

GraINzyme® Phytase

A phytase feed enzyme produced by Zea mays expressing a phytase gene derived from Escherichia coli K12

SUMMARY of DATA SUPPORTING a NOTIFICATION of GRAS STATUS

Submitting Company:

Agrivida, Inc. 200 Boston Ave., Suite 2975 Medford, MA 02155

Please address correspondence related to this submission to:

James M. Ligon, Ph.D. VP, Regulatory Affairs and Stewardship Agrivida, Inc. 1023 Christopher Drive Chapel Hill, NC 27517

Tel: 919-675-6666

Email: jim.ligon@agrivida.com

TABLE OF CONTENTS

Section	Topic Executive Summary	<u>Pg</u> 4
	Executive Summary	4
1.0	Introduction	6
2.0	Description of the Production Organism	8
2.1	Zea mays L. (Maize)	8
2.2	Origin of the gene encoding the Phy02 phytase	9
2.3	Characteristics of the Phy02 expression construct	10
2.4	Characteristics of the maize expression host	15
2.4.1	Determination of the number of DNA insertions	15
2.4.2	Screening for plasmid backbone fragments	17
2.4.3	DNA sequence of the <i>phy02</i> gene insertions and the flanking maize genome	18
2.4.4	Genetic stability of the <i>phy02</i> gene inserts over multiple generations	20
3.0	Characterization of the Phy02 Enzyme	24
3.1	Determination of specific activity of Phy02	25
3.2	Glycosylation of maize-produced Phy02 phytase	25
3.3	Confirmation of the amino acid sequence of the Phy02 phytase	28
3.4	Optimal reaction pH for Phy02 phytase	28
3.5	Thermal optimum of Phy02 phytase	30
3.6	Enzymatic side activities of Phy02 phytase	30
4.0	Safety of the Phy02 phytase	31
4.1	Safety of the maize production host	31
4.1.1	Source of the maize line	32
4.1.2	Taxonomy of Zea mays	33
4.1.3	History of safe use of <i>Zea mays</i>	33
4.1.4	Absence of toxicity	33
4.1.5	Summary	33
4.2	Safety of Escherichia coli K12	34
4.2.1	Introduction	34
4.2.2	Taxonomy of Escherichia coli	34
4.2.3	Laboratory use of <i>Escherichia coli</i> K12	34
4.2.4	Safety assessment of Escherichia coli K12	34
4.3	Tolerance to Phy02 phytase in broiler chickens	35
4.4	Summary of the safety of Phy02 phytase	38
5.0	Enzyme Functionality in Poultry	40
5.1	Summary of results from broiler chicken study 1	41
5.2	Summary of results from broiler chicken study 2	45
5.3	Summary of results from broiler chicken study 3	49
5.4	Summary of results from broiler chicken study 4	54

Safety a	nd Functionality of Phy02 Phytase in the Feed of Poultry	Agrivida, Inc.
5.5	Summary of results from the four broiler chicken studies	58
6.0	Product Characteristics	62
7.0 7.1 7.2 7.3 7.4 7.4.1 7.4.2	Product Stability Stability of the Phy02 phytase product Homogeneity of Phy02 phytase in feed mixtures Stability of Phy02 phytase in feed mixtures Stability of Phy02 phytase during pelleting Pelleting stability study 1 Pelleting stability study 2	65 65 66 69 72 72 74
8.0	Product Labels	76
9.0	Manufacturing Process	76
10.0	Conclusion of GRAS status by the Expert Panel	77
11.0	List of References	77
12.0	List of Figures	86
13.0	List of Tables	88
14.0	Appendices	91
	List of Appendices Appendix 1 - Nucleotide sequence of locus 3293 Appendix 2 - Nucleotide sequence of locus 3507 Appendix 3 - Multi-generational stability of insertion loci 3923 a 3507 in PY203 Phy02 producing maize by DI sequence analysis	
	Appendix 4 - Multi-generational stability of insertion loci 3923 a 3507 in PY203 Phy02 producing maize by South blotting	
	Appendix 5 – Certificate of Analysis of 3 Phy02 product batches Appendix 6 - Phytase activity in feeds before and after pelleting in four broiler trials	115 129
	Appendix 7 – Proximate nutrient composition of all feeds used four broiler feeding studies	in 134
	Appendix 8 - Final study report broiler Study 1 Appendix 9 - Final study report broiler Study 2 Appendix 10 - Final study report broiler Study 3 Appendix 11 - Final study report broiler Study 4	136 225 311 454
	Appendix 12 - Product Label for Phy02 Phytase	562

Executive Summary

Agrivida, Inc. has developed a new phytase feed enzyme product to improve phosphorus utilization in poultry feeds. This phytase is referred to as the Phy02 phytase in this document but it will be marketed under the trade name GraINzyme® Phytase. The gene encoding the Phy02 phytase (phy02) is derived from the appA phytase gene of Escherichia coli strain K12. The phv02 gene under the control of monocot derived seed specific promoters was transformed into maize (Zea mays) using Agrobacterium The resulting transformed maize produces mediated plant transformation techniques. 4,000 - 7,000 units of Phy02 phytase activity (FTU) per gram of grain. The Phy02 product is produced using common agronomic practices for the production of maize grain followed by milling to form a course meal. The Phy02 phytase product can be added to the feed of poultry at a rate of 75 g to 1.7 kg per ton of feed to deliver an effective dose of phytase. Agrivida, Inc. has conducted studies to characterize the Phy02 phytase product in order to demonstrate its safety and efficacy and to support a conclusion that the Phy02 phytase product is generally recognized as safe (GRAS) for its intended use. The details and results of the studies that support the functionality and a conclusion of the GRAS nature of the Phy02 phytase are presented herein.

The phy02 gene construct that was used in the transformation of maize contained three copies of the phy02 gene, each under the control of a different monocot derived seed specific promoter. The maize phy02 gene transformants were selected using the wellknown phosphomannose isomerase (pmi) gene whose safety and utility has been well established. Characterization of the Phy02 phytase producing maize revealed that there are two separate insertions of the phy02 gene construct in the genome of maize. One of the *phy02* gene insertions is located in maize chromosome (b) and it contains the complete transformed DNA (T-DNA) with three copies of the *phy02* gene. The second insertion is located in maize chromosome 2 and contains a truncated version of the complete phy02 gene T-DNA that contains two of the three copies of the phy02 gene. The complete sequence of both insertions including 1 to 2 kilobase pairs (Kb) of flanking maize DNA on each side of both insertions was determined. No known maize genes were identified in the region of either of the insertion sites. The plasmid that contains the T-DNA fragment that was used to transform maize contains an antibiotic resistance gene for maintenance in bacterial hosts. The antibiotic resistance gene was not transformed into the maize genome since it is not located within the T-DNA region of the phy02 gene plasmid. The absence in the maize genome of the antibiotic resistance gene and other elements of the transformation plasmid outside of the T-DNA was confirmed by Southern The stability of both phy02 gene insertions in maize over hybridization techniques. multiple generations was also demonstrated.

The Phy02 phytase enzyme derived from three representative product batches was fully characterized. The molecular weight, immunoreactivity and phytase activity were confirmed. The pH and thermal optima for the Phy02 phytase were determined and the N-terminal amino acid sequence of the Phy02 phytase was confirmed to be as expected. It was further demonstrated that the Phy02 phytase produced by maize is not glycosylated and does not catalyze significant levels of other enzymatic activities. Three Phy02

product batches were demonstrated to meet all JECFA specifications for food enzymes with the exception of number of coliforms and total bacteria. However, the product is within the range for coliforms and total bacteria that are known to be typical for maize grain that is produced by common agricultural practices and widely used in food and feed.

The functionality of the Phy02 phytase in poultry was demonstrated in four broiler chicken feeding studies. Performance parameters of chickens consuming a basal diet low in available phosphorus that was supplemented with different amounts of Phy02 phytase were compared to negative control groups (NC) that were fed the basal diet with low available phosphorus without Phy02 phytase supplementation and to positive control groups (PC) fed the same basal diet with high levels of available phosphorus. studies, body weight gain over the 42 day duration of the trials was greater in the PC groups compared to the NC groups and the chickens consuming feed supplemented with Phy02 phytase had body weights that increased in a Phy02 dose dependent manner and that were significantly greater than those of the NC groups and equal or greater to that of the PC groups. Feed conversion rates were reduced in a manner that was dependent upon the Phy02 dose with higher Phy02 dose groups demonstrating lower feed conversion rates. The phosphorus digestibility and the amount of tibia bone ash at 21 and 42 days were also assessed in all trials and the results demonstrated the functionality of the Phy02 phytase in improving the availability of phosphorus in the feed. The supplementation of feed with the Phy02 phytase resulted in increased amounts of bone ash in a dose dependent manner.

The Phy02 phytase product is assumed to be safe based upon the history of safe use of phytase enzymes in animal feed, the maize production host, and *E. coli* K12 from which the *phy02* gene was derived. In addition, a high dose of the Phy02 phytase equal to 30,000 FTU/kg feed was included in one of the chicken feeding studies and 60,000 FTU/kg in another to assess the safety of high doses of Phy02 in chickens. Key hematological assessments of the high Phy02 dose groups were compared to those of the NC and PC groups and there were no indications of toxicity or abnormalities in the high Phy02 dose groups. Further, post-mortem examinations of animals from the high Phy02 dose groups did not reveal any indications of abnormalities or toxicity. In general the chickens treated with the high doses of Phy02 phytase demonstrated further improvements in body weight gain and feed conversion rate over the NC, PC, and lower Phy02 dose groups.

Based on the above information which is supported by the information contained in this document, Agrivida, Inc. concludes that the Phy02 phytase product is safe and effective and is GRAS when used as intended in the feed of chickens. In addition, this information was reviewed by a panel of experts and based upon it, this panel concluded that the Phy02 phytase product is GRAS for use in poultry feed.

1.0 Introduction

Phytic acid, or phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate), accounts for up to 80% of the phosphorus in the seeds of cereals and legumes and is the primary storage form of phosphate in these materials (Reddy, et al. 1982). Phytate phosphorus is nutritionally unavailable to monogastric animals such as poultry and swine and therefore, inorganic forms of phosphorus are commonly added to animal feed to supply the nutritional needs for this important nutrient. The addition of high amounts of inorganic phosphorus to animal feeds results in the generation of high-phosphorus manure that can contaminate rivers and streams resulting in algal blooms, oxygen depletion and the death of fish and aquatic animals due to eutrophication (Jongbloed and Lenis 1998; Correll 1999; Mallin 2000; Poulsen 2000). In addition, phytate forms a complex salt called phytin with several mineral ions such as K⁺, Mg⁺², Ca⁺² and Zn⁺² that renders them nutritionally unavailable to monogastric animals (Lott 1984; Harland and Morris 1995; Minihane and Rimbach 2002). For this reason, phytate is considered an anti-nutrient.

Phytases are a class of acid phosphatase enzymes that hydrolyze phosphates from phytate to produce free phosphate and inositol. One strategy for making phosphorus from phytate nutritionally available to monogastric animals is the addition of phytase to animal feeds (Jongbloed and Lenis, 1998; Onyango et al., 2005). The use of phytase in the diets of poultry and swine has been shown to improve feed and phosphorus utilization (Baker and Augspurger, 2002; Nyannor et al., 2007 and 2009). A number of phytase products are currently marketed for this use and include Natuphos[™] (BASF) a phytase derived from Aspergillus niger, Ronozyme[™] (DSM) a phytase derived from Peniophora lycii, and Ouantum Blue (AB Vista) a phytase that is also derived from the AppA phytase of Escherichia coli. The use of phytase in animal feeds allows a reduction in the amount of inorganic phosphorus added to animal feeds and has been reported to result in reductions in fecal phosphorus by as much as 60% (Nahm, 2002; Sharpley et al., 1994; Wodzinski In December 2002 a regulation issued from the US EPA was and Ullah 1996). implemented that regulates the application of manure from concentrated animal farming operations onto land based on the amount of phosphorus being applied (EPA, 2002). The use of phytase in poultry and swine feed results in a more efficient utilization of phosphorus and reduces phosphorus in animal wastes. Therefore, its use may assist concentrated animal farming operations in meeting the EPA guidelines without reducing the size of their operations or having to utilize other more expensive waste handling technologies. In addition, phytase supplementation might improve amino acid availability. Phytate-protein interaction may induce changes in protein structure that can decrease enzymatic activity, protein solubility and proteolytic digestibility (Cowieson et al., 2006; Selle et al., 2012). Supplemental phytase has also been reported to improve utilization of minerals by animals (Lei et al., 1993; Adeola, 1995; Lei and Stahl, 2001; Debnath et al., 2005) and it has been hypothesized that phytase supplementation results in an increased energy utilization in monogastric animals (Selle and Ravindran, 2007).

Phytase enzymes are widespread in nature, occurring in plants, microorganisms and in some animal tissues (Konietzny and Greiner, 2002). Significant levels of endogenous

phytase activity (>1000 FTU/kg) have been reported in rye, wheat, rye bran and wheat bran (Viveros, 2000). Multiple forms of phytase have been reported in barley, maize, rice, wheat, spelt, soybean, rape seed, pumpkin, lily, as well as in *Aspergillus niger, A. oryzae, Escherichia coli*, and *Saccharomyces cerevisiae* (Konietzny and Greiner, 2002). Phytase has been shown to be produced by microorganisms used in food fermentations, including yeasts such as *S. cerevisiae* (Nakamura, 2000) and *Schwanniomyces castellii* (Lambrechts, 1992). Bacteria that inhabit the intestinal tracts of animals are known to produce phytase and phytase activity has been measured in the gastrointestinal tracts of animals, including humans (Iqbal, 1994). In ruminants, production of phytase by anaerobic ruminate bacteria is most likely responsible for the increased rate of phytate degradation that has been noted in these animals (Yanke, 1998).

Phytases are included in human dietary supplements currently marketed in the U.S. and are claimed to improve the digestion of foods and the absorption of minerals. absorption of iron in humans has been shown to be dramatically improved when at least 2 of the 6 phosphate groups of phytic acid are removed by phytase (Sandberg, 1996), thereby demonstrating the positive nutritional affects of phytase in alleviating the antinutritive properties of phytic acid. General Nutrition Centers (Pittsburgh, PA) markets a dietary supplement (GNC Multi-Enzyme Formula; GNC, 2016) consisting of a mixture of different enzymes including phytase. Nurtiteck-Ultra Bio-Logics Inc. (Montreal, Canada) markets a dietary supplement called Phytase NSP Blend that contains 200 FTU/g of a phytase derived from Aspergillus niger. Global Healing Center (Houston, TX) markets a phytase containing enzyme mixture named VeganZyme® (GHC, 2016). CereCalase (NEC, 2016) is another phytase-containing human dietary supplement. It is produced by the National Enzyme Company (Forsyth, MO) and contains a phytase from Most of the phytase enzymes included in the abovementioned dietary supplement products are derived from Aspergillus niger. The AppA phytase that is nearly identical to the Phy02 phytase has been shown to be structurally similar to the phytase from Aspergillus niger (Lim et al., 2000).

All of the current phytase animal feed enzyme products are produced by genetically modified microorganisms through fermentation and purification of the phytase from the fermentation medium. The Phy02 phytase that is being developed by Agrivida, Inc. is produced in the grain of maize (*Zea mays*). Genes encoding the Phy02 phytase under the expression of (b) (4) monocot derived promoters were introduced into maize to achieve the production of Phy02 phytase specifically in the grain of maize. The gene encoding the Phy02 phytase is derived from the native *Escherichia coli* strain K-12 phytase gene (*appA*) and the Phy02 phytase protein differs from the *E. coli* AppA phytase by only (b) f the 412 total amino acid residues in the mature protein. The *appA* gene and the App (b) phytase it encodes have been previously described (Dassa, *et al.*, 1990). The AppA phytase is known to be structurally similar to the phytase from *Aspergillus niger* that is the phytase in the commercial phytase product Natuphos (Lim et al., 2000) that is marketed as an animal feed additive. The Phy02, AppA, and many other phytase enzymes that have been developed as animal feed additives belong to the histidine acid phosphatase subfamily of phytases.

The Phy02 phytase is produced in the grain of maize but due to the relatively low water content in grain it is not enzymatically active in the grain nor has it any obvious effect on the grain or the maize plant. The maize grain producing Phy02 phytase is harvested and ground into a course meal that can be added as a feed additive at relatively low inclusion levels (100 to 1000g/ton of feed) to the feed of poultry in order to improve the nutritional availability of phosphorus in the diet. The intended effect of the Phy02 phytase in animal feed is to enzymatically remove phosphate from phytic acid and phytin in the diet in order to provide enhanced phosphorus availability thereby reducing the need to add exogenous mineral phosphate to the feed.

The native E. coli appA phytase gene was optimized using Gene Site-Saturation Mutagenesis (Short, 2001) to generate a gene encoding the NOV9X phytase with increased thermotolerance. Thermotolerance is a desirable trait for commercial feed enzymes since many animal feeds are produced by a pelleting process that involves a heat treatment that inactivates thermolabile enzymes. The Phy02 phytase gene was derived from the NOV9X gene by further optimization to create additional specific amino acid substitutions for the purpose of making the Phy02 phytase more thermotolerant and sensitive to digestion in the gastric environment. The NOV9X phytase is the active phytase in the commercial phytase product named Quantum that is produced by the yeast Pichia pastoris and that has been approved by FDA Center for Veterinary Medicine (CVM) for inclusion in animal diets since 2008. The NOV9X phytase has 8, and the Phy02 phytase has (b) amino acid substitutions relative to the AppA phytase from *E. coli* that consists of 412 amino acids. The NOV9X and Phy02 phytases are nearly identical as they differ from each other by only (b) amino acid substitutions. The Phy02 phytase demonstrates considerable tolerance to high temperatures, maintaining significant activity after incubation in aqueous conditions at temperatures up to 70°C for 5 minutes.

2.0 Description of the Production Organism

2.1 Zea mays L. (Maize)

Zea is a genus (Poaceae) of the grass family Graminae. Maize (Zea mays L.) is a tall, monecious annual grass with overlapping sheaths and broad conspicuously distichous Plants have staminate spikelets in long spike-like racemes that form large spreading terminal panicles (tassels) and pistillate inflorescences in the leaf axils, in which the spikelets occur in 8 to 16 rows, approximately 30 cm long, on a thickened, almost woody axis (cob). The whole structure (ear) is enclosed in numerous large foliaceous bracts and long styles (silks) protrude from the tip of the ear as a mass of silky threads (Hitchcock and Chase, 1971). Pollen is produced entirely in the staminate inflorescence and eggs, entirely in the pistillate inflorescence. Maize is wind-pollinated and both self and cross-pollination are usually possible. Shed pollen usually remains viable for 10 to 30 minutes, but can remain viable for longer durations under favorable conditions (Coe et al., 1988). Cultivated maize is presumed to have been derived from teosinte (Z. mexicana) and is thought to have been introduced into the old world in the sixteenth century. Maize is cultivated worldwide and represents a staple food for a significant proportion of the world's population. No native toxins are reported to be associated with the genus Zea (International Food Biotechnology Council, 1990).

As discussed above, the indigenous peoples of North America have cultivated maize for thousands of years. The modern era of maize hybrid production began in the United States where research conducted in the early part of the 20th century proved that hybrid maize could produce a yield superior to open-pollinated varieties (Sprague and Eberhart, 1976). Gradually, hybrid-derived varieties replaced the open-pollinated types in the 1930's and 1940's. Almost all maize grown in the United States now comes from hybrid seed that is obtained every planting season from private enterprises and the older open-pollinated varieties are virtually unknown in commerce.

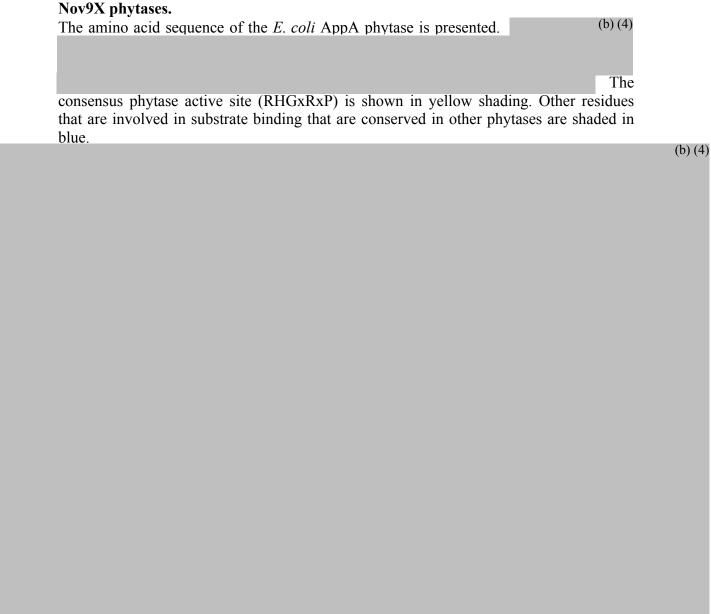
Maize is planted when soil temperatures are warm (greater than or equal to 10°C) usually mid to late April until mid-May in the U.S. Corn Belt. Optimum yields occur when the appropriate hybrid maturity and population density are chosen. In addition, exogenous sources of nitrogen fertilizer are generally applied and weed and insect control measures are generally recommended. Choice of the appropriate hybrid for the intended growing area helps to ensure that the crop will mature before frost halts the growth of the plant at the end of the season; hybrids are categorized according to the amount of Growing Degree Units (GDU) that will be required for maturity (Monsanto, 2015). Therefore, a hybrid developed for a specific climate zone will not mature in cooler areas that receive fewer GDUs during a typical growing season.

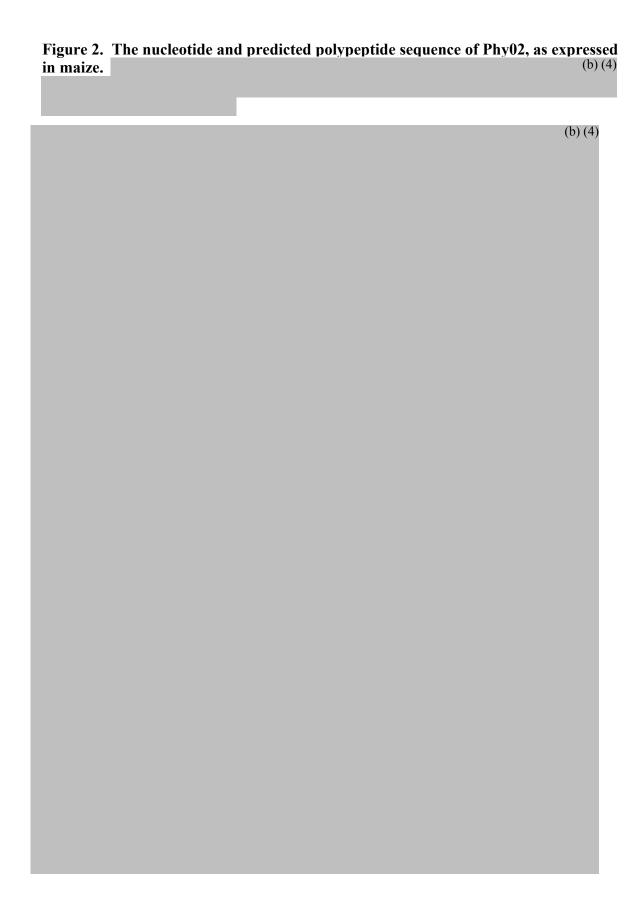
In 2015, there were about 88 million acres planted to maize in the United States that produced 13.6 billion bushels of grain and 128 million tons of silage (USDA-NASS, 2016). Maize grown in the United States is predominantly of the yellow dent type, a commodity crop largely used to feed domestic animals, either as grain or silage. The remainder of the crop is exported or processed by wet or dry milling to yield products such as high fructose corn syrup and starch or oil, grits and flour. These processed products are used extensively in the food industry. For example, maize starch serves as a raw material for an array of processed foods, and in industrial manufacturing processes. Since the early 1980's a significant amount of grain has also been used for fuel ethanol production. The by-products from these processes are often used in animal feeds.

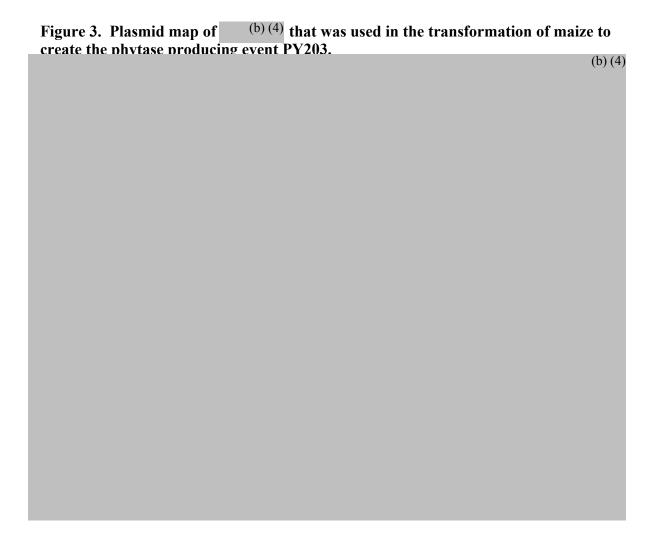
In addition to the above, the Organization for Economic Co-operation and Development (OECD) Consensus Document on the biology of maize (OECD, 2003) provides key information on:

- a general description of maize biology, including taxonomy and morphology and use of maize as a crop plant
- agronomic practices in maize cultivation, geographic centers of origin, reproductive biology, and cultivated maize as a volunteer weed
- inter-species/genus introgression into relatives and interactions with other organisms
- a summary of the ecology of maize.

2.2 Origin of the gene encoding phytase Phy02


The native *E. coli appA* phytase gene was optimized using Gene Site-Saturation Mutagenesis (Short, 2001) to generate a gene encoding the NOV9X phytase with


increased thermotolerance. Thermotolerance is a desirable trait for commercial feed enzymes since many animal feeds are produced by a pelleting process that involves a heat treatment that inactivates thermolabile enzymes. The Phy02 phytase gene was derived from the NOV9X gene by further optimization to create additional specific amino acid substitutions for improved thermotolerance and sensitivity to digestion in the gastric environment. The NOV9X phytase is the active phytase in the commercial phytase product named Quantum that is produced by the yeast Pichia pastoris and that was approved by FDA-CVM for inclusion in animal diets since 2008. The amino acid sequence of the Phy02 phytase and the amino acid substitutions between it and the native E. coli AppA and NOV9X phytases are depicted in Figure 1. The nucleotide coding sequence and deduced amino acid sequence of the phy02 phytase gene are shown in Figure 2. The NOV9X phytase has $\binom{(b)}{(4)}$ and the Phy02 phytase has $\binom{(b)}{(4)}$ amino acid substitutions relative to the AppA phytase from *E. coli* that consists of $\binom{(b)}{(4)}$ amino acids. The Phy02 phytase differs from the NOV9X phyase by 12 amino acids. The Phy02 phytase demonstrates considerable tolerance to high temperatures, maintaining significant activity after incubation in aqueous conditions at temperatures up to 70°C for 5 minutes (§3.6) and stability in feed mixtures during the pelleting process up to 90°C (§7.4).


2.3 Characteristics of the Phy02 Expression Construct.

A transformation gene cassette containing three copies of the Phy02 phytase gene, each with a different monocot derived promoter and (b) (4) terminator was constructed in The genetic elements of plasmid (b) (4) that was used to (b) (4) plasmid transform maize are shown in Figure 3. The individual genetic elements within plasmid (b) (4) are described in Table 1. This plasmid was transformed by Agrobacteriummediated transformation into immature maize embryo tissue as described by Negrotto et al. (2000) and transformants were selected based on the presence of the plant selectable marker manA gene on the transformed DNA fragment that encodes the enzyme phosphomannose isomerase (PMI). The PMI enzyme enables maize tissue to grow on mannose as a sole source of carbon (Negrotto et al., 2000). The pmi gene has been used as a selectable gene in several genetically modified maize varieties that have completed review by the USDA, FDA, and EPA for food and feed safety, including maize events 5307 and Mir604 maize with resistance to corn rootworm, lepidoptera resistant Mir162, and α-amylase expressing 3272, all products of Syngenta Seeds. Maize plants containing the Phy02 phytase gene were cultivated and were demonstrated to produce more than 4000 units of phytase activity (FTU) per gram of grain. The transformation event chosen as a development candidate was designated PY203.

Figure 1. Comparison of the amino acid sequences of the Phy02, *E. coli* AppA and Nov9X phytases.

Table 1. Description of the genetic elements in the containing three copies of the Phv02 phvtase gene that was used to transform maize	(b) (4)
containing three copies of the Phv02 phvtase gene that was used to transform maize	e. (b) (4)
	(b) (4)

2.4 Characterization of the maize Phy02 expression host

2.4.1 Determination of number of DNA insertions.

Isolation and sequencing of genomic DNA flanking the insertions in event PY203 revealed that this event contains two T-DNA insertions that were designated locus 3293 and locus 3507. Southern hybridization was used to confirm the presence of two independent insertions of the T-DNA from transformation plasmid (b) (4) in event Genomic DNA from event PY203 was digested independently with the restriction endonucleases EcoRI and HindIII. EcoRI and HindIII restriction sites are present in the T-DNA and/or the genomic maize flanking DNA (Figure 4). Therefore, restriction of the genomic DNA of event PY203 with these restriction endonucleases followed by probing in a Southern blot with the T-DNA right border (RB) region results in one unique DNA restriction fragment for each locus. Two different DNA fragments were visualized in restriction digests of PY203 genomic DNA with EcoRI and HindIII thereby indicating the presence of two independent insertions (Figure 5). The presence of the two insertions represented by loci 3293 and 3507 was confirmed by DNA sequencing of the insertions and the associated maize flanking DNA as described in §2.4.3.

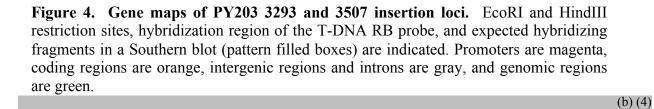
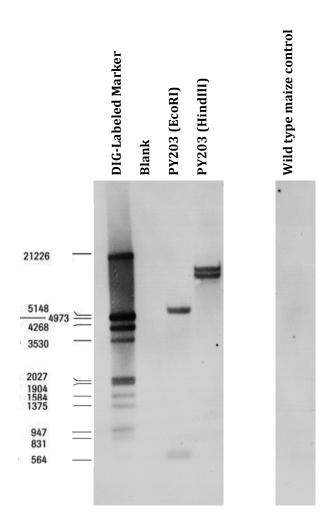
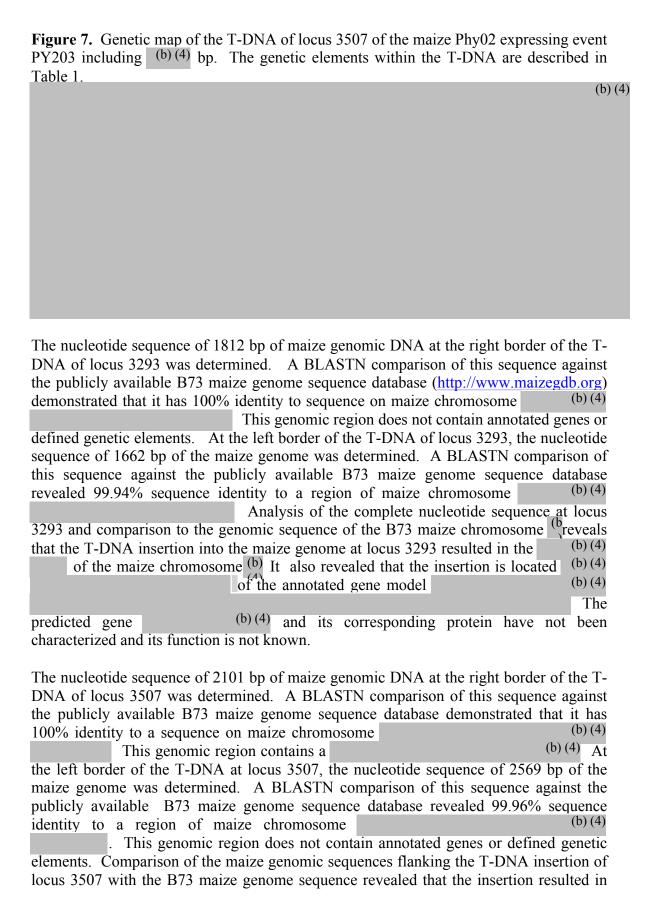



Figure 5. Southern hybridization blot of EcoRI and HindIII restricted genomic DNA of event PY203 with a DNA fragment from the T-DNA RB region. DIG-labeled DNA marker fragments are shown (left lane) with their corresponding sizes in base pairs indicated to the left of the blot. A separate lane of restricted genomic DNA from untransformed maize probed with the T-DNA RB probe is shown on the right to demonstrate that the probe does not hybridize to genomic maize DNA.

2.4.2 Screening for plasmid backbone fragments.

The absence of DNA fragments outside of the T-DNA that are derived from the vector portion of plasmid (b) (4) in the genome of the Phy02 expressing maize event PY203 was demonstrated by two different approaches. First, DNA fragments derived from the genetic elements within the vector portion of plasmid (b) (4) including the ColE1 origin of plasmid replication and the Streptothricin acetyltransferase and *aadA* genes (Figure 3 and Table 1), were used as hybridization probes in Southern blots containing restricted genomic DNA of the Phy02 expressing maize event PY203. None of the DNA fragments derived from the vector portion of plasmid (b) (4) demonstrated

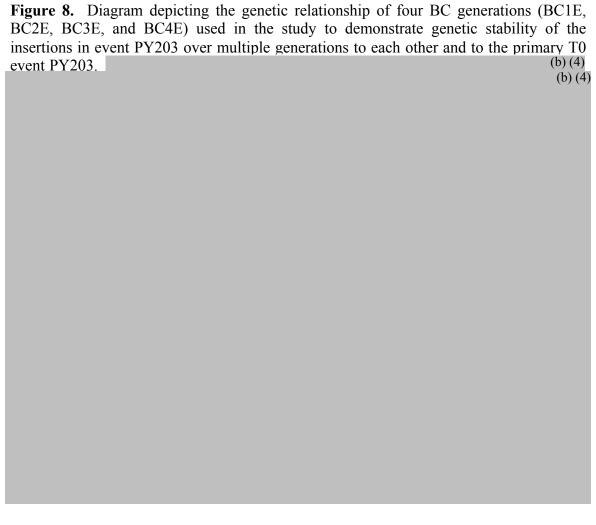

hybridization to genomic DNA from the Phy02 expressing maize event PY203. This result demonstrates the absence of DNA fragments derived from the vector portion of plasmid (b) (4) in the genome of maize event PY203. Second, a series of DNA primer sets designed to amplify a series of small, overlapping DNA fragments from the vector portion of plasmid (b) (4) were used in PCR amplifications from genomic DNA of maize event PY203. None of these PCR reactions produced DNA amplicons thereby confirming the absence of vector derived DNA fragments in the genome of maize event PY203.

2.4.3 Sequence of the $phy\theta 2$ gene insertions and the flanking maize genome. As described in §2.4.1 above, the Phy02 expressing maize event PY203 contains two independent insertions in its genome that contain DNA coding for the phy02 gene each derived from the T-DNA fragment of (b) (4). These independent insertions have been designated locus 3293 and locus 3507. Using genome walking and PCR cloning and sequencing strategies, the nucleotide sequence of each locus, including the inserted DNA and the flanking maize genomic DNA, has been determined. The insertion at locus 3293 (b) (4) with three copies of the phv02includes the complete T-DNA fragment of phytase gene. The compete nucleotide sequence and a genetic map of the insertion at locus 3293 and flanking maize genomic DNA is presented in Appendix 1 and Figure 6, respectively. The other insertion at locus 3507 contains a truncated version of the T-DNA fragment that includes two of the three phy02 genes from the T-DNA fragment. This insertion lacks the (b) (4) copy of the phy02 gene and much of the (b) (4) from which the gene is expressed. A genetic map and the complete

nucleotide sequence of the truncated T-DNA insertion and the flanking maize genomic

DNA of this locus is presented in Figure 7 and Appendix 2, respectively.

Figure 6. Genetic map of the T-DNA of locus 3293 of the maize Phy02 expressing event PY203 including (b) (4) bp. The genetic elements within the T-DNA are described in Table 1. (b) (4)



(b) (4) the maize genomic DNA at the insertion site in maize (b) (4)

2.4.4. Genetic stability of the inserts over multiple generations

The genetic stability of the two insertion loci in the Phy02 phytase producing maize event PY203 were evaluated by two different methods in four different backcross (BC) generations in an inbred genetic background designated "E". Genomic DNA was isolated from fresh leaf tissue of the successive BC generations BC1E, BC2E, BC3E and A breeding diagram depicting the relationship of the four BC generations is shown in Figure 8. A PCR primer set consisting of one primer specific to the T-DNA Right Border (RB) element at the edge of the inserted T-DNA (Figure 3) and a second primer specific to maize genomic DNA sequence in the flanking region of locus 3923 or locus 3507 was developed and used in PCR reactions with genomic DNA from event PY203 as the template. Two separate PCR reactions were conducted with each primer set and the resulting amplified DNA fragments were sequenced. Alignments of the sequence of the corresponding region from the genome of event PY203 with the sequences of the PCR amplified fragments from each of the PY203 BC generations and primer set are shown for loci 3293 and 3507 in Figures 9 and 10, respectively. All four generations, BC1E-BC4E, had identical insertion site sequences for both loci indicating that the sequence of the maize flanking DNA adjacent to the RB of each insertion was stable across 4 generations. This result demonstrates that both loci that contain the phy02 gene in event PY203 are stable and have not moved from their original genomic locations over the four BC generations studied.

The genomic stability of the two insertion loci was also demonstrated using Southern hybribization. Genomic DNA was isolated from plants from each of the above described PY203 BC generations (BC1E, BC2E, BC3E, and BC4E) and subjected to digestion with the restriction endonuclease HindIII. From the sequence of the maize genome flanking regions for loci 3293 and 3507 and of the inserted DNA at these loci it is predicted that digestion of genomic DNA from PY203 with HindIII will produce one HindIII restriction fragments from each of the insertion loci that each contain DNA from the corresponding maize genome flanking region and the T-DNA insertion. The predicted sizes of the HindIII restriction fragments from locus 3923 and locus 3507 of PY203 are 10,192 bp and 11,910 bp, respectively. HindIII restricted genomic DNA from each of the four PY203 BC generations was subjected to agarose gel electrophoresis, blotted to a membrane and hybridized with a DNA fragment corresponding to the right border region of the T-DNA in both insertion loci. Two hybridizing fragments of approximately 10,000 and 12,000 bp were observed in the DNA from each of the four PY203 BC generations (Figure 11, Table 2). These results confirm the results of analysis of DNA sequence of maize genomic DNA flanking the insertion loci and demonstrate that the maize genomic DNA adjacent to both loci in PY203 transformed maize from four successive backcross generations is unchanged and stable. Complete details of the two studies of multi-generation stability of the two insertion loci in PY203 Phy02 producing maize are presented in Appendices 3 and 4.

Figure 9. Alignment of genomic DNA sequence from locus 3293 of event PY203 to sequences from PCR amplicons from 4 successive BC generations.

(b) (4)

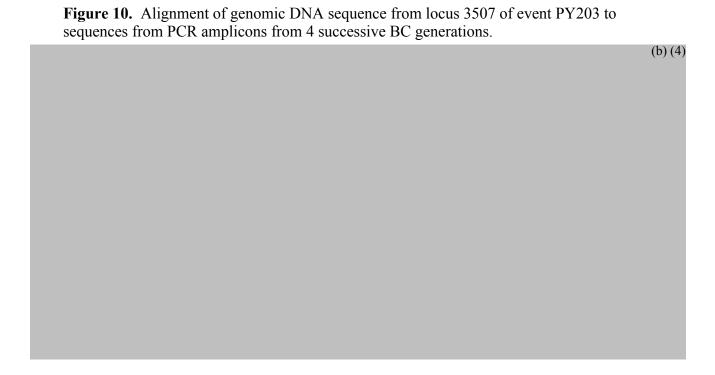



Figure 11. Southern blot of four BC generations of the PY203 event hybridized with a T-DNA RB probe. The (b) bp SalI-NotI restriction fragment derived from the transformation vecto (b) (4) that contains DNA of the hybridizing probe was loaded in two lanes at approximately 1 and ½ genome equivalents as positive controls. DNA molecular weight markers are present in the left lane with sizes indicated in bp on the left.

Table 2. The size of predicted and observed DNA restriction fragments from the genome of Phy02 event PY203 that hybridize to the T-DNA RB probe.

Sample	Locus	Predicted Fragment Size	Observed Fragment Size
PY203 (HindIII)	3293	10,192 bp	≈10,000 bp
PY203 (HindIII)	3507	11,910 bp	≈12,000 bp
(b) (4) (SalI+NotI), 1 & ½ copy		9,680 bp & 662 bp	≈9,500 bp & ≈700 bp
Wild type maize control			

3.0 Characterization of the Phy02 enzyme

The enzyme that is the subject of this submission is a phytase derived from the AppA phytase from *Escherichia coli* K12 strain MG1655 (CGSC, 1997). Phytases are a class of phosphomonoesterases that catalyze the stepwise release of orthophosphate from myoinositol 1,2.3,4,5,6-hexakis dihydrogen phosphate (phytate). The Phy02 phytase in this submission is a 6-phytase (E.C. 3.1.3.26) that first releases the orthophosphate in the 6-position of phytate and subsequently releases the other orthophosphate groups in a prefered order (Griener, 2000). The intended site of activity for the Phy02 phytase is the feed/ingesta of poultry.

The protocol used to determine the phytase activity in Phy02 phytase product material for all results presented in this document is a modification of the standard method for the determination of phytase activity in feed (AOAC 2000.12). The standard protocol for the determination of phytase activity is appropriate for feed materials containing 200 – 400 FTU/kg feed and since the Phy02 product material has over 10 times more phytase activity than this range, the assay was modified to account for this difference. Prior to analysis, the product material is milled so that the particle sizes are less than or equal to 0.5 mm. 20 g of milled material is shaken for 1 hour at room temperature in 200 mL of (b) (4) 2 mL sample is taken and centrifuged at 12,000×g for 10 min. The product supernatants are diluted in phytase assay buffer (250 mM sodium acetate, pH 5.5, 1 mM calcium chloride, 0.01% Tween 20) so that the target absorbance at 415nm is between 0.3 and 1.1. To test protein extract activity, 75 uL of the diluted mixtures is dispensed into individual wells of a 2 mL 96deep-well block. One hundred and fifty µL of freshly prepared phytic acid (9.1 mM dodecasodium salt from Biosynth International, Staad, Switzerland, prepared in assay buffer) is added to each well. Negative controls, which serve to correct sample background absorbance, have no protein extract in the wells before addition of the stop solution. Plates are sealed and incubated for 60 min at 37°C. One hundred and fifty µL of stop solution (20 mM ammonium molybdate, 5 mM ammonium vanadate, 4% nitric acid) is added to each well, mixed thoroughly via pipetting, and allowed to incubate at room temperature for 10 minutes. Seventy-five µL of the diluted protein extract is dispensed into negative control wells and mixed. Plates are centrifuged at 3000×g for 10 minutes, and 100 uL of the clarified supernatants are transferred to the wells of a flatbottom 96-well plate. Absorbance at 415 nm from each sample is compared to that of negative controls and potassium phosphate standards. A standard curve is prepared by mixing 50 µL of potassium phosphate standards (0-1.44 mM, prepared in assay buffer) with 100 µL of freshly prepared phytic acid, followed by 100 µL of stop solution. The protocol used to determine phytase activity in in-feed mixtures is a modification of this protocol and it is described in Appendix 6.

For the purpose of characterizing the Phy02 phytase product, characteristics of the Phy02 phytase in protein extracts prepared from grain derived from three representative Phy02 phytase product batches (Lot numbers AV_Phy02_0043, AV_Phy02_0049, and AV_Phy02_0050) were assessed. The molecular weight, immunoreactivity, intactness

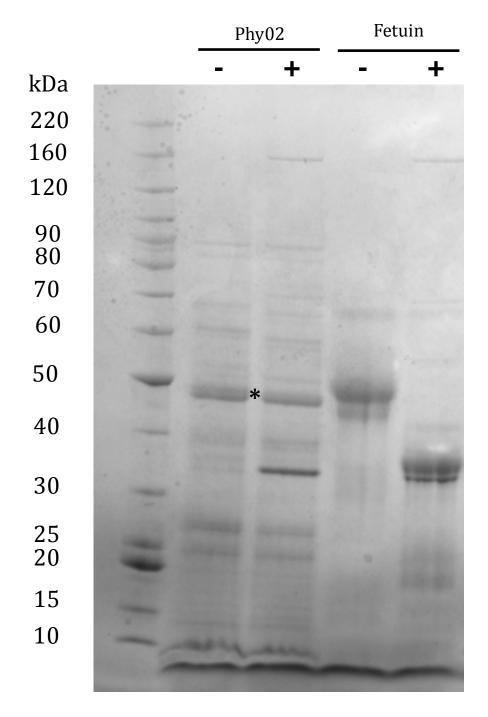
and phytase activity of the Phy02 phytase protein in the three product batches were evaluated and the results are contained in a report presented in Appendix 5. In all three product batches the Phy02 protein was shown to have an approximate molecular weight of 46,000 kDa which is very close to the expected size of 45,684 kDa for the mature Phy02 phytase protein including the endoplasmic retention signal from maize. In addition, the Phy02 protein from each production batch reacted with a phytase specific rabbit polyclonal antibody to demonstrate the expected immunoreactivity of the Phy02 phytase protein. The phytase activities of the three product batches were determined to be:

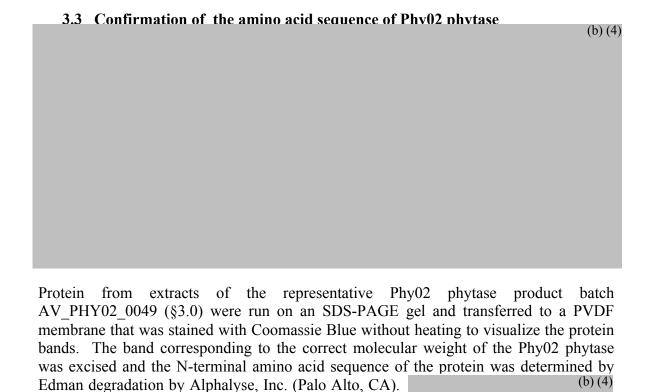
(b) (4)

3.1 Determination of specific activity of Phy02

The phytase activity and specific activity of the phytase relative to total soluble protein was determined in grain from three separate product batches of Phy02 phytase. The amount of total soluble protein in the aqueous protein extracts of flour produced from the grain was determined by two different methods, the Bradford method (Kruger, 1996) and the BCA method (Walker, 1996). Three grams of milled flour from each product batch (b) (4) for 1 hr at was placed in 35 mL of room temperature. The samples were shaken on a tabletop shaker at maximum speed and 2 mL was centrifuged at 12,000×g for 10 min. Supernatants were transferred to phytase assay buffer (250 mM sodium acetate, pH 5.5, 1 mM calcium chloride, 0.01% Tween 20) prior to analysis for proteins by either method. Three separate determinations were performed for each extract using each of the two methods and all results for each extract were averaged. The specific activity for each test substance was calculated from the phytase activity determined for each batch (FTU/g) divided by the average amount of protein/g determined for each sample by the two protein quantitation methods. specific phytase activities of the test substances from the three product batches analyzed expressed in FTU phytase activity/mg protein are:

(b) (4)

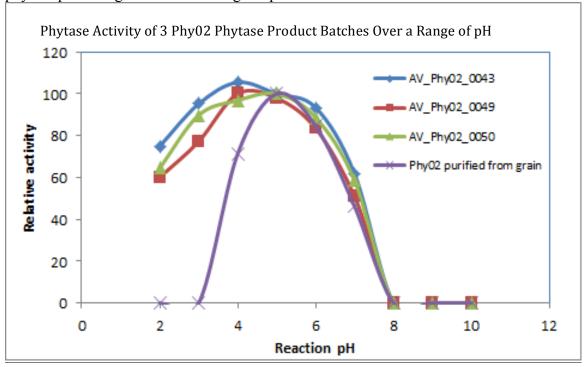

3.2 Glycosylation of maize-produced Phy02 phytase


The glycosylation status of the Phy02 phytase protein produced by maize was examined using a Protein Deglycosylation Kit obtained from New England BioLabs (Product Code P6039S) and the protocol supplied with the kit. Briefly, the Phy02 phytase protein in an extract produced from Phy02 product batch AV_Phy02_0049 (§4.4) was treated with the enzymes PNGase F and O-Glycosidase that remove N-linked and O-linked glycosyl groups, respectively. After treatment with these deglycosylating enzymes, treated and untreated protein extracts were examined by SDS-PAGE and the apparent size of the Phy02 protein in each was compared. In the case of glycosylated proteins, removal of the glycosyl moieties results in an apparent reduction in the size of the protein on SDS-

Agrivida, Inc.

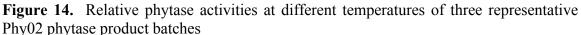
PAGE gels. SDS-PAGE gels containing total protein from enzyme treated and untreated extracts from Phy02 containing maize grain are shown in Figure 12 and show that there is no change in the apparent size of the Phy02 protein with and without enzyme treatment. This result demonstrates that the Phy02 phytase protein produced in the grain of maize is not glycosylated.

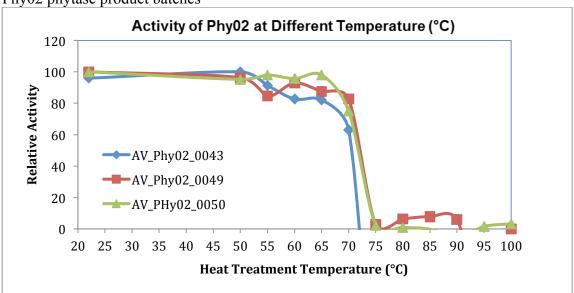
Figure 12. Comparison by SDS-PAGE of the apparent size of the Phy02 phytase protein (indicated by an asterisk) from grain extracts with (+) and without (-) treatment with deglycosylation enzymes. The control protein, fetuin, that contains sialylated N-linked and O-linked glycans, is shown before (+) and after (-) treatment in the right two lanes. The reduction in the apparent size of the fetuin protein after treatment with deglycosylating enzymes demonstrates that the deglycosylation reaction was functional. Protein molecular weight standards are included in the left lane and their sizes in kDa are indicated on the left of the gel.



3.4 Optimal reaction pH for Phy02 phytase

The phytase activity in protein extracts from three independent Phy02 phytase product batches (Lot numbers AV_PHY02_0043, AV_PHY02_0049, and AV_PHY02_0050) and of maize purified Phy02 phytase was determined over a range of pH to determine the pH optimum for phytase activity. The phytase enzymatic reactions were performed in 10x CCH (42.8 g/L citric acid, 92.1 g/L CHES, 79.4 g/L HEPES, pH 3) buffer that was diluted to 1x CCH buffer using either 1N HCl or 1N NaOH to adjust the pH from 2 to 10. Extracts of flour from Phy02 producing maize grain were diluted 500-fold in each 1x CCH buffer. Phytic acid substrate was prepared at a concentration of 9.1 mM and was dissolved in each of the 1x CCH buffers with different pH to ensure that upon mixing enzyme solution with the substrate the reaction pH did not change. Prior to analyses the


pH of the phytic acid substrate solution and each reaction buffer was verified with a standardized pH meter. Phytase reactions were initiated by adding diluted protein extract to the corresponding pH-adjusted substrate followed by incubation of the reaction mixtures for 60 minutes at 37°C. Reaction pH was monitored with colorpHast pH indicator strips (EM Science) following addition of enzyme. The results of the analyses of phytase activity are shown in Figure 13. The activities of the Phy02 phytase in the protein extracts from three Phy02 product batches and that of purified Phy02 phytase protein as a percent of activity of the Phy02 phytase at its pH optimum of pH 4.0 - 5.0are presented. The results demonstrate that the phytase activity in the extracts from the three different product batches have nearly identical activity profiles over the range of pH tested with highest activity at pH 4.0 - 5.0. Above pH 6 the activity of the Phy02 phytase from the different test materials is lost rapidly and is absent at pH 8 (Figure 13). The activity of the purified Phy02 phytase is similar to that of the Phy02 phytases from the product extracts except that its activity is more sensitive to pH lower than pH 4. The phytase activity in the product extracts demonstrated 60 – 80% relative activity at pH 2 whereas the purified Phy02 phytase had no activity at pH 4. A comparison of the pH profile of maize produced Phy02 phytase from this study with that reported for the E. coli AppA phytase reveals many similarities between these related phytases (Lim et al., 2000). Both proteins exhibit a broad pH profile with maximum activity occurring at pH 4.5, and both retain significant activity in the acidic pH range. At pH above neutral, AppA and Phy02 phytases lose their enzymatic activity.


Figure 13. Relative phytase activity of protein extracts from three independent Phy02 phytase product batches and of a Phy02 phytase protein purified from the grain of Phy02 phytase producing maize over a range of pH.

3.5 Thermal optimum of Phy02 phytase

The phytase activity in protein extracts from three independent Phy02 phytase product batches (Lot numbers AV PHY02 0043, AV PHY02 0049, and AV PHY02 0050) was determined over a range of temperatures to determine the temperature optimum for phytase activity. Protein extracts prepared from flour from each of the Phy02 phytase products were diluted 10-fold using phytase assay buffer. 400 µl of diluted protein was placed in a Thermo-Shaker MSC-100 at temperatures of 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100°C. Heat treatment at each temperature was carried out for 5 min with shaking at 1000 rpm. The temperature of sample wells was checked using a Dual Channel Digital Thermometer (Fisher Scientific). After heat treatment, the protein was further diluted in phytase assay buffer prior to analysis for phytase activity. The relative phytase activity of the Phy02 phytase in each of the Phy02 product batch extracts at the different temperatures is presented in Figure 14. Phy02 demonstrated 100% activity at temperatures from 50 to 55°C relative to its optimal temperature for activity of 22°C. Activity decreased only slightly at 60°C and 65°C and at 70°C the activity in the 3 samples tested ranged from 63 to 85%. At temperatures above 70°C the phytase activity of all samples was reduced drastically and at 75°C none retained significant phytase activity.

3.6 Enzymatic side activities of Phy02 phytase

Protein extracts from grain derived from Phy02 phytase product batch AV_Phy02_0049 and from conventional maize grain not engineered to produce the Phy02 phytase were tested for the presence of other significant enzymatic activities. The enzymatic activities that were tested included protease, α -amylase, xylanase, cellulase, and glucanase. The detectible enzymatic activities of the Phy02 and non-Phy02 producing grain were compared for each enzyme tested. The results presented in Table 3 show that in general there were low levels of activity for each of the enzymes tested but there were no differences between the activities present in the Phy02 and non-Phy02 phytase producing

grains. The presence of low levels of endogenous enzymatic activity for these enzymes in normal maize grain is expected and therefore, the fact that there was not a significant difference in the activities of these enzymes in Phy02 producing and nonproducing grain indicates that the Phy02 phytase does not demonstrate significant levels of activity for the enzyme activities tested.

Table 3. Enzymatic side activities in protein extracts of Phy02 producing (Phy02) and Phy02 nonproducing grain (Control). In each case the activity values shown are standard activity units of the enzyme and are the average of three determinations. Control reactions with each enzyme that included its typical substrate were run to ensure that the enzyme and the reaction were functioning.

Enzyme	<u>Ph</u>	<u>y02</u>	Con	Control		
	<u>Activity</u>	Std Dev	Activity	Std Dev		
Amylase	0.014	0.007	0.026	0.010		
Xylanase	0.025	0.037	0.120	0.002		
Cellulase	0.041	0.037	0.015	0.011		
Glucanase	0.052	0.003	0.017	0.000		
Protease	0.025	0.023	0.039	0.008		

4.0 Safety of the Phy02 Phytase

4.1 Safety of the maize production host

Maize is the largest cultivated crop in the world and is widely cultivated in most areas of the world. In 2014 the global production of maize grain was 1,275 million metric tons (MT), including the 381 million MT produced in the U.S. from planting over 90 million acres (USDA FAS, 2014). In the U.S., maize is grown in almost every state.

In industrialized countries maize has two major uses: (1) as animal feed in the form of grain, forage or silage; and (2) as a raw material for wet- or dry-milled processed products such as high fructose maize syrup, oil, starch, glucose, dextrose and ethanol. By-products of the wet- and dry- mill processes are also used as animal feed. These processed products are used as ingredients in many industrial applications and in human food products. Most maize produced is used as animal feed or for industrial purposes, but maize remains an important food staple in many developing regions, especially sub-Saharan Africa and Central America, where it is frequently the mainstay of human diets (Morris 1998).

Maize is a very familiar plant that has been rigorously studied due to its use as a staple food/feed and the economic opportunity it brings to growers. The domestication of maize likely occurred in southern Mexico between 7,000 and 10,000 years ago (Goodman, 1988). While the putative progenitor species of maize have not been recovered, it is likely that teosinte played an important role in contributing to the genetic background of maize. Although grown extensively throughout the world, maize is not considered a persistent weed or a plant that is difficult to control. Maize, as we know it today, cannot survive in the wild because the female inflorescence (the ear) is covered by a husk

thereby restricting seed dispersal; it has no seed dormancy, and is a poor competitor in an unmanaged ecosystem. The transformation from a wild, weedy species to one dependent on humans for its survival most likely evolved over a long period of time through plant breeding by the indigenous inhabitants of the western hemisphere. Today, virtually all maize varieties grown in the U.S. are hybrids, a production practice that started in the 1930's (Wych, 1988). Maize hybrids are developed and used based on the positive yield increases and plant vigor associated with heterosis, also known as hybrid vigor (Duvick, 1999).

Conventional plant breeding results in desirable characteristics in a plant through the unique combination of genes already present in the plant. However, there is a limit to genetic diversity with conventional plant breeding. Biotechnology, as an additional tool to conventional breeding, offers access to greater genetic diversity than conventional breeding alone, resulting in expression of highly desirable traits that are profitable to growers.

Given the long history of the safe use of maize grain and its by-products and maize silage as food and feed ingredients, maize and its grain are considered to be generally recognized as safe (GRAS). Therefore, it is concluded that maize and grain produced by it are safe for consumption by humans and animals and that its cultivation does not present any threats to the environment. Pariza and Foster (1983) developed a decision tree to determine the safety of food and feed enzyme preparations that was updated by Pariza and Johnson (2001) and Pariza and Cook (2010). A key tenet of this decision tree is that since enzymes by themselves are not toxic, the primary consideration of the safety of a food enzyme preparation is the safety of the production organism. In the case where the production organism is a plant that has a long history of safe use as a food ingredient, the enzyme preparation from such a plant is considered to be safe and nontoxic. Based on the decision tree for establishing the safety of food enzyme preparations by Pariza and coauthors (Pariza and Foster, 1983; Pariza and Johnson; 2001; Pariza and Cook, 2010) and on the established long history of safe use of maize for food and feed, the Phy02 enzyme preparation that is the subject of this document is considered to be safe for its intended use in animal feed.

4.1.1 Source of the maize line

The phy02 genes responsible for the production of Phy02 phytase in maize were intially transformed into a maize line named (b) (4) maintained by the U.S. National Plant Germplasm System (NPGS, 1995) that is also known by the name (b) (4) The resulting T0 plants containing the phy02 genes were subsequently crossed with a second maize line, (b) (4) Several other backcrosses with the phy02 gene progeny were made to maize line (b) (4) in order to increase the percentage of the genome from this line in the Phy02 producing lines. A breeding diagram showing the recent breeding activity for the development of Phy02 phytase producing maize is shown in Figure 8 ($\S2.4.4$).

4.1.2 Taxonomy of Zea mays

The taxonomy of maize is described by OECD (2003) as follows:

```
Family: Poaceae
Subfamily: Panicoideae
Tribe: Maydeae
Western Hemisphere:
Genus Zea<sup>1</sup>
Section ZEA
        Zea mays L. (maize)
        Zea mays subsp.mays (L.) Iltis (maize, 2n^2 = 20)
        Zea mays subsp. mexicana (Schrader) Iltis (teosinte, 2n = 20))
                race Nobogame<sup>3</sup>
                race Central Plateau<sup>3</sup>
                race Durango<sup>4</sup>
                race Chalco<sup>3</sup>
        Zea mays subsp. parviglumis Iltis and Doebley (teosinte, 2n = 20)
        var. parviglumis Iltis and Doeblev (=race Balsas)
        var. huehuetenangensis Doebley (=race Huehuetenango)
        <sup>1</sup>Iltis and Doebley, 1980; Doebley, 1990. <sup>2</sup>diploidy number. <sup>3</sup>Wilkes, 1967.
        <sup>4</sup>Sánchez-González et al., 1998.
```

4.1.3 History of safe use of *Zea mays*

There is a long history of safe use of maize for food and feed that is described in §2.1 and §4.1.

4.1.4 Absence of toxicity

Grain derived from maize has been used as food and feed for thousands of years without incident. The history of safe use of maize grain is described in sections §2.1 and §4.1 above. Based on the long history of safe use of maize, it is accepted to be GRAS and to be nutritious and nontoxic.

4.1.5 Summary

As a staple food and feed crop for thousands of years, maize is widely considered to be safe for food, feed, and the production of food feed ingredients.

4.2 Safety of Escherichia coli K12

4.2.1 Introduction

This discussion addresses the safety of *E. coli* K12 strain MG1655, which is the donor organism of the phytase gene (CGSC, 1997). It is worth noting that only a single gene (i.e. the *appA* phytase gene) was used from *E. coli* K12 strain to produce the *phy02* gene that was used to transform maize.

4.2.2 Taxonomy of E. coli.

Escherichia coli has been used extensively in studies of physiology, genetics, and biochemistry, making this species one of the most well studied bacterial species. Escherichia coli belongs to the family Enterobacteriaceae and is ubiquitous in water, soil, and the normal intestinal flora in humans and other animals (Bettelheim, 1992). Enterobacteriaceae are Gram-negative, oxidase-negative, straight, rod-shaped bacteria that do not produce spores. They are chemoorganotrophic and are capable of both respiratory and fermentative metabolism. Growth temperatures range from 22-39°C. Currently, there are 29 recognized genera and over 100 named species (Brenner, 1992).

4.2.3 Laboratory use of *E. coli* K12.

E. coli strains have been used for the last 70 years in the study of bacterial physiology and genetics. Historically, wild-type strain K12 was used in early studies on conjugation and recombination (Swartz, 1996). The use and study of strain K12 continued to predominate due to its use in the study of recombination and the generation and mapping by conjugation of a large number of mutants in metabolic pathways that aided both the studies of bacterial genetics and physiology. Since *E. coli* K12 has been used extensively in research and in many laboratories for decades without causing any harm, *E. coli* K12 is generally recognized as safe.

4.2.4 Safety assessment of *E. coli* K12.

Although there has been no indication over the past 70 years of intensive laboratory study that strain K12 has the ability to cause disease or has toxigenic potential, it has been only recently that studies in regard to this issue have been carried out.

These studies have focused primarily on the determination of the presence or absence of known virulence factors, i.e., properties of an organism that may contribute to its pathogenic potential, since in recent years it has become apparent that certain *E. coli* strains clearly have the potential to cause disease.

In a study of *E. coli* strains including representatives of the K12 strain, polymerase chain reaction (PCR) amplification demonstrated the absence of defined virulence genes that are present in known pathogenic isolates of this genus (Kuhnert, 1997). The authors concluded that the K12 strains commonly used in the laboratory are devoid of virulent factors and should be considered nonpathogenic.

A more direct study of the pathogenic potential of K12 strains was conducted using both a BALB/c mouse and chick gut model. In this study, the strains were found to be unable to express long-chain lipopolysaccharide (O-antigen) and were serum-sensitive (i.e. susceptible to complement killing). In addition, they were unable to persist or survive in selected mouse tissues or the gut. In the chick model, the strains were unable to invade the spleen, which is a hallmark of *E. coli* strains able to cause systemic infections. The authors concluded that K12 strains do not possess the recognized pathogenic mechanisms and should be considered nonpathogenic (Chart, 2000).

As mentioned above, E. coli K12 was the predominant organism of choice for recombinant DNA research because of the large amount of information about

recombination and biochemical genetics that was developed using this strain. This information resulted in the NIH Guidelines (prepared by the National Institute of Health) listing strain K12 as safe for recombinant use, as detailed in Appendix C-II of the NIH guidelines (NIH, 2013).

In summary, the following demonstrates that *E. coli* K12 is officially recognized as, and considered a safe organism with no demonstrated toxigenic or pathogenic properties, including:

- The long-term use of *E. coli* K12 in numerous laboratories with no reports of illness or disease as a result of its use;
- The absence of genes encoding defined virulence factors as determined by PCR and other molecular methods;
- The lack of pathogenic potential in both a mouse and chick animal model; and
- The inclusion of this strain in the RG1 classification by the NIH Office of Biotechnology Activities and the Recombinant DNA advisory committee.

4.3 Safety of Phy02 Phytase in Two Broiler Chicken Tolerance Studies

The safety of high doses of the Phy02 phytase in broiler chickens was demonstrated by feeding chickens a feed supplemented with 30,000 FTU/kg feed in one study (broiler chicken Study 3) and with 60,000 FTU/kg feed in a second study (broiler chicken Study 4). The details of these poultry studies are described in §5.3. At the conclusion of each study at day 42, blood was collected from three chickens in each pen of the positive control (PC) group that was fed a feed with adequate available phosphorus but no phytase and the 30,000 or 60,000 FTU/kg Phy02 phytase treatment groups in Study 3 and Study 4, respectively that were fed a diet with a low level of available phosphorus supplemented with either 30,000 or 60,000 FTU/kg Phy02 phytase. From each bird a minimum of 1 ml of whole blood was collected via the brachial vein into a tube containing EDTA. In a separate tube an additional 2 ml of whole blood was collected from each bird and this sample was allowed to coagulate. The serum from the latter tubes was decanted into fresh sample tubes and the non-clotted blood and serum samples were shipped on wet ice to Marshfield Labs (Marshfield, WI) where hemotological analyses were performed. The results of the hemotological analyses from these studies are presented in Tables 4 and 5. In the case of the 30,000 FTU/kg treatment, for all analyses conducted except one, there were no significant differences with a P value < 0.05 between the positive control group (PC) that received no Phy02 phytase and the group that received 30,000 FTU Phy02/kg feed for the duration of the study. The sole analyte for which there was a significant difference between the PC and 30,000 FTU dose groups was blood phosphorus where the PC group had a significantly higher blood phosphorus level (6.79 mg/dL) compared to the 30,000 FTU/kg group (6.38 mg/dL). This difference in blood phosphorus is likely a direct result of the intentionally different levels of phosphorus in the feed of these two treatment groups and not to the presence of the Phy02 phytase in the diet of the 30,000 FTU/kg dose group.

Table 4. Results of hematological analysis of blood samples from the PC and 30,000

FTU/kg Phy02 phytase treatment groups in b	oroiler chicken Study 3.
--	--------------------------

Analysis	Positive	30,000	SEM	Treatment	Block
	Control	FTU		P Value	P Value
Haemoglobin, g/dL	12.45	12.67	0.15	0.33	0.96
Hematocrit, %	34.70	35.19	0.41	0.42	0.99
Red Blood Cell x10 ⁶ uL	2.86	2.91	0.03	0.23	0.95
Mean Corpuscular volume, fL	121.5	121.0	0.5	0.46	0.92
Mean Corpuscular Hemoglobin, pg	43.59	43.55	0.25	0.92	0.91
MCH concentration, g/dL	35.88	35.99	0.12	0.52	0.63
Red Cell Distribution Width, %	9.40	9.14	0.15	0.24	0.59
White Blood Cell x10 ³ ul	13.95	13.73	1.35	0.91	0.87
Heterophils, %	33.69	31.64	1.89	0.46	0.60
Lymphocytes, %	53.17	58.69	2.03	0.08	0.36
Monocytes, %	4.29	4.65	0.51	0.63	0.19
Eosinophil, %	5.00	5.03	0.90	0.98	0.93
Basophil, %	2.88	3.38	0.29	0.25	0.40
Absolute Heterophils, x10 ³ ul	4.40	4.38	0.39	0.97	0.88
Absolute Lymphocytes, x10 ³ ul	7.74	8.00	0.91	0.85	0.72
Absolute Monocytes, x10 ³ ul	0.564	0.667	0.103	0.49	0.42
Absolute Eosinophil, x10 ³ ul	0.698	0.703	0.143	0.98	0.83
Absolute Basophil, x10 ³ ul	0.410	0.502	0.082	0.44	0.58
Total Protein, g/dL	2.81	2.85	0.04	0.48	0.20
Albumin, g/dL	1.03	1.07	0.02	0.28	0.89
Globulin, g/dL	1.82	1.86	0.03	0.45	0.26
Albumin/Globulin	0.556	0.542	0.009	0.32	0.50
Creatine Kinase, U/L	Non-Est ¹	Non-Est ¹	-	-	-
Alanine Aminotransferase, U/L	<5 ²	<5	-	-	-
Phosphorus, mg/dL	6.79 ^a	6.38 ^b	0.12	0.028	0.56
Glucose, mg/dL	255.6	255.9	2.6	0.94	0.053

¹ Non-Estimable, many samples (54 of 72) above the maximum analyzable limit

Blood samples were collected in a similar manner in broiler Study 4 except that in addition to collecting blood from the PC and 60,000 FTU/kg Phy02 treatment groups, blood was also collected from birds of the negative control (NC) treatment group that were fed a diet low in inorganic phosphorus with no phytase. A review of the results from the hematological analyses of these samples (Table 5) indicates that there were no significant differences between the values for the PC and 60,000 FTU/kg Phy02 treatment groups for any of the hematological measurements except for albumin/globulin where the 60,000 FTU/kg Phy02 treatment group had a significantly higher value compared to the PC treatment group. However, the albumin/globulin values for the NC and 60,000 FTU/kg Phy02 treatment groups were not significantly different. In none of the analytes were the results from the 60,000 FTU/kg treatment significantly different from both the NC and PC treatments. The results from the hematological analyses of blood samples in Studies 3 and 4 demonstrate that high doses of the Phy02 phytase are well tolerated by broiler chickens and do not have an adverse impact on

>22500 U/L

² Below analyzable limits

critical hematological indicators.

Each of the birds in broiler Studies 3 and 4 from whom blood samples were collected were euthanized and a post-mortem examination was conducted by a qualified veterinarian. During the post-mortem examination key tissues were examined in the high Phy02 dose groups and visually compared to those of the PC group for the presence of any indications of pathological or toxicological symptoms. No adverse effects or indications of toxicity were observed in the birds from the high dose groups relative to the PC groups in either study.

The absence of significant changes in key hematological parameters and of indicators of toxicity in the tissues of the birds in the 30,000 and 60,000 FTU/kg dose groups support a conclusion that high doses of the Phy02 phytase up to 60,000 FTU/kg feed are well tolerated by broiler chickens and are safe. This conclusion is further supported by the good performance of the chickens in the 30,000 and 60,000 FTU/kg dose groups as demonstrated by body weight gain and feed conversion rates that are summarized in §5.3 and §5.4. These results demonstrating the safety and tolerance of chickens to high doses of the Phy02 phytase are consistent with independent reports on the tolerance of broiler chickens to very high doses of the maize expressed NOV9X phytase that is nearly identical to the Phy02 phytase (§2.2). Two studies have demonstrated in broiler feeding trials that birds fed a diet containing 363,000 FTU/kg of the maize expressed NOV9X phytase demonstrated good performance in the absence of any observable adverse effects or signs of toxicity due to the high level of NOV9X phytase in the diets (Nyannor and Adeola, 2008; Nyannor et al., 2009).

Table 5. Results of hematological analysis of blood samples from the NC, PC and 60,000 FTU Phy02 phytase treatment groups in broiler chicken Study 4.

	Negative	Positive	60,000	SEM	Trt	Block
	Control	Control	FTU + NC		P Value	P Value
Haemoglobin, g/dL	12.38	12.12	12.24	0.18	0.61	0.24
Hematocrit, %	35.25 ^a	33.53 ^b	33.78 ^{ab}	0.45	0.027	0.14
Red Blood Cell x10 ⁶ uL	2.80	2.80	2.81	0.03	0.98	0.18
Mean Corpuscular volume, fL	126 ^a	120 ^b	120 ^b	0.5	0.0001	0.23
Mean Corpuscular Hemoglobin, pg	44.2 ^A	43.3 ^B	43.6 ^{AB}	0.3	0.09	0.30
MCH concentration, g/dL	35.1 ^b	36.1 ^a	36.2ª	0.2	0.0003	0.47
Red Cell Distribution Width, %	10.08 ^a	9.38 ^b	9.16 ^b	0.13	0.0001	0.27
White Blood Cell x10 ³ ul	14.6	15.0	15.9	1.0	0.67	0.19
Heterophils, %	46.0	49.0	46.3	3.2	0.76	0.04
Lymphocytes, %	44.1	41.6	44.9	3.3	0.76	0.09
Monocytes, %	4.47	3.67	3.71	0.52	0.48	0.89
Eosinophil, %	2.42	3.38	3.74	0.47	0.17	0.93
Basophil, %	4.88 ^a	4.01 ^{ab}	2.86 ^b	0.37	0.003	0.31
Absolute Heterophils, x10 ³ ul	5.85	6.48	6.52	0.33	0.29	0.11
Absolute Lymphocytes, x10 ³ ul	7.35	7.12	7.99	0.94	0.79	0.23
Absolute Monocytes, x10 ³ ul	0.613	0.534	0.583	0.079	0.78	0.41
Absolute Eosinophil, x10 ³ ul	0.363	0.583	0.598	0.094	0.19	0.65
Absolute Basophil, x10 ³ ul	0.658 ^A	0.558 ^{AB}	0.427^{B}	0.070	0.086	0.36
Total Protein, g/dL	2.93	3.00	3.01	0.05	0.51	0.61
Albumin, g/dL ¹	1.10	1.08	1.10	0.03	0.92	0.23
Globulin, g/dL	1.93	2.00	1.96	0.04	0.33	0.90
Albumin/Globulin	0.519 ^{ab}	0.508 ^b	0.553 ^a	0.012	0.037	0.38
Creatine Kinase, U/L ²	11076	Non-Est ¹	Non-Est ¹	-	-	-
Alanine Aminotransferase, U/L ³	5.64	6.35	7.19	-	-	-
Phosphorus, mg/dL	2.97 ^b	6.52 ^a	6.34 ^a	0.08	0.0001	0.003
Glucose, mg/dL	248 ^a	241 ^b	243 ^{ab}	1.7	0.014	0.015

¹ Average based on values which weren't below analyzable limits (<1.0 g/dL; Out of 36 samples/trt NC, n=12; PC, n=15; & 60,000FTU, n=8); Note from lab: 'Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.'

4.4 Summary of the safety of Phy02 phytase

The assessment of the safety of food and feed enzymes includes three main factors: 1) the safety of the organism that was the source of the gene encoding the enzyme, 2) the safety of the production organism, and 3) the safety of the enzyme itself. The safety of *E. coli* strain K12 that was the source of the gene encoding the Phy02 phytase is presented in §4.2. In addition, the *phy02* gene was synthesized and includes only the coding sequence of the phytase gene without any other genetic information derived from the genome of *E. coli*. The safety of *Zea mays*, the production organism, is presented in §4.1 and is well established. The safety of the Phy02 phytase enzyme is based on the following. (1)

² Non-Estimable, most samples (34 or 31 out of 36/trt for PC and 60,000FTU, respectively) above the maximum analyzable limit >22500 U/L; only 1 out of 36 above the limit in NC.

³ Average based on values which weren't below analyzable limits (<5 U/L; Out of 36 samples/trt NC, n=19; PC, n=7; & 60,000FTU, n=4).

Enzymes generally are known to be non-toxic and in cases of proteins that are toxic, toxicity is derived from the biological mode of action of the protein. (2) The history of safe use of phytases as animal feed additives and in human nutritional supplements is well established. (3) Phy02 phytase has 97% amino acid identity with the Nov9X phytase of the feed additive Quantum. Quantum has been used safely and effectively in poultry feeds since 2008. (4) A NOAEL (No Observed Adverse Effect Level) of 462,000 FTU/kg body weight/day based on an acute toxicity study in rat was reported for the Nov9X phytase (Quantum FDA submission, 2004) and no indications of toxicity were observed in a 90-day subchronic toxicity study in rats receiving 400 mg of purified Nov9X phytase/kg body weight/day (EFSA, 2008). It may be assumed that Phy02 would also have a high NOAEL and no safety concerns. (5) The safety of Phy02 is supported by the tolerance studies described in §4.3 where chickens were fed feed supplemented with 30,000 and 60,000 FTU Phy02 phytase/kg feed without any reported signs of toxicity. Similar studies were conducted with the Nov9X phytase in which chickens were fed feed supplemented with up to 360,000 FTU/kg of Nov9X phytase (Nyannor and Adeola, 2008; Nyannor et al., 2009). It may be concluded from the above that the Phy02 phytase is safe for its intended use as an additive in the feed of poultry.

5.0 Enzyme Functionality in Poultry

The functionality of the Phy02 phytase in poultry was demonstrated in four independent feeding trials with broiler chickens. The final reports including the study protocols and data from these four studies (Study 1, AGV-15-1; Study 2, AGV-15-3; Study 3, AGV-15-4; and Study 4, AGV-15-5) are presented in Appendices 6-9, respectively. All four trials were conducted by Colorado Quality Research (CQR) in Ft. Collins, CO. In each of the trials there were 8 treatment groups consisting of 12 pens each with 17 birds that were organized in a complete randomized block design for a total of 204 birds per treatment. All treatment groups were fed a corn/soybean diet that meets the NRC dietary requirements for broiler chickens except for available phosphorus in the negative control group. The diet of the negative control treatment groups contained 0.3% available phosphorus from day 0-21 of the trial which was reduced to 0.25% from day 21 to the end of the trials at day 42. The diet of the positive control groups contained 0.45% available phosphorus from day 0 to 21 and 0.40% from day 21 to 42. Each of the trials included treatment groups receiving the negative control basal diet with low available phosphorus that was supplemented with 250, 500, 750, 1,000 or 3,000 FTU/kg of GraINzyme Phy02 phytase. Two of the trials (Study 1 and 2) also included a treatment group that received the low available phosphorus basal diet of the negative control group that was supplemented with 500 FTU/kg of a commercial phytase product. In the Study 3 and Study 4 trials this treatment was replaced by a treatment group that received the low available phosphorus basal diet supplemented with 30,000 or 60,000 FTU/kg of the Phy02 phytase, respectively. The 30,000 and 60,000 FTU/kg doses were included to demonstrate the safety of the Phy02 phytase at high doses (§4.3). The Study 3 trial was conducted under Good Laboratory Practices (GLP) as described in 40 CFR 160.

After mixing, the diets were pelleted using a California Pellet Mill system at 65° C. The starter feed (0-14 days) was further processed into crumbles. For those diets supplemented with phytase, samples of the mash diets before pelleting and samples of the pelleted diets after pelleting were collected and the phytase activity of each sample was determined. The Phy02 phytase is stable under pelleting temperatures of 65° C and its activity was not significantly reduced by the pelleting process. The phytase activity before and after pelleting in the feeds from all four broiler feeding trials is presented in Appendix 6. In addition, a 500g sample of each prepared feed was collected and shipped to Minnesota Valley Testing Laboratories, Inc. (New Ulm, MN) where the feed samples were analyzed for proximate nutrients. The results of the proximate nutrient analyses are presented in Appendix 7.

The data collected from each study included the following:

- Bird weights by pen, on approximately Days 0, 14 (except Study 1), 21, and 42
- Feed amounts added and removed from each pen from day 0 to study end (day 42)
- Mortality: sex, weight and probable cause of death from day 0 to study end
- Removed birds: reason for culling, sex and weight from day 0 to study end
- Daily observation of facility and birds, daily facility temperature, daily facility humidity
- Feed conversion by pen and treatment group for days 0-14 (except Study 1), 0-21

and 22-42.

- % Phosphorus digestibility in ileal contents at days 21 and 42.
- bone ash weight of tibia at days 21 and 42.

In order to demonstrate the functionality of the Phy02 phytase in animals, ileal contents and tibia bone samples were collected to enable the determination of phosphorus digestibility in the ileum and bone ash weight of tibia bone samples. Beginning at day 14 of the studies titanium dioxide was added to all feeds at 0.3% as an indestible marker in order to determine percent phosphorus digestibility in the ileal content samples. At days 21 and 42 of the studies, three birds were collected at random from each pen and these birds were sacrificed. The ileal contents from the birds from each pen were pooled into one sample and all samples collected were sent to the Experimental Station Chemical Laboratories, University of Missouri (Columbia, MO) for determination of phosphorus digestibility. The left tibia was removed from each of the birds and cleaned and the three tibias from each pen were pooled and frozen prior to analysis. The tibia bone samples were sent to the Central Analytical Laboratories at the University of Arkansas (Fayetteville, AR) for determination of bone ash.

The experimental design for all studies was a randomized complete block design and pen location within the barn was used as the blocking criteria. Each of the 12 blocks had 8 pens to which the treatments were randomly distributed. The pen was used as the experimental unit for each analyzed variable. Data was analyzed using fit least squares of the JMP software (version 12, SAS Institute Inc., Cary, NC). The ANOVA model included treatment and block. Mean values were separated using Tukey's honesty significant difference procedure and P-values < 0.05 were considered significant in all comparisons.

5.1 Summary of the Results from Broiler Chicken Study 1

The performance data, including feed intake, body weight gain and adjusted feed conversion from Study 1 are presented in Tables 6 (0-21 day), 7 (21-42 day), and 8 (0-42 day). In each of the tables, the amount of phytase included in the feed of those treatments where it was added is presented in FTU/kg feed. The treatment labeled "500 U Std + NC" contained 500 FTU/kg of a commercial phytase product in the low phosphorus NC basal diet. Values listed within each category that share the same statistical letter designation are not significantly different at a P-value <0.05.

During all phases of the study (0-21, 21-42, and 0-42 day) the PC group and all treatment groups receiving feed supplemented with Phy02 phytase had significantly higher weight gain and significantly lower feed conversion rate (FCR) compared to the NC group. In general there was increasing body weight gain and decreasing FCR with increasing doses of the Phy02 phytase throughout the duration of the trial in the treatment groups receiving feed containing the Phy02 phytase, thereby demonstrating a dose response to increasing Phy02 phytase concentration in the feed. These results support a conclusion that supplementation of a diet low in available phosphorus with Phy02 phytase results in

improved weight gain and FCR relative to the NC group and equal to or greater than that of the PC group.

Table 6. Performance of broiler chickens in Study 1 from day 0-21. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed
		kg	Conversion ¹
Positive Control	0.904^{a}	0.648 ^{bc}	1.396 ^b
Negative Control	0.799^{c}	0.556^{d}	1.438 ^a
250 U + NC	0.860^{b}	0.633^{c}	1.358 ^c
500 U + NC	0.896^{a}	0.663^{b}	1.351 ^{cd}
750 U + NC	0.897^{a}	0.673^{ab}	1.333 ^{cd}
1000 U + NC	0.896^{a}	0.672^{ab}	1.335 ^{cd}
3000 U + NC	0.916 ^a	0.696^{a}	1.316 ^d
500 U Std + NC	0.884^{ab}	0.663^{b}	1.334 ^{cd}
SE	0.0081	0.0066	0.0086
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.051	0.20	0.31

Table 7. Performance of broiler chickens in Study 1 from day 21-42. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed
		kg	Conversion
Positive Control	3.379 ^{ab}	2.141 ^{ab}	1.580^{b}
Negative Control	2.870^{c}	1.752 ^c	1.638 ^a
250 U + NC	3.296 ^b	2.073 ^b	1.590 ^b
500 U + NC	3.410^{a}	2.168 ^a	1.573 ^b
750 U + NC	3.374 ^{ab}	2.139 ^{ab}	1.578 ^b
1000 U + NC	3.403 ^{ab}	2.171 ^a	1.568 ^b
3000 U + NC	3.452 ^a	2.202 ^a	1.568 ^b
500 U Std + NC	3.398 ^{ab}	2.178 ^a	1.560 ^b
SEM	0.026	0.019	0.0076
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	< 0.0001	< 0.0001	0.43

Table 8. Performance of broiler chickens in Study 1 from day 0-42. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed
		kg	Conversion
Positive Control	4.264 ^a	2.789 ^{bc}	1.529 ^b
Negative Control	3.648 ^c	2.308^{d}	1.581 ^a
250 U + NC	4.128 ^b	2.706 ^c	1.526 ^b
500 U + NC	4.278 ^a	2.831 ^{ab}	1.511 ^{bc}
750 U + NC	4.240 ^{ab}	2.812 ^{ab}	1.508 ^{bc}
1,000 U + NC	4.269 ^a	2.843 ^{ab}	1.502 ^c
3,000 U + NC	4.339 ^a	2.898 ^a	1.498 ^c
500 U Std + NC	4.252 ^{ab}	2.841 ^{ab}	1.497 ^c
SEM	0.029	0.021	0.0054
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	< 0.0001	< 0.0001	0.35

The percent phosphorus digestibility and tibia bone ash weights in broiler Study 1 also support and demonstrate the functionality of the Phy02 phytase. The percent phosphorus digestibility of the PC group at 21 days was slightly higher than that of the NC group while all groups receiving the Phy02 phytase in the diet demonstrated phosphorus digestibility higher than that of the PC group although much of the differences were not statistically significant (Table 9). Similar results were generated for percent phosphorus digestibility at 42 days where the percent phosphorus digestibility was numerically higher, though not statistically different, for all Phy02 phytase containing diets compared to the PC and NC groups (Table 9). The weight of tibia bone ash at 21 days and at 42 days was significantly greater in the PC group compared to the NC group (Table 10) and all groups receiving the Phy02 phytase in the diet also had bone ash weights that were significantly greater than that of the NC group and equal to that of the PC group (Table 10).

