁽²⁾ ± 0.18	1.34 ± 0.26	
Variation from A (%)	100	110.1	70.7	59.9	57.2	54.2	54.4	47.0	44.8	
		55,4876.0	Statis	stical analys	is			1 E.S.	7 10 10 10 10	
	A-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001	
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001	
	N STATE OF		C-	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001	
				D-	NS	NS	NS		P<0.001	
					E.	NS	NS	The state of the	P<0.001	
						F-	NS		P<0.05	
							G-		P<0.05	
	E EVEN I				Barrier I			H-	12-20-6-	

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations.

Figure 1

Effects on phosphorus total digestibility of graded amounts of IPA phytase in growing pigs

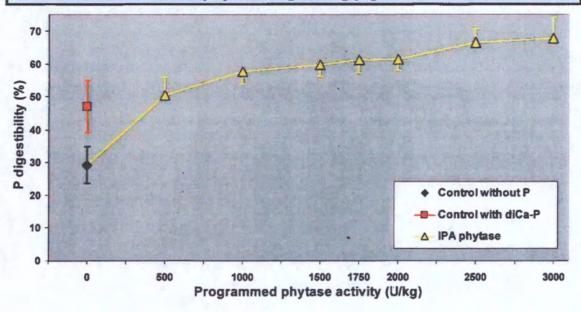
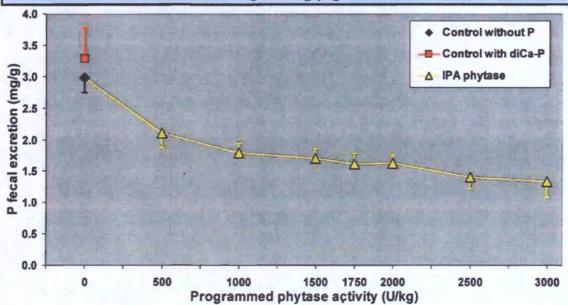



Figure 2

Effects on phosphorus faecal excretion of graded amounts of IPA phytase in growing pigs

<u>Table 6</u> - Phosphorus equivalencies (g of full available supplemental P per kg of feed comparatively to the non-supplemented control) of the IPA phytase in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P			IP	A phyta	se						
(11 - 12)	A	В	C	D	E	F	G	Н	1				
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000				
P equivalence (g/kg feed)	0.00 ± 0.23	1.70 ± 0.49	0.91 ± 0.24	1.22 ± 0.16	1.30 ± 0.15	1.32 ± 0.16	1.36 ± 0.14	1.56 ⁽²⁾ ± 0.18	1.60 ± 0.26				
P eq. variation from C (%)	-	-	100	133.5	143.1	145.2	149.3	171.0	175.7				
			Statis	tical analys	is								
	A -	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	MOS TO THE	P<0.001				
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		NS				
			C-	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001				
				D-	NS	NS	NS		P<0.001				
					E-	NS	NS		P<0.05				
						F-	NS		P<0.05				
							G-		NS				
							100	H-					

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

⁽¹⁾ Mean ± standard deviation of the mean of 12 determinations. (2) Mean ± standard deviation of the mean of 6 determinations.

Figure 3

Effects on phosphorus equivalency of graded amounts of IPA phytase in growing pigs

