

Electron and X-ray Sterilization of Medical Devices

Thomas Kroc, PhD FDA Medical Device Advisory Meeting 6 November 2019

Electrons and X-rays

- Overview of x-ray and e-beam; how is it different from gamma?
- Typical or representative devices sterilized with these modalities and material compatibility with this modality
- Description of the industrial infrastructure needed for e-beam and x-ray?
- What is the potential of accelerator technology in this area?
- Can x-ray/e-beam be an alternative to ethylene oxide sterilization?

What are we talking about?

- Ionizing Radiation
 - Electrons directly ionizing radiation
 - Electrons do ~99.5% of the killing
 - Photons indirectly ionizing radiation
 - X-ray and γ refer to how the photon is produced
 - But once produced, they are just photons
 - Photons have the penetration power, but electrons do the work
 - Compton Scattering

Photons – X-ray vs γ

γ rays originate from the nucleus of an atom

 X-rays originate from transitions in the electrons from an atom or Bremsstrahlung

Both are electro-magnetic energy

Photons – X-ray vs γ

- Caveat
 - γ rays are more monoenergetic
 - X-rays (Bremsstrahlung) have a spectra of energies
- Fundamentally, a photon is a photon
- (and an electron is an electron)

Energy Spectra for each

Remember – the electrons are the active ingredient!

Penetration

The penetration characteristics of x-ray can be exploited to give better DUR.

Generating X-rays

Generating x-rays will always incur a significant inefficiency. Overcoming this requires high-power electron beams.

Generating X-rays

Much more directed than gammas from a cobalt array. Better utilization. (Only ~ 30 % of gamma rays are utilized)

What can be sterilized with E-beam and X-ray?

- Overview of x-ray and e-beam; how is it different from gamma?
- Typical or representative devices sterilized with these modalities and material compatibility with this modality
- Description of the industrial infrastructure needed for e-beam and x-ray?
- What is the potential of accelerator technology in this area?
- Can x-ray/e-beam be an alternative to ethylene oxide sterilization?

Proudly Operated by Battelle Since 1965

Transitioning from Cobalt-60 to E-beam or X-ray for Sterilization – a Model for Collaboration

Presented at Fermilab on September 19, 2019

¹Mark Murphy, ¹Leo Fifield, ²Tony Faucette, ²James McCoy, ³Rod Parker, ⁴Suresh Pillai, ⁴Matt Pharr, ⁴David Staack, ⁵Larry Nichols, ⁶Emily Craven, ⁷Christophe Malice, ⁷Jeremy Brison, ⁸John Logar, and ⁹Kevin O'Hara

¹Pacific Northwest National Laboratory, Richland, WA, USA

²Becton-Dickinson Corp., Franklin Lakes, NJ, USA

³Stryker Corp., Kalamazoo, MI, USA

⁴Texas A&M University, College Station, TX, USA

⁵Steri-Tek Corp., Fremont, CA, USA

⁶Mevex Corp., Stittsville, Ontario, CANADA

⁷IBA Corp., Louvain-La-Neuve, Belgium

⁸Johnson & Johnson, Raritan, NJ, USA

⁹Sterigenics Corp., Stittsville, Ontario, CANADA

Project Goals

Proudly Operated by Battelle Since 1965

- ➤ Identify specific polymers/elastomers used in medical products that present the greatest data gaps for radiation effects and would be of greatest industry impact if transitioned to e-beam or X-ray
- ➤ Measure any physical effects that these materials exhibit when they are given sterilization-level radiation doses from e-beam or X-ray
- Determine whether these effects would preclude the use of Ebeam or X-ray for associated medical products
- Execute an industry and public outreach component that will identify and fill knowledge and education gaps that impede the transition to E-beam and X-ray sterilization
- Encourage increased use of E-beam and X-ray for sterilization of single-use medical products

11/6/2019

Five Selected Medical Products

Proudly Operated by Battelle Since 1965

- > #1: Becton-Dickinson VacutainerTM tube.
 - Ultrahigh production volumes for the blood collection market at >5B products/year.
- ➤ #2: Becton-Dickinson Vacutainer™ "Push Button" blood collection set.
 - Significant production volume for the blood collection market at ~260M products/year using multiple polymer families.
- ➤ These BD products involve over 6 separate polymers.
- All test measurements recently completed for these BD products.