Table 9. Ileal phosphorus and percent phosphorus digestibility in broiler Study 1 at 21 and 42 days.

Treatment	21d Ileal P	21d % P	42d Ileal P	42d % P
	(mg/g)	digestibility	(mg/g)	digestibility
Positive Control	0.261 ^A	46.42 ^{ab}	0.256 ^a	50.78
Negative Control	0.245 ^{AB}	45.70 ^b	0.184 ^b	49.93
250 U + NC	0.209 ^C	54.56 ^{ab}	0.188 ^b	55.93
500 U + NC	0.248 ^{AB}	49.43 ^{ab}	0.171 ^b	56.82
750 U + NC	0.217^{BC}	55.72 ^a	0.185^{b}	56.96
1000 U + NC	0.218^{BC}	53.42 ^{ab}	0.183^{b}	56.93
3000 U + NC	0.214 ^{BC}	55.86 ^a	0.178^{b}	56.21
500 U Std + NC	0.234 ^{ABC}	51.53 ^{ab}	0.187^{b}	57.84
SEM	0.012	2.22	0.014	2.32
TRT P Value	0.027	0.004	0.0011	0.119
Block P Value	0.0004	0.0007	0.073	0.051

^{ab} Values within columns with no common superscript are statistically different (P < 0.05).

Table 10. Weight of tibia bone ash at day 21 and 42 of broiler Study 1.

Treatment		ibia Ash	42d Tibia Ash	
	Grams ¹	%	Grams ¹	%
Positive Control	2.49^{ab}	25.66 ^a	10.92 ^{ab}	29.28 ^{ab}
Negative Control	1.79 ^c	22.30^{b}	8.19 ^c	26.82 ^b
250 U + NC	2.31 ^b	25.12 ^a	10.42 ^b	29.30 ^{ab}
500 U + NC	2.55 ^{ab}	25.01 ^a	11.11 ^{ab}	28.94 ^{ab}
750 U + NC	2.60^{a}	23.83 ^{ab}	11.35 ^a	30.72 ^a
1000 U + NC	2.61 ^a	25.29 ^a	11.05 ^{ab}	29.17 ^{ab}
3000 U + NC	2.66 ^a	25.41 ^a	11.41 ^a	30.84 ^a
500 U Std + NC	2.52^{ab}	25.59 ^a	11.31 ^a	31.07 ^a
SEM	0.06	0.55	0.18	0.80
TRT P Value	< 0.0001	0.0004	< 0.0001	0.0079
Block P Value	0.198	0.97	0.18	0.72

ab Values within columns with no common superscript are statistically different (P < 0.05).

In summary, the performance data from broiler Study 1, including body weight gain and feed conversion, support the functionality of the Phy02 phytase. Inclusion of the Phy02 phytase in a low phosphorus basal diet demonstrated a dose response with improved weight gain and feed conversion with increasing doses of Phy02. In addition, the functionality of the Phy02 phytase was demonstrated by improved percent phosphorus digestibility in the ileum and higher amounts of bone ash in tibia. Altogether, the results

ABC Values within columns with no common superscript are statistically different (P < 0.05; Student's T test was used because Tukey's test did not assign superscripts)

¹Tibia ash weight; n = 3 tibia per pen

of broiler Study 1 clearly demonstrate the functionality of the Phy02 phytase in improving phosphorus availability and nutrition in broiler chickens.

5.2 Summary of the Results from Broiler Chicken Study 2

The performance data, including feed intake, body weight gain and adjusted feed conversion from Study 2 are presented in Tables 11 (0-21 day), 12 (0-42 day), 13 (0-14 day) 14 (14-21 day), and 15 (21-42 day). In each of the tables, the amount of Phy02 phytase included in the feed of those treatments where it was added is presented in FTU phytase/kg feed. The treatment labeled "500 U Std + NC" contained 500 FTU/kg of a commercial phytase product in the low phosphorus NC basal diet. Values listed within each category that share the same statistical letter designation are not significantly different at a P value <0.05.

In the first half of the study from day 0-21 the body weight gain of the birds in the PC group was significantly greater than that demonstrated by the NC group (Table 11). All treatment groups that received the low phosphorus basal diet of the NC group but that were supplemented with Phy02 phytase had body weight gain that was also significantly greater than that of the NC group. Although the body weight gain of the Phy02 phytase treatment groups were not statistically different from that of the PC group there was a clear trend where body weight gain increased relative to the dose of Phy02 phytase in the feed.

In the case of adjusted FCR in the 0-21 day period, the PC group and all Phy02 phytase treatment groups had a significantly lower FCR compared to the NC group (Table 11). In addition, all Phy02 phytase treatment groups, except the lowest dose group (250 FTU/kg), had significantly lower FCRs relative to the PC group. There was also a strong trend of lower FCRs with increasing dose of Phy02 phytase. These results demonstrate that the addition of Phy02 phytase to the low phosphorus basal diet of the NC treatment group improved animal performance as demonstrated in higher body weight gain and lower FCR.

For the duration of the full study from day 0-42, the PC group and all phytase treatment groups had statistically greater body weight gain compared to the NC group (Table 12). All treatment groups that included phytase in the feed had body weight gain that was statistically equivalent to that demonstrated by the PC group. In the case of FCR from day 0-42, there was no significant difference between the NC and PC groups. However, FCR in all phytase treatment groups were lower at a statistically significant level compared to the PC group. These results are similar to those produced in broiler Study 1 and demonstrate the improvement in animal performance as measured by body weight gain and adjusted FCR in animals receiving the low phosphate diet supplemented with Phy02 phytase compared to those in the NC group that were fed the low phosphate diet without Phy02 phytase.

Table 11. Performance of broiler chickens in Study 2 from day 0-21. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake ¹ ,	Body Wt Gain,	Adj. Feed
	kg	kg	Conversion ²
Positive Control	1.030^{a}	0.766 ^{abc}	1.344 ^b
Negative Control	0.867^{c}	0.629 ^d	1.378 ^a
250 U + NC	0.967^{b}	0.730^{c}	1.325 ^{bc}
500 U + NC	0.976^{ab}	0.741 ^{bc}	1.317 ^c
750 U + NC	0.987^{ab}	0.750^{abc}	1.318 ^c
1000 U + NC	1.009 ^{ab}	0.770^{ab}	1.311 ^c
3000 U + NC	1.024 ^a	0.785^{a}	1.305°
500 U Std + NC	1.019 ^{ab}	0.776^{ab}	1.314 ^c
SEM	0.0128	0.0089	0.0060
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	< 0.0001	< 0.0001	0.16

¹Calculated by adjusting feed intake for mortality using final number of birds per pen. ²Calculated by summing feed intake and BWG using 0-21 plus 21-42 data to calculate mortality adjusted FCR.

Table 12. Performance of broiler chickens in Study 2 from day 0-42. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake ¹ ,	Body Wt Gain,	Adj. Feed
	kg	kg	Conversion ²
Positive Control	4.541 ^a	2.905 ^{ab}	1.578 ^a
Negative	3.756 ^c	2.409 ^c	1.571 ^{ab}
Control			
250 U + NC	4.297^{b}	2.803 ^b	1.546 ^{bc}
500 U + NC	4.392 ^{ab}	2.879^{ab}	1.537 ^c
750 U + NC	4.406^{ab}	2.881 ^{ab}	1.543°
1000 U + NC	4.415 ^{ab}	2.892 ^{ab}	1.540 ^c
3000 U + NC	4.456 ^a	2.911 ^a	1.546 ^{bc}
2500 U Std +	4.448 ^{ab}	2.903 ^{ab}	1.546 ^{bc}
NC			
SEM	0.036	0.024	0.0058
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	< 0.0001	< 0.0001	0.74

¹Calculated by adjusting feed intake for mortality using final number of birds per pen. ²Calculated by summing feed intake and BWG using 0-21 plus 21-42 data to calculate mortality adjusted FCR.

Table 13. Performance of broiler chickens in Study 2 from day 0-14. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain, kg	Adj. Feed
			Conversion
Positive Control	0.456^{a}	0.351 ^{ab}	1.299 ^b
Negative Control	0.411 ^b	0.298 ^d	1.378 ^a
250 U + NC	0.428 ^{ab}	0.331 ^{bc}	1.293 ^{bc}
500 U + NC	0.427^{ab}	0.328 ^c	1.303 ^b
750 U + NC	0.428^{ab}	0.334 ^{abc}	1.281 ^{bc}
1000 U + NC	0.438^{ab}	0.343 ^{abc}	1.275 ^{bc}
3000 U + NC	0.444 ^a	0.355 ^a	1.252 ^c
2500 U Std + NC	0.440^{ab}	0.346^{abc}	1.275 ^{bc}
SEM	0.0072	0.0048	0.0102
TRT P Value	0.0017	< 0.0001	< 0.0001
Block P Value	< 0.0001	< 0.0001	0.027

Table 14. Performance of broiler chickens in Study 2 from day 14 - 21. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain, kg	Adj. Feed
			Conversion
Positive Control	0.573^{a}	0.415 ^{ab}	1.383 ^a
Negative Control	0.456 ^c	0.331 ^c	1.378 ^{ab}
250 U + NC	0.540^{b}	0.399 ^b	1.352 ^{abc}
500 U + NC	0.549^{ab}	0.414^{ab}	1.328 ^c
750 U + NC	0.560^{ab}	0.416^{ab}	1.347 ^{bc}
1000 U + NC	0.572^{ab}	0.426^{a}	1.340 ^c
3000 U + NC	0.580^{a}	0.430^{a}	1.349 ^{bc}
2500 U Std + NC	0.579 ^a	0.430^{a}	1.346 ^{bc}
SEM	0.0074	0.0053	0.0073
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	< 0.0001	< 0.0001	0.58

Table 15. Performance of broiler chickens in Study 2 from day 21 - 42. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain, kg	Adj. Feed
			Conversion
Positive Control	3.553^{a}	2.139 ^a	1.662 ^a
Negative Control	2.921 ^c	1.780 ^b	1.639 ^{ab}
250 U + NC	3.366^{b}	2.073 ^a	1.624 ^b
500 U + NC	3.450^{ab}	2.138 ^a	1.614 ^b
750 U + NC	3.459 ^{ab}	2.132 ^a	1.623 ^b
1000 U + NC	3.445 ^{ab}	2.123 ^a	1.623 ^b
3000 U + NC	3.475 ^{ab}	2.127 ^a	1.635 ^{ab}
2500 U Std + NC	3.468 ^{ab}	2.127 ^a	1.631 ^{ab}
SEM	0.030	0.021	0.0085
TRT P Value	< 0.0001	< 0.0001	0.008
Block P Value	< 0.0001	< 0.0001	0.86

The percent phosphorus digestibility and tibia bone ash weights in broiler Study 2 also support and demonstrate the functionality of the Phy02 phytase. The percent phosphorus digestibility of the PC group at 21 days was artificially higher than that of the NC group due to higher P and lower Ti in the analyzed feed sample. As a result, the P digestibility of the 250 FTU Phy02 phytase treatment group at 21 days was significantly lower than that of the PC group but there were no significant differences among all other treatment groups. However, the P digestibility in all Phy02 treatment groups with greater than 250 FTU/kg feed were numerically greater at 21 days than that of the NC group (Table 16). The phosphorus digestibility results at 42 days for all Phy02 treatment groups were numerically greater than the NC group but were not statistically significant (Table 16). The weight of the bone ash in tibia at 21 days and at 42 days was significantly greater in the PC group compared to the NC group and all groups receiving the Phy02 phytase in the diet also had percent bone ash that was significantly greater than that of the NC group and statistically equivalent to that of the PC group with the exception of the 250 FTU Phy02 treatment group at 21 days where the bone ash weight was significantly greater than that of the NC group but significantly lower than that of the PC group (Table 17). The bone ash weights generally increased with increasing dose of Phy02 phytase and the highest bone ash weights among the Phy02 treatment groups were in the highest Phy02 dose group of 3,000 FTU/kg (Table 17).

In summary, the performance data from broiler Study 2, including body weight gain and feed conversion, support the functionality of the Phy02 phytase. Inclusion of the Phy02 phytase in a low phosphorus basal diet demonstrated a dose response with improved weight gain and feed conversion with increasing doses of Phy02. In addition, the functionality of the Phy02 phytase was demonstrated by improved phosphorus digestibility in the ileum and higher amounts of bone ash in tibia. Altogether, the results of broiler Study 2 clearly demonstrate the functionality of the Phy02 phytase in improving phosphorus availability and nutrition in broiler chickens.

Table 16. Ileal phosphorus and percent phosphorus digestibility in broiler Study 2 at 21 and 42 days.

Treatment	21d Ileal P	21d Ileal P	42d Ileal P	42d Ileal P
	digestibility (%)	(mg/100g)	digestibility (%)	(mg/100g)
Positive Control	73.29 ^a *	38.0^{a}	55.25	42.2
Negative Control	64.26 ^{ab}	31.0^{ab}	44.00	35.5
250 U + NC	63.47 ^b	30.5 ^{ab}	46.28	33.6
500 U + NC	66.20^{ab}	28.7 ^{ab}	53.20	31.3
750 U + NC	66.36 ^{ab}	27.2 ^b	49.60	36.1
1,000 U + NC	66.01 ^{ab}	29.5 ^{ab}	52.08	31.1
3,000 U + NC	69.80 ^{ab}	24.0 ^b	50.74	33.4
500 U Std + NC	66.88 ^{ab}	26.5 ^b	51.66	37.0
SEM	2.11	2.1	3.56	3.0
TRT P Value	0.042	0.0013	0.46	0.18
Block P Value	0.84	0.019	0.12	0.25

^{ab} Values within columns with no common superscript are statistically different (P < 0.05).

Table 17. Weight of tibia bone ash at day 21 and 42 of broiler Study 2.

Treatment	21d T	ibia Ash	42d Tibia Ash	
	Grams ¹	%	Grams ¹	%
Positive Control	2.98 ^a	25.84 ^{ab}	12.10 ^{ab}	31.03 ^{ab}
Negative Control	2.18 ^c	22.90°	9.02°	29.01 ^b
250 U + NC	2.66^{b}	24.92 ^b	11.45 ^b	30.02 ^{ab}
500 U + NC	2.94 ^a	26.08^{ab}	11.58 ^b	31.15 ^{ab}
750 U + NC	2.93 ^a	26.15 ^{ab}	11.93 ^{ab}	30.73 ^{ab}
1,000 U + NC	3.03 ^a	26.04^{ab}	12.06 ^{ab}	31.32 ^{ab}
3,000 U + NC	3.11 ^a	26.34 ^a	12.34 ^a	31.84 ^a
500 U Std + NC	3.15 ^a	26.70^{a}	12.42 ^a	30.95 ^{ab}
SEM	0.06	0.29	0.17	0.63
TRT P Value	< 0.0001	< 0.0001	< 0.0001	0.081
Block P Value	0.0016	< 0.0001	< 0.0001	0.33

 $^{^{\}text{a-c}}$ Values within columns with no common superscript are statistically different (P < 0.05).

5.3 Summary of the Results from Broiler Chicken Study 3

The performance data, including feed intake, body weight gain and adjusted feed conversion from Study 3 are presented in Tables 18 (0-21 day), 19 (0-42 day), 20 (0-14 day), 21 (14-21 day), and 22 (21-42 day). A key difference in the study design of Study 3 compared to Study 1 and Study 2 is that the treatment in Studies 1 and 2 that included the NC low phosphate basal diet supplemented with a commercial phytase enzyme product at 500 FTU/kg of feed ("500 U Std + NC") was replaced by a treatment

^{* 21}d Positive control appears to be artificially high (vs. NC treatments) due to higher P and lower Ti in analyzed feed sample.

¹Tibia ash weight; n = 3 tibia per pen

group that was fed the low phosphate basal diet supplemented with 30,000 FTU Phy02 phytase/kg feed. This treatment with a high dose of Phy02 phytase is considered a tolerance dose and was included to demonstrate the safety of Phy02 if it were included at a high dose equal to ten times the highest anticipated commercial dose of Phy02. Since this study was designed to demonstrate the safety of Phy02 phytase, this study was conducted under GLP. In each of the tables, the amount of Phy02 phytase included in the feed is presented in FTU phytase/kg feed. Values listed within each category that share the same statistical letter designation are not significantly different at a P value <0.05.

In the first half of the study from day 0 – 21 the body weight gain of the birds in the PC group was significantly greater than that demonstrated by the NC (Table 18). In addition, all treatment groups that received the NC low phosphate basal diet supplemented with Phy02 phytase also demonstrated a significantly greater body weight gain compared to the NC group. There was a clear dose response in body weight gain with increasing Phy02 doses in the feed from 250 to 30,000 FTU/kg and the body weight gain for the two highest dose levels of 3,000 and 30,000 FTU/kg feed were significantly greater than that of the PC group. In FCR, the PC group demonstrated a lower FCR, although not at a statistically significant level, compared to the NC group (Table 18). However, there was a steady decrease in FCR with increasing doses of Phy02 phytase in the feed. The FCR of the lower dose treatment groups of 250 and 500 FTU/kg were lower, but not at a statistically significant level, compared to the PC group. However, all Phy02 dose groups above 500 FTU/kg produced FCRs that were significantly lower than that of the PC group.

Table 18. Performance of broiler chickens in Study 3 from day 0 - 21. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake ¹ ,	Body Wt Gain,	Adj. Feed
	kg	kg	Conversion ²
Positive Control	0.910^{b}	0.682 ^{cd}	1.334 ^{ab}
Negative Control	0.777^{d}	$0.572^{\rm f}$	1.358 ^a
250 U + NC	0.872^{c}	0.654 ^e	1.333 ^{abc}
500 U + NC	0.875°	0.669 ^{de}	1.309 ^{bcd}
750 U + NC	0.899 ^{bc}	$0.690^{\rm cd}$	1.303 ^{cde}
1000 U + NC	0.903 ^{bc}	0.700^{bc}	1.290 ^{de}
3000 U + NC	0.928^{ab}	0.721 ^b	1.288 ^{de}
30,000 U + NC	0.958^{a}	0.752^{a}	1.276 ^e
SEM	0.0073	0.0061	0.0068
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	< 0.0001	0.012	0.118

¹Calculated by adjusting feed intake for mortality using final number of birds per pen. ²Calculated by summing feed intake and BWG using 0-21 plus 21-42 data to calculate mortality adjusted FCR.

Body weight gain of the PC group and all Phy02 treatment groups over the entire study (0 - 42 days) were significantly greater than that of the NC group during the same period

(Table 19). In general the body weight gain was directly related to the dose of Phy02 in the feed of the different phytase treatment groups. Although there was no difference in FCR between the NC and PC treatments in this study, all of the Phy02 treatment groups had lower FCR than the NC and PC treatments with those from the 500, 1,000, and 3,000 FTU/kg groups being lower at a statistically significant level.

Table 19. Performance of broiler chickens in Study 3 from day 0 - 42. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake ¹ ,	Body Wt Gain,	Adj. Feed
	kg	kg	Conversion ²
Positive Control	4.387 ^a	2.851 ^{ab}	1.551 ^a
Negative Control	3.668^{d}	2.381 ^d	1.551 ^a
250 U + NC	4.192°	2.733 ^c	1.547 ^{ab}
500 U + NC	4.250 ^{bc}	2.822 ^{bc}	1.518 ^c
750 U + NC	4.356 ^{ab}	2.880^{ab}	1.526 ^{abc}
1000 U + NC	4.319 ^{abc}	2.863 ^{ab}	1.523 ^{bc}
3000 U + NC	4.402 ^a	2.927 ^a	1.517 ^c
30,000 U + NC	4.448 ^a	2.944 ^a	1.529 ^{abc}
SEM	0.031	0.022	0.006
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	< 0.0001	< 0.0001	0.49

¹Calculated by adjusting feed intake for mortality using final number of birds per pen. ²Calculated by summing feed intake and BWG using 0-21 plus 21-42 data to calculate mortality adjusted FCR.

Table 20. Performance of broiler chickens in Study 3 from day 0 - 14. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain, kg	Adj. Feed
			Conversion
Positive Control	0.372^{ab}	0.289 ^{cde}	1.287 ^a
Negative Control	$0.330^{\rm e}$	$0.250^{\rm f}$	1.319 ^a
250 U + NC	0.357 ^{cd}	0.277 ^e	1.289^{a}
500 U + NC	0.354^{d}	0.285 ^{de}	1.244 ^b
750 U + NC	0.364^{bcd}	0.293^{bcd}	1.242 ^{bc}
1000 U + NC	0.370^{bc}	0.299 ^{bc}	1.238 ^{bc}
3000 U + NC	0.374 ^{ab}	0.304^{b}	1.229 ^{bc}
30,000 U + NC	0.384^{a}	0.319^{a}	1.204 ^c
SEM	0.0029	0.0028	0.0091
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.0002	0.043	0.18

Table 21. Performance of broiler chickens in Study 3 from day 14 - 21. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain, kg	Adj. Feed
			Conversion
Positive Control	0.538^{bc}	0.393 ^{cd}	1.369 ^{ab}
Negative Control	0.447^{d}	0.322 ^e	1.388 ^a
250 U + NC	0.514 ^c	0.377^{d}	1.365 ^{ab}
500 U + NC	0.521 ^c	0.384 ^{cd}	1.357 ^{ab}
750 U + NC	0.535^{bc}	0.397 ^c	1.348 ^{ab}
1000 U + NC	0.534 ^{bc}	0.402^{bc}	1.329 ^b
3000 U + NC	0.555^{ab}	0.416^{ab}	1.332 ^b
30,000 U + NC	0.575^{a}	0.433 ^a	1.329 ^b
SEM	0.0055	0.0043	0.0093
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.0003	0.0103	0.033

Table 22. Performance of broiler chickens in Study 3 from day 21 - 42.

Treatment	Feed Intake, kg	Body Wt Gain, kg	Adj. Feed
			Conversion
Positive Control	3.512^{ab}	2.169^{ab}	1.619 ^A
Negative Control	2.917 ^d	1.809 ^c	1.612 ^{AB}
250 U + NC	3.355 ^c	2.079^{b}	1.615 ^{AB}
500 U + NC	3.409 ^{bc}	2.153 ^{ab}	1.583 ^C
750 U + NC	3.497 ^{ab}	2.190 ^a	1.597 ^{ABC}
1000 U + NC	3.456 ^{abc}	2.163 ^{ab}	1.599 ^{ABC}
3000 U + NC	3.512 ^{ab}	2.206^{a}	1.593 ^{BC}
30,000 U + NC	3.541 ^a	2.192 ^a	1.617 ^A
SEM	0.029	0.021	0.0085
TRT P Value	< 0.0001	< 0.0001	0.025
Block P Value	< 0.0001	< 0.0001	0.52

^{abc} Values within columns with no common superscript are statistically different (P < 0.05).

The data generated from analyses of ileal phosphorus digestibility and tibia bone ash in broiler Study 3 clearly demonstrates the direct activity of Phy02 when included in the diet of broiler chickens. At 21 days, the phosphorus digestibility of the treatment groups containing Phy02 phytase were all numerically higher than that of the NC group (Table 23). In addition, there was a clear trend of increasing phosphorus digestibility with increasing phytase dose from 500 FTU/kg to 30,000 FTU/kg feed with the highest dose groups of 3,000 and 30,000 FTU/kg demonstrating phosphorus digestibility significantly greater than that of the NC group (Table 23). Similar results were demonstrated for ileal phosphorus digestibility at 42 days. All doses of Phy02 treatment except the lowest dose group of 250 FTU/kg feed demonstrated phosphorus digestibility levels higher than that

ABC Means compare by Student's T test

of the NC group. Once again there is a trend toward increased digestibility with increasing dose of Phy02 phytase with the highest digestibility demonstrated by the highest dose groups (Table 23).

Table 23. Ileal phoshporus and percent phosphorus digestibility in broiler Study 3 at 21 and 42 days. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	21d Ileal P	21d Ileal P	42d Ileal P	42d Ileal P
	digestibility (%)	(mg/100g)	digestibility (%)	(mg/100g)
Positive Control	82.73 ^a *	24.9^{ab}	63.98 ^{abc}	37.0^{a}
Negative	61.83°	30.1 ^a	56.18 ^{bc}	30.0^{abc}
Control				
250 U + NC	68.50 ^{bc}	24.0^{ab}	51.04 ^c	30.9^{ab}
500 U + NC	67.71 ^{bc}	23.0^{ab}	63.39 ^{abc}	23.8 ^{bc}
750 U + NC	68.32 ^{bc}	21.3 ^b	60.86 ^{abc}	26.5 ^{abc}
1,000 U + NC	68.92 ^{bc}	22.4 ^{ab}	60.33 ^{abc}	27.2 ^{abc}
3,000 U + NC	69.98 ^b	20.8^{b}	66.18 ^{ab}	23.0^{bc}
30,000 U + NC	75.80 ^{ab}	21.3 ^b	71.28 ^a	19.5°
SEM	1.84	2.0	3.02	2.5
TRT P Value	< 0.0001	0.032	0.0006	0.0002
Block P Value	0.54	0.80	0.84	0.29

^{* 21}d Positive control is artificially high (vs. NC treatments) due to higher P and lower Ti in analyzed feed sample.

In broiler Study 3 the functionality of the Phy02 phytase was also supported by the tibia bone ash data. The weight of bone ash in the tibias collected at 21 days and at 42 days was significantly greater in the PC group compared to the NC group and all treatment groups receiving Phy02 phytase were also significantly greater than that of the NC group and not significantly different from the bone weights of the PC group (Table 24). Comparison of the bone ash among the treatments receiving the Phy02 phytase also demonstrates a clear dose response with increasing bone ash as the phytase dose increased (Table 24). The highest bone ash weights at both 21 and 42 days was the 30,000 FTU Phy02 treatment group (Table 24).

In summary, the performance data from broiler Study 3, incuding body weight gain and feed converion, support the functionality of the Phy02 phytase. Inclusion of the Phy02 phytase in a low phosphorus basal diet demonstrated a dose response with improved weight gain and feed conversion with increasing doses of Phy02. In addition, the functionality of the Phy02 phytase was demonstrated by improved phosphorus digestibility in the ileum and higher amounts of bone ash in tibia. Altogether, the results of broiler Study 3 clearly demonstrate the functionality of the Phy02 phytase in improving phosphorus availability and nutrition in broiler chickens.

Treatment	21d Tibia Ash		42d Tibia Ash	
	Grams ¹	%	Grams ¹	%
Positive Control	2.56^{b}	24.87 ^a	10.91 ^{ab}	37.59 ^a
Negative Control	1.91 ^c	21.30 ^b	8.18 ^c	34.99 ^b
250 U + NC	2.59 ^b	23.90 ^a	10.05 ^b	38.29 ^a
500 U + NC	2.59 ^b	24.76 ^a	10.62 ^{ab}	38.98 ^a
750 U + NC	2.65^{b}	24.54 ^a	10.66 ^{ab}	37.15 ^{ab}
1000 U + NC	2.73 ^b	24.86 ^a	10.48 ^{ab}	39.23 ^a
3000 U + NC	2.73 ^b	25.41 ^a	10.93 ^{ab}	39.12 ^a
30,000 U + NC	3.02^{a}	25.58 ^a	11.09 ^a	39.00 ^a
SEM	0.06	0.40	0.23	0.53
TRT P Value	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.39	0.008	0.13	0.0029

Table 24. Weight of bone ash in tibia at day 21 and 42 of broiler Study 3.

5. 4 Summary of the Results from Broiler Chicken Study 4

The performance data, including feed intake, body weight gain and adjusted feed conversion from Study 4 are presented in Tables 25 (0 – 21 day), 26 (0 – 42 day), 27 (0 – 14 day), 28 (14 – 21 day), and 29 (21 – 42 day). The study design of Study 4 was similar to that of the other studies but the treatment groups receiving the Phy02 phytase in their diets included doses of 250, 500, 1000, 3,000, 6,000, and 60,000 FTU Phy02 phytase/kg feed. The treatment consisting of a low phosphate basal diet supplemented with a commercial phytase enzyme product at 500 FTU/kg of feed ("500 U Std + NC") was not included in this study. The treatment with the high dose of 60,000 FTU Phy02 phytase/kg is considered a tolerance dose and was included to demonstrate the safety of Phy02 if it were included at a high dose equal to ten times the highest anticipated commercial dose of Phy02. In each of the tables, the amount of Phy02 phytase included in the feed is presented in FTU phytase/kg feed. Values listed within each category that share the same statistical letter designation are not significantly different at a P value <0.05.

In the first half of the study from day 0 – 21 the body weight gain of the birds in the PC group was significantly greater than that demonstrated by the NC group (Table 25). In addition, all treatment groups that received the low phosphate basal diet supplemented with Phy02 phytase also demonstrated a significantly greater body weight gain compared to the NC group. There was a clear dose response in body weight gain with increasing Phy02 doses in the feed from 250 to 60,000 FTU/kg and the body weight gain for the dose levels of 1,000 FTU/kg feed and above were significantly greater than that of the PC group. In FCR, the PC group demonstrated a significantly lower FCR compared to the NC group (Table 25). There was a steady decrease in FCR with increasing doses of Phy02 phytase in the feed. The FCR of the 250 FTU/kg treatment group was lower, but not at a statistically significant level, compared to the PC group. However, all Phy02

^{ab} Values within columns with no common superscript are statistically different (P < 0.05).

¹Tibia ash weight; n = 3 tibia per pen

dose groups above 250 FTU/kg produced FCRs that were significantly lower than that of the PC group.

Table 25. Performance of broiler chickens in Study 4 from day 0-21. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed
		kg	Conversion
Positive Control	0.971 ^{cd}	0.719 ^d	1.351 ^b
Negative	0.817 ^e	$0.588^{\rm f}$	1.390 ^a
Control			
250 U + NC	0.934 ^d	0.692^{e}	1.350 ^{bc}
500 U + NC	0.938 ^d	0.706 ^{de}	1.327 ^{cd}
1,000 U + NC	0.990^{bc}	0.755°	1.312 ^d
3,000 U + NC	1.023 ^{ab}	0.778^{ab}	1.314 ^d
6,000 U + NC	1.000 ^{bc}	0.766 ^{bc}	1.304 ^d
60,000 U + NC	1.050 ^a	0.799^{a}	1.314 ^d
SEM	0.009	0.005	0.005
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.0007	0.0008	0.0003

Body weight gain of the PC group and all Phy02 treatment groups over the entire study (0 - 42 days) were significantly greater than that of the NC group during the same period (Table 26). In general the body weight gain was directly related to the dose of Phy02 in the feed of the different phytase treatment groups. The FCR for the PC group and all Phy02 treatment dose levels was significantly lower than that of the NC treatment group.

Table 26. Performance of broiler chickens in Study 4 from Day 0-42. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed
		kg	Conversion
Positive Control	4.501 ^{ab}	2.889 ^{bc}	1.558 ^{bc}
Negative Control	3.597 ^d	2.228 ^e	1.615 ^a
250 U + NC	4.334 ^c	2.757^{d}	1.572 ^b
500 U + NC	4.372 ^{bc}	2.815 ^{cd}	1.553 ^{bc}
1,000 U + NC	4.522 ^a	2.921 ^{ab}	1.548 ^c
3,000 U + NC	4.588 ^a	2.967 ^{ab}	1.546 ^c
6,000 U + NC	4.546 ^a	2.942 ^{ab}	1.546 ^c
60,000 U + NC	4.617 ^a	2.988 ^a	1.545°
SEM	0.033	0.022	0.005
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.0045	0.0033	0.072

Table 27. Performance of broiler chickens in Study 4 from Day 0-14. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed
		kg	Conversion
Positive Control	0.410^{bc}	0.307^{c}	1.335 ^{ab}
Negative	0.360^{d}	0.265^{d}	1.360^{a}
Control			
250 U + NC	0.394 ^c	0.299 ^c	1.320^{b}
500 U + NC	0.396°	0.307^{c}	1.289 ^c
1,000 U + NC	0.411 ^{bc}	0.325^{b}	1.263 ^{cd}
3,000 U + NC	0.423^{ab}	0.337^{ab}	1.258 ^d
6,000 U + NC	0.414 ^{ab}	0.330^{b}	1.256 ^d
60,000 U + NC	0.430^{a}	0.343 ^a	1.254 ^d
SEM	0.004	0.003	0.006
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.0003	0.0056	0.0016

Table 28. Performance of broiler chickens in Study 4 from Day 14-21. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed
		kg	Conversion
Positive Control	0.561 ^{cd}	0.412^{c}	1.363 ^b
Negative Control	0.457 ^e	0.323 ^e	1.415 ^a
250 U + NC	0.540^{d}	0.394 ^d	1.373 ^b
500 U + NC	0.542 ^d	0.399 ^{cd}	1.357 ^b
1,000 U + NC	0.579 ^{bc}	0.429 ^b	1.349 ^b
3,000 U + NC	0.600^{ab}	0.442^{ab}	1.358 ^b
6,000 U + NC	0.586^{b}	0.437^{b}	1.342 ^b
60,000 U + NC	0.619 ^a	0.455 ^a	1.360 ^b
SEM	0.005	0.003	0.008
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.0003	< 0.0001	0.0021

Table 29. Performance of broiler chickens in Study 4 from Day 21-42. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	Feed Intake, kg	Body Wt Gn,	Adj. Feed
		kg	Conversion
Positive Control	3.567 ^{abc}	2.170^{a}	1.644 ^b
Negative Control	2.814 ^d	1.640 ^c	1.716 ^a
250 U + NC	3.440^{c}	2.065^{b}	1.666 ^b
500 U + NC	3.474 ^{bc}	2.109 ^{ab}	1.648 ^b
1,000 U + NC	3.574 ^{ab}	2.167 ^a	1.650 ^b
3,000 U + NC	3.610^{a}	2.189 ^a	1.650^{b}
6,000 U + NC	3.588^{ab}	2.175 ^a	1.650 ^b
60,000 U + NC	3.618 ^a	2.190^{a}	1.653 ^b
SEM	0.030	0.020	0.008
TRT P Value	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.0096	0.0061	0.048

The data generated from analyses of ileal phosphorus digestibility and tibia bone ash in broiler Study 4 supports the direct activity of Phy02 when included in the diet of broiler chickens. At 21 and 42 days, the phosphorus digestibility of the treatment groups containing Phy02 phytase were all numerically higher than that of the NC group with the exception of the 500 FTU/kg group (Table 30). In addition, excepting the 500 FTU/kg group, there was a clear trend of increasing phosphorus digestibility with increasing phytase dose from 250 FTU/kg to 60,000 FTU/kg feed with the highest dose groups of 6,000 and 60,000 FTU/kg demonstrating the highest phosphorus digestibility (Table 30).

Table 30. Ileal phoshporus and percent phosphorus digestibility in broiler Study 4 at 21 and 42 days. Values within columns with no common superscript are statistically different (P < 0.05).

Treatment	21d Ileal P	21d Ileal P	42d Ileal P	42d Ileal P
	digestibility (%)	(mg/100g)	digestibility (%)	(mg/100g)
Positive Control	65.74 ^{ab}	37.6^{ab}	57.67 ^{ab}	37.5
Negative Control	63.73 ^{ab}	36.0^{ab}	50.05 ^b	32.6
250 U + NC	66.02 ^{ab}	28.9^{b}	51.96 ^b	30.8
500 U + NC	60.29 ^b	41.8 ^a	49.64 ^b	34.9
1000 U + NC	63.54 ^{ab}	33.1 ^{ab}	52.19 ^b	32.1
3000 U + NC	65.20 ^{ab}	33.4 ^{ab}	55.93 ^{ab}	30.0
6000 U + NC	66.69 ^{ab}	33.7 ^{ab}	59.74 ^{ab}	28.0
60,000 U + NC	71.07 ^a	25.6 ^b	64.66 ^a	25.7
SEM	2.25	0.003	2.39	2.8
TRT P Value	0.084	0.0054	0.0002	0.12
Block P Value	0.86	0.85	0.038	0.14

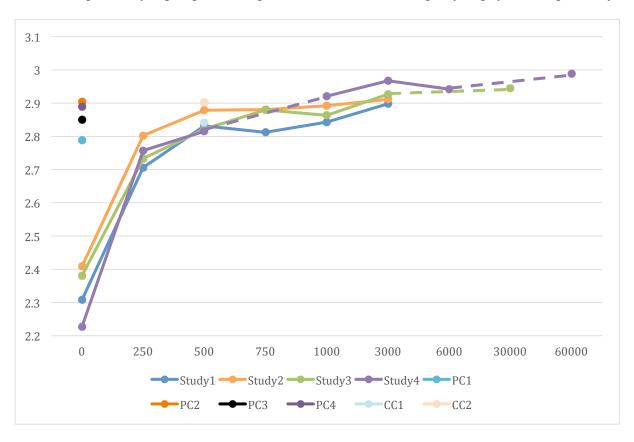
57

In broiler Study 4 the functionality of the Phy02 phytase was also supported by the tibia bone ash data. The weight of bone ash in the tibias collected at 21 days and at 42 days was significantly greater in the PC group compared to the NC group and all treatment groups receiving Phy02 phytase had significantly greater amounts of bone ash compared to the NC group (Table 31). In addition, at 21 days the Phy02 dose groups of 3,000 FTU Phy02 phytase/kg feed and above had significantly greater amounts of bone ash compared to the PC group while at 42 days this was true for the highest dose group of 60,000 FTU/kg (Table 31). In general, similar results are seen when the data is presented as percent bone ash with a significantly greater percent of bone ash in the PC group compared to the NC group and statistical equivalence between the PC and Phy02 treatment groups (Table 31). Comparison of the bone ash data among the treatments receiving the Phy02 phytase also demonstrates a clear dose response with increasing bone ash as the phytase dose increased (Table 31). The highest bone ash weights at both 21 and 42 days was the 60,000 FTU Phy02 treatment group (Table 31).

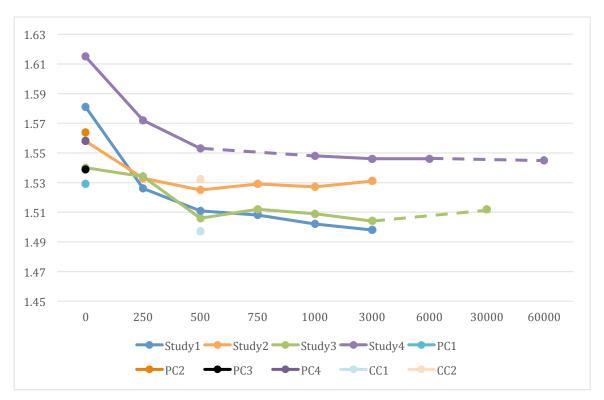
Table 31. Weight and percent of bone ash in tibia at day 21 and 42 of broiler Study 4.

Treatment	21d Tibia Ash		42d Tibia Ash	
	Grams ¹	%	Grams ¹	%
Positive Control	$2.68^{\rm cd}$	27.51 ^{abc}	11.44 ^{bc}	28.52 ^{ab}
Negative Control	1.91 ^e	22.86 ^d	8.30^{d}	25.01 ^d
250 U + NC	2.61 ^d	26.07 ^c	10.78 ^c	26.55 ^c
500 U + NC	$2.66^{\rm cd}$	26.26 ^{bc}	11.15 ^{bc}	27.39 ^{bc}
1000 U + NC	2.90 ^{bc}	27.34 ^{abc}	11.70 ^{ab}	27.59 ^{abc}
3000 U + NC	3.02^{ab}	27.65 ^{ab}	12.01 ^{ab}	28.13 ^{ab}
6000 U + NC	2.85 ^{bc}	27.28 ^{abc}	11.99 ^{ab}	27.94 ^{abc}
60,000 U + NC	3.14 ^a	27.86 ^a	12.46 ^a	28.96 ^a
SEM	0.05	0.33	0.20	0.32
TRT P Value	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Block P Value	0.060	0.0016	0.95	0.44

 $^{^{\}text{a-e}}$ Values within columns with no common superscript are statistically different (P < 0.05).


5.5. Summary of the Results of Four Broiler Chicken Trials

In each of the four broiler feeding studies, the performance of birds fed a diet low in available phosphorus but supplemented with increasing doses of Phy02 phytase was compared to that of a group of birds receiving a diet with adequate available phosphorus (positive control, PC) and to another group that received a diet low in available phosphorus without phytase supplementation (negative control, NC). Graphic comparisons of the body weight and FCR results of the four studies for day 0-42 are presented in Figures 15 and 16, respectively. In all studies the treatment groups that received feed with Phy02 phytase had body weight gain and FCR that were improved compared to the NC. In addition, the Phy02 treatment groups demonstrated weight gain and FCR that were either equal to or better than the PC group. The phosphorus


¹Tibia ash weight; n = 3 tibia per pen

digestibility in ileal contents and the amount of bone ash in tibia in all four trials were also clearly improved by the supplementation of the low phosphorus basal diet with the Phy02 phytase. These results demonstrate that inclusion of Phy02 phytase in a diet low in available phosphorus improves the performance of broilers as measured by body weight gain and FCR, such that it equals or exceeds that of the PC group receiving a diet with adequate available phosphorus. Clear improvements in phosphorous digestibility and amount of bone ash were also realized by inclusion of the Phy02 phytase in the low phosphorus basal diets in all four feeding studies.

Figure 15. Comparison of the body weight gain of broiler chickens in four separate studies from day 0 – 42. The results from the four studies are color coded as shown in the legend and the NC (0 phytase) and PC groups (numbered according to Study number) are compared to groups receiving increasing amounts of Phy02 phytase (FTU/kg feed). A commercial phytase standard at 500 FTU/kg was included in Studies 1 and 2 for comparison (CC1 and CC2 in Studies 1 and 2, respectively). In Study 3 and 4 this group was replaced by a group receiving 30,000 or 60,000 FTU/kg Phy02 phytase, respectively.

Figure 16. Comparison of the adjusted FCR of broiler chickens in three separate studies from day 0 – 42. The results from the four studies are color coded as shown in the legend and the NC (0 phytase) and PC groups (numbered according to Study number) are compared to groups receiving increasing amounts of Phy02 phytase (FTU/kg feed). A commercial phytase standard at 500 FTU/kg was included in Studies 1 and 2 for comparison (CC1 and CC2 in Studies 1 and 2 respectively). In Study 3 and 4 this group was replaced by a group receiving 30000 or 60000 FTU/kg Phy02 phytase, respectively.

Evaluation of the percent mortality of birds in all treatments in all four broiler studies showed that overall there was low mortality in all trials and that there were no significant differences among the treatments within trials (Table 32). These results confirm and support the conclusion derived from the safety assessment of the Phy02 phytase presented in §4.0 and from examination of birds treated with high doses of the Phy02 phytase, including 30,000 and 60,000 FTU/kg feed, that the Phy02 phytase is safe for poultry when included in feed at levels up to 60,000 FTU/kg.

Treatment Overall Mortality, % (0 to 42 d) Study 1 Study 2 Study 3 Study 4 LP Control 5.39 2.94 5.86 3.92 **HP** Control 1.47 3.92 4.90 5.88 LP + 250 FTU 3.92 5.39 5.39 5.39 LP + 500 FTU 2.94 4.90 3.92 3.84 LP + 750 FTU 4.41 5.39 4.41 -LP + 1000 FTU 8.33 5.88 2.45 4.41 LP + 3000 FTU 2.45 5.88 4.90 2.94 LP + 6000 FTU 1.96 LP + 30000 FTU 7.84 LP + 60000 FTU 6.37 LP + 500 FTU Comm. Phytase 3.92 4.41 SEM 1.47 1.42 1.53 1.52 Treatment P-value 0.09* 0.90* 0.41* 0.64*Block P-value 0.50* 0.70* 0.20* 0.50*

Table 32. Comparison of Mortality in the Phy02 Phytase Broiler Feeding Trials

6.0 Product Characterization

Three separate representative product batches of the Phy02 phytase were produced from grain of the PY203_F1ES2 generation (see Figure 9) of Phy02 expressing maize. The product batch numbers, location of planting and dates of planting and harvest are shown in Table 33. Planting the seed and harvest of the grain were performed using commonly used agronomic practices for maize. Cultivation of the Phy02 producing maize also utilized common agronomic practices for maize including the use of fertilizers, herbicides and pesticides approved for use on maize. After harvest, the grain was dried on the cob for three days until the grain moisture was below 15% at which time it was shelled and placed in labeled containers. The grain was shipped to Agrivida, Inc. (Medford, MA) and stored in separate storage bins prior to being milled in a CPM series 650 three stage roller mill with a 1.5:1 differential. Grain particles were sieved through a series of steel mesh sieves (No. 6 and No. 12) to produce grain particles between 1.7 and 3.3 mm in diameter.

Table 33. Planting locations and dates for the production of three representative Phy02 phytase product batches.

	Phy02 Product Batches		
Product Batch No.	AV Phy02 0043	AV Phy02 0049	AV Phy02 0050
Planting Location	Field; (b) (4)	Field; (b) (4)	Greenhouse, (b) (4)
Planting Date	12 June 2015	12 June 2015	25 May 2015
Harvest Date	1 October 2015	14 October 2015	21 September 2015

Each of the three representative Phy02 phytase product batches were analyzed to demonstrate that they meet the purity, chemical and microbial specifications established

^{*}Statistical analysis was done on Square Root, ArcSin transformed values.

for enzyme preparations, as outlined in the Food Chemical Codex (FCC 2001), and the specifications established for enzymes used in food processing, as proposed by the Joint FAO/WHO Expert Committee on Food Additives (FAO/WHO 2001). Physical, chemical, and microbial characteristics were determined for each of the Phy02 phytase product batches by Eurofins Nutritional Analysis Center (Des Moines, IA). The results of these analyses are presented in Table 34.

Examination of the results of the analysis of key product characteristics as presented in Table 34 demonstrate that all three Phy02 phytase product batches meet or exceed all JECFA specifications established for enzyme preparations that are used in food and/or feed with the exception of total bacterial count and the number of coliform colony forming units (cfu). All three product batches had no detectible presence of either *Salmonella* or *E. coli* bacteria. Coliform bacteria are defined as rod-shaped Gram negative, non-spore forming and motile or non-motile bacteria that can ferment lactose with the production of acid and gas when incubated at 35–37°C (Brenner, 1992; Bettelheim, 1992). While coliforms themselves are not normally causes of serious illness, their presence has been used to indicate that other pathogenic organisms of fecal origin may be present (Krentz et al., 2013). Typical genera in the coliform group include: *Citrobacter, Enterobacter, Hafnia, Klebsiella*, and *Escherichia* (Brenner, 1992; Bettelheim, 1992).

The JECFA specifications for food enzyme preparations have been traditionally applied to enzyme products that are produced by sterile fermentation followed by purification of the enzyme in a sanitary laboratory environment. Under these conditions it is feasible to produce a purified enzyme product that meets the JECFA specifications for the presence of microbes in the product. However, the Phy02 phytase product is produced in the same manner as the production of maize grain that is widely used as a major component of human food and animal feed. It is produced in agricultural fields in the environment where bacteria are present in the soil, air and water and on the surfaces of plants, including the maize that produces the Phy02 phytase containing grain. Therefore it is reasonable to expect that the Phy02 phytase product would contain levels of bacterial presence that is typical for maize grain produced by typical agricultural practices. Two of the three Phy02 phytase product batches exceeded the JECFA specification of 30 cfu/g product for coliform bacteria with coliform numbers of 300 and 6,700/g (Table 34). However, these numbers are consistent with studies of microbial presence in maize grain and in animal feed. Tabib et al. (1981) surveyed feeds and feed ingredients, including maize, in the feed of broilers, layers and turkeys and found that the numbers of coliform bacteria ranged from 450 – 910,000 cfu/g. Similar studies have also reported equivalent levels of coliform bacterial in cattle feed (Sanderson et al., 2005) and tortillas made from corn meal (Gomez-Aldapa et al., 2013). From these reports it is evident that the level of coliform bacteria in two of the three Phy02 product batches is similar to those reported as normal for maize grain and other commonly used feed ingredients. Since the numbers of coliform bacteria found to be present in two of the three Phy02 phytase product batches are typical for those found in maize grain and other animal feed ingredients and since known pathogenic bacteria such as Salmonella and E. coli were absent from the product batches, the higher level of coliforms in the Phy02 product compared to the JECFA specifications for food enzyme products is considered to be safe.

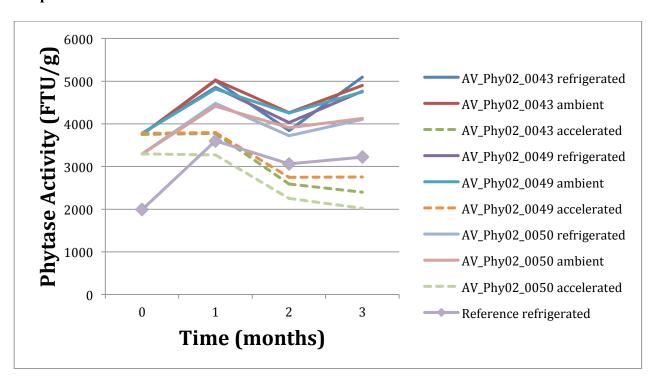
Table 34. Physical, chemical, and microbial characteristics of three independent Phy02 phytase product batches compared to JECFA specifications for enzyme preparations used in food and feed.

	Phytase Phy02 Product Batch				_	
						JECFA
	Method	Unit	AV Phy02 0043	AV Phy02 0049	AV Phy02 0050	Specification Limit
Physical Characteristic	<u>es</u>			4 > 4 >		
Phytase Activity	Agrivida, Inc. SOP	FTU/g	(b) (4)	(b) (4)	(b) (4)	NA
		FTU/mg				NA
	Agrivida, Inc. SOP	protein				
Density	USP 616	g/ml	0.6	0.6	0.6	NA
Micron particle size	MF-2051 Evaluating Particle Size, KSU 2002	micron	2,704.00	2,705.00	2,690.00	NA
Chemical Characterist	<u>ics</u>					
Cadmium	J. AOAC vol. 90 (2007) 844-856 (Mod)	mg/kg	< 0.010	< 0.010	< 0.010	30 max
Mercury	J. AOAC vol. 90 (2007) 844-856 (Mod)	mg/kg	< 0.010	< 0.010	< 0.010	30 max
Lead	J. AOAC vol. 90 (2007) 844-856 (Mod)	mg/kg	< 0.010	< 0.010	< 0.010	5 max
Arsenic	J. AOAC vol. 90 (2007) 844-856 (Mod)	mg/kg	< 0.010	< 0.010	< 0.010	3 max
Microbial Characterist	tics					
Coliforms	AOAC 991.14	cfu/g	6,700	300	10	30 max
Salmonella	AOAC 2003.09	#/25g	negative	negative	negative	Absent
Aerobic Plate Count	BAM Chapter 3	cfu/g	97,000	6,300	86,000	50,000 max
E. coli	U.S. Pharmacopeia Chapter 62	#/10g	negative	negative	negative	Absent
Aflatoxin	Commercial Test Kit (ELISA)	ppb	<5	<5	<5	Nondetectible
T-2 Toxin	Commercial Test Kit (ELISA)	ppb	<25	<25	<25	Nondetectible
Ochratoxin	Commercial Test Kit (ELISA)	ppb	<2	<2	<2	Nondetectible
Sterigmatocystin	Eurofins Internal method	ug/kg	<10	<10	<10	Nondetectible

7.0 Product Stability

7.1. Stability of the Phy02 phytase product.

The stability of the phytase activity in three representative Phy02 product batches over time and at different storage temperatures was examined. Three representative Phy02 phytase product batches were produced as described in §6.0 (batches AV PHY02 0043, AV PHY02 0049, and AV PHY02 0050). Four gram aliquots of the product batches were packaged in double paper envelopes that were folded closed and sewn shut. At the initiation of the study four sample packages were opened and the contents of each were milled in a Cyclotech grinder to a particle size of less than 0.5 mm. Two 0.5g aliquots from the milled material of each sample were extracted in phytase assay buffer and analyzed in triplicate for phytase activity. The results of these 24 analyses set the baseline for the phytase activity in the samples and was used as the starting activity for the storage stability study. The remaining product sample packages were separated into three groups and placed in storage under refrigerated (4°C), ambient (22°C), and accelerated (40°C) conditions. As a phytase control, a commercial phytase feed product was obtained and packaged as described for the Phy02 product samples and these were stored only under refrigerated conditions. At each sampling time, four product samples were removed from each of the three storage conditions at 1, 2, and 3 months after initiation of the study and were analyzed for phytase activity as described above for the initial samples at time zero of the study to generate 24 analyses at each time point. The averages of the 24 analyses for each sample are presented in Table 35 and Figure 17. The product stability study was conducted by Eurofins Nutrition Analysis Center (Des Moines, IA).


Table 35. Results of the Phy02 product stability study after 3 months of storage under refrigerated, ambient, and accelerated storage conditions. The results presented are FTU phytase activity/g Phy02 phytase product and are averages of 24 phytase determinations. The commercial phytase used as a control is listed as Reference sample.

Mandha

	_	Months			
Sample		T_0	1	2	3
AV_Phy02_0043	refrigerated ambient				(b) (4)
	accelerated				
AV_Phy02_0049	refrigerated ambient				
	accelerated				
AV_Phy02_0050	refrigerated ambient				
Reference	accelerated refrigerated				

The results of the product stability study that investigated the phytase activity of three Phy02 phytase product batches are presented in Table 35 and graphically in Figure 17. These results demonstrate that the phytase activity of all three Phy02 phytase product batches stored under refrigerated or ambient conditions maintained their original phytase activity. Likewise, the commercial reference phytase product stored under refrigerated conditions maintained phytase activity for the duration of the 3 month period. The Phy02 phytase product samples stored under accelerated conditions demonstrated a reduction of phytase activity over the three month incubation period retaining from 61 to 73% of their initial activity after 3 months of storage. These results demonstrate that the phytase activity in the Phy02 phytase product is stable for up to 3 months under either refrigerated or ambient storage conditions.

Figure 17. Graphic presentation of phytase activity in samples of Phy02 phytase product at monthly intervals after up to 3 months of storage under three different temperatures.

7.2 Homogeneity of Phy02 phytase in feed mixtures.

The ability to produce homogeneous mixtures of different powdered ingredients is affected by several factors, including particle size, density and cohesiveness, the order of ingredient addition, mixer design and speed, and mixing time. The last four of these factors are not under the control of the feed ingredient manufacturer. The impact of particle size on the homogeneity of such mixtures has been well studied as it affects a wide range of products in food, feed, pharmaceutical and other industries (Bridgewater, 1976; Chowhan and Linn, 1979). It has been recommended by the ISA (2010), an organization that breeds different species of livestock that in order to achieve the best

digestibility and mixability of feed ingredients, 75% of the feed particles should be in the size range of 500 – 3200 microns with no more than 15% below 500 microns. The particle size of the Phy02 phytase product is within this size range (§6.0, Table 34). Based on this information it is expected that the Phy02 phytase product will mix homogeneously when added to prepared feeds and mixed well. In order to confirm this, two studies to demonstrate homogeneous mixtures of the Phy02 phytase product in typical feeds were conducted.

A feed mixture based on a corn/soy diet (Table 36) and containing the Phy02 phytase at a target level of 1,000 FTU/kg was produced at the Animal Nutrition Center and Feed Mill at Auburn University (Auburn, AL). The feed components that together weighed 2,000 lbs and (b) (4) of Phy02 phytase product with an activity of (b) (4) were mixed in a counterpoise mixer. Ten 500g samples of the feed were collected randomly from the mixed feed and were sent to Eurofins Nutrition Analysis Center (Des Moines, IA) for phytase analysis.

Table 36. Composition of feed used in a study of homogeneity of Phy02 phytase after mixing in a corn/soy diet.

Ingredient Name	%	(lb)
Corn	60.03	1200.56
Soybean Meal	33.66	673.13
Poultry Fat	2.74	54.81
Defluorinated P	1.67	33.32
Calcium Carbonate, Limestone	0.74	14.79
DL-Met, 99%	0.30	5.96
Sodium Bicarbonate	0.25	5.00
Salt, NaCl	0.22	4.35
L-Lys-HCl, 78% Feed Grade	0.12	2.42
AU Trace Mineral Premix	0.10	2.00
AU Vitamin Premix	0.10	2.00
L-Thr, 98.5% Feed Grade	0.08	1.66
Phy02 Phytase	0.04	(b) (4)
Ingredient Total:	100.05	

The results of phytase activity analyses of the 10 samples of mixed feed are presented in Table 37. They demostrate that the average phytase activity from all samples was 1169.4 FTU/kg which is close to the target dose of 1000 FTU/kg with a CV of approximately 20%. These results demonstrate that the Phy02 phytase product can be homogenously mixed in typical feed preparations.

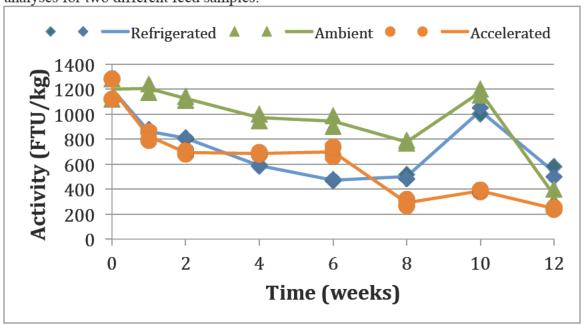
Table 37. Results of phytase analyses of 10 randomly collected samples of feed produced with a target dose of 1,000 FTU/kg Phy02 phytase.

Replicate	FTU/kg
1	(b) (4)
2	
3	
4	
5	
6	
7	
8	
9	
10	
Average	1169.4
stdev	235.21
\mathbf{CV}	20%

In a second study of the homogeneity of the Phy02 phytase product in in-feed mixtures, poultry diets made with corn and soybean were prepared by CQR (Ft. Collins, CO) and Phy02 phytase product was added to a target rate of 3,000 FTU/kg prior to mixing. Two separate batches of feed were prepared and the mash feeds were pelleted at 65°C. Ten 500g samples of pelleted feed were collected at random from each of the two feed batches and these were shipped to Eurofins Nutrition Analysis Center (Des Moines, IA) for measurement of phytase activity. The results of the analyses presented in Table 38 demonstrate that the Phy02 phytase was homogeneously mixed in both feed batches with low coefficients of variance of 5.3 and 8.3%. In summary, examination of the Phy02 phytase product in three independent feed batches prepared with Phy02 phytase has demonstrated that the Phy02 phytase product is homogeneously distributed in typical corn/soybean based feeds.

Table 38. Results of phytase analyses of 10 randomly collected samples of feed from two separately produced feed batches with a target dose of 3,000 FTU/kg Phy02 phytase.

	Feed	Feed
	Batch 1	Batch 2
Replicate	FTU/kg	FTU/kg
1		(b) (4)
2		
3		
4		
5		
6		
7		
8		
9		
10		
Average	2737.00	2929.00
stdev	144.07	242.74
CV	5.3%	8.3%

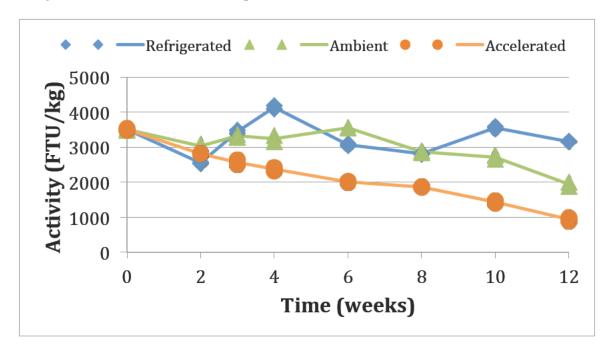

7.3 Stability of the Phy02 phytase in feed mixtures.

In order to investigate the stability of the Phy02 phytase in feed mixtures at different storage temperatures two studies of in-feed stability have been conducted. In study 1 a typical corn/sovbean meal based poultry feed was prepared and mixed with a target dose of 1,000 FTU Phy02 phytase/kg feed at the Animal Nutrition Center and Feed Mill at Auburn University (Auburn, AL). The mixed mash feed containing Phy02 phytase product was pelleted at 70°C and 2 kg aliquots were prepared in sewn, double paper bags as described for the Phy02 product samples used in the Phy02 phytase product stability study (§7.1) and these were shipped to Eurofins Nutrition Analytic Center (Des Moines, IA). The Phy02 phytase in-feed samples were divided into three groups that were stored under refrigerated, ambient, or accelerated conditions in the same manner as described in the Phy02 phytase product stability study (§7.1). At various time points during the study one package of the feed mixture from each storage condition was removed and 500g of the feed mixture from each sample was ground to a fine powder. Two aliquots of the feed sample from each package were extracted with buffer and three aliquots of extract were analyzed for phytase activity for six phytase activity determinations per sample. The average phytase activity values from the six determinations from samples stored up to 12 weeks are shown in Table 39 and Figure 18. All feed samples contained approximately 1200 FTU/kg phytase activity at the start of the study. After 10 weeks of storage the samples stored under refrigerated and ambient conditions retained 85 and 98%, respectively, of the original activity. The phytase activity of these samples after 12 weeks of storage had declined to 45 and 29%, respectively. These results demonstrate that the Phy02 phytase in feed mixtures retains its activity when stored for up to 10 weeks under refrigerated or ambient conditions. The Phy02 phytase activity in feed mixtures stored under accelerated conditions demonstrated a steady decline and retained approximately 32% and 20% of the original activity after 10 and 12 weeks of storage, respectively. These results are similar to those of the Phy02 phytase product stability study described in §7.1.

Table 39. Phytase activity in feed mixtures containing Phy02 phytase in Study 1 after 10 weeks of storage under different temperatures. Phytase activity is presented in FTU/kg. The data represent the average of 3 phytase analyses for two different feed samples.

	Storage Condition			
Time (weeks)	Refrigerated	Ambient	Accelerated	
0	1200	1200	1200	
1	861.5	1205	823	
2	807	1125	693.5	
4	589	972.5	685.5	
6	471.5	942.5	699	
8	500	778	291.5	
10	1025	1175	386	
12	540	353	245	

Figure 18. The phytase activity of feed mixtures containing Phy02 phytase stored at different temperatures in Study 1. The data points represent the average of 3 phytase analyses for two different feed samples.



In a second study of the stability of the Phy02 phytase in feed mixtures, a corn/soybean meal based poultry diet was prepared by CQR (Ft. Collins, CO) with a target dose of 3,000 FTU/kg Phy02 phytase. The feed was well mixed and pelleted at 65°C. A portion of this feed mixture was packaged in the same manner as described for the in-feed Phy02 phytase stability study 1 above except that each feed bag contained 1.5kg of feed. The packages of Phy02 containing feed were shipped to Eurofins Nutrition Analytic Center (Des Moines, IA) where they were divided into three storage conditions as described for the Phy02 phytase product stability study (§7.1). At different time points in the study a sample package from each storage condition was removed and analyzed for phytase activity as described in the Phy02 phytase in-feed stability study 1. The results of these analyses are presented in Table 40 and Figure 19. All feed samples contained approximately 3505 FTU/kg phytase activity at the start of the study. After 10 and 12 weeks of storage the samples stored under refrigerated condition retained 101 and 90%. respectively, of the original activity. After the same storage times under ambient conditions the samples retained 77 and 55%, respectively, of the original activity. These results demonstrate that the Phv02 phytase in feed mixtures retains significant phytase activity when stored for up to 12 weeks under refrigerated and for up to 10 weeks under ambient conditions. The Phy02 phytase activity in feed mixtures in Study 2 that were stored under accelerated conditions demonstrated a steady decline and retained approximately 27% of the original activity after 12 weeks of storage. These results are similar to those of the Phy02 phytase in-feed stability Study 1 described above.

Table 40. Phytase activity in feed mixtures containing Phy02 phytase in Study 2 after 10 weeks of storage under different temperatures. Phytase activity is presented in FTU/kg. The data represent the average of 3 phytase analyses for two different feed samples.

	Storage Condition			
Time (weeks)	Refrigerated	Ambient	Accelerated	
0	3505	3505	3505	
2	2550	3035	2815	
3	3440	3325	2570	
4	4135	3245	2370	
6	3070	3550	2010	
8	2810	2865	1860	
10	3555	2715	1435	
12	3160	1940	936	

Figure 19. The phytase activity of feed mixtures containing Phy02 phytase stored at different temperatures in Study 2. The data points represent the average of 3 phytase analyses for two different feed samples.

7.4 Stability of the Phy02 phytase during pelleting.

7.4.1 Pelleting stability study 1.

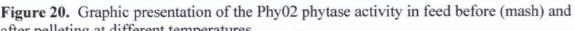
A pelleting stability study was conducted with Phy02 phytase by

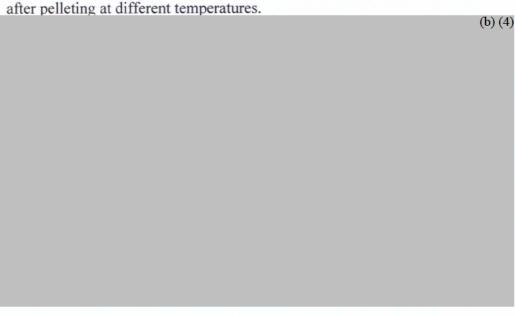
(b) (4)

Phy02 phytase was mixed into a typical corn/soybean based poultry diet whose ingredients and nutrient composition are presented in Table 41. The feed was prepared to include Phy02 phytase at 4,500 FTU/kg and 50 kg batches were pelleted at either 70, 80, or 85°C in a KHAL model 14-175 pelletizer with a flow rate of 0.1 ton/hr and steam pressure of 2.5-3.0 bar. Feed conditioning was for 7 minutes and pellet temperature was measured upon exit from the conditioner. Pellets with a diameter of 3.5 mm were extruded and were cooled and dried prior to bagging. Four 500g samples of the mash feed prior to pelleting and of the pelleted feeds were collected for phytase activity analysis.

The average phytase activity measured in four samples of the mash diet prior to pelleting and in the pelleted feed samples that were pelleted at either 70, 80, or 85°C are presented in Table 42 and Figure 20. The results demonstrate that the Phy02 phytase retains over 90% of its activity after pelleting at 80°C. However, exposure to a pelleting temperature of 85°C resulted in a decrease of phytase activity to 38.5% of its original activity.

Table 41. Nutrient ingredients (A) and nutrient composition (B) in the feed prepared for the study of pelleting stability of Phy02 phytase conducted by (b) (4)


A.


А.	
Primary Ingredients	%
Standard corn	60
Soybean meal 48	24.9
Extruded soybean	6
Palm Oil	5
Calcium carbonate	1.3
Dicalcium Phosphate	1.5
Salt	0.3
Vit/Min Premix	1
DL Met NP99 content	0.24
TOTAL	100

R

Table 42. Phy02 phytase activity in feed before (mash) and after pelleting at different temperatures.

Treatment	Activity (FTU/kg)	Recovery (% Mash)
Mash	(b) (4)	(b) (4)
70°C		
80°C		
85°C		

7.4.2. Pelleting stability study 2.

A second pelleting stability study was conducted by (b) (4) that was designed to compare the pelleting stability of Phy02 phytase with other commercial phytases that are currently on the market. In this study mash diets identical to those described in §7.4.1 were prepared. Different commercial phytase enzyme products including (b) (4) (b) (4)

(b) (4) were mixed into different batches of mash diet. The amount of each of the phytase products sufficient to achieve the dose recommended by the manufacturer based on the phytase activity described on the product labels was added to the mash feed. The calculated amount of phytase activity in each mash feed was as follows:

(b) (4)

Due

to the common practice by feed enzyme manufacturers of marketing products with a minimum activity level that typically contains higher amounts of enzyme, i.e., an overage, the prepared feeds with the commercial phytase products contained higher actual amounts of phytase activity than the target levels. Each of the different feeds were pelleted at 60, 70, 80, and 90°C as described in §7.4.1. Four 500g aliquots of the mash feeds prior to pelleting and the pelleted feed samples collected after pelleting at the different temperatures were analyzed for phytase activity and the average of the four determinations for each are presented in Table 43. The phytase activities after pelleting at the different temperatures for each phytase product are presented in Figure 21 as a percentage of the original activity in the respective mash diets.

(b) (4)

Table 43. Comparison of the pelleting stability of Phy02 phytase and three commercial phytase feed enzyme products. The phytase activity in mash diets prior to pelleting and in feeds pelleted at 60, 70, 80, or 90°C are presented in FTU/kg and as a percentage of the phytase activity determined in the respective mash diets.

	Phyzyme		Quantum		Quantum Blue		Phy02	
	FTU/kg	% Mash	FTU/kg	% Mash	FTU/kg	% Mash	FTU/kg	% Mash
Mash								(b) (4)
Pelleted 60°C								
Pelleted 70°C								
Pelleted 80°C								
Pelleted 90°C								

Figure 21. Comparison of the relative pelleting stability of Phy02 phytase with three commercial phytase products.

The results of this study demonstrate that the Phy02 phytase retains significant activity in feeds pelleted at temperatures up to 90°C. The feeds containing Phy02 phytase that were pelleted at 90°C retained 76% of the original phytase activity present in the mash feed prior to pelleting. Phy02 phytase demonstrated the highest level of relative phytase activity in feed pelleted at this temperature compared to the three commercial phytase products in the study.

The results of two independent pelleting stability studies with Phy02 phytase in corn/soybean feed mixtures has demonstrated that the Phy02 phytase retains a significant amount of its activity after pelleting at temperatures up to 90°C. In the first study the feed pelleted at 80°C retained over 90% of the original Phy02 phytase activity while in the second study it retained 76% of the activity after pelleting at 90°C. Furthermore, the Phy02 phytase was demonstrated to be more stable to pelleting at 90°C compared to three commercial phytase feed enzyme products that are currently on the market.

8.0 Product Labels

An appropriate label for the Phy02 phytase product is presented in Appendix 12.

9.0 Manufacturing Process

The Phy02 phytase is produced by maize genetically engineered to contain copies of the phy02 phytase gene under the regulation of monocot derived, seed specific promoters. This results in the production of the Phy02 phytase protein in the grain of maize with little or no production in the leaves, stalks, or other tissues. Therefore, the method of production of the commercial Phy02 phytase product employs the same agronomic practices as is typically used for the production of maize grain. These include planting maize seed containing the Phy02 gene into soil once the soil temperature has reached the appropriate temperature for maize planting, management of the crop using common agricultural practices for the cultivation of maize that may include the application of chemical fertilizers and crop protection chemicals such as herbicides and insecticides that are approved for use on maize, and harvesting by mechanical maize harvesters with a sheller to produce whole maize grain. Alternatively, the Phy02 producing maize can be grown in a greenhouse with controlled temperature using common practices for the cultivation of maize in a greenhouse. It is well recognized that using these practices it is possible to produce maize grain in a greenhouse that is nutritionally equivalent to that produced in a field environment.

The whole grain containing the Phy02 phytase is dried to a moisture content of less than 15% and is stored in dry, secure grain storage bins prior to being milled to a course maize meal ($\sim 2-3$ mm diameter). Once the Phy02 grain is milled it is packaged into a secure, labeled container that is either a double paper bag with sewn seams containing approximately 20 kg of product or a large heavy plastic tote containing 1 ton of product. The amount of Phy02 phytase produced in the grain is in the range of (b) (4). It is expected that 100g to 1kg of the Phy02 phytase product is sufficient to treat one ton of animal feed in order to deliver an effective dose of phytase to improve phosphorus digestibility.

Since the Phy02 phytase product consists of milled maize grain containing the Phy02 phytase protein, its nutrient composition is the same as that of typical maize grain. The addition of relatively small quantities of the Phy02 phytase product to typical corn/soy based diets will replace an equally small amount of the maize that is normally a

component of the diet and this substitution will not alter the nutrient composition of the feeds.

10.0 Expert Panel Consensus Statement Concerning the Generally Recognized as Safe (GRAS) Status of the Proposed Poultry Feed Use of Agrivida's Phy02 Phytase Product (Milled Course Meal Prepared From *Zea mays* expressing a Phytase Gene Derived from *Escherichia coli* K12)

Agrivida convened a panel of independent scientists (the "Expert Panel"), qualified by their scientific training and relevant national and international experience to evaluate the safety of food and animal feed additives and ingredients, to conduct a critical and comprehensive evaluation of the available pertinent data and information on the Agrivida Phy02 Phytase product (milled course meal prepared from *Zea mays* that expresses a phytase gene derived from *Escherichia coli* K12) and to determine whether the proposed use in poultry feeds would be *Generally Recognized as Safe* (GRAS) based on scientific procedures. The Expert Panel consisted of the below-signed qualified scientific experts: Michael W. Pariza, Ph.D. (University of Wisconsin-Madison) (Chair); Joseph F. Borzelleca, Ph.D. (Virginia Commonwealth University School of Medicine); and Mark E. Cook, Ph.D. (University of Wisconsin-Madison).

The Expert Panel, independently and collectively, critically evaluated a comprehensive package of scientific information and data compiled from the literature. The information was presented in a dossier provided by Agrivida entitled, "Phy02 Phytase; A phytase feed enzyme produced by *Zea mays* expressing a phytase gene derived from *Escherichia coli* K12." The dossier included a comprehensive evaluation of available scientific data, favorable and unfavorable, relevant to the safety of the intended animal feed use. The Expert Panel also evaluated other information that the panel members deemed to be appropriate or necessary.

Based on its review of the information appended to this Consensus Statement, the panel members unanimously concluded that Agrivida Phy02 Phytase product (milled course meal prepared from *Zea mays* that expresses a phytase gene derived from *Escherichia coli* K12), manufactured consistent with cGMP and meeting animal feed grade specifications, is *Generally Recognized As Safe* (GRAS) based on scientific procedures for use as an additive in poultry feed at a rate of 75 g to 1.7 kg of product per ton of feed (effective dose 250 units/kg feed - 6,000 units/kg feed).

It is our opinion that other qualified and competent scientists reviewing the same publicly available information would reach the same conclusion.

Mirchel W. Pai

Michael W. Pariza, Ph.D., Chair Emeritus Director Food Research Institute Professor Emeritus Department of Food Science University of Wisconsin-Madison

Joseph F. Borzelleca, Ph.D.
Professor Emeritus
Pharmacology and Toxicology
School of Medicine
Virginia Commonwealth University

Mark E. Cook, Ph.D. Professor Department of Animal Science University of Wisconsin-Madison Signature

May 10, 2016

Date

11.0 List of References

Adeola, O. (1995). Digestive utilization of minerals by weanling pigs fed copper- and phytase-supplemented diets. Canadian J. Animal Science **75**:603-610.

AOAC 2000.12 (2001). Phytase activity in feed. J. AOAC Internatl. 84:629.

Baker, D. H., and N.R. Augspurger (2002). Means of improving phosphorus utilization in poultry and swine. 23rd Western Nutrition Conference, Edmonton, Alberta Canada.

Bettelheim, K. A. (1992). The Prokaryotes a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. A. Balows. New York, Springer-Verlag, pp 2696-2736.

Brenner, D. (1992). The Prokaryotes a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. A. Balows. New York, Springer Verlag, pp 2673-2695.

Bridgewater, J. 1976. Fundamental Powder Mixing Mechanisms. Powder Technology **15**:215-236.

CGSC (1997). "CGSC Strain #6300 MG1655". *E. coli* Genetic Stock Center. Accessed at: http://cgsc.biology.yale.edu/Strain.php?ID=4837.

Chart, H., H.R. Smith, R.M. La Ragione, & M.J. Woodward (2000). An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5alpha and EQ1. J. Applied Microbiol. **89**:1048-1058.

Chowhan, Z.T. and E.E. Linn (1979). Mixing of Pharmaceutical Solids. I. Effect of Particle Size on Mixing in Cylindrical Shear and V-Shaped Tumbling Mixers. Powder Technology **24**:237-244.

Coe, E.H. Jr., Nueffer, M.G., D.A. Hoisington (1988). The genetics of maize. In: G.F Sprague and J.W. Dudley (Eds.), Corn and corn improvement, Agronomy Monographs No. 18; pp. 81-236. Madison, WI, American Society of Agronomy.

Collins, J. and B. Hohn (1978). Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads. PNAS USA **75**:4242–4246.

Correll, D. L. (1999). Phosphorus: a rate limiting nutrient in surface waters. Poultry Science **78**: 674-682.

Cowieson, A.J., T. Acamovic, and M.R. Bedford (2006). Phytic acid and phytase: implications for protein utilization by poultry. Poultry Science **85:**878-885.

Dassa, J., C. Marck, and P.L. Boquet (1990). The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. Journal of Bacteriology **172**:5497-5500.

Debnath, D., N.P. Sahu, A.K. Pal, K.K. Jain, S. Yengkokpam, and S.C. Mukherjee (2005). Mineral status of Pangasius pangasius (Hamilton) fingerlings in relation to supplemental phytase: absorption, whole-body and bone mineral content. Aquaculture Research **36**:326-335.

de Virgilio, M., F. De Marchis, M. Bellucci, D. Mainieri, M. Rossi, E. Benvenuto, S.Arcioni and A. Vitale (2008). The human immunodeficiency virus antigen Nef forms protein bodies in leaves of transgenic tobacco when fused to zeolin. J. Exper. Botany **59:**2815-2829.

Doebley, J., A. Stec, J. Wendel and M. Edwards (1990). Genetic and morphological analysis of a maize- teosinte F2 population: implications for the origin of maize. Proc. Natl. Acad. Sci. USA **87**:9888-9892.

Duvick, D.N. (1999). Heterosis: Feeding people and protecting natural resources, in The Genetics and Exploitation of Heterosis in Crops. J.G. Coors and S. Pandey (eds.). American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, pp 19-29.

EFSA (European Food Safety Authority) (2008). Safety and efficacy of the product QuantumTM Phytase 5000 L and QuantumTM Phytase 2500 D (6-phytase) as a feed additive for chickens for fattening, laying hens, turkeys for fattening, ducks for fattening and piglets (weaned). The EFSA Journal **627**:1-27.

EPA (2002). Notice of Data Availability; National Pollutant Discharge Elimination System Permit Regulation and Effluent Limitations Guidelines and Standards for Concentrated Animal Feeding Operations. Federal Register **67**(141): 48099-48110.

Flung, M.E., J. Kopf, and C. Richards (1985). Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3'(9)-O- nucleotidyltransferase. Nucleic Acids Res. **13**:7095-7106.

Geli, M. I., M. Torrent, and D. Ludevid (1994). Two structural domains mediate two sequential events in γ -zein targeting: Protein endoplasmic reticulum retention and protein body formation. Plant Cell **6:**1911-1922.

GHC (2015). VeganZyme®; http://www.globalhealingcenter.com/supplements/digestive-enzymes-

supplement.html?gclid=CjwKEAiAxNilBRD88r2azcqB2zsSJABy2B96KcLMTx6IVQs DjU; accessed 7 April 2016.

GNC (2015). General Nutrition Center http://www.gnclivewell.com.my/product info.php?products id=591&cPath=24

Accessed 7 April 2016.

Gomez-Aldapa, C.A., E. Rangel-Vargas, A. M. Cruz Gálvez, A. D. Román-Gutiérrez, and J. Castro-Rosas (2013). Presence of coliform bacteria, fecal coliforms, *Escherichia coli* and *Salmonella* on corn tortillas in central Mexico. Food Control **32**:31-34.

Goodman, M.M. and W.C. Galinet (1988). The history and evolution of maize. Critical Reviews in Plant Sciences 7:197-220.

Griener, R., N.-G. Carlsson, and M. L. Alminger (2000). Stereospecificity of myoinositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of *Escherichia coli*. Journal of Biotechnology **84**:53-62

Harland, B. F. and E. R. Morris (1995). Phytate: a good or a bad food component? Nutrition Research **15**:733-754.

Harrison, M.D., J. Geijskes, H.D. Coleman, K. Shand, M. Kinkema, A. Palupe, R. Hassall, M. Sainz, R. Lloyd, S. Miles and J.L. Dale (2011). Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol. J. **9**:884-896.

Hitchcock, A.S. and A. Chase (1971). Manual of the grasses of the United States (Vol. 2. pp. 790-796), New York: Dover Publications.

Horinouchi, S., K. Furuya, M. Nishiyama, H. Suzuki, and T. Beppu (1987). Nucleotide sequence of the streptothricin acetyltransferase gene from *Streptomyces lavendulae* and its expression in heterologous hosts. J. Bacteriol. **169**:129-137.

Iltis, H. H. and J. F. Doebley (1980). Taxonomy of *Zea* (*Gramineae*). II. Subspecific categories in the *Zea mays* complex and a generic synopsis. Amer. J. Bot. **67**:994-1004.

International Food Biotechnology Council. (1990). Variability in the Composition of Traditional Foods: Nutrients, Microorganisms, and Toxicants, in Biotechnologies and food: assuring the safety of foods produced by genetic modification. Reg. Toxicol. Pharmacol. 12:S11-S78.

Iqbal, T. H., K.O. Lewis, and B.T. Cooper (1994). Phytase activity in the human and rat small intestine. Gut **35**:1233-1236.

ISA (2010). Industry Technical Bulletin: "Importance of the feed particle size", available at:

 $\frac{http://www.isapoultry.com/\sim/media/Files/ISA/Information/Technical\%20Bulletins/Nutrition/Feed\%20presentation\%20for\%20commercial\%20layers.pdf)}{}$

Itoh, T. and J. Tomizawa (1978). Initiation of replication of plasmid ColE1 DNA by RNA polymerase, ribonuclease H and DNA polymerase I. Cold Spring Harbor Symposium on Quantitative Biology. **43**:409-418.

Jongbloed, A. W. and N. P. Lenis (1998). Environmental concerns of animal manure. Journal of Animal Science **76**:2641-2648.

Konietzny, U., and R. Greiner (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science and Technology **37**:791-812.

Krentz, C.A., K. Teschke, S. Hui, and J. Isaac-Renton (2013). The predictive value of total coliforms in drinking water using life table analysis. J. Water Supply: Res. & Technol. – AQUA. **62:**97-106.

Kruger, N.J. (1996). The Bradford method for protein quantitation. *In*, Protein Protocols Handbook, pp. 15-20, J.M. Walker, ed., Humana Press, Totowana, NJ.

Kuhnert, P., J. Hacker, I. Mühldorfer, A.P. Burnens, J. Nicolet, and J. Frey (1997). Detection system for *Escherichia coli*-specific virulence genes: absence of virulence determinants in B and C strains. Applied & Environmental Microbiology **63**:703-709.

Lambrechts, C., H. Boze, G. Moulin, and P. Galzy (1992). Utilization of phytate by some yeasts. Biotechnology Letters **14**:61-66.

Lei, X.G., P.K. Ku, E.R. Miller, D.E. Ullrey, and M.T. Yokoyama (1993). Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr. **123:**1117–1123.

Lei, X.G. and C.H. Stahl (2001). Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol. **57:**474–481.

Lim, D., S. Golovan, C.W. Forsberg, and Z. Jia (2000). Crystal structures of Escherichia coli phytase and its complex with phytate. Nat. Struct. Biol. 7:108-113.

Lott, J. N. A. (1984). Accumulation of seed reserves of phosporus and other minerals, in D.R. Murray (ed.), Seed Physiology Volume 1. Development, pp. 139-166, Academic Press, Orlando, FL.

Mallin, M. A. (2000). Impact of industrial animal production on rivers and estuaries. American Scientist **88**:26-37.

Minihane, A. M., and G. Rimbach (2002). Iron absorption and the iron binding and antioxidant properties of phytic acid. International Journal of Food Science and Technology **37**:741-748.

Monsanto (2015). Corn growth stages and growing degree units. agKnowledge Spotlight. (http://www.aganytime.com/Documents/ArticlePDFs/Corn%20Growth%20Stages%20and%20GDUs%20-%20DEKALB%20Spotlight.pdf)

Morris, M.L. (1998). Overview of the world maize economy, in Maize Seed Industries in Developing Countries. M.L. Morris (ed.). Lynne Rienner Publishers, Inc., Boulder, Colorado, pp 13-34.