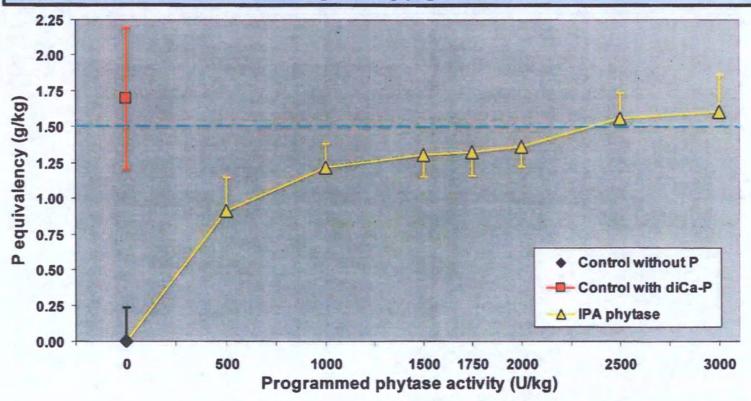


Table 7 - Effects of the IPA phytase on the faecal concentration of calcium in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
(11 - 12)	A	В	C	D	E	F	G	Н	1	
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000	
Faecal Ca concentration (% of DM) ⁽¹⁾	1.48 ± 0.30	1.58 ± 0.38	1.18 ± 0.20	1.09 ± 0.21	1.00 ± 0.22	0.97 ± 0.16	0.93 ± 0.15	0.54 ⁽²⁾ ± 0.17	0.74 ± 0.30	
Variation from A (%)	100	106.9	79.8	73.7	67.6	65.5	63.0	36.7	49.8	
		0.61910	Statis	stical analys	is					
	A -	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.00	
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.00	
	References		C-	NS	NS	NS	NS		P<0.00	
				D-	NS	NS	NS		P<0.05	
					E-	NS	NS		NS	
						F-	NS		NS	
							G-		NS	
								H-		

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean ± standard deviation of the mean of 12 determinations.

(2) Mean ± standard deviation of the mean of 6 determinations. NS: non significant

Table 8 - Effects of the IPA phytase on the total apparent digestibility of calcium in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
	A	В	C	D	E	F	G	Н	1	
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000	
Faecal Ca digestibility (%) (1)	60.2 ± 3.7	61.1 ± 7.1	68.8 ± 5.9	73.0 ± 5.8	72.8 ± 5.5	75.7 ± 3.6	75.3 ± 2.7	86.7 ⁽²⁾ ± 4.2	81.8 ± 7.9	
Variation from A (%)	100	101.5	114.3	121.2	120.9	125.7	125.1	143.9	135.8	
			Statis	stical analys	is					
	A -	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001	
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	a Maria	P<0.001	
			C-	NS	NS	P<0.05	P<0.05		P<0.001	
				D-	NS	NS	NS		P<0.001	
		1			E-	NS	NS		P<0.001	
						F-	NS		NS	
							G-		NS	
								H-		

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

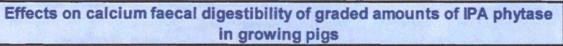
(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations.

Table 9 - Effects of the IPA phytase on the faecal excretion of calcium in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
(11 - 12)	A	В	C	D	E	F	G	Н		
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000	
Faecal Ca excretion (mg/g DM) ⁽¹⁾	2.77 ± 0.26	3.11 ± 0.57	2.11 ± 0.40	1.81 ± 0.39	1.75 ± 0.35	1.60 ± 0.23	1.62 ± 0.18	0.89 ⁽²⁾ ± 0.28	1.19 ± 0.52	
Variation from A (%)	100	112.1	76.1	65.4	63.2	57.7	58.3	32.1	43.0	
			Statis	stical analys	is					
	A -	P<0.05	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001	
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001	
	N E WATER		C-	NS	NS	P<0.05	P<0.05		P<0.001	
				D-	NS	NS	NS		P<0.001	
					E-	NS	NS		P<0.05	
						F-	NS		NS	
							G-		NS	
		1000000						H-		

Regulatory Document
DSM Nutritional Products Ltd


Page 17 of 22

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean \pm standard deviation of the mean of 12 determinations.

(2) Mean \pm standard deviation of the mean of 6 determinations. NS: non significant

Figure 4

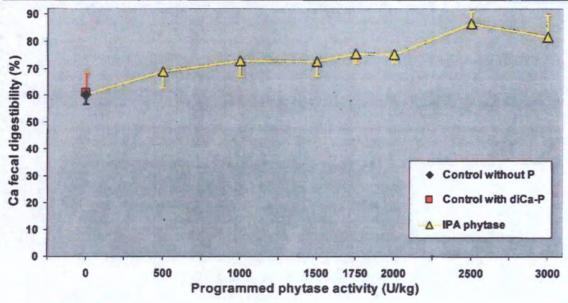


Figure 5

Effects on calcium faecal excretion of graded amounts of IPA phytase in growing pigs