Pacific Northwest NATIONAL LABORATORY

Data Results - BD Product Coloration

Proudly Operated by Battelle Since 1965

Yellowness Index changed as much as 20 units for some polymers for the 0-90 kGy dose spread in the study; however, there was little to no discernible trend in the yellowness index between Cobalt-60, E-beam and X-ray samples.

Yellowness Index vs. dose for all 3 irradiation modalities.

Infrastructure

- Overview of x-ray and e-beam; how is it different from gamma?
- Typical or representative devices sterilized with these modalities and material compatibility with this modality
- Description of the industrial infrastructure needed for e-beam and x-ray?
- What is the potential of accelerator technology in this area?
- Can x-ray/e-beam be an alternative to ethylene oxide sterilization?

Required Infrastructure

- Reliable electrical power
- Material handling systems are very similar
- Dosimetry, process control, etc. very similar
- Accelerator manufacturers report that on-site technical staff requirements are not significantly higher than gamma facilities
 - Technical skills required similar to well qualified auto mechanic
- Similar or slightly thicker shielding
 - But volume of irradiation room can be much less
 - Less total concrete?
- Less attractive target

Contract Electron Beam Facilities

Future potential

- Overview of x-ray and e-beam; how is it different from gamma?
- Typical or representative devices sterilized with these modalities and material compatibility with this modality
- Description of the industrial infrastructure needed for e-beam and x-ray?
- What is the potential of accelerator technology in this area?
- Can x-ray/e-beam be an alternative to ethylene oxide sterilization?

Power

- 1 Mci = 3.7x10¹⁶ decays/second
 - Total energy released 2.505 MeV/decay
 - 15 kW
 - Typical irradiation bunker 30-60 kW of "beam" power
- Electron beam machines can provide this easily
- X-ray must overcome inefficiency of Bremsstrahlung process
 - 200 400 kW of electron beam power
 - Then must include efficiency of electron beam production

Capacity comparisons

- Gamma
 - $\sim 10 \text{ kGy/hr}$
 - 3.4 m³/h/MCi @ 25 kGy
- Electron Beam
 - ~20 MGy/hr
- X-ray
 - $\sim 60 \text{ kGy/hr}$
 - 2.8 m³/h/100 kW @ 25 kGy (including target losses)

1 MCi gamma ≈ 120 kW electron beam power to provide equivalent X-ray dose

Potential Accelerator Technology

- Linacs 10 50 kW
 - New machines being designed to > 100 kW
- Cyclotrons and Rhodotrons 50 350 kW
- Superconducting Linacs in development
 - -250 kW +
 - Direct equivalency to panoramic gamma irradiators

Alternitive to EO?

- Overview of x-ray and e-beam; how is it different from gamma?
- Typical or representative devices sterilized with these modalities and material compatibility with this modality
- Description of the industrial infrastructure needed for e-beam and x-ray?
- What is the potential of accelerator technology in this area?
- Can x-ray/e-beam be an alternative to ethylene oxide sterilization?

E-beam and X-ray as an alternative to EO

- Very similar to gamma as an alternative to EO
- Difference
 - Irradiation times are shorter with E-beam and X-ray
 - Less time for oxidative processes to occur
- Device manufacturers decide on sterilization modality
 - Education
 - Early planning in device design process can facilitate the use of alternative modalities
 - More "difficult" for established devices

Thank you

Why can't we do something clever with shielding?

All materials have the same stopping power (scaled by density) between 1 and 10 MeV.