Nahm, K.H. (2002). Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Critical Revs. Environ. Sci. & Technol. **32:**1-16.

Nakamura, Y., H. Fukuhara, and K. Sano (2000). Secreted phytase activities of yeasts. Bioscience, Biotechnology, and Biochemistry **64**:841-844.

NEC (2016). CereCalase; http://nationalenzyme.com/products/item/cerecalase/; accessed 7 April 2016.

Negrotto, D., M. Jolley, S. Beer, A.R. Wenck, and G. Hansen (2000). The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Reports **19**:798-803.

NIH (2013). NIH Guidelines For Research Involving Recombinant DNA Molecules, Appendix C-II, pp. 46-47, November 2013: http://osp.od.nih.gov/sites/default/files/NIH Guidelines 0.pdf

NPGS (1995). U.S. National Plant Germplasm System. Accession of *Z. mays* line MGS 96986; available at: https://npgsweb.ars-grin.gov/gringlobal/accessiondetail.aspx?accid=MGS+96986

Nyannor, E.K.D. and O. Adeola (2008). Corn expressing an *Escherichia coli*-derived Phytase gene: Comparative evaluation study in broiler chicks. Poultry Sci. **87**:2015-2022.

Nyannor, E.K.D., M.R. Bedford, and O. Adeola (2009). Corn expressing an *Escherichia coli*-derived phytase gene: Residual phytase activity and microstructure of digesta in broiler chicks. Poultry Sci. **88:**1413-1420.

Nyannor, E., P. Williams, M. Bedford, and O. Adeola (2007). Corn expressing an *Escherichia coli*-derived phytase gene: A proof-of-concept nutritional study in pigs. J. Anim. Sci. **85**:1946-1952.

OECD (2003). Consensus document on the biology of Zea mays subsp. mays. Series on Harmonisation of Regulatory Oversight in Biotechnology, No. 27.

Onyango, E. M., M. R. Bedford, and O. Adeola (2005). Efficacy of an evolved *Escherichia coli* phytase in diets of broiler chicks. Poult. Sci. **84**:248–255.

Pariza, M.W. and M. Cook (2010). Determining the safety of enzymes used in animal feed. Regul. Toxicol. Pharmacol. **56:**332-342.

Pariza, M.W. and E.M. Foster (1983). Deterimining the safety of enzymes used in food processing. J. Food Protection. **46:**453-468.

Pariza, M.W. and E.A. Johnson (2001). Evaluating the safety of microbial enzyme preparations used in food processing: Update for a new century. Reg. Toxicol. Pharmacol. **33**:173–186.

Poulsen, H. (2000). Phosphorus utilization and exdretion in pig production. Journal of Environmental Quality **29**:24-27.

Qu, L.Q., Y.P. Xing, W.X. Liu, X.P. Xu and Y.R. Song (2008). Expression pattern and activity of six glutelin gene promoters in transgenic rice. J. Exper. Botany **59:**2417–2424.

Quail, P.H., A.H. Christensen, H.P. Hershey, R.A. Sharrock and T.D. Sullivan (1996). Plant ubiquitin promoters system. U.S. Patent No. 5,510,474. USPTO.

Reddy, N. R., S. K. Sathe, et al. (1982). Phytates in legumes and cereals. Advances in Food Chemistry. C. O. Chichester, E. M. Mrak and G. F. Stewart. New York, Academic Press, pp 1-92.

Reina, M., P. Guillen, I. Ponte, A. Boronat and J. Palau (1990). DNA sequence of the gene encoding the Zc1 protein from *Zea mays* W64 A. Nucleic Acids Res. **18:**6425.

Russell, D.A. and M.E. Fromm (1997). Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Research **6:**157–168.

Sandberg, A. S., L.R. Hulthen, and M. Turk (1996). Dietary Aspergillus niger phytase increases iron absorption in humans. Journal of Nutrition **126**:476-480.

Sanderson, M.W., J.M. Sargeant, D.G. Renter, D.D. Griffin,4 and R.A. Smith (2005). Factors Associated with the presence of coliforms in the feed and water of feedlot cattle. Appl. Environ. Microbiology **71**:6026-6032.

Sekhon, R.S., H. Lin, K.L. Childs, C.N. Hansey, C. R. Buell, N. de Leon, and S.M. Kaeppler (2011). Genome-wide atlas of transcription during maize development. The Plant Journal **66**:553-563.

Selle, P.H., A.J. Cowieson, N.P. Cowieson, and V. Ravindran (2012). Protein–phytate interactions in pig and poultry nutrition: a reappraisal. Nutrition Research Reviews **25**:1–17.

Selle, P.H. and V. Ravindran (2007). Microbial phytase in poultry nutrition. Animal Feed Science & Technology **135:**1-41.

Semenza, J.C. and H.R.B. Pelham (1992). Changing the specificity of the sorting receptor for luminal endoplasmic reticulum proteins. J. Mol. Biol. **224:**l-5.

Short, J. (2001). Saturation mutagenesis in directed evolution, US Patent Number 6,171,820 B1. US Patent Office.

Sprague, G.F. and S. A. Eberhart (1976). Maize breeding. In: Corn and corn improvement. (Agronomy Monographs No. 18, pp. 312-313), Madison, WI: American Society of Agronomy.

Streatfield, S.J., J. Bray, R.T. Love, M.E. Horn, J.R. Lane, C.F. Drees, E.M. Egelkrout and J.A. Howard (2010). Identification of maize embryo-preferred promoters suitable for high-level heterologous protein production. GM Crops, **1:**162-172.

Tabib, Z., F.T. Jones, and P.B. Hamilton (1981). Microbial quality of poultry feed and ingredients. Poultry Science 60:1392-1397.

Torrent, M., I. Alvarez, M. I. Geli, I. Dalcol and D. Ludevid (1997). Lysine-rich modified γ -zeins accumulate in protein bodies of transiently transformed maize endosperms. Plant Molecular Biology **34:**139–149.

Torrent, M., B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P.B. Heifetz and M.D. Ludevid (2009). Eukaryotic protein production in designed storage organelles. BMC Biology 7:5.

USDA-FAS (2014). Grain: World Markets and Trade, Dec. 2014. http://usda.mannlib.cornell.edu/usda/fas/grain-market//2010s/2014/grain-market-12-10-2014.pdf.

USDA-NASS (2016) National Agricultural Statistics Service. Available at: http://www.nass.usda.gov/Quick Stats/. Accessed 7April 2016.

Viveros, A., C. Centeno, A. Brenes, R. Canales, and A. Lozano (2000). Phytase and acid phosphatase activities in plant feedstuffs. Journal of Agricultural Food Chemistry **48**:4009-4013.

Walker, J.M. (1996). The bicinchoninic acid (BCA) method for protein quantitation. *In*, Protein Protocols Handbook, pp 11-14, J.M. Walker, ed., Humana Press, Totowana, NJ.

Wang, K., L. Herrera-Estrella, M. Van Montagu, and P. Zambryski (1984). Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell **38**:455-462.

Wilkes, H. G. (1967). Teosinte: the closest relative of maize. Bussey Inst., Harvard Univ., Cambridge.

Wodzinski, R. J., and A.H.J. Ullah (1996). Phytase. Advances in Applied Microbiology 42:263-302.

Wych, R.D. (1988). Production of hybrid seed corn. in Corn and Corn Improvement. Third Edition. G.F. Sprague and J.W. Dudley (eds.), pp 565-607. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin.

Yanke, L. J., H.D. Bae, L.B. Selinger, and K.-J. Cheng (1998). Phytase activity of anaerobic ruminal bacteria. Microbiology **144**:1565-1573

Zambryski, P., A. Depicker, K. Kruger, and H.M. Goodman (1982). Tumor induction by *Agrobacterium tumefaciens*: analysis of the boundaries of T-DNA. J. Mol. Appl. Genet. 1:361-370.

12.0 List of Figures

No.	Description	Page
1	Comparison of the amino acid sequences of the Phy02, <i>E. coli</i> AppA and Nov9X phytases	11
2	The nucleotide and predicted polypeptide sequence of Phy02	12
3	Plasmid map of (b) (4)	13
4	Gene maps of PY203 3293 and 3507 insertion loci	16
5	Southern hybridization blot showing 2 insertions	17
6	Genetic map of the T-DNA of locus 3293	18
7	Genetic map of the T-DNA of locus 3507	19
8	Diagram of the breeding history of Phy02 maize	21
9	Alignment of genomic DNA sequence from locus 3293	21
10	Alignment of genomic DNA sequence from locus 3507	22
11	Multi-generation stability of loci 3923 and 3507 in PY203 by Southern Hybridization	23
12	Glycosylation status of Phy02 phytase	27
13	pH optimum of Phy02 phytase	29
14	Thermal optimum of Phy02 phytase	30
15	Comparison of the body weight gain of broiler chickens in four separate studies from day $0-42$	60
16	Comparison of the adjusted FCR of broiler chickens in three separate studies from day $0-42$	61
17	Stability of Phy02 phytase product after storage at different temperatures	66
18	Stability of Phy02 phytase in feed mixtures – Study 1	70
19	Stability of Phy02 phytase in feed mixtures – Study 2	72

<u>No.</u>	Description	<u>Page</u>
20	Stability of Phy02 phytase in pelleted feeds – Study 1	74
21	Stability of Phy02 phytase in pelleted feeds – Study 2	75

Safety and Functionality of Phy02 Phytase in the Feed of Poultry

Agrivida, Inc.

13.0 List of Tables

No.	<u>Description</u>	<u>Page</u>
1	Description of the genetic elements in plasmid (b) (4)	14
2	Predicted and observed hybridizing DNA fragments demonstrating mult-generational stability of loci 3923 and 3507 in PY203	23
3	Enzymatic side activities in protein extracts of Phy02	31
4	Hematological characteristics from broiler chicken Study 3	36
5	Hematological characteristics from broiler chicken Study 4	38
6	Performance of broiler chickens in Study 1 from day 0-21	42
7	Performance of broiler chickens in Study 1 from day 21-42	42
8	Performance of broiler chickens in Study 1 from day 0-42	43
9	Ileal P and P digestibility in broiler Study 1 at 21 and 42 days	44
10	Percent bone ash in tibia at day 21 and 42 of broiler Study 1	44
11	Performance of broiler chickens in Study 2 from day 0-21	46
12	Performance of broiler chickens in Study 2 from day 0-42	46
13	Performance of broiler chickens in Study 2 from day 0-14	47
14	Performance of broiler chickens in Study 2 from day 14 – 21	47
15	Performance of broiler chickens in Study 2 from day 21 – 42	48
16	Ileal P and P digestibility in broiler Study 2 at 21 and 42 days	49
17	Percent bone ash in tibia at day 21 and 42 of broiler Study 2	49
18	Performance of broiler chickens in Study 3 from day $0-21$	50
19	Performance of broiler chickens in Study 3 from day 0 – 42	51
20	Performance of broiler chickens in Study 3 from day 0 – 14	51

Safety and Functionality of Phy02 Phytase in the Feed of Poultry	Agrivida, Inc.
--	----------------

No.	Description	Page
21	Performance of broiler chickens in Study 3 from day 14 – 21	52
22	Performance of broiler chickens in Study 3 from day 21 – 42	52
23	Ileal P and P digestibility in broiler Study 3 at 21 and 42 days	53
24	Percent bone ash in tibia at day 21 and 42 of broiler Study 3	54
25	Performance of broiler chickens in Study 4 from day 0-21	55
26	Performance of broiler chickens in Study 4 from Day 0-42	55
27	Performance of broiler chickens in Study 4 from Day 0-14	56
28	Performance of broiler chickens in Study 4 from Day 14-21	56
29	Performance of broiler chickens in Study 4 from Day 21-42	57
30	Ileal P and P digestibility in broiler Study 4 at 21 and 42 days	57
31	Percent bone ash in tibia at day 21 and 42 of broiler Study 4	58
32	Comparison of Mortality in the Phy02 Phytase Broiler Feeding Trials	62
33	Planting locations and dates for the production of three representative Phy02 phytase product batches.	62
34	Physical, chemical, and microbial characteristics of three independent Phy02 phytase product batches	64
35	Composition of feed used in a study of homogeneity	65
36	Stability of Phy02 phytase product after storage at different temperatues	67
37	Homogeneity of Phy02 phytase in feed mixtures – Study 1	68
38	Homogeneity of Phy02 phytase in feed mixtures – Study 2	69
39	Stability of Phy02 phytase in feed mixtures – Study 1	70
40	Stability of Phy02 phytase in feed mixtures – Study 2	71
41	Composition of feed used in pelleting stability study 1	73

No.	<u>Description</u>	Page
42	Stability of Phy02 phytase in pelleted feed – Study 1	73
43	Stability of Phy02 phytase in pelleted feed – Study 2	75

Safety and Functionality of Phy02 Phytase in the Feed of Poultry

Agrivida, Inc.

14.0 List of Appendices

No.	<u>Description</u>	Page
1	Nucleotide sequence of locus 3293	92
2	Nucleotide sequence of locus 3507	98
3	Multi-generational stability of insertion loci 3923 and 3507 in PY203 Phy02 producing maize by DNA sequence analysis	103
4	Multi-generational stability of insertion loci 3923 and 3507 in PY203 Phy02 producing maize by Southern blotting	108
5	Certificate of analysis of three Phy02 phytase product batches	115
6	Phytase activity in feeds before and after pelleting in four broiler trials	129
7	Proximate nutrients in all feeds for four broiler feeding trials	134
8	Final report for broiler Study 1	136
9	Final report for broiler Study 2	225
10	Final report for broiler Study 3	311
11	Final report for broiler Study 4	454
12	Product Label for Phy02 Phytase	562

Complete nucleotide sequence of the T-DNA and maize genomic flanking DNA of locus 3293. The sequence of the maize genomic DNA is presented in lower case letters while the sequence of the T-DNA insert is presented in upper case.

(b) (4)

(b)(4)

Appendix 2

Complete nucleotide sequence of the T-DNA and maize genomic flanking DNA of locus 3507. The sequence of the maize genomic DNA is presented in lower case letters while the sequence of the T-DNA insert is presented in upper case

Appendix 2 98

Appendix 2 99

Multi-generational stability of insertion loci 3923 and 3507 in PY203 Phy02 producing maize by DNA sequence analysis

Kit Bonin, James McGann, Andries Smigel

PCR and sequencing was performed on multiple generations of the PY203 event to evaluate the stability of the two PY203 T-DNA insertion sites. Genomic DNA was isolated from leaf material of PY203 from four backcross (BC) generations in an inbred background designated "E" (BC1E, BC2E, BC3E, and BC4E; see breeding diagram Figure 1). DNA sequences spanning the T-DNA right border (RB) into the maize genomic flanking regions of both PY203 loci, 3293 and 3507, were PCR amplified and sequenced from four generations (BC1E-BC4E) to confirm the stability of the maize flanking genomic region across multiple generations. Maps and sequences of PY203 loci 3293 and 3507 along with primers used for PCR are shown in Figures 2 and 3, respectively.

Figure 1. Breeding diagram for event PY203.

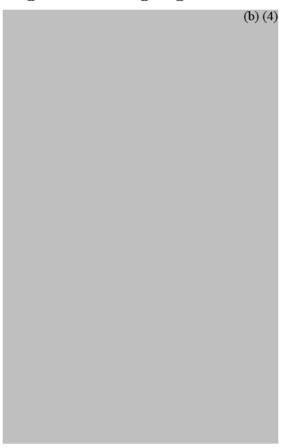
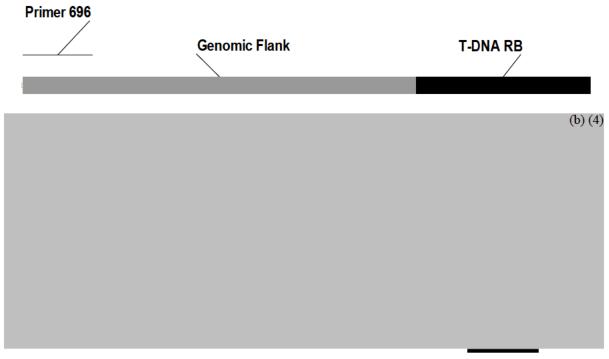
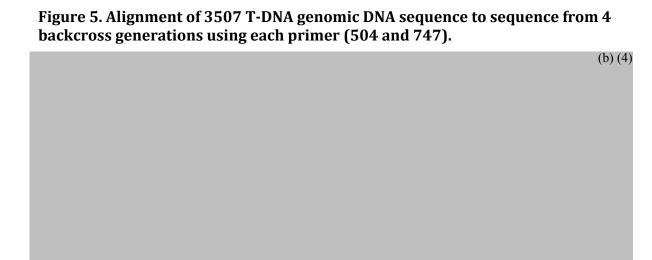


Figure 2. PY203 3293 locus map and sequence of a 163 bp fragment amplified from the T-DNA into the flanking genomic region.




Figure 3. PY203 3507 locus map and sequence of a 113 bp fragment amplified from the T-DNA into the flanking genomic region.

Two separate PCR reactions were conducted with each primer set and the resulting amplified DNA fragments were sequenced. DNA sequence chromatograms were compared to automatic calls and inaccurate calls were removed or corrected. Alignments of target sequence to representative sequences from each generation and primer are shown for loci 3293 and 3507 in Figures 4 and 5, respectively. All four generations, BC1E-BC4E, had identical insertion site sequences for both loci indicating that the sequence of the maize flanking DNA adjacent to the RB of each insertion was stable across 4 generations.

Figure 4. Alignment of 3293 T-DNA genomic DNA sequence to sequence from 4 backcross generations using each primer (504 and 696).

Materials and Methods

Plant Material

PY203 BC1E, BC2E, BC3E, and BC4E plants were grown under controlled conditions and leaf tissue was harvested for DNA extractions.

DNA Extraction

Tips of leaves (approximately 1 cm long) were harvested with forceps and placed into individual 1 ml wells of a 96-well block on ice. After sampling, metal beads were added to each well. The blocks were then frozen at -80°C for at least 30 min., ground for 45 sec. in a Kleco Pulverizer, and centrifuged at 4,000 RPM for 3 min. in a table top centrifuge. After centrifugation, 300 μl of 10X TE with sarkosyl (0.1 M Tris/HCl, pH 8.0, 10 mM EDTA, 1% sarkosyl) was added, the lid was replaced, and the blocks were mixed on a rocker for at least 10 minutes. After extraction, blocks were centrifuged at 4,000 RPM for 3 min. in a table top centrifuge. Approximately 165 μl of supernatant was transferred to a 96-well PCR plate, sealed with a foil lid, and heated at 95°C for 30 min in a thermocycler. Following heating, 20 μl of extract was added to a 96-well plate with 180 ul of deionized water and mixed. This mixture was used for all PCR reactions.

PCR and Gel Electrophoresis

PCR was performed in 30 μl reactions that included 15 μl 2X GoTaq Green PCR Reaction Mix (Promega, Madison, WI), 400 mM of each primer, and 2 μl of each DNA prep. PCR conditions were as follows: 95°C, 2 min; 33 cycles (95°C, 30 sec; 55°C, 30 sec; 72°C, 45 sec); 72°C, 8 min. PCR products were separated on 3% agarose gels (Bio-Rad, Hercules, CA) and visualized on a Bio-Rad Chemi Doc system (Bio-Rad, Hercules, CA).

Backcross segregating populations were initially genotyped using the primers described above (Figures 2 and 3) to identify plants that carried both loci, 3293 and 3507. Two 2-locus plants were selected for PCR and amplified individually for each locus.

DNA Sequencing and Analysis

DNA (Sanger) sequencing was performed on locus-positive PCR reactions using each primer (Figures 2 and 3) by Beckman Genomics (Danvers, MA). DNA sequences were analyzed using Vector NTI software (Invitrogen, Carlsbad, CA).

Confirming PY203 Generational Stability with a Southern Blot

Kit Bonin, Andries Smigel, James McGann

The stabilities of the two grain phytase PY203 transgenes were determined using a Southern blot of hybridizing bands over multiple generations. Genomic DNA from four backcross (BC) inbred (E) generations of the PY203 event (BC1E, BC2E, BC3E, and BC4E; see breeding diagram Figure 1) were analyzed. Hybridization of a T-DNA right border (RB) probe showed expected and consistent banding patterns in all four generations confirming the generational stabilities of the two PY203 T-DNA insertions (Table 1, Figure 2, Figure 3, and Figure 4).

Figure 6. Breeding diagram for event PY203.

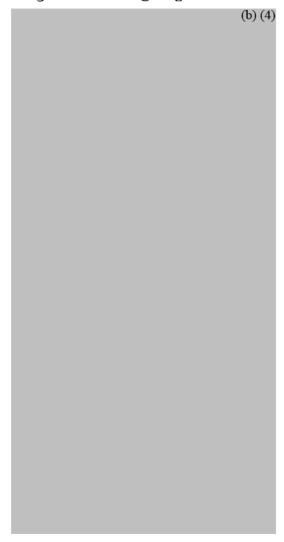
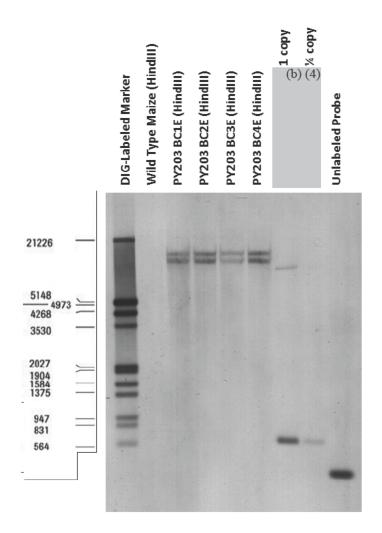


Figure 7. DNA maps of PY203 3293 and 3507 T-DNA loci. EcoRI and HindIII restriction sites, hybridization region of the T-DNA RB probe, and expected Southern band (pattern filled boxes) are indicated.


Figure 8. (b) (4) vector with location of SalI and NotI restriction sites and the T-DNA RB probe.

(b) (4)

Table 1. Predicted and observed DNA fragment sizes for a Southern blot with the T-DNA RB probe.

Probe	Sample	Locus	Predicted Fragment Size	Observed Fragment Size
T-DNA RB	PY203 (HindIII)	3293	10,192 bp	≈10,000 bp
T-DNA RB	PY203 (HindIII)	3507	11,910 bp	≈12,000 bp
T-DNA RB	(b) (4) (SalI+NotI), 1 & (SalI+NotI)		9,680 bp & 662 bp	≈9,500 bp & ≈700 bp
T-DNA RB	Wild type maize control			

Figure 4. Southern blot of four BC generations of the PY203 event hybridized with a T-DNA RB probe.

Materials and Methods

Plant Material

Leaf material from backcrossed PY203 (BC1E-BC4E) and wild type maize was used for DNA extractions. PY203 event-positive plants were identified by PCR. Young leaf tissue samples from 10 or more greenhouse-grown plants were harvested separately at approximately V3 stage and frozen in liquid nitrogen. Tissue was stored at -80°C until DNA extraction was performed.

Plasmid Control DNA

Plasmid DNA from plant transformation vector (b) (4) was used as a positive hybridization control for all Southern blots. Restriction-digested (b) (4) DNA was diluted to 1-copy and 1/4-copy equivalents (relative to expected amount of target from 10 µg of genomic DNA) to provide a probe hybridization signal control and to display the sensitivity of the assay, respectively.

Plant DNA Extraction and Quantitation

Frozen leaf tissue samples from at least 10 plants per sample were ground separately in liquid nitrogen with a mortar and pestle prior to extraction. Genomic DNA was extracted using a CTAB method. Approximately 4 g of frozen leaf tissue was extracted per prep with 16 mL of CTAB Buffer (2% CTAB, 1.4 M NaCl, 20 mM EDTA, 100 mM Tris/HCl [pH 8.0], and 0.2% β-mercaptoethanol) at 55°C while shaking for 60 minutes. Samples were cooled for 5-10 min and then 16 mL of phenol, chloroform, isoamyl alcohol (25:24:1) was added and mixed well. Tubes were centrifuged at 4,000 RPM for 20 min at room temperature. The upper aqueous phase was transferred to a new tube and the phenol, chloroform, isoamyl alcohol extraction was repeated.

DNA was then precipitated with 1/10 volume of 3M NaAc, pH 5.2 and 2 volumes of 100% ethanol and resuspended in 600 μ l of TE. RNA digestion was then performed with RNAse A (100 μ g/mL final concentration) at 37°C for 60 min. DNA was then extracted once with phenol, chloroform, isoamyl alcohol, followed by 1 volume of chloroform alone, and then precipitated with 2 volumes of 100% ethanol. The DNA pellet was washed twice with 70% ethanol, dried for 5-10 min, and then resuspended in 200 μ l of TE.

DNA concentration was determined using a Quant-iT PicoGreen dsDNA kit (Life Technologies, Carlsbad, CA) and a Tecan Infinite M1000 fluorescent plate reader (Tecan Group Ltd., Männedorf, Switzerland) using the manufacturer's protocol. DNA quality was confirmed by separating and visualizing 50-100 ng of genomic DNA on a 1% agarose gel with ethidium bromide.

Southern Blot Analysis

Southern blot analysis was performed using standard molecular biology techniques (Southern, 1975; Sambrook et al., 1989), in addition to specific recommendations in the Roche DIG Application Manual (Roche Diagnostics GmbH, Mannheim, Germany). Genomic DNA samples (10 µg) were digested using individual or combinations of restriction enzymes 4 hours to overnight according the manufacturer's recommendations (New England Biolabs, Beverly, MA). Digested DNA samples (including positive vector control and wild type maize control), unlabeled probe PCR products, and DIG-Labelled Molecular Weight Marker III (Roche Diagnostics GmbH, Mannheim, Germany) were mixed with 6X Orange G loading Dye (New England Biolabs, Beverly, MA) and loaded onto 0.8% agarose TAE gels and electrophoretically separated in TAE buffer at approximately 100 volts for 4.5 hours. After separation, gels were stained with ethidium bromide and imaged to confirm separation and then depurinated for 15 minutes. The remaining gel preparation steps were performed as described in the Roche DIG Application Manual and the gel was then blotted onto positively charged nylon membrane (Roche Diagnostics GmbH, Mannheim, Germany). After blotting, the DNA was crosslinked to the membrane using a Stratalinker UV Crosslinker (Stratagene, La Jolla, CA).

DIG-labeled DNA hybridization probes were synthesized using element-specific primers and the PCR DIG Probe Synthesis Kit (Roche Diagnostics GmbH, Mannheim, Germany).

Probe length and specificity was confirmed by gel electrophoresis and ethidium bromide staining.

Hybridizations were performed using DIG Easy Hyb (Roche Diagnostics GmbH, Mannheim, Germany) at high stringency temperatures calculated for each probe or probe combination. Prehybridzation was performed without a probe for 1 hour and then in fresh DIG Easy Hyb with denatured DIG-labeled probe overnight (≥16 hours) at high stringency temperatures. High stringency washes and development steps were performed according to the manufacturer's protocol (Roche Diagnostics GmbH, Mannheim, Germany). Filters were exposed to X-Ray film and developed using standard equipment. The unlabeled RB probe was included on the Southern at a one-copy equivalent to confirm hybridization of the DIG-labeled probe. Molecular weight sizes of hybridizing bands were estimated from the DIG-labeled marker and an unlabeled 1 kb marker (2Log DNA Ladder, NEB, Beverly, MA) that was visualized on the gel with ethidium bromide staining prior to blotting.

References

- DIG Application Manual for Filter Hybridization. 2008. Roche Diagnostics GmbH. https://lifescience.roche.com/wcsstore/RASCatalogAssetStore/Articles/05353149 001 08.08.pdf
- Sambrook, J., Fritsch, E.F., and Maniatis T. 1989. Molecular Cloning, A Laboratory Manual. Second edition. Cold Spring Harbor Laboratory Press.
- Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503-517.

Certificate of analysis of three representative Phy02 product batches

STUDY TITLE:

CHARACTERIZATION OF PHYTASE TEST SUBSTANCES AV_PHY02_0043, AV PHY02_0049, AND AV PHY02_0050

AUTHOR: MATTHEW PARKER, PHD

STUDY COMPLETED ON: 18 JANUARY 2016

PERFORMING LABORATORY: AGRIVIDA, INC. 200 BOSTON AVENUE MEDFORD, MA 02155

PROTOCOL NO. PHY-02-01

SUBMITTED BY: AGRIVIDA, INC. 200 BOSTON AVENUE MEDFORD, MA 02155

PAGE 1 OF 14

STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA §10(d) (1) (A), (B), or (C).

Company: Agrivida, Inc.

Company Agent: James Ligon Date: 20 January 2016

Title: Vice President, Regulatory Affairs and Stewardship

Signature:

These data are the property of Agrivida, Inc. and, as such, are considered to be confidential for all purposes other than compliance with FIFRA §10. Submission of these data in compliance with FIFRA does not constitute a waiver of any right to confidentiality that may exist under any other statute in any other country.

STATEMENT CONCERNING GOOD LABORATORY PRACTICES

The study described in this volume was conducted according to the principles of applicable Good Laboratory Practices as described in 40 CFR 160.

Matthew Parker, Ph.D.
Senior Scientist
Agrivida, Inc.

MARCH 39, 3016

Date

The state of the st

James Ligon, Ph.D.

V. D. Ragyletowy Affairs and Stayyardship

V.P., Regulatory Affairs and Stewardship Agrivida, Inc.

SUBMITTED BY:

STUDY DIRECTOR:

James Ligon, Ph.D. Date

March 28, 2016

V.P., Regulatory Affairs and Stewardship Agrivida, Inc.

SUBMITTER/SPONSOR:

Agrivida, Inc. 200 Boston Avenue Medford, MA 02155

TABLE OF CONTENTS

	Page
Statement of No Data Confidentiality Claims	2
Good Laboratory Practice Statement	3
Table of Contents	4
List of Tables	5
List of Figures	5
Summary	6
Introduction	6
Materials and Methods	7
Results	9
Records Retention	10
Study Personnel	10
References	10

Safety and F	Functionality of Phy02 Phytase in the Feed of Poultry	Agrivida, Inc.
	LIST OF TABLES	
Table 1	Planting locations and dates for the production of three representative Phy02 phytase product batches.	7
	LIST OF FIGURES	
Figure 1	SDS-PAGE gel containing protein extracts from each of thre Phy02 phytase product batches.	e 11
Figure 2	Western blot of protein extracts from each of three Phy02 phytase product batches demonstrating immunoreactivity.	12

Phytase activity of three representative Phy02 phytase product

13

Figure 3

batches.

AGRIVIDA, INC. 200 BOSTON AVENUE MEDFORD, MA 02155

CHARACTERIZATION OF PHYTASE TEST SUBSTANCES AV_PHY02_0043, AV PHY02_0049, AND AV PHY02_0050

TEST SUBSTANCE CHARACTERIZATION REPORT AND CERTIFICATE OF ANALYSIS

Test Substance: Ground grain from maize producing the Phy02 phytase enzyme.

Test substances are derived from three separate and representative

Phy02 phytase product batches.

Sample Lot Nos.: AV PHY02 0043

AV_PHY02_0049 AV_PHY02_0050

SUMMARY

The Phy02 phytase is produced in the grain of maize through the application of recombinant DNA technologies. Three separate and representative Phy02 phytase product batches designated AV_PHY02_0043, AV_PHY02_0049, and AV_PHY02_0050 were produced using standard agronomic practices for the production of corn. The grain was dried and ground to a course meal. The phytase activity and characteristics of the Phy02 phytase produced in the three representative batches were determined. The Phy02 phytase protein was demonstrated to be a prominent protein in the total protein of all three product batches. Western blot analysis of all three samples revealed a single band of immunoreactive material of the predicted molecular weight of approximately 46,000 kDa.

INTRODUCTION

The purpose of this study was to characterize test substances, AV_PHY02_0043, AV_PHY02_0049, and AV_PHY02_0050, containing the Phy02 phytase that is produced in the grain of maize. Phytase is an enzyme that catalyzes the dephosphorylation of phytate, and, when incorporated into animal feed, increases the amount of nutritionally available phosphate for the animal and also decreases the phosphate content of the animal waste. The test substances were prepared from the grain of recombinant maize and are intended for use in animal safety and functionality studies with the Phy02 phytase product. Various biochemical parameters were evaluated to

confirm the identity of the phytase in the test substance, as well as its activity and integrity.

MATERIALS AND METHODS

Production of test substances. Three separate representative product batches of the Phy02 phytase were produced from Phy02 expressing maize. The product batch numbers, location of planting and dates of planting and harvest are shown in Table 1. Planting the seed and harvest of the grain were performed using commonly used agronomic practices for maize. Cultivation of the Phy02 producing maize utilized commonly used agronomic practices for maize including the use of fertilizers, herbicides and pesticides approved for use on maize. After harvest, the grain was dried on the cob for three days until the grain moisture was below 15% at which time it was shelled and placed in labeled containers. The grain was shipped to Agrivida, Inc. (Medford, MA) and stored in separate storage bins prior to being milled in a CPM series 650 three-stage roller mill with a 1.5:1 differential. Grain particles were sieved through a series of steel mesh sieves (No. 8 and No. 12) to produce grain particles between 2 and 3 mm in diameter.

Table 1. Planting locations and dates for the production of three representative Phy02

phytase product batches.

	Phy02 Product Batches						
Product Batch No.	AV_Phy02_0043	AV_Phy02_0049	AV_Phy02_0050				
Planting Location	Field; (b) (4)	Field; (b) (4)	Greenhouse, (b) (4)				
Planting Date	12 June 2015	12 June 2015	25 May 2015				
Harvest Date	1 October 2015	14 October 2015	21 September 2015				

<u>Preparation of extracts.</u> Test substance from each of the three product batches was milled to a flour. Aqueous extracts were prepared from three grams of flour from each batch and were added to 30 mL of (b) (4) in 50 mL Falcon tubes. Samples were shaken at room temperature for 1 hour and then centrifuged at 4000xg for 30 minutes. The supernatants were decanted, and 5 mL of 1 M MES, pH 6.3 was added to neutralize each sample. The extracts were then filtered through 0.45 μ m filters and stored at 4°C.

Molecular weight determination. SDS-PAGE of the sample extracts was performed as follows. 30 μL of each extract was added to 10 μL of Novex NuPAGE 4X LDS sample loading buffer and heated for 10 minutes at 70°C. Aliquots of 20 μL and 2 μL were loaded onto a Novex NuPAGE 4-12% Bis-Tris gel and run in NuPAGE MOPS buffer for 45 minutes at 200V. In order to visualize the protein bands in the extracts, the gel was placed into 100 mL of 0.1% Coomassie Blue in 10% acetic acid/ 10% methanol, heated in a microwave oven for 30 seconds, and then shaken for 20 minutes. The gel was rinsed with water and then destained with 10% acetic acid/ 10% methanol.

Immunoreactivity. To assess the integrity (intactness) of the phytase protein in the three Phy02 phytase product batches, western blot analysis was performed. Samples were treated with LDS sample buffer as described above and 2 μL aliquots were loaded onto a gel and electrophoresed as described above. The gel was rinsed in 10 mM CAPS/ 10% methanol transfer buffer for 10 minutes, and then transferred to a PVDF membrane by electrophoretic transfer for 1 hour at 15 V. The membrane was blocked for 1 hour at room temperature with 5% nonfat milk in TBST (tris-buffered saline with Tween 20). The membrane was then shaken in primary antibody (a rabbit polycolonal antibody raised against Phy02 phytase and two similar phytases by New England Peptide; 25 mL of a 1:5000 dilution in TBST/5% nonfat milk) for one hour, followed by three 5 minute washes in TBST. The secondary antibody (25 mL of goat anti-rabbit/HRP, Thermo Scientific catalog # 31460, lot # PI208014; 1:5000 dilution in TBST) was applied with shaking for one hour, followed by three 5 minute washes in TBST. The blot was developed with Invitrogen Novex HRP substrate (catalog # 100002903, lot # 12345141).

Enzymatic activity. The phytase activity in each of the Phy02 phytase product batches was assayed according to Agrivida, Inc. SOP. Phytase catalyzes the dephosphorylation of phytate. The released inorganic phosphate complexes with vanadate and molybdate that facilitates the colorimetric measurement of phytase activity at 415 nm. Each of the Phy02 phytase product batches was assayed in triplicate with 4 analyses/replicate for a total of 12 analyses per product batch. One unit (FTU) of phytase activity is defined as the liberation of one mmole of inorganic phosphate per min from sodium phytate at 37°C and pH 5.5.

Specific activity. The specific activity of the phytase relative to total protein in the test substance material from each product batch was determined. The amount of total protein in the aqueous protein extracts was determined by two different methods, the Bradford method (Kruger, 1996) and the BCA method (Walker, 1996). Three grams of milled flour from each product batch was placed in 35 mL of

for 1 hr at RT. The samples were shaken on a tabletop shaker at maximum speed and 2mL was centrifuged at 16000 rpm for 10 min. Supernatants were transferred to a buffer consisting of Na acetate, pH5.5, 1 mM CaCl₂, 0.01% Tween 20 prior to analysis for proteins by either method. Three separate determinations were performed for each extract using each of the two methods and all results for each extract were averaged. The specific activity for each test substance was calculated from the phytase activity determined for each batch (FTU/g) divided by the average amount of protein/g determined for each sample by the two protein quantitation methods.

RESULTS

Molecular weight determination. An SDS-PAGE gel containing protein extracts of each of the three test substances, protein extracts of corn flour derived from a conventional maize variety not engineered to produce phytase, and purified Phy02 phytase produced in culture by a microbial production host were stained with Coomassie-blue to enable visualization of the proteins. Examination of the gel and comparison of the samples demonstrated that there is a prominent protein band in the extracts from all three test substances that is absent in the extract from the conventional corn flour and that has the same molecular weight as the Phy02 phytase protein that was produced and purified from a microbial production host (Figure 1.). Comparison of the position of these protein bands in the gel relative to the protein molecular weight markers also run on the gel show that the prominent protein band in the extracts of the test substances and the purified Phy02 phytase protein are approximately 46,000 kDa in size. This estimation of the size of the protein bands compares well with the predicted size of 45,684 kDa for the mature Phy02 phytase protein including the endoplasmic retention signal from maize.

Immunoreactivity. Western blot analysis of the proteins in extracts from the three test substances was performed using a rabbit polyclonal antibody generated to the Phy02 phytase and two related phytase proteins. The results revealed the presence of one immunoreactive protein corresponding to the predicted molecular weight of the Phy02 phytase protein (*ca.* 45,684 kDa; Fig. 2). Similarly, the antibody also reacted with the purified Phy02 protein control. These results confirm the intactness and identity of the prominent protein species that are present in each of the three test substances but absent in conventional corn as Phy02 phytase and confirm its expected molecular weight of approximately 46,000 kDa.

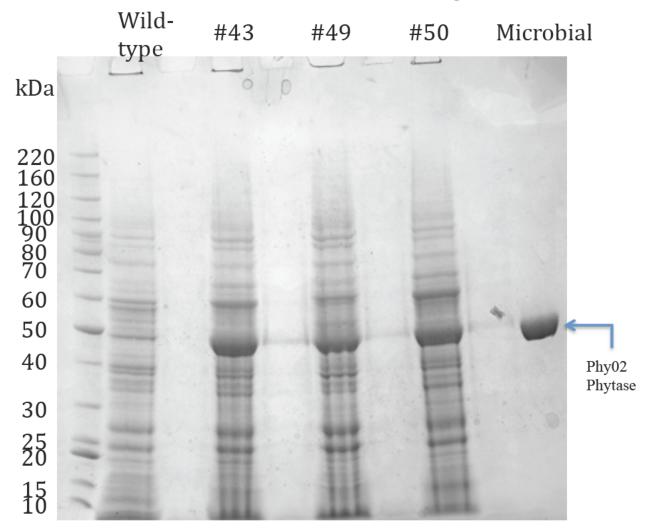
Enzymatic activity. The phytase activity of each of the test substance materials and of corn flour from a conventional phytase nonproducing variety was determined (Figure 3). The control material derived from conventional corn that is not engineered to produce phytase had no detectible phytase activity. The phytase activities determined for each test substance were:

AV_PHY02_0043 AV_PHY02_0049 AV_PHY02_0050

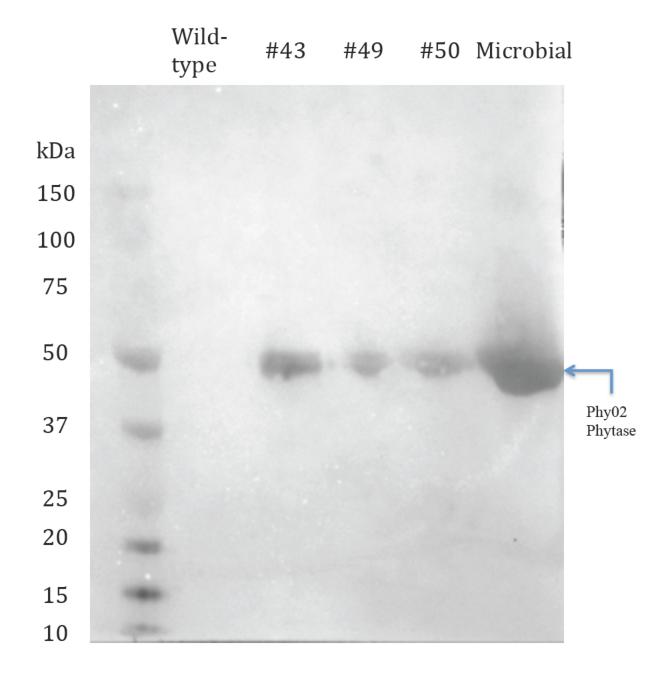
Specific activity. The quantity of total protein in each of the test substances was determined in triplicate by two different methods and all the test substances and the results were averaged to generate an accurate measurement of protein in each test substance. This information was used together with the phytase activity determinations for each test substance to calculate the specific phytase activity. The specific phytase activities of each test substance expressed in FTU phytase activity/mg protein are:

RECORDS RETENTION: Raw data, the original copy of this report, and other relevant records are archived at Agrivida, Inc., 200 Boston Avenue, Medford, MA, USA 02155.

STUDY PERSONNEL: Analytical work reported herein was conducted by Matthew Parker, Ph.D. and Xuemei Li, Ph.D., Agrivida, Inc., 200 Boston Avenue, Medford, MA, USA 02155.


REFERENCES

Federal Register, Part IV, 40 CFR, Part 160, 17 August 1989 and subsequent revisions.


Kruger, N.J. (1996). The Bradford method for protein quantitation. *In*, Protein Protocols Handbook, pp. 15-20, J.M. Walker, ed., Humana Press, Totowana, NJ.

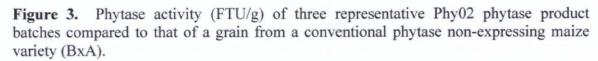

Walker, J.M. (1996). The bicinchoninic acid (BCA) method for protein quantitation. *In*, Protein Protocols Handbook, pp. 11-14, J.M. Walker, ed., Humana Press, Totowana, NJ.

Figure 1. Coomassie-blue stained SDS-PAGE gel containing protein extracts from each of three Phy02 phytase product batches (AV_Phy02_0043, #43; AV_Phy02_0049, #49; and AV_Phy02_0050, #50) as well as and extract from grain of a conventional non-phytase engineered maize variety (Wild-type) and purified Phy02 phytase protein produced by a microbial production host (Microbial). Protein size markers were run in the left lane and their sizes in kDa are indicated on the left side of the gel.

Figure 2. Western blot of a similar gel as depicted in Figure 2 that was reacted with a phytase specific antibody. In addition to protein extracts of three independent Phy02 phytase production batches (AV_Phy02_0043, #43; AV_Phy02_0049, #49; and AV_Phy02_0050, #50), an extract from grain of a conventional non-phytase engineered maize variety (Wild-type) and purified Phy02 phytase protein produced by a microbial production host (Microbial) are included in the gel. Protein size markers were run in the left lane and their sizes in kDa are indicated on the left side of the gel.

(b) (4)

Phytase activity before and after pelleting in the feed of broiler functionality studies.

Four broiler feeding studies (Study 1, 2, 3, and 4) days were conducted to demonstrate the functionality of the Phy02 phytase in broiler chickens. The studies were conducted by, and all feeds used in the studies were prepared by, Colorado Quality Research, Ft. Collins, CO. After mixing of the diets, a 500g sample of each of the diets in the mash form was collected. Subsequently, the mash diets were pelleted in a California Pellet Mill at 65°C and a 500g sample of each of the diets after pelleting was collected. All feed samples were shipped to the Agrivida, Inc. laboratory in Medford, MA where the phytase activity of each sample was determined.

The feed samples were milled in a knife mill and sieved with a 1mm screen. Two 20 g samples of each milled feed sample were extracted at room temperature with 100ml of prewarmed (65°C) extraction buffer (30 mM Sodium Carbonate/Bicarbonate pH 10.8). Each extract diluted 25- to 100-fold in assay buffer (250 mM sodium acetate, pH5.5, 1mM calcium chloride, 0.01% Tween 20) and 75 µL of the diluted extracts or 75µl of buffer-only controls were dispensed into individual wells of a round-bottom 96-well 150 μL of freshly prepared, prewarmed (65°C), phytic acid (9.1 mM dodecasodium salt from Biosynth International, Staad, Switzerland, prepared in assay buffer) was added to each well. Plates were sealed and incubated for 60 min at 65°C. 150 µL of stop solution (20 mM ammonium molybdate, 5 mM ammonium vanadate, 4% nitric acid) was added to each well, mixed thoroughly via pipetting, and allowed to incubate at room temperature for 10 min. Plates were centrifuged at 3000×G for 10 minutes, and 100 μL of the clarified supernatants were transferred to the wells of a flat-bottom 96-well plate. Absorbance at 415 nm from each sample was compared to that of negative controls (buffer-only, no enzyme) and potassium phosphate standards. The standard curve is prepared by mixing 50 µl of potassium phosphate standards (0-1.44 mM, prepared in assay buffer) with 100 µL of freshly prepared phytic acid, followed by 100 μL of stop solution.

The tables below present the average phytase activity from the duplicate analyses of each feed sample, before (mash) and after pelleting, from each trial. The different feeds used during the studies included starter (Day 0-14), grower (Day 14-21) and finisher (Day 21-42) diets. It should be noted that corn and soybean that are the major components of the feeds contain low amounts of phytase activity that is sometimes detected in the NC and PC diets where no other phytase was added.

Table 1. Phytase activity in the feeds from broiler Study 1 before and after pelleting.

Starter Feed							%
(crumb	oles, 0-14 day)	Phytase	Pre-pell	leting	Post-pelleting		Survival
		Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	42	30	36	35	-
Trt 2	PC	0	0	0	156	220	=
Trt 3	NC+Phy02	250	183	73	246	97	134
Trt 4	NC+Phy02	500	425	85	355	32	84
Trt 5	NC+Phy02	750	682	91	530	37	78
Trt 6	NC+Phy02	1000	749	75	788	26	105
Trt 7	NC+Phy02	3000	2521	84	2224	383	88
	Commercial						
Trt 8	Phytase	500	815	163	408	19	50

Grower Feed			B 11	D 11 (*		D (N)	
(Pellets	s, 14–21 day)	Phytase	Pre-pell	eting	Post-pel	lleting	Survival
		Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	0	0	0	0	-
Trt 2	PC	0	0	0	0	0	-
Trt 3	NC+Phy02	250	199	216	72	10	36
Trt 4	NC+Phy02	500	367	40	313	152	85
Trt 5	NC+Phy02	750	625	129	521	134	83
Trt 6	NC+Phy02	1000	782	132	660	163	84
Trt 7	NC+Phy02	3000	2362	437	2184	329	92
	Commercial						
Trt 8	Phytase	500	694	169	665	31	96

Finisher Feed			_				%
(Pellets	s, 21–42 day)	Phytase	Pre-pell	eting	Post-pe	lleting	Survival
		Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	0	0	0	0	-
Trt 2	PC	0	0	0	13	156	-
Trt 3	NC+Phy02	250	192	113	55	24	29
Trt 4	NC+Phy02	500	279	30	236	34	85
Trt 5	NC+Phy02	750	615	120	450	59	73
Trt 6	NC+Phy02	1000	667	75	664	117	100
Trt 7	NC+Phy02	3000	1951	302	1982	143	102
	Commercial						
Trt 8	Phytase	500	697	410	751	96	108

Table 2. Phytase activity in the feeds from broiler Study 2 before and after pelleting.

Starter Feed PI		Dlastana	Pre-pell	leting	Post-pelleting		% Survival
	r reed bles, 0-14 day)	Phytase Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	39	0	0	0	-
Trt 2	PC	0	47	0	91	22	-
Trt 3	NC+Phy02	250	302	58	199	84	66
Trt 4	NC+Phy02	500	463	105	479	39	103
Trt 5	NC+Phy02	750	686	154	271	66	40
Trt 6	NC+Phy02	1000	858	168	622	83	72
Trt 7	NC+Phy02	3000	2526	222	2805	610	111
	Commercial						
Trt 8	Phytase	500	1168	67	428	122	37

Grower Feed (pellets, 0-14 day)		Phytase	Pre-pelleting		Post-pelleting		% Survival
	•	Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	0	0	0	0	-
Trt 2	PC	0	0	0	0	0	-
Trt 3	NC+Phy02	250	194	84	142	0	73
Trt 4	NC+Phy02	500	380	82	406	29	107
Trt 5	NC+Phy02	750	492	25	797	132	162
Trt 6	NC+Phy02	1000	848	125	748	100	88
Trt 7	NC+Phy02	3000	2245	113	2245	337	100
	Commercial						
Trt 8	Phytase	500	900	112	322	197	36

Finisher Feed (pellets, 21-42 day)		Phytase	Pre-pelleting		Post-pelleting		% Survival
•	, ,	Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	0	0	42	4	-
Trt 2	PC	0	38	12	12	13	-
Trt 3	NC+Phy02	250	265	0	276	86	104
Trt 4	NC+Phy02	500	488	130	483	45	99
Trt 5	NC+Phy02	750	591	143	643	47	109
Trt 6	NC+Phy02	1000	803	67	843	69	105
Trt 7	NC+Phy02	3000	2188	278	2498	65	114
	Commercial						
Trt 8	Phytase	500	1371	484	1074	575	78

Table 3. Phytase activity in the feeds from broiler Study 3 before and

after pelleting.

Starter	Feed	Phytase	Pre-pell	leting	Post-pe	lleting	% Survival
	oles, 0-14 day)	Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	0	0	0	0	-
Trt 2	PC	0	0	0	0	0	-
Trt 3	NC+Phy02	250	166	50	150	49	90
Trt 4	NC+Phy02	500	288	34	421	134	146
Trt 5	NC+Phy02	750	552	111	306	73	55
Trt 6	NC+Phy02	1000	869	20	625	172	72
Trt 7	NC+Phy02	3000	2378	442	2178	32	92
Trt 8	NC+Phy02	30000	27376	703	22706	1340	83

Grower Feed		Phytase	Pre-pell	leting	Post-pel	lleting	% Survival
(pellets	s, 14-21 day)	Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	0	0	0	0	-
Trt 2	PC	0	0	0	0	0	-
Trt 3	NC+Phy02	250	164	73	182	80	111
Trt 4	NC+Phy02	500	263	31	299	85	114
Trt 5	NC+Phy02	750	561	175	361	156	64
Trt 6	NC+Phy02	1000	766	90	394	141	51
Trt 7	NC+Phy02	3000	2393	164	2432	492	102
Trt 8	NC+Phy02	30000	26252	1341	23480	762	89

Finishe	er Feed	Phytase	Pre-pelleting		Post-pe	% Survival	
(pellets	s, 21-42 day)	Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	0	0	0	0	=
Trt 2	PC	0	0	0	0	0	-
Trt 3	NC+Phy02	250	276	100	306	107	111
Trt 4	NC+Phy02	500	407	39	389	73	96
Trt 5	NC+Phy02	750	575	94	691	47	120
Trt 6	NC+Phy02	1000	837	85	696	78	83
Trt 7	NC+Phy02	3000	2326	86	2183	141	94
Trt 8	NC+Phy02	30000	24407	2455	23983	1164	98

3000

6000

60000

Trt 6

Trt 7

Trt 8

NC+Phy02

NC+Phy02

NC+Phy02

88

106

99

Table 4. Phytase activity in the feeds from broiler Study 4 before and after pelleting.

% Target **Pre-pelleting Post-pelleting** Survival Phytase Starter Feed (crumbles, 0-14 day) Dose FTU/kg stdev FTU/kg stdev NC 114 Trt 1 0 18 84 0 Trt 2 PC 0 38 6 21 0 Trt 3 NC+Phy02 310 6 434 411 250 140 479 Trt 4 NC+Phy02 500 52 605 23 126 Trt 5 NC+Phy02 1000 1386 377 107 64 886

3403

5324

58903

807

398

6246

3005

5639

58307

495

790

4885

Growe	r Feed	Target Phytase Pre-pelleting		leting	Post-pe	% Survival	
(pellets	s, 14-21 day)	Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	0	0	52	41	ı
Trt 2	PC	0	0	0	115	5	-
Trt 3	NC+Phy02	250	236	133	230	111	98
Trt 4	NC+Phy02	500	527	192	612	98	116
Trt 5	NC+Phy02	1000	932	96	886	256	95
Trt 6	NC+Phy02	3000	2231	255	2992	707	134
Trt 7	NC+Phy02	6000	6059	708	5723	570	94
Trt 8	NC+Phy02	60000	58939	7851	57697	11578	98

Finishe	Target inisher Feed Phytas		Pre-pelleting		Post-pe	% Survival	
(pellets	s, 21–42 day)	e Dose	FTU/kg	stdev	FTU/kg	stdev	
Trt 1	NC	0	4	12	0	0	-
Trt 2	PC	0	0	0	42	14	-
Trt 3	NC+Phy02	250	217	86	205	77	95
Trt 4	NC+Phy02	500	427	81	654	143	153
Trt 5	NC+Phy02	1000	903	111	1142	19	126
Trt 6	NC+Phy02	3000	3070	506	2578	287	84
Trt 7	NC+Phy02	6000	5731	563	6395	1031	112
Trt 8	NC+Phy02	60000	54748	10595	57110	12834	104

Appendix 7

Results of proximate analysis of all basal feeds used in four broiler feeding studies to demonstrate the functionality of Phy02 phytase. Low phosphate and high phosphate diets are designated LP and HP, respectively.

	Study	y 1	Study	y 2	Study	y 3	Study	y 4
Starter Diets (D0 - I	D14)							
Analyte	LP	HP	LP	HP	LP	HP	LP	HP
Moisture	12.92%	12.75%	12.20%	12.14%	12.56%	12.35%	12.50%	12.91%
Methionine	ND	ND	0.57%	0.58%	0.57%	0.58%	ND	ND
Lysine	ND	ND	1.22%	1.18%	1.23%	1.24%	ND	ND
Ash	6.91%	7.62%	ND	ND	7.12%	6.84%	6.63%	7.05%
Calcium	0.97%	1.07%	0.96%	1.00%	1.06%	1.10%	0.97%	1.06%
Fat, Ethyl Ether	4.43%	4.12%	4.45%	3.99%	3.75%	3.63%	3.90%	3.89%
Fiber, Crude	2.48%	2.49%	2.65%	2.69%	2.18%	2.08%	2.18%	2.28%
Phosphorus	0.62%	0.77%	0.61%	0.86%	0.60%	0.82%	ND	ND
Protein N x 6.25	20.80%	21.20%	20.30%	20.60%	19.50%	21.50%	21.40%	21.30%
Starter Diets (D14 -	D21)							
Moisture	12.99%	ND	11.84%	11.96%	12.17%	12.31%	12.52%	12.79%
Methionine	ND	ND	0.61%	0.61%	0.55%	0.57%	ND	ND
Lysine	ND	ND	1.18%	1.13%	1.22%	1.22%	ND	ND
Ash	6.96%	6.81%	ND	ND	7.20%	7.69%	7.35%	7.10%
Calcium	0.99%	0.86%	1.12%	1.04%	1.10%	1.08%	0.92%	0.99%
Fat, Ethyl Ether	4.23%	4.29%	3.71%	3.96%	3.69%	3.73%	3.91%	4.04%
Fiber, Crude	2.25%	2.57%	2.24%	2.41%	2.12%	1.97%	2.33%	2.33%
Phosphorus	0.66%	0.76%	0.66%	0.75%	0.61%	0.88%	ND	ND
Protein N x 6.25	20.50%	20.60%	19.00%	21.50%	19.60%	20.20%	21.00%	20.50%

Grower/Finisher Diets (D21 - D42)

	Study	1	Study	y 2	Study	y 3	Study	y 4
Analyte	LP	HP	LP	HP	LP	HP	LP	HP
Moisture	ND	ND	12.35%	11.60%	11.25%	11.42%	12.99%	13.01%
Methionine	ND	ND	0.50%	0.49%	0.46%	0.49%	ND	ND
Lysine	ND	ND	1.05%	1.01%	0.96%	1.09%	ND	ND
Ash	5.65%	5.28%	ND	ND	ND	ND	5.61%	5.28%
Calcium	0.92%	0.77%	0.95%	0.83%	0.82%	0.86%	0.94%	0.81%
Fat, Ethyl Ether	4.40%	4.50%	4.14%	4.52%	4.54%	4.04%	4.37%	4.07%
Fiber, Crude	1.95%	2.43%	2.49%	2.99%	2.32%	2.08%	2.54%	2.29%
Phosphorus	0.53%	0.65%	0.56%	0.63%	0.49%	0.64%	ND	ND
Protein N x 6.25	19.10%	19.20%	18.70%	19.10%	20.00%	20.00%	18.80%	19.40%

ND, Not Determined.

Methods used in the above analyses include AOAC 930.15 (Moisture), AOAC 994.12 (Methionine and Lysine), AOAC 942.05 (Ash), AOAC 985.01 (Calcium), AOAC 2003.05 (Fat, Ethyl Ether), AOCS BA6A-05 (Fiber, Crude), AOAC 985.01 (Phosphorus), and AOAC 990.03 (Protein N x 6.25)

GraINzyme Phytase Phy02 Dose Response in Poultry

Project No. AGV-15-1

Conducted by Colorado Quality Research, Ft. Collins, CO

Final Study Report Pages 1 - 89

COLORADO QUALITY RESEARCH FINAL REPORT

GraINzyme Phytase Phy02 Dose Response in Poultry

Project No. AGV-15-1

SPONSOR

Agrivida Inc.

200 Boston Ave, Suite 2975 Medford, MA 02155

TEST FACILITY

COLORADO QUALITY RESEARCH, INC.

400 East County Road 72 Wellington, Colorado 80549

July 2015

THIS PROTOCOL IS CONFIDENTIAL AND IS THE PROPERTY OF COLORADO QUALITY RESEARCH, INC AND IS NOT TO BE REPRODUCED WITHOUT AUTHORIZATION FROM CQR

CQR RESEARCH PROTOCOL Project No. AVG-15-2

I. GraINzyme Phytase Phy02 Dose Response with Tolerance in Poultry

SPONSOR MONITORS:

Jim Ligon, Ph.D. VP Regulatory Affairs and Stewardship Agrivida Inc. 200 Boston Ave, Suite 2975

Mobile: (b) (6)

Email: jim.ligon@agrivida.com

INVESTIGATOR:

Dan Moore, PhD.
Colorado Quality Research, Inc.
400 East County Road 72
Wellington, Colorado 80549

Office: 970-568-7738 Fax: 970-568-7719

Email: dan@coloradoqualityresearch.com

STUDY EVENT SCHEDULE:

Event	Study Day	Calendar Date
Received, weighed birds by pen, vaccinated for NCB, and placed 17 chicks/pen. Administered Starter 1 diets	0	29MAY15 FRI
Weighed back Starter 1 diets; Administered Starter 2 diets	14	12JUN15 FRI
Weighed birds by pen; Weighed back Starter 2 diets and changed to Grower/Finisher diets; Removed 3 birds/pen; collected ileal and tibia samples	21	19JUN15 FRI
Weighed birds by pen; Weighed back Grower/Finisher diets; Collected tibia and fecal samples from 3 birds/pen; Ended live phase	42	10JUL15 FRI

OBJECTIVE

The objective of this study was to demonstrate the effectiveness over a range of doses of Phy02, a phytase enzyme product that is being developed by Agrivida, Inc. as a feed additive for poultry diets.

III. MATERIALS AND METHODS

A. TESTING/SUPPORT FACILITIES

Facility	Purpose
Colorado Quality Research, Inc. 400 East County Road 72 Wellington, Colorado 80549	Investigator's office, test article storage, archives, feed preparation, test animal housing
Agrivida Inc. 200 Boston Ave., Ste. 2975 Medford, MA 02155	Test article source, feed analysis, statistical anlaysis
Simmons Foods Hatchery Siloam Springs, AR	Chick Source
MVTL Laboratories 2 N. German St. New Ulm, MN 56073	Proximate analysis of basal feed

B. TEST ARTICLES, CONTROL ARTICLES, AND FEED ADDITIVES

Test Articles

GraINzyme Phytase Phy02 Lot No. AVPHY02_0013

Expiration 28JUL15

Concentration (b) FTU/g

Dosage Form Via complete feed

Level 250 Units Phytase (Treatment Group 3)

500 Units Phytase (Treatment Group 4) 750 Units Phytase (Treatment Group 5) 1000 Units Phytase (Treatment Group 6) 3000 Units Phytase (Treatment Group 7)

Duration Ad libitum Day 0 – Study End

Source Agrivida, Inc.

Control Articles

Phytase 2500 TPT Premix Lot No. 11184002

Expiration November 2016

Concentration 2,500 FTU/g
Dosage Form Via complete feed

Level 0.02% of Finished Feed (Treatment Group 8)

Duration Ad libitum Day 0 – Study End

Feed Additives

Biocox 60 Lot No. HSK20483 (Salinomycin) Expiration October 2015

Concentration 60 g/lb

Dosage Form Via Complete Feed

Level 50 g/ton

Duration Ad libitum in Starter 1 and Starter 2 diets

Source Alpharma, Inc.

Titanium Dioxide Lot No. TIOKFP40050PBGN

(Titanium dioxide USP FCC – Hombitan AFDC)

Dosage Form Via Complete Feed Level 0.3% in Complete Feed

Duration Ad libitum in Starter 2 and Grower/Finisher diets

Source American International Chemical, Inc.

Storage: Secured, temperature monitored, dry area

Method of administration: Oral via complete feed

Accounting: All quantities of the test articles, control

articles, and feed additives received and used in this study were documented

C. BASAL AND EXPERIMENTAL DIETS

Diets were formulated by CQR. Diets met and conformed with the commercial standards for feed based on breed and age range of broilers. Copies of the diet formulations were included in the study records and Final Report.

There were two different basal diet formulations. Low Phosphate (LP) diets contained ~0.3% AvP in the Starter 1 and Starter 2 diets and ~0.25% AvP in the Grower/Finisher diets. The High Phosphate (HP) diets contained ~0.45% AvP in the Starter 1 and Starter 2 diets and ~0.4% AvP in the Grower/Finisher diets.

Basal diets were manufactured at CQR and stored in bulk mash form. The treatment diets were mixed at the CQR feed mill. A 500 pound capacity vertical mixer, a 4000 pound capacity vertical mixer, and/or a 14,000 lb horizontal mixer and a California Pellet Mill system were used to prepare the Starter and Grower/Finisher diets. Feed was pelleted using a \sim 5-mm die and the Starter 1 diet was further processed into crumbles. The pelleting temperature was \sim 65 °C. Mixed feed was stored in bulk storage bins labeled with study number, treatment letter code, and diet type. Complete records of diet mixing were included in the study records.

Approximate Feeding Program:

<u>Diet</u>	<u>Form</u>	Period	~Lbs Feed Mixed per Trt
Starter 1	Crumbled	0 – 14 Days	300
Starter 2	Pelleted	14 – 21 Days	390
Grower/Finisher	Pelleted	21 – 42 Days	1680

D. SAMPLES AND ASSAYS

Prior to the pelleting process, a ~500g sample was taken of all treatment diets.

Following pelleting, treatment feeds were sampled (~500 g sample size) in duplicate according to CQR standard operating procedures. One sample was submitted to Agrivida for enzyme (phytase) analysis. The second sample of the treatment feeds was retained by CQR until notification from the Sponsor was received that the back-up samples were no longer needed. All samples were labeled with the CQR project number, sample description, and date of collection.

Basal feeds were sampled (~500 g sample size) in triplicate according to CQR standard operating procedures. One sample was submitted to MVTL for proximate analysis, one sample was submitted to Agrivida for enzyme (phytase) analysis, and the third sample was retained by CQR until notification from the Sponsor was received that the back-up sample was no longer needed. All samples were labeled with the CQR project number, sample description, and date of collection.

E. TEST SYSTEM

Species Commercial Broiler Chickens

Strain Cobb 500

Supplier Simmons Foods Hatchery

Siloam Springs, AR

Sex Males

Age ~1 day of age upon receipt (Day 0)

~42 days at final weights

Identification Pen cards

Number of birds/pen17Number of treatments8Number of pens/treatment12Number of birds/treatment204Total number of pens96Total number of birds1632

IV. EXPERIMENTAL DESIGN

A. TEST GROUPS

The test facility (Building #7) was divided into 12 blocks of 8 pens each block. Treatments were assigned to the pens using a complete randomized block design. Birds were assigned to the pens randomly according to CQR SOP B-10. Specific treatment groups were as follows:

Low Phosphate diets contained:

Starter: ~0.3% AvP

Grower/Finisher: ~0.25\% AvP

High Phosphate diets contained:

Starter: ~0.45% AvP

Grower/Finisher: ~0.4% AvP

Trt Group	Description	No. Pens	No. Birds/Pen	No. Birds/Trt
1	Low Phosphate (LP)	12	17	204
2	High Phosphate (HP)	12	17	204
3	250 Units Phytase (LP)	12	17	204
4	500 Units Phytase (LP)	12	17	204
5	750 Units Phytase (LP)	12	17	204
6	1000 Units Phytase (LP)	12	17	204
7	3000 Units Phytase (LP)	12	17	204
8	Phytase 2500 TPT Premix at 0.02%	12	17	204
	of Finished Feed (LP)		- 7	
	Totals	96	NA	1632

B. HOUSING AND MANAGEMENT

Housing

Assignment of treatments to pens was conducted using Microsoft Excel. The computer-generated assignment was as follows:

	T1	T2	Т3	T4	T5	T6	T7	Т8
Block 1	135	133	136	134	98	99	97	100
Block 2	108	102	101	104	103	107	105	106
Block 3	114	110	115	112	113	109	116	111
Block 4	120	122	123	118	121	119	124	117
Block 5	126	128	130	129	131	132	125	127
Block 6	148	141	145	147	144	143	146	142
Block 7	149	152	150	151	154	155	153	156
Block 8	162	161	164	163	160	159	166	165
Block 9	169	174	173	171	168	167	170	172
Block 10	138	180	139	137	177	179	178	140
Block 11	187	188	186	185	181	183	182	184
Block 12	195	196	189	191	193	192	190	194

Birds were housed in concrete floor pens (~ 3' x 5') within an environmentally controlled facility (Facility # 7). All birds were placed in clean pens containing clean pine shavings as bedding. Additional shavings were added to pens if they became too damp for comfortable conditions for the test birds during the study. Lighting was via incandescent lights and a commercial lighting program was used. Hours of light for every 24-hour period were as follows:

Approximate Bird Age (days)	Approximate Hours of Continuous Light per 24 hr period	~Light Intensity (foot candles)
0 – 4	24	1.0 – 1.3
5 – 10	10	1.0 – 1.3
11 – 18	12	0.2 - 0.3
19 – Study End	16	0.2 - 0.3

0.88

Environmental conditions for the birds (floor space & bird density [~88-ft²/bird], temperature, lighting, feeder and water space) were similar for all treatment groups. In order to prevent bird migration, each pen was checked to ensure that no openings greater than 1 inch existed for approximately 12 inches in height between pens. To achieve this, a wood or plastic solid partition was in place for approximately the first 12 inches from the floor between each pen.

Vaccinations:

Birds were vaccinated for Mareks at the hatchery. Newcastle, Infectious Bronchitis (NCB) vaccine was administered using a spray cabinet upon receipt of chicks (Poulvac Aero; Pfizer Animal Health; Exton, PA; Serial No. 1401371; Expiration 30JUN15). No other vaccinations or treatments (except as indicated above), were administered during the study unless approved by the Sponsor.

Water:

Water was provided *ad libitum* throughout the study via one automatic nipple drinker (4 nipples per drinker) per pen. Drinkers were checked twice daily and cleaned as needed to ensure a clean and constant water supply to the birds.

Feed:

Feed was provided *ad libitum* throughout the study via one hanging, ~17 inch diameter tube feeder per pen. One chick feeder tray was placed in each pen for approximately the first four days. Birds were placed on their respective treatment diets on Day 0 and as per the experimental design. Feed added and removed from pens from Day 0 to study end was weighed and recorded.

Daily observations:

The test facility, pens and birds were observed at least twice daily for general flock condition, lighting, water, feed, ventilation and unanticipated events. No abnormal conditions or abnormal behaviors were noted during the study. The minimum-maximum temperature and humidity of the test facility was recorded once daily.

Mortality and Culls:

Starting on study day 0, any bird that was found dead or was removed and sacrificed was weighed and necropsied. Cull birds that were unable to reach feed or water were sacrificed, weighed, and documented. The weight and probable cause of death and necropsy findings were recorded on the pen mortality record.

Veterinary Care, Intervention and Euthanasia:

Birds that developed clinically significant concurrent disease unrelated to the test procedures were, at the discretion of the Study Investigator or a designee, removed from the study and euthanized in accordance with site SOPs. In addition, moribund or injured birds whose condition may have affected the outcome of the study were euthanized upon the authority of a Site Veterinarian or a qualified technician. The reason for withdrawal was documented. If an animal died, or was removed and euthanized for humane reasons, it was recorded on the mortality sheet for the pen and a necropsy performed and filed to document the reason for removal.

If euthanasia was deemed necessary by the Study Investigator or a qualified technician, animals were euthanized by cervical dislocation.

Body Weights and Feed Intake:

Birds were weighed by pen on Study Days 0, 21, and 42. The weights of all mortalities and culls over the course of the study were recorded on the Mortality & Necropsy Records for the appropriate pens. Average bird weight on a pen basis, on each weigh day, was summarized.

The feed remaining in each pen's feeder was weighed and the amount of feed consumed per pen was calculated by subtracting the feed weighed out of the pen from the total amount of feed weighed into the pen. Feeders were weighed on or before Study Day 0 and on Study Days 14, 21, and 42.

Weight Gains and Feed Conversion:

Average feed conversion was calculated for Days 0 - 21, 21 - 42, and 0 - 42 by dividing the total feed intake for that pen by the weight of the surviving birds in that pen.

Adjusted feed conversion was calculated for Days 0 - 21, 21 - 42, and 0 - 42 by dividing the total feed intake for that pen by the weight of the surviving birds in that pen and the weight of the birds that died or were removed from that pen.

Scales:

Scales used in the weighing of feed, feed additives, and birds were licensed by the State of Colorado. At each use the scales were checked using standard weights according to CQR Standard Operating Procedures.

C. BONE PARMETERS AND ILEAL PHOSPHORUS DIGESTIBILITY:

TiO2 was placed in all feeds starting on study day 14.

At Days 21 and 42, three birds were randomly collected from each pen, sacrificed ,and ileal and left tibia samples were collected. The tibia samples were pooled in one bag per pen (3 tibias per pen in a bag). Adhering muscle was carefully removed from each tibia to get them mostly clean and then they were frozen and retained until Sponsor instructed shipment to the laboratory for the determination of mineral weight and % ash.

The ileal samples were also be pooled in one bag per pen (3 ileal samples per pen in a bag) and were frozen retained until Sponsor instructed shipment to the laboratory for the determination of ileal phosphorus digestibility.

D. STATISTICAL DESIGN

Data generated from the study was statistically analyzed by the Sponsor using the General Linear Model system (SAS, Inc., Cary, NC).

V. DATA COLLECTED

- Bird weights by pen, on approximately Days 0, 21, and 42.
- Feed amounts added and removed from each pen from day 0 to study end (day 42).
- Mortality: sex, weight and probable cause of death day 0 to study end.
- Removed birds: reason for culling, sex and weight day 0 to study end.
- Daily observation of facility and birds and daily facility temperature
- Feed conversion by pen and treatment group for days 0-21 and 21-42.

VI. DISPOSITIONS

Excess Test Articles

An accounting was maintained of the test articles received and used for this study. Excess test articles were retained in the CQR general inventory until instruction from the Sponsor is received regarding the disposal or shipment of them. Documentation was provided with the study records.

<u>Feed</u>

An accounting was maintained of all treatment diets. The amount mixed, used, and discarded was documented. Unused feed was discarded to the landfill at study end. Retention feed samples were discarded to the landfill upon receipt of permission from the Sponsor. Disposition was documented in the study records.

Test Animals

An accounting was maintained of all birds received for the study. All mortalities, birds culled, or sacrificed were disposed of by dumpster and commercial landfill. Disposal of mortalities, birds culled, or birds sacrificed during the study and at study end was by dumpster and commercial landfill. Surviving birds at study end were euthanized and disposed of by dumpster and commercial landfill as they were not suitable for human consumption. Documentation of disposition was provided with the study records.

VII. RECORDS AND REPORT

A final report and the original study records were provided to the Sponsor following study completion. The Sponsor was provided with an electronic copy of the data in excel CQR spreadsheet format, with individual replicates represented in rows, and measurements made and identifying criteria (such as treatment, pen, block) in columns. No statistics were included in the final report unless provided by the Sponsor. A copy of the report, data and study records will be kept in CQR archives for a period of 5 years.

VIII. PERSONNEL

Key personnel involved in this study was as follows:

<u>Agrivida, Inc.</u>

Sponsor Representative Jim Ligon

CQR

Investigator Dan Moore, PhD.

Test Facility Management Stephen W. Davis, DVM, Dip. ACPV

Feed Mill Manager Ken Johlke, B.S.
Data Manager Shoshana Gray, B.A.
Farm Manager Kyle Kline, B.S.
Research Technician Jamie Meneuy, B.S.

IX. INVESTIGATOR'S STATEMENT

There were no known circumstances that may have affected the data quality or integrity during this study.

Summary tables and graphs of bird performance have been prepared and are attached to this report (See Tables 1 - 8 and Graphs 1 - 3).

Overall mortality and moribund removal was as expected to slightly increased for study conditions and ranged from 1.47% (Treatment Group 2) to 7.843% (Treatment Group 6). However, a large portion of mortality in treatment group 6 was early in life due to bacteria and not likely related to the treatment. See Tables 10 and 11 for mortality and removal information.

Performance during the trial was as expected for study conditions with body weight ranging from 2.343 Kg for the low phosphate group (Treatment Group 1) to 2.933 Kg for the highest phytase dose (Treatment Group 7), and feed conversion ranging from 1.497 (Treatment group 8) to 1.581 (Treatment Group 1) at 42D. The high phosphate control group outperformed the low phosphate control group at both 21D and 42D for body weight gain and feed conversion. There were incremental improvements in both body weight gain and feed conversion with increasing levels of the test phytase when compared to the negative control at both time points tested with the exception of treatment 5 for body weight gain at 42D which had higher body weight gain than the negative control but it was not an incremental increase.

There was a single protocol amendment over the course of the study. It was as follows:

Amendment Number	Protocol Section Affected	Purpose of Amendment	Impact on Study Outcome
1	Research Facility Diagram	Correction of a typographical error in the original diagram.	None.

There was a single protocol deviation over the course of the study. It was as follows:

Deviation Number	Protocol Section Affected	Reason for Deviation	Impact on Study Outcome
I	Daily Observations and Data to Be Collected	Facility daily humidity was not recorded during the study.	None.

The report and data herein submitted to the Sponsor for CQR Project No. AGV-15-1 are accurate in that they represent the actual results of the study, were collected in a manner which did not misrepresent the true effects of the test articles and were complete in that all data obtained in this study was submitted to the Sponsor.

Dan Moore, Ph.D.

Investigator

Date

Final Report Amendment					
Study Number:	AGV-15-1				
Amendment Number	1		Effective Date	5-Jan-16	
Author Dan Moore					
Final Report Section No Affected	umber(s)	EXPERIMENTAL DI	ETS; III.D. SAMP	S; III.C. BASAL AND LES AND ASSAYS; IV.C. BONE ORUS DIGESTIBILITY; VI.	
Amended Final Report	Statements (ch	anges made to the final	report are indicated	l in yellow):	

III. MATERIALS AND METHODS

A. TESTING/SUPPORT FACILITIES & PERSONNEL

Facility	Purpose
Colorado Quality Research, Inc. 400 East County Road 72	Investigator's office, test article storage, archives, feed
Agrivida Inc. 200 Boston Ave., Stc. 2975	preparation, test animal housing Test article source, feed analysis, statistical anlaysis
Simmons Foods Hatchery Siloam Springs, AR	Chiek Source
MVTL Laboratories 2 N. German St.	Proximate analysis of basal feed

New Ulm, MN 56073	
	Study Investigator
Dan Moore, PhD	Colorado Quality Research, Inc.
(CV: on file, available upon request)	400 E. County Road 72
	Wellington, CO 80549
	W: 970-568-7738
	F: 970-568-7719
	dan@coloradoqualityresearch.com
Sp	oonsor Representative
Jim Ligon, PhD	Agrivida, Inc.
(CV: on file, available upon request)	VP Business Development
	200 Boston Ave, Suite 2975
	Medford, MA 02155
	M: (b) (6)
	(b) (6) <u>@gmail.com</u>
	Enzyme Analysis
Phillip A. Lessard, Ph.D.	Agrivida, Inc.
(CV: on file, available upon request)	200 Boston Ave., Suite 2975
	Medford, MA 02155
	Philip.lessard@agrivida.com
	Scientist – Tibia Ash Parameters
Linda Kirby	University of Arkansas
(CV: on file, available upon request)	Central Analytical Lab
	1260 W. Maple Street
	Fayetteville, AR 72701
	lkirby@uark.edu

Contributing Scientist – Ileal Phosphorus Digestibility, Feed Analysis						
Thomas P. Mawhinney	Experimental Station Chemical Laboratories					
(CV: on file, available upon request)	Room 4, Agricultural Building					
	University of Missouri					
	Columbia, MO 65211-7170					
	mawhinneyt@missouri.edu					
Contributing Scientist – Pro	ximate Analysis of Basal Feeds					
Bryan Brock	MVTL Laboratories					
(CV: on file, available upon request)	2 N. German Street					
	New Ulm, MN 56072					
	W: (800) 782-3557					
	bbrock@mvtl.com					

C. BASAL AND EXPERIMENTAL DIETS

Diets were formulated by CQR. Diets met and conformed with the commercial standards for feed based on breed and age range of broilers. Copies of the diet formulations were included in the study records and Final Report.

There were two different basal diet formulations. Low Phosphate (LP) diets contained ~0.3% AvP in the Starter 1 and Starter 2 diets and ~0.25% AvP in the Grower/Finisher diets. The High Phosphate (HP) diets contained ~0.45% AvP in the Starter 1 and Starter 2 diets and ~0.4% AvP in the Grower/Finisher diets.

Basal diets were manufactured at CQR and stored in bulk mash form. The treatment diets were mixed at the CQR feed mill. A 500 pound capacity vertical mixer, a 4000 pound capacity vertical mixer, and/or a 14,000 lb horizontal mixer and a California Pellet Mill system were used to prepare the Starter and Grower/Finisher diets. Feed was pelleted using a \sim 5-mm die and the Starter 1 diet was further processed into crumbles. The pelleting temperature was \sim 65 °C. Mixed feed was stored in bulk storage bins labeled with study number, treatment letter code, and diet type. Complete records of diet mixing were included in the study records.

Approximate Feeding Program:

<u>Diet</u>	<u>Form</u>	Period	~Lbs Feed Mixed per Trt
Starter 1	Crumbled	0 – 14 Days	300
Starter 2	Pelleted	14-21 Days	390
Grower/Finisher	Pelleted	21 – 42 Days	1680

Test article and control article were added to the basal feed in the following approximate quantities in order to achieve the targeted levels of phytase in the treatment feeds:

Trt Group	Product	Starter 1	Starter 2	Grower/Finisher
1	<mark>NA</mark>	NA	NA	NA
2	NA	NA	NA	NA
3	GraINzyme Phytase Phy02 ¹			(b) (4)
4	GraINzyme Phytase Phy02 ¹			
<mark>5</mark>	GraINzyme Phytase Phy02 ¹			
<mark>6</mark>	GraINzyme Phytase Phy02 ¹			
7	GraINzyme Phytase Phy02 ¹			
8	Phytase 2500 TPT Premix ²	0.060 lb	0.078 lb	0.336 lb

¹ Concentration of GraINzyme Phytase Phy02 as determined analytically by Agrivida was (b) (4) FTU/g.

D. SAMPLES AND ASSAYS

Prior to the pelleting process, a ~500g sample was taken of all treatment diets.

Following pelleting, treatment feeds were sampled (~500 g sample size) in duplicate according to CQR standard operating procedures (SOP FM-4 rev04). Five to ten samples of approximately equal size were collected from evenly distributed points as the feed was exiting the mixer/pelleter. These samples were combined into a representative composite sample which was then split into two duplicate samples in a manner appropriate to ensure minimal risk of cross-contamination. One sample was submitted to Agrivida for enzyme (phytase) analysis. The second sample of the treatment feeds was retained by CQR until notification from the Sponsor was received that the back-up samples were no longer needed. All samples were labeled with the CQR project number, sample description, and date of collection.

Basal feeds were sampled (~500 g sample size) in triplicate according to CQR standard operating procedures. One sample was submitted to MVTL for proximate analysis [See the following: AOAC 942.05; AOAC 930.15; AOAC (18) 2005 985.01; AOAC 968.08 (D.(a)); AOAC 990.03; AOAC 2003.06; AOAC 2003.05; ISO 11085-2008; AN 3414 (2005-03-02) Revision 4.1; AOAC (18) 2005 Method 994.12; and AOCS B1 6a-05], one sample was submitted to Agrivida for enzyme (phytase) analysis, and the third sample was retained by CQR until notification from the Sponsor was received that the back-up sample was no longer needed. All samples were labeled with the CQR project number, sample description, and date of collection.

Concentration of Phytase 2500 TPT Premix as indicated on the label was 2,500 FTU/g.

B. BONE PARMETERS AND ILEAL PHOSPHORUS DIGESTIBILITY:

TiO2 was placed in all feeds starting on study day 14.

At Days 21 and 42, three birds were randomly collected from each pen, sacrificed, and ileal and left tibia samples were collected. The tibia samples were pooled in one bag per pen (3 tibias per pen in a bag). Adhering muscle was carefully removed from each tibia to get them mostly clean and then they were frozen and retained until Sponsor instructed shipment to the laboratory for the determination of mineral weight and % ash (AOAC 923.03).

The ileal samples were also be pooled in one bag per pen (3 ileal samples per pen in a bag) and were frozen retained until Sponsor instructed shipment to the laboratory for the determination of ileal phosphorus digestibility. From each bird starting at the Meckel's Diverticulum, the contents of the ileum were squeezed into the plastic bags.

VI. DISPOSITIONS

Excess Test Articles

An accounting was maintained of the test articles received and used for this study. Excess test articles were returned to the Sponsor retained in the CQR general inventory until instruction from the Sponsor is received regarding the disposal or shipment of them. Documentation was provided with the study records.