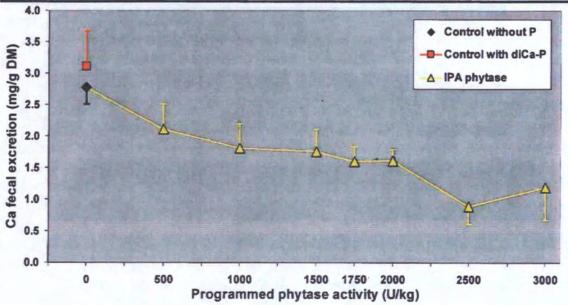


Table 10 - Effects of the IPA phytase on the faecal concentration of zinc in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
(11 – 12)	A	В	C	D	E	F	G	H	-	
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000	
Faecal Zn concentration (% of DM) ⁽¹⁾	0.48 ± 0.09	0.46 ± 0.11	0.40 ± 0.06	0.45 ± 0.04	0.42 ± 0.06	0.42 ± 0.06	0.44 ± 0.06	0.49 ⁽²⁾ ± 0.06	0.49 ± 0.08	
Variation from A (%)	100	96.0	83.4	93.5	89.0	89.2	92.1	103.1	102.9	
			Statis	stical analys	is					
			No si	ignificant dif	ferences be	tween the g	roups			

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean ± standard deviation of the mean of 12 determinations.

(2) Mean ± standard deviation of the mean of 6 determinations.

Table 11 - Effects of the IPA phytase on the total apparent digestibility of zinc in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
(11 - 12)	A	В	C	D	E	F	G	Н	1	
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000	
Faecal Zn digestibility (%) ⁽¹⁾	11.4 ± 5.6	16.7 ± 9.4	25.5 ± 7.0	21.4 ± 6.5	17.3 ± 8.7	25.0 ± 6.2	21.6 ± 4.8	17.5 ⁽²⁾ ± 3.7	18.1 ± 9.7	
Variation from A (%)	100	146.8	223.6	187.8	151.5	119.1	189.3	153.5	158.4	
			Statis	stical analysi	s					
	Α-	NS	P<0.001	P<0.001	P<0.05	P<0.001	P<0.001		P<0.05	
		B-	P<0.05	NS	NS	P<0.05	NS		NS	
			C-	NS	NS	NS	NS		NS	
				D-	NS	NS	NS		NS	
				i i	E-	NS	NS		NS	
						F-	NS		NS	
							G-		NS	
								H-		

Regulatory Document DSM Nutritional Products Ltd Page 20 of 22

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean ± standard deviation of the mean of 12 determinations.

(2) Mean ± standard deviation of the mean of 6 determinations. NS: non significant

Table 12 - Effects of the IPA phytase on the faecal excretion of zinc in the growing pig.

Treatment groups (n = 12)	Basal Diet	Basal Diet + diCa-P	IPA phytase							
(11 - 12)	A	В	C	D	E	F	G	Н	1	
Programmed phytase addition (U/kg)	0	0	500	1000	1500	1750	2000	2500	3000	
Faecal Zn excretion (mg/g DM) ⁽¹⁾	0.086 ± 0.005	0.083 ± 0.009	0.070 ± 0.007	0.074 ± 0.006	0.074 ± 0.008	0.070 ± 0.006	0.076 ± 0.005	0.080 ⁽²⁾ ± 0.004	0.078 ± 0.009	
Variation from A (%)	100	97.1	81.6	85.6	86.3	81.1	88.2	93.1	91.2	
			Statis	stical analys	is					
	A -	NS	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.001	
		B-	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001		P<0.05	
			C-	NS	NS	NS	NS		NS	
				D-	NS	NS	NS		NS	
					E-	NS	NS		NS	
						F-	NS		NS	
	U. T. S.						G-		NS	
						1		H-		

Animals: growing pigs of an initial body weight of 19.06 ± 1.82 kg; diet based on soybean meal, maize and barley.

(1) Mean ± standard deviation of the mean of 12 determinations.

(2) Mean ± standard deviation of the mean of 6 determinations.

REFERENCES

Association of Official Analytical Chemists, 1990. Official methods of analysis. 15th edition, Association of Official Analytical Chemists, Arlington.

Emandoréna, V., Gaudré, D., Granier, R. 2008. Quelle teneur en phosphore digestible alimentaire retenir pour le porc en phases de croissance et de finition ? 40es Journées de la Recherche Porcine, Paris.

