Liquid Chromatography-High Resolution Mass Spectrometry (LC-ESI-HRMS) Method for the Determination of Varenicline Nitroso-Drug Substance Related Impurity (NDSRI) in Chantix $^{\mathrm{TM}}$ Drug Product and Varenicline Drug Substance **Background:** Varenicline tartrate is the active pharmaceutical ingredient (API) in ChantixTM. The drug is used as an aid for smoking cessation. The potential for the presence or formation of N-nitroso varenicline has been identified in the drug product. To ensure the safety and quality of varenicline tartrate drug product (ChantixTM) and drug substance, the agency has developed and validated a method to determine the presence or absence of varenicline Nitroso-Drug Substance Related Impurity (NDSRI). The structure for varenicline NDSRI is shown in Figure 1 below. Figure 1: Varenicline NDSRI #### **Conclusions:** A reverse phase LC method with HRMS detection was developed and validated for the determination of varenicline NDSRI in ChantixTM drug product or varenicline drug substance. The method was validated using placebo tablets from Pfizer's ChantixTM (1 mg) drug product formulation. Verification and/or re-validation is recommended prior to use with other varenicline tartrate drug product formulations. The limit of detection (LOD), limit of quantitation (LOQ) and range of the method are summarized below: | | Varenicline NDSRI | |---------------|-------------------| | LOD (ng/mL) | 0.1 | | (ppm) | 0.2 | | LOQ (ng/mL) | 0.5 | | (ppm) | 1.0 | | Range (ng/mL) | 0.5 - 100 | | (ppm) | 1.0 - 200 | # LC-ESI-HRMS Method for the Determination of Nitroso-Drug Substance Related Impurity (NDSRI) in Chantix Drug Product and Varenicline Drug Substance #### **Purpose** This method was developed and validated to quantitate varenicline Nitroso-Drug Substance Related Impurity (NDSRI) in ChantixTM drug product or varenicline drug substance. ## **Principle** Varenicline NDSRI was separated from varenicline tartrate by reverse phase chromatography and was detected by a high-resolution and high-mass accuracy (HRAM) mass spectrometer. High sensitivity detection was achieved by monitoring the accurate m/z value of the protonated impurity ion. Quantitation was performed by comparing the peak area of the varenicline NDSRI in extracted ion chromatogram (with m/z tolerance of \pm 15 ppm) of the samples, to the peak area of the varenicline NDSRI reference standard in an external standard calibration. ## Reagents - N-Nitroso varenicline reference standard (Clearsynth Cat. # CS-O-36107 or equivalent) - Methanol, LC/MS grade (Fisher A456-4 or equivalent) - Water, LC/MS grade or equivalent - Formic Acid, LC/MS grade (Fisher A117-50 or equivalent) # **Equipment/Instrument** - HPLC or UHPLC system equipped with temperature-controlled autosampler and column compartment - Q ExactiveTM hybrid quadrupole-orbitrap mass spectrometer (Thermo-Fisher Scientific) or equivalent - HPLC column: XSelect CSH Phenyl-Hexyl XP, 2.5 μm 130 Å, 150 x 4.6 mm (Waters Part No. 186006735 or equivalent) - Analytical Balance - Vortex Mixer - 15 mL glass centrifuge tubes - Wrist action shaker - 0.22 µm PVDF syringe filters - Centrifuge - HPLC vials Mobile Phase A: Water, 0.1% Formic Acid Mobile Phase B: Methanol, 0.1% Formic Acid **Diluent and Blank**: Methanol #### **Stock Standard Preparation** Accurately weigh 10 ± 3 mg of varenicline NDSRI reference standard and transfer into a 100 mL volumetric flask. Dilute to volume with methanol and mix using a stir bar and plate until dissolved. Prepare in duplicate. Label as Stock Std #1 and Stock Std #2. #### **Intermediate Stock Standard A** Transfer the appropriate aliquot volume of each of the stock standards into separate volumetric flasks to get a target concentration of 1000 ng/mL. Dilute to volume with methanol. #### **Intermediate Stock Standard B (100 ng/mL)** Transfer 5.0 mL aliquot volume of each of the intermediate stock standard A into separate 50 mL volumetric flasks and dilute to volume with methanol. ## Working Standard and QC Standard Preparation (1 ng/mL) Transfer 1.0 mL aliquot volume of each of the intermediate stock standard B into separate 100 mL volumetric flasks and dilute to volume with methanol. Designate one standard as the working standard and the other as the QC standard. Prepare fresh daily. #### **Drug substance sample preparation** Accurately weigh 25 mg of drug substance and quantitatively transfer into a 50 mL volumetric flask. Dilute to volume with methanol and mix the solution using a stir bar and plate until fully dissolved. Filter the solution using a 0.22 μ m PVDF syringe filter and transfer the filtered sample into an hplc vial for LC/MS analysis. #### **Drug product sample