Reason for Amendment
This amendment is necessary for the following reason:
The Sponsor requested additional information accompany the submitted Final Report.
Describe Anticipated Impact on Study:
This amendment has no anticipated impact on the outcome of the study. It serves to further clarify study event, personnel, and activities.
Study Investigator Date OS JAN18

LIST OF REPORT TABLES AND GRAPHS

Tables

Table 1. Day 0 Pen Weights (29MAY15)

Table 2. Day 0 Pen Weights (29MAY15) Summarized by Treatment Group

Table 3. Bird Weights and Feed Conversion Days 0 – 21 (19JUN15)

Table 4. Bird Weights and Feed Conversion Days 0 – 21 (19JUN15) Summarized by Treatment Group

Table 5. Bird Weights and Feed Conversion Days 0 - 42 (10JUL15)

Table 6. Bird Weights and Feed Conversion Days 0 - 42 (10JUL15) Summarized by Treatment Group

Table 7. Bird Weights and Feed Conversion Days 21 - 42 (10JUL15)

Table 8. Bird Weights and Feed Conversion Days 21 - 42 (10JUL15) Summarized by Treatment Group

Table 9. Feed Added and Removed by Pen Day 0 - Study End (kg)

Table 10. Mortality and Removal Weights (Day 0 - Study End)

Table 11. Summary of Mortalities and Removals (Day 0 - Study End)

Graphs

Graph 1. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 21) Summarized by Treatment Group

Graph 2. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 42) Summarized by Treatment Group

Graph 3. Average Bird Weight Gain and Adjusted Feed Conversion (Days 21 - 42) Summarized by Treatment Group

LIST OF REPORT APPENDICES

Body weights, feed and mortality/necropsy records
Diet formulations, preparation, accounting, and disposition
Bird receipt, accounting, vaccination, disposition
Daily logs/house observation/temperature records, scale checks, notes to file
Personnel, protocol, correspondence

FEED FORMULATIONS

CFC/Concept5 Least Cost Formula

east Cost Formula Date Printed: 05/11/15
Date Optimized: 05/11/2015

Optimized By: PROSUSER Trial Version: 17

Plant: 1 Silver Springs Formulated By: Single Product Formulation Trial Version: 17
Product: AGV151SP AGV-15-1 BS PC Using Costs: Plant 1 Owning Costs Prod'n Version: 0
Page: 1

Ingr		Unrou	ınded	Owning	Ra	ange	Re	strictio	n	Nutr				
	Ingredient Name	Lbs	Pct	\$/Ton	Low	High	Min Pct	Max Pct	Rcost	No		Minimum		
19	13 Corn, CQR	1135.89	56.795	164.64					i		DRY MATTER		89.74	
		716.19				843.60			i		MOISTURE		10.26	
15	12 Soy Oil	38.93	1.947	600.00	224.40	2008.40			1	4	PROTEIN, CRUDE	22.00	22.00	
15	4 DICALCIUM PHOS	36.42	1.821	255.24		25253.0			1	5	FAT, CRUDE	4.50	4.50	
15	3 Sand	28.02	1.401	15.00		29.40		1.6000	1	6	FIBER, CRUDE		2.23	
15	2 Limestone, CQR	19.87	0.994	30.00	15.00	29505.6			1	7	CALCIUM	0.93	0.9300	
15	44 SALT, PLAIN (N	8.81	0.440	29.34	15.00	145444.			1	8	PHOS. TOTAL	0.71	0.7205	
15	9 DL-METHIONINE,	5.98	0.299	2637.89	15.00	23294.8			1	9	ASH		5.50	
15	18 CQR Choline	3.92	0.196	2534.00	15.00	48090.4			1	10	PHOS., AVAILAB	0.45	0.4500	0.
19	L6 POU NRC TM	2.80	0.140	908.00			0.1400	0.1400	1	18	ADF		0.0000	
19	66 Pou VIT 1.2 D3	2.00	0.100	2332.00			0.1000	0.1000	1	19	M.E. POULTRY	1378.00	1378.00	
15	15 Salinomycin (6	0.820	0.041	0.00			0.0410	0.0410	1	21	M.E. SWINE		1485.49	
15	1 Threonine, CQR	0.169	0.008	1849.00	15.00	15136.0			1	23	N.E.L.		0.0000	
15	0 L-LYSINE, CQR	0.166	0.008	1725.00	15.00	8300.60			1	24	N.E.M.		0.0000	
									1	25	N.E.G.		0.0000	
	Total Batch:	2000.00	Lbs at	309.15	\$/Ton	15.458	\$/100Lb	0.1546	S/Lb	31	METHIONINE	0.55	0.6413	
									1	32	CYSTINE		0.3487	
		Binding	Nutrie	ents					1	33	LYSINE	1.31	1.31	
tr		Unit of	Nu	itr	Incremen	nt			1	34	TRYPTOPHAN		0.2980	
0	Nutrient Name	Measure	Co	ost	Change	2			1	35	THREONINE	0.92	0.9200	
									1	36	ISOLEUCINE		1.13	
4	PROTEIN, CRUDE	PCT	0.	5661	0.10 PCT				1	37	HISTIDINE		0.6218	
5	FAT, CRUDE	PCT	0.	4283	0.10 PCT	r			1	38	VALINE		1.24	
7	CALCIUM	PCT	0.	.0045	0.01 PC	r			1	39	LEUCINE		1.98	
10	PHOS., AVAILABLE	PCT	0.	1251	0.01 PCT	г			1	40	ARGININE		1.52	
		KCAL/LB		4130	10.00 KC	AL/LB			1	41	PHENYLALANINE		1.24	
33	LYSINE	PCT	0.	2170	0.01 PCT	r			1	42	TSAA	0.99	0.9900	
35	THREONINE	PCT	0.	1853	0.01 PCT	r			1	43	[** No Name **		0.0000	
42	TSAA	PCT	0.	2649	0.01 PCT	г			1	45	PYRIDOXINE		4.31	
54	CHOLINE	MG/LB	0.	.0093	1.00 MG/	LB			1	46	CAROTENE		0.5274	
61	SODIUM	PCT	0.	.0366	0.10 PCT	Γ.			1	47	VITAMIN A		1265.17	
									1	48	VITAMIN E		12.30	
									1	49	THIAMIN		1.95	
									1	50	RIBOFLAVIN		2.68	
									1	51	PANTOTHENIC AC		8.67	
									1	52	BIOTIN		156.14	
									1	53	FOLIC ACID		446.81	
									1	54	CHOLINE	1300.00	1300.00	
									1	55	VITAMIN B12		5.40	
									1	56	NIACIN		28.21	
									1	57	VITAMIN D3 IU		1375.00	
									1	58	MENADIONE		0.8749	
									1	59	VITAMIN C		0.0000	
									1	60	Vitamin D		0.0000	
									1	61	SODIUM	0.20	0.2000	
									i	62	POTASSIUM		0.9437	
									1	63	MAGNESIUM		0.1613	
									i	64	SULPHUR		0.2044	
									i	65	MANGANESE		107.18	
									1	66	IRON		371.60	
									i		COPPER		19.98	
									i		ZINC		89.49	
									i		SELENIUM		0.3028	
									i		COBALT		0.0000	
									i		FLOURINE		0.0033	
									ì		CHLORIDE	0.28	0.2979	
									i		SALT		0.4405	
									î		IODINE		0.5957	
									i	76	Dig Methionine			
									1		Dig Methionine Dig Cystine		0.6129	
									1	77	Dig Methionine Dig Cystine Dig Lysine			

Plant: 1 Silver Springs Product: AGV151SP AGV-15-1 BS PC Date Optimized: 05/11/2015 Optimized By: PROSUSER

Trial Version: 17 Prod'n Version: 0 Page: 2

Formulated By: Single Product Formulation
Using Costs: Plant 1 Owning Costs

1		Nutrie	nt Soluti	on	
Nut	r				
No	Nut	rient	Minimum	Actual	Maximum
1					
1 8	80 Dig	Threonine		0.8039	
1 8	31 Dig	Isoleucine		1.04	
1 8	32 Dig	Histidine		0.5584	
1 8	33 Dig	Valine		1.12	
1 8	84 Dig	Leucine		1.83	
1 8	85 Dig	Arginine		1.39	
1 8	6 Dig	Phenylalan		1.43	
1 8	37 Dig	TSAA		0.9018	
1 8	39 Oxy	tetracyclin		0.0000	
1 5	O Non	Protein Ni		0.0000	
10	00 Tot	al Nitrogen		0.0000	
10	1 Bul	k Density		0.8943	

CFC/Concept5 Least Cost Formula Date Printed: 05/11/15

Date Optimized: 05/11/2015 Optimized By: PROSUSER

Plant: 1 Silver Springs Formulated By: Single Product Formulation Trial Version: 16
Product: AGV151SN AGV-15-1 BS NC Using Costs: Plant 1 Owning Costs Prod'n Version: 0

------|----Nutrient Solution ------Ingr Unrounded Owning
Code Ingredient Name Lbs Pct \$/Ton -- Range -- -- Restriction --- | Nutr Ingredient Name Lbs Pct \$/Ton Low High Min Pct Max Pct Rcost| No Nutrient Minimum Actual Minimum Actual Maximum 1913 Corn, CQR 1135.89 56.795 164.64 295.20 1914 SBM , CQR 716.19 35.810 508.00 261.40 ******* 1542 Soy 0il 38.93 1.947 600.00 224.40 295.20 2 DRY MATTER 89.74 1 3 MOTSTURE 10.26 4 PROTEIN, CRUDE 22.00 22.00
 1553 Sand
 33.48
 1.674
 15.00
 29.40

 1552 Limestone, CQR
 30.68
 1.534
 30.00
 15.00
 29505.6

 1554 DICALCIUM PHOS
 20.11
 1.006
 255.24
 29394.8

 1544 SALT, PLAIN (N
 8.84
 0.442
 29.34
 15.00
 404093.
 29.40 1.6800 -0.14| 5 FAT, CRUDE 4.50 4.50 6 FIBER, CRUDE 2.23 7 CALCIUM 0.93 0.9290 8 PHOS. TOTAL 0.56 0.5705 0.93 1549 DL-METHIONINE, 5.98 0.299 2637.89 15.00 23294.8 9 ASH 5.32 1548 CQR Choline 3.92 0.196 2534.00 15.00 74427.2 | 10 PHOS., AVAILAB 0.30 0.3000 0.30 1916 POU NRC TM 2.80 0.140 908.00 0.1400 0.1400 | 18 ADF 0.0000 1956 POU VIT 1.2 D3 2.00 0.100 2332.00 1545 Salinomycin (6 0.820 0.041 0.00 0.1000 0.1000 | 19 M.E. POULTRY 1378.00 1378.00 1378.00 21 M.E. SWINE 1485.49 0.0410 0.0410 | 23 N.E.L. 0.169 0.008 1849.00 15.00 15136.0 0.0000 24 N.E.M. 0.0000 25 N.E.G. 0.0000 Total Batch: 2000.00 Lbs at 307.27 \$/Ton 15.364 \$/100Lb 0.1536 \$/Lb | 31 METHIONINE 0.55 0.6413 32 CYSTINE 0.3487 1.31 1.31 ----- Binding Nutrients 33 LYSINE 34 TRYPTOPHAN Nutr Unit of Nutr Increment 0.2980 No Nutrient Name Measure 0.92 0.9200 Cost Change 35 THREONINE ----36 ISOLEUCINE 1.13 4 PROTEIN, CRUDE PCT
5 FAT, CRUDE PCT
7 CALCIUM PCT
10 PHOS., AVAILABLE PCT 37 HISTIDINE 0.5661 0.10 PCT 0.6218 0.4283 0.10 PCT 38 VALINE 1.24 0.0045 0.01 PCT 1 39 LEUCINE 1.98 0.1251 0.01 PCT 40 ARGININE 1.52 19 M.E. POULTRY KCAL/LB 0.4130 10.00 KCAL/LB 41 PHENYLALANINE 1.24 PCT 33 LYSINE 0.2170 0.01 PCT 42 TSAA 0.99 0.9900 43 [** No Name ** 35 THREONINE 0.1853 0.01 PCT 0.0000 42 TSAA PCT 54 CHOLINE MG/LB 61 SODIUM PCT 0.2649 45 PYRIDOXINE 0.0093 1.00 MG/LB 46 CAROTENE 0.5274 0.0366 0.10 PCT 47 VITAMIN A 1265.17 48 VITAMIN E 12.30 49 THIAMIN 1.95 50 RIBOFLAVIN 2.68 51 PANTOTHENIC AC 8.67 52 BIOTIN 156.14 53 FOLIC ACID 446.81 1300.00 1300.00 54 CHOLINE 55 VITAMIN B12 5.40 56 NIACIN 28.21 57 VITAMIN D3 IU 1375.00 58 MENADIONE 0.8749 59 VITAMIN C 0.0000 60 Vitamin D 0.0000 61 SODIUM 0.20 0.2000 62 POTASSIUM 0.9431 63 MAGNESIUM 0.1564 0.2044 65 MANGANESE 104.73 66 IRON 290.08 67 COPPER 19.33 68 ZINC 87.70 69 SELENIUM 0.2979 70 COBALT 0.0000 71 FLOURINE 0.0018 0.28 0.2990 72 CHLORIDE 0.4421 73 SALT 74 IODINE 0.5957 76 Dig Methionine 0.6129 77 Dig Cystine 0.2885 78 Dig Lysine 1.18 79 Dig Tryptophan 0.2168

Continued... See Page 2
Date Printed: 05/11/15

CFC/Concept5 Least Cost Formula

Project No. AGV-15-1

Plant: 1 Silver Springs

Product: AGV151SN AGV-15-1 BS NC

CQR Final Report

Page 16 of 20

Date Optimized: 05/11/2015 Optimized By: PROSUSER Trial Version: 16 Prod'n Version: 0

Page: 2

Formulated By: Single Product Formulation Using Costs: Plant 1 Owning Costs

١	No	Nuti	rient	Minimum	Actual	Maximum
ŀ						
ı	80	Dig	Threonine		0.8039	
ı	81	Dig	Isoleucine		1.04	
ı	82	Dig	Histidine		0.5584	
ı	83	Dig	Valine		1.12	
ı	84	Dig	Leucine		1.83	
ı	85	Dig	Arginine		1.39	
ı	86	Dig	Phenylalan		1.43	
ĺ	87	Dig	TSAA		0.9018	
ı	89	Oxy	tetracyclin		0.0000	
ı	90	Non	Protein Ni		0.0000	
ı	100	Tota	al Nitrogen		0.0000	
ı	101	Bull	k Density		1.38	

CFC/Concept5 Least Cost Formula Date Printed: 05/11/15

Date Optimized: 05/11/2015 Optimized By: PROSUSER Trial Version: 16

Plant: 1 Silver Springs Formulated By: Single Product Formulation Prod'n Version: 0 Page: 1 Using Costs: Plant 1 Owning Costs Product: AGV151GP AGV-15-1 BG PC

Ingr		Unrou					Re							
-	Ingredient Name		Pct	\$/Ton		-					Nutrient	Minimum	Actual	Maximu
191	3 Corn, CQR	1252.29	62.615	164.64	113.60	295.60			1	2	DRY MATTER		89.47	
191	4 SBM , CQR	629.58	31.479	508.00	227.40	841.60			1	3	MOISTURE		10.53	
154	12 Soy 011	41.69	2,084	600.00	223.40	1999.80			1	4	PROTEIN, CRUDE	20.30	20.30	
155	4 DICALCIUM PHOS	31.53	1.576	255.24		25099.8			1	5	FAT, CRUDE	4.80	4.80	
155	2 Limestone, CQR	18.88	0.944	30.00	15.00	33574.0			1	6	FIBER, CRUDE		2.20	
154	4 SALT, PLAIN (N	8.85	0.442	29.34	15.00	144552.			1	7	CALCIUM	0.84	0.8400	
154	9 DL-METHIONINE,	4.23	0.212	2637.89	15.00	26146.0			1	8	PHOS. TOTAL	0.66	0.6607	
154	8 CQR Choline	4.13	0.206	2534.00	15.00	47811.2			1	9	ASH		5.03	
155	3 Sand	3.58	0.179	15.00		29.40		1.5000	1	10	PHOS., AVAILAB	0.40	0.4000	0.4
191	.6 Pou NRC TM	2.80	0.140	908.00			0.1400	0.1400	1	18	ADF		0.0000	
195	6 Pou VIT 1.2 D3	2.00	0.100	2332.00			0.1000	0.1000	1	19	M.E. POULTRY	1425.00	1425.00	
155	O L-LYSINE, CQR	0.441	0.022	1725.00	15.00	9208.20			1	21	M.E. SWINE		1518.02	
									1	23	N.E.L.		0.0000	
	Total Batch:	2000.00	Lbs at	294.77	\$/Ton	14.738	\$/100Lb	0.1474	\$/Lb	24	N.E.M.		0.0000	
									1	25	N.E.G.		0.0000	
				ents					1	31	METHIONINE	0.51	0.5332	
itr		Unit of	N	itr	Incremen	nt			1	32	CYSTINE		0.3268	
ю	Nutrient Name	Measure			Change				1	33	LYSINE	1.20	1.20	
									1	34	TRYPTOPHAN		0.2709	
	PROTEIN, CRUDE	PCT			0.10 PCT						THREONINE	0.83	0.8395	
5	FAT, CRUDE	PCT	0	4294	0.10 PCT	г					ISOLEUCINE		1.03	
7	CALCIUM	PCT	0.	.0045	0.01 PCT	r			- 1	37	HISTIDINE		0.5784	
10	PHOS., AVAILABLE	PCT			0.01 PCT				1	38	VALINE		1.14	
19	M.E. POULTRY	KCAL/LB	0.	4106	10.00 KCA	AL/LB					LEUCINE		1.87	
33	LYSINE	PCT	0.	2170	0.01 PCT	r			- 1	40	ARGININE		1.39	
	TSAA	PCT			0.01 PCT						PHENYLALANINE		1.14	
54	CHOLINE	MG/LB	0.		1.00 MG/				- 1		TSAA	0.86	0.8600	
61	SODIUM	PCT	0.	.0366	0.10 PCT	E.					[** No Name **		0.0000	
									2.5		PYRIDOXINE		4.31	
		Unu											0.5815	
Ingr				Current	At	would	Minimum	Maximum	1	47	VITAMIN A		1311.15	
	Ingredient Name			\$/Ton			Pct				VITAMIN E		12.86	
													1.99	
155	1 Threonine, CQR			1849.00	15.00						RIBOFLAVIN		2.66	
											PANTOTHENIC AC		8.50	
									1		BIOTIN		151.84	
											FOLIC ACID		435.80	
												1300.00		
									7		VITAMIN B12		5.40	
											NIACIN		28.37	
									7		VITAMIN D3 IU		1375.00	
											MENADIONE		0.8749	
									1		VITAMIN C		0.0000	
									1		Vitamin D		0.0000	
											SODIUM	0.20	0.2000	
									- 1		POTASSIUM		0.8718	
											MAGNESIUM		0.1519	
									1		SULPHUR		0.1900	
									1		MANGANESE		104.89	
									1		IRON		341.03	
									1		COPPER		19.27	
											ZINC		87.99	
									1		SELENIUM		0.3017	
									1		COBALT		0.0000	
									1		FLOURINE		0.0028	
									1		CHLORIDE	0.26	0.3006	
									1		SALT		0.4424	
									1		IODINE		0.5944	
									1		Dig Methionine		0.5065	
									1	77	Dig Cystine		0.2709	
									1		Dig Lysine Dig Tryptophan		1.08	

Continued... See Page 2 Date Printed: 05/11/15

Project No. AGV-15-1

roduct: AGV151GP AGV-15-1 BG PC

Silver Springs

Plant: 1

CQR Final Report

Page 18 of 20

Date Optimized: 05/11/2015

Optimized By: PROSUSER

Formulated By: Single Product Formulation Trial Version: 16
Using Costs: Plant 1 Owning Costs Prod'n Version: 0

Page: 2

'	Nutr				1009100000	
ı	No	Nut	rient	Minimum	Actual	Maximum
ŀ						
ı	80	Dig	Threonine		0.7313	
ı	81	Dig	Isoleucine		0.9463	
ı	82	Dig	Histidine		0.5214	
ı	83	Dig	Valine		1.03	
ı	84	Dig	Leucine		1.73	
ı	85	Dig	Arginine		1.27	
ĺ	86	Dig	Phenylalan		1.37	
ı	87	Dig	TSAA		0.7777	
ı	89	Oxy	tetracyclin		0.0000	
ı	90	Non	Protein Ni		0.0000	
ı	100	Tota	al Nitrogen		0.0000	
i	101	Bull	k Density		0.8494	

CFC/Concept5 Least Cost Formula Date Printed: 05/11/15

Date Optimized: 05/11/2015 Optimized By: PROSUSER Trial Version: 17

Plant: 1 Silver Springs Formulated By: Single Product Formulation Trial Version: 17
Product: AGV151GN AGV-15-1 BG NC Using Costs: Plant 1 Owning Costs Prod'n Version: 0
Page: 1

Ingr							Re				Nutrie			
Code	Ingredient Name			\$/Ton							Nutrient	Minimum	Actual	Maximum
														100000000000000000000000000000000000000
191	3 Corn, CQR	1252.29	62.615	164.64	113.60	295.60				2	DRY MATTER		89.47	
191	4 SBM , CQR	629.58	31.479	508.00	227.40	841.60				3	MOISTURE		10.53	
154	2 Soy Oil	41.69	2.084	600.00	223.40	1999.80				4	PROTEIN, CRUDE	20.30	20.30	
155	2 Limestone, CQR	29.75	1.487	30.00	15.00	33574.0				5	FAT, CRUDE	4.80	4.80	
155	4 DICALCIUM PHOS	15.22	0.761	255.24		25099.8				6	ETREP CRIDE		2 20	
155	3 Sand	8.98	0.449	15.00		29.40		1.5000		7	CALCIUM PHOS. TOTAL	0.84	0.8400	
154	4 SALT, PLAIN (N	8.88	0.444	29.34	15.00	144552.				8	PHOS. TOTAL	0.51	0.5107	
154	9 DL-METHIONINE,	4.23	0.212	2637.89	15.00	26146.0				9	ASH		4.85	
154	8 CQR Choline	4.13	0.206	2534.00	15.00	47811.2				10	PHOS., AVAILAB	0.25	0.2500	0.2
191	6 POU NRC TM	2.80	0.140	908.00			0.1400	0.1400		18	ADF		0.0000	
195	6 Pou VIT 1.2 D3	2.00	0.100	2332.00			0.1000	0.1000		19	M.E. POULTRY	1425.00	1425.00	
155	O L-LYSINE, CQR	0.441	0.022	1725.00	15.00	9208.20				21	M.E. SWINE		1518.02	
										23	N.E.L.		0.0000	
	Total Batch:	2000.00	Lbs at	292.89	\$/Ton	14.645	\$/100Lb	0.1464	\$/Lb	24	N.E.M.		0.0000	
									11	25	N.E.G.		0.0000	
										31	METHIONINE	0.51	0.5332	
lutr		Unit of	N		Increme						CYSTINE		0.3268	
No	Nutrient Name	Measure	C	ost	Change	2				33	LYSINE	1.20	1.20	
											TRYPTOPHAN		0.2709	
	PROTEIN, CRUDE			.6442							THREONINE	0.83	0.8395	
	FAT, CRUDE			.4294	0.10 PC	г				36	ISOLEUCINE		1.03	
7	CALCIUM	PCT	0	.0045	0.01 PC	r				37	HISTIDINE		0.5784	
10	PHOS., AVAILABLE	PCT	0	.1251	0.01 PC	Г			1	38	VALINE		1.14	
	M.E. POULTRY	KCAL/LB	0	.4106	10.00 KC	AL/LB					LEUCINE		1.87	
33		PCT	0	.2170 .2649 .0093	0.01 PC	Г					ARGININE		1.39	
		PCT	0	.2649	0.01 PC	г				41	PHENYLALANINE		1,14	
		MG/LB	0	.0093	1.00 MG	/LB			1	42	TSAA	0.86	0.8600	
61	SODIUM	PCT	0	.0366	0.10 PC	г				43	[** No Name **		0.0000	
											PYRIDOXINE		4.31	
		Uni											0.5815	
Ingr							Minimum				VITAMIN A		1311.15	
	Ingredient Name										VITAMIN E		12.86	
											THIAMIN		1.99	
155	1 Threonine, CQR			1849.00	15.00						RIBOFLAVIN		2.66	
											PANTOTHENIC AC		8.50	
											BIOTIN		151.84	
									II.	53	FOLIC ACID		435.80	
											CHOLINE			
											VITAMIN B12		5.40	
											NIACIN		28.37	
											VITAMIN D3 IU		1375.00	
											MENADIONE		0.8749	
											VITAMIN C		0.0000	
											Vitamin D		0.0000	
											SODIUM	0.20	0.2000	
											POTASSIUM		0.8713	
											MAGNESIUM		0.1470	
											SULPHUR		0.1900	
											MANGANESE		102.44	
											IRON		259.51	
										67	COPPER		18.62	
										67 68	COPPER ZINC		18.62 86.19	
										67 68 69	COPPER ZINC SELENIUM		18.62 86.19 0.2968	
										67 68 69 70	COPPER ZINC SELENIUM COBALT		18.62 86.19 0.2968 0.0000	
										67 68 69 70	COPPER ZINC SELENIUM COBALT FLOURINE		18.62 86.19 0.2968 0.0000 0.0014	
										67 68 69 70 71 72	COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE		18.62 86.19 0.2968 0.0000 0.0014 0.3016	
										67 68 69 70 71 72 73	COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE SALT		18.62 86.19 0.2968 0.0000 0.0014 0.3016 0.4441	
										67 68 69 70 71 72 73	COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE SALT IODINE	0.26	18.62 86.19 0.2968 0.0000 0.0014 0.3016 0.4441 0.5944	
										67 68 69 70 71 72 73 74	COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE SALT IODINE Dig Methionine	0.26	18.62 86.19 0.2968 0.0000 0.0014 0.3016 0.4441 0.5944 0.5065	
										67 68 69 70 71 72 73 74 76	COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE SALT IODINE Dig Methionine Dig Cystine	0.26	18.62 86.19 0.2968 0.0000 0.0014 0.3016 0.4441 0.5944 0.5065 0.2709	
										67 68 69 70 71 72 73 74 76 77	COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE SALT IODINE Dig Methionine	0.26	18.62 86.19 0.2968 0.0000 0.0014 0.3016 0.4441 0.5944 0.5065	

Plant: 1 Silver Springs Product: AGV151GN AGV-15-1 BG NC Date Optimized: 05/11/2015
Optimized By: PROSUSER
Formulated By: Single Product Formulation
Using Costs: Plant 1 Owning Costs

Trial Version: 17
Prod'n Version: 0

Page: 2

Table 2. Day 0 Pen Weights (29MAY15) - AGV-15-1 - Summarized by Treatment Group

Block	Treat- ment	Pen	No. of Birds	Pen Wt (kg)	Avg. Bird Wt (kg)	Block	Treat- ment	Pen	No. of Birds	Pen Wt (kg)	Avg. Bird Wt (kg)	Block	Treat- ment	Pen	No. of Birds	Pen Wt (kg)	Avg. Bir Wt (kg
2	1	108	_ 17 _	0.601	0.035	_ 2	4	104	_ 17_	0.602	0.035	_ 1	7	97_	17	0.609	0.036
3	_ 1	114	_ 17 _	0.592	0.035	_ 3	_ 4 _	112	17	0.597	0.035	_ 2 _	7	105	17	0.595	0.035
4	_1_	120	17	0.597	0.035	_ 4	4	118	17	0.588	0.035	_ 3	_ 7 _	116	17	0.593	0.035
5	1	126	17	0.596	0.035	_ 5	4	129	17	0.596	0.035	4	7_	124	17	0.606	0.036
1	1	135	17	0.588	0.035	1	4	134	17	0.607	0.036	5	7	125	17	0.601	0.035
10	1	138	17	0.595	0.035	10	4	137	17	0.602	0.035	6	7	146	17	0.602	0.035
6	1	148	17	0.603	0.035	6	4	147	17	0.605	0.036	7	7	153	17	0.602	0.035
7	1	149	17	0.606	0.036	7	4	151	17	0.594	0.035	8	7	166	17	0.593	0.035
8	1	162	17	0.593	0.035	8	4	163	17	0.604	0.036	9	7	170	17	0.608	0.036
9	1	169	17	0.604	0.036	9	4	171	17	0.597	0.035	10	7	178	17	0.604	0.036
11	1	187	17	0.605	0.036	11	4	185	17	0.606	0.036	11	7	182	17	0.598	0.035
12	1	195	17	0.605	0.036	12	4	191	17	0.599	0.035	12	7	190	17	0.597	0.035
Totals &	Averages		204	0.599	0.035	Totals &	Averages		204	0.600	0.035	Totals &	Averages		204	0.601	0.035
Standard	Deviations			0.006	0.000	Standard	Deviations			0.006	0.000	Standard	Deviations			0.006	0.000
CVs				1.007%	1.007%	CVs				0.938%	0.938%	CVs				0.921%	0.921%
2	2	102	17	0.591	0.035	1	5	98	17	0.607	0.036	1	8	100	17	0.586	0.034
3	2	110	17	0.601	0.035	2	5	103	17	0.601	0.035	2	8	106	17	0.595	0.035
4	2	122	17	0.599	0.035	3	5	113	17	0.602	0.035	3	8	111	17	0.587	0.035
5	2	128	17	0.599	0.035	4	5	121	17	0.595	0.035	4	8	117	17	0.599	0.035
1	2	133	_ 17 _	0.606	0.036	_ 5	_ 5 _	131	17	0.599	0.035	_ 5	8	127	17	0.592	0.035
6	_ 2	141	_ 17 _	0.593	0.035	_ 6	_ 5 _	144	_ 17_	0.593	0.035	10	8 8	140	17	0.596	0.035
7_	2	152	_ 17 _	0.602	0.035	_ 7	5	154	17	0.606	0.036	6	8	142	17	0.597	0.035
8	2	161	_ 17 _	0.597	0.035	_ 8 _	_ 5 _	160	17	0.606	0.036	_ 7 _	88	156	17	0.590	0.035
9	2	174	_ 17 _	0.587	0.035	_ 9 _	_ 5 _	168	_ 17	0.603	0.035	8	8	165	17	0.593	0.035
10	2	180	_ 17 _	0.609	0.036	10	_ 5 _	177	17	0.591	0.035	_ 9	8	172	17	0.595	0.035
11	2	188	_ 17 _	0.606	0.036	_11	_ 5	181		0.600	0.035	_ 11 _	8	184	17	0.590	0.035
40					0.036	12	5	193	17	0.590	0.035	12	8	194	17	0.592	0.035
12	2	196	17	0.606			Averages						Λυργοπος				0.035
	2 Averages	196	17 204	0.606	0.035	Totals &	Averages		204	0.599	0.035	Totals &	Averages		_ 204	0.593	
Totals & A					0.035	Standard	Deviations			0.006	0.000	Standard	Deviations		_ <u>204</u> 	0.004	0.000
Totals &	Averages			0.600	0.000	1		 			0.000	I I −−−		 	_ <u>204</u> 		0.000
Totals & A Standard CVs	Averages Deviations			0.600 0.007 1.127%	0.000 1.127%	Standard CVs	Deviations			0.006 0.989%	0.989%	Standard			_ <u>204</u> 	0.004	
Totals & A Standard CVs	Averages Deviations			0.600 0.007 1.127%	0.000 1.127%	Standard CVs	Deviations	99	17	0.006 0.989% 0.597	0.000 0.989%	Standard		·		0.004	
Standard CVs	Averages Deviations 3 3	101		0.600 0.007 1.127% 0.590 0.603	0.000 1.127% 0.035	Standard CVs	Deviations 6 6	99		0.006 0.989% 0.597 0.590	0.000 0.989% 0.035	Standard				0.004	
Totals & A Standard CVs 2 3 4	Averages Deviations 3 3 3			0.600 0.007 1.127% 0.590 0.603 0.602	0.000 1.127% 0.035 0.035	Standard CVs	Deviations 6 6 6	99		0.006 0.989% 0.597 0.590 0.604	0.000 0.989% 0.035 0.035	Standard		 		0.004	
Standard CVs	Averages Deviations 3 3 3 3	101 115 123 130		0.600 0.007 1.127% 0.590 0.603 0.602 0.597	0.000 1.127% 0.035 0.035 0.035 0.035	Standard CVs	6 6 6	99 107 109 119		0.006 0.989% 0.597 0.590 0.604 0.599	0.000 0.989% 0.035 0.035 0.036 0.035	Standard		 		0.004	
Standard CVs 2 3 4 5 1 1	Averages Deviations 3 3 3 3 3 3 3	101 115 123 130 136		0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592	0.000 1.127% 0.035 0.035 0.035 0.035	Standard CVs	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 132		0.006 0.989% 0.597 0.590 0.604 0.599 0.595	0.000 0.989% 0.035 0.035 0.036 0.035	Standard				0.004	
2	Averages Deviations	101 _ 115 _ 123 _ 130 _ 136 _ 139 _		0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592	0.000 1.127% 0.035 0.035 0.035 0.035 0.035	Standard CVs	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 132 143		0.006 0.989% 0.597 0.590 0.604 0.599 0.595 0.606	0.000 0.989% 0.035 0.035 0.035 0.035 0.035	Standard				0.004	
2 3 4 1 5 1 10 6	Averages Deviations 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	101 115 123 130 136 139 145		0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592 0.591 0.590	0.000 1.127% 0.035 0.035 0.035 0.035 0.035 0.035	Standard CVs	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 132 143 155		0.006 0.989% 0.597 0.590 0.604 0.599 0.595 0.606	0.000 0.989% 0.035 0.035 0.035 0.035 0.035	Standard				0.004	
2 3 4 5 1 10 6 4 7 1	Averages Deviations 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	101 115 123 130 136 139 145		0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592 0.591 0.590 0.606	0.000 1.127% 0.035 0.035 0.035 0.035 0.035 0.035	Standard CVs 12345678	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 132 143 155 159	- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	0.006 0.989% 0.597 0.590 0.604 0.599 0.595 0.606 0.598	0.000 0.989% 0.035 0.035 0.035 0.035 0.035 0.036	Standard				0.004	
Totals & Standard CVs	Averages Deviations 3 3 3 3 3 3 3 3 3 3 3 3 3	101 115 123 130 136 139 145 150		0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592 0.591 0.590 0.606 0.589	0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035	Standard CVs 1 2 3 4 5 6 7 8 9	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 132 143 155 159 167		0.006 0.989% 0.597 0.590 0.604 0.599 0.595 0.606 0.598 0.608	0.000 0.989% 0.035 0.036 0.035 0.035 0.035 0.036 0.035	Standard				0.004	
Totals & Standard CVs	Averages Deviations 3 3 3 3 3 3 3 3 3 3 3 3	101 115 123 130 136 139 145 150 164 173		0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592 0.591 0.590 0.606 0.589	0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035	Standard CVs - 1	6	99 107 109 119 132 143 155 167 179	17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	0.006 0.989% 0.597 0.590 0.604 0.599 0.595 0.606 0.598 0.608 0.599	0.000 0.989% 0.035 0.036 0.035 0.035 0.035 0.036 0.035 0.035	Standard				0.004	
Standard CVs	Averages Deviations 3 3 3 3 3 3 3 3 3 3 3 3 3 3	101 115 123 130 136 139 145 150 164 173 186		0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592 0.591 0.590 0.606 0.589 0.590	0.000 1.127% 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.036 0.035 0.035	Standard CVs - 1	6	99 107 109 119 132 143 155 159 167 179 183 1	17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	0.006 0.989% 0.597 0.590 0.604 0.599 0.595 0.606 0.598 0.608 0.599 0.603	0.000 0.989% 0.035 0.036 0.035 0.035 0.036 0.035 0.036 0.035 0.035	Standard			204	0.004	
CVs CVs	Averages Deviations 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	101 115 123 130 136 139 145 150 164 173	-17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592 0.591 0.590 0.606 0.589 0.590 0.602	0.000 1.127% 0.035 0.035	Standard CVs - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	99 107 109 119 132 143 155 167 179	- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	0.006 0.989% 0.597 0.590 0.604 0.599 0.595 0.606 0.598 0.608 0.599 0.603 0.598	0.000 0.989% 0.035 0.035 0.035 0.035 0.036 0.035 0.035 0.035 0.035 0.035	Standard			204	0.004	
CVs CVs	Averages Deviations 3 3 3 3 3 3 3 3 3 4 Averages	101 115 123 130 136 139 145 150 164 173 186 189		0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592 0.591 0.590 0.606 0.589 0.590 0.602	0.000 1.127% 0.035 0.035	Standard CVs - 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 143 155 159 167 179 183 192	17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	0.006 0.989% 0.597 0.590 0.604 0.595 0.606 0.598 0.608 0.599 0.603 0.598 0.599 0.603	0.000 0.989% 0.035 0.035 0.035 0.035 0.036 0.035 0.036 0.035 0.035 0.035 0.035 0.035	Standard			204	0.004	
CVs CVs	Averages Deviations 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	101 115 123 130 136 139 145 150 164 173 186 189	-17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	0.600 0.007 1.127% 0.590 0.603 0.602 0.597 0.592 0.591 0.590 0.606 0.589 0.590 0.602	0.000 1.127% 0.035 0.035	Standard CVs - 1	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	99 107 109 119 143 155 159 167 179 183 192	- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	0.006 0.989% 0.597 0.590 0.604 0.599 0.595 0.606 0.598 0.608 0.599 0.603 0.598	0.000 0.989% 0.035 0.035 0.036 0.035 0.036 0.035 0.036 0.035 0.035 0.035 0.035 0.035	Standard			204	0.004	

Table 4. Bird Weights and Feed Conversion Days 0 - 21 (19JUN15) Summarized by Treatment Group

CQR Study Number AGV-15-1

			No. Birds				No. Birds	D21 Pen	D21 Avg	D0-21 Avg		
		Pen	Started	ť	al-1	al-2	Weighed	Wt	Bird Wt	Bird Gain	Feed	Adj. Feed
Block	Trt	No.	Julica	tali	OV.	OV	or engineer	•••	Jii a ii c	Dira Gain	Conversion	Conversion
		140.	Day 0	Mortality	Removal-1	Removal-2	D21	(kg)	(kg)	(kg)	D0-21	D0-21
1	_1_	135	17	0	0	0	17	10.240	0.602	0.568	1.459	1.459
$-\frac{2}{3}$	1	108	17	1	0	0	16	9.520	0.595	0.560	1.393	1.385
3!	_1_	114	17	2	0	0	15	9.040	0.603	0.568	1.420	1.397
4	1	120	17	0	. <u>~</u> _	<u> </u>	17	9.700	0.571	0.535	1.382	1.382
5	_1_	126	17	0	0	0	17	10.360	0.609	0.574	1.379	1.379
6	¬	148	17	0			17	10.060	0.592	0.556	1.491	1.491
7	_1_	149	17			0	17	10.220	0.601	0.566	1.400	1.400
8	_1_!	162	17	. 1	. 0_	0_	16	9.600	0.600	0.565	1.419	1.406
9	_ 1	169	17	. 1	. <u> </u>	0_	16	10.300	0.644	0.608	1.425	1.420
10	_ 1	138	17	$-\frac{0}{0}$	0	0_		9.080	0.534	0.499	1.586	1.586
11 -	- <u>1</u> ¦	187	17	$-\frac{0}{1}$		0_	17	9.360	0.551	0.515	1.515	1.515
12		155	17			_	16	9.480	0.593	0.557	1.449	1.441
Totals 8			<u>204</u>	<u>6</u> _	0_	_0_	198	9.747	0.591	0.556	1.443	1.438
Std Dev	<u>s</u>				-	¦		0.476	0.028	0.028	0.062	0.064
CVs								4.879%	4.805%	5.107%	4.278%	4.449%
1 1	2	133	17	0	0	0	17	11.620	0.684	0.648	1.405	1.405
$-\frac{1}{2}$	$-\frac{2}{3}$	102	1 /	0	0	0	17	11.160	0.656	0.622	1.383	1.383
$-\frac{2}{3}$	$-\frac{2}{2}$	110	1 /	0	· — -	0	17	11.000	0.647	0.612	1.444	1.444
$-\frac{3}{4}$	2	122	<u>-</u> 17	0	0	0	17	11.400	0.671	0.635	1.361	1.361
1 _ l	2		<u>-</u> 17	0			17	11.460	0.674	0.639	1.403	1.403
6		141	17	0	0	0	17	11.220	0.660	0.625	1.387	1.387
- 5 -	_ <u></u>	152	17	0	0	0	17	11.900	0.700	0.665	1.423	1.423
8 -	2	161	17	0	. — –	. — –	17	11.940	0.702	0.667	1.374	1.374
9 -	7	174	17	0		0	17	11.680	0.687	0.653	1.381	1.381
10	2	180	17	0	0	0	17	11.740	0.691	0.655	1.452	1.452
11	2	188	17	0			17	12.100	0.712	0.676	1.382	1.382
12	2	196	17	0	0	0	17	12.120	0.713	0.677	1.357	1.357
Totals 8	k Avgs	3	204	0	0	0	204	11.612	0.683	0.648	1.396	1.396
Std Dev	s							0.370	0.022	0.022	0.031	0.031
CVs								3.189%	3.189%	3.335%	2.191%	2.191%
1	3	136	17	0	1	0	16	10.860	0.679	0.644	1.387	1.363
2	_3_		17	0			17	11.340	0.667	0.632	1.369	1.369
3	3	115	17	0	0	0	17	11.620	0.684	0.648	1.345	1.345
<mark>4</mark> _ !	_ 3	123 130	17		0_		17	11.100	0.653	0.618	1.347	1.347
5			17		0	0	17	11.760	0.692	0.657	1.365	1.365
<mark>6</mark>	_3_	145	17	. 1	0_	0_	16	10.580	0.661	0.627	1.381	1.373
7 i	_ 3	150 164	17	0	0	0		11.640	0.685	0.649	1.381	1.381
- 8 -			17		0		17	11.180	0.658	0.623	1.346	1.346
<mark>9</mark> _i	_ <u>3</u> _i	173	17	0		0_	17	11.260	0.662	0.628	1.351	1.351
10		139	17		0	0	17	11.520	0.678	0.643	1.341	1.341
11 _	_3_	186	17	0			$-\frac{17}{17}$	11.160	0.656	0.621	1.326	1.326
12		189	17	0	0	0	17	10.920	0.642	0.607	1.389	1.389
Totals 8 Std Dev			_ <u>204</u>	. <u>1</u> -	· - -	<u>"</u> -	202	11.245 0.354	0.668 0.015	0.633 0.015	1.361 0.021	<u>1.358</u> 0.018
CVs	<u>-</u> – -				l			3.144%	2.255%	2.369%	1.522%	1.351%
CVS								3.14470	2.23370	2,30370	1.32270	1,33170

Table 4. Bird Weights and Feed Conversion Days 0 - 21 (19JUN15) Summarized by Treatment Group

CQR Study Number AGV-15-1

	Т	No. Birds		_	~	No. Birds	D21 Pen	D21 Avg	D0-21 Avg		
Disab Tak	Pen	Started	ity	Removal-1	Removal-2	Weighed	Wt	Bird Wt	Bird Gain	Feed	Adj. Feed
Block Trt	No.		Mortality	õ	No.					Conversion	Conversion
		Day 0	Мо	Rer	Rer	D21	(kg)	(kg)	(kg)	D0-21	D0-21
1 4	134	17	0	0	0	17	12.700	0.747	0.711	1.340	1.340
$\begin{bmatrix} -\frac{1}{2} & -\frac{1}{4} \\ -\frac{2}{4} & -\frac{4}{4} \end{bmatrix}$	104	17	0	0	0	17	11.740	0.691	0.655	1.345	1.345
3 I 4	<u>i 112</u>	17	0	. <u>0</u>	0	17	11.460	0.674	0.639	1.357	1.357
4 4	118	17	0	0	0	17	12.040	0.708	0.674	1.277	1.277
5i_ <u>4</u>	129	17	<u>0</u> _	0_	0	17	11.700	0.688	0.653	1.367	1.367
6 4	147	17	0			17	11.640	0.685	0.649	1.396	1.396
74	151	17	<u> </u>	0	0	17	11.620	0.684	0.649	1.373	1.373
<mark>8</mark> _!_4	<u>i</u> 163	17	<u> </u>		0	17	12.080	0.711	0.675	1.344	1.344
$-\frac{9}{1} - \frac{4}{1}$	171	17	<u> 1</u> _	0_	0	16	11.500	0.719	0.684	1.354	1.346
10 4	137	17	1	0	0	16	11.160	0.698	0.662	1.368	1.359
11_!_4	185	17	<u>0</u> _			17	11.820	0.695	0.660	1.366	1.366
12 4	191	17	1	0	0	16	10.960	0.685	0.650	1.349	1.341
Totals & Av	gs	204	3 _	. <u>0</u> _	_0_	201	11.702	0.699	0.663	1.353	1.351
Std Devs				- –			0.450	0.020	0.020	0.029	0.028
CVs							3.842%	2.856%	2.995%	2.114%	2.109%
1 5	98	17	0	0	0	17	11.760	0.692	0.656	1.345	1.345
2 1 5	1 103	1 /	- 0 -	1 0	0	1/	11.760	0.692	0.656	1.375	1.375
$-\frac{2}{3} - \frac{3}{5}$	113	1 /	0			17	12.180	0.716	0.681	1.320	1.320
4 - 5	121	17	0	1	0	16	10.960	0.685	0.650	1.356	1.339
5 1 5	131	17	1 -	. – –	0	15	11.260	0.751	0.715	1.379	1.332
$-\frac{5}{6} - \frac{5}{5}$	144	17	- 0 -	0	0	17	11.800	0.694	0.659	1.313	1.313
7 - 5	154	17	- 0 -	 -	0	17	12.200	0.718	0.682	1.330	1.330
8 5	160	17	0	· — -	0	17	11.780	0.693	0.657	1.333	1.333
9 -1-5	168	17	0		0	17	12.720	0.748	0.713	1.325	1.325
10 5	177	17	<u></u>	0		17	12.040	0.708	0.673	1.315	1.315
11 5	181	17	1	0	0	16	11.440	0.715	0.680	1.330	1.325
12 5	193	17	0	0	0	17	11.640	0.685	0.650	1.343	1.343
Totals & Av	gs	204	2	2	0	200	11.795	0.708	0.673	1.339	1.333
Std Devs		l 1		r – ¬			0.464	0.023	0.023	0.022	0.017
CVs				<u> </u>			3.930%	3.207%	3.362%	1.619%	1.241%
_1_i_6	99	17	<u>0</u>	0	0	17	11.860	0.698	0.663	1.314	1.314
2_ _6	107	17	0	. <u> </u>	0	17	11.360	0.668	0.634	1.333	1.333
3 6	109	17	<u>0</u> _	0	0	17	12.040	0.708	0.673	1.327	1.327
4 _ i_ <u>6</u>	119	17		<u>. </u>		17	11.540	0.679	0.644	1.349	<u> 1.349</u>
$-\frac{5}{2} - \frac{6}{2}$	132		0_	0	0_	17	12.160	0.715	0.680	1.332	1.332
$-\frac{6}{3}$	143	17	- 1 -	ر <mark>0</mark> ـا	0_	16	11.000	0.688	0.652	1.370	1.361
F — — — — —	155	17	2	0		15	10.880	0.725	0.690	1.348	1.325
$-\frac{8}{6} - \frac{6}{6}$	+ 139	1 7	2	+ - -	0	14	10.180	0.727	0.691	1.417	1.339
$-\frac{9}{10}$ $-\frac{6}{6}$		$-\frac{17}{17}$	1 -	<u>0</u> _	0_	16	11.660	0.729	0.694	1.347	1.343
F — — — —	179	17		0		15	10.780	0.719	0.683	1.405	1.339
$\frac{11}{12} - \frac{6}{6}$	183	$-\frac{17}{17}$	- 0 -	0	0_	$-\frac{17}{17}$	11.920	0.701	0.666	1.309	1.309
12 6 Totals & Av		17 204	8	0 1	0	17 195	12.360 11.478	0.727 0.707	0.692 0.672	1.343 1.350	1.343 1.335
Std Devs	<u> </u>	204	⊦-°-	ļ <u>-</u> -	- -		0.654	0.020	0.020	0.033	0.015
CVs		┠┤	} - -	¦			5.700%	2.899%	3.037%	2.452%	1.092%
							31, 30,0	2.03570	3.03770	21-132/0	21032/0

Table 4. Bird Weights and Feed Conversion Days 0 - 21 (19JUN15) Summarized by Treatment Group

CQR Study Number AGV-15-1

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D0-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 0	Mor	Rem	Rem	D21	(kg)	(kg)	(kg)	D0-21	D0-21
1	7		17	0	0	0	17	13.180	0.775	0.739	1.309	1.309
_2	7	105	17	0	0	0	17	12.560	0.739	0.704	1.295	1.295
3	<u> </u>	116	<u>17</u>	0	0	0	17	12.860	0.756	0.722	1.303	1.303
_4	_7	124	<u>17</u>	0	0	0	17	12.120	0.713	0.677	1.322	1.322
_ 5	_ 7	125	17	0	0	0	17	11.980	0.705	0.669	1.332	1.332
6	7	146	<u>17</u>	1	. <u> </u>	0	16	11.220	0.701	0.666	1.343	1.333
_7	_7	153	17	0	0	0	17	12.080	0.711	0.675	1.336	1.336
8	i_7_	166	17	0	0	0	17	12.560	0.739	0.704	1.317	1.317
9	<u> 7</u>	170	17	1_	0	0	16	11.840	0.740	0.704	1.346	1.343
_10	_ 7	178	17	0	0	0	17	12.680	0.746	0.710	1.313	1.313
_11 _	. <u> </u>	182	17	0	. <u> </u>	0	17	12.240	0.720	0.685	1.299	1.299
12	7	190	17	1	0	0	16	11.660	0.729	0.694	1.298	1.293
Totals		s	204	3	0_	0	201	12.248	0.731	0.696	1.318	1.316
Std Dev	vs				 -			0.549	0.022	0.022	0.018	0.017
CVs								4.479%	3.053%	3.207%	1.370%	1.294%
_1	_8_	100	17	0	0	0	17	11.580	0.681	0.647	1.333	1.333
2	'	106	17	1_		0	16	10.820	0.676	0.641	1.365	1.360
_3	8	111	17	0	0	0	17	11.740	0.691	0.656	1.359	1.359
4	_8_	117	17	0	0	0	17	12.340	0.726	0.691	1.315	1.315
_ 5	8	127	17	0	0	0_	17	11.780	0.693	0.658	1.334	1.334
6	_ <mark>8</mark>	142	17	1_	0	0	16	11.600	0.725	0.690	1.336	1.332
_7	_ <mark>8</mark> _	156	17	0	. <u>0</u> _	0	17	10.780	0.634	0.599	1.341	1.341
_ <mark>8</mark>	<u>8</u> -	165	17	1_	1_	0	15	11.540	0.769	0.734	1.363	1.317
9	_8	172	17	0	0	0	17	11.720	0.689	0.654	1.314	1.314
_10 _	<mark>8</mark>	140	17	0	0	0	17	12.040	0.708	0.673	1.342	1.342
_11 _	<u>8</u> -	184	17	0	0	0	17	11.900	0.700	0.665	1.324	1.324
12	8	194	17	0	0	0	17	11.560	0.680	0.645	1.331	1.331
Totals		s	204	3	1_	0	200	11.617	0.698	0.663	1.338	1.334
Std Dev	v <u>s</u>		L		 	¦		0.445	0.033	0.033	0.017	0.015
CVs								3.833%	4.737%	4.971%	1.277%	1.146%

Table 6. Bird Weights and Feed Conversion Days 0 - 42 (10JUL15) Summarized by Treatment Group CQR Study Number AGV-15-1

			No. Birds				No. Birds	D42 Pen	D42 Avg	D0-42 Avg		
ll.		Pen	Started	ity	al-1	al-2	Weighed	Wt	Bird Wt	Bird Gain	Feed	Adj. Feed
Block	Trt	No.		Mortality	Removal-1	Removal-2	D40				Conversion	Conversion
			Day 0	Mo	Ren	Ren	D42	(kg)	(kg)	(kg)	D0-42	D0-42
1 1	1 i	135	17	1	0	3	13	31.080	2.391	2.356	1.709	1.573
2	1 7	108	17	1	0	3	13	30.340	2.334	2.298	1.701	1.604
3 1	1 T	114	17	3	0	3	11	26.140	2.376	2.342	1.721	1.551
4 I	1	120	17	1	0	3	13	29.380	2.260	2.225	1.664	1.550
5 -	1	126	17	1	0	3	13	31.080	2.391	2.356	1.763	1.574
6 1	1 i	148	17	0	0	3	14	32.720	2.337	2.302	1.668	1.575
7 !	1 T	149	17	0	1		13	31.920	2.455	2.420	1.726	1.564
8 -	1	162	17	1	0	3	13	31.320	2.409	2.374	1.665	1.565
9 i	1 î	169	17	1	0	ì 3	13	32.480	2.498	2.463	1.683	1.584
10	1 T	138	17	0	0	3	14	30.900	2.207	2.172	1.730	1.643
11	1 7	187	17	0	0	3	14	31.000	2.214	2.179	1.696	1.616
12	1 Î	195	17	1	0	i 3	13	29.200	2.246	2.211	1.665	1.574
Totals &	Avgs		204	10	1	36	157	30.630	2.343	2.308	1.699	1.581
Std Devs				7	ì – –	î – –		1.768	0.095	0.095	0.032	0.027
CVs				ַר דו	r – –	r – –		5.773%	4.034%	4.096%	1.873%	1.733%
												•
_1		133	17	0	0	3	14	39.000	2.786	2.750	1.626	1.547
2		102	17	0	1	3	13	38.000	2.923	2.888	1.633	1.505
3		110	17	0	0		14	40.560	2.897	2.862	1.600	1.530
4	2	122	17	0	0	3	14	38.680	2.763	2.728	1.606	1.518
5 i	2 i	128	17	1	0	3	13	38.300	2.946	2.911	1.661	1.507
6	2	141	17	0	0	3	14	38.880	2.777	2.742	1.604	1.517
7 -	2 7	152	17	0	0	3	14	39.320	2.809	2.773	1.635	1.545
8 i		161	17	0		3	14	40.320	2.880	2.845	1.625	1.537
9	2	174	17	0			14	39.000	2.786	2.751	1.606	1.514
10	2	180	17	0	0	3	14	39.560	2.826	2.790	1.622	1.538
11	2 i	188	17	1	0	3	13	37.620	2.894	2.858	1.694	1.528
12	2 7	196	17	0	0	3	14	36.400	2.600	2.564	1.663	1.567
Totals &	Avgs		204	2	1	36	165	38.803	2.824	2.789	1.631	1.529
Std Devs					 	! ! — –		1.144	0.094	0.094	0.029	0.018
CVs						L		2.949%	3.332%	3.377%	1.761%	1.195%
1 '	2 I	126	17	1	1	2	12	22.160	2 762	2 720	1.650	1 525
$-\frac{1}{2} - -$		136 101	$-\frac{17}{17}$	$-\frac{1}{0}$	∟ <u>∔</u> _ ⊢1	3_	$-\frac{12}{13}$	33.160 36.860	2.763 2.835	2.729 2.801	1.659 1.663	<u>1.535</u> 1.521
- 2 - 1 -		115	1 /	- 0 -			13	38.920	2.780	2.745	1.621	1.532
-4-1-		123	1 /	- 0	 0 -		14	36.900	2.636	2.600	1.602	1.511
5 I			1 /		<mark> 0</mark>	` -	14	36.560			1.644	1.520
$-\frac{3}{6} - \frac{1}{1}$	3 T	145	1 /	1 -	1	i –2 –	13	33.680	2.807	2.772	1.660	1.518
- - -	- +	150	1 /				13	36.260	2.789	2.754	1.672	1.544
- <mark>/</mark> -	<u>-</u>	164	1 /	۱ <u>۲</u> -	1 0	<mark> 2</mark>	13	37.620	2.687	2.652	1.616	1.529
i-	3	173	1 /	- 0		3-	14	38.640	2.760	2.725	1.597	1.515
	3 1		1 /		1		13	36.140	2.780	2.745	1.649	1.517
	3 1		1 /		¦ <u>−</u> −		13	37.780	2.699	2.663	1.607	1.51/
12 - -	- +	189	1 /	- 0	 	3-	14	35.620	2.544	2.509	1.638	1.546
Totals &	_		204		5		160	36.512	2.741	2.706	1.636	1.526
Std Devs				- -	·	! = -		1.750	0.085	0.085	0.026	0.011
CVs					և <u>—</u> – I	¦		4.793%	3.092%	3.135%	1.585%	0.743%
						-						
1 1	4 I	134	17	0	0	3	14	40.960	2.926	2.890	1.607	1.513
	4 7		17		1		13	38.060				1.514
		112	17	0	1	3	13	38.660	2.974	2.939	1.612	1.512
	4 1		17		0		14	38.800	2.771	2.737	1.593	1.501
L				L <u>-</u> -	. <u>-</u> -			_ ======				

Table 6. Bird Weights and Feed Conversion Days 0 - 42 (10JUL15) Summarized by Treatment Group CQR Study Number AGV-15-1

			No. Birds			-	No. Birds	D42 Pen	D42 Avg	D0-42 Avg		
		Pen	Started	₹.	a <u>-</u> 1	al-2	Weighed	Wt	Bird Wt	Bird Gain	Feed	Adj. Feed
Block	Trt	No.		ıtali	٥	אסר					Conversion	Conversion
			Day 0	Mortality	Removal-1	Removal-2	D42	(kg)	(kg)	(kg)	D0-42	D0-42
5	4	129	17	0	1	3	13	38.880	2.991	2.956	1.594	1.492
6	4	147	17	0	1	3	13	37.020	2.848	2.812	1.642	1.528
7	4	151	17	0	0	3	14	38.400	2.743	2.708	1.601	1.509
8	4	163	17	0	0	3	14	39.360	2.811	2.776	1.611	1.516
9	4	171	17	1	1	3	12	35.340	2.945	2.910	1.669	1.512
10	4	137	17	1	0	3	13	36.260	2.789	2.754	1.624	1.527
11	4	185	17	0	0	3	14	39.960	2.854	2.819	1.600	1.515
12	4	191	17	2	1	3	11	31.000	2.818	2.783	1.676	1.493
Totals 8	& Avg	S	204	4	6	36	158	37.725	2.867	2.831	1.624	1.511
Std Dev	/s		[T	t — -	† - -		2.622	0.083	0.083	0.029	0.011
CVs			[T	i – -	i – –		6.950%	2.910%	2.944%	1.816%	0.746%
1		98	17	0		ı 3	14	39.280	2.806	2.770	1.610	1.524
2	5	103	17	0		3	14	40.160	2.869	2.833	1.598	1.518
3	5	113	17	0	1	3	13	38.040	2.926	2.891	1.606	1.489
4	5	121	17	0	î 1	3	13	35.960	2.766	2.731	1.579	1.482
5	5	131	17	1	2	3	11	32.520	2.956	2.921	1.767	1.544
6	5	144	17	1	0	3	13	37.320	2.871	2.836	1.611	1.492
7	5	154	17	0	1	3	13	36.340	2.795	2.760	1.672	1.532
8	5	160	17	0	0	3	14	39.360	2.811	2.776	1.613	1.534
9	5	168	17	0	0	3	14	41.000	2.929	2.893	1.600	1.510
10	5	177	17	0	1	3	13	35.420	2.725	2.690	1.672	1.534
11	5	181	17	1	0	3	13	38.860	2.989	2.954	1.509	1.426
12	5	193	17	0	~ — –	ì 3	14	38.100	2.721	2.687	1.600	1.515
Totals &			204	3	6	36	159	37.697	2.847	2.812	1.620	1.508
Totals &	& Avg			3	6	36	159	37.697 2.352	2.847 0.090	2.812 0.090	1.620 0.062	1.508 0.033
Totals 8	& Avg			3	6	36						
Totals &	& Avg	s 	204		 	 		2.352 6.240%	0.090 3.160%	0.090 3.196%	0.062 3.846%	0.033 2.161%
Totals & Std Dev	& Avg	99		0	0	3	14	2.352 6.240% 40.360	0.090 3.160%	0.090 3.196% 2.848	0.062 3.846% 1.584	0.033 2.161%
Totals & Std Dev CVs	& Avg:	99		0	0	3	14	2.352 6.240% 40.360 40.160	0.090 3.160% 2.883 2.869	0.090 3.196% 2.848 2.834	0.062 3.846% 1.584 1.580	0.033 2.161% - 1.478 1.489
Totals & Std Dev CVs	& Avg:	99		0 0 1	0	3	14 14 12	2.352 6.240% 40.360 40.160 35.840	0.090 3.160% 2.883 2.869 2.987	0.090 3.196% 	0.062 3.846% 1.584 1.580 1.741	0.033 2.161% 1.478 1.489 1.514
Totals & Std Dev CVs	& Avg:	99 107 109		0 0 1	0 0 1	3 3	14 14 12 13	2.352 6.240% 40.360 40.160 35.840 35.420	0.090 3.160% 2.883 2.869 2.987 2.725	0.090 3.196% 2.848 2.834 2.951 2.689	0.062 3.846% 1.584 1.580 1.741 1.671	0.033 2.161% 1.478 1.489 1.514 1.519
Totals & Std Dev CVs	& Avg:	99 107 109 119		0 0 1		3 3 3	14 14 12 13 13	2.352 6.240% 40.360 40.160 35.840 35.420 36.600	0.090 3.160% 2.883 2.869 2.987 2.725 2.815	0.090 3.196% 2.848 2.834 2.951 2.689 2.780	0.062 3.846% 1.584 1.580 1.741 1.671 1.630	0.033 2.161% 1.478 1.489 1.514 1.519 1.510
Totals & Std Dev CVs	6 6 6	99 107 109 119 132	204 - 17 - 17 - 17 - 17 - 17 - 17 - 17	0 0 1 0 1		3 3 3 3	14	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020	0.090 3.160% 2.883 2.869 2.987 2.725 2.815 2.918	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511
Totals & Std Dev CVs	& Avg:	99 107 109 119 132 143 155	204 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	0 0 1 0 1 1 3		თ თ თ თ	14 14 12 13 13 12 11	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920	2.883 2.869 2.987 2.725 2.815 2.918 2.811	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776	1.584 1.580 1.741 1.671 1.630 1.745	0.033 2.161%
Totals & Std Dev CVs	& Avg	99 107 109 119 132 143 155 159	204 	0 1 1 1 3 2		ສ ສ ສ ສ ສ ສ	14 14 12 13 13 13 11 11	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951	2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915	1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622	1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490
Totals & Std Dev CVs	& Avg:	99 107 109 119 132 143 155 159	204 	0 0 1 0 1 1 1 3 2 1		ա ա ա ա ա ա ա ա ա ա ա ա		2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063	2.848 2.834 2.951 2.689 2.780 2.776 2.915 3.028	1.584 1.580 1.741 1.671 1.630 1.745	1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506
Totals & Std Dev CVs	& Avg:	99 107 109 119 132 143 155 159 167	204 	0 0 1 1 1 3 2 1 2			14 14 12 13 13 13 12 11 11 12 12 12	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 34.540	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878	2.848 2.834 2.951 2.780 2.780 2.915 3.028 2.843	1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627	1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497
Totals 8 Std Dec CVs 34	& Avg	99 107 109 119 132 143 155 159 167 179 183	204 - 17 - 17	0 0 1 1 1 1 3 2 1 2 0		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	- 14 - 14 - 12 - 13 - 13 - 12 - 11 - 11 - 12 - 12 - 12 - 12 - 13	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 34.540 37.100	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854	2.848 2.834 2.951 2.689 2.780 2.776 2.915 3.028 2.843 2.819	1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638	1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489
Totals & Std Dev CVs	& Avg.	99 107 109 119 132 143 155 159 167 179 183 192	17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -	0 0 1 1 1 1 3 2 1 2 0		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	14 - 14 - 12 - 13 - 13 - 12 - 11 - 11 - 12 - 12 - 12 - 13 - 14	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 34.540 37.100 38.920	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780	2.848 2.834 2.951 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598	1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504
Totals & Std Dev CVs	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 132 143 155 159 167 179 183 192	204 - 17 - 17	0 0 1 0 1 1 1 2 1 2 0 0			- 14 - 14 - 12 - 13 - 13 - 12 - 11 - 11 - 12 - 12 - 12 - 12 - 13	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 37.100 38.920 36.175	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645	1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502
Totals & Std Dev CVs	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 132 143 155 159 167 179 183 192	17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -	0 0 1 0 1 1 1 2 1 2 0 0			14 - 14 - 12 - 13 - 13 - 12 - 11 - 11 - 12 - 12 - 12 - 13 - 14	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 37.100 38.920 36.175 2.835	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878 0.093	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745 2.843 0.093	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645 0.049	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502 0.013
Totals & Std Dev CVs	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 132 143 155 159 167 179 183 192	17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -	0 0 1 0 1 1 1 2 1 2 0 0			14 - 14 - 12 - 13 - 13 - 12 - 11 - 11 - 12 - 12 - 12 - 13 - 14	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 37.100 38.920 36.175	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645	1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502
Totals 8 Std Dec CVs	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	99 107 109 119 132 143 155 159 167 179 183 192	17 17 17 17 17 17 17 17 17 17 17 17 17 1	0 0 1 1 1 1 1 2 0 0 1 1 2 0 0 0 1		36 36	-14 -14 -12 -13 -13 -12 -11 -11 -11 -12 -12 -13 -14 -151	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 34.540 37.100 38.920 36.175 2.835 7.837%	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878 0.093 3.235%	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745 2.843 0.093 3.271%	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645 0.049 3.006%	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502 0.013 0.848%
Totals & Std Dev CVs	- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7	99 107 109 119 132 143 155 167 179 183 192	17 17 17 17 17 17 17 17 17 17 17 17 17 1	0 0 1 0 1 1 2 1 2 0 0 1 1 2 0 0		36 36 36 36 36 36 36 36 36 36 36 36 36 3	-14 -14 -12 -13 -13 -12 -11 -11 -11 -12 -12 -13 -14 -151 	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 34.540 37.100 38.920 36.175 2.835 7.837%	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878 0.093 3.235%	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745 2.843 0.093 3.271%	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.598 1.598 1.598 1.598	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502 0.013 0.848%
Totals & Std Dev CVs	- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7	99 107 109 119 132 143 155 167 179 183 192	17 17 17 17 17 17 17 17 17 17 17 17 17 1	0 0 1 1 0 1 1 2 1 2 0 0 0 1 1 1 0 0 0 0		ສໄໝ ໝ ໝ ໝ ໝ ໝ ໝ ໝ ໝ ໝ	-14 -14 -12 -13 -13 -12 -11 -11 -11 -12 -12 -12 -13 -14 -151 	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 34.540 37.100 38.920 36.175 2.835 7.837%	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878 0.093 3.235%	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745 2.843 0.093 3.271%	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645 0.049 3.006%	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502 0.013 0.848%
Totals & Std Dev CVs	- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7	99 107 109 119 132 143 155 159 183 192 97 105	17 17 17 17 17 17 17 17 17 17 17 17 17 1	0 0 1 1 0 1 1 2 0 0 0 1 1 2 0 0 0 0 0 0		36 m	-14 -12 -13 -13 -12 -11 -11 -12 -12 -13 -14 -151 -14 -14 -14 -14 -14 -13	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 34.540 37.100 38.920 36.175 2.835 7.837%	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878 0.093 3.235% 3.034 3.059 2.965	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745 2.843 0.093 3.271%	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645 0.049 3.006%	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502 0.013 0.848%
Totals & Std Dev CVs	-66666667-7-7-7-7-7-7-7-7	99 107 109 119 132 143 155 167 179 183 192 97 105 116 116	204 - 17 -	0 0 1 1 0 1 1 2 0 0 0 1 1 2 0 0 0 0 0 0		36 m m m m m m m m m m m m m m m m m m m	-14 -12 -13 -13 -12 -11 -11 -12 -12 -12 -13 -14 -151 -14 -14 -14 -14 -14 -14 -14 -14 -14 -1	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 34.540 37.100 38.920 36.175 2.835 7.837%	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878 0.093 3.235% 3.034 3.059 2.965 2.990	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745 2.843 0.093 3.271%	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645 0.049 3.006%	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502 0.013 0.848%
Totals & Std Dev CVs	- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7	99 107 109 119 132 143 155 159 167 179 183 192 105 116 116 116 116 116 116 116 116 117 116 117 117	204 - 17 -	0 0 1 1 1 3 2 1 2 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0		ສ6 ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ	- 14 - 12 - 13 - 13 - 12 - 11 - 11 - 12 - 12 - 12 - 13 - 14 - 151 - 14 - 14 - 14 - 13 - 14 - 13 - 14 - 13 - 14 - 13	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 34.540 37.100 38.920 36.175 2.835 7.837% 42.480 42.820 38.540 41.860 37.980	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878 0.093 3.235% 3.034 3.059 2.965 2.990 2.922	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745 2.843 0.093 3.271% 2.998 3.024 2.930 2.954 2.886	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645 0.049 3.006% 1.587 1.560 1.560 1.596	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502 0.013 0.848% 1.503 1.478 1.493 1.484 1.481
Totals 8 Std Dev CVs -1 -2 -3 -4 -1 -5 -1 -12 Totals 8 Std Dev CVs	- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7	99 107 109 119 132 143 155 167 179 183 192 105 116 124 124 125 146	204 - 17 -			ສຸດ ໝຸດ ໝາດ ໝາດ	-14 -12 -13 -13 -12 -11 -11 -11 -12 -12 -13 -14 -151 -14 -14 -13 -14 -13 -14 -13 -14 -13 -13 -13	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 34.540 37.100 38.920 36.175 2.835 7.837% 42.480 42.820 38.540 41.860 37.980 38.520	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.878 0.093 3.235% 3.034 3.059 2.965 2.990 2.922 2.963	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745 2.843 0.093 3.271% 2.998 3.024 2.930 2.954 2.928	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645 0.049 3.006% 1.587 1.560 1.521 1.569 1.596 1.596 1.581	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502 0.013 0.848% 1.503 1.478 1.493 1.484 1.481 1.488
Totals & Std Dev CVs	- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7	99 107 109 119 132 143 155 159 167 179 183 192 105 116 116 116 116 116 116 116 116 117 116 117 117	204 - 17 -	0 0 1 1 1 2 1 2 0 0 1 1 1 2 0 0 0 0 0 0		യ യ യ യ യ യ യ യ യ യ	- 14 - 12 - 13 - 13 - 12 - 11 - 11 - 12 - 12 - 12 - 13 - 14 - 151 - 14 - 14 - 14 - 13 - 14 - 13 - 14 - 13 - 14 - 13	2.352 6.240% 40.360 40.160 35.840 35.420 36.600 35.020 30.920 32.460 36.760 34.540 37.100 38.920 36.175 2.835 7.837% 42.480 42.820 38.540 41.860 37.980	2.883 2.869 2.987 2.725 2.815 2.918 2.811 2.951 3.063 2.878 2.854 2.780 2.854 2.780 2.878 0.093 3.235% 3.034 3.059 2.965 2.990 2.922 2.963 2.831	0.090 3.196% 2.848 2.834 2.951 2.689 2.780 2.883 2.776 2.915 3.028 2.843 2.819 2.745 2.843 0.093 3.271% 2.998 3.024 2.930 2.954 2.886	0.062 3.846% 1.584 1.580 1.741 1.671 1.630 1.665 1.715 1.622 1.668 1.627 1.638 1.598 1.645 0.049 3.006% 1.587 1.560 1.560 1.596	0.033 2.161% 1.478 1.489 1.514 1.519 1.510 1.511 1.513 1.490 1.506 1.497 1.489 1.504 1.502 0.013 0.848% 1.503 1.478 1.493 1.484 1.481

Table 6. Bird Weights and Feed Conversion Days 0 - 42 (10JUL15) Summarized by Treatment Group

CQR Stud	y Number	AGV-15-1
----------	----------	----------

Block	Block Trt Pen	Pen	No. Birds Started	lity	/al-1	/al-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D0-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
DIOCK	11	No.	Day 0	Mortality	Removal-1	Removal-2	D42	(kg)	(kg)	(kg)	D0-42	D0-42
9	7	170	17	1	0	3	13	37.880	2.914	2.878	1.602	1.501
10	7	178	17	0	0	3	14	40.240	2.874	2.839	1.605	1.512
11	7	182	17	0	0	3	14	39.520	2.823	2.788	1.604	1.515
12	7	190	17	1	0	3	13	36.660	2.820	2.785	1.613	1.514
Totals 8	Totals & Avgs		204	4	1	36	163	39.850	2.933	2.898	1.592	1.498
Std Dev	/s			Γ	i – –	i		2.045	0.083	0.083	0.018	0.014
CVs					r — – I			5.132%	2.823%	2.858%	1.120%	0.917%
1	8	100	17	0	0	3	14	40.320	2.880	2.846	1.569	1.480
2	8	106	17	1	0	3	13	38.000	2.923	2.888	1.590	1.499
3	8	111	17	0	0	3	14	40.040	2.860	2.825	1.595	1.511
4	8	117	17	0	1	3	13	37.800	2.908	2.872	1.637	1.482
5	8	127	17	1	0	3	13	37.420	2.878	2.844	1.650	1.504
6	8	142	17	1	0	3	13	38.000	2.923	2.888	1.569	1.486
7	8	156	17	0	0	3	14	37.560	2.683	2.648	1.589	1.511
8	8	165	17	1	i 3	3	10	30.220	3.022	2.987	1.727	1.503
9	8	172	17	0	0	3	14	40.340	2.881	2.846	1.568	1.492
10	8	140	17	0	0	3	14	41.320	2.951	2.916	1.568	1.485
11	8	184	17	1	0	3	13	36.020	2.771	2.736	1.610	1.501
12	8	194	17	0	0	3	14	39.540	2.824	2.789	1.573	1.512
Totals 8	& Avg	S	204	5	4	36	159	38.048	2.875	2.841	1.604	1.497
Std Dev	/s				[2.914	0.087	0.087	0.047	0.012
CVs								7.659%	3.035%	3.069%	2.958%	0.789%

Table 8. Bird Weights and Feed Conversion Days 21 - 42 (10JUL15) Summarized by Treatment Group CQR Study Number AGV-15-1

Block	Trt	Pen No.	No. Birds Started Day 21	Mortality	Removal-1	Removal-2	No. Birds Weighed D42	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D21-42 Avg Bird Gain (kg)	Feed Conversion D21-42	Adj. Feed Conversion D21-42
1	1	135	17	1	0	3	13	31.080	2.391	1.788	1.824	1.620
2	1	108	16	0	0	3	13	30.340	2.334	1.739	1.833	1.692
3	1	114	15	1	0	3	11	26.140	2.376	1.774	1.869	1.618
4	1		17	1	0	3	13	29.380	2.260	1.689	1.795	1.620
5	1	126	17	1	0	3	13	31.080	2.391	1.781	1.944	1.652
6	1	148	17	0	0	3	14	32.720	2.337	1.745	1.741	1.607
7	1	149	17			3	13	31.920	2.455	1.854	1.871	1.627
8 7	1	162	16	-0	- <u>-</u>	-3	13	31.320	2.409	1.809	1.767	1.626
9	- <u>-</u> -	169	16	0	0	3	13	32.480	2.498	1.855	1.795	1.650
10	1	138	17	0		3	14	30.900	2.207	1.673	1.786	1.664
11	1	187	1 7	0	0	3	14	31.000	2.214	1.664	1.769	1.654
12	1	195	16	0	0	3	13	29.200	2.246	1.654	1.763	1.630
Totals 8	L Ave		198	4	1	36	157	30.630	2.343	1.752	1.813	1.638
Std Dev				- -				1.768	0.095	0.071	0.058	0.024
CVs								5.773%	4.034%	4.027%	3.210%	1.484%
1	2	133	17	0	0	3	14	39.000	2.786	2.102	1.714	1.600
2	2	102	17	0	1	3	13	38.000	2.923	2.267	1.731	1.548
3	_ <u>_</u>		17	_ _	0	3	14	40.560	2.897	2.250	1.654	1.558
4	2	122	17	0	0	3	14	38.680	2.763	2.092	1.702	1.576
5	2	128	17	1	0	3	13	38.300	2.946	2.272	1.766	1.544
6	2	141	17	0	0	3	14	38.880	2.777	2.117	1.687	1.563
7	2	152	17	0	0	3	14	39.320	2.809	2.109	1.723	1.591
8	2	161	17	0	0	3	14	40.320	2.880	2.178	1.725	1.597
9	2	174	17	0	0	3	14	39.000	2.786	2.099	1.698	1.564
10	2	180	17	0	0	3	14	39.560	2.826	2.135	1.689	1.571
11	2	188	17	1	0	3	13	37.620	2.894	2.182	1.835	1.585
12	2	196	17	0	0	3	14	36.400	2.600	1.887	1.808	1.659
Totals 8	& Avgs	3	204	2	1	36	165	38.803	2.824	2.141	1.728	1.580
Std Dev	ıs							1.144	0.094	0.104	0.052	0.031
CVs								2.949%	3.332%	4.873%	3.005%	1.951%
1	_3_	136	16	_1_	0	_3_	12	33.160	2.763	2.085	1.784	1.608
_ <mark>2</mark>	_3_	101	17	0	_1_	3	13	36.860	2.835	2.168	1.786	1.577
3 _	_3_	115	17	_0_	0	_3_	14	38.920	2.780	2.096	1.732	1.602
4	_3_	123	17	_0_	_0_	_3_	14	36.900	2.636	1.983	1.706	1.572
_5	_3_	130 145	17		0		13	36.560	2.812	2. <u>121</u>	1.769	1.583
6			16		_1_		12	33.680	2.807	2.145	1.781	1.573
<mark>7</mark> _	_3_	150	17	_0_	_1_	_3_	13	36.260	2.789	2.105	1.802	1.609
- <mark>8</mark> -		164	17		_0_		14	37.620	2.687	2.029	1.724	1.597
9		173	17		_0_		14	38.640	2.760	2.098	1.693	1.575
_10 _	_3_	139	17	_0_	_1_	_3_	13	36.140	2.780	$\frac{2.102}{2.002}$	1.786	1.586
11		186	17	_0_	_0_	_3_	14	37.780	2.699	2.042	1.719	1.594
12		189	17	_	0	-	14	35.620	2.544	1.902	1.743	1.606
Totals 8		<u> </u>	202	_2_	_4_	36	160	36.512	2.741	2.073	1.752	1.590
Std Dev	'S		L	L_			L	1.750	0.085	0.074	0.037	0.014
CVs								4.793%	3.092%	3.562%	2.097%	0.892%

Table 8. Bird Weights and Feed Conversion Days 21 - 42 (10JUL15) Summarized by Treatment Group CQR Study Number AGV-15-1

Block	Trt	Pen No.	No. Birds Started Day 21	Mortality	Removal-1	Removal-2	No. Birds Weighed D42	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D21-42 Avg Bird Gain (kg)	Feed Conversion D21-42	Adj. Feed Conversion D21-42
				Σ	ž	Š						
1	4	134	17	0	0	3	14	40.960	2.926	2.179	1.722	1.582
· - 1 - 1	- 1 -1	104	1/	_0	_ <u></u>	∟ <u>∍</u> ⊢3	13	38.060	2.928	1 - 2.179 - 1 2.237	1.786	1.577
- 2 -	- 1 ¦	112	1/	0	1	3	13	38.660	2.926	$\frac{1}{1} - \frac{2.237}{2.300} - \frac{1}{1}$	1.713	1.569
- 3	-4-	118	1/	0		-3 -3	13	38.800	2.771	2.063		1.589
5 _	_ * _	129	1/	-0	1	_ <u>3_</u>	14	38.880	2.991	2.303	_ <u>1.728</u> 1.687	1.538
-6	- 1 -	147	1/	-0	1	3	13	37.020	2.848	2.163	1.749	1.581
-5-	- 4 -+	151	$\frac{17}{17}$	_0	- <u>1</u>	⊢ <u>3</u>	13	38.400	2.743	2.059	1.695	1.561
<mark>′</mark>	_ 1 _	163	1/	_0	_0	_ <u>3_</u>	14	39.360	2.811	2.101	1.724	1.582
- 6 -	- 1 -	171	1/	-0	1	3	14	35.340	2.945	$\frac{1}{2.226} - \frac{2.101}{2.226} - \frac{1}{2}$	1.813	1.578
10	- 4 -+	137	$-\frac{10}{16}$	0	- <u>1</u> -	⊢ <u>3</u>	12	36.260	2.789	2.092	1.732	1.593
11	_ 1 _	185	10	0		_ <u>3</u> ⊢3	13	39.960	2.854	1 _ 2.092 _] 1 2.159	1.693	1.570
12	- 4 - ¦	191	$-\frac{17}{16}$	1	1	3	$\frac{14}{11}$	31.000	2.854	2.139	1.845	1.560
Totals 8			201	1	6		158	37.725	2.818		1.845	1.573
Std Dev			201	<u>-</u> -		36	158	2.622	0.083	2.168 0.084	0.050	0.015
CVs	<u> </u>							6.950%	2.910%	3.889%	2.854%	0.949%
CVS								6.950%	2.910%	5.889%	2.854%	0.949%
1	5	98	17	0	0	3	14	39.280	2.806	2.114	1.717	1.592
$-\frac{1}{2}$	-5- H	103	1/	_0	-0	_ 3	14	40.160	2.869	$\frac{2.114}{2.177}$	1.685	1.571
	_ <u>5</u>			0	1	_ <u>3</u> ⊢3	13					
$-\frac{3}{4}$	-5- 1	113 121	$-\frac{17}{16}$	_0_	-0	3	13	38.040 35.960	2.926	$\frac{1}{1} - \frac{2.210}{2.081} - \frac{1}{1}$	1.735	_ <u>1.557</u>
	+		16		\vdash \vdash \vdash	⊢ − l			2.766	+ +	1.671	
5	_5_ j	131	15	_0_	_1_	_3_	11	32.520	2.956	$\frac{2.206}{3.477}$	1.961	1.636
$-\frac{6}{7}$	-5-1	144 154	17	_1_	_0_ _1	- <u>3</u>	13	37.320	2.871	$\frac{2.177}{3.079}$	$-\frac{1.742}{1.937}$	1.563
$-\frac{7}{9}$	+		17		<u>⊢</u> <u>−</u>	\vdash $-$	13	36.340	2.795	$\frac{2.078}{2.118}$	1.837	1.618
$-\frac{8}{9}$	_5_ j	160	$-\frac{17}{17}$	_0_	_0_	_3_	14	39.360	2.811	2.118	1.726	1.610
		168		_0_	□ 0 □ 1	3	14	41.000	2.929 2.725	$\frac{2.180}{2.016}$	<u>1.717</u> 	<u>1.583_</u> 1.628
10	- <u>5</u> +	177	\frac{17}{16}	_0_	<u>⊢</u> <u>−</u>	3	$-\frac{13}{12}$	35.420				
11	_5_ j	181	16	_0_	_0_	_3_	13	38.860	2.989	2.274	1.580	1.463
12 Totals 8		193	17	0 1	4	3 36	14 159	38.100	2.721	2.037	1.707 1.744	1.581 1.578
Std Dev			200		- -			37.697 2.352	2.847 0.090		0.098	0.047
CVs						<u> </u>		6.240%	3.160%	3.619%	5.609%	2.979%
-								012 1070	0,200,0	0.02070	0.0007.0	2107070
1	6	99	17	0	0	3	14	40.360	2.883	2.185	1.691	1.537
2	-6- i		17	0		3	14	40.160	2.869	2.200	1.672	1.543
3	- 6 +	109	1 7	1	⊢ <u>−</u>	⊢ <u>~</u> 3	12	35.840	2.987	2.278	1.939	1.588
- 4		119	$\frac{17}{17}$	- <u>î</u> -	∟ <u>+</u> ⊢ 1		13	35.420		2.046	1.818	1.586
- 5 -		132	17		0		13	36.600	2.815	2.100	1.771	1.586
-6	- <mark>6</mark> †	143	$-\frac{17}{16}$	-0	1	⊢3 . 3	13	35.020	2.918	$\frac{1}{1} - \frac{2.100}{2.231} - \frac{1}{1}$	1.793	1.568
7		155	10		0		12	30.920	2.811	2.086	1.903	1.596
8	- <mark>6</mark> - i	159	$\frac{13}{14}$	-	0	3	11	32.460	2.951	2.224	1.710	1.552
	- 6 +	167	16	0	⊢ <u>-</u>	⊢ <u>-</u> 3	12	36.760	3.063	2.335	1.809	1.568
10		179	10		0		12	34.540	2.878	2.160	1.722	1.561
11	6	183	17	0	1	3	13	37.100	2.854	2.153	1.786	1.560
12	- 6 †	192	$\frac{17}{17}$	-0	0	⊢ <u>3</u> ⊢3	13	38.920	2.780	2.053	1.711	1.570
Totals 8			195	_	5		151	36.175		2.171	1.777	1.568
Std Dev				<u></u>				2.835	0.093	0.090	0.083	0.018
CVs				Γ-	⊢	⊢		7.837%	3.235%	4.123%	4.665%	1.178%

Table 8. Bird Weights and Feed Conversion Days 21 - 42 (10JUL15) Summarized by Treatment Group CQR Study Number AGV-15-1