Henry Y., Perez J.M., Sève B., 1989. In: L'alimentation des animaux domestiques - porc, lapin, volailles (ed. INRA), 2ème édition, INRA, Paris, 49-76.

NRC, 1998. Nutrient requirements of swine, 10th revised edition, National Academic Press, Washington.

Snedecor G.W., Cochran W.G., 1989. Statistical methods, 8th edition, Iowa University Press, Ames.

Diet	Treatment	Pig	P conc feces	DIGESTIBILITY	EXCRETION	EQUIV
A1		178	19.187	31.7	2.886	0.102
A1	Δ.	241	15.024	25.0	3.168	-0.181
A1		236	16.071	31.0	2.916	0.072
A1	Control without	223	13.467	27.4	3.066	-0.079
A1	2	178	16.404	31.1	2.912	0.075
A1	=	241	15.654	30.0	2.957	0.030
	>	236	17.975	24.2		-0.214
A1	_			200.100	3.202	
A1	2	223	16.308	24.6	3.185	-0.198
A1	=	178	16.587	34.6	2.761	0.226
A1	0	241	11.013	39.2	2.570	0.417
A1	0	236	12.479	34.8	2.756	0.231
A1		223	20.102	17.9	3.470	-0.482
B2	0	176	13.837	54.5	2.833	2.153
B2	di-CaP	234	18.579	43.4	3.523	1.462
B2	Ų	175	13.603	58.0	2.613	2.373
B2	i	189	15.302	47.8	3.251	1.734
B2		176	18.533	43.6	3.510	1.476
B2	±	234	17.179	46.5	3.328	1.658
B2	3	175	15.308	54.3	2.844	2.142
B2	Control with	189	13.966	51.2	3.036	1.950
B2	2	176	29.555	1977		
B2	=	234	17.068	45.7	3.377	1.609
B2	ō	175	26.962	26.5	4.571	0.415
B2	O			47.1	3.291	1.695
	CD	189 225	13.884 9.399	55.9	1.878	1.144
C3	U/kg				100000000000000000000000000000000000000	
C3	3	217	12.208	54.1	1.954	1.068
C3	0	197	11.358	51.5	2.065	0.958
C3	200	235	13.257	38.0	2.642	0.381
C3	4)	225	12.841	43.7	2.398	0.625
C3	phytase	217	11.169	56.5	1.851	1.171
C3	T T	197	10.128	55.0	1.916	1.106
C3	5	235	11.057	53.4	1.987	1.035
C3	4	225	14.088	47.8	2.222	Q.800
C3		217	12.227	54.5	1.938	1.085
C3	IPA	197	12.354	50.4	2.114	0.908
C3	=	235	12.179	44.4	2.369	0.654
D4	~	212	8.947	66.0	1.442	1.563
D4	UK	232	11.004	56.4	1.849	1.156
D4	0	237	12.150	56.0	1.866	1.139
D4	1000	208	10.965	54.4	1.936	1.069
	5			54.1		
D4	0	212	11.029		1.947	1.058
D4	lytase	232	10.821	63.0	1.568	1.437
D4	ta	237	9.794	59.0	1.738	1.268
D4	2	208	12.390	54.9	1.914	1.091
D4	p	212	9.734	59.7	1.711	1.295
D4	4	232	11.989	51.9	2.041	0.965
D4	IPA	237	11.100	58.6	1.758	1.247
D4		208	9.861	60.1	1.691	1.315
E5	UK	198	9.496	61.5	1.638	1.375
E5	2	192	8.921	60.9	1.662	1.351
E5		195	9.277	58.5	1.764	1.249
E5	1500	227	9.381	58.2	1.777	1.236
E5	7	198	11.231	56.1	1.868	1.145
E5		192	8.647	61.0	1.658	1.355
E5	phytase	195	10.438	56.4	1.854	1.159
	Te le					
E5	2	227	12.158	52.4	2.025	0.988
E5	Q	198	9.383	60.8	1.667	1.346
E5		192	8.864	63.0	1.574	1.439
E5	IPA	195	9.039	65.1	1.485	1.528
E5		227	10.026	63.8	1.539	1.474
F6	C/k	233	9.341	57.1	1.792	1.149
F6	5	218	13.480	56.1	1.835	1.107
F6	750	210	9.751	57.0	1.795	1.146
	10	202	10.848	58.2	1.747	1.194