preparation** Crush the appropriate number of tablet(s) to obtain a target concentration of 0.5 mg/mL of API in methanol, and transfer into a 15 mL glass centrifuge tube. Add the appropriate volume of methanol and mix for about a minute using a vortex mixer. Shake the sample for 40 minutes using a mechanical wrist action shaker. After extraction, centrifuge the sample for 15 minutes at 4500 rpm. Filter the supernate using a 0.22 µm PVDF syringe filter into an hplc vial for LC/MS analysis. # **Chromatographic Conditions** | Chromatographic Conditions | | | | | |---|--|-----|------------------|--| | HPLC Column XSelect CSH Phenyl-Hexyl XP, 2.5 μm 130 Å, 150 | | | 130 Å, 150 x 4.6 | | | HPLC Column | mm (Waters Part # 186006735 or equivalent) | | | | | Column Temp. | 30 °C | | | | | Flow Rate | 0.5 mL/min | | | | | Mobile Phase A | Water, 0.1% Formic Acid | | | | | Mobile Phase B | Methanol, 0.1% Formic Acid | | | | | Gradient | Time (min) | A% | В% | | | | 0 | 70 | 30 | | | | 1.0 | 70 | 30 | | | | 6.0 | 20 | 80 | | | | 9.5 20 80 | | | | | | 10.0 | 100 | | | | | 11.0 | 0 | 100 | | | | 11.1 | 70 | 30 | | | | 15.0 | 70 | 30 | | | Injection Volume | 5 μL | | | | | Autosampler Temp. | 4 - 8 °C | | | | | Needle Wash | Methanol | | | | #### **Mass spectrometer conditions** - Instrument Q ExactiveTM mass spectrometer (Thermo-Fisher) - ESI Ion Source Settings | Sheath Gas Flow Rate | 50 arbitrary units | |-----------------------------|--------------------| | Aux Gas Flow Rate | 15 arbitrary units | | Sweep Gas Flow Rate | 0 units | |----------------------------|---------| | Spray Voltage | 3.5 kV | | Capillary Temp. | 350 °C | | Aux Gas Heater Temp. | 350 °C | • Scan Settings | Parameters | Varenicline NDSRI | |-----------------------|-------------------| | Scan Type | PRM | | Polarity | Positive | | Scan Start -End (min) | 0 - 15 | | Isolation Window | $1.0 \ m/z$ | | Microscans | 1 | | Resolution | 70,000 | | AGC target | 1e6 | | Maximum IT | 100 ms | #### **Inclusion List** | Mass (m/z) | Polarity | Start
(min) | End
(min) | Comment | |------------|----------|----------------|--------------|-------------------| | 241.1084 | Positive | 8.1 | 9.2 | Varenicline NDSRI | # **Injection Sequence** - Inject Blank (use diluent) at least once at the beginning of a sequence - Inject the Working Standard for six consecutive times - Inject the QC Standard before injecting any samples - Inject the QC Standard once every six injections of the samples and at the end of a sequence. Example: | Order | Solution | No. of Injections | |-------|------------------|-------------------| | 1 | Blank | 2 | | 2 | Working Standard | 6 | | 3 | QC Standard | 1 | | 4 | Blank | 1 | | 5 | Sample 1 | 1 | | 6 | Sample 2 | 1 | | 7 | Sample 3 | 1 | | 8 | Sample 4 | 1 | | 9 | Sample 5 | 1 | | 10 | Sample 6 | 1 | | 11 | QC Standard | 1 | | | | | # **System Suitability** - The % RSD (n = 6) of the varenicline NDSRI peak areas for the first six injections of the working standard solution should not be more than 10%. - The % recovery of the QC Standard should be between 85 115%. ## **Data Processing** • Varenicline NDSRI peak areas from the extracted ion chromatograms (EIC) with a m/z tolerance of ± 15 ppm are used for quantitation. The varenicline NDSRI m/z values to be extracted are listed below: | Varenicline NDSRI | | |---------------------|----------------------| | m/z to be extracted | 211.1105
169.0762 | • The retention time difference of the varenicline NDSRI peak in the analyzed samples should not be more than 2% of the retention time of the corresponding varenicline NDSRI peak in the reference standard solution. #### Calculation ## Drug Substance: Varenicline NDSRI (ppm) = $$\frac{A_{spl}}{As} \times C_s \times \frac{1 \, mg}{1 \times 10^6 \, ng} \times \frac{V}{W} \times 10^6$$ where: A_{spl} = Area of the varenicline NDSRI peak in the sample solution As = Average area (n = 6) of the varenicline NDSRI peak from the first six consecutive injections of the working standard C_s = Concentration of the varenicline NDSRI in the working standard (ng/mL) W = Weight of drug substance (mg) V = Volume of the diluent in the sample solution (mL) #### Drug Product: Varenicline NDSRI (ppm) = $$\frac{A_{spl}}{A_s} \times C_s \times \frac{1 \, mg}{1 \times 10^6 \, ng} \times \frac{1}{0.5 \, mg/mL} \times 10^6$$ where: A_{spl} = Area of the varenicline NDSRI peak in the sample solution As = Average area (n = 6) of the varenicline NDSRI peak from the first six consecutive injections of the working standard C_s = Concentration of the varenicline NDSRI in the standard solution (ng/mL) # **Example Chromatograms:** #### **Methanol Blank** # 1 ng/mL Varenicline NDSRI Standard #### **Chantix Placebo**