Block	Trt	Pen No.	No. Birds Started Day 21	Mortality	Removal-1	Removal-2	No. Birds Weighed D42	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D21-42 Avg Bird Gain (kg)	Feed Conversion D21-42	Adj. Feed Conversion D21-42
1	7	97	17	0	0	3	14	42.480	3.034	2.259	1.706	1.579
2	7	105	17	0	0	3	14	42.820	3.059	2.320	1.664	1.545
3	7	116	17	0	1	3	13	38.540	2.965	2.208	1.773	1.573
4	7	124	17	0	0	3	14	41.860	2.990	2.277	1.665	1.542
5	7	125	17	1	0	3	13	37.980	2.922	2.217	1.711	1.540
6	7	146	16	0	0	3	13	38.520	2.963	2.262	1.674	1.544
7	7	153	17	0	0	3	14	39.640	2.831	2.121	1.681	1.548
8	7	166	17	0	0	3	14	42.060	3.004	2.265	1.703	1.586
9	7	170	16	0	0	3	13	37.880	2.914	2.174	1.712	1.564
10	7	178	17	0	0	3	14	40.240	2.874	2.128	1.732	1.592
11	7	182	17	0	0	3	14	39.520	2.823	2.103	1.734	1.600
12	7	190	16	0	0	3	13	36.660	2.820	2.091	1.752	1.604
Totals 8	& Avg	s	201	1	1	36	163	39.850	2.933	2.202	1.709	1.568
Std Dev	vs							2.045	0.083	0.077	0.034	0.024
CVs						I		5.132%	2.823%	3.504%	2.014%	1.539%
1	8	100	17	_0_	_0_	3	14	40.320	2.880	2.199	1.660	1.531
_2	88	106	16	0	_0_	3	13	38.000	2.923	2.247	1.674	1.547
_3	_8_	111	17	_0_	_0_	_3_	14	40.040	2.860	2.169	1.688	1.567
4	8	117	17	0	_1_	3	13	37.800	2.908	2.182	1.786	1.549
5	88	127	17	_1_	_0_	_3	13	37.420	2.878	2.186	1.788	1.570
6	_8_	142	16	_0_	0	_3	13	38.000	2.923	2.198	1.667	1.546
7	8	156	17	_0_	_0	_3	14	37.560	2.683	2.049	1.684	1.572
8	8	165	1 5	0	2	3	10	30.220	3.022	2.253	1.940	1.596
9	_8_	172	17	_0_	0	3	14	40.340	2.881	2.192	1.667	1.557
_10 _	8	140	17	_0_	0_	3	14	41.320	2.951	2.243	1.656	1.536
_11 _	8	184	17	_1_	_0_	3	13	36.020	2.771	2.071	1.745	1.575
12	8	194	17	0	0	3	14	39.540	2.824	2.144	1.668	1.578
Totals 8	& Avg	s	200	_2_	_3_	36	159	38.048	2.875	2.178	1.718	1.560
Std Dev	vs		L	L_	 	 -	L	2.914	0.087	0.064	0.084	0.019
CVs					i	i		7.659%	3.035%	2.940%	4.915%	1.224%

Table 9. Feed Added and Removed by Pen Day 0 - Study End (kg) CQR Study Number AGV-15-1

Feed Feed WB (D21) Consumed D Consum		41.14	12.86	6.00	16.00	12.00	20.00	13.80	8.40	4.60	13.00	5.40	4.60	10.00	145	3	6
Part	59.18	44.46	9.54		16.00	12.00	20.00	14.72	8.84	4.16	13.00	5.88	4.12	10.00	144	 	6
Part	57.30	43.06	10.94	6.00	16.00	12.00	20.00	14.24	8.52	4.48	13.00	5.72	4.28	10.00	143	6	6
Part	58.70	44.00	10.00	6.00	16.00	12.00	20.00	14.70	8.80	4.20	13.00	5.90	4.10	10.00	142	8	6
Prof. Prof	61.40	46.66	7.34	6.00	16.00	12.00	20.00	14.74	8.94	4.06	13.00	5.80	4.20	10.00	141	2	6
Part	63.86	48.50	5.50	6.00	16.00	12.00	20.00	15.36	9.32	3.68	13.00	6.04	3.96	10.00	140	- - - -	10 10
Part Part WB Did Consumed Reed Reed WB Did Consumed Reed	58.62	43.96	10.04	6.00	16.00 T	12.00	20.00	14.66	8.80	4.20	13.00	5.86	4.14	10.00	139	3 3	10
Part Part WB [D21] Command D Feed Part Part WB [D21] Command D Feed Part Part Part WB [D21] Command D Feed Part P	52.44	38.98	15.02	6.00	16.00	12.00	20.00	13.46	7.62	5.38	13.00	5.84	4.16	10.00	138	- - - 1	10
Part Part WB [D14] Command D Feed Part WB [D14] Command D Feed Part Part WB [D14] Command D Feed Part P	57.92	43.48	10.52	6.00	16.00	12.00	20.00	14.44	8.70	4.30	13.00	5.74	4.26	10.00	137	4	10
Pan Feed WS Did Command Feed WS Coll Command Feed WS Coll Command Feed WS Coll Command Feed WS Coll	54.02	39.78	14.22	6.00	16.00	12.00	20.00	14.24	8.44	4.56	13.00	5.80	4.20	10.00	136	_ 	1
Part	52.10	38.02	15.98	6.00	16.00	12.00	20.00	14.08	8.26	4.74	13.00	5.82	4.18	10.00	135	_ - -	1
Part Part Part WB (D14) Casumant D Feed WB (D21) Casumant D Feed F	64.86	48.66	5.34	6.00	16.00	12.00	20.00	16.20	9.76	3.24	13.00	6.44	3.56	10.00	134	4	1
Part	62.42	46.94	7.06	6.00		12.00	20.00	15.48	9.32	3.68	13.00	6.16	3.84	10.00	133	2	1
Part	58.68	43.28	10.72	6.00		12.00	20.00	15.40	9.38	3.62	13.00	6.02	3.98	10.00	132	- - -	5
Part	56.40	41.70	12.30	6.00		12.00	20.00	14.70	8.90	4.10	13.00	5.80	4.20	10.00	131	<u> </u> - 5	5
Part	59.12	43.88	10.12	6.00		12.00	20.00	15.24	9.10	3.90	13.00	6.14	3.86	10.00	130	i ω	5
Part Part Part Part We We We We We We We We We We We		45.86	8.14	6.00		12.00	20.00	15.18	9.12	3.88	13.00	6.06	3.94	10.00	129	 4	5
Part		47.40	6.60	6.00		12.00	20.00	15.24	9.04	3.96	13.00	6.20	3.80	10.00	128	- - - -	5
Part	60.76	45.84	8.16	6.00		12.00	20.00	14.92	8.92	4.08	13.00	6.00	4.00	10.00	127	i ∞	5
Part	53.74	40.28	13.72	6.00		12.00	20.00	13.46	7.82	5.18	13.00	5.64	4.36	10.00	126	 	5
Part	59.64	44.48	9.52	6.00		12.00	20.00	15.16	8.96	4.04	13.00	6.20	3.80	10.00	125	7	5
Part	64.74	49.52	4.48	6.00		12.00	20.00	15.22	9.04	3.96	13.00	6.18	3.82	10.00	124	7 _	4
Part	58.16	44.02	9.98	6.00		12.00	20.00	14.14	8.40	4.60	13.00	5.74	4.26	10.00	123	 ω	4
Pan Feed 1 WB (D14) Consumed D Feed 2 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D F	61.14	46.44	7.56	6.00		12.00	20.00	14.70	8.80	4.20	13.00	5.90	4.10	10.00	122	2	4
Part		41.78	12.22	6.00		12.00	20.00	14.06	8.22	4.78	13.00	5.84	4.16	10.00	121	5	4
Pan Feed WB (D24) Consumed D Feed 2 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D22) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 Feed 5 Feed 6 WB (D22) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 Feed 6 Feed 5 Feed 6 Feed 5 Feed 6 Feed 5 Feed 6 Feed 6 Feed 6 Fee		35.32	18.68	6.00		12.00	20.00	12.58	7.28	5.72	13.00	5.30	4.70	10.00	120	 - -	4
Pan Feed 1 WB (D14) Consumed D Feed 2 WB (D21) Consumed D Consumed D Consumed D Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D Consumed D Feed 5 Feed 6 WB (D42) Consumed D Feed 5 Feed 6 WB (D42) Consumed D Feed 5 Feed 6 Feed 6 WB (D42) Consumed D Consumed	58.18	43.42	10.58	6.00		12.00	20.00	14.76	8.90	4.10	13.00	5.86	4.14	10.00	119	i_ - 6	4
Pan Feed 1 WB (D14) Consumed D Feed 2 WB (D21) Consumed D Consumed		46.24	7.76	6.00		12.00	20.00	14.62	8.80	4.20	13.00	5.82	4.18	10.00	118	4_	4
Prot		45.46	8.54	6.00		12.00	20.00	15.44	9.16	3.84	13.00	6.28	3.72	10.00	117	 <mark>&</mark> 	4
Pen Feed 1 WB (D14) Consumed D Feed 2 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D21) Consumed D Con		45.52	8.48	6.00		12.00	20.00	15.98	9.60	3.40	13.00	6.38	3.62	10.00	116		ω
Feed Pen Feed Pen Feed Pen Feed Pen Feed Pen		47.28	6.72	6.00		12.00	20.00	14.82	8.80	4.20	13.00	6.02	3.98	10.00	115	 ω	S
Feed Pen Feed Pen Feed Pen Feed Pen		31.96	22.04	6.00		12.00	20.00	12.00	7.00	6.00	13.00	5.00	5.00	10.00	114	 	ω
Trt Pen Feed 1 WB (D14) Consumed D (Consumed D) Feed 2 WB (D21) Consumed D (Consumed D) Feed 3 Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (Consumed D) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Consumed D (21.42) Feed 3 Feed 4 Feed 4 Feed 4 Feed 4 Feed 4	60.14	44.86	9.14	6.00		12.00	20.00	15.28	9.08	3.92	13.00	6.20	3.80	10.00	113	 	S
Feed Pen Feed Pen Feed Ped P		46.60	7.40	6.00		12.00	20.00	14.74	8.76	4.24	13.00	5.98	4.02	10.00	112	4	3
Feed		47.76	6.24	6.00		12.00	20.00	15.16	9.02	3.98	13.00	6.14	3.86	10.00	111	i _∞	u
Trt Pen Feed 1 WB (D14) Consumed D (o.14) Feed 2 WB (D21) Consumed D (consumed D) Feed 3 Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (consumed D) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 5 Feed 6 WB (D42) Consumed D (21.42) Feed 3 Feed 4 Feed 5 Feed 5 Feed 6 WB (D42) Consumed D (21.42)		48.90	5.10	6.00		12.00	20.00	15.02	8.92	4.08	13.00	6.10	3.90	10.00	110	 2 	u
Pen Feed 1 WB (D14) Consumed D Feed 2 WB (D21) Consumed D Consumed D Consumed D Consumed D Consumed D Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D Feed 2 Pen Feed 5 Feed 6 WB (D42) Consumed D Feed 5 Feed 6 WB (D42)	61.34	46.16	7.84	6.00		12.00	20.00	15.18	9.08	3.92	13.00	6.10	3.90	10.00	109	6	S
Trt Pen Feed 1 WB (D14) Consumed D (0-14) Feed 2 WB (D21) Consumed D (0-21) Feed 3 Feed 4 Feed 5 Feed 5 WB (D42) Consumed D (0-14) Feed 5 Feed 5 WB (D42) Consumed D (0-14) Feed 1 WB (D42) Consumed D (0-14) Feed 5 Feed 5 Feed 5 WB (D42) Consumed D (21-42) Feed 1 WB (D42) Consumed D (21-42) Feed 3 Feed 4 Feed 5 Feed 5 WB (D42) Consumed D (21-42) Feed 3 Feed 4 Feed 5 WB (D42) Consumed D (21-42) Feed 3 Feed 4 Feed 5 Feed 5 WB (D42) Consumed D (21-42) Feed 3 Feed 4 Feed 5 Feed 5 Feed 5 Peed 5 Feed 5 Feed 6 WB (D42) Consumed D (21-42) Consumed D (21-42) Feed 3 Feed 4 Feed 5 Feed 4 Feed 5 Feed 4 Feed 5 Feed 4 Peed 5 Feed 4 Feed 5 Feed 4 Peed 5 Feed 4 Peed 5 Feed 4 Peed 5 Feed 5 Feed 5 Peed 5 Peed 5	50.58	38.16	15.84	6.00		12.00	20.00	12.42	7.30	5.70	13.00	5.12	4.88	10.00	108	1	2
Feed	62.52	48.16	5.84	6.00		12.00	20.00	14.36	8.60	4.40	13.00	5.76	4.24	10.00	107	6	2
Feed	59.46	45.50	8.50	6.00		12.00	20.00	13.96	8.28	4.72	13.00	5.68	4.32	10.00	106	- - - -	2
Trt Pen Feed 1 WB (D14) Consumed D (0-14) Feed 2 WB (D21) Consumed D (onsumed	65.86	50.36	3.64	6.00	16.00	12.00	20.00	15.50	9.40	3.60	13.00	6.10	3.90	10.00	105		2
Trt Pen Feed 1 WB (D14) Consumed D (0-14) Feed 2 WB (D21) Consumed D (0-14) Feed 3 Feed 4 Feed 5 Feed 5 WB (D42) Consumed D (0-14) Feed 5 Feed 5 Feed 5 WB (D42) Consumed D (0-14) Feed 1 WB (D42) Consumed D (0-14) Feed 3 Feed 4 Feed 5 Feed 5 WB (D42) Consumed D (0-14) Feed 1 WB (D42) Consumed D (0-14) Feed 3 Feed 4 Feed 5 Feed 5 WB (D42) Consumed D (0-14) Feed 3 Feed 4 Feed 5 Feed 5 WB (D42) Consumed D (0-14) Feed 3 Feed 4 Feed 5 Feed 5 Feed 6 WB (D42) Consumed D (0-14) Per 3 Feed 3 Feed 4 Feed 5 Feed 5 Feed 6 WB (D42) Consumed D (0-14) Per 3 Peed 3 Feed 4 Feed 5 Feed 4 WB (D42) Consumed D (0-14) Peed 3 Peed 4 Feed 5 Feed 4 Peed 5 Feed 4 Peed 5 Feed 4 Peed 5 Feed 5 Peed 5 Peed 5 Peed 5 Pee	61.98	47.00	7.00	6.00	16.00	12.00	20.00	14.98	9.18	3.82	13.00	5.80	4.20	10.00	104	_ - 4	2
Trt Pen Feed 1 WB (D14) Consumed D (0-14) Feed 2 WB (D21) Consumed D (onsumed	63.20	47.86	6.14	6.00	16.00	12.00	20.00	15.34	9.18	3.82	13.00	6.16	3.84	10.00	103	_i _i	2
Feed	61.08	46.46	7.54	6.00	16.00	12.00	20.00	14.62	8.68	4.32	13.00	5.94	4.06	10.00	102	2	2
Feed	60.30	45.58	8.42	6.00	16.00	12.00	20.00	14.72	8.84	4.16	13.00	5.88	4.12	10.00	101	_ ပ	2
Feed 1 WB (D14) Consumed D Feed 2 WB (D21) Consumed D Consumed D Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D Feed 2 Peed 5 Feed 6 WB (D42) Consumed D Feed 2 Peed 5 Feed 6 WB (D42) Consumed D Feed 2 Peed 5 Feed 6 WB (D42) Consumed D Feed 2 Peed 5 Feed 6 WB (D42) Consumed D Feed 1 Peed 5 Feed 6 WB (D42) Consumed D Peed 2 Peed 5 Feed 6 WB (D42) Consumed D Peed 2 Peed 5 Feed 6 WB (D42) Consumed D Peed 2 Peed 5 Feed 6 WB (D42) Consumed D Peed 5 Feed 6 WB (D42) Peed 5 Feed 6 WB	62.36	47.70	30	6.00	16.00	12.00	20.00	14.66	8.82	4.18	13.00	5.84	4.16	10.00	10 10	_ i ∞	1
Feed 1 WB (D14) Consumed D Feed 2 WB (D21) Consumed D Consumed D Consumed D Feed 3 Feed 5 Feed 6 WB (D42) Consumed D Consumed D Feed 3 Feed 5 Feed 6 WB (D42) Consumed D Consumed D Feed 3 Feed 5 Feed 6 WB (D42) Consumed D Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D Consumed D Feed 3 Feed 5 Feed 6 WB (D42) Consumed D Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D Consumed D Consumed D Consumed D Consumed D Feed 3 Feed 6 WB (D42) Consumed D Consumed D Consumed D Feed 3 Feed 6 WB (D42) Consumed D Consumed D Feed 3 Feed 6 WB (D42) Consumed D Feed 3 Feed 6 WB (D42) Consumed D Consumed	63.00	i	80 	6.00	16.00	12.00	20.00	14.80	9.02	3.98	13.00	5.78	4.22	10.00	99	6	1
Trt Pen Feed 1 WB (D14) Consumed D Consumed D O-14 Feed 2 WB (D21) Consumed D	62.26	i	74	6.00	16.00	12.00	20.00	15.00	8.96	4.04	13.00	6.04	3.96	10.00	98	5 	1
Feed Feed Feed Feed Feed Feed Feed Feed	66.44			6.00	16.00	12.00	20.00	16.46	9.96	3.04	13.00	6.50	3.50	10.00	97	7	1
Feed Feed Feed Feed Feed Feed Feed Feed	(kg)	(kg)	10-Jul-15	8-Jul-05	2-Jul-15	26-Jun-15	19-Jun-15	(kg)	(kg)	19-Jun-15	12-Jun-15	(kg)	12-Jun-15	27-May-15			
Feed 1 WB (D14) Consumed D Feed 2 WB (D21) Consumed D Feed 3 Feed 4 Feed 5 Feed 6 WB (D42) Consumed D	0 - 42		1						14 - 21						No.		Bloc
and an analysis and	onsumed D	<u> </u>	WB (D42)	Feed 6	Feed 5	Feed 4	Feed 3		Feed Consumed D	WB (D21)	Feed 2			Feed 1	Pen		
																1	

Table 9. Feed Added and Removed by Pen Day 0 - Study End (kg) CQR Study Number AGV-15-1

3	T	8	3	3				1	130	6.26	374	10.00	101	<u> </u> د د
34.76	19.24	6.00	16.00	12.00	20.00	12.86	7.54	5.46	13.00	5.32	4.68	10.00	195	 - -
46.66	7.34	6.00	16.00	12.00	20.00	14.60	8.82	4.18	13.00	5.78	4.22	10.00	194	_
45.16	8.84	6.00	16.00	12.00	20.00	14.84	8.92	4.08	13.00	5.92	4.08	10.00	193	5
45.44	8.56	6.00	16.00	12.00	20.00	15.80	9.58	3.42	13.00	6.22	3.78	10.00	192	 6
36.98	17.02	6.00	16.00	12.00	20.00	13.98	8.42	4.58	13.00	5.56	4.44	10.00	191	
43.80	10.20	6.00	16.00	12.00	20.00	14.36	8.66	4.34	13.00	5.70	4.30	10.00	190	7
43.04	10.96	6.00	16.00	12.00	20.00	14.34	8.90	4.10	13.00	5.44	4.56	10.00	189	 ω
46.82	7.18	6.00	16.00	12.00	20.00	15.88	9.78	3.22	13.00	6.10	3.90	10.00	188	2
38.28	15.72	6.00	16.00	12.00	20.00	13.26	7.86	5.14	13.00	5.40	4.60	10.00	187	1
45.76	8.24	6.00	16.00	12.00	20.00	14.00	8.36	4.64	13.00	5.64	4.36	10.00	186	_ <mark>3</mark>
47.64	6.36	L 6.00		12.00	20.00	15.32	9.22	3.78	13.00	6.10	3.90	10.00	185	_ - -
42.08	11.92	6.00	16.00	12.00	20.00	14.98	8.80	4.20	13.00	6.18	3.82	10.00	184	_ _∞
44.98	9.02	6.00	16.00	12.00	20.00	14.82	00.e	4.00	13.00	5.82	4.18	10.00	183	 - ₀
47.30	L _6.70 L − 10 − L	6.00	16.00	12.00 →	20.00	15.12	9.18	3.82	13.00	5.94	4.06	10.00	+ 182	
43.32	10.68	6.00	TP:00	12.00	20.00	14.42	- 8.70 +	4.30	13.00	5./2	4.28	10.00	+	 - -
47.00	T	 	16.00	12.00	20.00	16.16	 	3.22 	13.00	10.58	3.02 	10.00	+	<u> </u>
- 20.92	T 13.06		1000	12.00	20.00	14.30	1000	 	13.00	20,74	4.26 	10.00	+	
-47.74	T 0.26		1000	12.00	20.00	15.00	 - - - -	3.50 	13.00	0.50	3.04	10.00	+	
 			1000	1				 		3 3	 		+ - -	ا ا
43.16	10.84	600	16.00	1200	20.00	15.06	9.10	390	1300	л 8	404	100	177	ا ا
46.38	7.62	6.00	16.00	12.00	20.00	15.32	8.98	4.02	13.00	6.34	3.66	10.00	174	
46.36	7.64	6.00	16.00	12.00	20.00	14.42	8.74	4.26	13.00	5.8	4.32	10.00	173	ا_ ا سا
47.70	6.30	6.00	16.00	12.00	20.00	14.62	8.68	4.32	13.00	5.94	4.06	10.00	172	 ∞
43.22	10.78	6.00	16.00	12.00	20.00	14.76	8.70	4.30	13.00	6.06	3.94	10.00	171	 - 4
44.58	9.42	6.00	16.00	12.00	20.00	15.12	8.92	4.08	13.00	6.20	3.80	10.00	170	7 _
39.82	14.18	6.00	16.00	12.00	20.00	13.82	8.28	4.72	13.00	5.54	4.46	10.00	169	_
48.56	5.44	6.00	16.00	12.00	20.00	16.06	9.66	3.34	13.00	6.40	3.60	10.00	168	<u>_</u>
45.40	8.60	6.00	16.00	12.00	20.00	14.90	8.76	4.24	13.00	6.14	3.86	10.00	167	6
50.24	3.76	6.00	16.00	12.00	20.00	15.76	9.42	3.58	13.00	6.34	3.66	10.00	166	7
36.24	17.76	6.00	16.00	12.00	20.00	14.92	8.82	4.18	13.00	6.10	3.90	10.00	165	8
45.58	8.42	6.00	16.00	12.00	20.00	14.26	8.48	4.52	13.00	5.78	4.22	10.00	164	ω
47.02	6.98	6.00	16.00	12.00	20.00	15.42	9.18	3.82	13.00	6.24	3.76	10.00	163	4
38.38	15.62	6.00	16.00	12.00	20.00	12.78	7.50	5.50	13.00	5.28	4.72	10.00	162	1
48.96	5.04	6.00	16.00	12.00	20.00	15.58	9.24	3.76	13.00	6.34	3.66	10.00	161	 2
47.60	6.40	6.00	16.00	12.00	20.00	14.90	9.02	3.98	13.00	5.88	4.12	10.00	160	
38.10	15.90	6.00	16.00	12.00	20.00	13.56	8.08	4.92	13.00	5.48	4.52	10.00	159	
45.10	8.90	6.00	16.00	12.00	20.00	13.66	8.36	4.64	13.00	5.30	4.70	10.00	156	
38.14	15.86	6.00	16.00	12.00	20.00	13.86	8.18	4.82	13.00	5.68	4.32	10.00	155	6
44.34	9.66	6.00	16.00	12.00	20.00	15.42	9.22	3.78	13.00	6.20	3.80	10.00	154	5
46.34	7.66	6.00	16.00	12.00	20.00	15.34	9.14	3.86	13.00	6.20	3.80	10.00	153	
47.24	6.76	6.00	16.00	12.00	20.00	16.08	9.28	3.72	13.00	6.80	3.20	10.00	152	2
45.38	8.62	6.00	16.00	12.00	20.00	15.14	8.94	4.06	13.00	6.20	3.80	10.00	151	_ _ 4
44.36	9.64	6.00	16.00	12.00	20.00	15.24	9.04	3.96	13.00	6.20	3.80	10.00	150	_ ယ
40.60	13.40	6.00	16.00	12.00	20.00	13.46	7.90	5.10	13.00	5.56	4.44	10.00	149	1
39.46	14.54	6.00	16.00	12.00	20.00	14.10	8.40	4.60	13.00	5.70	4.30	10.00	148	
44.38	9.62	6.00	16.00	12.00	20.00	15.40	9.12	3.88	13.00	6.28	3.72	10.00	147	 4
45.70	8.30	6.00	16.00	12.00	20.00	14.26	8.68	4.32	13.00	5.58	4.42	10.00	146	7
(kg)	10-Jul-15	8-Jul-05	2-Jul-15	26-Jun-15	19-Jun-15	(kg)	(kg)	19-Jun-15	12-Jun-15	(kg)	12-Jun-15	27-May-15		-
21 - 42	WB (D42)	reed o	reedo	reed 4	7000	0 - 21	14 - 21	(121) aw	reed 2	0 - 14	WB (D14)	Te ed	No.	Block Trt
Feed Feed	WB (743)					Feed				Feed			8	
													-	

Abbreviations for Causes of Mortality in Poultry Feeding Studies*

Abbrev.	Cause of Death	Abbrev.	Cause of Death
ACT	Ascites	IE	Intestinal enteritis
ACT-S	Ascites + SDS	INJ	Injury
AS	Airsacculitis	NE	Necrotic enteritis
BAC	Bacterial	PRO	Prolapsed
CAN	Cannibalism	RH	Round heart (ascites)
CC	Coccidiosis	SDS	Sudden death syndrome
CD	Cervical dislocation	SM	Smothered
DH	Dehydrated	SO	Starve-out
EC	E. coli	UNK	Unknown cause of death
M	Mortality; R1 = removed, bird	l moribund	bound
	R2 = removed; bird	l not moril	ound bound
Commen	ts/Findings Codes		
Code	Comment/Finding	Code	Comment/Finding
BL	Bad leg	LS	Lesion score
С	Cull	NGL	No gross lesions
C-SB	Cull, small bird	RCT	Recount bird
DC	Decomposed	SMPL	Sample bird
FHN	Femoral head necrosis	SS	Sex slip
			_

^{*}This table was added to the Final Study Report after the report was finalized in order to define the abbreviations for causes of mortality in birds that were removed from the study. The data on bird mortality is contained in Tables 10 and 11 that follow.

Table 10. Mortality and Removal Weights (Day 0 - Study End) CQR Study Number AGV-15-1

	Block		1	1	1	1	2	2	2	2	2	2	2	2	₃	S	S	_S	_ω	3	S	S	4	4	4		4
-																											
╛	র 		7	5	6	∞	ω	2	5	4	7	∞	6	1	6	2	8	4	5	1	З	7	∞	4	6	1	5
	Pen No.		97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121
מליים ביו	No. Birds Started	Day 0	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
	ality	Morta										1		1						2							
41	oval-1	Remo																									1
41	oval-2	Remo																									
Days 0 - 14 (29MAY15 -	Cause of Death											BAC		BAC						BAC; SDS							CD-C/BL
15 - 12JUN15)	Mortality Wt	(kg)										0.040		0.050						0.140							
	Removed Wt	(kg)																									0.133
	Total M & R Wt (kg) Days	0 - 14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.000	0.050	0.000	0.000	0.000	0.000	0.000	0.140	0.000	0.000	0.000	0.000	0.000	0.000	0.133
NI Dind	No. Birds Remaining	Day 14	17	17	17	17	17	17	17	17	17	16	17	16	17	17	17	17	17	15	17	17	17	17	17	17	16

·	7	7	6	6	6	6	6	6	6	6	10	10	10	10	1	1	1	1	5	5	5	5	5	5	5	5	4	4	4		Block	
4	ω	1	1	4	7	ω	5	6	∞	2	∞	ω	1	4	ω	1	4	2	6	5	ω	4	2	∞	1	7	7	ω	2		<u></u> 로	
151	150	149	148	147	146	145	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128	127	126	125	124	123	122		Pen No.	
17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	Day 0	No. Birds Started	
					1	1		1	1					1						1										Morta	_	П
															1															Remo Remo		Н
						BAC		BAC	BAC						CD-C/BL					BAC											Cause of Death	Days 0 - 14 (29MAY15
					0.081	0.058		0.066	0.033					0.071						0.042										(kg)	Mortality Wt	15 - 12JUN15)
															0.181															(kg)	Removed Wt	N15)
0.000	0.000	0.000	0.000	0.000	0.081	0.058	0.000	0.066	0.033	0.000	0.000	0.000	0.000	0.071	0.181	0.000	0.000	0.000	0.000	0.042	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 - 14	Total M & R Wt (kg) Days	
17	17	17	17	17	16	16	17	16	16	17	17	17	17	16	16	17	17	17	17	16	17	17	17	17	17	17	17	17	17	Day 14	No. Birds Remaining	

							Days 0 - 14 (29MAY15 - 12JUN15)	12JUI	N15)		
Block	Τπ	Pen No.	No. Birds Started	lity	val-1	val-2	Cause of Death	Mortality Wt	Removed Wt	Total M & R Wt (kg) Days	No. Birds Remaining
			Day 0	Morta	Remo	Remo		(kg)	(kg)	0-14	Day 14
11	3	186	17							0.000	17
11	1	187	17							0.000	17
11	2	188	17							0.000	17
12	ß	189	17							0.000	17
12	7	190	17	1			BAC	0.043		0.043	16
12	4	191	17	1			BAC	0.062		0.062	16
12	6	192	17							0.000	17
12	5	193	17							0.000	17
12	8	194	17							0.000	17
12	1	195	17	1			BAC	0.050		0.050	16
12	2	196	17							0.000	17

Table 10. Mortality and Removal Weights (Day 0 - Study End) CQR Study Number AGV-15-1 Facility Number 7

						Days 14 - 21 (12JUN15 - 19JUN15)	N15 - 19JUI	N15) Removed	
Block	Τπ	Pen No.	ality	val-1	val-2	Cause of Death	Wt	Wt	Total M & R Wt (kg) Days
			Mort	Remo	Remo		(kg)	(kg)	14 - 21
1	7	97							0.000
ב	5	98							0.000
1	6	99							0.000
ב	∞	100							0.000
2	ß	101							0.000
2	2	102							0.000
2	5	103							0.000
2	4	104							0.000
2	7	105							0.000
2	8	106							0.000
2	6	107							0.000
2	1	108							0.000
ω	6	109							0.000
ω	2	110							0.000
З	8	111							0.000
ω	4	112							0.000
ω	5	113							0.000
З	1	114							0.000
s	ω	115							0.000
ω	7	116							0.000
4	&	117							0.000
4	4	118							0.000
4	6	119							0.000
4	1	120							0.000
4	5	121							0.000

7	7	7	6	6	6	6	6	6	6	6	10	10	10	10	1	1	1	1	5	5	5	5	5	5	5	5	4	4	4		Block	
4	ω	1	1	4	7	ω	5	6	∞	2	∞	ω	1	4	ω	1	4	2	6	5	ω	4	2	∞	1	7	7	ω	2		Τπ	
151	150	149	148	147	146	145	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128	127	126	125	124	123	122		Pen No.	
									ļ	ļ							ļ	ļ			ļ									Mort	ality	
ļ			ļ				ļ	ļ	ļ	ļ						ļ	ļ			1										Remo	oval-1	-
ļ							ļ	ļ	ļ	ļ							ļ													Remo	oval-2	-
																				CD-BAC											Cause of Death	Days 14 - 21 (12JUN15 - 19JUN15)
																														(kg)	Mortality Wt	N15 - 19JU
																				0.330										(kg)	Removed Wt	N15)
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.330	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14 - 21	Total M & R Wt (kg) Days	
17	17	17	17	17	16	16	17	16	16	17	17	17	17	16	16	17	17	17	17	15	17	17	17	17	17	17	17	17	17	Day 21	No. Birds Remaining	

11	11	11	11	11	10	10	10	10	9	9	9	9	9	9	9	9	8	8	8	8	8	8	8	8	7	7	7	7	7		Block	
4	∞	6	7	5	2	6	7	5	2	ß	∞	4	7	1	5	6	7	8	ω	4	1	2	5	6	8	6	5	7	2		ᅺ	
185	184	183	182	181	180	179	178	177	174	173	172	171	170	169	168	167	166	165	164	163	162	161	160	159	156	155	154	153	152		Pen No.	
						1		ļ										1			ļ									Morta	lity	
ļ								ļ										1						1						Remo	val-1	
ļ								ļ																						Remo	val-2	
						SDS												BAC; CD-BL						CD-BL/FHN							Cause of Death	Days 14 - 21 (12JU
						0.460												0.192												(kg)	Mortality Wt	(12JUN15 - 19JUN15)
																		0.191						0.428						(kg)	Removed Wt	N15)
0.000	0.000	0.000	0.000	0.000	0.000	0.460	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.383	0.000	0.000	0.000	0.000	0.000	0.428	0.000	0.000	0.000	0.000	0.000	14 - 21	Total M & R Wt (kg) Days	
17	17	17	17	16	17	15	17	17	17	17	17	16	16	16	17	16	17	15	17	17	16	17	17	14	17	15	17	17	17	Day 21	No. Birds Remaining	

						Days 14 - 21 (12JUN15 - 19JUN15)	JN15 - 19JUI	N15)		
Block	ηŢ	Pen No.	ality	val-1	val-2	Cause of Death	Mortality Wt	Removed Wt	Total M & R Wt (kg) Days	No. Birds Remaining
			Morta	Remo	Remo		(kg)	(kg)	14 - 21	Day 21
11	3	186							0.000	17
11	1	187							0.000	17
11	2	188							0.000	17
12	ß	189							0.000	17
12	7	190							0.000	16
12	4	191							0.000	16
12	6	192							0.000	17
12	5	193							0.000	17
12	8	194							0.000	17
12	1	195							0.000	16
12	2	196							0.000	17

Table 10. Mortality and Removal Weights (Day 0 - Study End) CQR Study Number AGV-15-1 Facility Number 7

		L				Days 21 - 42 (19JUN15 - 10JUL15)	JN15 - 10JU	L15)		
Block	Τπ	Pen No.	ality	val-1	val-2	Cause of Death	Mortality Wt	Removed Wt	Total M & R Wt (kg) Days	No. Birds Remaining
			Mort	Remo	Remo		(kg)	(kg)	21 - 42	Day 42
1	7	97			3	3 CD-SMPL		2.346	2.346	1
1	5	98			ω	3 CD-SMPL		2.167	2.167	1
1	6	99			ω	3 CD-SMPL		2.854	2.854	Ļ
1	∞	100			ω	3 CD-SMPL		2.410	2.410	Ļ
2	ω	101		1	ω	3 CD-SMPL; CD-Soft Bone		3.383	3.383	1
2	2	102		1	ω	3 CD-SMPL; CD-FHN/Soft Bone		3.170	3.170	1:
2	5	103			ω	3 CD-SMPL		2.066	2.066	1,
2	4	104		1	ω	3 CD-SMPL; CD-BL/FHN/Soft Bone		3.492	3.492	1:
2	7	105		•••••	s	3 CD-SMPL		2.341	2.341	1,
2	∞	106			ω	3 CD-SMPL		2.228	2.228	1:
2	6	107		•••••	ω	3 CD-SMPL		2.407	2.407	14
2	1	108			ω	3 CD-SMPL		1.735	1.735	1:
ω	6	109	1	1	ω	ACT; CD-BAC; 3 CD-SMPL	1.271	4.003	5.274	1:
ω	2	110			ω	3 CD-SMPL		1.828	1.828	1,
ω	∞	111			ω	3 CD-SMPL		2.176	2.176	1,
ω	4	112		1	ω	3 CD-SMPL; CD-C/SB/BAC		2.508	2.508	1:
ω	5	113		1	ω	CD-BAC; 3 CD-SMPL		2.959	2.959	1:
ъ	1	114	1		ω	3 CD-SMPL; SDS	0.601	2.053	2.654	1
3	ω	115			ω	3 CD-SMPL		2.222	2.222	1,
ß	7	116		1	ß	CD-BL/FHN; 3 CD-SMPL		3.257	3.257	1:
4	∞	117		1	ω	3 CD-SMPL; CD-C/BL/Soft Bone		3.883	3.883	1:
4	4	118			s	3 CD-SMPL		2.336	2.336	1,
4	6	119		1	s	3 CD-SMPL; CD-Soft Bone		3.489	3.489	1:
4	1	120	1		ω	BAC; 3 CD-SMPL	0.392	1.725	2.117	1:
4	5	121			ω	3 CD-SMPL		2.170	2.170	13

	1					Days 21 - 42 (19JU	42 (19JUN15 - 10JUL15)	L15)		
			t y	ıl-1	ıl-2		Mortality Wt	Removed Wt	Total M & R	No. Birds Remaining
Block	굷	Pen No.	alit	ova	ova	Cause of Death			Wt (kg) Days	ď
			Mort	Remo	Remo		(kg)	(kg)	21 - 42	Day 42
4	2	122			ω	3 CD-SMPL		2.190	2.190	14
4	ω	123			ω	3 CD-SMPL		2.201	2.201	14
4	7	124			ω	3 CD-SMPL			2.378	14
5	7	125	1		ω	3 CD-SMPL; SDS	0.769	2.113	2.882	13
5	1	126	1		ω	ACT; 3 CD-SMPL	1.695	1.961	3.656	13
5	∞	127	1		ω	3 CD-SMPL; SDS	1.486	2.072	3.558	13
5	2	128	1		ω	3 CD-SMPL; SDS	1.704	2.150	3.854	13
5	4	129		1	ω	CD-BAC; 3 CD-SMPL		2.631	2.631	13
5	w	130	1		ω	3 CD-SMPL; SDS	0.865	2.056	2.921	13
5	5	131		1	ß	3 CD-SMPL; CD-BAC/FHN		•	4.224	11
5	6	132	1		ω	BAC; 3 CD-SMPL	0.537	2.308	2.845	13
1	2	133			ω	3 CD-SMPL			1.965	14
1	4	134			ß	3 CD-SMPL			2.503	14
1	1	135	1		ω	3 CD-SMPL; SDS	0.518	2.111	2.629	13
1	w	136	1		ω	BAC; 3 CD-SMPL	0.482		2.438	12
10	4	137			ω	3 CD-SMPL		2.196	2.196	13
10	1	138			ω	3 CD-SMPL			1.605	14
10	ω	139		1	ω	3 CD-SMPL; CD-C/ACT/BAC/FHN		3.100	3.100	13
10	8	140			ω	3 CD-SMPL		2.292	2.292	14
6	2	141			ω	3 CD-SMPL		2.192	2.192	14
6	8	142			ω	3 CD-SMPL		2.066	2.066	13
6	6	143		1	ω	CD-ACT; 3 CD-SMPL		3.448	3.448	12
6	5	144	1		3	3 CD-SMPL; SDS	0.755	2.178	2.933	13
6	ъ.	145		1	ω	3 CD-SMPL; CD-C/SS/Soft Bone		3.054	3.054	12
6	7	146			ω	3 CD-SMPL		2.296	2.296	13
6	4	147		1	ω	CD-BAC; 3 CD-SMPL		2.696	2.696	13
6	1	148			S	3 CD-SMPL		1.888	1.888	14
7	1	149		1	ω	3 CD-SMPL; CD-FHN		3.251	3.251	13
7	ω	150		1	ω	CD-BL; 3 CD-SMPL		2.949	2.949	13
7	4	151	ļ		ω	3 CD-SMPL		2.289	2.289	14

						Days 21 - 42 (19JL	(19JUN15 - 10JUL15)	L15)		
			,	-1	-2		Mortality	Removed	Total M & R	No. Birds
Block	茄	Pen No.	ality	val	val	Cause of Death	**	77.	Wt (kg) Days	No Halling
			Mort	Remo	Remo		(kg)	(kg)	21 - 42	Day 42
7	2	152			ω	3 CD-SMPL		2.276	2.276	14
7	7	153			ω	3 CD-SMPL			2.377	14
7	5	154		1	ω	3 CD-SMPL; CD-C/BL			3.262	13
7	6	155	1		ω	3 CD-SMPL; SDS	1.550	2.314	3.864	11
7	∞	156			ω	3 CD-SMPL		1.917	1.917	14
∞	6	159			ω	3 CD-SMPL		2.271	2.271	11
&	5	160			ω	3 CD-SMPL		1.987	1.987	14
8	2	161			ω	3 CD-SMPL		2.272	2.272	14
8	1	162			ω	3 CD-SMPL		1.888	1.888	13
8	4	163			ω	3 CD-SMPL		2.437	2.437	14
8	3	164			ω	3 CD-SMPL		2.098	2.098	14
8	∞	165		2	ω	CD-BAC; CD-BAC/BL; 3 CD-SMPL		4.032	4.032	10
8	7	166			ω	3 CD-SMPL			2.177	14
9	6	167		1	ω	3 CD-SMPL; CD-C/SS		3.846	3.846	12
9	5	168			ω	3 CD-SMPL			2.396	14
9	1	169			ω	3 CD-SMPL		1.953	1.953	13
9	7	170			ω	3 CD-SMPL			2.468	13
9	4	171		1	ω	3 CD-SMPL; CD-C/BAC/BL		3.542	3.542	12
9	8	172			ω	3 CD-SMPL		2.017	2.017	14
9	3	173			ω	3 CD-SMPL		2.059	2.059	14
9	2	174			ω	3 CD-SMPL			2.335	14
10	5	177		1	ω	CD-BAC; 3 CD-SMPL		3.135	3.135	13
10	7	178			ω	3 CD-SMPL			2.424	14
10	6	179			ω	3 CD-SMPL			2.459	12
10	2	180			ω	3 CD-SMPL		2.106	2.106	14
11	5	181			ω	3 CD-SMPL		2.190	2.190	13
11	7	182			ω	3 CD-SMPL		2.281	2.281	14
11	6	183		1	ω	3 CD-SMPL; CD-C/BL/Soft Bone		3.649	3.649	13
11	8	184	1		ω	BAC; 3 CD-SMPL	0.355	2.238	2.593	13
11	4	185		[ω	3 CD-SMPL		2.209	2.209	14

						Days 21 - 42 (19JUN15 - 10JUL15)	JN15 - 10JU	L15)		
Block	Τπ	Pen No.	ality	val-1	val-2	Cause of Death	Mortality Wt	Removed Wt	Total M & R Wt (kg) Days	No. Birds Remaining
			Mort	Remo	Remo		(kg)	(kg)	21 - 42	Day 42
11	3	186			ω	3 CD-SMPL		2.090	2.090	14
11	1	187			ω	3 CD-SMPL		1.502	1.502	14
11	2	188	1		ω	ACT-FHN/BL; 3 CD-SMPL		4.026	4.026	13
12	₃	189			ω	3 CD-SMPL		2.103	2.103	14
12	7	190			ω	3 CD-SMPL		2.302	2.302	13
12	4	191	1	1	ω	ACT; CD-BAC; 3 CD-SMPL	0.941	2.718	3.659	11
12	6	192			ω	3 CD-SMPL		2.390	2.390	14
12	5	193			ω	3 CD-SMPL		2.107	2.107	14
12	8	194			ω	3 CD-SMPL		1.581	1.581	14
12	1	195			ω	3 CD-SMPL		1.611	1.611	13
12	2	196			3	3 CD-SMPL		2.186	2.186	14

Table 11. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-1

							Days 0 - 14 (29MAY 15 - 12JUN 15)	MAY15 - 12JU	N15)		
			No. Birds	\Box		Ц					No. Birds
Riock	7	Pen No	Started	lity	/al-1	/al-2	Cause of Death	% Mortality	%Removed	% M & R	Remaining
Dioce	;		Day 0	Mortal	Remov	Remov	Cause of Death	Days 0 - 14	Days 0 - 14	Days 0 - 14	Day 14
1	1	135	17		_			0.000%	0.000%	0.000%	17
2	1	108	17	1			BAC	5.882%	0.000%	5.882%	16
ω	1	114	17	2			BAC; SDS	11.765%	0.000%	11.765%	15
4	1	120	17					0.000%	0.000%	0.000%	17
5	1	126	17					0.000%	0.000%	0.000%	17
6	1	148	17					0.000%	0.000%	0.000%	17
7	1	149	17					0.000%	0.000%	0.000%	17
∞	1	162	17	1			BAC	5.882%	0.000%	5.882%	16
9	1	169	17	1			BAC	5.882%	0.000%	5.882%	16
10	1	138	17					0.000%	0.000%	0.000%	17
11	1	187	17					0.000%	0.000%	0.000%	17
12	1	195	17	1			BAC	5.882%	0.000%	5.882%	16
Tre	Treatment 1	t 1	204	6	0	0	5 BAC; SDS	2.941%	0.000%	2.941%	198
,	,	2	ì]	_						ì
١	•	t	11	1	1	1		0.000/6	0.000	0.000%	1
2	2	102	17		ļ	ļ		0.000%	0.000%	0.000%	17
ω	2	110	17					0.000%	0.000%	0.000%	17
4	2	122	17					0.000%	0.000%	0.000%	17
5	2	128	17					0.000%	0.000%	0.000%	17
6	2	141	17					0.000%	0.000%	0.000%	17
7	2	152	17					0.000%	0.000%	0.000%	17
∞	2	161	17					0.000%	0.000%	0.000%	17
9	2	174	17					0.000%	0.000%	0.000%	17
10	2	180	17					0.000%	0.000%	0.000%	17
11	2	188	17					0.000%	0.000%	0.000%	17
12	2	196	17					0.000%	0.000%	0.000%	17
Tre	Treatment 2	12	204	0	•	•		0.000%	0.000%	0.000%	204

Treatment 4	12 4	11 4	10 4	9 4	8 4	7 4	6 4	5 4	4 4	3 4	2 4	1 4
nt 4	191	185	137	171	163	151	147	129	118	112	104	134
204	17	17	17	17	17	17	17	17	17	17	17	17
ω	1		1	1								
0 0												
3 BAC 1	BAC		BAC								0	
1.471%	.882%	0.000%	.882%	.882%	0.000%	0.000%	.000%	0.000%	0.000%	0.000%	0.000%	.000%
0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
1.471%	5.882%	0.000%	5.882%	5.882%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
201	16	17	16	16	17	17	17	17	17	17	17	17

							Days 0 - 14 (29MAY 15 - 12JUN 15)	12JUN	115)		
Block	#	Pen No.	No. Birds Started	lity	val-1	val-2	Cause of Death		% Removed	% M & R	No. Birds Remaining
		reli No.	Day 0	Mortal	Remov	Remov	COMPC OF DECISION	Days 0 - 14	Days 0 - 14	Days 0 - 14	Day 14
1	ω	136	17		1		CD-C/BL	0.000%	5.882%	5.882%	16
2	ω	101	17					0.000%	0.000%	0.000%	17
ω	ω	115	17					0.000%	0.000%	0.000%	17
4	ω	123	17					0.000%	0.000%	0.000%	17
5	ω	130	17					0.000%	0.000%	0.000%	17
6	ω	145	17	1			BAC	5.882%	0.000%	5.882%	16
7	ω	150	17					0.000%	0.000%	0.000%	17
∞	ω	164	17					0.000%	0.000%	0.000%	17
9	ω	173	17		ļ			0.000%	0.000%	0.000%	17
10	ω	139	17					0.000%	0.000%	0.000%	17
11	ω	186	17					0.000%	0.000%	0.000%	17
12	3	189	17					0.000%	0.000%	0.000%	17
Trea	Treatment 3	ü	204	1	1	0	BAC; CD-C/BL	0.490%	0.490%	0.980%	202

197	3.431%	0.000%	3.431%	6 BAC; DH	0	7	204	6	Treatment 6	Tre
17	0.000%	0.000%	0.000%				17	192	6	12
17	0.000%	0.000%	0.000%				17	183	6	11
16	5.882%	0.000%	5.882%	BAC		1	17	179	6	10
16	5.882%	0.000%	5.882%	BAC		1	17	167	6	9
15	11.765%	0.000%	11.765%	2 BAC		2	17	159	6	8
15	11.765%	0.000%	11.765%	BAC; DH		2	17	155	6	7
16	5.882%	0.000%	5.882%	BAC		1	17	143	6	6
17	0.000%	0.000%	0.000%				17	132	6	5
17	0.000%	0.000%	0.000%				17	119	6	4
17	0.000%	0.000%	0.000%				17	109	6	3
17	0.000%	0.000%	0.000%				17	107	6	2
17	0.000%	0.000%	0.000%				17	99	6	1

201	1.471%	0.490%	0.980%	2 BAC; CD-C/BL	0	2 1	204	t 5	Treatment 5	Trea
17	0.000%	0.000%	0.000%				17	193	5	12
16	5.882%	0.000%	5.882%	BAC		1	17	181	5	11
17	0.000%	0.000%	0.000%				17	177	5	10
17	0.000%	0.000%	0.000%				17	168	5	9
17	0.000%	0.000%	0.000%				17	160	5	∞
17	0.000%	0.000%	0.000%				17	154	5	7
17	0.000%	0.000%	0.000%				17	144	5	6
16	5.882%	0.000%	5.882%	BAC		1	17	131	5	5
16	5.882%	5.882%	0.000%	CD-C/BL		1	17	121	5	4
17	0.000%	0.000%	0.000%				17	113	5	ω
17	0.000%	0.000%	0.000%				17	103	5	2
17	0.000%	0.000%	0.000%				17	98	5	1
Day 14	Days 0 - 14	Days 0 - 14		Cause of Death	Remova	Mortali Remova	Day 0	Pen No.	ដឹ	Block
No. Birds Remaining	%M&R	% Removed	% Mortality		al-2	ty al-1	No. Birds Started	!		
		V15)	MAY 15 - 12JUI	Days 0 - 14 (29MAY15 - 12JUN15)						

202	0.980%	0.000%	0.980%	2 BAC	0	2 0	204	t 8	Treatment 8	Tre
17	0.000%	0.000%	0.000%				17	194	8	12
17	0.000%	0.000%	0.000%				17	184	œ	11
17	0.000%	0.000%	0.000%				17	140	œ	10
17	0.000%	0.000%	0.000%				17	172	∞	9
17	0.000%	0.000%	0.000%				17	165	œ	8
17	0.000%	0.000%	0.000%				17	156	œ	7
16	5.882%	0.000%	5.882%	BAC		1	17	142	œ	6
17	0.000%	0.000%	0.000%				17	127	œ	5
17	0.000%	0.000%	0.000%				17	117	œ	4
17	0.000%	0.000%	0.000%				17	111	∞	3
16	5.882%	0.000%	5.882%	BAC		1	17	106	œ	2
17	0.000%	0.000%	0.000%				17	100	8	1

5.882%	0.000%	5.882%	BAC			1	17	190	7	12
0.000%	0.000%	0.000%				_	17	182	7	11
0.000%	0.000%	0.000%				7	17	178	7	10
5.882%	0.000%	5.882%	DH			1	17	170	7	9
0.000%	0.000%	0.000%				7	17	166	7	∞
0.000%	0.000%	0.000%				_	17	153	7	7
5.882%	0.000%	5.882%	BAC			1	17	146	7	6
0.000%	0.000%	0.000%				_	17	125	7	5
0.000%	0.000%	0.000%				7	17	124	7	4
0.000%	0.000%	0.000%				_	17	116	7	w
0.000%	0.000%	0.000%				7	17	105	7	2
0.000%	0.000%	0.000%				7	17	97	7	1
Days 0 - 14	Days 0 - 14	Days 0 - 14	Cause of Death	Remov	Remov	o Mortal		7		
%M&R	% Removed	% Mortality	Cause of Death	al-2	al-1	ity	_	Pos No	#1	Block
	N15)	MAY15 - 12JUI	Days 0 - 14 (29)							
	% M & R Days 0 - 14 0.000% 0.000% 0.000% 0.000% 5.882% 5.882%	Removed ays 0 - 14 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%	Removed ays 0 - 14 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%	Days 0 - 14 (29WAY15 - 12JUN15) **Mortality** **Days 0 - 14 Days 0 - 14 **Days 1	## Wo - 14 (29MAY15 - 12JUN15) ## Mortality	Days 0 - 14 (29MAY15 - 12JUN15) Cause of Death % Mortality Days 0 - 14 % Removed Days 0 - 14 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% DH 5.882% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%	Cause of Death Mortality Removal-1 Removal-2	% Mortality % Removed Days 0 - 14 (29MAY15 - 12JUN15) % Mortality % Removed Days 0 - 14 D	No. Birds Started Pays Pays	No. Birds Started Pays Pays

Table 11. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-1 Facility Number 7

204	0.000%	0.000%	0.000%		0	0 0	t 2	Treatment 2	Tre
17	0.000%	0.000%	0.000%				196	2	12
17	0.000%	0.000%	0.000%				188	2	11
17	0.000%	0.000%	0.000%				180	2	10
17	0.000%	0.000%	0.000%				174	2	9
17	0.000%	0.000%	0.000%				161	2	8
17	0.000%	0.000%	0.000%				152	2	7
17	0.000%	0.000%	0.000%				141	2	6
17	0.000%	0.000%	0.000%				128	2	5
17	0.000%	0.000%	0.000%				122	2	4
17	0.000%	0.000%	0.000%				110	2	ω
17	0.000%	0.000%	0.000%				102	2	2
17	0.000%	0.000%	0.000%				133	2	1
198	0.000%	0.000%	0.000%		0	0 0	11	Treatment 1	Tre
16	0.000%	0.000%	0.000%				195	1	12
17	0.000%	0.000%	0.000%				187	1	11
17	0.000%	0.000%	0.000%				138	1	10
<u>16</u>	0.000%	0.000%	0.000%				169	1	9
16	0.000%	0.000%	0.000%				162	1	8
17	0.000%	0.000%	0.000%				149	1	7
17	0.000%	0.000%	0.000%				148	1	6
17	0.000%	0.000%	0.000%				126	1	5
17	0.000%	0.000%	0.000%				120	1	4
15	0.000%	0.000%	0.000%				114	1	ω
16	0.000%	0.000%	0.000%				108	1	2
17	0.000%	0.000%	0.000%				135	1	1
Day 21	Days 14 - 21	Days 14 - 21	Days 14 - 21	cause or Dearn	Remov	Mortal Remov	Pen No.	III	BIOCK
No. Birds Remaining	% M & R	% Removed	% Mortality						2
		(CTA	Days 14 - 21 (12JUN15 - 19JUN15)	Days 14 - 21 (

Treatment 4 0	12 4 191	11 4 185	10 4 137	9 4 171	8 4 163	7 4 151	6 4 147	5 4 129	4 4 118	3 4 112	2 4 104	
0												
0.000%	0.000%	0.000%	0.000%			0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	
0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	
0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	
201	16	17	16	16	17	17	17	17	17	17	17	

						Days 14 - 21 (1	Days 14 - 21 (12JUN15 - 19JUN15)	V15)		
					!					No. Birds
Riock	7	Pen No	lity	/al-1	/al-2	Cause of Death	% Mortality	% Removed	%M&R	Remaining
000		reii No.	Mortal	Remov	Remov	Cause of Death	Days 14 - 21	Days 14 - 21	Days 14 - 21	Day 21
Ľ	s	136					0.000%	0.000%	0.000%	16
2	s	101					0.000%	0.000%	0.000%	17
ω	ω	115					0.000%	0.000%	0.000%	17
4	w	123					0.000%	0.000%	0.000%	17
5	ω	130					0.000%	0.000%	0.000%	17
6	ω	145					0.000%	0.000%	0.000%	16
7	ω	150					0.000%	0.000%	0.000%	17
∞	ω	164					0.000%	0.000%	0.000%	17
9	ω	173					0.000%	0.000%	0.000%	17
10	ω	139					0.000%	0.000%	0.000%	17
11	ω	186					0.000%	0.000%	0.000%	17
12	3	189					0.000%	0.000%	0.000%	17
Tre	Treatment 3	3	0	0	0		0.000%	0.000%	0.000%	202

195	1.015%	0.508%	0.508%	CD-BL/FHN; SDS	0	1 1	6	Treatment 6	Tre
17	0.000%	0.000%	0.000%		ļ	ļ	192	6	12
17	0.000%	0.000%	0.000%				183	6	11
15	6.250%	0.000%	6.250%	SDS		1	179	6	10
16	0.000%	0.000%	0.000%				167	6	9
14	6.667%	6.667%	0.000%	CD-BL/FHN			159	6	8
15	0.000%	0.000%	0.000%				155	6	7
16	0.000%	0.000%	0.000%				143	6	6
17	0.000%	0.000%	0.000%				132	6	5
17	0.000%	0.000%	0.000%				119	6	4
17	0.000%	0.000%	0.000%				109	6	ω
17	0.000%	0.000%	0.000%				107	6	2
17	0.000%	0.000%	0.000%				99	6	1

200	0.498%	0.498%	0.000%	CD-BAC	0) 1	C	Treatment 5	Treat	
17	0.000%	0.000%	0.000%				193	5	12	
16	0.000%	0.000%	0.000%				181	5	11	
17	0.000%	0.000%	0.000%				177	5	10	
17	0.000%	0.000%	0.000%				168	5	9	
17	0.000%	0.000%	0.000%				160	5	∞	
17	0.000%	0.000%	0.000%				154	5	7	
17	0.000%	0.000%	0.000%				144	5	6	
15	6.250%	6.250%	0.000%	CD-BAC		1	131	5	5	
16	0.000%	0.000%	0.000%				121	5	4	
17	0.000%	0.000%	0.000%				113	5	ω	
17	0.000%	0.000%	0.000%				103	5	2	
17	0.000%	0.000%	0.000%				98	5	1	
No. Birds Remaining Day 21	% M & R Days 14 - 21	% Removed Days 14 - 21	% Mortality Days 14 - 21	Cause of Death	Removal-2	Removal-1	Pen No.	Trt Pe	Block	
		V15)	Days 14 - 21 (12JUN15 - 19JUN15)	Days 14 - 21 (I

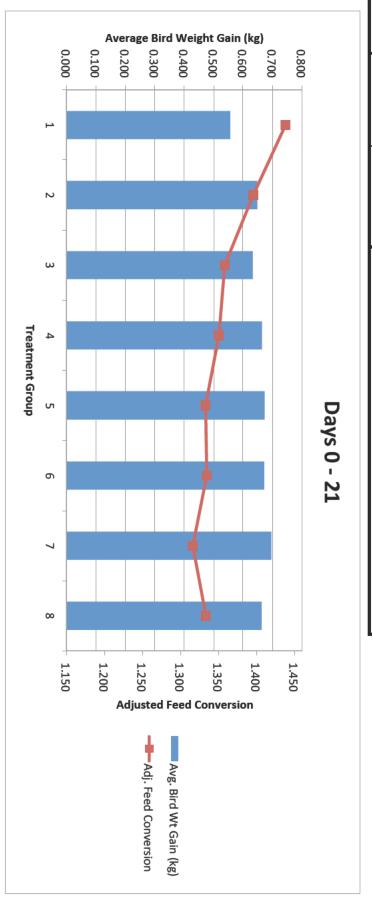
					-		L		
200	0.990%	0.495%	0.495%	BAC; CD-BL	0	1 1	00	Treatment 8	Tre
17	0.000%	0.000%	0.000%		ļ	ļ	194	∞	12
17	0.000%	0.000%	0.000%				184	∞	11
17	0.000%	0.000%	0.000%				140	∞	10
17	0.000%	0.000%	0.000%				172	∞	9
15	11.765%	5.882%	5.882%	BAC; CD-BL		1 1	165	∞	∞
17	0.000%	0.000%	0.000%				156	∞	7
16	0.000%	0.000%	0.000%				142	∞	6
17	0.000%	0.000%	0.000%				127	∞	5
17	0.000%	0.000%	0.000%			ļ	117	∞	4
17	0.000%	0.000%	0.000%				111	8	S
16	0.000%	0.000%	0.000%				106	∞	2
17	0.000%	0.000%	0.000%				100	8	1
201	0.000%	0.000%	0.000%		0	0 0	7	Treatment 7	Tre

201	0.000%	0.000%	0.000%		0	0 0 0		Treatment 7	Tre
16	0.000%	0.000%	0.000%				190	7	12
17	0.000%	0.000%	0.000%				182	7	11
17	0.000%	0.000%	0.000%				178	7	10
16	0.000%	0.000%	0.000%				170	7	9
17	0.000%	0.000%	0.000%				166	7	8
17	0.000%	0.000%	0.000%				153	7	7
16	0.000%	0.000%	0.000%				146	7	6
17	0.000%	0.000%	0.000%				125	7	5
17	0.000%	0.000%	0.000%				124	7	4
17	0.000%	0.000%	0.000%				116	7	ω
17	0.000%	0.000%	0.000%				105	7	2
17	0.000%	0.000%	0.000%				97	7	1
No. Birds Remaining Day 21	% M & R Days 14 - 21	% Removed Days 14 - 21	% Mortality Days 14 - 21	Cause of Death	Removal-2	Mortality Removal-1	Pen No.	Trt	Block
		V15)	Days 14 - 21 (12JUN15 - 19JUN15	Days 14 - 21 (

Table 11. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-1 Facility Number 7

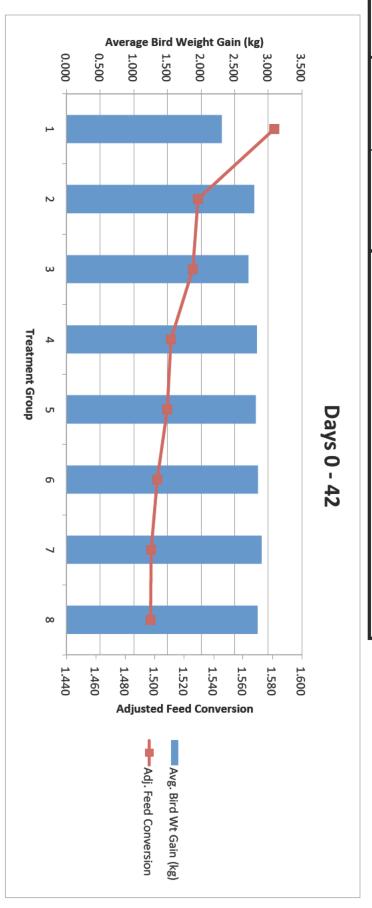
0.000% 17.647% 0.000% 17.647% 0.490% 17.647% 0.000% 17.647% 5.882% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647% 0.000% 17.647%	5.882% 0.000% 0.000% 0.000% 0.000% 5.882% 0.000%						ACT-FHN/BL: CD-FHN/Soft Bone: 36 CD-					Treatment 2
	5.882% 0.000% 0.000% 0.000% 0.000% 5.882%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	3		196	2	12
	5.882% 0.000% 0.000% 0.000% 0.000%	13	5.882%	17.647%	0.000%	5.882%	ACT-FHN/BL; 3 CD-SMPL	ω	1	188	2	11
	5.882% 0.000% 0.000% 0.000% 0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		180	2	10
	5.882% 0.000% 0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		174	2	9
	5.882% 0.000% 0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		161	2	8
<u>-</u>	5.882% 0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		152	2	7
	5.882%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		141	2	6
		13	5.882%	17.647%	0.000%	5.882%	3 CD-SMPL; SDS	ω	1	128	2	5
	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		122	2	4
	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		110	2	ω
	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-FHN/Soft Bone	1 3		102	2	2
	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	3		133	2	1
	4.902%	157	2.525%	18.182%	0.505%	2.020%	ACT; BAC; CD-FHN; 36 CD-SMPL; 2 SDS	1 36	4	nt 1	Treatment 1	Tr
	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	3		195	1	12
-	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		187	1	11
0.000% 17.647%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		138	1	10
0.000% 17.647%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		169	1	9
0.000% 17.647%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		162	1	∞
5.882% 17.647%	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-FHN	1 3		149	1	7
0.000% 17.647%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		148	1	6
0.000% 17.647%	5.882%	13	5.882%	17.647%	0.000%	5.882%	ACT; 3 CD-SMPL	ω	1	126	1	5
0.000% 17.647%	5.882%	13	5.882%	17.647%	0.000%	5.882%	BAC; 3 CD-SMPL	ω	1	120	1	4
0.000% 17.647%	17.647%	11	6.667%	20.000%	0.000%	6.667%	3 CD-SMPL; SDS	ω	1	114	1	ω
0.000% 17.647%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		108	1	2
0.000% 17.647%	5.882%	13	5.882%	17.647%	0.000%	5.882%	3 CD-SMPL; SDS	3	1	135	1	1
Days 0 - 42 Days 0 - 42	0-42 I	Remaining Day 42	% M & R-1 Dys 21 - 42	% Removal-2 Days 14 - 21	% Removal-1 Days 14 - 21	% Mortality Days 21 - 42	Cause of Death	Removal-2	Mortality	Pen No.	Τπ	Block
		No. Birds										
					15 - 10JUL15)	Days 21 - 42 (19JUN15 - 10JUL15)	Days					

								CD-SMIPL					
17.647%	2.941%	1.961%	158	3.483%	17.910%	2.985%	0.498%	ACT; CD-BL, C/SB/BAC; 3 CE	6 36	1	t 4	Treatment 4	Tr.
17.647%	5.882%	11.765%	11	12.500%	18.750%	6.250%	6.250%	ACT; CD-BAC; 3 CD-SMPL	1 3	1	191	4	12
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		185	4	11
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	з		137	4	10
17.647%	5.882%	5.882%	12	6.250%	18.750%	6.250%	0.000%	3 CD-SMPL; CD-C/BAC/BL	1 3		171	4	9
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		163	4	∞
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		151	4	7
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	CD-BAC; 3 CD-SMPL	1 3		147	4	6
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	CD-BAC; 3 CD-SMPL	1 3		129	4	5
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		118	4	4
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-C/SB/BAC	1 3		112	4	ω
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-BL/FHN/Soft Bone	1 3		104	4	2
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		134	4	1
								36 CD-SMPL; SDS					
17.647%	2.451%	1.471%	160	2.970%	17.822%	1.980%	0.990%	C/SS/Soft Bone; CD-C/ACT/BAC/FHN;	4 36	2	3	Treatment 3	7
								BAC; CD-BL; CD-Soft Bone; CD-					
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	3		189	3	12
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		186	ω	11
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-C/ACT/BAC/FHN	1 3		139	ω	10
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		173	ω	9
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	3		164	3	8
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	CD-BL; 3 CD-SMPL	1 3		150	ω	7
17.647%	5.882%	5.882%	12	6.250%	18.750%	6.250%	0.000%	3 CD-SMPL; CD-C/SS/Soft Bone	1 3		145	3	6
17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	3 CD-SMPL; SDS	ω	1	130	w	5
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		123	ω	4
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	s		115	ω	3
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-Soft Bone	1 3		101	ω	2
17.647%	5.882%	5.882%	12	6.250%	18.750%	0.000%	6.250%	BAC; 3 CD-SMPL	3	1	136	з	1
Days 0 - 42	Days 0 - 42	0 - 42	Day 42	Dys 21 - 42	Days 14 - 21	Days 14 - 21	Days 21 - 42	Cause of Death	Remova Remova	Mortalit	Pen No.	Ĭπ	Block
% Removal-2	% Removal-1	% Mortality Days	No. Birds Remaining	% M & R-1	% Removal-2	% Removal-1	% Mortality			ty			

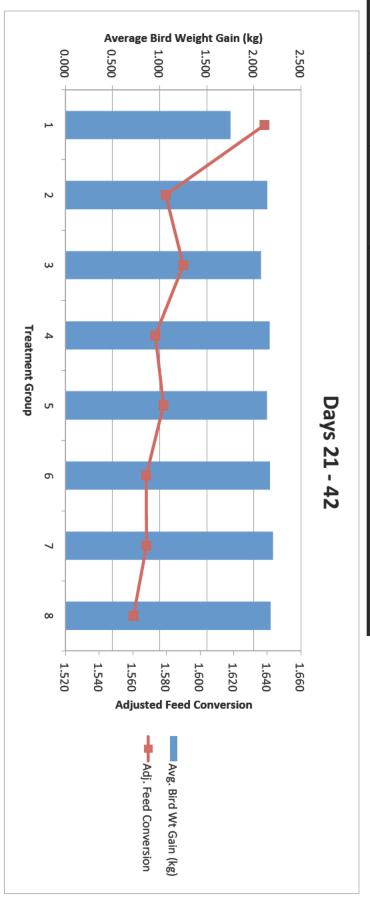

								CD-SMPL; SDS						
17.647%	2.941%	5.392%	151	4.103%	18.462%	2.564%	1.538%	ACT; BAC; CD-ACT; CD-BAC; CD-Soft Bone; CD-C/SS; CD-C/BL/Soft Bone; 36	36 B	σ	ω	t 6	Treatment 6	7
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	ļ	Г	192	6	12
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-C/BL/Soft Bone	ω	1		183	6	11
17.647%	0.000%	11.765%	12	0.000%	20.000%	0.000%	0.000%	3 CD-SMPL	ω			179	6	10
17.647%	5.882%	5.882%	12	6.250%	18.750%	6.250%	0.000%	3 CD-SMPL; CD-C/SS	ω	1		167	6	9
17.647%	5.882%	11.765%	11	0.000%	21.429%	0.000%	0.000%	3 CD-SMPL	ω			159	6	∞
17.647%	0.000%	17.647%	11	6.667%	20.000%	0.000%	6.667%	3 CD-SMPL; SDS	ω		1	155	6	7
17.647%	5.882%	5.882%	12	6.250%	18.750%	6.250%	0.000%	CD-ACT; 3 CD-SMPL	ω	1		143	6	6
17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	BAC; 3 CD-SMPL	ω		1	132	6	5
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-Soft Bone	ω	1		119	6	4
17.647%	5.882%	5.882%	12	11.765%	17.647%	5.882%	5.882%	ACT; CD-BAC; 3 CD-SMPL	ω	1	1	109	6	ω
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω			107	6	2
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω			99	6	1
27.007.70					10:000%	2.000/0	0.500%	CD-SMPL; SDS			ļ	3		١.
70279 21	2 0/1%	70127	150	2 500%	18 000%	2 000%	0 500%	2 CD-BAC; CD-BAC/FHN; CD-C/BL; 36		36	•	,	Treatment 5	,
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	3			193	5	12
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω			181	5	11
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	CD-BAC; 3 CD-SMPL	ω	1		177	5	10

% Mortality Days % Removal-1 Pays 14 - 21 % Removal-2 Pays 0 - 42	17.647%	2.941%	1.471%	159	2.500%	18.000%	2.000%	0.500%	2 CD-BAC; CD-BAC/FHN; CD-C/BL; 36 CD-SMPL; SDS	4 36	1	ent 5	Treatment 5	
% Removal-1 Days 14 - 21 % Removal-2 Days 14 - 21 % M & R-1 Days 14 - 21 No. Birds O - 42 % Mortality Days Mortality Days O - 42 % Removal-1 Days 14 - 21 % Mortality Days Mortality Days O - 42 % Removal-1 Days 1 - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 A	17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	3	3	193	5	12
% Removal-1 Days 14 - 21 % Removal-2 Days 14 - 21 % M & R-1 Days 14 - 21 No. Birds Mortality Days Mortality Days Days O - 42 % Removal-1 Days 14 - 21 % M & R-1 Day 42 No. Birds Mortality Days Mortality Days Days O - 42 % Removal-1 Days 14 - 21 % Mortality Days Mortality Days Days O - 42 % Removal-1 Days O - 42 % Mortality Days Mortality Days Days O - 42 % Removal-1 Days O - 42 % Removal-1 Days O - 42 % Mortality Days Mortality Days Days O - 42 % Removal-1 Days O - 42 % Mortality Days Mortality Days Days O - 42 % Mortality Days Mortality Days Days O - 42 % Removal-1 Days O - 42 % Removal-1 Days O - 42 % Removal-1 Days O - 42 % Mortality Days Mortality Days Days O - 42 % Removal-1 Days O - 42 % Mortality Days Mortality Days Days O - 42 % Mortality Days Mortality Days Days O - 42 % Mortality Days Mortality Days Days O - 42 % Mortality Days Mortality Days Days O - 42 % Removal-1 Days O - 42 <	17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω	1	18	5	11
% Removal-1 Days 14 - 21 % Removal-2 Days 14 - 21 % M & R-1 Days 14 - 21 No. Birds O - 42 Days 14 - 21 % Mortality Days Mortality Days Days O - 42 % Removal-1 Days 14 - 21 % Mortality Days Mortality Days Days O - 42 % Removal-1 Days O - 42 % Mortality Days Days O - 42 % Removal-1 Days O - 42 % Mortality Days Days O - 42 % Removal-1 Days O - 42 % Mortality Days Days O - 42 % Removal-1 Days O - 42 % Mortality Days Days O - 42 % Removal-1 Days O - 42 % Mortality Days Days O - 42 % Mortality Days Days O - 42 % Mortality Days Days O - 42 % Removal-1 Days O - 42 % Removal-1 Days O - 42 % Removal-1 Days O - 42 % Mortality Days Days O - 42 % Removal-1 Days O - 42 % Removal-1 Days O - 42 % Mortality Days Mortality Days O - 42 % Mortality Days O - 42 % Mortality Days Mortality Days O - 42 Pays O - 42 Days O - 42 Day	17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	CD-BAC; 3 CD-SMPL	1 3	7	17	5	10
% Removal-1 Days 14 - 21 % Removal-2 Days 14 - 21 % M & R-1 Days Pays Pays Pays Pays Pays Pays Pays P	17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	8	16	5	9
% Removal-1 Days 14 - 21 % Removal-2 Days 14 - 21 % M & R-1 Days 21 - 42 No. Birds O - 42 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Removal-1 Days 14 - 21 % Mortality Days Mortality Days O - 42 % Removal-1 Days 0 - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Removal-1 Days 0 - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Mortality Days O - 42 % Removal-1 Days 0 - 42 % Mortality Days O - 42 % Mortality Days O - 42 % Mortality Days O - 42 Days 0 - 42<	17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w	0	16	5	∞
% Removal-1 Days 14 - 21 % Removal-2 Days 14 - 21 % M & R-1 Days Pays Pays Pays Pays Pays Pays Pays P	17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-C/BL	1 3	4	154	5	7
% Removal-1 Days 14 - 21 % Removal-2 Days 14 - 21 % M & R-1 Days Pays No. Birds Mortality Days % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Removal-1 Days 0 - 42 % Mortality Days % Mortality Days % Removal-1 Days 0 - 42 Pays 0 - 42	17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	3 CD-SMPL; SDS	ω	4 1	14	5	6
% Removal-1 % Removal-2 % M & R-1 No. Birds Remaining Days % Mortality Days % Removal-1 Pays 0-42 Days 14 - 21 Days 21 - 42 Day 21 - 42 Day 42 Days 0 - 42 Days 0 - 42 0.000% 17.647% 0.000% 14 0.000% 0.000% 5.882% 17.647% 5.882% 13 0.000% 5.882% 0.000% 18.750% 0.000% 13 0.000% 5.882%	17.647%	11.765%	5.882%	11	6.667%	20.000%	6.667%	0.000%	3 CD-SMPL; CD-BAC/FHN	1 3	1	13	5	5
% Removal-1 % Removal-2 % M & R-1 No. Birds Remaining Days % Mortality Days % Removal-1 Pays 0-42 % Mortality Days % Removal-1 Pays 0-42 Days 14 - 21 Days 21 - 42 Day 42 Days 0 - 42 Days 0 - 42 Days 0 - 42 0.000% 17.647% 0.000% 14 0.000% 0.000% 5.882% 17.647% 5.882% 13 0.000% 5.882%	17.647%	5.882%	0.000%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω	1	12	5	4
% Removal-1 % Removal-2 % M & R-1 No. Birds Remaining Days % Mortality Days % Removal-1 Days 0 - 42 Days 14 - 21 Days 21 - 42 Day 42 Days 0 - 42 Days 0 - 42 0.000% 17.647% 0.000% 14 0.000% 0.000% 0.000% 17.647% 0.000% 14 0.000% 0.000%	17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	CD-BAC; 3 CD-SMPL	1 3	ω	11	5	ω
% Removal-1 % Removal-2 % M & R-1 Remaining Days % Mortality Days % Removal-1 Days 14-21 Days 14-21 Days 21-42 Day 42 Days 0-42 Days 0-42 0.000% 17.647% 0.000% 14 0.000% 0.000%	17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	ω	10	5	2
No. Birds No. Birds Mortality Days % Removal-1 % Removal-1 % Removal-2 % Mortality Days % Removal-1 Days 14 - 21 Days 21 - 42 Day 42 Days 0 - 42	17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	₃	ω	98	5	<u> </u>
% Removal-1 % Removal-2 % M & R-1 Remaining % Mortality Days % Removal-1 O - 42 Days 0 - 42		,		Day 42	Dys 21 - 42	Days 14 - 21	Days 14 - 21	Days 21 - 42		Remo Remo	Morta		<u> </u>	
	% Removal-2 Days 0 - 42	% Removal-1 Days 0 - 42	% Mortality Days 0 - 42	No. Birds Remaining	% M & R-1	% Removal-2	% Removal-1	% Mortality	Cause of Death	val-1 val-2	ē lity	Pen No	* 	Block
Days 21 - 42 (19JUN15 - 10JUL15)							15 - 10JUL15)	21 - 42 (19JUN	Days			ł		l

17.647%	1.961%	2.451%	159	2.500%	18.000%	1.500%	1.000%	BAC; CD-C/BL/Soft Bone; CD-BAC; CD- BAC/BL; 36 CD-SMPL; SDS	3 36 6	2	8 1	Treatment 8	-
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	3		194	8	12
17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	BAC; 3 CD-SMPL	ω	1	184	8	11
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		140	∞	10
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		172	∞	9
17.647%	17.647%	5.882%	10	13.333%	20.000%	13.333%	0.000%	CD-BAC; CD-BAC/BL; 3 CD-SMPL	2 3		165	œ	œ
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		156	8	7
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		142	∞	6
17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	3 CD-SMPL; SDS	ω	1	127	∞	5
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	3 CD-SMPL; CD-C/BL/Soft Bone	1 3		117	œ	4
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		111	∞	ω
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		106	∞	2
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	3		100	8	1
17.647%	0.490%	1.961%	163	0.995%	17.910%	0.498%	0.498%	CD-BL/FHN; 36 CD-SMPL; SDS	1 36	1	t 7	Treatment 7	ī
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	3		190	7	12
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		182	7	11
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		178	7	10
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		170	7	9
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		166	7	œ
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		153	7	7
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		146	7	6
17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	3 CD-SMPL; SDS	ω	1	125	7	ر.
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		124	7	4
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	CD-BL/FHN; 3 CD-SMPL	1 3		116	7	ω
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		105	7	2
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w		97	7	1
% Removal-2 Days 0 - 42	% Removal-1 Days 0 - 42	% Mortality Days 0 - 42	No. Birds Remaining Day 42	% M & R-1 Dys 21 - 42	% Removal-2 Days 14 - 21	% Removal-1 Days 14 - 21	% Mortality Days 21 - 42	Cause of Death	Removal-1 Removal-2	Mortality	Pen No.	ដ	Block


CQR Study Number AGV-15-1 Graph 1. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 21) Summarized by Treatment Group

Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)	1.334	0.663	00
3000 Units Phytase (LP)	1.316	0.696	7
1000 Units Phytase (LP)	1.335	0.672	6
750 Units Phytase (LP)	1.333	0.673	5
500 Units Phytase (LP)	1.351	0.663	4
250 Units Phytase (LP)	1.358	0.633	3
High Phosphate (HP)	1.396	0.648	2
Low Phosphate (LP)	1.438	0.556	1
i canient pescibaci	Conversion	Gain (kg)	ii. diodo
Treatment Description	Adj. Feed	Avg. Bird Wt	Trt Group


CQR Study Number AGV-15-1 Graph 2. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 42) Summarized by Treatment Group

Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)	1.497	2.841	8
3000 Units Phytase (LP)	1.498	2.898	7
1000 Units Phytase (LP)	1.502	2.843	6
750 Units Phytase (LP)	1.508	2.812	5
500 Units Phytase (LP)	1.511	2.831	4
250 Units Phytase (LP)	1.526	2.706	3
High Phosphate (HP)	1.529	2.789	2
Low Phosphate (LP)	1.581	2.308	1
i canifelit Describacii	Conversion	Gain (kg)	- Ciodo
Treatment Description	Adj. Feed	Avg. Bird Wt	Trt Group

CQR Study Number AGV-15-1 Graph 3. Average Bird Weight Gain and Adjusted Feed Conversion (Days 21 - 42) Summarized by Treatment Group

Trt Group	Avg. βird wτ Gain (kg)	Conversion	Treatment Description
1	1.752	1.638	Low Phosphate (LP)
2	2.141	1.580	High Phosphate (HP)
3	2.073	1.590	250 Units Phytase (LP)
4	2.168	1.573	500 Units Phytase (LP)
5	2.139	1.578	750 Units Phytase (LP)
6	2.171	1.568	1000 Units Phytase (LP)
7	2.202	1.568	3000 Units Phytase (LP)
∞	2.178	1.560	Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)

CQR ID	Study Day	Trt Group	Phosphorus W/W%
6/19/2015-103	21	1	0 21
6/19/2015-112	21	1	0 24
6/19/2015-118	21	1	0 33
6/19/2015-124	21	1	0 29
6/19/2015-130	21	1	0 20
6/19/2015-144	21	1	0 28
6/19/2015-145	21	1	0 25
6/19/2015-156	21	1	0 16
6/19/2015-165	21	$-\frac{1}{1}$	0 22
6/19/2015-172	21	$-\frac{1}{1}$	0 20
6/19/2015-187	21	$-\frac{1}{1}$	0 22
6/19/2015-195	21	$-\frac{1}{1}$	0 24
Average		Ī	0.24
Standard Deviati	 on		0.05
cv			19.69%
0/15/2015-101	21		018
6/19/2015-106	21	2	0_26
<u>6/19/2015-114</u>	21	2	0_33
6/19/2015-126	<u> 21</u>	2!	0_29
<u>6/19/2015-132</u>	21	2	0_23
<u>6/19/2015-137</u>	21	2	0_22
<u>6/19/2015-148</u>	21	2	0_22
<u>6/19/2015-155</u>	<u>21</u>	2!	013
6/19/2015-170	21	2	0 <u>_19</u>
<u>6/19/2015-180</u>	21	2	0_26
6/19/2015-188		$-\frac{2}{3}$	0_22
6/19/2015-196	21	2	0 39
Average			0.24
<u>Standard Deviati</u> CV	оп		$-\frac{0.07}{28.32\%}$
6/19/2015-104	21	3	024
6/19/2015-105	21	3	019
6/19/2015-119	21	3	0 26
6/19/2015-127	<u>21</u>	3	0 19
6/19/2015-134	21	3	0 25
6/19/2015-141	21	3	0 25
6/19/2015-146	21	3	0 19
6/19/2015-160	21	3	0 19
6/19/2015-169	21	3	0 25
6/19/2015-173	21	3	0 23
6/19/2015-186	21	3	0 15
6/19/2015-189	21	3	0 19
Average			0.21
Standard Deviati	on	!	0.04

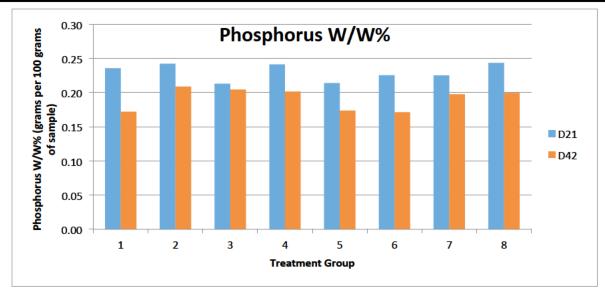
CQR ID	Study Day	Trt Group	Phosphorus W/W%
7/10/2015-103	42	1	0 16
7/10/2015-112	42	1	0 14
7/10/2015-118	42	1	0 14
7/10/2015-124	42	1	0 16
7/10/2015-130	42	1	0 10
7/10/2015-144	42	1	0 18
7/10/2015-145	42	1	0 20
7/10/2015-156	42	1 1	0 10
7/10/2015-165	42		0 14
7/10/2015-172	42	1	0 19
7/10/2015-187	42		0 29
7/10/2015-195	42	1	0 26
Average			0.17
Standard Deviatio		т	0.06
cv		+	34.80%
		,	
7/10/2015-101	42	2	0 24
7/10/2015-106	42	2	0 20
7/10/2015-114	42	2	0 18
7/10/2015-126	42	2	0 21
7/10/2015-132	42	2 1	0 17
7/10/2015-137	42	2	0 15
7/10/2015-148	42	2	0 14
7/10/2015-155	42	2	0 11
7/10/2015-170	42	2	0 18
7/10/2015-180	42	2	0 26
7/10/2015-188	42		0 27
7/10/2015-196	42		0 40
Average			0.21
Standard Deviatio	- – – – – on	т	0.08
cv		+	37.53%
7/10/2015-104	42		0 23
7/10/2015-105	42	3	019
7/10/2015-119	42	3	0 29
7/10/2015-127	42	3i	017
7/10/2015-134	42	3	0 19
7/10/2015-141	42		0 21
7/10/2015-146	42	3	0 16
7/10/2015-160	42	3	0 18
7/10/2015-169	42	3 1	0 26
7/10/2015-173	42	3	0 21
7/10/2015-186	42	3	0 16
7/10/2015-189	42	3	0 21
Average			0.20
Standard Deviatio		_Т	0.04
SIMHUMI U DETIMU			

CQR ID	Study Day	Trt Group	Phosphorus W/W%
6/19/2015-102	21	4	0 22
6/19/2015-108	21	4	0 23
6/19/2015-116	21	4	0 31
6/19/2015-122	21	4	0 30
6/19/2015-133	21	4	0 23
6/19/2015-143	21	4	0 25
6/19/2015-147	21	4	0 30
6/19/2015-159	21	<u>4</u> !	0 24
6/19/2015-167	21	4	0 19
6/19/2015-171	21	4	0 22
6/19/2015-185	21	4	0 23
6/19/2015-191	21	4	0 18
Average			0.24
Standard Deviati	on		0.04
cv			17.31%
6/19/2015-107	21	5	0 28
			
6/19/2015-117	$-\frac{21}{21}$	$-\frac{5}{5}$	036
6/19/2015-125	21	$-\frac{5}{5}$	020
6/19/2015-135	$\left - \frac{21}{21} \right $	$-\frac{5}{5}$	018
6/19/2015-140	21	5	022
6/19/2015-150		$-\frac{5}{5}$	019
6/19/2015-154	21	5	021
6/19/2015-164	21	5	021
6/19/2015-177	21	5	014
6/19/2015-181	21	5	018
6/19/2015-193		5	0 <u>_1</u> 7
6/19/2015-98	21	5	0 24
Average			0.21
		i	0.21
Standard Deviati	on		0.06
Standard Deviati CV	on		
cv	on	6	0.06 26.21%
cv			0.06 26.21%
CV 6/19/2015-111	21	-	0.06 26.21%
6/19/2015-111 6/19/2015-113 6/19/2015-123	21 21 21	<u>6</u>	0.06 26.21% 0.32 0.27 0.24
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136			0.06 26.21% 0 32 0 27
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136 6/19/2015-139	21	6 6 6	0.06 26.21% 0 32 0 27 0 24 0 18 0 22
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136 6/19/2015-139 6/19/2015-151	21 21 21 21		0.06 26.21% 0 32 0 27 0 24 0 18 0 22 0 27
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136 6/19/2015-139 6/19/2015-151 6/19/2015-153	21 - 21	- 6 - 1 - 6 - 1 - 6 - 1 - 6 - 1	0.06 26.21% 0 32 0 27 0 24 0 18 0 22 0 27 0 18
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136 6/19/2015-139 6/19/2015-151 6/19/2015-153 6/19/2015-163	21	- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	0.06 26.21% 0.32 0.27 0.24 0.18 0.22 0.27 0.18 0.24
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136 6/19/2015-139 6/19/2015-151 6/19/2015-153 6/19/2015-163 6/19/2015-179	21	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	0.06 26.21% 0.32 0.27 0.24 0.18 0.22 0.27 0.18 0.24 0.24 0.24
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136 6/19/2015-139 6/19/2015-151 6/19/2015-153 6/19/2015-163 6/19/2015-179 6/19/2015-183	21 21 21 21 21 21 21	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	0.06 26.21% 0.32 0.27 0.24 0.18 0.22 0.27 0.18 0.24 0.24 0.24 0.24
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136 6/19/2015-139 6/19/2015-151 6/19/2015-153 6/19/2015-163 6/19/2015-179 6/19/2015-183 6/19/2015-192	- 21 - 7 - 21 - 7 - 21 - 7 - 21 - 7 - 21 - 7 - 7	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	0.06 26.21% 0.32 0.27 0.24 0.18 0.22 0.27 0.18 0.24 0.24 0.24 0.24 0.14 0.16
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136 6/19/2015-139 6/19/2015-151 6/19/2015-153 6/19/2015-163 6/19/2015-179 6/19/2015-183 6/19/2015-192 6/19/2015-99	21 21 21 21 21 21 21	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	0.06 26.21% 0.32 0.27 0.24 0.18 0.22 0.27 0.18 0.24 0.24 0.24 0.14 0.16 0.24
6/19/2015-111 6/19/2015-113 6/19/2015-123 6/19/2015-136 6/19/2015-139 6/19/2015-151 6/19/2015-153 6/19/2015-163 6/19/2015-179 6/19/2015-183 6/19/2015-192		6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	0.06 26.21% 0.32 0.27 0.24 0.18 0.22 0.27 0.18 0.24 0.24 0.24 0.24 0.14 0.16

CQR ID	Study Day	Trt Group	Phosphorus W/W%
7/10/2015-102	42	4	0 26
7/10/2015-108	42	4	0 12
7/10/2015-116	42	4 1	0 18
7/10/2015-122	42	4 i	0 25
7/10/2015-133	42		0 23
7/10/2015-143	42	4	0 18
7/10/2015-147	42	4	0 10
7/10/2015-159	42	4 1	0 21
7/10/2015-167	42	4	0 19
7/10/2015-171	42	4	0 25
7/10/2015-185	42	- +	0 24
7/10/2015-191	42	-	$-\frac{027}{021}$
Average	.2		0.20
Standard Deviatio			0.05
Standard Deviado CV		<u>+</u>	25.20%
-			20.2070
7/10/2015-107	42	5	0 17
7/10/2015-117	42	5	016
7/10/2015-125	42	5	0 15
7/10/2015-135	42	<u>5</u> 1	0 11
7/10/2015-140	42	5	0 14
7/10/2015-150	42	5	0 14
7/10/2015-154	42	5	0 21
7/10/2015-164	42	5 1	0 19
7/10/2015-177	42		0 17
7/10/2015-181	42	5	0 21
7/10/2015-193	42		0 19
7/10/2015-98	42	5	0 25
Average			0.17
Standard Deviatio	-	<u>-</u>	0.04
CV		+	21.72%
		'	
7/10/2015-111	42	6	0 24
7/10/2015-113	42	6	0 22
7/10/2015-123	42	6	014
7/10/2015-136	42	61	0 23
7/10/2015-139	42	6	0_17
7/10/2015-151	42	6	008
7/10/2015-153	42	6	0 18
7/10/2015-163	42	6i	0 10
7/10/2015-179	42	6	0 25
7/10/2015-183	42	6	0 10
7/10/2015-192	42	6	0 16
7/10/2015-99	42	6	0 19
Average		i	0.17
~		— — — — т	
Standard Deviatio	n		0.06

Summary of Phosphorus W/W % in IIeal Content Samples Collected on Days 21 and 42 AGV-15-1 Building 7

CQR ID	Study Day	Trt Group	Phosphorus W/W%
6/19/2015-109	21	7	0 25
6/19/2015-120	21	7	0 20
6/19/2015-128	21	7	0 30
6/19/2015-129	21	7	0 26
6/19/2015-142	21	7	0 24
6/19/2015-149	21	7	0 24
6/19/2015-162	21	7	0 21
6/19/2015-166	21	7	0 19
6/19/2015-178	21	7	0 20
6/19/2015-182	21	7	0 16
6/19/2015-190	21	7	0 18
6/19/2015-97	21	7	0 29
Average	0.23		
Standard Deviation	on		0.04
CV			19.16%


cv			21.59%
Standard Deviation	0.05		
Average	0.24		
6/19/2015-194	21	8	0 19
6/19/2015-184	21	8	0 27
6/19/2015-174	21	8	0 16
6/19/2015-168	21	8	0 18
6/19/2015-161	21	8	0 29
6/19/2015-152	21	8	0 24
6/19/2015-138	21	8	0 33
6/19/2015-131	21	8	0 26
6/19/2015-121	21	8	0 27
6/19/2015-115	21	8	0 27
6/19/2015-110	21	8	0 27
6/19/2015-100	21	8	0 18

CQR ID	Study Day	Trt Group	Phosphorus W/W%
7/10/2015-109	42	7	0 17
7/10/2015-120	42	7	0 18
7/10/2015-128	42	7	0 25
7/10/2015-129	42	7	0 22
7/10/2015-142	42	7	0 27
7/10/2015-149	42	7	0 13
7/10/2015-162	42	7	0 21
7/10/2015-166	42	7	0 16
7/10/2015-178	42	7	0 21
7/10/2015-182	42	7	0 19
7/10/2015-190	42	7	0 19
7/10/2015-97	42	7	0 19
Average			0.20
Standard Deviati	on		0.04
CV			19.92%

7/10/2015-100	42	8	0 19
7/10/2015-110	42	8	0 23
7/10/2015-115	42	8	0 27
7/10/2015-121	42	8	0 14
7/10/2015-131	42	8	0 10
7/10/2015-138	42	8	0 12
7/10/2015-152	42	8	0 22
7/10/2015-161	42	8	0 27
7/10/2015-168	42	8	0 21
7/10/2015-174	42	8	0 22
7/10/2015-184	42	8	0 22
7/10/2015-194	42	8	0 22
Average			0.20
Standard Deviation		0.05	
CV			27.30%

Summary of Phosphorus W/W % in Ileal Content Samples Collected on Days 21 and 42 AGV-15-1 Building $7\,$

Trt Group	Phosphor	us W/W%	Treatment Description	
Irt Group	D21	D42	теаншен Безстрион	
1	0.24	0.17	Low Phosphate (LP)	
2	0.24	0.21	High Phosphate (HP)	
3	0.21		250 Units Phytase (LP)	
4	0.24	0.20	500 Units Phytase (LP)	
5	0.21	0.17	750 Units Phytase (LP)	
6	0.23	0.17	1000 Units Phytase (LP)	
7	0.23	0.20	3000 Units Phytase (LP)	
8	0.24	0.20	Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)	

CEPS Central Analytical Laboratory Report

Report Date: 9/25/15

Report No: 161240

poultryscience.uark.edu

University of Arkansas

Poultry Science Center L-209

Fayetteville, AR 72701

CAL Sample ID: 161240-161431

479-575-6532

Investigator Shoshana Gray

Institution Colorado Quality Research, Inc.