F6	-	233	9.422	60.0	1.671	1.270
F6	9	218	12.510	58.6	1.729	1.212
F6	co.	210	9.288	64.5	1.482	1.459
F6	Z	202	8.302	67.7	1.349	1.593
F6	phytase	233	7.052	67.8	1.348	1.594
F6	-	218	9.947	63.5	1.525	1.417
F6	IPA	210	9.289	62.3	1.574	1.367
F6	=	202	9.204	62.3	1.577	1.365
G7	C/k	182	10.983	60.7	1.659	1.327
G7		186	7.560	59.7	1.700	1.286
G7	2000	201	8.009	63.4	1.547	1.439
G7	8	238	10.804	55.5	1.881	1.105
G7		182	11.341	59.1	1.725	1.260
G7	9	186	9.281	62.3	1.591	1.394
G7	œ.	201	9.497	60.0	1.689	1.297
G7	phytase	238	9.942	59.4	1.714	1.272
G7	40	182	10.900	63.2	1.555	1.431
G7		186	8.860 -	60.2	1.682	1.304
G7	IPA	201	7.358	68.4	1.333	1.653
G7	=	238	8.150	66.2	1.427	1.559
19	U/k	203	7.513	68.4	1.319	1.621
19	2	191	10.379	58.1	1.752	1.188
19	9	216	8.043	69.0	1.297	1.643
19	3000	228	6.691	75.1	1.040	1.900
19		203	11.186	63.4	1.530	1.410
19	9	191	7.644	73.8	1.096	1.844
19	TO TO	216	12.326	56.6	1.813	1.127
19	phytase	228	7.707	72.9	1.132	1.808
19	40	203	6.726	70.5	1.231	1.709
19	-	191	7.081	66.3	1.407	1.533
19	IPA	216	8.003	64.6	1.478	1.462
19	=	228	6.736	76.8	0.970	1.970

Diet	Treatment	Pig	Zn conc feces
A1		178	0.617
A1	a	241	0.389
A1	+	236	0.435
A1	5	223	0.358
A1	Control without P	178	0.526
A1	~	241	0.522
A1	-	236	0.558
A1	2	223	0.481
A1	=	178	0.498
A1	0	241	0.360
A1	0	236	0.382
A1		176	0.591 0.416
B2 B2	Δ.	234	0.410
B2	e c	175	0.382
B2	Ĭ.	189	0.454
B2	ъ	176	0.511
B2	÷	234	0.455
B2	3	175	0.394
B2	-	189	0.324
B2	kg Control with di-CaP	176	0.636
B2	=	234	0.445
B2	8	175	0.691
B2)	189	0.311
C3	kg	225	0.297
C3	5	217	0.511
C3	0 (197	0.432
C3	0	235	0.322
C3	45	225	0.396
C3	Se	217	0.433
C3	ta	197	0.350
C3	h	235 225	0.361
C3 C3	Q	217	0.496 0.429
C3	A	197	0.429
C3	IPA phytase 500	235	0.332
D4	×	212	0.412
D4	5	232	0.474
D4	0	237	0.532
D4	00	208	0.432
D4	-	212	0.449
D4	96	232	0.434
D4	a	237	0.389
D4	2	208	0.509
D4	ph	212	0.437
D4		232	0.407
D4	6	237	0.423
D4		208	0.448
E5	\$	198	0.370
E5	1	192	0.354
E5	phytase 1500 U/k IPA	195	0.429
E5	15	227	0.439
E5	0	198	0.495
E5 E5	S	192 195	0.311 0.462
E5	Te	227	0.462
E5	13	198	0.444
E5	Q	198	0.444
E5	IPA	195	0.361
E5	7	227	0.505
F6	.9	233	0.338
F6	5	218	0.531
F6	750 U/I	210	0.355
F6	75	202	0.495