Department

Address 400 East County Road 72; Wellington, CO 80549

Customer# 121708

Phone# 970-568-7738 email: shoshana@coloradoqualityresearch.com

Report Description Analysis of Tibia Bones--AGV-15-1

Sample ID	<u>Al</u> ppm	<u>Ca</u> ppm	<u>Cu</u> ppm	<u>Fe</u> ppm	<u>K</u> ppm	Mg ppm	Mn ppm	<u>Na</u> ppm	<u>P</u> ppm	<u>S</u> ppm	Zn ppm	Ash %
Day 21	11	11	11	11	11	11	11	11	11	11	11	
Pen 97	N.D.	319302	2.17	342	27856	7893	7.11	16018	153735	9669	423	27.2
Pen 98	N.D.	299326	4.99	377	31941	7482	9.57	15995	142987	9538	424	25.4
Pen 99	N.D.	292887	2.36	319	29098	7484	6.27	15766	139985	7983	432	22.9
Pen 100	N.D.	298423	2.41	369	32440	7655	7.09	14307	145330	8934	437	25.8
Pen 101	N.D.	298648	9.82	347	33620	7103	5.61	16574	148636	9859	411	23.0
Pen 102	N.D.	309757	4.06	289	27292	7739	5.01	15765	149786	9674	362	26.4
Pen 103	N.D.	293125	6.69	488	40108	8212	7.06	18379	147488	10596	481	22.5
Pen 104	N.D.	303314	1.48	410	29245	7456	6.34	18764	145767	10828	427	27.2
Pen 105	N.D.	309007	4.67	328	19796	7179	6.45	15998	146795	8465	426	27.5
Pen 106	N.D.	305171	1.74	373	23931	7435	5.98	17071	145528	9082	431	27.5
Pen 107	N.D.	300439	2.06	371	30941	7449	7.96	15627	146619	9316	437	24.1
Pen 108	N.D.	291878	4.42	452	32453	6292	6.30	21703	137775	12549	380	23.4
Pen 109	N.D.	305334	1.39	316	24091	7413	6.20	16415	143947	9061	424	26.4
Pen 110	N.D.	293892	3.44	340	33096	7270	3.05	14060	146630	9178	347	25.1
Pen 111	N.D.	298258	4.38	336	27352	7031	4.95	18009	145633	9378	450	25.0
Pen 112	N.D.	294949	2.69	353	34125	7247	6.54	17036	146882	9345	446	22.3
Pen 113	N.D.	300119	4.96	322	23692	6876	5.37	16828	144479	9205	395	26.3
Pen 114	N.D.	288471	1.55	303	36610	6401	4.87	17420	138241	11452	399	21.9
Pen 115	N.D.	307871	N.D.	334	23123	7056	5.29	17652	150160	9525	417	26.2
Pen 116	N.D.	294664	N.D.	303	22523	7219	5.48	17650	145581	9329	402	26.9
Pen 117	N.D.	298202	13.6	371	20851	6962	5.86	17512	145453	9376	393	27.9
Pen 118	N.D.	298227	0.75	332	24542	7064	6.21	16234	147022	9086	399	26.1
Pen 119	N.D.	296321	1.62	341	25624	7161	5.70	18115	146705	9826	397	25.2
Pen 120	N.D.	307127	4.92	384	29097	6299	6.00	21194	141588	11890	433	22.5
Pen 121	N.D.	287800	1.69	367	31117	7246	5.62	18758	146654	9707	432	21.9
Pen 122	N.D.	297271	2.21	326	22159	7319	3.60	17802	146180	9376	362	26.3
Pen 123	N.D.	291217	0.89	365	24351	6837	4.85	18598	142186	9577	414	25.1
Pen 124	N.D.	291660	1.53	377	31787	7917	4.96	18484	149215	9110	464	22.4

Sample ID	<u>Al</u> ppm	<u>Ca</u> ppm	<u>Cu</u> ppm	<u>Fe</u> ppm	<u>K</u> ppm	Mg ppm	Mn ppm	<u>Na</u> ppm	<u>P</u> ppm	<u>S</u> ppm	Zn ppm	<u>Ash</u> %
Day 21												
Pen 125	N.D.	299177	3.19	285	22260	7066	6.15	17216	145811	8895	414	26.2
Pen 126	N.D.	306869	2.22	227	22075	6177	4.25	17165	142203	9396	384	21.6
Pen 127	N.D.	296682	N.D.	297	22096	7395	6.13	16909	145330	8815	423	26.7
Pen 128	N.D.	292586	0.44	284	25504	7403	4.83	17109	144732	8986	374	23.4
Pen 129	N.D.	294356	4.12	373	26728	7464	5.62	18298	145560	9414	427	25.4
Pen 130	N.D.	295379	0.74	304	24683	7050	4.55	17112	143935	8604	403	24.2
Pen 131	N.D.	298611	1.08	335	28508	7501	4.78	19481	149874	9549	442	22.1
Pen 132	N.D.	292955	1.23	374	22575	7143	6.72	18200	144508	9377	392	26.8
Pen 133	N.D.	295856	1.29	289	23252	7344	4.26	16579	148092	8488	361	25.0
Pen 134	N.D.	284647	1.95	388	29724	7349	4.96	19559	144201	9809	429	21.6
Pen 135	N.D.	290188	1.47	341	27000	6207	5.90	20264	136926	11163	402	22.5
Pen 136	N.D.	307742	3.59	422	30522	7828	21.5	19555	149693	9889	452	23.9
Pen 137	N.D.	291180	7.39	293	22489	6506	5.20	17229	143047	9031	432	26.9
Pen 138	N.D.	280795	7.69	381	41250	7590	9.16	25441	140534	13566	470	19.5
Pen 139	N.D.	282628	0.68	363	25896	7115	9.13	18958	141652	9814	388	24.4
Pen 140	N.D.	282675	3.21	303	28879	7442	5.91	18496	145019	9331	452	24.5
Pen 141	N.D.	287437	0.98	333	22913	7222	5.09	17500	144299	8763	350	26.1
Pen 142	N.D.	286143	1.33	307	24127	7086	5.74	18737	144373	9359	361	25.1
Pen 143	N.D.	283001	1.85	358	27373	7425	5.81	18281	140999	9404	427	24.4
Pen 144	N.D.	286403	1.07	308	26324	6997	4.88	16849	141073	9009	410	25.2
Pen 145	N.D.	355138	4.52	379	21948	7978	8.26	19380	165971	11131	450	27.3
Pen 146	N.D.	350605	4.75	329	22615	7721	6.40	17692	167591	10012	518	27.0
Pen 147	N.D.	352421	5.74	448	27958	8369	8.39	19596	170557	11135	521	25.4
Pen 148	N.D.	350524	6.21	355	30469	7013	8.00	22799	161632	13433	480	22.9
Pen 149	N.D.	343408	6.69	356	26118	6786	6.59	21782	158042	13756	445	24.9
Pen 150	N.D.	340711	10.7	363	25911	7691	6.31	18116	166998	10509	476	23.4
Pen 151	N.D.	335929	6.24	377	30359	7679	6.88	19139	164982	10888	508	22.9
Pen 152	N.D.	351270	2.65	352	21367	7800	4.55	18238	168957	10071	408	27.2
Pen 153	N.D.	341713	1.49	351	24349	8225	7.98	18541	168056	9990	475	27.1
Pen 154	N.D.	330771	4.97	399	39338	8428	7.80	20148	170849	10244	544	21.1
Pen 155	N.D.	341003	2.90	463	23266	8036	7.84	19536	164634	11002	490	26.9
Pen 156	N.D.	338489	5.33	348	23747	8014	7.49	19639	163662	10689	455	25.9
Pen 159	N.D.	342698	4.13	400	29439	8152	6.29	18377	168381	10769	501	23.1
Pen 160	N.D.	350823	3.40	318	21874	7280	6.80	16833	165055	9856	458	24.5
Pen 161	N.D.	352962	5.76	384	22228	8423	6.06	18987	169879	10789	404	27.3
Pen 162	N.D.	335225	9.35	531	35472	7353	5.82	24384	159237	14195	497	21.9
Pen 163	N.D.	346746	12.4	390	27317	8167	8.07	18977	169180	10732	503	22.8
Pen 164	N.D.	352024	2.18	381	25085	7644	7.04	18625	166262	10671	461	23.9
Pen 165	N.D.	358955	2.67	350	22136	8133	6.81	18224	174189	10144	493	28.4
Pen 166	N.D.	318674	2.38	471	38732	9149	7.77	22695	167579	12356	529	21.2
Pen 167	N.D.	363337	5.39	414	23943	8234	5.81	19177	177707	10426	489	26.2
Pen 168	N.D.	327700	2.28	418	28821	7963	7.11	17543	164531	9942	466 475	23.4
Pen 169	N.D.	316386	8.73	468	33497	7554	8.12	23875	157413	13854	475	23.7
Pen 170	N.D.	342505	4.22	314	22098	8053	7.96	18129	169166	9480	488	26.3
Pen 171	N.D.	344183	3.40	411	26621	8236	7.23	19931	170821	10990	468	26.5

Sample ID	<u>Al</u> ppm	<u>Ca</u> ppm	<u>Cu</u> ppm	<u>Fe</u> ppm	<u>K</u> ppm	Mg ppm	Mn ppm	<u>Na</u> ppm	<u>P</u> ppm	<u>S</u> ppm	Zn ppm	Ash %
Day 21	ppin	ppin	ppin	ppin	ppin	ppin	ppin	ppin	ppm	ppm	ppin	70
Pen 172	N.D.	331800	5.21	313	33883	8448	9.18	20015	168528	11288	495	21.3
Pen 173	N.D.	371625	6.66	417	27827	8814	8.03	21833	180851	12482	498	26.2
Pen 174	N.D.	348420	4.43	366	23799	8362	7.54	18650	171435	10258	466	23.1
Pen 177	N.D.	345338	5.21	352	22881	8218	7.11	18176	169174	9778	451	26.2
Pen 178	N.D.	341051	4.80	376	22286	7962	7.06	18692	165413	10102	461	25.9
Pen 179	N.D.	343191	3.46	395	23888	8079	7.15	18590	166743	10190	484	25.2
Pen 180	N.D.	338594	5.06	343	30312	8305	5.45	16631	171683	9750	430	22.6
Pen 181	N.D.	347565	7.34	339	24319	8425	7.54	19077	168823	10511	492	25.7
Pen 182	N.D.	341496	3.51	372	25031	8277	7.75	18189	167369	9571	474	24.9
Pen 183	N.D.	337375	7.66	362	28652	8163	7.14	20601	165637	11325	463	25.5
Pen 184	N.D.	331881	0.52	377	31720	8289	6.15	17715	166165	10274	464	23.4
Pen 185	N.D.	336845	4.91	442	24758	8115	6.88	19498	163580	10873	486	26.7
Pen 186	N.D.	337499	5.87	377	25034	8025	6.38	19635	162306	11649	444	27.6
Pen 187	N.D.	325198	8.03	504	38114	8097	7.94	21123	161391	12485	459	19.5
Pen 188	N.D.	349338	2.65	318	21589	7840	5.23	18099	170192	9793	394	27.5
Pen 189	N.D.	335043	5.61	418	22575	7981	7.65	19820	162459	11027	467	26.2
Pen 190	N.D.	330305	2.04	395	28922	8234	7.54	17839	166554	10440	473	22.3
Pen 191	N.D.	333694	1.33	443	24490	8001	7.69	20859	164998	11442	442	26.3
Pen 192	N.D.	341906	2.09	352	21667	8008	5.92	18641	168099	9959	433	26.8
Pen 193	N.D.	328002	6.13	426	32226	8558	6.73	19309	165571	10364	455	21.7
Pen 194	N.D.	331148	0.69	338	23456	8113	4.83	17853	161715	9430	439	25.6
Pen 195	N.D.	334427	3.14	412	26087	6893	6.20	20259	155222	11624	449	23.3
Pen 196	N.D.	337900	1.71	340	21026	7711	6.22	19170	161778	10644	393	27.9
Day 42												
Pen 97	N.D.	331955	0.37	387	17254	7761	7.30	13321	156653	7448	363	33.2
Pen 98	N.D.	323868	4.16	418	20903	7190	7.87	15514	153717	7987	375	26.9
Pen 99	N.D.	330080	2.11	367	18729	7382	8.65	14524	155801	7703	384	28.1
Pen 100	N.D.	338111	2.42	368	20356	7887	7.45	15539	159454	8103	387	27.7
Pen 101	N.D.	333436	2.93	358	20671	7341	7.18	15540	158283	8005	356	25.5
Pen 102	N.D.	331234	3.25	466	24476	8193	7.18	16564	160941	8847	332	27.1
Pen 103	N.D.	334196	5.24	451	18444	7456	6.22	15616	156314	8471	359	30.7
Pen 104	N.D.	324104	2.00	408	20707	7139	8.40	15734	154772	8175	360	26.3
Pen 105	N.D.	325007	5.23	482	19379	7501	7.30	15099	157391	7968	351	30.0
Pen 106	N.D.	336063	N.D.	340	13932	7606	7.24	12999	158098	7308	352	37.2
Pen 107	N.D.	327235	3.76	390	20051	7587	6.68	17071	158071	8532	356	28.0
Pen 108	N.D.	326711	2.13	427	19836	7012	6.72	14871	151415	8794	325	27.2
Pen 109	N.D.	328479	3.42	390	19195	7467	7.54	15620	159139	8102	356	29.5
Pen 110	N.D.	329425	2.34	368	17386	7435	7.27	15996	158459	7919	318	27.6
Pen 111	N.D.	331282	2.78	402	18049	7566	6.76	15122	158220	7552	373	30.2
Pen 112	N.D.	330948	3.43	423	20554	7196	7.82	15698	155925	8315	334	26.6
Pen 113	N.D.	331549	1.19	406	19008	7349	8.56	15371	159275	7914	365	30.1
Pen 114	N.D.	326014	2.93	479	27180	7104	7.76	17015	155717	9718	360	24.2

Sample ID	<u>Al</u> ppm	<u>Ca</u> ppm	<u>Cu</u> ppm	<u>Fe</u> ppm	<u>K</u> ppm	Mg ppm	Mn ppm	<u>Na</u> ppm	<u>P</u> ppm	<u>S</u> ppm	<u>Zn</u> ppm	Ash %
Day 42	**	* *	• •	• •	••	• •	• • •	• •	••	• •	••	
Pen 115	N.D.	333601	2.08	420	19728	7005	7.32	15235	154455	8137	359	29.8
Pen 116	N.D.	324220	0.94	349	20326	7417	6.88	15728	157395	7996	357	28.0
Pen 117	N.D.	350691	2.60	379	17319	7986	8.15	14947	165974	7762	355	31.8
Pen 118	N.D.	316248	3.45	380	20851	7292	5.81	15728	153942	7889	332	25.6
Pen 119	N.D.	329360	0.01	316	15287	7349	4.84	14204	155844	7411	342	30.0
Pen 120	N.D.	323974	0.92	589	23507	7054	5.58	16639	151383	9315	329	27.1
Pen 121	N.D.	325846	1.57	354	17180	7288	7.47	13751	155395	7515	341	30.5
Pen 122	N.D.	328755	1.45	364	17674	7728	5.07	15378	159340	8082	297	31.3
Pen 123	N.D.	331464	1.58	432	18917	7323	6.78	15556	159712	7844	346	27.7
Pen 124	N.D.	328316	2.48	346	19481	7652	6.47	15030	159249	7874	357	26.7
Pen 125	N.D.	325734	2.42	381	18898	7545 7330	5.80	15262	158692	7964	353	30.4
Pen 126	N.D.	324650	2.94	479	23909	7239	6.57	14902 15483	153399	8455	322	25.1
Pen 127 Pen 128	N.D.	361556 335534	N.D. 1.68	448 322	17912 15795	8104 7817	6.28 5.81	13483	168153 160289	8039 7231	373 301	32.7 32.6
Pen 128 Pen 129	N.D. N.D.	336955	2.03	333	20689	7967	7.77	14156	161361	7615	343	28.8
Pen 130	N.D.	331068	2.74	405	18966	7391	6.70	15353	156763	8222	340	29.9
Pen 131	N.D.	329062	2.74	358	16397	7488	5.47	14854	158844	7601	356	30.4
Pen 132	N.D.	322773	0.84	422	19180	7651	7.11	17247	155216	9639	366	30.7
Pen 133	N.D.	313339	1.24	401	18339	7390	7.61	16832	153428	9359	350	26.7
Pen 134	N.D.	315450	2.78	445	22937	7599	7.56	16947	156811	9178	382	27.2
Pen 135	N.D.	319150	1.57	493	20605	7036	7.54	16629	150907	9464	318	29.6
Pen 136	N.D.	317218	2.98	501	20485	7519	7.60	16007	154132	8457	337	29.4
Pen 137	N.D.	321891	6.16	416	21339	7470	7.15	15812	154884	8275	352	26.8
Pen 138	N.D.	309311	N.D.	422	23204	6865	7.82	16794	147924	9623	337	28.1
Pen 139	N.D.	331396	1.66	432	22174	7798	6.85	16088	160673	8918	340	29.2
Pen 140	N.D.	315194	3.06	398	18691	7581	5.79	14994	156081	7695	372	31.1
Pen 141	N.D.	320341	1.49	391	18746	7489	6.10	15089	157034	7773	303	31.9
Pen 142	N.D.	306242	2.91	454	20581	7442	7.72	15194	152583	7221	349	27.4
Pen 143	N.D.	329980	N.D.	419	18761	7772	6.07	15194	158310	8304	362	33.3
Pen 144	N.D.	306092	2.09	439	23032	7485	7.48	15882	153851	8408	360	27.5
Pen 145	N.D.	322137	4.97	420	18135	7659	8.48	15358	157857	8723	336	31.9
Pen 146	N.D.	323962	2.35	367	17786	7753	7.78	14703	161569	7715	351	32.2
Pen 147 Pen 148	N.D. N.D.	325430 317105	0.43 3.06	394 564	17649 23748	7831 7459	7.95 7.07	14383 16617	159902 151792	8217 9903	363 346	34.3 27.8
Pen 149	N.D.	317103	4.32	504	27934	7732	9.79	17196	151792	9871	345	23.3
Pen 150	N.D.	306386	N.D.	436	22249	7313	5.43	15365	154053	8589	360	27.3
Pen 151	N.D.	313567	2.89	403	18106	7266	5.97	15546	157858	8374	337	30.7
Pen 152	N.D.	314134	0.39	355	21699	7705	4.54	14941	161851	8606	307	28.9
Pen 153	N.D.	310632	2.60	460	18223	7897	6.16	14474	157497	7992	341	34.5
Pen 154	N.D.	301964	3.90	507	22169	7414	7.47	18036	154274	9198	353	27.4
Pen 155	N.D.	303263	1.27	418	23065	7295	6.30	15523	153970	8596	348	25.6
Pen 156	N.D.	304599	0.71	377	16899	7541	6.37	14544	151924	8021	323	33.5
Pen 159	N.D.	316670	N.D.	413	18527	7479	6.70	15136	154737	7887	371	29.5
Pen 160	N.D.	314418	1.85	402	17763	7077	5.22	13543	152777	7035	326	31.6

Sample ID	<u>Al</u>	<u>Ca</u>	<u>Cu</u>	<u>Fe</u>	<u>K</u>	$\underline{\mathbf{Mg}}$	<u>Mn</u>	<u>Na</u>	<u>P</u>	<u>S</u>	<u>Zn</u>	<u>Ash</u>
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
Day 42												
Pen 161	N.D.	319033	2.93	392	16812	7379	4.61	14589	154463	7144	297	33.1
Pen 162	N.D.	313646	2.69	440	24947	6871	7.41	14649	147859	8107	300	24.5
Pen 163	N.D.	316209	2.93	377	19991	7418	4.98	14443	155214	7925	349	29.0
Pen 164	N.D.	399284	2.60	501	26163	9182	7.10	18855	178932	9321	430	30.9
Pen 165	N.D.	308140	1.58	398	17281	7633	6.01	14803	150856	7210	289	32.1
Pen 166	N.D.	309490	0.31	402	14622	7387	6.13	13901	148165	7012	350	33.7
Pen 167	N.D.	309967	1.65	372	18951	7373	6.48	13374	152587	7316	336	31.5
Pen 168	N.D.	317891	1.85	384	15944	7279	7.07	14250	150933	7239	330	35.1
Pen 169	N.D.	376740	2.39	638	33613	8730	8.77	19605	172888	11465	395	24.7
Pen 170	N.D.	315301	0.82	432	24725	7838	6.60	16155	150323	7942	344	26.2
Pen 171	N.D.	310000	1.67	464	17663	7082	7.61	15146	146718	8106	292	33.1
Pen 172	N.D.	315949	0.63	359	20385	7333	4.88	13985	151806	7389	341	26.0
Pen 173	N.D.	316080	0.38	392	18454	7150	6.56	14974	151262	8044	323	29.3
Pen 174	N.D.	309567	0.88	352	19341	7393	5.60	14281	151147	7334	283	27.3
Pen 177	N.D.	326912	2.57	365	15208	7575	7.53	13767	152964	7852	316	35.2
Pen 178	N.D.	314920	1.37	356	16088	7028	4.95	13993	149121	7074	331	32.6
Pen 179	N.D.	304801	0.17	375	17244	7235	5.53	13827	149543	7259	302	30.5
Pen 180	N.D.	321642	3.75	418	25311	7967	7.34	15223	158210	8121	314	25.2
Pen 181	N.D.	308209	2.23	352	16047	7097	5.19	14766	148955	7241	340	30.3
Pen 182	N.D.	312188	1.74	373	20495	7388	7.12	14989	155145	7626	308	26.5
Pen 183	N.D.	303513	1.63	392	20970	7202	7.30	14337	148288	7455	313	27.3
Pen 184	N.D.	311065	0.25	303	14724	6972	6.77	13528	148152	6814	328	32.7
Pen 185	N.D.	309120	3.29	412	18120	7210	4.81	15018	148069	7757	322	30.9
Pen 186	N.D.	308429	N.D.	446	19789	7174	6.12	14292	149518	8219	300	34.2
Pen 187	N.D.	302833	1.08	451	19121	7006	4.68	14928	143540	8630	296	29.5
Pen 188	N.D.	314469	3.60	477	20055	7450	4.12	15434	148710	7848	314	31.0
Pen 189	N.D.	304374	3.40	448	22849	7232	5.39	15396	149551	7880	336	26.5
Pen 190	N.D.	309459	0.96	394	15417	7229	5.28	14362	149376	7530	299	36.1
Pen 191	N.D.	299274	2.15	457	22735	7155	7.53	15252	142650	7908	320	28.0
Pen 192	N.D.	312315	3.06	379	23622	7475	5.31	15730	151502	8258	316	26.0
Pen 193	N.D.	304888	0.73	454	18549	6966	5.14	15398	145584	7852	293	32.9
Pen 194	N.D.	305135	2.82	425	20464	7579	4.41	15590	148399	7878	318	30.4
Pen 195	N.D.	294205	1.19	501	20277	7056	2.83	15201	135632	9008	285	30.7
Pen 196	N.D.	298056	2.02	374	20517	7386	3.97	15062	143574	7889	307	28.7

Bones were dried, ashed, and digested for minerals.

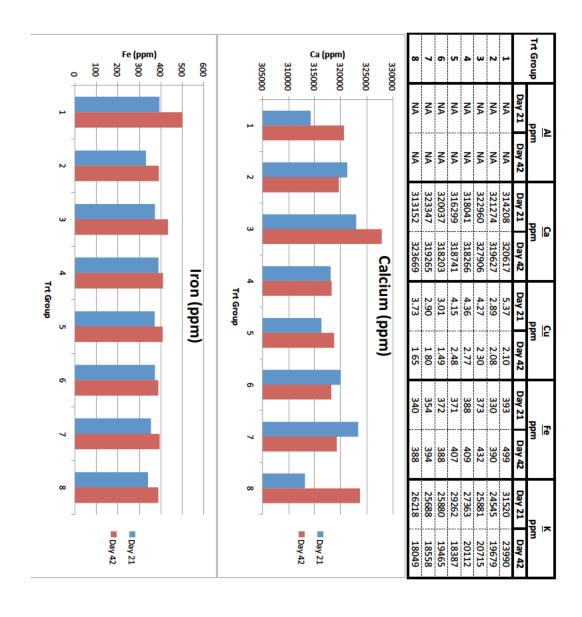
Report Approved:

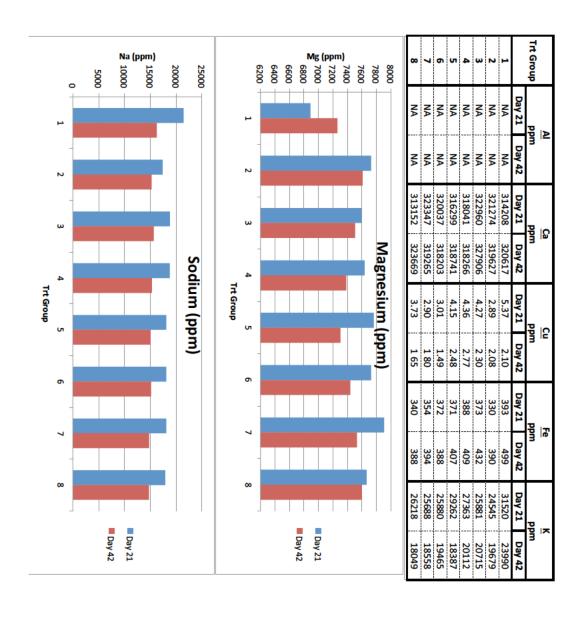
Block	<u>Trt</u>	Sample ID	<u>Al</u>	<u>Ca</u>	<u>Cu</u>	<u>Fe</u>	<u>K</u>	Mg	Mn
		D 21	ppm	ppm	ppm	ppm	ppm	ppm	ppm
1	1	<i>Day 21</i> Pen 135	N.D.	290188	1.47	341	27000	6207	5.90
2	1	Pen 108	N.D.	291878	4.42	452	32453	6292	6.30
3	1	Pen 114	N.D.	288471	1.55	303	36610	6401	4.87
4	1	Pen 120	N.D.	307127	4.92	384	29097	6299	6.00
5	1	Pen 126	N.D.	306869	2.22	227	22075	6177	4.25
6	1	Pen 148	N.D.	350524	6.21	355	30469	7013	8.00
7	1	Pen 149	N.D.	343408	6.69	356	26118	6786	6.59
8	1	Pen 162	N.D.	335225	9.35	531	35472	7353	5.82
9	1	Pen 169	N.D.	316386	8.73	468	33497	7554	8.12
10	1	Pen 138	N.D.	280795	7.69	381	41250	7590	9.16
11	1	Pen 187	N.D.	325198	8.03	504	38114	8097	7.94
12	1	Pen 195	N.D.	334427	3.14	412	26087	6893	6.20
Averages			NA	314208	5.37	393	31520	6889	6.60
Standard	Deviations		NA	23560.3	2.83	86	5719	643	1.44
CVs			NA	7.50%	52.62%	22.00%	18.14%	9.34%	21.85%
1	2	Pen 133	N.D.	295856	1.29	289	23252	7344	4.26
2	2	Pen 102	N.D.	309757	4.06	289	27292	7739	5.01
3	2	Pen 110	N.D.	293892	3.44	340	33096	7270	3.05
4	2	Pen 122	N.D.	297271	2.21	326	22159	7319	3.60
5	2	Pen 128	N.D.	292586	0.44	284	25504	7403	4.83
6	2	Pen 141	N.D.	287437	0.98	333	22913	7222	5.09
7	2	Pen 152	N.D.	351270	2.65	352	21367	7800	4.55
8	2	Pen 161	N.D.	352962	5.76	384	22228	8423	6.06
9	2	Pen 174	N.D.	348420	4.43	366	23799	8362	7.54
10	2	Pen 180	N.D.	338594	5.06	343	30312	8305	5.45
11	2	Pen 188	N.D.	349338	2.65	318	21589	7840	5.23
. 12	2	Pen 196	N.D.	337900	1.71	340	21026	7711	6.22
Averages	D : 4:		NA	321274	2.89	330	24545	7728	5.07
	Deviations		NA	27098.1	1.68	31	3838	439	1.20
CVs			NA	8.43%	58.25%	9.44%	15.64%	5.68%	23.63%
1	3	Pen 136	N.D.	307742	3.59	422	30522	7828	21.5
2	3	Pen 101	N.D.	298648	9.82	347	33620	7103	5.61
3	3	Pen 115	N.D.	307871	0.00	334	23123	7056	5.29
4	3	Pen 123	N.D.	291217	0.89	365	24351	6837	4.85
5	3	Pen 130	N.D.	295379	0.74	304	24683	7050	4.55
6	3	Pen 145	N.D.	355138	4.52	379	21948	7978	8.26
7	3	Pen 150	N.D.	340711	10.7	363	25911	7691	6.31
8	3	Pen 164	N.D.	352024	2.18	381	25085	7644	7.04
9	3	Pen 173	N.D.	371625	6.66	417	27827	8814	8.03
10	3	Pen 139	N.D.	282628	0.68	363	25896	7115	9.13
11	3	Pen 186	N.D.	337499	5.87	377	25034	8025	6.38
12	3	Pen 189	N.D.	335043	5.61	418	22575	7981	7.65
Averages Standard	Deviations		NA NA	322960	4.27 3.50	373 35	25881 3362	7594 577	7.88 4.52
CVs	DEMINUTE		NA NA	29180.1	3.59	35 0 44%	3362 12.00%	577 7.60%	4.52 57 389/
CVS			NA	9.04%	84.13%	9.44%	12.99%	7.00%	57.38%

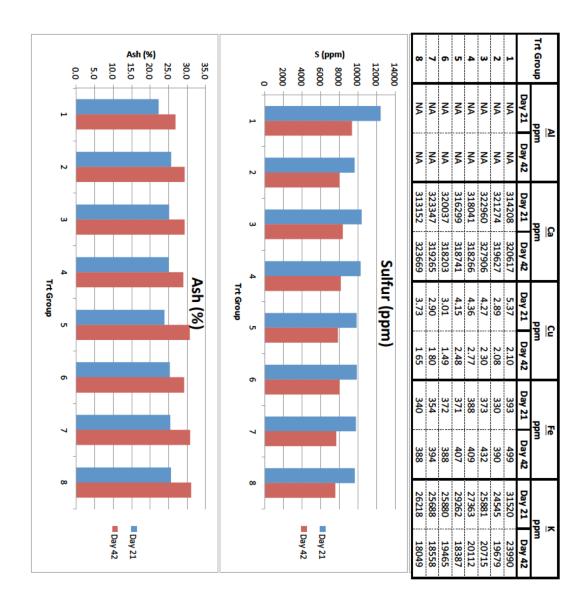
1	4	Pen 134	N.D.	284647	1.95	388	29724	7349	4.96
2	4	Pen 104	N.D.	303314	1.48	410	29245	7456	6.34
3	4	Pen 112	N.D.	294949	2.69	353	34125	7247	6.54
4	4	Pen 118	N.D.	298227	0.75	332	24542	7064	6.21
5	4	Pen 129	N.D.	294356	4.12	373	26728	7464	5.62
6	4	Pen 147	N.D.	352421	5.74	448	27958	8369	8.39
7	4	Pen 151	N.D.	335929	6.24	377	30359	7679	6.88
8	4	Pen 163	N.D.	346746	12.4	390	27317	8167	8.07
9	4	Pen 171	N.D.	344183	3.40	411	26621	8236	7.23
10	4	Pen 137	N.D.	291180	7.39	293	22489	6506	5.20
11	4	Pen 185	N.D.	336845	4.91	442	24758	8115	6.88
12	4	Pen 191	N.D.	333694	1.33	443	24490	8001	7.69
Average			NA	318041	4.36	388	27363	7638	6.67
	d Deviation	18	NA	25492.1	3.29	47	3189	560	1.08
CVs			NA	8.02%	75.45%	12.13%	11.66%	7.33%	16.24%
	_	T		••••	4.00		21011	- 400	o
1	5	Pen 98	N.D.	299326	4.99	377	31941	7482	9.57
2	5	Pen 103	N.D.	293125	6.69	488	40108	8212	7.06
3	5	Pen 113	N.D.	300119	4.96	322	23692	6876	5.37
4	5	Pen 121	N.D.	287800	1.69	367	31117	7246	5.62
5	5	Pen 131	N.D.	298611	1.08	335	28508	7501	4.78
6	5	Pen 144	N.D.	286403	1.07	308	26324	6997	4.88
7	5	Pen 154	N.D.	330771	4.97	399	39338	8428	7.80
8	5	Pen 160	N.D.	350823	3.40	318	21874	7280	6.80
9	5	Pen 168	N.D.	327700	2.28	418	28821	7963	7.11
10	5	Pen 177	N.D.	345338	5.21	352	22881	8218	7.11
11	5	Pen 181	N.D.	347565	7.34	339	24319	8425	7.54
12	5	Pen 193	N.D.	328002	6.13	426	32226	8558	6.73
Average	es ed Deviation	20	NA NA	316299	4.15	371 54	29262	7766	6.70
CVs	u Deviatioi	IS	NA NA	24485.3 7.74%	2.19 52.74%	54 14.45%	6021 20.57%	602 7.75%	1.37 20.41%
CVS			INA	/•/ 4 /0	34.74 /0	14.43 /0	20.37 /0	1.13/0	20.41 /0
1	6	Pen 99	N.D.	292887	2.36	319	29098	7484	6.27
2	6	Pen 107	N.D.	300439	2.06	371	30941	7449	7.96
3	6	Pen 109	N.D.	305334	1.39	316	24091	7413	6.20
4	6	Pen 119	N.D.	296321	1.62	341	25624	7161	5.70
5	6	Pen 132	N.D.	292955	1.23	374	22575	7143	6.72
6	6	Pen 143	N.D.	283001	1.85	358	27373	7425	5.81
7	6	Pen 155	N.D.	341003	2.90	463	23266	8036	7.84
8	6	Pen 159	N.D.	342698	4.13	400	29439	8152	6.29
9	6	Pen 167	N.D.	363337	5.39	414	23943	8234	5.81
10	6	Pen 179	N.D.	343191	3.46	395	23888	8079	7.15
11	6	Pen 183	N.D.	337375	7.66	362	28652	8163	7.14
12	6	Pen 192	N.D.	341906	2.09	352	21667	8008	5.92
Average			NA	320037	3.01	372	25880	7729	6.57
_	d Deviation	18	NA	27216.1	1.91	41	3090	417	0.79
CVs			NA	8.50%	63.39%	11.14%	11.94%	5.40%	12.03%
1	7	Pen 97	N.D.	319302	2.17	342	27856	7893	7.11

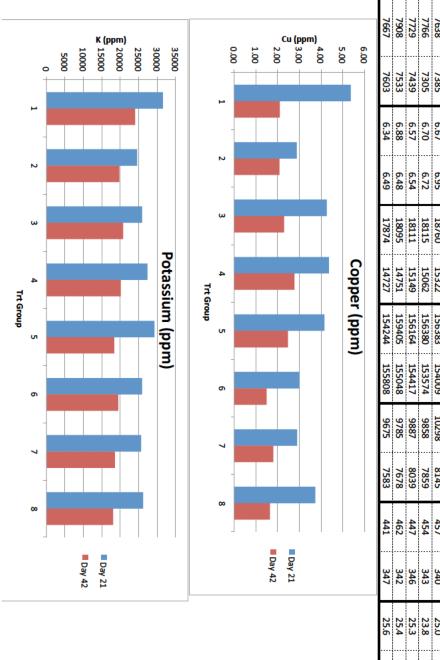
2	7	Pen 105	N.D.	309007	4.67	328	19796	7179	6.45
3	7	Pen 116	N.D. N.D.	294664	0.00	303	22523	7219	5.48
4	7	Pen 124	N.D. N.D.	294664	1.53	303 377	31787	7219 7917	3.48 4.96
	7								
5		Pen 125	N.D.	299177	3.19	285	22260	7066	6.15
6	7	Pen 146	N.D.	350605	4.75	329	22615	7721	6.40
7	7	Pen 153	N.D.	341713	1.49	351	24349	8225	7.98
8	7	Pen 166	N.D.	318674	2.38	471	38732	9149	7.77
9	7	Pen 170	N.D.	342505	4.22	314	22098	8053	7.96
10	7	Pen 178	N.D.	341051	4.80	376	22286	7962	7.06
11	7	Pen 182	N.D.	341496	3.51	372	25031	8277	7.75
12	7	Pen 190	N.D.	330305	2.04	395	28922	8234	7.54
Average			NA	323347	2.90	354	25688	7908	6.88
	rd Deviation	18	NA	20874.9	1.54	50	5352	577	1.00
CVs			NA	6.46%	53.27%	14.06%	20.84%	7.29%	14.56%
	_								
1	8	Pen 100	N.D.	298423	2.41	369	32440	7655	7.09
2	8	Pen 106	N.D.	305171	1.74	373	23931	7435	5.98
3	8	Pen 111	N.D.	298258	4.38	336	27352	7031	4.95
4	8	Pen 117	N.D.	298202	13.6	371	20851	6962	5.86
5	8	Pen 127	N.D.	296682	N.D.	297	22096	7395	6.13
6	8	Pen 142	N.D.	286143	1.33	307	24127	7086	5.74
7	8	Pen 156	N.D.	338489	5.33	348	23747	8014	7.49
8	8	Pen 165	N.D.	358955	2.67	350	22136	8133	6.81
9	8	Pen 172	N.D.	331800	5.21	313	33883	8448	9.18
10	8	Pen 140	N.D.	282675	3.21	303	28879	7442	5.91
11	8	Pen 184	N.D.	331881	0.52	377	31720	8289	6.15
12	8	Pen 194	N.D.	331148	0.69	338	23456	8113	4.83
Average	es		NA	313152	3.73	340	26218	7667	6.34
Standar	rd Deviation	18	NA	24154.5	3.67	29	4491	518	1.18
CVs			NA	7.71%	98.22%	8.63%	17.13%	6.76%	18.62%

<u>Na</u> ppm	<u>P</u> ppm	<u>S</u> ppm	Zn ppm	<u>Ash</u> %	Block Trt	Sample ID	<u>Al</u> ppm
ppm	ppm	ppm	ppm	70		Day 42	ppin
20264	136926	11163	402	22.5	1 1	Pen 135	N.D.
21703	137775	12549	380	23.4	2 1	Pen 108	N.D.
17420	138241	11452	399	21.9	3 1	Pen 114	N.D.
21194	141588	11890	433	22.5	4 1	Pen 120	N.D.
17165	142203	9396	384	21.6	5 1	Pen 126	N.D.
22799	161632	13433	480	22.9	6 1	Pen 148	N.D.
21782	158042	13756	445	24.9	7 1	Pen 149	N.D.
24384	159237	14195	497	21.9	8 1	Pen 162	N.D.
23875	157413	13854	475	23.7	9 1	Pen 169	N.D.
25441	140534	13566	470	19.5	10 1	Pen 138	N.D.
21123	161391	12485	459	19.5	11 1	Pen 187	N.D.
20259	155222	11624	449	23.3	12 1	Pen 195	N.D.
21451	149184	12447	439	22.3	Averages		NA
2523	10309	1412	40	1.6	Standard Devia	ations	NA
11.76%	6.91%	11.34%	9.05%	7.19%	CVs		NA
16579	148092	8488	361	25.0	1 2	Pen 133	N.D.
15765	149786	9674	362	26.4	2 2	Pen 102	N.D.
14060	146630	9178	347	25.1	3 2	Pen 110	N.D.
17802	146180	9376	362	26.3	4 2	Pen 122	N.D.
17109	144732	8986	374	23.4	5 2	Pen 128	N.D.
17500	144299	8763	350	26.1	6 2	Pen 141	N.D.
18238	168957	10071	408	27.2	7 2	Pen 152	N.D.
18987	169879	10789	404	27.3	8 2	Pen 161	N.D.
18650	171435	10258	466	23.1	9 2	Pen 174	N.D.
16631	171683	9750	430	22.6	10 2	Pen 180	N.D.
18099	170192	9793	394	27.5	11 2	Pen 188	N.D.
19170	161778	10644	393	27.9	12 2	Pen 196	N.D.
17383	157804	9648	388	25.7	Averages	.•	NA
1469	12022	722	36	1.8	Standard Devia	itions	NA
8.45%	7.62%	7.49%	9.19%	7.08%	CVs		NA
19555	149693	9889	452	23.9	1 3	Pen 136	N.D.
16574	148636	9859	411	23.0	2 3	Pen 101	N.D.
17652	150160	9525	417	26.2	3 3	Pen 115	N.D.
18598	142186	9577	414	25.1	4 3	Pen 123	N.D.
17112	143935	8604	403	24.2	5 3	Pen 130	N.D.
19380	165971	11131	450	27.3	6 3	Pen 145	N.D.
18116	166998	10509	476	23.4	7 3	Pen 150	N.D.
18625	166262	10671	461	23.9	8 3	Pen 164	N.D.
21833	180851	12482	498	26.2	9 3	Pen 173	N.D.
18958	141652	9814	388	24.4	10 3	Pen 139	N.D.
19635	162306	11649	444	27.6	11 3	Pen 186	N.D.
19820	162459	11027	467	26.2	12 3	Pen 189	N.D.
18822	156759	10395	440	25.1	Averages	4	NA
1399	12388	1065	33	1.5	Standard Devia	luons	NA
7.43%	7.90%	10.24%	7.58%	6.11%	CVs		NA

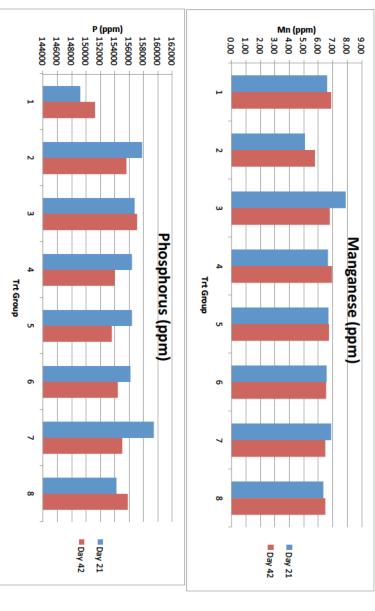

19559	144201	9809	429	21.6	1 4	Pen 134	N.D.
18764	145767	10828	427	27.2	2 4	Pen 104	N.D.
17036	146882	9345	446	22.3	3 4	Pen 112	N.D.
16234	147022	9086	399	26.1	4 4	Pen 118	N.D.
18298	145560	9414	427	25.4	5 4	Pen 129	N.D.
19596	170557	11135	521	25.4	6 4	Pen 147	N.D.
19139	164982	10888	508	22.9	7 4	Pen 151	N.D.
18977	169180	10732	503	22.8	8 4	Pen 163	N.D.
19931	170821	10990	468	26.5	9 4	Pen 171	N.D.
17229	143047	9031	432	26.9	10 4	Pen 137	N.D.
19498	163580	10873	486	26.7	11 4	Pen 185	N.D.
20859	164998	11442	442	26.3	12 4	Pen 191	N.D.
18760	156383	10298	457	25.0	Averages		NA
1340	11705	886	39	2.0	Standard Deviations		NA
7.14%	7.48%	8.61%	8.53%	8.07%	CVs		NA
4 = 00 =	4.4000=	0.500	40.4		_	T	
15995	142987	9538	424	25.4	1 5	Pen 98	N.D.
18379	147488	10596	481	22.5	2 5	Pen 103	N.D.
16828	144479	9205	395	26.3	3 5	Pen 113	N.D.
18758	146654	9707	432	21.9	4 5	Pen 121	N.D.
19481	149874	9549	442	22.1	5 5	Pen 131	N.D.
16849	141073	9009	410	25.2	6 5	Pen 144	N.D.
20148	170849	10244	544	21.1	7 5	Pen 154	N.D.
16833	165055	9856	458	24.5	8 5	Pen 160	N.D.
17543	164531	9942	466	23.4	9 5	Pen 168	N.D.
18176	169174	9778	451	26.2	10 5	Pen 177	N.D.
19077	168823	10511	492	25.7	11 5 12 5	Pen 181	N.D.
19309 18115	165571 156380	10364 9858	455 454	21.7 23.8	Averages	Pen 193	N.D. NA
1299	130360	501	40	23.8 1.9	Standard Deviations		NA NA
7.17%	7.53%	5.08%	8.77%	8.06%	CVs		NA NA
7.17 /0	7.55 /0	3.00 /0	0.7770	0.00 / 0	CVS		IVA
15766	139985	7983	432	22.9	1 6	Pen 99	N.D.
15627	146619	9316	437	24.1	2 6	Pen 107	N.D.
16415	143947	9061	424	26.4	3 6	Pen 109	N.D.
18115	146705	9826	397	25.2	4 6	Pen 119	N.D.
18200	144508	9377	392	26.8	5 6	Pen 132	N.D.
18281	140999	9404	427	24.4	6 6	Pen 143	N.D.
19536	164634	11002	490	26.9	7 6	Pen 155	N.D.
18377	168381	10769	501	23.1	8 6	Pen 159	N.D.
19177	177707	10426	489	26.2	9 6	Pen 167	N.D.
18590	166743	10190	484	25.2	10 6	Pen 179	N.D.
20601	165637	11325	463	25.5	11 6	Pen 183	N.D.
18641	168099	9959	433	26.8	12 6	Pen 192	N.D.
18111	156164	9887	447	25.3	Averages		NA
1493	13439	935	37	1.4	Standard Deviations		NA
8.25%	8.61%	9.45%	8.30%	5.57%	CVs		NA
16018	153735	9669	423	27.2	1 7	Pen 97	N.D.

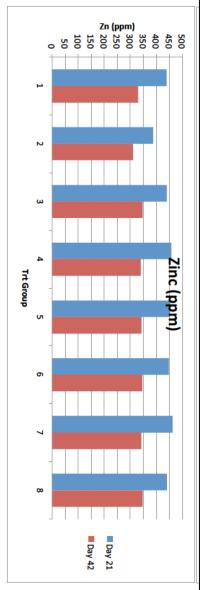

15998	146795	8465	426	27.5	2	7	Pen 105	N.D.
17650	145581	9329	402	26.9	3	7	Pen 116	N.D.
18484	149215	9110	464	22.4	4	7	Pen 124	N.D.
17216	145811	8895	414	26.2	5	7	Pen 125	N.D.
17692	167591	10012	518	27.0	6	7	Pen 146	N.D.
18541	168056	9990	475	27.1	7	7	Pen 153	N.D.
22695	167579	12356	529	21.2	8	7	Pen 166	N.D.
18129	169166	9480	488	26.3	9	7	Pen 170	N.D.
18692	165413	10102	461	25.9	10	7	Pen 178	N.D.
18189	167369	9571	474	24.9	11	7	Pen 182	N.D.
17839	166554	10440	473	22.3	12	7	Pen 190	N.D.
18095	159405	9785	462	25.4	Averages			NA
1700	10115	981	40	2.2	Standard D	eviation	18	NA
9.39%	6.35%	10.02%	8.60%	8.71%	CVs			NA
14307	145330	8934	437	25.8	1	8	Pen 100	N.D.
17071	145528	9082	431	27.5	2	8	Pen 106	N.D.
18009	145633	9378	450	25.0	3	8	Pen 111	N.D.
17512	145453	9376	393	27.9	4	8	Pen 117	N.D.
16909	145330	8815	423	26.7	5	8	Pen 127	N.D.
18737	144373	9359	361	25.1	6	8	Pen 142	N.D.
19639	163662	10689	455	25.9	7	8	Pen 156	N.D.
18224	174189	10144	493	28.4	8	8	Pen 165	N.D.
20015	168528	11288	495	21.3	9	8	Pen 172	N.D.
18496	145019	9331	452	24.5	10	8	Pen 140	N.D.
17715	166165	10274	464	23.4	11	8	Pen 184	N.D.
17853	161715	9430	439	25.6	12	8	Pen 194	N.D.
17874	154244	9675	441	25.6	Averages			NA
1459	11510	757	38	2.0	Standard D	eviatio	18	NA
8.16%	7.46%	7.83%	8.55%	7.71%	CVs			NA


<u>Ca</u> ppm	<u>Cu</u> ppm	<u>Fe</u> ppm	<u>K</u> ppm	Mg ppm	Mn ppm	<u>Na</u> ppm	<u>P</u> ppm	<u>S</u> ppm	Zn ppm	Ash %
319150	1.57	493	20605	7036	7.54	16629	150907	9464	318	29.6
326711	2.13	427	19836	7012	6.72	14871	151415	8794	325	27.2
326014	2.93	479	27180	7104	7.76	17015	155717	9718	360	24.2
323974	0.92	589	23507	7054	5.58	16639	151383	9315	329	27.1
324650	2.94	479	23909	7239	6.57	14902	153399	8455	322	25.1
317105	3.06	564	23748	7459	7.07	16617	151792	9903	346	27.8
313062	4.32	504	27934	7732	9.79	17196	152408	9871	345	23.3
313646	2.69	440	24947	6871	7.41	14649	147859	8107	300	24.5
376740	2.39	638	33613	8730	8.77	19605	172888	11465	395	24.7
309311	0.00	422	23204	6865	7.82	16794	147924	9623	337	28.1
302833	1.08	451	19121	7006	4.68	14928	143540	8630	296	29.5
294205	1.19	501	20277	7056	2.83	15201	135632	9008	285	30.7
320617	2.10	499	23990	7264	6.88	16254	151239	9363	330	26.8
20238.2	1.19	67	4116	524	1.85	1433	8637	882	30	2.4
6.31%	56.69%	13.45%	17.16%	7.21%	26.85%	8.82%	5.71%	9.42%	9.11%	9.07%
313339	1.24	401	18339	7390	7.61	16832	153428	9359	350	26.7
331234	3.25	466	24476	8193	7.18	16564	160941	8847	332	27.1
329425	2.34	368	17386	7435	7.27	15996	158459	7919	318	27.6
328755	1.45	364	17674	7728	5.07	15378	159340	8082	297	31.3
335534	1.68	322	15795	7817	5.81	13846	160289	7231	301	32.6
320341	1.49	391	18746	7489	6.10	15089	157034	7773	303	31.9
314134	0.39	355	21699	7705	4.54	14941	161851	8606	307	28.9
319033	2.93	392	16812	7379	4.61	14589	154463	7144	297	33.1
309567	0.88	352	19341	7393	5.60	14281	151147	7334	283	27.3
321642	3.75	418	25311	7967	7.34	15223	158210	8121	314	25.2
314469	3.60	477	20055	7450	4.12	15434	148710	7848	314	31.0
298056	2.02	374	20517	7386	3.97	15062	143574	7889	307	28.7
319627	2.08	390	19679	7611	5.77	15270	155621	8013	310	29.3
10595.1	1.09	46	2939	270	1.33	871	5548	661	17	2.6
3.31%	52.54%	11.70%	14.93%	3.55%	23.11%	5.70%	3.56%	8.25%	5.61%	8.88%
317218	2.98	501	20485	7519	7.60	16007	154132	8457	337	29.4
333436	2.93	358	20671	7341	7.18	15540	158283	8005	356	25.5
333601	2.08	420	19728	7005	7.32	15235	154455	8137	359	29.8
331464	1.58	432	18917	7323	6.78	15556	159712	7844	346	27.7
331068	2.74	405	18966	7391	6.70	15353	156763	8222	340	29.9
322137	4.97	420	18135	7659	8.48	15358	157857	8723	336	31.9
306386	0.00	436	22249	7313	5.43	15365	154053	8589	360	27.3
399284	2.60	501	26163	9182	7.10	18855	178932	9321	430	30.9
316080	0.38	392	18454	7150	6.56	14974	151262	8044	323	29.3
331396	1.66	432	22174	7798	6.85	16088	160673	8918	340	29.2
308429	N.D.	446	19789	7174	6.12	14292	149518	8219	300	34.2
304374	3.40	448	22849	7232	5.39	15396	149551	7880	336	26.5
327906	2.30	432	20715	7507	6.79	15668	157099	8363	347	29.3
25002.3	1.39	41	2309	571	0.87	1104	7816	451	31	2.4
7.62%	60.59%	9.37%	11.15%	7.61%	12.84%	7.04%	4.98%	5.40%	8.90%	8.14%


315450	2.78	445	22937	7599	7.56	16947	156811	9178	382	27.2
324104	2.00	408	20707	7139	8.40	15734	154772	8175	360	26.3
330948	3.43	423	20554	7196	7.82	15698	155925	8315	334	26.6
316248	3.45	380	20851	7292	5.81	15728	153942	7889	332	25.6
336955	2.03	333	20689	7967	7.77	14156	161361	7615	343	28.8
325430	0.43	394	17649	7831	7.95	14383	159902	8217	363	34.3
313567	2.89	403	18106	7266	5.97	15546	157858	8374	337	30.7
316209	2.93	377	19991	7418	4.98	14443	155214	7925	349	29.0
310000	1.67	464	17663	7082	7.61	15146	146718	8106	292	33.1
321891	6.16	416	21339	7470	7.15	15812	154884	8275	352	26.8
309120	3.29	412	18120	7210	4.81	15018	148069	7757	322	30.9
299274	2.15	457	22735	7155	7.53	15252	142650	7908	320	28.0
318266	2.77	409	20112	7385	6.95	15322	154009	8145	340	29.0
10267.5	1.38	37	1855	284	1.22	772	5522	402	23	2.8
3.23%	49.83%	8.98%	9.23%	3.84%	17.60%	5.04%	3.59%	4.93%	6.87%	9.63%
323868	4.16	418	20903	7190	7.87	15514	153717	7987	375	26.9
334196	5.24	451	18444	7456	6.22	15616	156314	8471	359	30.7
331549	1.19	406	19008	7349	8.56	15371	159275	7914	365	30.1
325846	1.57	354	17180	7288	7.47	13751	155395	7515	341	30.5
329062	2.33	358	16397	7488	5.47	14854	158844	7601	356	30.4
306092	2.09	439	23032	7485	7.48	15882	153851	8408	360	27.5
301964	3.90	507	22169	7414	7.47	18036	154274	9198	353	27.4
314418	1.85	402	17763	7077	5.22	13543	152777	7035	326	31.6
317891	1.85	384	15944	7279	7.07	14250	150933	7239	330	35.1
326912	2.57	365	15208	7575	7.53	13767	152964	7852	316	35.2
308209	2.23	352	16047	7097	5.19	14766	148955	7241	340	30.3
304888	0.73	454	18549	6966	5.14	15398	145584	7852	293	32.9
318741	2.48	407	18387	7305	6.72	15062	153574	7859	343	30.7
11348.5	1.32	49	2522	191	1.21	1233	3871	612	23	2.7
3.56%	53.16%	11.92%	13.72%	2.61%	17.99%	8.19%	2.52%	7.79%	6.84%	8.84%
330080	2.11	367	18729	7382	8.65	14524	155801	7703	384	28.1
327235	3.76	390	20051	7587	6.68	17071	158071	8532	356	28.0
328479	3.42	390	19195	7467	7.54	15620	159139	8102	356	29.5
329360	0.01	316	15287	7349	4.84	14204	155844	7411	342	30.0
322773	0.84	422	19180	7651	7.11	17247	155216	9639	366	30.7
329980	0.00	419	18761	7772	6.07	15194	158310	8304	362	33.3
303263	1.27	418	23065	7295	6.30	15523	153970	8596	348	25.6
316670	0.00	413	18527	7479	6.70	15136	154737	7887	371	29.5
309967	1.65	372	18951	7373	6.48	13374	152587	7316	336	31.5
304801	0.17	375	17244	7235	5.53	13827	149543	7259	302	30.5
303513	1.63	392	20970	7202	7.30	14337	148288	7455	313	27.3
312315	3.06	379	23622	7475	5.31	15730	151502	8258	316	26.0
318203	1.49	388	19465	7439	6.54	15149	154417	8039	346	29.2
11019.7	1.37	30	2288	169	1.05	1192	3423	690	25	2.3
3.46%	91.63%	7.67%	11.75%	2.28%	16.04%	7.87%	2.22%	8.58%	7.29%	7.76%
331955	0.37	387	17254	7761	7.30	13321	156653	7448	363	33.2

325007	5.23	482	19379	7501	7.30	15099	157391	7968	351	30.0
324220	0.94	349	20326	7417	6.88	15728	157395	7996	357	28.0
328316	2.48	346	19481	7652	6.47	15030	159249	7874	357	26.7
325734	2.42	381	18898	7545	5.80	15262	158692	7964	353	30.4
323962	2.35	367	17786	7753	7.78	14703	161569	7715	351	32.2
310632	2.60	460	18223	7897	6.16	14474	157497	7992	341	34.5
309490	0.31	402	14622	7387	6.13	13901	148165	7012	350	33.7
315301	0.82	432	24725	7838	6.60	16155	150323	7942	344	26.2
314920	1.37	356	16088	7028	4.95	13993	149121	7074	331	32.6
312188	1.74	373	20495	7388	7.12	14989	155145	7626	308	26.5
309459	0.96	394	15417	7229	5.28	14362	149376	7530	299	36.1
319265	1.80	394	18558	7533	6.48	14751	155048	7678	342	30.8
8063.96	1.36	43	2704	260	0.86	799	4573	352	20	3.4
2.53%	75.77%	11.02%	14.57%	3.45%	13.24%	5.41%	2.95%	4.58%	5.81%	10.98%
338111	2.42	368	20356	7887	7.45	15539	159454	8103	387	27.7
336063	0.00	340	13932	7606	7.24	12999	158098	7308	352	37.2
331282	2.78	402	18049	7566	6.76	15122	158220	7552	373	30.2
350691	2.60	379	17319	7986	8.15	14947	165974	7762	355	31.8
361556	0.00	448	17912	8104	6.28	15483	168153	8039	373	32.7
306242	2.91	454	20581	7442	7.72	15194	152583	7221	349	27.4
304599	0.71	377	16899	7541	6.37	14544	151924	8021	323	33.5
308140	1.58	398	17281	7633	6.01	14803	150856	7210	289	32.1
315949	0.63	359	20385	7333	4.88	13985	151806	7389	341	26.0
315194	3.06	398	18691	7581	5.79	14994	156081	7695	372	31.1
311065	0.25	303	14724	6972	6.77	13528	148152	6814	328	32.7
305135	2.82	425	20464	7579	4.41	15590	148399	7878	318	30.4
323669	1.65	388	18049	7603	6.49	14727	155808	7583	347	31.1
19372.1	1.24	44	2214	299	1.11	825	6465	402	28	3.0
5.99%	75.62%	11.22%	12.26%	3.93%	17.13%	5.60%	4.15%	5.30%	8.20%	9.80%





8 IS	g bra	N	<u> </u>	N	a	ī	3 10	5	3	Z	3 12	Ash	~ (ii
pp	m	ppm	m	ppn	m	ppr	m	pp	m	pp	m	%	31
Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42
6889	7264	6.60	6.88	21451	16254	149184	151239	12447	9363	439	330	22.3	26.8
7728	7611	5.07	5.77	17383	15270	157804	155621	9648	8013	388	310	25.7	29.3
7594	7507	7.88	6.79	18822	15668	156759	157099	10395	8363	440	347	25.1	29.3
7638	7385	6.67	6.95	18760	15322	156383	154009	10298	8145	457	340	25.0	29.0
7766	7305	6.70	6.72	18115	15062	156380	153574	9858	7859	454	343	23.8	30.7
7729	7439	6.57	6.54	18111	15149	156164	154417	9887	8039	447	346	25.3	29.2
7908	7533	6.88	6.48	18095	14751	159405	155048	9785	7678	462	342	25.4	30.8
7667	7603	6.34	6.49	17874	14727	154244	155808	9675	7583	441	347	25.6	31.1

									_
Mg ppn	Day 21	6889	7728	7594	7638	7766	7729	7908	7667
3 69	Day 42	7264	7611	7507	7385	7305	7439	7533	7603
₽ ≥	Day 21	6.60	5.07	7.88	6.67	6.70	6.57	6.88	6.34
Mn ppm	Day 42	6.88	5.77	6.79	6.95	6.72	6.54	6.48	6.49
R 12	Day 21	21451	17383	18822	18760	18115	18111	18095	17874
<u>Na</u> pm	Day 42	16254	15270	15668	15322	15062	15149	14751	14727
₽	Day 21	149184	157804	156759	156383	156380	156164	159405	154244
<u>P</u> om	Day 42	151239	155621	157099	154009	153574	154417	155048	155808
P	Day 21	12447	9648	10395	10298	9858	9887	9785	9675
<u>s</u> om	Day 42	9363	8013	8363	8145	7859	8039	7678	7583
Z PF	Day 21	439	388	440	457	454	447	462	441
<u>Zn</u> ipm	Day 42	330	310	347	340	343	346	342	347
ID	Day 21	22.3	25.7	25.1	25.0	23.8	25.3	25.4	25.6
Ash %	Day 42	26.8	29.3	29.3	29.0	30.7	29.2	30.8	31.1

31.1	25.6	347	441	7583	9675	155808	154244	14727	17874	6.49	6.34	7603	7667
30.8	25.4	342	462	7678	9785	155048	159405	14751	18095	6.48	6.88	7533	7908
29.2	25.3	346	447	8039	9887	154417	156164	15149	18111	6.54	6.57	7439	7729
30.7	23.8	343	454	7859	9858	153574	156380	15062	18115	6.72	6.70	7305	7766
29.0	25.0	340	457	8145	10298	154009	156383	15322	18760	6.95	6.67	7385	7638
29.3	25.1	347	440	8363	10395	157099	156759	15668	18822	6.79	7.88	7507	7594
29.3	25.7	310	388	8013	9648	155621	157804	15270	17383	5.77	5.07	7611	7728
26.8	22.3	330	439	9363	12447	151239	149184	16254	21451	6.88	6.60	7264	6889
Day 42	Day 21												
%		m	pp	om	PF	m	PF	om	p	m	ppm	3	ppi
Ash	ī	Zn	Z	S		. 0	_	a	-	'n	×	υq	M

Appendix 9

GraINzyme Phytase Phy02 Dose Response in Poultry

Project No. AGV-15-3

Conducted by Colorado Quality Research, Ft. Collins, CO

Final Study Report Pages 1 - 86

Appendix 9 Pages 225 - 310

COLORADO QUALITY RESEARCH FINAL REPORT

GraINzyme Phytase Phy02 Dose Response in Poultry

Project No. AGV-15-3

SPONSOR

Agrivida Inc.

200 Boston Ave, Suite 2975 Medford, MA 02155

TEST FACILITY

COLORADO QUALITY RESEARCH, INC.

400 East County Road 72 Wellington, Colorado 80549

January 2016

THIS FINAL REPORT IS CONFIDENTIAL AND IS THE PROPERTY OF COLORADO QUALITY RESEARCH, INC AND IS NOT TO BE REPRODUCED WITHOUT AUTHORIZATION FROM CQR

CQR FINAL REPORT Project No. AGV-15-3

I. GraINzyme Phytase Phy02 Dose Response in Poultry

SPONSOR MONITORS:

Jim Ligon, Ph.D. VP Regulatory Affairs and Stewardship Agrivida Inc. 200 Boston Ave, Suite 2975

Mobile: (b) (6)

Email: jim.ligon@agrivida.com

INVESTIGATOR:

Dan Moore, PhD. Colorado Quality Research, Inc. 400 East County Road 72 Wellington, Colorado 80549 Office: 970-568-7738

Fax: 970-568-7719

Email: dan@coloradoqualityresearch.com

STUDY EVENT SCHEDULE:

Event	Study Day	Calendar Date
Received, weighed birds by pen, vaccinated for NCB, and placed 17 chicks/pen. Administered Starter 1 diets	0	30JUL15
Weighed birds; Weighed back Starter 1 diets; Administered Starter 2 diets	14	13AUG15
Weighed birds by pen; Weighed back Starter 2 diets and changed to Grower/Finisher diets; Removed3 birds/pen; collected ileal and tibia samples	21	20AUG15
Weighed birds by pen; Weighed back Grower/Finisher diets; Collected tibia and fecal samples from 3 birds/pen; Ended live phase	42	10SEP15

OBJECTIVE

The objective of this study was to demonstrate the effectiveness over a range of doses of Phy02, a phytase enzyme product that is being developed by Agrivida, Inc. as a feed additive for poultry diets.

III. MATERIALS AND METHODS

A. TESTING/SUPPORT FACILITIES

Study I	nvestigator
Dan Moore, PhD	Colorado Quality Research, Inc.
(CV: on file, available upon request)	400 E. County Road 72
	Wellington, CO 80549
	W: 970-568-7738
	F: 970-568-7719
	dan@coloradoqualityresearch.com
	epresentative
Jim Ligon, PhD	Agrivida, Inc.
(CV: on file, available upon request)	VP Business Development
	200 Boston Ave, Suite 2975
	Medford, MA 02155
	M: (b) (4)
	(b) (4) <u>@ gmail.com</u>
	e Analysis
Phillip A. Lessard, Ph.D.	Agrivida, Inc.
(CV: on file, available upon request)	200 Boston Ave., Suite 2975
	Medford, MA 02155
	Philip.lessard@agrivida.com
	t – Tibia Ash Parameters
Linda Kirby	University of Arkansas
(CV: on file, available upon request)	Central Analytical Lab
	1260 W. Maple Street
	Fayetteville, AR 72701
	<u>lkirby@uark.edu</u>
	osphorus Digestibility, Feed Analysis
Thomas P. Mawhinney	Experimental Station Chemical Laboratories
(CV: on file, available upon request)	Room 4, Agricultural Building
	University of Missouri
	Columbia, MO 65211-7170
	mawhinneyt@missouri.edu
Contributing Scientist – Pro	oximate Analysis of Basal Feeds
Bryan Brock	MVTL Laboratories
(CV: on file, available upon request)	2 N. German Street
	New Ulm, MN 56072
	W: (800) 782-3557
	bbrock@mvtl.com

B. TEST ARTICLES, CONTROL ARTICLES, AND FEED ADDITIVES

Test Articles

GraINzyme Phytase Phy02 Lot No. TAVPHY02_0018

Expiration 17OCT15

Concentration (b) (4) FTU/g

Dosage Form Via complete feed

Level 250 Units Phytase (Treatment Group 3)

500 Units Phytase (Treatment Group 4) 750 Units Phytase (Treatment Group 5) 1000 Units Phytase (Treatment Group 6) 3000 Units Phytase (Treatment Group 7)

Duration Ad libitum Day 0 – Study End

Source Agrivida, Inc.

Control Articles

Phytase 2500 TPT Premix Lot No. 11184002

Expiration November 2016

Concentration 2,500 FTU/g
Dosage Form Via complete feed

Level 0.02% of Finished Feed (Treatment Group 8)

Duration Ad libitum Day 0 – Study End

Feed Additives

Biocox 60 Lot No. HSK20483 (Salinomycin) Expiration October 2015

Concentration 60 g/lb

Dosage Form Via Complete Feed

Level 50 g/ton

Duration Ad libitum in Starter 1 and Starter 2 diets

Source Alpharma, Inc.

Titanium Dioxide Lot No. TIOKFP40050PBGN

Dosage Form Via Complete Feed Level 0.3% in Basal Feed

Duration Ad libitum in Starter 2 and Grower/Finisher diets

Source Included in Study Records

Storage: Secured, temperature monitored, dry area

Method of administration: Oral via complete feed

Accounting: All quantities of the test articles, control

articles, and feed additives received and used in this study were documented

C. BASAL AND EXPERIMENTAL DIETS

Diets were formulated by CQR. Diets met and conformed with the commercial standards for feed used based on breed and age range of broilers. Copies of the diet formulations were included in the study records and Final Report.

There were two different basal diet formulations. Low Phosphate (LP) diets were formulated to contain 0.3% AvP in the Starter 1 and Starter 2 diets and 0.25% AvP in the Grower/Finisher diets. The High Phosphate (HP) diets were formulated to contain 0.45% AvP in the Starter 1 and Starter 2 diets and 0.4% AvP in the Grower/Finisher diets.

Basal diets were manufactured at CQR and stored in bulk mash form. The treatment diets were mixed at the CQR feed mill. A 500 pound capacity vertical mixer, a 4000 pound capacity vertical mixer, or a 14,000 lb horizontal mixer and a California Pellet Mill system were used to prepare the starter and grower/finisher diets. Feed was pelleted using a ~5-mm die and the starter 1 diet was further processed into crumbles while the starter 2 diet was left as pellets. The pelleting temperature was ~65 °C. Mixed feed was stored in bulk storage bins labeled with study number, treatment letter code, and diet type. Complete records of diet mixing were included in the study records.

Approximate Feeding Program:

<u>Diet</u>	<u>Form</u>	Period	~Lbs Feed Mixed per Trt
Starter 1	Crumbled	0 – 14 Days	300
Starter 2	Pelleted	14 – 21 Days	390
Grower/Finisher	Pelleted	21 – 42 Days	1680

Test article and control article were added to the basal feed in the following approximate quantities in order to achieve the targeted levels of phytase in the treatment feeds:

Trt Group	Product	Starter 1	Starter 2	Grower/Finisher
1	NA	NA	NA	NA
2	NA	NA	NA	NA
3	GraINzyme Phytase Phy02 ¹			(b) (4)
4	GraINzyme Phytase Phy02 ¹			
5	GraINzyme Phytase Phy02 ¹			
6	GraINzyme Phytase Phy02 ¹			
7	GraINzyme Phytase Phy02 ¹			
8	Phytase 2500 TPT Premix ²	0.060 lb	0.078 lb	0.336 lb

¹ Concentration of GraINzyme Phytase Phy02 as determined analytically by Agrivida was FTU/g. (b) (4)

² Concentration of Phytase 2500 TPT Premix as indicated on the label was 2,500 FTU/g.

D. SAMPLES AND ASSAYS

Prior to the pelleting process, an ~500g sample was taken of all treatment diets.

Following pelleting, treatment feeds were sampled (~500 g sample size) in duplicate according to CQR standard operating procedures (SOP FM-4 rev04). Five to ten samples of approximately equal size were collected from evenly distributed points as the feed was exiting the mixer/pelleter. These samples were combined into a representative composite sample which was then split into two duplicate samples in a manner appropriate to ensure minimal risk of cross-contamination. One sample was submitted to Agrivida for enzyme (phytase) analysis. The second sample of the treatment feeds was retained by CQR until notification from the Sponsor was received that the back-up samples were no longer needed. All samples were labeled with the CQR project number, sample description, and date of collection.

Basal feeds were sampled (~500 g sample size) in triplicate according to CQR standard operating procedures. One sample was submitted to MVTL for proximate analysis [See the following: AOAC 942.05; AOAC 930.15; AOAC (18) 2005 985.01; AOAC 968.08 (D.(a)); AOAC 990.03; AOAC 2003.06; AOAC 2003.05; ISO 11085-2008; AN 3414 (2005-03-02) Revision 4.1; AOAC (18) 2005 Method 994.12; and AOCS B1 6a-05], one sample was submitted to Agrivida for enzyme (phytase) analysis, and the third sample was retained by CQR until notification from the Sponsor was received that the back-up sample was no longer needed. All samples were labeled with the CQR project number, sample description, and date of collection.

E. TEST SYSTEM

Species Commercial Broiler Chickens

Strain Cobb 500

Supplier Simmons Foods Hatchery

Siloam Springs, AR

Sex Males

Age ~1 day of age upon receipt (Day 0)

~42 days at final weights

Identification Pen cards

Number of birds/pen 17
Number of treatments 8
Number of pens/treatment 12
Number of birds/treatment 204
Total number of pens 96
Total number of birds 1632

IV. EXPERIMENTAL DESIGN

A. TEST GROUPS

The test facility (Building #8W) was divided into 12 blocks of 8 pens each block. Treatments were assigned to the pens using a complete randomized block design. Birds were assigned to the pens randomly according to CQR SOP B-10. Specific treatment groups were as follows:

Low Phosphate diets were formulated to contain:

Starter: 0.3% AvP

Grower/Finisher: 0.25% AvP

High Phosphate diets were formulated to contain:

Starter: 0.45% AvP

Grower/Finisher: 0.4% AvP

Trt	Description	No.	No.	No.
Group	-	Pens	Birds/Pen	Birds/Trt
1	Low Phosphate (LP)	12	17	204
2	High Phosphate (HP)	12	17	204
3	250 Units Phytase (LP)	12	17	204
4	500 Units Phytase (LP)	12	17	204
5	750 Units Phytase (LP)	12	17	204
6	1000 Units Phytase (LP)	12	17	204
7	3000 Units Phytase (LP)	12	17	204
8	Phytase 2500 TPT Premix at 0.02%	12	17	204
0	of Finished Feed (LP)	12	1 /	204
	Totals	96	NA	1632

B. HOUSING AND MANAGEMENT

Housing

Assignment of treatments to pens was conducted using Microsoft Excel. The computer-generated assignment was as follows:

	T1	T2	Т3	T4	T5	T6	T7	Т8
Block 1	6	10	9	5	7	11	4	8
Block 2	16	14	15	18	17	13	12	19
Block 3	25	27	24	26	23	28	22	29
Block 4	37	36	35	32	34	33	30	31
Block 5	46	48	44	45	47	42	43	41
Block 6	53	54	52	49	55	50	51	56
Block 7	60	65	62	59	63	61	66	64
Block 8	71	70	68	73	74	72	67	69
Block 9	79	78	84	81	80	82	83	85
Block 10	90	91	89	88	93	87	92	86
Block 11	100	102	96	98	101	97	103	99
Block 12	109	111	108	104	107	106	110	105

Birds were housed in concrete floor pens (~ 3' x 5') within an environmentally controlled facility (Facility #8W, diagram attached). All birds were placed in clean pens containing clean pine shavings as bedding. Additional shavings were added to pens if they became too damp for comfortable conditions for the test birds during the study. Lighting was via incandescent lights and a commercial lighting program was used. Hours of light for every 24-hour period were as follows:

Approximate Bird Age (days)	Approximate Hours of Continuous Light per 24 hr period	~Light Intensity (foot candles)
0-4	24	1.0 – 1.3
5 – 10	10	1.0 – 1.3
11 – 18	12	0.2 - 0.3
19 – Study End	16	0.2 - 0.3

Environmental conditions for the birds (floor space & bird density [~0.88 ft²/bird], temperature, lighting, feeder and water space) were similar for all treatment groups at placement. In order to prevent bird migration, each pen was checked to ensure that no openings greater than 1 inch existed for approximately 12 inches in height between pens. To achieve this, a wood or plastic solid partition was in place for approximately the first 12 inches from the floor between each pen.

Vaccinations:

Birds were vaccinated for Mareks at the hatchery. Newcastle Disease (Poulvac Aero ND; B1 Type, B1 Strain, Live Virus; Zoetis, Inc, Kalamazoo, MI; Serial No. 1407910; Expiration 24MAR17) and Infectious Bronchitis (Bronchitis Vaccine; Mass. Type, Live Virus; Pfizer Animal health, Exton, PA; Serial No. 1308001; Expiration 14SEP15) vaccines were administered using a spray cabinet upon receipt of chicks. No other vaccinations or treatments (except as indicated above), were administered during the study unless approved by the Sponsor.

Water:

Water was provided *ad libitum* throughout the study via one automatic nipple drinker (5 nipples per drinker) per pen. Drinkers were checked twice daily and cleaned as needed to ensure a clean and constant water supply to the birds.

Feed:

Feed was provided *ad libitum* throughout the study via one hanging, ~17 inch diameter tube feeder per pen. One chick feeder tray was placed in each pen for approximately the first four days. Birds were placed on their respective treatment diets on Day 0 and as per the experimental design. Feed added and removed from pens from Day 0 to study end was weighed and recorded.

Daily observations:

The test facility, pens, and birds were observed at least twice daily for general flock condition, lighting, water, feed, ventilation and unanticipated events. If abnormal conditions or abnormal behavior was noted at any of the twice-daily observations they were documented and documentation was included with the study records. The minimum-maximum temperature of the test facility was recorded once daily.