F6	-	233	0.383
F6	é	218	0.493
F6	eg.	210	0.375
F6	IPA phytase	202	0.453
F6	4	233	0.345
F6	-	218	0.456
F6	0	210	0.403
F6		202	0.470
G7	UK	182	0.520
G7	2	186	0.356
G7	9	201	0.356
G7	0	238	0.476
G7	N	182	0.504
G7	Se	186	0.440
G7	To the	201	0.367
G7	5	238	0.449
G7	40	182	0.553
G7	=	186	0.406
G7	IPA phytase 2000	201	0.407
G7		238	0.434
19	N/	203	0.410
19	2	191	0.539
19	8	216	0.360
19	0	228	0.525
19	60	203	0.615
19	Se	191	0.508
19	tase 3000 U/k	216	0.585
19	2	228	0.487
19	d	203	0.477
19	A	191	0.347
19	IPA	216	0.465
19		228	0.569

Diet	Treatment	Pig	Ca conc feces	DIGESTIBILITY	EXCRETION
A1		178	21.336	54.0	3.209
A1	_	241	12.427	62.4	2.621
A1		236	17.477	54.5	3.171
A1	without	223	11.727	61.7	2.670
A1	Ě	178	16.467	58.1	2.924
A1	=	241	13.977	62.1	2.640
A1	>	236	15.386	60.7	2.740
A1	Control	223	14.497	59.4	2.831
A1	ţ	178	17.083	59.2	2.843
A1	5	241	9.301	68.9	2.170
A1	ŭ	236	12.362	60.8	2.730
A1		223	15.809	60.9	2.729
B2		176	13.976	64.2	2.862
B2	<u>-</u>	234	18.635	55.8	3.534
B2	Ö	175	10.803	74.0	2.075
B2	di-CaP	189	13.075	65.2	2.778
B2	ъ	176	19.201	54.5	3.636
B2	モ	234	18.229	55.8	3.531
B2	with	175	14.121	67.2	2.623
B2	-	189	11.664	68.3	2.535
B2	Control	176	27.817	00.0	2.000
B2	=	234	18.470	54.3	3.655
B2	ō	175	23.651	49.8	4.010
B2	O	189	12.441	63.1	2.949
C3	(1)	225	7.638	77.5	1.526
C3	U/kg	217	9.837	76.7	1.574
C3		197	14.526	61.0	2.641
C3	200	235	12.320	63.7	2.455
	20	225	12.918	64.4	2.433
C3		217		75.1	
C3	S		10.172	and the state of t	1.686
C3	To l	197	10.570	70.5	2.000
C3	phytase	235	11.404	69.7	2.049
C3	Q	225	13.207	69.2	2.083
C3	A	217	10.847	74.6	1.719
C3	IPA	197	14.809	62.6	2.534
C3		235	13.639	60.8	2.653
D4	UK	212	8.469	79.6	1.365
D4		232	7.761	80.6	1.304
D4	90	237	10.888	75.1	1.672
D4	1000	208	13.246	65.1	2.339
D4		212	13.582	64.2	2.398
D4	tase	232	9.169	80.2	1.329
D4	to the	237	8.329	78.0	1.478
D4	5	208	14.545	66.5	2.247
D4	bh	212	11.571	69.7	2.034
D4		232	12.311	68.8	2.095
D4	IPA	237	9.823	76.8	1.556
D4		208	11.296	71.1	1.937
E5	N/S	198	12.281	67.1	2.118
E5		192	7.312	78.9	1.362
E5	0	195	9.466	72.1	1.800
E5	20	227	9.605	71.8	1.819
E5	-	198	13.378	65.5	2.225
E5	0	192	5.460	83.8	1.047
	Se	195	12.292	66.1	2.184
E5	7	227	10.661	72.4	1.776
E5 F5		198	11.869	67.3	2.108
E5	-	100	11.000	76.6	1.509
E5 E5	p	192	8 501		
E5 E5 E5	A pt	192	8.501	A STATE OF THE STA	
E5 E5 E5 E5	IPA phytase 1500	195	10.140	74.2	1.666
E5 E5 E5 E5		195 227	10.140 9.186	74.2 78.1	1.666 1.410
E5 E5 E5 E5 E5 F6		195 227 233	10.140 9.186 9.202	74.2 78.1 73.2	1.666 1.410 1.766
E5 E5 E5 E5	750 U/k IPA pł	195 227	10.140 9.186	74.2 78.1	1.666 1.410