Mortality and Culls:

Starting on study day 0, any bird that was found dead or was removed and sacrificed was weighed and necropsied. Cull birds that were unable to reach feed or water were sacrificed, weighed, and documented. The weight and probable cause of death and necropsy findings were recorded on the pen mortality record.

Veterinary Care, Intervention and Euthanasia:

Birds that developed clinically significant concurrent disease unrelated to the test procedures were, at the discretion of the Study Investigator or a designee, removed from the study and euthanized in accordance with site SOPs. In addition, moribund or injured birds whose condition may have affected the outcome of the study were euthanized upon the authority of a Site Veterinarian or a qualified technician. The reason for withdrawal was documented. If an animal died, or was removed and euthanized for humane reasons, it was recorded on the mortality sheet for the pen and a necropsy performed and filed to document the reason for removal.

If euthanasia was deemed necessary by the Study Investigator or a qualified technician, animals were euthanized by cervical dislocation.

Body Weights and Feed Intake:

Birds were weighed by pen on Study Days 0, 14, 21, and 42. The weights of all mortalities and culls over the course of the study were recorded on the Mortality & Necropsy Records for the appropriate pens. Average bird weight on a pen basis, on each weigh day, was summarized.

The feed remaining in each pen's feeder was weighed and the amount of feed consumed per pen was calculated by subtracting the feed weighed out of the pen from the total amount of feed weighed into the pen. Feeders were weighed on or before Study Day 0 and on Study Days 14, 21, and 42.

Weight Gains and Feed Conversion:

Average feed conversion was calculated for Days 0 - 14, 14 - 21, 0 - 21, 21 - 42, and 0 - 42 by dividing the total feed intake for that pen by the weight of the surviving birds in that pen.

Adjusted feed conversion were calculated for Days 0 - 14, 14 - 21, 0 - 21, 21 - 42, and 0 - 42 by dividing the total feed intake for that pen by the weight of the surviving birds in that pen and the weight of the birds that died or were removed from that pen.

Scales:

Scales used in the weighing of feed, feed additives, and birds were licensed by the State of Colorado. At each use the scales were checked using standard weights according to CQR Standard Operating Procedures.

C. BONE PARMETERS AND ILEAL PHOSPHORUS DIGESTIBILITY:

TiO2 was placed in all feeds starting at Study Day 14.

At Days 21 and 42, three birds were randomly collected from each pen, sacrificed, and ileal and left tibia samples were collected. The tibia samples were pooled in one bag per pen (3 tibias per pen in a bag). Adhering muscle was carefully removed from each tibia to get them mostly clean and then they were frozen and retained until Sponsor either instructed disposal or shipment to the laboratory for the determination of mineral weight and % ash (AOAC 923.03).

The ileal samples were also pooled in one plastic vial per pen (3 ileal samples per pen in a vial) and were frozen retained until Sponsor either instructed disposal or shipment to the laboratory for the determination of ileal phosphorus digestibility [AOAC 934.01; Journal of Animal Science (2004) 82: 179 – 183; AOAC 966.01 respectively]. From each bird starting at the Meckel's Diverticulum, the contents of the ileum were squeezed into the plastic bags.

D. STATISTICAL DESIGN

Data generated from the study was statistically analyzed by the Sponsor using the General Linear Model system (SAS, Inc., Cary, NC).

V. DATA COLLECTED

- Bird weights by pen, on approximately Days 0, 14, 21, and 42.
- Feed amounts added and removed from each pen from day 0 to study end (day 42).
- Mortality: sex, weight and probable cause of death day 0 to study end.
- Removed birds: reason for culling, sex and weight day 0 to study end.
- Daily observation of facility and birds, daily facility temperature.
- Feed conversion by pen and treatment group for days 0 14, 14 21, 0 21, 21 42, and 0 42.
- Tibia ash and ileal phosphorus digestibility days 21 and 42

VI. DISPOSITIONS

Excess Test Articles

An accounting was maintained of the test articles received and used for this study. Excess test articles were retained in the CQR general inventory until instruction from the Sponsor was received regarding the disposal or shipment of them. Documentation was provided with the study records.

<u>Feed</u>

An accounting was maintained of all treatment diets. The amount mixed, used and discarded was documented. Unused feed was discarded to the landfill at study end. Retention feed samples may be discarded to the landfill upon receipt of permission from the Sponsor. Disposition was documented in the study records.

Test Animals

An accounting was maintained of all birds received for the study. All mortalities, birds culled or sacrificed were disposed of by dumpster and commercial landfill. Disposal of mortalities, birds culled or birds sacrificed during the study and at study end were by dumpster and commercial landfill. Surviving birds were euthanized and disposed of dumpster and commercial landfill as they were not suitable for human consumption. Documentation of disposition was provided with the study records.

VII. RECORDS AND REPORT

A final report and the original study records were provided to the Sponsor following study completion. The Sponsor was provided with an electronic copy of the data in excel CQR spreadsheet format, with individual replicates represented in rows, and measurements made and identifying criteria (such as treatment, pen, block) in columns. No statistics were included in the final report unless provided by the Sponsor. A copy of the report, data and study records will be kept in CQR archives for a period of 5 years.

VIII. PERSONNEL

Key personnel involved in this study were as follows:

Agrivida, Inc.

Sponsor Representative Jim Ligon

CQR

Investigator Dan Moore, PhD.

Test Facility Management Stephen W. Davis, DVM, Dip. ACPV

Data Manager Shoshana Gray, B.A.
Feed Mill Manager Ken Johlke, B.S.
Farm Manager Kyle Kline, B.S.
Research Technician Jamie Menuey, B.S.

IX. INVESTIGATOR'S STATEMENT

There were no known circumstances that may have affected the data quality or integrity during this study.

Summary tables and graphs of bird performance have been prepared and are attached to this report (See Tables 1 - 12 and Graphs 1 - 5).

Overall mortality and moribund removal was as expected for study conditions and ranged from 2.941% (Treatment Group 2) to 5.882% (Treatment Group 7). See Tables 13 and 14 for mortality and removal information.

Performance during the trial was as expected for study conditions with body weight ranging from 2.451 Kg for the low phosphate group (Treatment Group 1) to 2.954 Kg for the highest phytase dose (Treatment Group 7), and feed conversion ranging from 1.525 (Treatment group 4) to 1.564 (Treatment Group 2) at 42D. The high phosphate control group had higher body weight gain compared to the low phosphate control group for all time points tested and improved feed conversion from 0-14D and 0-21D. All phytase treatments outperformed the low phosphate control for all time periods for both body weight gain and feed conversion. From 0-14D, 0-21D, 0-42D and 14-21D increasing levels of phytase resulted in increased body weight gain.

The high phosphate control and all phytase supplemented treatment groups had increased tibia ash and phosphorus digestibility at both 21D and 42D when compared to the low phosphate control group. See Tables 16-20 and Graphs 6-7 for tibia and phosphorus digestibility information.

There was a single protocol amendment over the course of the study. It was as follows:

Amendment Number	Protocol Section Affected	Purpose of Amendment	Impact on Study Outcome
1	PROPOSED STUDY EVENT SCHEDULE; III.D. SAMPLES AND ASSAYS; IV.B. Body Weights and Feed Intake; IV.B. Weight Gains and Feed Conversion; IV.C. BONE PARAMETERS AND ILEAL PHOSPHORUS DIGESTIBILITY; V. DATA TO BE COLLECTED	Addition of pen weights on Day 14; additional feed analyses; change in ileal sample container type.	Positive. Attainment of additional data.

There were no protocol deviations over the course of the study.

The report and data herein submitted to the Sponsor for CQR Project No. AGV-15-3 are accurate in that they represent the actual results of the study, were collected in a manner which did not misrepresent the true effects of the test articles and were complete in that all data obtained in this study was submitted to the Sponsor.

Dan Moore, Ph.D.

Investigator

14 JAN 16 Date

LIST OF REPORT TABLES AND GRAPHS

Tables

- Table 1. Day 0 Pen Weights (30JUL15)
- Table 2. Day 0 Pen Weights (30JUL15) Summarized by Treatment
- Table 3. Bird Weights and Feed Conversion Days 0 14 (13AUG15)
- Table 4. Bird Weights and Feed Conversion Days 0 14 (13AUG15) Summarized by Treatment Group
- Table 5. Bird Weights and Feed Conversion Days 0 21 (20AUG15)
- Table 6. Bird Weights and Feed Conversion Days 0 21 (20AUG15) Summarized by Treatment Group
- Table 7. Bird Weights and Feed Conversion Days 14 21 (20AUG15)
- Table 8. Bird Weights and Feed Conversion Days 14 21 (20AUG15) Summarized by Treatment Group
- Table 9. Bird Weights and Feed Conversion Days 0 42 (10SEP15)
- Table 10. Bird Weights and Feed Conversion Days 0 42 (10SEP15) Summarized by Treatment Group
- Table 11. Bird Weights and Feed Conversion Days 21 42 (10SEP15)
- Table 12. Bird Weights and Feed Conversion Days 21 42 (10SEP15) Summarized by Treatment Group
- Table 13. Mortality and Removal Weights (Day 0 Study End)
- Table 14. Summary of Mortalities and Removals (Day 0 Study End)
- Table 15. Feed Added and Removed by Pen (Day 0 Study End)
- Table 16. Results of Tibia Ashing on Day 21 and Day 42
- Table 17. Day 21 % Phosphorus Digestibility
- Table 18. Day 21 % Phosphorus Digestibility Summarized by Treatment Group
- Table 19. Day 42 % Phosphorus Digestibility
- Table 20. Day 42 % Phosphorus Digestibility Summarized by Treatment Group

Graphs

- Graph 1. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 14) Summarized by Treatment Group
- Graph 2. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 21) Summarized by Treatment Group
- Graph 3. Average Bird Weight Gain and Adjusted Feed Conversion (Days 14 21) Summarized by Treatment Group
- Graph 4. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 42) Summarized by Treatment Group
- Graph 5. Average Bird Weight Gain and Adjusted Feed Conversion (Days 21 42) Summarized by Treatment Group
- Graph 6. Average % Ash of Day 21 and Day 42 Tibias Summarized by Treatment Group
- Graph 7. % Phosphorus Digestibility on Day 21 and Day 42

LIST OF REPORT APPENDICES

Body weights, feed and mortality/necropsy records

Diet formulations, preparation, accounting, and disposition

Bird receipt, accounting, vaccination, disposition

Daily logs/house observation/temperature records, scale checks, notes to file

Personnel, protocol, correspondence

FEED FORMULATIONS

CFC/Concept5

Least Cost Formula

Date Printed: 05/11/15 Date Optimized: 05/11/2015

Optimized By: PROSUSER Trial Version: 17

Plant: 1 Silver Springs Formulated By: Single Product Formulation Trial Version: 17
Product: AGV151SP AGV-15-1 BS PC Using Costs: Plant 1 Owning Costs Prod'n Version: 0
Page: 1

Ingr			Unrou	inded	Owning	Ra	ange	Re	strictio	on	Nutr				
	Ingredient				\$/Ton							Nutrient			Maximu
	Corn, CQR				164.64							DRY MATTER		89.74	
	SBM , CQR				508.00		843.60			1		MOISTURE		10.26	
	2 Soy Oil				600.00					1		PROTEIN, CRUDE	22.00		
	DICALCIUM P						25253.0			i		FAT, CRUDE		4.50	
155	3 Sand		28.02	1.401	15.00		29.40		1.6000	i	6	FIBER, CRUDE		2.23	
155	2 Limestone,	CQR	19.87	0.994	30.00	15.00	29505.6			1	7	CALCIUM	0.93	0.9300	
154	SALT, PLAIN	(N	8.81	0.440	29.34	15.00	145444.			1	8	PHOS. TOTAL	0.71	0.7205	
	DL-METHIONI				2637.89		23294.8			1		ASH		5.50	
	8 CQR Choline				2534.00				market and the second			PHOS., AVAILAB	0.45	0.4500	0.
	5 POU NRC TM				908.00			0.1400				ADF		0.0000	
	Pou VIT 1.2							0.1000				M.E. POULTRY	1378.00		
	Salinomycin					15 00		0.0410	0.0410			M.E. SWINE		1485.49	
	L Threonine, L-LYSINE, C				1725.00		15136.0					N.E.L. N.E.M.		0.0000	
133	L'EISINE, C	.un	0.100	0.000	1/23.00	13.00	8300.00					N.E.G.		0.0000	
	Total Bat	ch:	2000 00	ths at	309 15	\$/Ton	15 458	\$/100Lb	0 1546	CONTRACTOR OF		METHIONINE	0.55	0.6413	
	rocur buc	CIII.	2000.00	LDJ UL	303.13	3/ 1011	13.430	\$/ 100EB	0.1340			CYSTINE	0.33	0.3487	
			Binding	Nutrie	nts							LYSINE	1.31	1.31	
tr			Unit of			Incremen						TRYPTOPHAN		0.2980	
0 1	Nutrient Name		Measure	Co	st	Change	2			i	35	THREONINE	0.92	0.9200	
-										1	36	ISOLEUCINE		1.13	
4	PROTEIN, CRUD	E	PCT	0.	5661	0.10 PCT	Г			1	37	HISTIDINE		0.6218	
5 1	FAT, CRUDE		PCT	0.	4283	0.10 PCT	г			1	38	VALINE		1.24	
7	CALCIUM		PCT			0.01 PCT	r			1	39	LEUCINE		1.98	
	PHOS., AVAILA					0.01 PCT						ARGININE		1.52	
	M.E. POULTRY		KCAL/LB		4130							PHENYLALANINE	277227	1.24	
	LYSINE		PCT			0.01 PCT						TSAA		0.9900	
7.5	THREONINE		PCT			0.01 PCT						[** No Name **		0.0000	
42 ·	CHOLINE		PCT MG/LB		2649	0.01 PCT						PYRIDOXINE CAROTENE		4.31 0.5274	
	SODIUM		PCT			0.10 PCT						VITAMIN A		1265.17	
01 .	SODION		rei	0.	0300	0.10 PC						VITAMIN E		12.30	
										- 1		THIAMIN		1.95	
										i		RIBOFLAVIN		2.68	
										i		PANTOTHENIC AC		8.67	
										i	52	BIOTIN		156.14	
										i	53	FOLIC ACID		446.81	
										i	54	CHOLINE	1300.00	1300.00	
										1	55	VITAMIN B12		5.40	
										1	56	NIACIN		28.21	
												VITAMIN D3 IU		1375.00	
												MENADIONE		0.8749	
												VITAMIN C		0.0000	
												Vitamin D	0.20	0.0000	
												SODIUM	0.20	0.2000	
												POTASSIUM MAGNESIUM		0.9437	
												SULPHUR		0.2044	
												MANGANESE		107.18	
											7 755	IRON		371.60	
										i		COPPER		19.98	
										ì		ZINC		89.49	
										1		SELENIUM		0.3028	
										i		COBALT		0.0000	
										i	71	FLOURINE		0.0033	
										i	72	CHLORIDE	0.28	0.2979	
										1		SALT		0.4405	
										1		IODINE		0.5957	
										1		Dig Methionine		0.6129	
										1		Dig Cystine		0.2885	
										- 1	78	Dig Lysine		1.18	
										- 1	-	Dig Tryptophan		0.2168	

Plant: 1 Silver Springs Product: AGV151SP AGV-15-1 BS PC Date Optimized: 05/11/2015 Optimized By: PROSUSER

Trial version: 17 Prod'n Version: 0 Page: 2

Formulated By: Single Product Formulation
Using Costs: Plant 1 Owning Costs

Nutr				
No	Nutrient	Minimum	Actual	Maximum
80	Dig Threonine		0.8039	
81	Dig Isoleucine		1.04	
82	Dig Histidine		0.5584	
83	Dig Valine		1.12	
84	Dig Leucine		1.83	
85	Dig Arginine		1.39	
1 86	Dig Phenylalan		1.43	
87	Dig TSAA		0.9018	
89	oxytetracyclin		0.0000	
90	Non Protein Ni		0.0000	
1 100	Total Nitrogen		0.0000	
101	Bulk Density		0.8943	

CFC/ConceptS Least Cost Formula Date Printed: 05/11/15

Date Optimized: 05/11/2015

Optimized By: PROSUSER

Plant: 1 Silver Springs Formulated By: Single Product Formulation Trial Version: 16
Product: AGV151SN AGV-15-1 BS NC Using Costs: Plant 1 Owning Costs Prod'n Version: 0
Page: 1

Ingr							R6							
_	Ingredient Name			A CONTRACTOR OF THE PARTY OF TH		The state of the s						Minimum	Actual	Maximum
191	3 Corn, CQR	1135.89	56.795	164.64		295.20			1	2	DRY MATTER		89.74	
		716.19							1	3	MOISTURE		10.26	
154	2 Soy Oil	38.93									PROTEIN, CRUDE		22.00	
	3 Sand	33.48	1.674	15.00		29.40		1.6800	-0.14	5	FAT, CRUDE	4.50	4.50	
	2 Limestone, CQR								31	6	FAT, CRUDE FIBER, CRUDE CALCIUM PHOS. TOTAL		2.23	
155	4 DICALCIUM PHOS	20.11	1.006	255.24		29394.8			1	7	CALCIUM	0.93	0.9290	0.9
	4 SALT, PLAIN (N		0.442	29.34	15.00	404093.			1	8	PHOS. TOTAL	0.56	0.5705	
154	9 DL-METHIONINE,	5.98			15.00				- 1	9	ASH		3.32	
154	8 CQR Choline	3.92	0.196	2534.00	15.00	74427.2					PHOS., AVAILAB	0.30	0.3000	0.3
191	6 POU NKC IM	2.80		908.00			0.1400				ADF		0.0000	
	6 Pou VIT 1.2 D3						0.1000				M.E. POULTRY			1378.0
	5 Salinomycin (6						0.0410	0.0410			M.E. SWINE		1485.49	
	1 Threonine, CQR										N.E.L.		0.0000	
155	O L-LYSINE, COR	0.166	0.008	1725.00	15.00	8300.60			1	24	N.E.M.		0.0000	
									CA 12 2 15 10 10 10 10 10 10 10 10 10 10 10 10 10	-	N.E.G.		0.0000	
	Total Batch:	2000.00	Lbs at	307.27	\$/Ton	15.364	\$/100Lb	0.1536			METHIONINE	0.55	0.6413	
											CYSTINE		0.3487	
											LYSINE		1.31	
tr		Unit of									TRYPTOPHAN		0.2980	
	Nutrient Name				Change						THREONINE	0.92	0.9200	
											ISOLEUCINE		1.13	
	PROTEIN, CRUDE				0.10 PC						HISTIDINE		0.6218	
5	FAT, CRUDE	PCT			0.10 PC						VALINE		1.24	
7	CALCIUM	PCT	0.	.0045	0.01 PC	Г			1	39	LEUCINE		1.98	
10	PHOS., AVAILABLE	PCT	0.	1251	0.01 PC	Г				40	ARGININE		1.52	
	M.E. POULTRY										PHENYLALANINE		1.24	
		PCT									TSAA		0.9900	
		PCT			0.01 PC						[** No Name **		0.0000	
-	TSAA	PCT	0.	2649	0.01 PC	r .			,		PYRIDOXINE		4.31	
	CHOL INE	MG/LB PCT	0.	.0093	1.00 MG/	/LB					CAROTENE		0.5274	
61	SODIUM	PCT	0.	.0366	0.10 PC	Г					VITAMIN A		1265.17	
											VITAMIN E		12.30	
											THIAMIN		1.95	
											RIBOFLAVIN		2.68	
									- 2	51	PANTOTHENIC AC		8.67	
									- 1	52	BIOTIN		156.14	
									- !	53	FOLIC ACID		446.81	
									- 1			1300.00		
											VITAMIN B12		5.40	
									,	-	NIACIN		28.21	
											VITAMIN D3 IU		1375.00	
									- !		MENADIONE		0.8749	
											VITAMIN C		0.0000	
											Vitamin D			0.3
											SODIUM	0.20	0.2000	0.2
											POTASSIUM		0.9431	
											MAGNESIUM		0.1564	
											SULPHUR		0.2044	
											MANGANESE TRON		290.08	
										-	COPPER		19.33	
													87.70	
											ZINC			
											SELENIUM		0.2979	
											FLOURINE	0.75	0.0018	
											CHLORIDE			
											SALT		0.4421	
									- 1		Dig Methionine	0.288		
											Dig Cystine		0.2885	
										78	Dig Cystine Dig Lysine Dig Tryptophan		0.2885 1.18 0.2168	

Continued... See Page 2 Date Printed: 05/11/15

CFC/Concept5 Least Cost Formula

Project No. AGV-15-3

Plant: 1 Silver Springs Product: AGV151SN AGV-15-1 BS NC

CQR Final Report

Page 17 of 21

Page: 2

Date Optimized: 05/11/2015
Optimized By: PROSUSER
Formulated By: Single Product Formulation
Using Costs: Plant 1 Owning Costs

Date Optimized: 05/11/2015

	Nutr	Interpretation of the	CONTRACTOR OF	10000000000	200 TO 102 TO 107
١	No	Nutrient	Minimum	Actual	Maximum
ŀ					
١	80	Dig Threonine		0.8039	
ı	81	Dig Isoleucine		1.04	
١	82	Dig Histidine		0.5584	
ı	83	Dig Valine		1.12	
ľ	84	Dig Leucine		1.83	
١	85	Dig Arginine		1.39	
ı	86	Dig Phenylalan		1.43	
ı	87	Dig TSAA		0.9018	
ı	89	Oxytetracyclin		0.0000	
ı	90	Non Protein Ni		0.0000	
ı	100	Total Nitrogen		0.0000	
1	101	Bulk Density		1.38	

CFC/Concept5 Least Cost Formula Date Printed: 05/11/15

Date Optimized: 05/11/2015 Optimized By: PROSUSER Trial Version: 16

Plant: 1 Silver Springs Formulated By: Single Product Formulation Trial Version: 16
Product: AGV151GP AGV-15-1 BG PC Using Costs: Plant 1 Owning Costs Prod'n Version: 0
Page: 1

Ingr			Unro	unded	Owning	Ri	ange	Re	strictio	on	Nutr				
Code	Ingredient	Name	Lbs	Pct	\$/Ton	Low	High	Min Pct	Max Pct	Rcost	No	Nutrient	Minimum	Actual	Maximu
191	3 Corn, CQR		1252.29	62.615	164.64	113.60	295.60			1	2	DRY MATTER		89.47	
191	4 SBM , CQR		629.58	31.479	508.00	227.40	841.60			1	3	MOISTURE		10.53	
154	2 Soy Oil		41.69	2,084	600.00	223.40	1999.80			1	4	PROTEIN, CRUDE	20.30	20.30	
155	4 DICALCIUM F	HOS	31.53	1.576	255.24		25099.8			1	5	FAT, CRUDE	4.80	4.80	
155	2 Limestone,	CQR	18.88	0.944	30.00	15.00	33574.0			1	6	FIBER, CRUDE		2.20	
154	4 SALT, PLAIN	(N	8.85	0.442	29.34	15.00	144552.			- 1	7	CALCIUM	0.84	0.8400	
154	9 DL-METHION	NE,	4.23	0.212	2637.89	15.00	26146.0			1	8	PHOS. TOTAL	0.66	0.6607	
154	8 CQR Choline		4.13	0.206	2534.00	15.00	47811.2			1	9	ASH		5.03	
155	3 Sand		3.58	0.179	15.00		29.40		1.5000	1	10	PHOS., AVAILAB	0.40	0.4000	0.4
191	6 Pou NRC TM		2.80	0.140	908.00			0.1400	0.1400	1	18	ADF		0.0000	
195	6 Pou VIT 1.2	D3	2.00	0.100	2332.00			0.1000	0.1000	1	19	M.E. POULTRY	1425.00	1425.00	
155	O L-LYSINE, C	QR	0.441	0.022	1725.00	15.00	9208.20			1	21	M.E. SWINE		1518.02	
										1	23	N.E.L.		0.0000	
	Total Bat	ch:	2000.00	Lbs at	294.77	\$/Ton	14.738	\$/100Lb	0.1474	\$/Lb	24	N.E.M.		0.0000	
										1	25	N.E.G.		0.0000	
			Binding	Nutrie	ents					1	31	METHIONINE	0.51	0.5332	
utr			Unit of	N	utr	Incremen	nt			1	32	CYSTINE		0.3268	
NO	Nutrient Name		Measure	C	ost	Change	e			1	33	LYSINE	1.20	1.20	
										1	34	TRYPTOPHAN		0.2709	
4	PROTEIN, CRUE	E	PCT	0	6442	0.10 PC	г			1	35	THREONINE	0.83	0.8395	
5	FAT, CRUDE		PCT	0	4294	0.10 PC	Г			1	36	ISOLEUCINE		1.03	
	CALCIUM		PCT		.0045	0.01 PC	Г			1	37	HISTIDINE		0.5784	
10	PHOS., AVAILA	BLE	PCT	0	1251	0.01 PC	Г			1	38	VALINE		1.14	
19	M.E. POULTRY		KCAL/LB	0	4106	10.00 KC	AL/LB			1	39	LEUCINE		1.87	
33	LYSINE		PCT	0	.2170	0.01 PC	Г			1	40	ARGININE		1.39	
42	TSAA		PCT	0	2649	0.01 PC	г			1	41	PHENYLALANINE		1.14	
54	CHOLINE		MG/LB	0	.0093	1.00 MG	/LB			i	42	TSAA	0.86	0.8600	
61	SODIUM		PCT	0	.0366	0.10 PC	Γ.			1	43	[** No Name **		0.0000	
										i i	45	PYRIDOXINE		4.31	
			Uni	used Ing	gredients	5					46	CAROTENE		0.5815	
Ingr					Current	At	would	Minimum	Maximum	1	47	VITAMIN A		1311.15	
Code	Ingredient	Name			\$/Ton	\$/Ton	Use	Pct	Pct	Rcost	48	VITAMIN E		12.86	
											49	THIAMIN		1.99	
155	1 Threonine,	CQR			1849.00	15.00				18.34	50	RIBOFLAVIN		2.66	
										i	51	PANTOTHENIC AC		8.50	
										1	52	BIOTIN		151.84	
										1	53	FOLIC ACID		435.80	
										1	54	CHOLINE	1300.00	1300.00	
										1	55	VITAMIN B12		5.40	
										i	56	NIACIN		28.37	
										i	57	VITAMIN D3 IU		1375.00	
										1	58	MENADIONE		0.8749	
										i	59	VITAMIN C		0.0000	
										1	60	Vitamin D		0.0000	
										i	61	SODIUM	0.20	0.2000	
										i	62	POTASSIUM		0.8718	
										1	63	MAGNESIUM		0.1519	
												SULPHUR		0.1900	
												MANGANESE		104.89	
												IRON		341.03	
												COPPER		19.27	
												ZINC		87.99	
										1		SELENIUM		0.3017	
												COBALT		0.0000	
										1		FLOURINE		0.0028	
												CHLORIDE	0.26		
										- 1		SALT	0.20	0.4424	
												IODINE		0.5944	
												Dig Methionine		0.5065	
												Dig Cystine		0.2709	
												Dig Lysine		1.08	
											78	DIG LVSINE		1.08	
												Dig Tryptophan		0.1987	

Continued... See Page 2 Date Printed: 05/11/15

CFC/Concept5 Least Cost Formula

Project No. AGV-15-3

roduct: AGV151GP AGV-15-1 BG PC

Plant: 1

Silver Springs

CQR Final Report

Page 19 of 21

Date Optimized: 05/11/2015

Optimized By: PROSUSER

0.7777

0.0000

0.0000

Formulated By: Single Product Formulation Trial Version: 16 Using Costs: Plant 1 Owning Costs Prod'n Version: 0

87 Dig TSAA

89 Oxytetracyclin

90 Non Protein Ni

Page: 2

|----- Nutrient Solution -----Nutr | No Nutrient Minimum Actual Maximum

| 100 Total Nitrogen

0.0000 | 101 Bulk Density 0.8494 CFC/Concept5 Least Cost Formula Date Printed: 05/11/15

Date Optimized: 05/11/2015 Optimized By: PROSUSER Trial Version: 17

Plant: 1 Silver Springs Formulated By: Single Product Formulation Trial Version: 17
Product: AGV151GN AGV-15-1 BG NC Using Costs: Plant 1 Owning Costs Prod'n Version: 0
Page: 1

Ingr		Unrou					R6						1000	
1000	Ingredient Name			\$/Ton							Nutrient	Minimum	Actual	Maximu
		1252.29									DRY MATTER		89.47	
		629.58							i		MOISTURE		10.53	
154	2 Soy Oil	41.69	2.084	600.00	223.40	1999.80			i	4	PROTEIN, CRUDE	20.30	20.30	
155	2 Limestone, CQR	29.75	1.487	30.00	15.00	33574.0			1	5	FAT, CRUDE	4.80	4.80	
155	4 DICALCIUM PHOS	15.22	0.761	255.24		25099.8			1		FIBER, CRUDE		2.20	
155	3 Sand	8.98	0.449	15.00		29.40		1.5000	1	7	CALCIUM	0.84	0.8400	
154	4 SALT, PLAIN (N	8.88	0.444	29.34	15.00	144552.			1	8	PHOS. TOTAL	0.51	0.5107	
154	9 DL-METHIONINE,	4.23	0.212	2637.89	15.00	26146.0			1	9	ASH		4.85	
154	8 CQR Choline	4.13	0.206	2534.00	15.00	47811.2			1	10	PHOS., AVAILAB	0.25	0.2500	0.2
	6 POU NRC TM			908.00			0.1400	0.1400	1	18	ADF		0.0000	
195	6 Pou VIT 1.2 D3	2.00	0.100	2332.00			0.1000	0.1000	1	19	M.E. POULTRY	1425.00	1425.00	
155	D L-LYSINE, COR	0.441	0.022	1725.00	15.00	9208.20			1	21	M.E. SWINE		1518.02	
									1	23	N.E.L.		0.0000	
	Total Batch:	2000.00	Lbs at	292.89	\$/Ton	14.645	\$/100Lb	0.1464	\$/Lb	24	N.E.M.		0.0000	
									1	25	N.E.G.		0.0000	
		- Binding	Nutri	ents					1	31	METHIONINE	0.51	0.5332	
tr		Unit of	N	utr	Incremen	it			1	32	CYSTINE		0.3268	
0 1	Nutrient Name	Measure	C	ost	Change				1	33	LYSINE	1.20	1.20	
									1	34	TRYPTOPHAN		0.2709	
4	PROTEIN, CRUDE	PCT	0	.6442	0.10 PCT	ř.			1	35	THREONINE	0.83	0.8395	
5 1	FAT, CRUDE	PCT	0	4294	0.10 PCT				1	36	ISOLEUCINE		1.03	
7 (CALCIUM	PCT	0	.0045	0.01 PCT	ř.			i	37	HISTIDINE		0.5784	
10	PHOS., AVAILABLE	PCT	0	.1251	0.01 PCT				1	38	VALINE		1.14	
	M.E. POULTRY		0	4106	10.00 KCA	L/LB			1	39	LEUCINE		1.87	
33 1	LYSINE	PCT	0	.2170	0.01 PCT	T.			1	40	ARGININE		1.39	
42	TSAA	PCT	0	2649	0.01 PCT				1	41	PHENYLALANINE		1,14	
54 (CHOLINE	MG/LB	0	.0093	1.00 MG/	LB.					TSAA		0.8600	
61	SODIUM	PCT	0	.0366	0.10 PCT				1	43	[** No Name **		0.0000	
									1	45	PYRIDOXINE		4.31	
		Uni	sed In	gredients	5					46	CAROTENE		0.5815	
ngr				Current	At	Would	Minimum	Maximum	1	47	VITAMIN A		1311.15	
	Ingredient Name			\$/Ton	\$/Ton	Use	Pct	Pct	Rcost	48	VITAMIN E		12.86	
										49	THIAMIN		1.99	
155	1 Threonine, CQR			1849.00	15.00				18.34	50	RIBOFLAVIN		2.66	
									I	51	PANTOTHENIC AC		8.50	
									1	52	BIOTIN		151.84	
											FOLIC ACID		435.80	
									1	54	CHOLINE	1300.00	1300.00	
									1	55	VITAMIN B12		5.40	
											NIACIN		28.37	
									1	57	VITAMIN D3 IU		1375.00	
											MENADIONE		0.8749	
									1	59	VITAMIN C		0.0000	
									1	60	Vitamin D		0.0000	
									1	61	SODIUM	0.20	0.2000	
									1	62	POTASSIUM		0.8713	
									1	63	MAGNESIUM		0.1470	
									1	64	SULPHUR		0.1900	
									1	65	MANGANESE		102.44	
									1	66	IRON		259.51	
									1	67	COPPER		18.62	
									1	68	ZINC		86.19	
									1	69	SELENIUM		0.2968	
									1	70	COBALT		0.0000	
									1	71	FLOURINE		0.0014	
									1	72	CHLORIDE	0.26	0.3016	
									i	73	SALT		0.4441	
									i	74	IODINE		0.5944	
									i	76	Dig Methionine		0.5065	
									1	77	Dig Cystine		0.2709	
											Dig Cystine Dig Lysine		0.2709 1.08	
									!					

Product: AGV151GN AGV-15-1 BG NC

Silver Springs

Plant: 1

Date Optimized: 05/11/2015 Optimized By: PROSUSER Trial Version: 17 Formulated By: Single Product Formulation Using Costs: Plant 1 Owning Costs

Prod'n Version: 0

Page: 2

|----- Nutrient Solution -----

n	Nutr				
ï		Nutrient	Minimum	Actual	Maximum
ŀ					
ı	80	Dig Threonine		0.7313	
ı	81	Dig Isoleucine		0.9463	
ı	82	Dig Histidine		0.5214	
ı	83	Dig Valine		1.03	
ı	84	Dig Leucine		1.73	
1	85	Dig Arginine		1.27	
ı	86	Dig Phenylalan		1.37	
ı	87	Dig TSAA		0.7777	
1	89	Oxytetracyclin		0.0000	
1	90	Non Protein Ni		0.0000	
1	100	Total Nitrogen		0.0000	
ı	101	Bulk Density		1.34	

Table 2. Day 0 Pen Weights (30JUL15) Summarized by Treatment AGV-15-3 Building 8W

Block	Treatment	Pen	No. of Birds	Day 0 Pen Wt (kg)	Avg. Day 0 Bird Wt (kg)
1	1	6	17	0.742	0.044
$-\frac{1}{2}-\frac{1}{2}$	<u> </u>	16	17	0.722	0.042
3 1	<u> </u>		17	0.736	0.043
4 - 7		37	18	0.725	0.040
5 - +	1	46	17	0.715	0.042
6	1	53	17	0.710	0.042
7	1	60	17	0.702	0.041
T	1	71	17	0.724	0.043
9 -	1	79	17	0.726	0.043
10	1	90	17	0.705	0.041
11	1	100	17	0.718	0.042
12	1	109	17	0.701	0.041
Total & A	verages		205		0.042
	Deviations			0.013	0.001
CVs			i	1.801%	2.243%
				•	
1	2	10	17	0.734	0.043
2	2	14	17	0.732	0.043
3	2	27	17	0.723	0.043
4	2	36	17	0.722	0.042
5	2	48	17	0.718	0.042
6	2	54	17	0.703	0.041
7	2	65	17	0.706	0.042
8	2	70	17	0.719	0.042
9	2	78	17	0.725	0.043
10	2	91	17	0.716	0.042
11	2	102	17	0.720	0.042
12	2	111	17	0.703	0.041
Total & A	verages		204	0.718	0.042
Standard	Deviations			0.010	0.001
CVs				1.419%	1.419%
$-\frac{1}{2} - \frac{1}{1}$	$\frac{3}{2}$		17		0.044
$-\frac{2}{3}-\frac{1}{3}$	-	+ - ¹⁵ -	17	0.741	0.044
3 _ 1		L _24 _	17	0.733	0.043
$-\frac{4}{5} - \frac{1}{1}$	$\frac{3}{3}$		17	0.703	0.041
$-\frac{5}{6} - \frac{1}{1}$			17	0.714	0.042
6 _ +	$\frac{3}{2}$	52	17	0.701	0.041
$-\frac{7}{2} - \frac{1}{2}$	$\frac{3}{2}$	62	17	0.720	0.042
$-\frac{8}{6} - \frac{1}{1}$	$\frac{3}{2}$	68	$-\frac{17}{47}$	0.704	0.041
$-\frac{9}{40}-\frac{1}{4}$	3	84	$-\frac{17}{47}$	0.722	0.042
$-\frac{10}{11}$	$\frac{3}{2}$	89 _	17	0.713	0.042
$-\frac{11}{42} - \frac{1}{1}$	$\frac{3}{3}$		17	0.712	0.042
12	3	108	17	0.712	0.042
Total & A			204	0.719	0.042
	Deviations			0.015	0.001
CVs				2.145%	2.145%

Table 2. Day 0 Pen Weights (30JUL15) Summarized by Treatment AGV-15-3 Building 8W

Block	Treatment	Pen	No. of Birds	Day 0 Pen Wt (kg)	Avg. Day 0 Bird Wt (kg)
1	4	5	17	0.724	0.043
2	4 4	18	17	0.725	0.043
3	i 4	26	17	0.740	0.044
4	4	32	17	0.712	0.042
5	4 4	45	17	0.727	0.043
6	4	49	17	0.703	0.041
7	4	59	17	0.725	0.043
8	4	73	17	0.722	0.042
9 -	4 4	81	17	0.710	0.042
10	i 4	88	17	0.706	0.042
11	4	98	17	0.710	0.042
12	4	104	17	0.700	0.041
Total & A	verages		204	0.717	0.042
	Deviations			0.012	0.001
CVs				1.661%	1.661%
				1	'
1	5	7	17	0.731	0.043
$-\frac{1}{2}$		17	17	0.742	0.044
3	5	23	17	0.724	0.043
4 -	5 5	34	17	0.708	0.042
5	5	47	17	0.703	0.041
6	5	55	17	0.701	0.041
- 7	5	63	17	0.730	0.043
8	5	74	17	0.727	0.043
- -	+	80	17	0.720	0.042
10	5	93	17	0.710	0.042
11		101	17	0.700	0.041
12	5	107	17	0.709	0.042
Total & A	verages		204	0.717	0.042
Standard	Deviations			0.014	0.001
CVs				1.919%	1.919%
_ 1	•	11	17	0.733	0.043
2	6	13	17	0.735	0.043
3	6	28	17	0.720	0.042
4	6	33	17	0.710	0.042
5	6	42	17	0.706	0.042
6	6	50	17	0.703	0.041
7	6	61	17	0.715	0.042
_ 8 _	6	72	17	0.701	0.041
9	6	82	17	0.720	0.042
10	6	87	17	0.725	0.043
11	6	97	17	0.717	0.042
12	6	106	17	0.703	0.041
Total & A	verages		204	0.716	0.042
	Deviations			0.012	0.001
				1.611%	1.611%

Table 2. Day 0 Pen Weights (30JUL15) Summarized by Treatment AGV-15-3 Building 8W

Block	Treatment	Pen	No. of Birds	Day 0 Pen Wt (kg)	Avg. Day 0 Bird Wt (kg)
1	7	4	17	0.723	0.043
2	7	12	17	0.720	0.042
3	7	22	17	0.725	0.043
4	7	30	17	0.734	0.043
5	7	43	17	0.700	0.041
6	7	51	17	0.715	0.042
7	7	66	17	0.730	0.043
8	7	67	17	0.713	0.042
9	7	83	17	0.706	0.042
10	7	92	17	0.721	0.042
11	77	103	17	0.707	0.042
12	7	110	17	0.705	0.041
Total & A	verages		204	0.717	0.042
Standard	Deviations			0.011	0.001
CVs				1.491%	1.491%

1	8	8	17	0.723	0.043
2	8	19	17	0.721	0.042
3	8	29	17	0.723	0.043
4	8	31	17	0.724	0.043
5	8	41	17	0.702	0.041
6	8	56	17	0.703	0.041
7	8	64	17	0.716	0.042
8	8	69	17	0.729	0.043
9	8 8	85	17	0.715	0.042
10	ı 8	86	17	0.728	0.043
11	8	99	17	0.718	0.042
12	8	105	17	0.720	0.042
Total & A	verages		204	0.719	0.042
Standard	Deviations			0.009	0.001
CVs				1.195%	1.195%

Table 4. Bird Weights and Feed Conversion Days 0 - 14 (13AUG15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Bll-		D N	No. Birds Started	lity	ral-1	ral-2	No. Birds Weighed	D14 Pen Wt	D14 Avg Bird Wt	D0-14 Avg Bird Gain	Feed	Adj. Feed
Block	Trt	Pen No.	Day 0	Mortality	Removal-1	Removal-2	D14	(kg)	(kg)	(kg)	Conversion D0-14	Conversion D0-14
1	1	6	17	0	0	0	17	6.060	0.356	0.313	1.392	1.392
2	- - -	16 16	17	0	0	0	17	5.720	0.336	0.294	1.325	1.325
3	! 1 -	25	17	0	0	0	17	5.480	0.322	0.279	1.404	1.404
4	1 1	37	18	0	0	0	18	6.560	0.364	0.324	1.285	1.285
5	1 1	i 46	17	0	0	0	17	5.520	0.325	0.283	1.349	1.349
6	¦ <u>-</u> -	53	17	0	0	0	17	5.360	0.315	0.274	1.342	1.342
7	1	60	17	0	0	0	17	5.200	0.306	0.265	1.338	1.338
8	! <u>1</u>	71	17	0	0	0	17	5.580	0.328	0.286	1.524	1.524
9	1 1	79	17	1	0	0	16	6.020	0.376	0.334	1.439	1.407
10	1	i 90	17	1		0	16	5.260	0.329	0.287	1.409	1.359
11	1	100	17	1	0	0	16	5.400	0.338	0.295	1.418	1.328
12	1	109	17	0	0	0	17	6.520	0.384	0.342	1.481	1.481
Totals	& Avera	ages	205	3	0	0	202	5.723	0.340	0.298	1.392	1.378
! – – –	r <u>d Dev</u> i	ations _	L,	L	Ĺ	i		0.465	0.025	0.025	0.069	0.069
CVs						I		8.131%	7.249%	8.303%	4.936%	4.973%
				_	_	_						
$-\frac{1}{2}$	<u> 2 </u>	<u> _10</u> _	17	<u>- 0</u> -		<u> 0</u> _	17	6.600	0.388	0.345	1.275	1.275
· _ 2 _	i – 👱 –	14 -14 -	17	- ≝ -	⊦ ∪ -	+ ┷ -	17	6.700	0.394	0.351	1.297	1.297
· - 3 -	!_ = _	L _27 _	17	0	L <u>0</u> _	<u>. 0</u> _	17	6.720	0.395	0.353	1.284	1.284
· - 4 -	¦- <u>-</u> -	1 36 -	17	- 0 -	- - -	<u>1</u>	16	6.720	0.420	$\frac{1}{1} = \frac{0.378}{0.334} = -$	1.314	1.281
-5-	i – ځ –	48 -	17		⊦ <u>∪</u> -	- ⊔ -	17	<u>6.340</u> _	0.373	0.331	1.259	1.259
$-\frac{6}{7}$!- _ -	54	17	<u> 0</u> -	<u> 0</u> -	<u>. 0</u> _	17	5.940	0.349	0.308	1.283	1.283
-7-	i- - -	65 -	<u>17</u>	$-\frac{1}{0}$	$\frac{0}{0}$	0	<u>16</u>	<u> 5.840</u> _ 6.780	0.365	0.323 0.357	1.325 1.287	1.309
- <mark>8</mark> -	!- - -	⊥ _/ <u>0</u> _ 78	1 /		۱ <u>۷</u> -	⊥ <u>∪</u> - i 1	16	6.820	0.399	L = 0.337 = - 0.384	1.322	1.287 1.303
10	¦- - -	- '8 91	1 /	- <mark>0</mark> -		 -	16	6.080	0.426	0.338	1.350	1.318
11 -	ı – - –	102	<u>1</u> /	- 1 -	- 0 -	0	16	6.580	0.411	0.369	1.300	1.290
12	1	L _102_	1 /	- + -		1 <u>0</u> -	17	7.140	0.411 0.420	L _ 0.309 I	1.398	1.398
	& Avera		204	3	0	2	199	6.522	0.393	0.351	1.308	1.299
	rd Devi			- <u>-</u> -	L <u>-</u> -	↓ -		0.392	0.024	0.024	0.038	0.035
CVs					i – -	i – -		6.009%	6.040%	6.709%	2.884%	2.697%
									•		•	
1	3	l 9	17	2	0	0	15	5.600	0.373	0.329	1.348	1.281
2	3	15	17	1	0	0	16	5.880	0.368	0.324	1.253	1.223
3	i 3	24	17	0		0	17	5.840	0.344	0.300	1.304	1.304
4	3	35	17	1	0	0	16	6.240	0.390	0.349	1.293	1.279
5	3	44	17	0	0	0	17	6.340	0.373	0.331	1.294	1.294
6	3	52	17		0		17	6.080	0.358	0.316	1.294	1.294
7	3	62	17	2	0	0	15	5.600	0.373	0.331	1.316	1.281
8	_ 3 _	68	17			0	17	6.240	0.367	0.326	1.304	1.304
9	3 -	84	17		0		17	6.680	0.393	0.350	1.279	1.279
_10 _	3_	89	17	1	0	0	16	5.800	0.363	0.321	1.321	1.305
11 _	3 _	96	17	0		0	17	6.100	0.359	0.317	1.303	1.303
12	3	108	17	_	0	_	16	6.680	0.418	0.376	1.381	1.369
	& Avera		204	- <mark>8</mark> -	<u>. º</u> .	<u>. </u>	196	6.090	0.373	0.331	1.308	1.293
	r <u>d</u> <u>Dev</u> i	ations _	 		<u>-</u> -	<u>-</u>		0.366	0.019	0.020	0.033	0.033
CVs						1		6.012%	5.205%	5.919%	2.491%	2.539%

Table 4. Bird Weights and Feed Conversion Days 0 - 14 (13AUG15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

	No. Birds Started	ity al-1	al-2	No. Birds Weighed	D14 Pen Wt	D14 Avg Bird Wt	D0-14 Avg Bird Gain	Feed	Adj. Feed
Block Trt Pen No	Day 0	Mortality Removal-1	Removal-2	D14	(kg)	(kg)	(kg)	Conversion D0-14	Conversion D0-14
1 4 5	17	0 0	0	17	6.680	0.393	0.350	1.306	1.306
2 4 18	17	1 0	0	16	5.900	0.369	0.326	1.287	1.257
3 4 26	17	0 7 0	0	17	6.120	0.360	0.316	1.312	1.312
4 4 32	17	0 1 0	0	17	6.600	0.388	0.346	1.284	1.284
5 4 45	17	0 0	0	17	5.320	0.313	0.270	1.337	1.337
6 4 49	17	0 7 0	0	17	6.300	0.371	0.329	1.247	1.247
7 4 59	17	0 1 0	ı 0	17	6.220	0.366	0.323	1.288	1.288
8 4 73	17	0 1 0	0	17	6.340	0.373	0.330	1.314	1.314
9 4 81	17	<u>1 i 0</u> .	0	16	6.220	0.389	0.347	1.310	1.296
10 4 88	17	<u>2 1</u>	<u> 0</u>	14	5.160	0.369	0.327	1.405	1.325
11 4 98	17	1 1 0	0	16	5.880	0.368	0.326	1.408	1.392
12 4 104	17		0	17	6.480	0.381	0.340	1.277	1.277
Totals & Averages	204	5 1	0	198	6.102	0.370	0.328	1.315	1.303
Standard Deviations	.L	L _i	i		0.471	0.021	0.021	0.049	0.038
CVs		ı	I		7.716%	5.605%	6.412%	3.695%	2.950%
1 5 7	17		1 0	17	7.140	0.420	$\frac{0.377}{0.000}$	1.245	1.245
$\frac{2}{100} = \frac{17}{100} = 17$	17	↓	+	16	6.100	0.381	0.338	1.284	1.270
3 5 23	17	0 1 0	0	17	6.260	0.368	0.326	1.275	1.275
4 5 34	17	↓ _ +	0	17	6.220	0.366	0.324	1.274	1.274
5 5 47	17	$\frac{0}{0} \stackrel{\downarrow}{\downarrow} \frac{0}{0}$	0	17	6.320	0.372	0.330	1.264	1.264
$\begin{bmatrix} -\frac{6}{7} & 1 & \frac{5}{5} & \frac{1}{1} & \frac{55}{63} \\ 7 & 1 & 5 & 1 & 63 \end{bmatrix}$	17	$\frac{0}{0} + \frac{1}{0}$	<u> 0</u>	16	- 5.660 6.140	0.354	$\frac{0.313}{0.318}$	$\frac{1}{1} - \frac{1.303}{1.250} - \frac{1}{1}$	1.280
$-\frac{7}{8}$ $-\frac{5}{5}$ $-\frac{53}{74}$	17	↓ _ +	+	<u>17</u>	! — — — —	<u> :</u>		1.250	1.250
1 '	17	+	<u>. 0</u> _	17 17	$-\frac{6.400}{7.020}$	0.376	0.334		1.308
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{17}{17}$	$\begin{bmatrix} 0 & 1 & 0 \\ \hline 0 & 7 & 0 \end{bmatrix}$	† 0 -	17	$-\frac{7.020}{6.000}$	0.413	$\frac{0.371}{0.311}$	$\frac{1}{1.387} - \frac{1.387}{1.278} - \frac{1}{1.278}$	1.387 1.278
11 5 101	$-\frac{17}{17}$	6 + 6	† 0 -	17	6.380	0.375	0.334	1.285	1.285
12 5 107	$-\frac{17}{17}$	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	<u></u> .	17	6.300	0.373	0.329	1.256	1.256
Totals & Averages	204	1 1	0	202	6.328	0.376	0.329	1.284	1.281
Standard Deviations		╊ ╧ ┼╧╌	T ~ -		0.405	0.021	0.021	0.038	0.038
CVs	 	-	ή		6.400%	5.549%	6.152%	2.944%	2.928%
	•								
1 6 11	17	0 0	0	17	6.340	0.373	0.330	1.248	1.248
2 6 13	17	0 0	0	17	6.580	0.387	0.344	1.280	1.280
3 i 6 i 28	17		î 0	17	6.700	0.394	0.352	1.271	1.271
4 6 33	17	0 1 0	0	17	6.500	0.382	0.341	1.254	1.254
5 6 42	17	0 7 0	0	17	7.140	0.420	0.378	1.262	1.262
6 6 50	17	1 0	0	16	6.100	0.381	0.340	1.271	1.263
7 6 61	17	1 0	0	16	5.600	0.350	0.308	1.290	1.274
8 6 72	17		0	16	5.900	0.369	0.328	1.408	1.335
9 6 82	17	1 0	0	16	6.620	0.414	0.371	1.305	1.290
10 6 87	17	<u>1 1 0</u>	0	<u>16</u>	6.040	0.378	0.335	1.287	1.266
11 6 97	17	<u>0 ¦ 0</u>		<u>17</u>	6.380	0.375	0.333	1.278	1.278
12 6 106	17 204	0 0	0	17	6.800	0.400	0.359	1.283	1.283
Totals & Averages	<u>5 i 0</u>	 	199	6.392	0.385	0.343	1.286	1.275	
Standard Deviations	 -	↓ _ ¦	<u>-</u>		0.427	0.019	0.020	0.041	0.022
CVs		Li	i		6.673%	5.053%	5.700%	3.216%	1.757%

Table 4. Bird Weights and Feed Conversion Days 0 - 14 (13AUG15) Summarized by Treatment Group
CQR Study Number AGV-15-3
Facility Number 8W

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D14 Pen Wt	D14 Avg Bird Wt	D0-14 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 0	Mon	Rem	Rem	D14	(kg)	(kg)	(kg)	D0-14	D0-14
1	7	4	17	2	0	0	15	6.400	0.427	0.384	1.314	1.275
2	<u> 7</u>	12	17	0	0	0	17	6.580	0.387	0.345	1.253	1.253
3	7	22	17	2	0	0	15	5.620	0.375	0.332	1.291	1.245
4	7	30	17	0	0	0	17	6.720	0.395	0.352	1.226	1.226
5	7	43	17	0	0	0	17	6.660	0.392	0.351	1.268	1.268
6	7	51	17	1	0	0	16	6.280	0.393	0.350	1.247	1.236
7	i	I 66	17	1	0	0	16	6.180	0.386	0.343	1.266	1.251
8	7	67	17	0	0	0	17	6.520	0.384	0.342	1.230	1.230
9	7	83	17	0	0	0	17	6.980	0.411	0.369	1.253	1.253
10	7	92	17	1	0	0	16	6.020	0.376	0.334	1.272	1.249
_11 _	_ 7 _	103	17	0	0	0	17	6.740	0.396	0.355	1.270	1.270
12	7	i 110	17	1	0	0	16	7.040	0.440	0.399	1.310	1.273
Totals 8	Totals & Averages			8	0	0	196	6.478	0.397	0.355	1.267	1.252
Standa	Standard Deviations				Ĺ _ J	ί_]		0.407	0.020	0.020	0.028	0.017
CVs								6.279%	4.977%	5.632%	2.204%	1.330%
1	8	8	17	1	0	0	16	5.780	0.361	0.319	1.345	1.326
2	8_	19	17	0	0	0	17	6.460	0.380	0.338	1.289	1.289
3_	i8_	29	17	0	0	0	17	6.660	0.392	0.349	1.277	1.277
4	8	31	17	0	0	0	17	7.000	0.412	0.369	1.275	1.275
_5	_ 8 _	41	17	1	0	0	16	6.440	0.403	0.361	1.283	1.269
6	<u>8</u>	56	17	0	0	0	17	6.520	0.384	0.342	1.227	1.227
7	8	64	17	0	0	0	17	6.320	0.372	0.330	1.299	1.299
8	8	69	17	0	0	0	17	6.460	0.380	0.337	1.267	1.267
9	8	I 85	17	0	0	0	17	6.600	0.388	0.346	1.278	1.278
10	8	86	17	0	0	0	17	7.080	0.416	0.374	1.247	1.247
_11	8	99	17	0	0	0	17	6.320	0.372	0.330	1.296	1.296
12	8	105	17	0	0	0	17	6.720	0.395	0.353	1.253	1.253
Totals & Averages			204	2	0	0	202	6.530	0.388	0.346	1.278	1.275
Standard Deviations												1
Standa	rd Devi	ations	!	L	<u>-</u> -	<u>. </u>		0.337	0.017	<u>0.017</u>	0.030	0.026

Graph 1. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 14) Summarized by Treatment Group **CQR Study Number AGV-15-3**

8	7	6	5	4	3	2	1	i i diodb	Tr+ Group
0.346	0.355	0.343	0.334	0.328	0.331	0.351	0.298	Gain (kg)	Avg. Bird Wt
1.275	1.252	1.275	1.281	1.303	1.293	1.299	1.378	Conversion	Adj. Feed
Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)	3000 Units Phytase (LP)	1000 Units Phytase (LP)	750 Units Phytase (LP)	500 Units Phytase (LP)	250 Units Phytase (LP)	High Phosphate (HP)	Low Phosphate (LP)	Hearment peach broth	Treatment Description

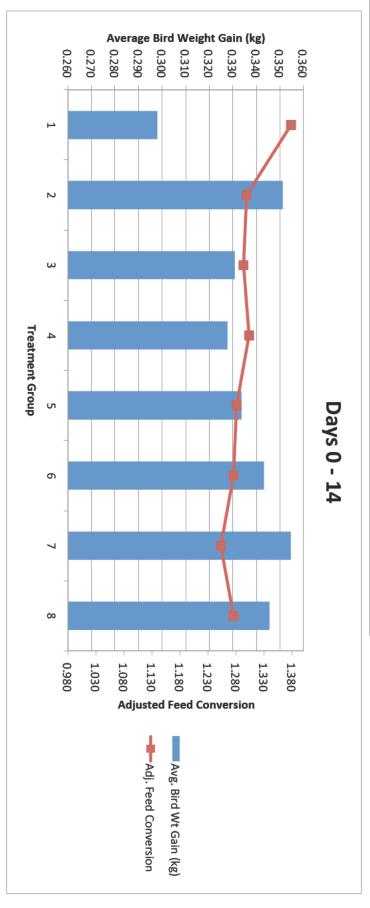


Table 6. Bird Weights and Feed Conversion Days 0 - 21 (20AUG15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D0-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
		NO.	Day 0	Моп	Rem	Rem	D21	(kg)	(kg)	(kg)	D0-21	D0-21
_1	<u>1</u> j	6	17	0	0	0	17	12.000	0.706	0.662	1.368	1.368
2	1 1	16	17	0		0_	17	11.600	0.682	0.640	1.361	1.361
3	_1_	2 5	17	0	. <u>-</u> -	0	17	11.080	0.652	0.608	1.382	1.382
4 _!_	_ <u>1</u> _!	37	18	0	. <u>0</u> _	<u> </u>	18	12.900	0.717	0.676	1.339	1.339
5	- 1	46	17	0	. <u> </u>	0_	17	10.800	0.635	0.593	1.351	1.351
6	_1_i	53	17	0	0	0_	17	10.460	0.615	0.574	1.389	1.389
7 -!-	<u> 1</u> .	60	17	0	0_	, <u>o</u> _	17	10.180	0.599	0.558	1.348	1.348
8 -	- 1 +	71	17	0		0	16	10.340	0.646	0.604	1.500	1.465
9	_ <u>1</u> _j	79	17	1	1	i <u>0</u> _	15	10.760	0.717	0.675	1.447	1.396
10	_1		17	_ 1		0_	16	10.520	0.658	0.616	1.388	1.364
_11	<u> 1</u>	100	17	_ 1	0	0	16	10.580	0.661	0.619	1.399	1.356
12	1	109	17	0		0	17	12.960	0.762	0.721	1.416	1.416
Totals &			_ <u>205</u>	. <u>3</u> _	2_	_0_	200	11.182	0.671	0.629	1.391	1.378
Standard	<u>Dev</u>	iatior		با ــ ا	لـ ــ ا	! — -		0.969	0.047	0.048	0.046	0.035
CVs						I		8.665%	7.073%	7.556%	3.314%	2.568%
1 .	2 .	10	17	0	0	1 0	17	13.740	0.808	0.765	1.333	1.333
- 1 - 1	$-\frac{2}{2}$		1 /	1 -			1/	12.840	0.803	0.759	1.417	1.341
P	+	27	1 /	- 📥 -	⊦ ~ −	+ - -	10	14.380	0.846		:	1.343
$-\frac{3}{4}$	2 j	36	1 /	. <u>0</u> _	. — –	0_	17		0.858	0.803 0.815	1.343 1.359	
5 -	- 🗲 🕆	48	1/	0		0	10	13.720 13.300	0.782	0.740	1.311	1.343 1.311
6 -	- 2 +	54	1 /	0	0	1 0	1/	11.780	0.693	0.652	1.336	1.336
- <mark>2</mark> - -	- <u>4</u> -¦	65	1 /	1 -	· — –		16	11.900	0.744	0.702	1.367	1.360
- ' - -	+	70	1 /	0	ı <u>~</u> ⊣	0	17	13.760	0.809	0.767	1.336	1.336
-	2 i	78	<u>-</u> 17	0	_ <mark>0</mark> _	ı _∪_ ı 1	17	13.580	0.849	0.806	1.363	1.353
10	- <mark>2</mark>	91	<u>-1/</u>	1	0	0	16	12.560	0.785	0.743	1.368	1.353
11 -	- -	102		- <u>+</u> -	0	0	16	13.500	0.844	0.801	1.351	1.345
12	_ _ 2		- 1 / 17	0	. – –	i 0	17	14.880	0.875	0.834	1.377	1.377
Totals &			204	4	0	2	198	13.328	0.808	0.766	1.355	1.344
Standard					L <u>~</u> _	ـ <u>-</u> ـ		0.924	0.052	0.052	0.027	0.016
CVs					i – -	i – –		6.929%	6.457%	6.784%	1.990%	1.189%
		'										
1	3	9	17	2	0	0	15	11.940	0.796	0.752	1.362	1.332
2	3	1 5	17	1	0	0	16	12.480	0.780	0.736	1.254	1.241
3	3 1	24	17	0	0	0	17	12.280	0.722	0.679	1.335	1.335
4	3	35	17	2	0	0	15	11.680	0.779	0.737	1.379	1.323
5	3	44	17	0	0	0	17	13.200	0.776	0.734	1.313	1.313
6	3	52	17		1		16	12.180	0.761	0.720	1.340	1.317
7	3 7	62	17	2	0	0	15	11.520	0.768	0.726	1.348	1.332
8		68	17		0		17	12.580	0.740	0.699	1.342	1.342
9	3	-	17	0	0	0	17	13.640	0.802	0.760	1.322	1.322
10	_3	89	17	1	0	0	16	11.980	0.749	0.707	1.331	1.324
	3 1		17		0		17	12.980	0.764	0.722	1.338	1.338
12	3	108	17	1	0	0	16	13.260	0.829	0.787	1.388	1.383
Totals &			_ <u>204</u>		1_	. <u>°</u> _	194	12.477	0.772	0.730	1.338	1.325
Standard	Dev	<u>latior</u>	 -			– –		0.672	0.029	0.029	0.034	0.032
CVs					ـــــــا	L		5.385%	3.720%	3.921%	2.559%	2.423%

Table 6. Bird Weights and Feed Conversion Days 0 - 21 (20AUG15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	No. Birds Weighed D21	D21 Pen Wt (kg)	D21 Avg Bird Wt (kg)	D0-21 Avg Bird Gain (kg)	Feed Conversion D0-21	Adj. Feed Conversion D0-21
1	4	5	17	1	0	0	16	12.780	0.799	0.756	1.375	1.340
	'- - -	18		1-	<mark>0</mark> -	0	10	12.400	0.775	0.732	1.314	1.300
-2-	!- + -	26	17	0	; o -	0	10	13.180	0.775	0.732	1.320	1.320
-4-	_ <u>-</u> _ 4	32	17	- 0 -		0	17	13.800	0.812	0.770	1.314	1.314
- 5 -	i- <u>+</u> -	45	17	- 0 -	i <u> </u>	0	16	11.400	0.713	0.670	1.329	1.309
6	!- -	49	17	- - -	+ - -	0	17	13.420	0.789	0.748	1.280	1.280
- - -	'	59	17	0	i	0	17	13.580	0.799	0.756	1.298	1.298
8-	! -	73	17	<u></u> -	0	0	17	13.060	0.768	0.726	1.315	1.315
9	- - -	81	17	1	0	0	16	13.040	0.815	0.773	1.322	1.315
10	i	88	17	2		0	14	10.760	0.769	0.727	1.371	1.335
11	4	98	17	1	0	0	16	12.280	0.768	0.726	1.366	1.358
12	4	104	17	0	0	0	17	13.940	0.820	0.779	1.317	1.317
Totals	& Ave	rages	204	6	2	0	196	12.803	0.783	0.741	1.327	1.317
Standa	rd Dev	viation		Ι	,			0.959	0.029	0.030	0.029	0.021
CVs					ì – –	i – –		7.489%	3.755%	4.009%	2.208%	1.563%
1	<u>5</u>		17	0			17	14.640	0.861	0.818	1.303	1.303
2	5	17	17	1_	0	0	16	12.800	0.800	0.756	1.334	1.327
3	5	23	17	0	0	0	17	13.600	0.800	0.757	1.319	1.319
4	5	34	17	0	. <u> </u>	0	17	13.060	0.768	0.727	1.308	1.308
5	_5_	47	17	1	0	0	16	12.220	0.764	0.722	1.391	1.312
6_	<u>. 5</u> _	55	17	0	· — –	0	16	11.800	0.738	0.696	1.324	1.314
7	<u>5</u>	63	17	0	. <u></u> .		16	12.040	0.753	0.710	1.358	1.321
8	5	74	17	<u> </u>	0	0	17	13.500	0.794	0.751	1.303	1.303
- 9 -	I 5	80	17	- 0 -		0_		14.380	0.846	0.804	1.354	1.354
10	5	93	17	<u> </u>	₊ <u>-</u> -	0	16	12.140	0.759	0.717	1.339	1.315
_11 _	5	101	17	1 -	1_	0	15	12.540	0.836	0.795	1.387	1.341
12		107	17	0	_	0	17	13.300	0.782	0.741	1.290	1.290
Totals Standa			_ <u>204</u>	. <u>3</u> _	. <u>4</u> _	_0_	197	13.002 0.917	0.792 0.039	0.750 0.039	0.033	1.317 0.017
CVs	ra Dev	viation			¦	¦ – -		7.056%	4.943%	5.187%	2.470%	1.320%
CVS					_			7.03070	4.54570	3.10770	2.47070	1.320%
1	6	11	17	0	1	0	16	12.820	0.801	0.758	1.342	1.312
2	1 – <u>–</u> –	13	17	0	+	0	17	13.980	0.822	0.779	1.318	1.318
3	 6	28	17		i 0		17	14.080	0.828	0.786	1.320	1.320
4			17	0	, <u>o</u>	0	17	13.300	0.782	0.741	1.306	1.306
5 -		42	17		0	. – –	17	14.740	0.867	0.826	1.303	1.303
	I 6	50	17		0		16	13.000	0.813	0.771	1.303	1.299
7	6	61	17		1		15	11.420	0.761	0.719	1.338	1.308
8			17	1	0	0	16	12.360	0.773	0.731	1.348	1.316
9	6	72 82	17	1	<u> </u>	0	16	13.540	0.846	0.804	1.329	1.322
10	6	87	17	1	1 1	0	15	12.140	0.809	0.767	1.358	1.311
	6		17	U	U	U	17	13.440	0.791	0.748	1.311	1.311
12	6	106	17	0	0	0	17	14.380	0.846	0.805	1.306	1.306
Totals			204	5	3	0	196	13.267	0.812	0.770	1.323	1.311
Standa	rd Dev	viation	L	L	' 	 		0.975	0.032	0.032	0.019	0.007
CVs					i	i		7.350%	3.951%	4.168%	1.451%	0.549%

Table 6. Bird Weights and Feed Conversion Days 0 - 21 (20AUG15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D0-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 0	Mor	Rem	Rem	D21	(kg)	(kg)	(kg)	D0-21	D0-21
1	7	4	17	2	0	0	15	13.360	0.891	0.848	1.358	1.339
2	! 7	12	17	0	0	0	17	13.680	0.805	0.762	1.312	1.312
3	7	22	17	2	1	0	14	11.440	0.817	0.774	1.335	1.290
4	i 7	30	17	0	0	0	17	14.180	0.834	0.791	1.296	1.296
5	7	43	17	0	0	0	17	13.960	0.821	0.780	1.287	1.287
6	7	51	17	1	0	0	16	13.220	0.826	0.784	1.297	1.292
7	I 7	66	17	1		0	16	12.880	0.805	0.762	1.307	1.300
8	7	67	17	0	0	0	17	12.500	0.781	0.739	1.351	1.313
9	7	83	17	0	0	0	17	14.560	0.856	0.815	1.293	1.293
10	7	92	17	1	0	0	16	12.140	0.759	0.716	1.319	1.308
_11	7	103	17	0	0	0	17	13.780	0.811	0.769	1.303	1.303
12	i 7	110	17	2	0	0	15	13.740	0.916	0.875	1.381	1.320
Totals	& Ave	rages	204	9	1	0	194	13.287	0.827	0.785	1.320	1.304
Standa	rd De	viatior			i _ J	i		0.904	0.044	0.044	0.030	0.015
CVs					l I			6.806%	5.288% I	5.590%	2.256%	1.157%
1	I 8	8	17	2		0	14	11.260	0.804	0.762	1.414	1.332
2	8	19	17	0	0	0	17	13.900	0.818	0.775	1.317	1.317
3	8	29	17	0	0	0	17	14.320	0.842	0.800	1.315	1.315
4	I 8	31	17	0	0	0	17	14.920	0.878	0.835	1.317	1.317
_ 5	8	41	17	1	1	0	15	12.680	0.845	0.804	1.346	1.310
_6	<u>8</u>	56	17	1	0	0	16	12.220	0.764	0.722	1.382	1.327
7	<u>8</u>	64	17	0	0	0	17	13.320	0.784	0.741	1.309	1.309
8	8	69	17	1	0	0	16	12.760	0.798	0.755	1.322	1.296
9	I 8	85	17	0		0	17	13.760	0.809	0.767	1.320	1.320
10	8	86	17	0	0	0	17	14.280	0.840	0.797	1.308	1.308
_11	8	99	17	0	0	0	17	13.240	0.779	0.737	1.316	1.316
12		105	17		0	0	17	14.540	0.855	0.813	1.295	1.295
Totals	& Ave	rages	204	5	2	0	197	13.433	0.818	0.776	1.330	1.314
Standa	rd De	viation						1.067	0.035	0.034	0.035	0.011
CVs			I		I -			7.945%	4.222%	4.434%	2.596%	0.836%

Graph 2. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 21) Summarized by Treatment Group **CQR Study Number AGV-15-3**

Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)	1.314	0.776	8
3000 Units Phytase (LP)	1.304	0.785	7
1000 Units Phytase (LP)	1.311	0.770	6
750 Units Phytase (LP)	1.317	0.750	5
500 Units Phytase (LP)	1.317	0.741	4
250 Units Phytase (LP)	1.325	0.730	3
High Phosphate (HP)	1.344	0.766	2
Low Phosphate (LP)	1.378	0.629	1
וופמנוופווג הפסנו	Conversion	Gain (kg)	ii cioup
Treatment Description	Adj. Feed	Avg. Bird Wt	Trt Group

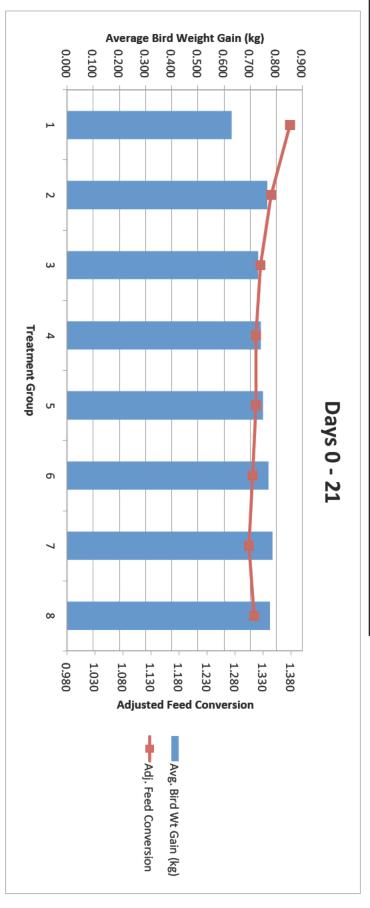


Table 8. Bird Weights and Feed Conversion Days 14 - 21 (20AUG15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D14-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion D14-21
			Day 14	ω	Rer	Rer	D21	(kg)	(kg)	(kg)	D014-21	D14-21
1	1	6	17	0	0	0	17	12.000	0.706	0.349	1.347	1.347
2	1		17	0	. — –	0	17	11.600	0.682	0.346	1.391	1.391
3	1	2 5	17	0	0	0	17	11.080	0.652	0.329	1.364	1.364
4	1	37	18	0	0	0	18	12.900	0.717	0.352	1.388	1.388
5 !	1	46	17	0			17	10.800	0.635	0.311	1.352	1.352
6	1	53	17	0		0	17	10.460	0.615	0.300	1.431	1.431
7	1_	60	17	0	:	0	17	10.180	0.599	0.293	1.357	1.357
8 -	1	71	17	0		0_	16	10.340	0.646	0.318	1.475	1.408
9	_1	79	16	<u> </u>	1	0	15	10.760	0.717	0.341	1.456	1.385
10	1 .	90	16	- 0 -		0_	16	10.520	0.658	0.329	1.369	1.369
11 _	1	100	<u> 16</u>	<u></u>	. - -	· <u>-</u> -	16	10.580	0.661	0.324	1.382	1.382
12	1	109	17	0	0	0	17	12.960	0.762	0.379	1.357	1.357
Totals &			<u>202</u>	<u> </u>	2_	0_	200	11.182	0.671	0.331	1.389	1.378
Standard	Dev	<u>riatior</u>	L	ļ _{— -}	i	i		0.969	0.047	0.024	0.042	0.025
CVs								8.665%	7.073%	7.320%	3.055%	1.811%
	_			_								
1 -!-	<u>2</u> _	10	17	<u> </u>		0_	17	13.740	0.808	0.420	1.381	1.381
-2	2	14	17	1	. <mark>~</mark> ⊣	0	16	12.840	0.803	0.408	1.534	1.379
3	ر 2_ ر	27	17	0	L <u>0</u> _	. <u>0</u> _	17	14.380	0.846	0.451	1.389	1.389
<mark>4</mark> _ ¦ _	2	36	16	- 0 -		, — –	16	13.720	0.858	0.438	1.397	1.397
5 -	2	48	17	<u> </u>	. ┻-	0	17	13.300	0.782	0.409	1.353	1.353
- <u>6</u> -!-	2	54	17	<u>0</u> _	. — –	0_	17	11.780	0.693	0.344	1.384	1.384
- 7	2	65	16	. <u>0</u> -	. <u> </u>	0_	$-\frac{16}{17}$	11.900	0.744	0.379	1.403	1.403
- <mark>8</mark> - i-	<u>- </u>	70	17	. <u>0</u> -	0	0	17	13.760	0.809	0.411	1.378	1.378
9 _	2	78	16	- <u>0</u> -		0_	<u>16</u>	13.580	0.849	0.423	1.399	1.399
10	2	91	16			· - -	<u>16</u>	12.560	0.785	0.405	1.383	1.383
11	2 2	102	<u>16</u>	- <u>0</u> -	0	0_	$-\frac{16}{17}$	13.500 14.880	0.844 0.875	0.433 0.455	1.393 1.359	1.393 1.359
12 I		111				0						
Totals & Standard			199	. <u>1</u> -	_0_		198	13.328 0.924	0.808 0.052	0.415 0.031	1.396 0.046	1.383 0.015
CVs	Dev	iatioi			¦	¦		6.929%	6.457%	7.417%	3.293%	1.084%
C 7 3								0.52570	0.43770	7.41770	3.23370	1.00470
1 1	3	9	15	0	0	0	15	11.940	0.796	0.423	1.372	1.372
- - -i-	3	15	16	- 0 -			16	12.480	0.780	0.413	1.255	1.255
3 -	3	24	17	0			17	12.280	0.722	0.379	1.360	1.360
4	3		16		0		15	11.680	0.779	0.389	1.467	1.365
5 - 1-	3	44	17	0	0		17	13.200	0.776	0.404	1.329	1.329
6 -		52	17		1	· — –	16	12.180	0.761	0.404	1.380	1.337
7 -	3	62	15		0		15	11.520	0.768	0.395	1.375	1.375
8 - -	3	68	17	0	0	0	17	12.580	0.740	0.373	1.375	1.375
9 -	3	84	17		0		17	13.640	0.802	0.409	1.359	1.359
10	3	89	16	0			16	11.980	0.749	0.386	1.340	1.340
11		96	17		0		17	12.980	0.764	0.405	1.366	1.366
12		108	16		0		16	13.260	0.829	0.411	1.395	1.395
Totals &	Ave	rages	196	1	1	_	194	12.477	0.772	0.399	1.365	1.352
Standard				l – -	ì – -	ì – †		0.672	0.029	0.015	0.049	0.036
CVs				Γ		[5.385%	3.720%	3.739%	3.559%	2.657%

Table 8. Bird Weights and Feed Conversion Days 14 - 21 (20AUG15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block Trt Pe	Julica	Mortality	Removal-1	Removal-2	No. Birds Weighed D21	D21 Pen Wt (kg)	D21 Avg Bird Wt (kg)	D14-21 Avg Bird Gain (kg)	Feed Conversion D014-21	Adj. Feed Conversion D14-21
1 4 5	17	1	0	0	16	12.780	0.799	0.406	1.443	1.371
2 4 18		† - -		0	16	12.400	0.775	0.406	1.335	1.335
$-\frac{2}{3}$ $-\frac{4}{4}$ $+\frac{10}{26}$		† ŏ -	0	0	17	13.180	0.775	0.415	1.326	1.326
4 4 32		† ŏ −	 -	0	17	13.800	0.812	0.424	1.339	1.339
5 4 4		† ŏ -	· — –	0	16	11.400	0.713	0.400	1.322	1.288
6 4 4		† o -	0	0	17	13.420	0.789	0.419	1.306	1.306
7 4 59		† - -		0	17	13.580	0.799	0.433	1.304	1.304
8 4 7		† - -		0	17	13.060	0.768	0.395	1.315	1.315
9 4 81		0	0	0	16	13.040	0.815	0.426	1.331	1.331
10 4 88		† - -		0	14	10.760	0.769	0.400	1.343	1.343
11 . 4 . 98		† - -	0	0	16	12.280	0.768	0.400	1.331	1.331
12 4 10		T 0	0	0	17	13.940	0.820	0.439	1.349	1.349
Totals & Average	es 198	1	1	0	196	12.803	0.783	0.414	1.337	1.328
Standard Deviati	ior	† - -	+ — - !	!		0.959	0.029	0.015	0.036	0.022
CVs		† - -	ì – –	ì – –		7.489%	3.755%	3.509%	2.688%	1.677%
		_								
1 I 5 I 7	17	0		0	17	14.640	0.861	0.441	1.352	1.352
2 5 1	7 16	0	0	0	16	12.800	0.800	0.419	1.373	1.373
3 5 23	3 17	T 0	0	0	17	13.600	0.800	0.432	1.351	1.351
4 5 34	4 17	I 0	0	0	17	13.060	0.768	0.402	1.336	1.336
5 5 47	7 17	$I_{\overline{1}}$	0	0	16	12.220	0.764	0.392	1.512	1.352
6 5 55	_ L	0	0	0	16	11.800	0.738	0.384	1.342	1.342
7 5 63		0	1	0	16	12.040	0.753	0.391	1.458	1.383
8 5 74		0	0	0	17	13.500	0.794	0.418	1.299	1.299
9 1 5 1 80		0		0	17	14.380	0.846	0.433	1.326	1.326
10 5 93		0_	1_	0	16	12.140	0.759	0.406	1.391	1.347
11 5 10		ļ <u>1</u> -	. <u>1</u> _	0	15	12.540	0.836	0.461	1.481	1.388
12 5 10		0	_	0	17	13.300	0.782	0.412	1.317	1.317
Totals & Average		ļ <u>2</u> -	3_	0_	197	13.002	0.792	0.416	1.378	1.347
Standard Deviati		╂	¦	¦		0.917	0.039 4.943%	0.023 5.480%	0.069	0.026
CVs						7.056%	4.945%	5.480%	4.993%	1.944%
1 6 11	1 17	0	1	0	16	12.820	0.801	0.428	1.423	1.364
$-\frac{1}{2}$ $-\frac{1}{6}$ $+\frac{1}{13}$		t	+	0	17	13.980	0.822	0.435	1.349	1.349
3 1 6 1 28		<u> </u>			17	14.080	0.828	0.434	1.360	1.360
4 6 3			0		1/	13.300	0.782	0.400	1.350	1.350
5 6 42		† ŏ -	 0	<u> </u>	17	14.740	0.867	0.447	1.337	1.337
6 6 5		+	0		16	13.000	0.813	0.431	1.328	1.328
7 - 6 + 61		† ö -	1	0	15	11.420	0.761	0.411	1.378	1.337
8 6 72		+	0		16	12.360	0.773	0.404	1.300	1.300
9 6 82		† o -			16	13.540	0.846	0.433	1.350	1.350
10 6 8		0	1	0	15	12.140	0.809	0.432	1.420	1.349
11 6 97			I 0	0	17	13.440	0.791	0.415	1.337	1.337
12 6 10		+	0		17	14.380	0.846	0.446	1.325	1.325
Totals & Average	_	0	_		196	13.267	0.812	0.426	1.355	1.340
Standard Deviati	ior	\mathbf{I}^{-}	i – 1			0.975	0.032	0.015	0.037	0.017
CVs		[-	t — - I			7.350%	3.951%	3.605%	2.704%	1.298%

Table 8. Bird Weights and Feed Conversion Days 14 - 21 (20AUG15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D14-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
		NO.	Day 14	Mon	Rem	Rem	D21	(kg)	(kg)	(kg)	D014-21	D14-21
1	7	4	1 5	0	0	0	15	13.360	0.891	0.464	1.394	1.394
2	7	12	17	0	0	0	17	13.680	0.805	0.418	1.361	1.361
3	7	22	1 5	0	1	0	14	11.440	0.817	0.442	1.371	1.328
4	7	30	17	0	0	0	17	14.180	0.834	0.439	1.351	1.351
_5	7	43	17	0	0	0	17	13.960	0.821	0.429	1.301	1.301
6	7	51	16	0	0	0	16	13.220	0.826	0.434	1.337	1.337
7	7	66	16	0		0	16	12.880	0.805	0.419	1.340	1.340
8	7	67	17	0	0	0	17	12.500	0.781	0.398	1.468	1.390
9	7	83	17	0	0	0	17	14.560	0.856	0.446	1.327	1.327
10	_7	92	16	0		0	16	12.140	0.759	0.383	1.359	1.359
_11 _	_7_	103	17	0	0	0	17	13.780	0.811	0.414	1.332	1.332
12	7	110	16	1	0	0	15	13.740	0.916	0.476	1.448	1.363
Totals 8			196	1	1	0	194	13.287	0.827	0.430	1.366	1.349
Standa	rd Dev	viation	L		i _ J	i J		0.904	0.044	0.026	0.049	0.027
CVs								6.806%	5.288%	6.112 %	3.595%	1.968%
1	8		16	1		0	14	11.260	0.804	0.443	1.478	1.338
2	8	19	17	0	0	0	17	13.900	0.818	0.438	1.339	1.339
3	8	29	17	0	0	0	17	14.320	0.842	0.451	1.345	1.345
_4	8	31	17	0	. <u> </u>	0	17	14.920	0.878	0.466	1.351	1.351
5	8	41	16	0	1	0	15	12.680	0.845	0.443	1.404	1.347
6	_8_	56	17	1	0	0	16	12.220	0.764	0.380	1.540	1.421
7	8	64	17	0	0	0	17	13.320	0.784	0.412	1.317	1.317
8_	8	69	17	1	0	0	16	12.760	0.798	0.418	1.371	1.321
9	8	85	17	0		0	17	13.760	0.809	0.421	1.355	1.355
_10	_8	86	17	0	0	0	17	14.280	0.840	0.424	1.361	1.361
_11 _	_8_	99	17	0	0	0	17	13.240	0.779	0.407	1.332	1.332
12	8	105	17	0	0	0	17	14.540	0.855	0.460	1.327	1.327
Totals 8			202	3	2	0	197	13.433	0.818	0.430	1.377	1.346
Standa	rd Dev	viation	L	L	ļ _	[_]	l	1.067	0.035	0.025	0.067	0.027
CVs								7.945%	4.222%	5.703%	4.879%	2.004%

CQR Study Number AGV-15-3 Graph 3. Average Bird Weight Gain and Adjusted Feed Conversion (Days 14 - 21) Summarized by Treatment Group

Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)	1.346	0.430	∞
3000 Units Phytase (LP)	1.349	0.430	7
1000 Units Phytase (LP)	1.340	0.426	6
750 Units Phytase (LP)	1.347	0.416	5
500 Units Phytase (LP)	1.328	0.414	4
250 Units Phytase (LP)	1.352	0.399	3
High Phosphate (HP)	1.383	0.415	2
Low Phosphate (LP)	1.378	0.331	1
Treatment Description	Conversion	Gain (kg)	irt Group
To the state of th	Adj. Feed	Avg. Bird Wt	T C