F6	233	9.337	74.9	1.656
F6	218	11.409	76.1	1.577
F6	210	7.560	81.7	1.206
F6	202	10.317	74.6	1.676
F6	210 202 233	7.299	78.8	1.395
		8.234	80.9	1.262
F6	210	8.739	77.5	1.481
F6	202	10.832	71.9	1.856
G7	182	9.346	78.4	1.411
G7	186	7.755	73.4	1.744
G7 S	201	7.522	77.8	1.452
G7	201 238 182	10.873	71.1	1.893
		11.464	73.4	1.744
G7	186	9.151	76.0	1.569
G7	186 201 238 182	10.123	72.5	1.800
G7	238	10.358	72.7	1.785
G7	182	11.731	74.4	1.673
		8.378	75.7	1.591
G7 G7	201	7.316	79.8	1.325
G7	238	8.021	78.5	1.405
19	203	5.349	85.6	0.939
19	191	15.007	61.3	2.533
19	216 228 203	6.003	85.2	0.968
19	228	4.263	89.9	0.663
		9.177	80.8	1.255
19	191	5.547	87.8	0.795
19	216	10.626	76.1	1.563
19	191 216 228 203	5.887	86.8	0.864
19	203	3.795	89.4	0.695
19	191	8.966	72.8	1.781
19	216	6.298	82.2	1.163
19	228	7.616	83.2	1.097

FEEDAP UNIT

ANNEX C 1

TRIAL PROTOCOL DATA SHEET: FOR TERRESTRIAL ANIMALS

Identification of the additive: IPA phytase	Batch number: PPQ27987
Trial ID: S 05-08 VN	Location:
	DSM Nutritional Products France
	Centre de Recherche en Nutrition
	Animale
	BP 170
	68305 Saint-Louis cedex, France
Start date and exact duration of the study: March 10 ^s	" 2008 - 38 days
Number of treatment groups (+ control(s)): 7 + (2)	Replicates per group: 1
Total number of animals: 36	Animals per replicate: 4
Dose(s) of the additive/active substance(s)/agent(s) water)	(mg/Units of activity/CFU kg ⁻¹ complete feed/L ⁻¹
	225 (endogenous activity) / 678 / 1179 / 1723 / 32 / 2798 / 3329 U/kg
•	
Substances used for comparative purposes: Dicalciu	m phosphate
Intended dose: 12 g per kg of feed. Equivalent to 2.4 g of additional P per matter basis	: 2.0 g of additional P per kg of feed in a dry sis
Animal species/category: Swine / growers	
Breed: Large White x Landrace Identification	tion procedure: Pen and individual earring
Sex: Males Age at start: 90 days	Body weight at start: 19.06 ± 1.82 kg
Physiological stage: Growing pigs General h	nealth: Normal - no clinical signs were observed
Additional information for field trials:	
Location and size of herd or flock:	
Feeding and rearing conditions:	
Method of feeding:	
Diets (type(s)): Basal diet formulated to provide P excl the NRC	usively from vegetable origin and according to
	et
Composition (main feedingstuffs): Maize - 53%, soybe	
Nutrient content (relevant nutrients and energy content	
Intended values: Crude protein - 15.5%, lysine - 0.	
0.66% in D.M., P - 0.41% in D.M. and digestible e	
Analysed values: Ca - 0.70% in D.M. and P - 0.42%	in D.M.
Date and nature of the examinations performed:	A CONTRACTOR OF THE CONTRACTOR

Please submit this form using a common word processing format (e.g. MS Word).

FEEDAP UNIT

March 10th and April 17th - weight measurement

March 10th and March 19th - acclimatation period

March 20th and April 4th - 1st period

April 5th and April 17th - 2nd period

April 15th, 16th and 17th - individual faecal sampling

Method(s) of statistical evaluation used: Two-factor analysis of variance (diet and diet + animal or pen) followed by a Duncan multiple range test

Therapeutic/preventive treatments (reason, timing, kind, duration): No therapeutic / preventive treatments were used

Timing and prevalence of any undesirable consequences of treatment: Nothing to report

Date 22.02.2010

Signature Study Director

Dr P. GUGGENBUHL

In case the concentration of the additive in complete feed/water may reflect insufficient accuracy, the dose of the additive can be given per animal day or mg kg body weight or as concentration in complementary feed.