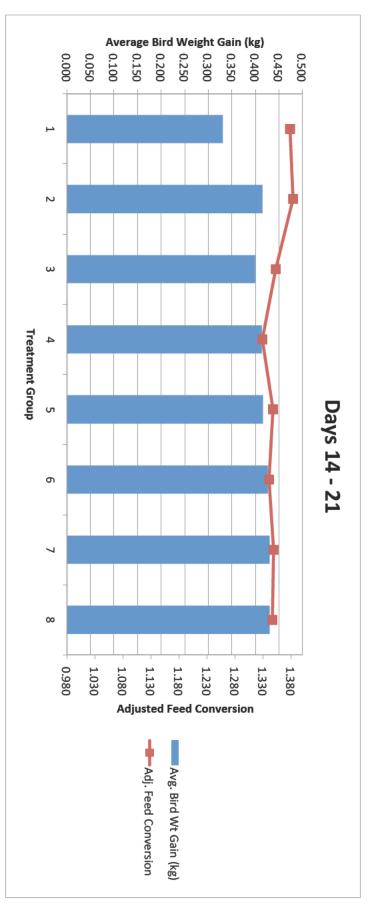


Table 10. Bird Weights and Feed Conversion Days 0 - 42 (10SEP15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D0-42 Avg Bird Gain	Feed Conversion D0-42	Adj. Feed Conversion D0-42
			Day 0	ω	Rei	Rei	D42	(kg)	(kg)	(kg)	DU-42	DU-42
1	1_1_	6	17	1_	0	3	13	32.880	2.529	2.486	1.749	1.602
2_	<u> 1</u>	16	17	0_	. <u>0</u> _	3_	14	34.900	2.493	2.450	1.672	1.577
3	1 1	25	17	2	0	3	12	29.180	2.432	2.388	1.825	1.546
4	_1_	37	18	1	0	4	13	32.860	2.528	2.487	1.805	1.592
5	<u> 1 </u>	46	17	1_		3_	12	28.880	2.407	2.365	1.721	1.518
6	1 1	53	17	0	. <u> </u>		14	32.600	2.329	2.287	1.598	1.512
7	'_ <u>1</u>	60	17	0	0	3	14	31.780	2.270	2.229	1.631	1.537
8 -	1 	71	17	<u> 0</u> _		3		28.320	2.360	2.317	1.780	1.572
9	_1_1	79	17	1_	1	3	12	31.640	2.637	2.594	1.668	1.539
_10 _	!_ 1 _	90	17	1_	0_	3_	13	30.500	2.346	2.305	1.668	1.545
11 -	1 1	100	17	. 1	. <u> </u>		13	31.720	2.440	2.398	1.672	1.551
12	1	109	17	0	0	3	14	37.060	2.647	2.606	1.715	1.608
Totals 8			<u>205</u>	8 _	4_	37	156	31.860	2.451	2.409	1.709	1.558
Standa	rd Dev	/iatior			i	i		2.512	0.119	0.119	0.070	0.032
CVs						l		7.883%	4.861%	4.942%	4.101%	2.022%
	•	40	47	^		•	4.4	42 700	2.424	2.070	4.624	4.546
$-\frac{1}{2}$!_ <u>2</u> _!	10	- - 17	0	0_	3_	14	43.700	3.121 2.952	3.078	1.634	1.546
$-\frac{2}{3}$	1 2	14 27	$-\frac{17}{17}$	$-\frac{1}{0}$	_		13	38.380	3.110	2.909	1.694	1.557
- 3 - 4	I — — I	1	1 /	<u> </u>	↓ <u>~</u> _	· — –	14	43.540		3.067 2.811	1.657	1.564 1.568
1	2	36	1 /	0 -	0	4 3	13	37.100	2.854	3.021	1.689	
5	1 2 1	48 54			0	3	13	39.820	3.063		1.650	1.537
$-\frac{6}{7}$	1_2_J		1 7	0	ι <u>υ</u> _	· — –	$-\frac{14}{12}$	38.120	2.723	2.682	1.639	1.554
· - <mark>/</mark> -	$1 - \frac{2}{2} - \frac{1}{2}$	65 70	17	$-\frac{1}{0}$		1 3 1 3	$-\frac{13}{14}$	36.680 40.380	2.822	2.780 2.842	1.653 1.654	1.557 1.559
- 9 -	1- 2 -	78	1 /	- 0	 0	- - 4	14	37.160	2.858	2.816	1.703	1.587
10	1 2	. – –	1 /	1 -			13	35.340	2.718	2.676	1.714	1.591
11 -	i- <u>-</u> -	102	1 /	1	0	3	13	39.880	3.068	3.025	1.676	1.568
12	I — — -	111	1 /	1		1 _3 _	13	41.440	3.188	3.146	1.739	1.577
Totals 8			204	5	1	38	160	39.295	2.947	2.905	1.675	1.564
Standa					<u> -</u> -			2.661	0.160	0.160	0.033	0.016
CVs					¦	¦ — -		6.772%	5.430%	5.504%	1.959%	1.003%
1	I 3	9	17	2	0	I 3	12	36.460	3.038	2.994	1.636	1.521
2	3	1	17	1		3	13	38.720	2.978	2.935	1.612	1.507
3	3	24	17	0	0	3	14	39.040	2.789	2.745	1.628	1.529
4	i 3	. – –	17	2	0	3	12	34.140	2.845	2.804	1.638	1.514
5	3	44	17	0	0	3	14	37.940	2.710	2.668	1.656	1.553
6	3	52	17				13	37.160	2.858	2.817	1.624	1.527
7	3	62	17	2	1 0		12	33.180	2.765	2.723	1.635	1.521
8	3	68	17	1	0	3	13	36.200	2.785	2.743	1.728	1.540
9	3	84	17	0	0		14	38.640	2.760	2.718	1.649	1.551
10	3	89	17	1	0	3	13	35.300	2.715	2.673	1.649	1.538
11	3	96	17	0	0	3	14	39.720	2.837	2.795	1.669	1.579
12	3	108	17	1	0	3	13	39.840	3.065	3.023	1.622	1.520
Totals 8			204	10	1	36	157	37.195	2.845	2.803	1.646	1.533
Standa	rd Dev	/iatior	L			ļ	l	2.181	0.120	0.120	0.030	0.020
CVs					[5.863%	4.227%	4.278%	1.841%	1.320%

Table 10. Bird Weights and Feed Conversion Days 0 - 42 (10SEP15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	No. Birds Weighed D42	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D0-42 Avg Bird Gain (kg)	Feed Conversion D0-42	Adj. Feed Conversion D0-42
1	4	5	17	1	0	3	13	39.120	3.009	2.967	1.638	1.516
2	4	18	17	1		3	13	38.340	2.949	2.907	1.622	1.522
3	4	26	17	0	0		14	40.200	2.871	2.828	1.634	1.531
4	4	32	17	0	0	3	14	41.860	2.990	2.948	1.627	1.536
5	4	45	17	0	1	3	13	36.900	2.838	2.796	1.623	1.520
6	4	49	17	0	0	3	14	40.440	2.889	2.847	1.616	1.509
7	4	59	17	0	0	3	14	39.340	2.810	2.767	1.649	1.536
8	4	73	17	0	0	3	14	39.480	2.820	2.778	1.640	1.540
9	4	81	17	1	0	3	13	38.300	2.946	2.904	1.609	1.511
10	4	88	17	2	1	3	11	31.640	2.876	2.835	1.652	1.517
11	4	98	17	1	0	3	13	38.860	2.989	2.947	1.637	1.539
12	4	104	17	0	0	3	14	42.900	3.064	3.023	1.624	1.529
Totals 8	& Ave	rages	204	6	2	36	160	38.948	2.921	2.879	1.631	1.525
Standa	rd Dev	/iatior						2.808	0.082	0.082	0.013	0.011
CVs								7.211%	2.808%	2.860%	0.794%	0.723%
1	_5	7_	17	0		3	14	43.980	3.141	3.098	1.637	1.546
2_	_5	17	17	1	. <u> </u>		13	40.060	3.082	3.038	1.625	1.526
3_	_5	23	17	0	0	3	14	41.280	2.949	2.906	1.617	1.522
<mark>4</mark> _	5	34	17	0	0_	3_	14	39.600	<u> 2.829</u>	2.787	1.600	1.510
5	_5	47	17	1		3	13	38.040	2.926	2.885	1.649	1.516
6	<u>5</u> -	55	17	0	2_	3		33.840	2.820	2.779	1.633	1.496
-7-	5	63	17	0		. <u> </u>	13	35.700	2.746	2.703	1.656	1.542
8 -	5	74	17	1 -	0_	3_	13	38.140	2.934	2.891	1.656	1.523
- 9 10	<u>5</u>	80 93	1 7	- <mark>0</mark> -	$\frac{0}{1}$	3_	$-\frac{14}{12}$	39.760	1 <u>2.840</u> 2.727	2.798	1.661	1.557
11	- <mark>-</mark> -	101	1 /	- <u>-</u> -	1-	3	12	32.720 36.780	3.065	2.685 3.024	1.767 1.678	1.548 1.550
12		101 107	1 /	- 1 -	· — –	\ _3_ 3	13	39.300	1 3.023	2.981	1.667	1.512
Totals 8			204	5	6	36	157	38.267	2.923	2.881	1.654	1.529
Standa				- - -	<u> </u>			3.151	0.135	0.135	0.042	0.019
CVs					¦ – -	i – –		8.235%	4.613%	4.673%	2.543%	1.253%
1	6	11	17	0	1	3	13	39.960	3.074	3.031	1.639	1.530
2	6	13	17	0	0	3	14	42.740	3.053	3.010	1.623	1.521
3	6	28	17	0	0	3	14	41.500	2.964	2.922	1.634	1.538
4	6	33	17	0	•		14	39.360	2.811	2.770	1.611	1.517
5	6	42	17	0	0	3	14	41.820	2.987	2.946	1.639	1.538
6	6	50	17	1	0		13	37.940	2.918	2.877	1.631	1.516
7	6	61	17	1	1		12	33.280	2.773	2.731	1.645	1.527
8	6	72	17	1	0	3	13	37.040	2.849	2.808	1.648	1.535
9		82	17		0	3	13	37.900	2.915	2.873	1.644	1.533
1	6		17		1		12	34.700	2.892	2.849	1.638	1.503
	6		17		0		13	37.420	2.878	2.836	1.683	1.530
-	6	_	17		0		14	43.340	3.096	3.054	1.633	1.530
Totals 8			_ <u>204</u>	<u>6</u> _	3_	36	159	38.917	2.934	2.892	1.639	1.527
Standa	rd Dev	/iatior			'	¦		3.132	0.103	0.103	0.017	0.010
CVs					_			8.047%	3.516%	3.560%	1.046%	0.680%

Table 10. Bird Weights and Feed Conversion Days 0 - 42 (10SEP15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D0-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 0	Mor	Rem	Rem	D42	(kg)	(kg)	(kg)	D0-42	D0-42
1	7	4	17	2	0	3	12	35.420	2.952	2.909	1.711	1.572
2	i 7	12	17	0	0	3	14	42.100	3.007	2.965	1.622	1.529
3	7	22	17	2	1	3	11	32.720	2.975	2.932	1.665	1.526
4	7	30	17	0	0	3	14	41.200	2.943	2.900	1.625	1.516
5	ı 7	i 43	17	0	0	3	14	39.760	ı 2.840	2.799	1.637	1.529
6	7	51	17	1	0	3	13	38.680	2.975	2.933	1.635	1.523
7	<u> 7</u>	66	17	1	0	3	13	38.000	2.923	2.880	1.640	1.535
8	<u> 7</u>	67	17	1	0	3	13	36.160	2.782	2.740	1.653	1.531
9	7	83	17	1	0	3	13	38.600	2.969	2.928	1.693	1.534
10	i 7	92	17	1	0	3	13	35.820	2.755	2.713	1.656	1.543
11	7	103	17	0	0	3	14	42.420	3.030	2.988	1.611	1.520
12	7	110	17	2	0	3	12	39.500	3.292	3.250	1.651	1.512
Totals 8	& Ave	rages	204	11	1	36	156	38.365	2.954	2.911	1.650	1.531
Standa	rd De	viatior			<u> </u>			2.921	0.137	0.137	0.029	0.015
CVs					ı	l		7.613%	4.645%	4.717%	1.765%	1.009%
1	ı 8	ı 8	17	2		3	11	34.900	3.173	3.130	1.654	1.518
2	8	19	17	0	0	3	14	41.200	2.943	2.900	1.622	1.524
3	8	29	17	1	0	3	13	39.300	3.023	2.981	1.734	1.552
4	I 8	31	17	0	0	3	14	41.800	ı 2.986	2.943	1.661	1.550
5	_8_	41	17	1	1	3	12	36.120	3.010	2.969	1.669	1.536
6	8	56	17	1	0	3	13	35.580	2.737	2.696	1.690	1.559
7	8	64	17	0	0	3	14	41.340	2.953	2.911	1.625	1.535
8	8	69	17	1	0	3	13	37.600	2.892	2.849	1.609	1.494
9	<u> 8</u>	8 5	17	0	0	3	14	38.920	2.780	2.738	1.637	1.537
10	8	86	17	0	0	3	14	38.780	2.770	2.727	1.648	1.524
11	8	99	17	0	0	3	14	42.420	3.030	2.988	1.608	1.513
12	I 8	I 10 5	17	0	i 0	3	14	42.580	3.041	2.999	1.645	1.547
Totals 8	& Ave	rages	204	6	2	36	160	39.212	2.945	2.903	1.650	1.532
Standa	rd De	viatior				[]		2.714	0.129	0.129	0.036	0.019
CVs					ı [—] –	i		6.922%	4.396%	4.457%	2.182%	1.228%

Graph 4. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 42) Summarized by Treatment Group **CQR Study Number AGV-15-3**

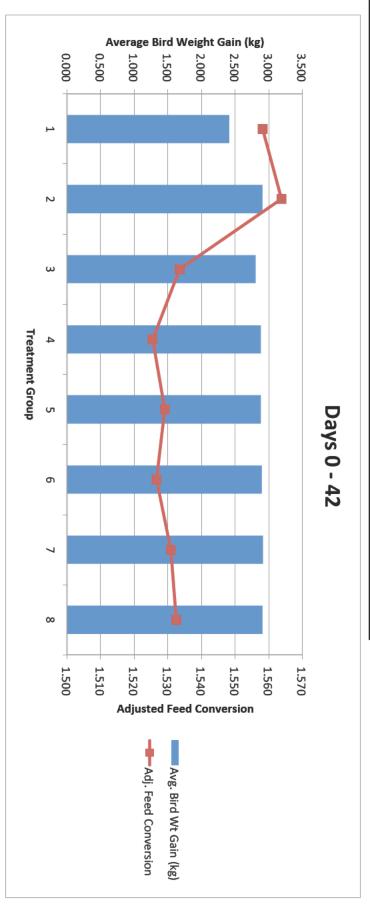


Table 12. Bird Weights and Feed Conversion Days 21 - 42 (10SEP15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block	Trt	Pen No.	No. Birds Started Day 21	Mortality	Removal-1	Removal-2	No. Birds Weighed D42	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D21-42 Avg Bird Gain (kg)	Feed Conversion D014-21	Adj. Feed Conversion D14-21
1	1	6	17	1	0	3	13	32.880	2.529	1.823	1.955	1.712
	1	16	17	0	$\Gamma_0 \Gamma$		14	34.900	2.493	1.811	1.817	1.670
3- -	1	25	17	2	$\Gamma_0 \Gamma$		12	29.180	2.432	1.780	2.078	1.619
4-1-	1	37	18	1			13	32.860	2.528	1.811	2.089	1.719
5-1-	1	46	17	1	Γ_1 Γ	3		28.880	2.407	1.771	1.927	1.595
6-1-	1	53		0	$\Gamma_0 \Gamma$	3	14	32.600	2.329	1.713	1.690	1.563
7-	1	60	17	0	Γ_0	3	14	31.780	2.270	1.671	1.756	1.613
8-1-	1	71	16	0	Γ_1 Γ	3		28.320	2.360	1.714	1.930	1.621
9-1-	1	79	15	0	Γ_0	3	12	31.640	2.637	1.919	1.774	1.604
10	1	90	16	0		3	13	30.500	2.346	1.689	1.806	1.626
11	1	100	16	_			13	31.720	2.440	1.779	1.799	1.636
12		109	17	_			14	37.060	2.647	1.885	1.866	1.696
Totals &	Aver	ages	200	5	2	37	156	31.860	2.451	1.780	1.874	1.639
Standard	Dev	iatio		_	\sqcap	_		2.512	0.119	0.076	0.125	0.049
CVs				_	$\Gamma \Box$	_		7.883%	4.861%	4.259%	6.671%	2.994%
1	2	10	17	0	0	3	14	43.700	3.121	2.313	1.764	1.631
2	2	14	16	0	$\Box_0 \Box$	3	13	38.380	2.952	2.150	1.825	1.656
3	2	27	17	0	$\Box_0\Box$	3	14	43.540	3.110	2.264	1.805	1.659
4	2	36	16	o	$\Gamma_0 \Gamma$	3	13	37.100	2.854	1.996	1.873	1.682
5	2	48	17	0	Γ_1 Γ	3	13	39.820	3.063	2.281	1.810	1.634
6	2	54	17	0	$\Box_0\Box$	3	14	38.120	2.723	2.030	1.767	1.639
7	2	65	16	0			13	36.680	2.822	2.078	1.782	1.640
8	2	70	17	•	0		14	40.380	2.884	2.075	1.810	1.659
9	2	78	16			_	13	37.160	2.858	2.010	1.888	1.703
10			16		0	_	13	35.340	2.718	1.933	1.895	1.703
_11		102	16	0		3	13	39.880	3.068	2.224	1.834	1.667
12		111	17	_	0	3	13	41.440	3.188	2.312	1.932	1.669
Totals &			<u>198</u>	1	1_1	30	160	39.295	2.947	2.139	1.832	1.662
Standard	Dev	iatio		_				2.661	0.160	0.136	0.054	0.025
CVs								6.772%	5.430%	6.344%	2.940%	1.480%
	_	_			_							
1	3_	_9_	_ 15	0	0	3	12 _	36.460	3.038	_ 2.242 _	1.761	1.602
2	3_	15	16	0	0	3	13 _	38.720	2.978	2.198	1.773	_ 1.617
3	3_	24	_ 17	U	-0-	3	14 _	39.040		_ 2.066 _	1.754	1.606
4	3_	35	_ 15	0			12	34.140	2.845	_ 2.066 _		1.603
-5	3_	_44_ 52		00	-0- -0-	3	14 _	37.940 37.160		_ <u>1.934</u> _	1.829 1.754	<u>1.663</u>
-6 7	3	62	16	0	F ₀ -1	3	13 - 12	33.180	2.858 _ 2.765	- 2.097 1.997	1.778	- 1.618 1.607
- <mark>/</mark> - -	3-1	68	- 15 -	1	⊢ <mark>0</mark> ⊣	3	12 -	36.200	2.785	- 1.997 2.045	1.921	1.624
	3-1	84	- 1 /		F ₀ -1		13 - I	38.640	2.760	1.958	1.818	- 1.624 1.659
10-	3-1	89	- 1/ ₋ -	_	-6⊣	_	14 -	35.300	2.715	1.967	1.803	1.633
11-	3-1	96	- 10 -		⊢ <mark>₀</mark> ⊣		13 -	39.720	- 2.713 - 2.837 -	- 1.507 2.074	1.821	$-\frac{1.033}{1.682}$
12-	3-1	108	- - 1 /		⊢₀⊣	3	14 -	39.840	- 3.065	2.236	1.733	- 1.579 -
Totals &	_		194	1		36	157	37.195	2.845	2.073	1.793	1.624
Standard				-	┌ॅॅ	=		2.181	0.120	0.105	0.051	0.030
CVs				-	\vdash \dashv	-		5.863%	4.227%	5.085%	2.833%	1.841%
				_								

Table 12. Bird Weights and Feed Conversion Days 21 - 42 (10SEP15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

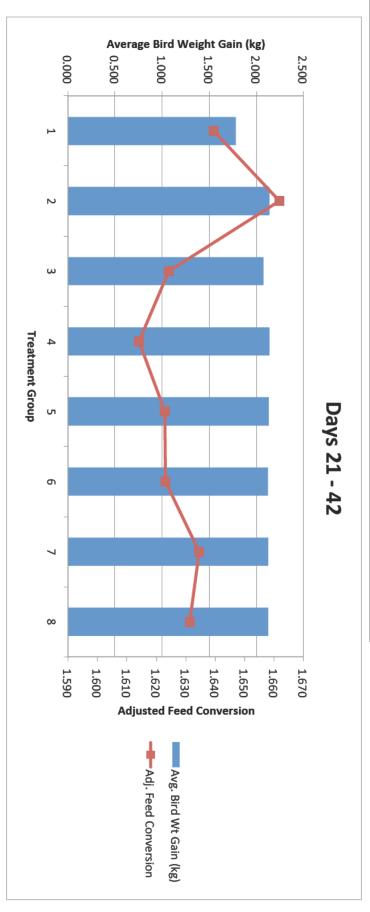

Block	Trt	Pen No.	No. Birds Started Day 21	Mortality	Removal-1	Removal-2	No. Birds Weighed D42	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D21-42 Avg Bird Gain (kg)	Feed Conversion D014-21	Adj. Feed Conversion D14-21
1	4	5	16	0	0	3	13	39.120	3.009	2.210	1.758	1.591
- <u>-</u> -	-4-	18	16	0	- ₀ -	3	13	38.340	2.949	2.174	1.761	1.614
3-1	4	26	17	0	⊢ ₀ −	3	14	40.200	2.871	2.096	1.778	1.619
4	4	32	17	0	Γ_0^-		14	41.860	2.990	2.178	1.773	1.632
5-1	4	45	16	0	₀		13	36.900	2.838	2.126	1.747	1.603
6	4	49		0	₀	3	14	40.440	2.889	2.099	1.774	1.606
7	4	59	17	0	₀	3	14	39.340	2.810	2.011	1.825	1.643
8	4	73	17	0	₀	3	14	39.480	2.820	2.052	1.793	1.636
9	4	81	16	0	⊢ ₀−	3	13	38.300	2.946	2.131	1.749	1.598
10	4	88	14	ō	⊢ ₀−	3	11	31.640	2.876	2.108	1.787	1.598
11	4	98	16	0	0	3	13	38.860	2.989	2.222	1.755	1.612
12	4	104	17	0	₀	3	14	42.900	3.064	2.244	1.765	1.617
Totals 8	& Ave	rages	196	0	0	36	160	38.948	2.921	2.138	1.772	1.614
Standar	rd Dev	viatio		_		-		2.808	0.082	0.070	0.022	0.016
CVs				_		-		7.211%	2.808%	3.289%	1.240%	0.999%
1	5	7	17	0	0	3	14	43.980	3.141	2.280	1.796	1.652
2	5	17	16	ō	0	3	13	40.060	3.082	2.282	1.753	1.607
3	5	23	17	0	0	3	14	41.280	2.949	2.149	1.756	1.609
4	5	34	17	o	0	3	14	39.600	2.829	2.060	1.736	1.596
5	5	47	16	o	0	3	13	38.040	2.926	2.162	1.764	1.604
6	5	55	16	ō	1	3	12	33.840	2.820	2.083	1.789	1.578
7	5	63	16	0	0		13	35.700	2.746	1.994	1.799	1.641
8	5	74	17	1	0	3	13	38.140	2.934	2.140	1.839	1.624
9	_5_	80	17	0	0		14	39.760	2.840	1.994	1.827	1.656
10	_5	93	16	1	0		12	32.720	2.727	1.968	2.005	1.656
11_	_5_	101	15	0	_0_		12	36.780	3.065	2.229	1.821	1.646
12	5	107	17	0	1	3	13	39.300	3.023	2.241	1.850	1.606
Totals 8	& Ave	rages	197	2	_2_	36	157	38.267	2.923	2.132	1.811	1.623
Standar	rd Dev	viatio		_	<u> </u>			3.151	0.135	0.113	0.071	0.027
CVs								8.235%	4.613%	5.283%	3.915%	1.642%
1	_6_	11	16	0	_0_	3	13	39.960	3.074	2.273	1.772	1.621
2	_6_	13	17	0	_0_	3	14	42.740	3.053	2.231	1.764	1.606
3_	_6_	28	17	0	0	3	14	41.500	2.964	2.136	1.786	1.635
4_	_6_	33	17	0	0_	3	14	39.360	2.811	2.029	1.758	1.610
5	_6_	42	17	0	_0_	3 3	14	41.820	2.987	2.120	1.813	1.649
6	_6_	_50_	16	0	_0_	3	13	37.940	2.918	_ 2.106 _	1.793	1.613
7_	_6_	61	_ 15	0	_0_	3	12 _	33.280	2.773	_ 2.012 _	1.796	_ 1.625
8_	_6_	72	16	0	0_		13	37.040	2.849	_ 2.077 _	1.790	1.632
9_	_6_	82	16	0	0_	3	13	37.900	2.915	2.069	1.810	1.634
10_	_6_	87	_ 15	0	0_	3	12	34.700	2.892	2.082	1.780	1.594
11_	_6_	97		1	0		13 _	37.420	2.878	2.088	1.880	1.631
12	6	106	17	0	_		14	43.340	3.096	2.250	1.787	1.627
Totals 8			<u>196</u>	1	_0_	36	159 _	38.917	2.934	_ 2.123 _	1.794	_ 1.623
Standar	rd Dev	viatio		 	-	-		3.132	0.103	0.085	0.032	0.015
CVs								8.047%	3.516%	4.007%	1.764%	0.934%

Table 12. Bird Weights and Feed Conversion Days 21 - 42 (10SEP15) Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

Block Tr	t Pen	No. Birds Started Day 21	Mortality	Removal-1	Removal-2	No. Birds Weighed D42	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D21-42 Avg Bird Gain (kg)	Feed Conversion D014-21	Adj. Feed Conversion D14-21
1 7	4	15	0	0	3	12	35.420	2.952	2.061	1.914	1.691
2 7	12	17	0	_o_	3	14	42.100	3.007	2.202	1.763	1.621
3 7	22	14	0	_o_	3	11	32.720	2.975	2.157	1.832	1.636
4 7	30	17	0	_ ₀ _		14	41.200	2.943	2.109	1.789	1.615
5 7	43	17	0	_ ₀ _	3	14	39.760	2.840	2.019	1.817	1.642
6 7	51	16	0	₀	3	13	38.680	2.975	2.149	1.800	1.626
7-1-7	66	16	0	Γ_0^-	3	13	38.000	2.923	2.118	1.801	1.638
8 7	67	16	0	^{_0} −	3	13	36.160	2.782	2.000	1.804	1.632
9 7	83	17	1	^{_0} −	3	13	38.600	2.969	2.113	1.923	1.653
10 7	92	16	0	Γ_0^-	3	13	35.820	2.755	1.997	1.819	1.646
11 7	103	17	0	0	3	14	42.420	3.030	2.219	1.751	1.612
12 7	110	15	0	Γ_0^-	3	12	39.500	3.292	2.376	1.788	1.602
Totals & Av	verages	193	1	0	36	156	38.365	2.954	2.127	1.817	1.635
Standard D)eviatio		1-		-		2.921	0.137	0.108	0.053	0.023
CVs		1	1 -		-		7.613%	4.645%	5.056%	2.890%	1.421%
1 8	8	14	0	0	3	11	34.900	3.173	2.368	1.761	1.598
2 8	19	17	0		3	14	41.200	2.943	2.125	1.768	1.615
3 8	29	17	1	_o_	3	13	39.300	3.023	2.181	1.962	1.661
4 8	31	17	0	_ ₀ _	3	14	41.800	2.986	2.108	1.842	1.660
5 8	41	15	0	_ ₀ _	3	12	36.120	3.010	2.165	1.834	1.642
6 8	56	16	0	_°_		13	35.580	2.737	1.973	1.842	1.667
7 8	64	17	0	₋₀	3	14	41.340	2.953	2.169	1.767	1.629
8 8	69	16	0	[_] 0−	3	13	37.600	2.892	2.095	1.748	1.582
9 8	85	17	0	[⊢] ₀−	3	14	38.920	2.780	1.971	1.801	1.640
10 8	86	17	0	^{_0}	3	14	38.780	2.770	1.930	1.836	1.630
11 8	99	17	0	^{_0}	3	14	42.420	3.030	2.251	1.733	1.591
12 8	105	17	0	_°_	3	14	42.580	3.041	2.186	1.818	1.661
Totals & Av	verages	197	1	0	36	160	39.212	2.945	2.127	1.809	1.631
Standard D	eviatio		1 -		-		2.714	0.129	0.125	0.062	0.029
CVs		1	1 -		-		6.922%	4.396%	5.873%	3.430%	1.807%

CQR Study Number AGV-15-3 Graph 5. Average Bird Weight Gain and Adjusted Feed Conversion (Days 21 - 42) Summarized by Treatment Group

Tr+ Group	Avg. Bird Wt	Adj. Feed	Treatment Description
- Ciodo	Gain (kg)	Conversion	i canifert pesci paori
1	1.780	1.639	Low Phosphate (LP)
2	2.139	1.662	High Phosphate (HP)
3	2.073	1.624	250 Units Phytase (LP)
4	2.138	1.614	500 Units Phytase (LP)
5	2.132	1.623	750 Units Phytase (LP)
6	2.123	1.623	1000 Units Phytase (LP)
7	2.127	1.635	3000 Units Phytase (LP)
8	2.127	1.631	Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)

Abbreviations for Causes of Mortality in Poultry Feeding Studies*

Abbrev.	Cause of Death	Abbrev.	Cause of Death				
ACT	Ascites	IE	Intestinal enteritis				
ACT-S	Ascites + SDS	INJ	Injury				
AS	Airsacculitis	NE	Necrotic enteritis				
BAC	Bacterial	PRO	Prolapsed				
CAN	Cannibalism	RH	Round heart (ascites)				
CC	Coccidiosis	SDS	Sudden death syndrome				
CD	Cervical dislocation	SM	Smothered				
DH	Dehydrated	SO	Starve-out				
EC	E. coli	UNK	Unknown cause of death				
M	Mortality; R1 = removed, bird	l moribund	l bound				
	R2 = removed; bird	d not morik	ot moribund bound				
Commen	ts/Findings Codes						
Code	Comment/Finding	Code	Comment/Finding				
BL	Bad leg	LS	Lesion score				
С	Cull	NGL	No gross lesions				
C-SB	Cull, small bird	RCT	Recount bird				
DC	Decomposed	SMPL	Sample bird				
FHN	Femoral head necrosis	SS	Sex slip				
			-				

^{*}This table was added to the Final Study Report after the report was finalized in order to define the abbreviations for causes of mortality in birds that were removed from the study. The data on bird mortality is contained in Tables 13 and 14 that follow.

Table 13. Mortality and Removal Weights (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

							Days 0 - 14	(30JUL15 - 13AUG	15)		
Dl- dr	1	Dan Na	No. Birds Started	ity	al-1	al-2	Cours of Dooth	Mortality Wt	Removed Wt	Total M & R	No. Birds Remaining
Block	Trt	Pen No.	Day 0	Mortality	Removal-1	Removal-2	Cause of Death	(kg)	(kg)	Wt (kg) Days 0 - 14	Day 14
1	7	4	17	2			BAC; SDS	0.175		0.175	15
1	4	5	17	I						0.000	17
1	1	6	17	I						0.000	17
1	5	7	17	I						0.000	17
1	8	8	17	1			SDS	0.073		0.073	16
1	3	9	17	2			BAC; SDS	0.255		0.255	15
1	2	10	17	l						0.000	17
1	6	11	17	I						0.000	17
2	7	12	17	I						0.000	17
2	6	13	17	.						0.000	17
2	2	14	17	.						0.000	17
2	3	15	17	1			SDS	0.127		0.127	16
2	1 5	16	17	.						0.000	17
2	5	17	17	1			BAC	0.060		0.060	16
2	4	18	17	.1			SDS	0.123		0.123	16
2	8	19	17	Į						0.000	17
3	7	22	17	2			2 SDS	0.183		0.183	15
3	5	23	17	.						0.000	17
3	3	24	17	ļ						0.000	17
3	1	25	17	ļ						0.000	17
3	4	26	17	ļ						0.000	17
3	2	27	17	ļ						0.000	17
3	6	28	17	ļ						0.000	17
3	8	29	17	ļ						0.000	17
4	7	30	17	ļ						0.000	17
4	8	31	17	ļ						0.000	17
4	4	32	17	ļ						0.000	17
4	6	33	17	ļ						0.000	17
4	5 3	34	17 17	ļ <u>.</u>						0.000	17 16
4	,	35		1			BAC	0.060		0.060	
4	2	36	17	ļ		1	CD-C/BAC		0.154	0.154	16
4	1	37	18							0.000	18
5	8	41	17	1			BAC	0.060		0.060	16 17
5	6	42	17	ļ						0.000	17
5	7 3	43	17	ļ						0.000	17
5	}	44	17	ļ						0.000	17
5	4	45	17	ļ						0.000	17
5	1	46 47	17	ļ						0.000	17
5 5	5 2	48	17 17	ļ						0.000	17 17
6	4	49	17	ļ						0.000	17 17
	}	·					LINK DC	0.026		·}	
6	6 7	50 51	17	1			UNK-DC BAC	0.036 0.050		0.036	16 16
6	3	52	17 17				DAC	0.030		0.050 0.000	16 17
6		53		ł						0.000	17 17
6	1	54	17 17	ł						0.000	17 17
6	2 5	55	17 17	ł	1		CD-C/BAC		0.088	0.088	17 16
6	5 8	56	17 17	ł	1		CD C/DAC		0.000	0.000	16 17
	,	59	17 17	ł						0.000	17 17
7	4 1	60	17 17	ł						0.000	17 17
<u>'</u>	6	61	17	1			SDS	0.060		0.060	16
7	3	62	17	2			2 BAC	0.133		0.133	
<u>'</u>	3 5	63	17	ļ 			2 DAG	0.133		0.000	15 17
<u>′</u>	8	64	17	t						0.000	17
7	2	65	17	1			BAC-DH	0.060		0.060	16
<u>′</u>	7	66	17	1			BAC	0.067		0.067	16
8	7	67	17	ļ 			UNC	0.007		0.000	17
8	3	68	17	t						0.000	17
8	8	69	17	t						0.000	17
8	2	70	17	ł						0.000	17
8		71	17	ł						0.000	17
	1			1			çne	0 202		0.283	
8	6 4	72 73	17 17	1			SDS	0.283		0.283	16 17

			No. Birds					Mortality	Removed		No. Birds
	۱		Started	\$	al-1	al-2		Wt	Wt	Total M & R	Remaining
Block	Trt	Pen No.	Day 0	Mortality	Removal-1	Removal-2	Cause of Death	(kg)	(kg)	Wt (kg) Days 0 - 14	Day 14
8	5	74	17							0.000	17
9	2	78	17			1	CD-C/BAC		0.093	0.093	16
9	1	79	17	1			BAC	0.123		0.123	16
9	5	80	17							0.000	17
9	4	81	17	1			BAC	0.061		0.061	16
9	6	82	17	1			BAC	0.068		0.068	16
9	7	83	17					1		0.000	17
9	3	84	17							0.000	17
9	8	85	17					1	{	0.000	17
10	8	86	17							0.000	17
10	6	87	17	1			BAC	0.087	{	0.087	16
10	4	88	17	2	1		CD-C/BAC; 2 BAC	0.176	0.094	0.270	14
10	3	89	17	1			BAC	0.063	{	0.063	16
10	1	90	17	1			BAC	0.168		0.168	16
10	2	91	17	1			SDS	0.129	 	0.129	16
10	7	92	17	1			BAC-DH	0.097		0.097	16
10	5	93	17					1	 	0.000	17
11	3	96	17					1		0.000	17
11	6	97	17					1	 	0.000	17
11	4	98	17	1			BAC	0.061		0.061	16
11	8	99	17					1	 	0.000	17
11	1	100	17	1			SDS	0.317		0.317	16
11	5	101	17					1	 	0.000	17
11	2	102	17	1			BAC	0.048		0.048	16
11	7	103	17					1		0.000	17
12	4	104	17							0.000	17
12	8	105	17					†		0.000	17
12	6	106	17					†		0.000	17
12	5	107	17					†		0.000	17
12	3	108	17	1			BAC	0.051		0.051	16
12	1	109	17						; !	0.000	17
12	7	110	17	1			SDS	0.183		0.183	16
12	2	111	17					0.103	 !	0.000	17
12	_	111	1,		:	:		:	:	0.000	11

Table 13. Mortality and Removal Weights (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

						Days 14 - 21 (13A	UG15 - 20AU	JG15)		
			Ŋ	1-1	1-2		Mortality Wt	Removed Wt	Total M & R	No. Birds Remaining
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	(kg)	(kg)	Wt (kg) Days 14 - 21	Day 21
1	7	4	_	_	_				0 000	15
1	4	5	1	ļ	1	SDS	0 318		0 318	16
1	1	6							0 000	17
1	5	7		1					0 000	17
1	8	8	1	1		CD-BAC; SDS	0.426	0.147	0 573	14
1	3	9		1					0 000	15
1	2	10		1	1				0 000	17
1	6	11		1		CD-C/BAC		0.280	0 280	16
2	7	12]					0 000	17
2	6	13]]				0 000	17
2	2	14	1			SDS	0.690		0.690	16
2	3	15		ļ					0 000	16
2	1 5	16		ļ					0 000	17
2		17		İ	ļ				0 000	16
2	4	18		ļ	ļ				0 000	16
2	8	19		ļ	ļ				0 000	17
3	7	22		1		CD-BAC		0.188	0.188	14
3	5	23		ļ					0 000	17
3	3	24		ļ					0 000	17
3	1	25		ļ	ļ				0 000	17
3	4	26		ļ	ļ		.		0 000	17
3	2	27		ļ	ļ				0 000	17
3	6	28							0 000	17
3	8	29		ļ					0 000	17
4	7	30		ļ					0 000	17
4	8	31		ļ					0 000	17 17
4	4 6	32 33		ļ	ļ				0 000 0 000	17
4	. •	34		ļ					0 000	17
4	5 3	35	1	ļ		BAC	0.408		0.408	15
		36		ļ		DAC	0.400		0.400	
<u>4</u>	2 1	37		ļ					0 000	16 18
	8	41		1	·	CD-BAC	-	0.263	0 263	15
<u>5</u> 5	6	42		ļ 	ļ	CD DAC	-	0.203	0 000	17
5	7	43		ļ					0 000	17
5	3	44		ļ					0 000	17
5	4	45		1		CD-BAC		0.160	0.160	16
5	1	46					†		0 000	17
5	5	47	1	ļ		SDS	0.698		0.698	16
5	2	48		ļ	1		1		0 000	17
6	4	49		!			1		0 000	17
6	6	50		ļ					0 000	16
6	7	51		ļ	1				0 000	16
6	3	52		1		CD-BAC		0.198	0.198	16
6	1	53]]				0 000	17
6	2	54							0 000	17
6	5	55]					0 000	16
6	8	56	1	ļ		SDS	0.480		0.480	16
7	4	59]	ļ		.]		0 000	17
7	1	60	ļ	<u> </u>					0 000	17
7	6	61	ļ	1		CD-BAC		0.180	0.180	15
7	3	62	ļ	<u> </u>	ļ				0 000	15
7	5	63	ļ	1	ļ	CD-C/SB/BL		0.320	0 320	16
7	8	64	ļ	ļ	ļ				0 000	17
7	2	65	ļ	ļ	ļ				0 000	16
7	7	66		ļ	ļ				0 000	16
8	7	67	1	ļ	ļ	SDS	0 338		0 338	16
8	3	68		ļ	ļ	B			0 000	17
8	8	69	1	ļ	ļ	BAC	0 239		0 239	16
8	2	70	ļ		ļ	en etn		0.000	0 000	17
8	1	71	ļ	1	ļ	CD-C/BL		0.226	0 226	16
8	6	72	ļ	ļ	ļ				0 000	16
8	4	73	L	j	j		.1	<u> </u>	0 000	17

						Days 14 - 21 (13A	UG15 - 20AL	JG15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	Mortality Wt (kg)	Removed Wt (kg)	Total M & R Wt (kg) Days 14 - 21	No. Birds Remaining Day 21
8	5	74							0 000	17
9	2	78	ļi		İ		.]	İ	0 000	16
9	1	79	l	1	İ	CD-RH		0.242	0 242	15
9	5	80							0 000	17
9	4	81							0 000	16
9	6	82							0 000	16
9	7	83							0 000	17
9	3	84							0 000	17
9	8	85							0 000	17
10	8	86							0 000	17
10	6	87		1		CD-C/SB/BAC		0.321	0 321	15
10	4	88							0 000	14
10	3	89							0 000	16
10	1	90					1		0 000	16
10	2	91					1		0 000	16
10	7	92							0 000	16
10	5	93		1		CD-BAC		0.201	0 201	16
11	3	96							0 000	17
11	6	97							0 000	17
11	4	98					1		0 000	16
11	8	99					1		0 000	17
11	1	100							0 000	16
11	5	101	1	1		BAC; CD-BAC	0 202	0.207	0.409	15
11	2	102					1		0 000	16
11	7	103					1		0 000	17
12	4	104					1		0 000	17
12	8	105					1		0 000	17
12	6	106					1		0 000	17
12	5	107			·····		1		0 000	17
12	3	108					1		0 000	16
12	1	109					1		0 000	17
12	7	110	1			SDS	0.419		0.419	15
12	2	111					1		0 000	17

Table 13. Mortality and Removal Weights (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

					2		Mortality	Removed	Total M & R	No. Birds
Block	Trt	Pen No.	ity	al-:	- <u>-</u> -	Cause of Death	Wt	Wt	Wt (kg) Days	Remaining
DIOCK	III.	Peli No.	Mortality	Removal-1	Removal-2	cause of Death	(kg)	(kg)	21 - 42	Day 42
1	7	4	2	æ	3	3 CD-SMPL		2.906	2 906	12
1	4	5			3	3 CD-SMPL		2.754	2.754	13
1	1	6	1		3	3 CD-SMPL; SDS	0 834	2.130	2 964	13
	5				3	3 CD-SMPL	0 034	2.548	2 548	14
1	8	7 8			3	3 CD-SMPL		2.412	2.412	11
1	3	9			3	3 CD-SMPL		2.437	2.437	12
1	2	10			3	3 CD-SMPL		2.442	2.442	14
1	6	11			3	3 CD-SMPL		2.526	2 526	13
2	7	12			3	3 CD-SMPL		2.492	2.492	14
2	6	13			3	3 CD-SMPL		2.817	2 817	14
2	2	14			3	3 CD-SMPL		2.616	2.616	13
2	3	15			3	3 CD-SMPL		2.530	2 530	13
2	1	16			3	3 CD-SMPL		2.054	2 054	14
2	5	17			3	3 CD-SMPL		2.483	2.483	13
2	4	18			3	3 CD-SMPL		2.357	2 357	13
2	8	19			3	3 CD-SMPL		2.601	2.601	14
3	7	22	·····		3	3 CD-SMPL	1	2.548	2 548	11
3	5	23	·····		3	3 CD-SMPL	1	2.529	2 529	14
3	3	24			3	3 CD-SMPL		2.475	2.475	14
3	1	25	2		3	3 CD-SMPL; SDS; SDS-DC	3 027	2.106	5.133	12
3	4	26	·····		3	3 CD-SMPL	1	2.651	2.651	14
3	2	27			3	3 CD-SMPL		2.562	2 562	14
3	6	28			3	3 CD-SMPL	1	2.542	2 542	14
3	8	29	1		3	3 CD-SMPL; UNK-DC	1.786	2.738	4 524	13
4	7	30			3	3 CD-SMPL		2.903	2 903	14
4	8	31			3	3 CD-SMPL		2.945	2 945	14
4	4	32			3	3 CD-SMPL		2.426	2.426	14
4	6	33			3	3 CD-SMPL		2.391	2 391	14
4	5	34			3	3 CD-SMPL		2.339	2 339	14
4	3	35			3	3 CD-SMPL		2.268	2 268	12
4	2	36			3	3 CD-SMPL		2.663	2.663	13
4	1	37	1		4	CD-C/SB; 3 CD-SMPL; SDS	1.471	2.828	4 299	13
5	8	41			3	3 CD-SMPL		2.740	2.740	12
5	6	42			3	3 CD-SMPL		2.690	2.690	14
5	7	43			3	3 CD-SMPL		2.753	2.753	14
5	3	44			3	3 CD-SMPL		2.472	2.472	14
5	4	45	l		3	3 CD-SMPL		2.286	2 286	13
5	1	46	1	1	3	ACT; CD-BAC; 3 CD-SMPL	1 253	2.512	3.765	12
5	5	47	ļ		3	3 CD-SMPL		2.566	2 566	13
5	2	48		1	3	3 CD-SMPL; CD-SS/BAC		2.852	2 852	13
6	4	49	ļ		3	3 CD-SMPL		2.822	2 822	14
6	6	50			3	3 CD-SMPL		2.789	2.789	13
6	7	51	ļ		3	3 CD-SMPL		2.728	2.728	13
6	3	52	ļ		3	3 CD-SMPL		2.108	2.108	13
6	1	53	ļ		3	3 CD-SMPL		1.807	1 807	14
6	2	54	ļ		3	3 CD-SMPL		2.056	2 056	14
6	5	55	ļ	1	3	CD-BAC; 3 CD-SMPL		2.945	2 945	12
6	8	56	ļ		3	3 CD-SMPL		2.442	2.442	13
7	4	59	ļ		3	3 CD-SMPL		2.848	2 848	14
7	1	60	ļ		3	3 CD-SMPL		1.903	1 903	14
7	6	61	ļ		3	3 CD-SMPL		2.293	2 293	12
7	3	62	ļ		3	3 CD-SMPL		2.315	2 315	12
7	5	63	ļ		3	3 CD-SMPL		2.274	2 274	13
7	8	64	ļ		3	3 CD-SMPL		2.376	2 376	14
7	2	65	ļ		3	3 CD-SMPL		2.148	2.148	13
7	7	66	ļ		3	3 CD-SMPL		2.492	2.492	13
8	7	67	ِا		3	3 CD-SMPL		2.488	2.488	13
8	3	68	1		3	BAC; 3 CD-SMPL	2 216	2.115	4 331	13
8	8	69	ļ		3	3 CD-SMPL		2.602	2.602	13
	2	70	L		3	3 CD-SMPL		2.427	2.427	14
8		7-								
8 8	1 6	71 72		1	3	CD-C/BL/ACT; 3 CD-SMPL 3 CD-SMPL		3.428 2.394	3.428 2 394	12 13

						Days 21 - 42 (20A	UG15 - 10SE	P15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	Mortality Wt (kg)	Removed Wt (kg)	Total M & R Wt (kg) Days 21 - 42	No. Birds Remaining Day 42
8	5	74	1		3	3 CD-SMPL; SDS	0 857	2.405	3 262	13
9	2	78	L		3	3 CD-SMPL		2.555	2 555	13
9	1	79			3	3 CD-SMPL		2.217	2 217	12
9	5	80			3	3 CD-SMPL		2.610	2.610	14
9	4	81			3	3 CD-SMPL		2.386	2 386	13
9	6	82			3	3 CD-SMPL		2.609	2.609	13
9	7	83	1		3	DH-BL/FHN; 3 CD-SMPL	1.160	2.763	3 923	13
9	3	84			3	3 CD-SMPL		2.401	2.401	14
9	8	85			3	3 CD-SMPL		2.480	2.480	14
10	8	86			3	3 CD-SMPL		3.096	3 096	14
10	6	87			3	3 CD-SMPL		2.638	2.638	12
10	4	88			3	3 CD-SMPL		2.480	2.480	11
10	3	89			3	3 CD-SMPL		2.426	2.426	13
10	1	90			3	3 CD-SMPL		2.208	2 208	13
10	2	91			3	3 CD-SMPL		2.563	2 563	13
10	7	92			3	3 CD-SMPL	1	2.487	2.487	13
10	5	93	1		3	3 CD-SMPL; SDS	1.749	2.580	4 329	12
11	3	96			3	3 CD-SMPL		2.221	2 221	14
11	6	97	1		3	3 CD-SMPL; SDS	1 013	2.643	3.656	13
11	4	98			3	3 CD-SMPL		2.354	2 354	13
11	8	99			3	3 CD-SMPL		2.612	2.612	14
11	1	100			3	3 CD-SMPL		2.110	2.110	13
11	5	101			3	3 CD-SMPL		2.584	2 584	12
11	2	102			3	3 CD-SMPL		2.645	2.645	13
11	7	103			3	3 CD-SMPL		2.485	2.485	14
12	4	104			3	3 CD-SMPL		2.637	2.637	14
12	8	105			3	3 CD-SMPL		2.661	2.661	14
12	6	106			3	3 CD-SMPL		2.862	2 862	14
12	5	107		1	3	CD-C/BL/SB; 3 CD-SMPL	1	3.956	3 956	13
12	3	108			3	3 CD-SMPL	1	2.588	2 588	13
12	1	109			3	3 CD-SMPL		2.421	2.421	14
12	7	110			3	3 CD-SMPL		2.984	2 984	12
12	2	111	1		3	3 CD-SMPL; SDS	1 382	2.812	4.194	13

Table 14. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

					0000		•	204	Treatment Gmun 3	nont Gr	Two
16	5.882%	0.000%	0.000%	5.882%	BAC		1	17	108	ω	12
17	0.000%	0.000%	0.000%	0.000%				17	96	w	11
16	5.882%	0.000%	0.000%	5.882%	BAC		1	17	89	s	10
17	0.000%	0.000%	0.000%	0.000%				17	84	ω	9
17	0.000%	0.000%	0.000%	0.000%				17	8	ω	œ
15	11.765%	0.000%	0.000%	11.765%	2 BAC		2		න	ω	7
17	0.000%	0.000%	0.000%	0.000%				17	52	ω	6
17	0.000%	0.000%	0.000%	0.000%				17	4	ω	5
16	5.882%	0.000%	0.000%	5.882%	BAC		1	17	뾼	ω	4
17	0.000%	0.000%	0.000%	0.000%				17	24	ω	ω
16	5.882%	0.000%	0.000%	5.882%	SDS		1	_	15	ω	2
15	11.765%	0.000%	0.000%	11.765%	BAC; SDS		2	Ц	9	w	1
EGT	1.4/176	0.900%	0.000%	1.4/176	BAC; BAC/DR; Z CD-C/BAC; SDS		0	204	z dno	Treatment Group 2	Heati
3	4 4740	0.000%	0.000	0.0000	BAC: BAC/DH:2 CD C/BAC: SDS			1	,		
17	0000%	0.000%	0.000%	0.000%				17	1	ا د	3 !
16	5.882%	0.000%	0.000%	5.882%	BAC		-	17	102	2	=
16	5.882%	0.000%	0.000%	5.882%	SDS		1	17	91	2	10
16	0.000%	5.882%	0.000%	0.000%	CD-C/BAC	1		17	78	2	9
17	0.000%	0.000%	0.000%	0.000%				17	70	2	œ
16	5.882%	0.000%	0.000%	5.882%	BAC-DH		1	17	ස	2	7
17	0.000%	0.000%	0.000%	0.000%				17	5 2	2	6
17	0.000%	0.000%	0.000%	0.000%				17	4 8	2	5
16	0.000%	5.882%	0.000%	0.000%	CD-C/BAC	1		17	36	2	4
17	0.000%	0.000%	0.000%	0.000%				17	27	2	ω
17	0.000%	0.000%	0.000%	0.000%		ļ	ļ	17	14	2	2
17	0.000%	0.000%	0.000%	0.000%			ļ	17	10	2	1
202	1.463%	0.000%	0.000%	1.463%	2 BAC; SDS	0	30	205	oup 1	Treatment Group 1	Treatn
17	0.000%	0.000%	0.000%	0.000%		ļ	ļ	17	109	1	12
16	5.882%	0.000%	0.000%	5.882%	SDS	 	1	17	100	1	11
16	5.882%	0.000%	0.000%	5.882%	BAC		1	17	8	1	10
16	5.882%	0.000%	0.000%	5.882%	BAC		1	17	79	1	9
17	0.000%	0.000%	0.000%	0.000%				17	71	1	∞
17	0.000%	0.000%	0.000%	0.000%				17	8	1	7
17	0.000%	0.000%	0.000%	0.000%				17	ន	1	6
17	0.000%	0.000%	0.000%	0.000%				17	4 6	1	5
18	0.000%	0.000%	0.000%	0.000%				18	37	1	4
17	0.000%	0.000%	0.000%	0.000%				17	25	1	ω
17	0.000%	0.000%	0.000%	0.000%				17	16	1	2
17	0.000%	0.000%	0.000%	0.000%				17	6	1	1
Remaining Day 14	Total % M&R1 D0-14		% Mortality D0- % Removal-1 D0-% Removal-2 D0- 14 14 14	% Mortality D0- 14	Cause of Death	Removal-	Mortality Removal-	Started Day 0	Pen No.	Trt	Block
Pomoinin						2	_	_			

In	12	11	10	9	∞	7	6	5	4	_ω	2	1	Ţ	12	11	10	9	∞	7	6	5	4	ω	2	1	T _n	12	11	10	9	∞	7	6	5	4	ω	2	1
Treatment Group 6			ļ										Treatment Group 5	ļ												Treatment Group 4												
d Grou		6	6	6	6	6	6	6	6	6	6	6	t Grou		5	5	5	5	5	5	5	5	5	G		t Grou	4	4	4	4	4	4	4	4	4	4	4	4
9 a	106	97	87	82	72	61	50	42	ä	28	13	11	p 5	107	101	8	8	74	ස	55	47	34	23	17	7	p 4	104	8	88	81	73	59	49	&	32	26	18	5
204	17	17	17	17	17	17	17	17	17	17	17	17	204	17	17	17	17	17	17	17	17	17	17	17	17	204	17	17	17	17	17	17	17	17	17	17	17	17
			1	1	1	1	1						1	<u> </u>										1		5		1	2	1							Ľ	-
•			ļ										1	ļ	ļ	ļ				1						1	ļ	ļ	1									
0			ļ										0	╁┈	ļ	ļ										0	ļ		0									
2 BAC: 2 SDS: UNK-DC			BAC	BAC	SDS	SDS	UNK-DC						BAC; CD-C/BAC							CD-C/BAC				BAC		4 BAC; CD-C/BAC; SDS		BAC	CD-C/BAC; 2 BAC	BAC							SDS	
2.451%	0.000%	0.000%	5.882%	5.882%	5.882%	5.882%	5.882%	0.000%	0.000%	0.000%	0.000%	0.000%	0.490%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	5.882%	0.000%	2.451%	0.000%	5.882%	11.765%	5.882%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	5.882%	0.000%
%000.0	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.490%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	5.882%	0.000%	0.000%	0.000%	0.000%	0.000%	0.490%	0.000%	0.000%	5.882%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
2.451%	0.000%	0.000%	5.882%	5.882%	5.882%	5.882%	5.882%	0.000%	0.000%	0.000%	0.000%	0.000%	0.980%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	5.882%	0.000%	0.000%	0.000%	5.882%	0.000%	2.941%	0.000%	5.882%	17.647%	5.882%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	5.882%	0.000%
199	17	17	16	16	16	16	16	17	17	17	17	17	202	17	17	17	17	17	17	16	17	17	17	16	17	198	17	16	14	16	17	17	17	17	17	17	16	17

Block

ੜ

Pen No.

Mortality Removal-1 Removal-2

Cause of Death

- Total % M&R1 D0-14

No. Birds Remaining Day 14

No. Birds Started Day 0

202	0.980%	0.000%	0.000%	0.980%	BAC; SDS	2 0 0	204	roup 8	reatment Group 8	Treat
17	0.000%	0.000%	0.000%	0.000%			17	105	∞	12
17	0.000%	0.000%	0.000%	ļ			17	99	∞	11
17	0.000%	0.000%	0.000%	0.000%			17	8	∞	10
17	0.000%	0.000%	0.000%				17	8	∞	9
17	0.000%	0.000%	0.000%				17	8	∞	œ
17	0.000%	0.000%	0.000%				17	2	∞	7
17	0.000%	0.000%	0.000%				17	56	∞	6
16	5.882%	0.000%	0.000%	5.882%	BAC	1	17	41	∞	տ
17	0.000%	0.000%	0.000%				17	31	∞	4
17	0.000%	0.000%	0.000%				17	29	∞	ω
17	0.000%	0.000%	0.000%				17	19	8	2
16	5.882%	0.000%	0.000%		SDS	1	17	∞	∞	1

			No. Birds									No. Birds
Block	1	D 20	Started	ity	al-1	al-2	Cause of Death	% Mortality D0-	% Mortality D0- % Removal-1 D0-% Removal-2 D0-	% Removal-2 D0-	Total %	Remaining
DIOCK	5	Pen No.	Day 0	Mortal	Remov	Remov	Cause of Death	14	14	14	M&R1 D0-14	Day 14
1	7	4	17	2			BAC; SDS	11.765%	0.000%	0.000%	11.765%	15
2	7	12	17					0.000%	0.000%	0.000%	0.000%	17
w	7	22	17	2			2 SDS	11.765%	0.000%	0.000%	11.765%	15
4	7	30	17					0.000%	0.000%	0.000%	0.000%	17
ъ	7	43	17					0.000%	0.000%	0.000%	0.000%	17
6	7	51	17	1			BAC	5.882%	0.000%	0.000%	5.882%	16
7	7	66	17	1			BAC	5.882%	0.000%	0.000%	5.882%	16
8	7	67	17					0.000%	0.000%	0.000%	0.000%	17
9	7	83	17					0.000%	0.000%	0.000%	0.000%	17
10	7	92	17	1			BAC-DH	5.882%	0.000%	0.000%	5.882%	16
11	7	103	17					0.000%	0.000%	0.000%	0.000%	17
12	7	110	17	1			SDS	5.882%	0.000%	0.000%	5.882%	16
Treati	Treatment Group 7	roup 7	204	8 0 0	0	0	3 BAC; BAC-DH; 4 SDS	3.922%	0.000%	0.000%	3.922%	196

Table 14. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

	0.000%	0.000%	0.000%	0.000%			•	+	3	12 3 108
*	0.000%	0.000%	0.000%	0.000%		<u> </u>	+	96	ω	ä
*	0.000%	0.000%	0.000%	0.000%			 	89	ω	10
0	0.000%	0.000%	0.000%	0.000%				84	ω	9
9.1	0.000%	0.000%	0.000%	0.000%			+	&	ω	∞
	0.000%	0.000%	0.000%	0.000%				ಣ	ω	7
	5.882%	0.000%	5.882%	0.000%	CD-BAC		_	t D	w u	5 U
- 1	6.250%	0.000%	0.000%	6.250%	BAC	-	+	5	u	4
1 -	0.000%	0.000%	0.000%	0.000%		<u></u>	╁┈	24	ω	. ω
!	0.000%	0.000%	0.000%	0.000%]	 	15	ω	2
	0.000%	0.000%	0.000%	0.000%				9	ω	1
	0.503%	0.000%	0.000%	0.503%	SDS	0	1 0	⊢	reatment Group 2	Ireatm
	0.000%	0.000%	0.000%	0.000%			-	111	2	12
	0.000%	0.000%	0.000%	0.000%		ļ	+	102	2	ä
	0.000%	0.000%	0.000%	0.000%		ļ	†	91	2	10
	0.000%	0.000%	0.000%	0.000%				78	2	9
	0.000%	0.000%	0.000%	0.000%				70	2	∞
	0.000%	0.000%	0.000%	0.000%				ස	2	7
	0.000%	0.000%	0.000%	0.000%				54	2	6
	0.000%	0.000%	0.000%	0.000%				48	2	5
	0.000%	0.000%	0.000%	0.000%				<u>36</u>	2	4
	0.000%	0.000%	0.000%	0.000%				27	2	ω
	5.882%	0.000%	0.000%	5.882%	SDS		ļ	14 1	2	2
	0.000%	0.000%	0.000%	0.000%				10	2	1
	0.990%	0.000%	0.990%	0.000%	CD-C/BL; CD-RH	0	2	up 1 0	Treatment Group 1	Treatm
	0.000%	0.000%	0.000%	0.000%		I	ļ	109	1	12
	0.000%	0.000%	0.000%	0.000%		ļ	-	100	1	11
	0.000%	0.000%	0.000%	0.000%				90	1	10
	6.250%	0.000%	6.250%	0.000%	CD-RH		1	79	1	9
	5.882%	0.000%	5.882%	0.000%	CD-C/BL		1	71	1	∞
	0.000%	0.000%	0.000%	0.000%				8	1	7
	0.000%	0.000%	0.000%	0.000%				ន	1	6
	0.000%	0.000%	0.000%	0.000%				8	1	5
	0.000%	0.000%	0.000%	0.000%				37	1	4
	0.000%	0.000%	0.000%	0.000%				25	1	ω
	0.000%	0.000%	0.000%	0.000%				16	1	2
	%000.0	0.000%	0.000%	0.000%				6	1	1
	Total % M&R1 D14- 21	% Removal-2 D14-21	% Removal-1 D14-21	% Mortality D14- 21	Cause of Death	Removal-2	Removal-1	Pen No.	Trt P	Block
)			\exists	┨	4		

196	1.508%	%000.0	1.508%	0.000%	CD-BAC; CD-C/BAC; CD-C/SB/BAC		0 3 0	_	ent Gro	Treatment Group 6
17	0.000%	0.000%	0.000%	0.000%				106	6	12
17	0.000%	0.000%	0.000%	0.000%				97	6	11
15	6.250%	0.000%	6.250%	0.000%	CD-C/SB/BAC		1	87	6	10
16	0.000%	0.000%	0.000%	0.000%				82	6	9
16	0.000%	0.000%	0.000%	0.000%				72	6	8
15	6.250%	0.000%	6.250%	0.000%	CD-BAC		1	61	6	7
16	0.000%	0.000%	0.000%	0.000%				8	6	6
17	0.000%	0.000%	0.000%	0.000%				42	6	տ
17	0.000%	0.000%	0.000%	0.000%				盎	6	4
17	0.000%	0.000%	0.000%	0.000%				28	6	ω
17	0.000%	0.000%	0.000%	0.000%				13	6	2
16	5.882%	0.000%	5.882%	0.000%	CD-C/BAC		1	Ħ	6	1
197	2.475%	0.000%	1.485%	0.990%	BAC; 2 CD-BAC; CD-C/SB/BL; SDS	0	2 3		Treatment Group 5	Treatm
17	0.000%	0.000%	0.000%	0.000%		ļ	ļ	107	5	12
15	11.765%	0.000%	5.882%	5.882%	BAC; CD-BAC		1	-	u	11
16	5.882%	0.000%	5.882%	0.000%	CD-BAC		1	93	տ	10
17	0.000%	0.000%	0.000%	0.000%				8	u	9
17	0.000%	0.000%	0.000%	0.000%				74	5	œ
16	5.882%	0.000%	5.882%	0.000%	CD-C/SB/BL		1	ස	տ	7
16	0.000%	0.000%	0.000%	0.000%				ន	տ	6
16	5.882%	0.000%	0.000%	5.882%	SDS		1	47	տ	Сī
17	0.000%	0.000%	0.000%	0.000%				34	տ	4
17	0.000%	0.000%	0.000%	0.000%				23	տ	ω
16	0.000%	0.000%	0.000%	0.000%				17	5	2
7/	0.000%	0.000%	0.000%	0.000%		ļ		`	U	-

						Day	YS 14 - 21 (13AUG15 - 20AUG15	o - ZUAUGIO)			
Block	₩	Pen No.	lity	val-1	val-2	Cause of Death	% Mortality D14-	% Removal-1	% Removal-2	Total %	No. Birds Remaining
,	;		Morta	Remov	Remov		21	D14-21	D14-21	21	Day 21
1	4	5	1			SDS	5.882%	0.000%	0.000%	5.882%	16
2	4	18					0.000%	0.000%	0.000%	0.000%	16
w	4	26					0.000%	0.000%	0.000%	0.000%	17
4	4	32					0.000%	0.000%	0.000%	0.000%	17
5	4	45		1		CD-BAC	0.000%	5.882%	0.000%	5.882%	16
6	4	49					0.000%	0.000%	0.000%	0.000%	17
7	4	59					0.000%	0.000%	0.000%	0.000%	17
8	4	73					0.000%	0.000%	0.000%	0.000%	17
9	4	81					0.000%	0.000%	0.000%	0.000%	16
10	4	88					0.000%	0.000%	0.000%	0.000%	14
11	4	98					0.000%	0.000%	0.000%	0.000%	16
12	4	104					0.000%	0.000%	0.000%	0.000%	17
Treatn	Treatment Group 4	roup 4	1	1	0	CD-BAC; SDS	0.505%	0.505%	0.000%	1.010%	196

197	2.475%	0.000%	0.990%	1.485%	BAC; 2 CD-BAC; 2 SDS	3 2 0	8 du	reatment Group 8	Treatm
17	0.000%	0.000%	0.000%	0.000%			105	8	12
17	0.000%	0.000%	0.000%	0.000%			99	∞	11
17	0.000%	0.000%	0.000%	0.000%			86	∞	10
17	0.000%	0.000%	0.000%	0.000%			8	∞	9
16	5.882%	0.000%	0.000%	5.882%	BAC		8	∞	œ
17	0.000%	0.000%	0.000%	0.000%			2	∞	7
16	5.882%	0.000%	0.000%	5.882%	SDS		56	∞	6
15	6.250%	0.000%	6.250%	0.000%	CD-BAC	1	41	∞	5
17	0.000%	0.000%	0.000%	0.000%			31	∞	4
17	0.000%	0.000%	0.000%	0.000%			29	∞	ω
17	0.000%	0.000%	0.000%	0.000%			19	8	2
14	12.500%	0.000%	6.250%	6.250%	CD-BAC; SDS	1	œ	œ	1

193	1.531%	0.000%	0.510%	1.020%	CD-BAC; 2 SDS	1 0	2	Treatment Group 7	nent Gr	Treatn
15	6.250%	0.000%	0.000%	6.250%	SDS		1	110	7	12
17	0.000%	0.000%	0.000%	0.000%				103	7	11
16	0.000%	0.000%	0.000%	0.000%				92	7	10
17	0.000%	0.000%	0.000%	0.000%				83	7	9
16	5.882%	0.000%	0.000%	5.882%	SDS		1	67	7	8
16	0.000%	0.000%	0.000%	0.000%				8	7	7
16	0.000%	0.000%	0.000%	0.000%				51	7	6
17	0.000%	0.000%	0.000%	0.000%				43	7	5
17	0.000%	0.000%	0.000%	0.000%				30	7	4
14	6.667%	0.000%	6.667%	0.000%	CD-BAC	1		22	7	3
17	0.000%	0.000%	0.000%	0.000%				12	7	2
15	0.000%	0.000%	0.000%	0.000%				4	7	1
No. birds Remaining Day 21	Total % M&R1 D14- 21	% Removal-2 D14-21	% Removal-1 D14-21	% Mortality D14- 21	Cause of Death	Removal-1	Mortality	Pen No.	Trt	Block
				-		1	4			

Table 14. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

						Da	ays 21 - 42 (20AUG15 - 10SEP15	15 - 10SEP15)					Days 0 - 42	
Block	ηI	Pen No.	ality	val-1	val-2	Cause of Death	% Mortality D21-	% Removal-1	% Removal-2	Total % M&R1 D21-	No. Birds Remaining	% Mortality D0-	Mortality DO- % Removal-1 DO- % Removal-2 DO-	% Removal-2 D0-
			Morta	Remo	Remo		42	D21-42	D21-42	42	Day 42	42	42	42
1	1	6	1		ω	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%
2	1	16			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
w	1	25	2		ω	3 CD-SMPL; SDS; SDS-DC	11.765%	0.000%	17.647%	11.765%	12	11.765%	0.000%	17.647%
4	1	37	1		4	CD-C/SB; 3 CD-SMPL; SDS	5.556%	0.000%	22.222%	5.556%	13	5.556%	0.000%	22.222%
5	1	46	1	1	ω	ACT; CD-BAC; 3 CD-SMPL	5.882%	5.882%	17.647%	11.765%	12	5.882%	5.882%	17.647%
6	1	ន			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
7	1	8			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
8	1	71		1	ω	CD-C/BL/ACT; 3 CD-SMPL	0.000%	6.250%	18.750%	6.250%	12	0.000%	11.765%	17.647%
9	1	79			ω	3 CD-SMPL	0.000%	0.000%	20.000%	0.000%	12	5.882%	5.882%	17.647%
10	1	90			ω	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%
11	1	100			ω	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%
12	1	109			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
Treatn	Treatment Group 1	oup 1	5	2	37 A	ACT; CD-BAC; CD-C/BL/ACT; CD-C/SB; 36 CD-SMPL; 3 SDS; SDS-DC	2.500%	1.000%	18.500%	3.500%	156	3.902%	1.951%	18.049%
			1											
, 1	2	10			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
۸ د) N	14			u	3 CD-SMPL	0.00%	0.000%	13.750%	0.000%	13	5.882%	0.000%	17.04/%
u	۸ ر	1			u	3 CD-SMPL	0.000%	0.000%	1/.54/%	0.000%	14	0.000%	0.000%	1/.54/%
n t	۱ د	8 8		-	u (3 CD-SMPI: CD-SS/RAC	0.000%	5,883%	17.647%	5.882%	14	0.000%	5.882%	17.647%
6	2 1	2		ı	ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
7	2	S			ω	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%
œ	2	70			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
9	2	78			w	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	0.000%	0.000%	23.529%
10	2	91			ω	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%
11	2	102			ω	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%
12	2	111	1		3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%
Treatn	Treatment Group 2	oup 2	1	1	36	36 CD-SMPL; SDS	0.505%	0.505%	18.182%	1.010%	161	2.451%	0.490%	18.627%
1	ω	9			ω	3 CD-SMPL	0.000%	0.000%	20.000%	0.000%	12	11.765%	0.000%	17.647%
2	ω	15			ω	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%
3	ω	24			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
4	ω	35			ω	3 CD-SMPL	0.000%	0.000%	20.000%	0.000%	12	11.765%	0.000%	17.647%
5	ω	4			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
6	ω	52			ω	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	0.000%	5.882%	17.647%
7	ω	బ			ω	3 CD-SMPL	0.000%	0.000%	20.000%	0.000%	12	11.765%	0.000%	17.647%
∞	ω	88	1		ω	BAC; 3 CD-SMPL	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%
9	ω	84			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
10	ω	89			ω	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%
11	ω	<u>96</u>			ω	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%
12	ω	108			ω	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%
Treatn	Treatment Group 3	oup 3	1	•	36	BAC; 36 CD-SMPL	0.515%	0.000%	18.557%	0.515%	157	4.902%	0.490%	17.647%
	l			I	ŀ									

17.647% 17.647% 17.647%		204487	3	2 2 2 2 2						١		
17.647% 17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w		106	6
17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	3 CD-SMPL; SDS	ω	1	97	6
	5.882%	5.882%	12	0.000%	20.000%	0.000%	0.000%	3 CD-SMPL	ω	_	87	6
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		82	6
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		72	6
17.647%	5.882%	5.882%	12	0.000%	20.000%	0.000%	0.000%	3 CD-SMPL	ω		61	6
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω	_	8	6
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	_	42	6
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		83	6
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	_	28	6
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	-	13	6
17.647%	5.882%	0.000%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	w		11	6
17.647%	2.941%	2.451%	157	2.030%	18.274%	1.015%	1.015%	CD-BAC; CD/C/BI/3B; 3B CD-3MIPL; 2 SDS	2 36	2	Treatment Group 5	atment
17.647%	5.882%	0.000%	13	5.882%	17.647%	5.882%	0.000%	CD-C/BL/SB; 3 CD-SMPL	1 3	†	107	
17.647%	5.882%	5.882%	12	0.000%	20.000%	0.000%	0.000%	3 CD-SMPL	w	 	101	5
17.647%	5.882%	5.882%	12	6.250%	18.750%	0.000%	6.250%	3 CD-SMPL; SDS	ω	1	93	5
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	-	8	5
17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	3 CD-SMPL; SDS	ω	1	74	5
17.647%	5.882%	0.000%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		ස	5
17.647%	11.765%	0.000%	12	6.250%	18.750%	6.250%	0.000%	CD-BAC; 3 CD-SMPL	1 3	_	8	5
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	w		47	5
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω		34	5
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w		23	5
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		17	5
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w		7	5
	0.0000			0.0000	200000	000000	0.0000	20 00 0000	-		o dub	
17 647%	76080 0	2 041%	150	0.000%	18 367%	0.000%	0.000%	36 CD-SMBI	36	•	Treatment Group 4	t ment
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w (104	4
17 6470	20000	2000	1	0.000	1075000	0.000%	0.000%	3 CD SMPL	u	+	8 8	. .
17 6470	200000	11 7650	1 5	0.000%	21 420%	0.000%	0.000%	3 CD-SMPI	υ (8 6	A 4
17 64770	0.000	0.000%	1	0.000	107500	0.000	0.000	3 CO SWITE	ی د	+	2 2	
17 647%	0.000%	0.000%	14	0.000%	17647%	0.000%	0.000%	3 CD-SWIFE	u u	+	4 8	4
17.647%	0.000%	0.000%	13	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	u		3 6	. 4
17.647%	5.882%	0.000%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω		8	4
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	-	32	4
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w		26	4
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω	_	18	4
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	w		5	4
Removal-2 D 42	Mortality D0- % Removal-1 D0- % Removal-2 D0- 42 42 42	% Mortality D0- 9 42	Remaining Day 42	Total % M&R1 D21- 42	% Removal-2 D21-42	% Removal-1 D21-42	% Mortality D21- 42	Cause of Death	Removal-1 Removal-2	ه Mortality	Pen No.	Block Trt
			No. Birds							1	1	┨

17.647%	0.980%	2.941%	160	0.508%	18.274%	%000.0	0.508%	36 CD-SMPL: UNK-DC	1 0 36	8 an	Treatment Group 8	Twoody
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	3	105	8	12
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	99	œ	11
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w	86	œ	10
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	83	œ	9
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω	69	œ	œ
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w	2	∞	7
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω	8	œ	6
17.647%	5.882%	5.882%	12	0.000%	20.000%	0.000%	0.000%	3 CD-SMPL	w	41	œ	5
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	31	œ	4
17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	3 CD-SMPL; UNK-DC	3	29	œ	ω
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	з	19	œ	2
17.647%	5.882%	11.765%	11	0.000%	21.429%	0.000%	0.000%	3 CD-SMPL	3	8	8	1
17.647%	0.490%	5.392%	156	0.518%	18.653%	0.000%	0.518%	DH-BL/FHN; 36 CD-SMPL	1 0 36	up 7	Treatment Group 7	Treatn
17.647%	0.000%	11.765%	12	0.000%	20.000%	0.000%	0.000%	3 CD-SMPL	3	110	7	12
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	103	7	11
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω	92	7	10
17.647%	0.000%	5.882%	13	5.882%	17.647%	0.000%	5.882%	DH-BL/FHN; 3 CD-SMPL	3	88	7	9
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	ω	67	7	œ
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	s	8	7	7
17.647%	0.000%	5.882%	13	0.000%	18.750%	0.000%	0.000%	3 CD-SMPL	w	51	7	6
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w	43	7	5
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	w	30	7	4
17.647%	5.882%	11.765%	11	0.000%	21.429%	0.000%	0.000%	3 CD-SMPL	ω	22	7	ω
17.647%	0.000%	0.000%	14	0.000%	17.647%	0.000%	0.000%	3 CD-SMPL	ω	12	7	2
17.647%	0.000%	11.765%	12	0.000%	20.000%	0.000%	0.000%	3 CD-SMPL	s	4	7	1
% Removal-2 42	% Mortality D0- % Removal-1 D0- % Removal-2 D0- 42 42 42	% Mortality D0- 9 42	Remaining Day 42	M&R1 D21- 42	% Removal-2 D21-42	% Removal-1 D21-42	% Mortality D21- 42	Cause of Death	Mortality Removal-1 Removal-2	Pen No.	Τπ	Block
_			NO. DILUS			_			2			

No. Birds Remaining

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

			Star	Starter 1 (Days 0 -	. 14)	Start	Starter 2 (Days 14 - 21)	- 21)
Rlock	*	Pen	Feed 1	WB	D 0 - 14	Feed 2	WB	D 0 - 21
,	;	No.						
			28-Jul-15	13-Aug-15	Consumed	13-Aug-15	20-Aug-15	Consumed
1	7	4	10.00	2.54	7.46	13.00	3.30	9.70
1	4	5	10.00	2.22	7.78	13.00	4.20	8.80
 1 		6 6	10.00	2.60	7.40	13.00	5.00	8.00
1	5	7	10.00	2.02	7.98	13.00	2.86	10.14
1	∞ 	8	10.00	3.20	6.80	13.00	4.90	8.10
1	ω 	9	10.00	3.46	6.54	13.00	4.30	8.70
 1 	2	10 10	10.00	2.52	7.48	13.00	3.14	9.86
1	6	11	10.00	3.00	7.00	13.00	3.78	9.22
2	7	12	10.00	2.66	7.34	13.00	3.34	9.66
2	6	13	10.00	2.52	7.48	13.00	3.02	9.98
2	2	14	10.00	2.26	7.74	13.00	3.58	9.42
2	ω	15	10.00	3.56	6.44	13.00	4.72	8.28
2	1	16	10.00	3.38	6.62	13.00	4.82	8.18
2	5	17	10.00	3.12	6.88	13.00	3.80	9.20
2	4	18	10.00	3.34	6.66	13.00	4.32	8.68
2	∞	19	10.00	2.60	7.40	13.00	3.04	9.96
ω	7	22	10.00	3.68	6.32	13.00	5.02	7.98
ω	5	23	10.00	2.94	7.06	13.00	3.08	9.92
ω	ω	24	10.00	3.34	6.66	13.00	4.24	8.76
ω	1	25	10.00	3.34	6.66	13.00	5.36	7.64
ω	4	26	10.00	2.94	7.06	13.00	3.64	9.36
ω	2	27	10.00	2.30	7.70	13.00	2.36	10.64
ω	6	28	10.00	2.40	7.60	13.00	2.96	10.04
ω	8	29	10.00	2.42	7.58	13.00	2.70	10.30
4	7	30	10.00	2.66	7.34	13.00	2.92	10.08
4	8	31	10.00	2.00	8.00	13.00	2.30	10.70
4	4	32	10.00	2.44	7.56	13.00	3.36	9.64

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

		Star	Starter 1 (Days 0 - 14)	- 14)	Start	Starter 2 (Days 14 -	- 21)
Block Trt	Pen	Feed 1	WB	D 0 - 14	Feed 2	WB	D 0 - 21
		28-Jul-15	13-Aug-15	Consumed	13-Aug-15	20-Aug-15	Consumed
4 6	33	10.00	2.74	7.26	13.00	3.82	9.18
45	34	10.00	2.98	7.02	13.00	3.86	9.14
4 - 3	_ 35	10.00	2.84	7.16	13.00	5.02	7.98
4 2	36	10.00	2.12	7.88	13.00	3.22	9.78
4 1	37	10.00	2.50	7.50	13.00	4.20	8.80
5 - 8	41	10.00	2.64	7.36	13.00	4.24	8.76
5 _ 6	42	10.00	1.88	8.12	13.00	2.84	10.16
5 7	43	10.00	2.44	7.56	13.00	3.50	9.50
3	44	10.00	2.72	7.28	13.00	3.88	9.12
5	45	10.00	3.86	6.14	13.00	4.96	8.04
5 1	46	10.00	3.52	6.48	13.00	5.86	7.14
5	47	10.00	2.90	7.10	13.00	4.08	8.92
5 2	48	10.00	2.92	7.08	13.00	3.58	9.42
6 4	49	10.00	3.02	6.98	13.00	3.70	9.30
6	50	10.00	3.14	6.86	13.00	3.84	9.16
67	51	10.00	3.06	6.94	13.00	3.72	9.28
6 3	52	10.00	3.04	6.96	13.00	4.58	8.42
6 1	53	10.00	3.76	6.24	13.00	5.70	7.30
6 2	54	10.00	3.28	6.72	13.00	4.92	8.08
5	55	10.00	3.54	6.46	13.00	4.76	8.24
8	56	10.00	2.86	7.14	13.00	4.22	8.78
74	59	10.00	2.92	7.08	13.00	3.40	9.60
7 1	60	10.00	3.98	6.02	13.00	6.24	6.76
7 6	61	10.00	3.70	6.30	13.00	4.98	8.02
7 3	62	10.00	3.58	6.42	13.00	4.86	8.14
7 5	63	10.00	3.24	6.76	13.00	4.40	8.60
7 8	64	10.00	2.72	7.28	13.00	3.78	9.22
7 2	65	10.00	3.20	6.80	13.00	4.50	8.50
7 7	66	10.00	3.10	6.90	13.00	4.02	8.98
8 7	67	10.00	2.86	7.14	13.00	4.22	8.78
8	68	10.00	2.78	7.22	13.00	4.28	8.72
8	69	10.00	2.74	7.26	13.00	4.36	8.64
8 2	70	10.00	2.20	7.80	13.00	3.38	9.62
8 1	71	10.00	2.60	7.40	13.00	5.98	7.02
8	72	10.00	2.68	7.32	13.00	4.60	8.40
8 4	73	10.00	2.62	7.38	13.00	4.16	8.84
8 5	74	10.00	2.58	7.42	13.00	3.78	9.22
		10.00	1.94	8.06	13.00	3.54	9.46

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

			Star	Starter 1 (Days 0 - 14)	- 14)	Start	ter 2 (Days 14	- 21)
Block	μI	Pen No.	Feed 1	WB	D 0 - 14	Feed 2	ВМ	D 0 - 21
			28-Jul-15	13-Aug-15	Consumed	13-Aug-15	20-Aug-15	Consumed
9	1	79	10.00	2.38	7.62	13.00	6.10	6.90
9	5	80	10.00	1.26	8.74	13.00	3.24	9.76
9	4	81	10.00	2.78	7.22	13.00	3.92	9.08
9	6	82	10.00	2.30	7.70	13.00	3.66	9.34
9	7	83	10.00	2.14	7.86	13.00	2.94	10.06
9	w	84	10.00	2.38	7.62	13.00	3.54	9.46
9	∞	85	10.00	2.48	7.52	13.00	3.30	9.70

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

			Star	Starter 1 (Days 0 - 14)	· 14)	Start	Starter 2 (Days 14 - 21)	- 21)
Block	ħΪ	Pen	Feed 1	вм	D 0 - 14	Feed 2	ВМ	D0-21
			28-Jul-15	13-Aug-15	Consumed	13-Aug-15	20-Aug-15	Consumed
10	8	86	10.00	2.08	7.92	13.00	3.20	9.80
10	6	87	10.00	3.16	6.84	13.00	4.34	8.66
10 	- i	88	10.00	3.74	6.26	13.00	5.48	7.52
10	ω	89	10.00	3.28	6.72	13.00	4.72	8.28
10 		90	10.00	3.58	6.42	13.00	5.80	7.20
10	2	91	10.00	2.76	7.24	13.00	4.04	8.96
10	7	92	10.00	3.26	6.74	13.00	4.68	8.32
10	5	93	10.00	3.24	6.76	13.00	4.46	8.54
11	w	96	10.00	2.98	7.02	13.00	3.60	9.40
11	6	97	10.00	2.76	7.24	13.00	3.56	9.44
11	4	98	10.00	2.72	7.28	13.00	4.48	8.52
11	8	99	10.00	2.74	7.26	13.00	3.78	9.22
11	1	100	10.00	3.36	6.64	13.00	5.84	7.16
11	5	101	10.00	2.70	7.30	13.00	3.88	9.12
11	2	102	10.00	2.38	7.62	13.00	3.36	9.64
11	7	103	10.00	2.34	7.66	13.00	3.62	9.38
12	4	104	10.00	2.62	7.38	13.00	2.94	10.06
12	8	105	10.00	2.48	7.52	13.00	2.62	10.38
12	6	106	10.00	2.18	7.82	13.00	2.96	10.04
12	5	107	10.00	2.98	7.02	13.00	3.78	9.22
12	s	108	10.00	1.76	8.24	13.00	3.82	9.18
12	1	109	10.00	1.38	8.62	13.00	4.26	8.74
12	7	110	10.00	1.70	8.30	13.00	3.30	9.70
12	2	111	10.00	1.00	9.00	13.00	2.48	10.52

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

					Grower/	Grower/Finisher (Days 21 - 42)	s 21 - 42)		
Block	μI	Pen No.	Feed 3	Feed 4	Feed 5	Feed 6	Feed 7	WB	D 21 - 42
•	7		20-Aug-15	26-Aug-15	2-Sep-15	4-Sep-15	9-Sep-15	10-Sep-15	Consumed
_ 1		_ 4	20.00	13.00	12.00	00.8	0.00	82.01	42.22
1	4	5	20.00	13.00	12.00	8.00	0.00	6.70	46.30
 1 		6	20.00	13.00	12.00	8.00	0.00	12.18	40.82
1	5	7	20.00	13.00	12.00	8.00	5.00	5.32	52.68
 1	∞ 	8	20.00	13.00	12.00	8.00	0.00	11.38	41.62
 4 	ω	9	20.00	13.00	12.00	8.00	0.00	9.82	43.18
ا ا د ا _	2	10	20.00	13.00	12.00	8.00	5.00	5.14	52.86
ا ا در ا ـــــا	6	11	20.00	13.00	12.00	8.00	5.00	9.92	48.08
2	7	12	20.00	13.00	12.00	8.00	5.00	7.90	50.10
2	6	13	20.00	13.00	12.00	8.00	5.00	7.28	50.72
2	2	14	20.00	13.00	12.00	8.00	0.00	6.38	46.62
2	ω	15	20.00	12.88	12.00	8.00	0.00	6.36	46.52
2	1	16	20.00	13.00	12.00	8.00	0.00	10.66	42.34
2	5	17	20.00	13.00	12.00	8.00	5.00	10.20	47.80
2	4	18	20.00	13.00	12.00	8.00	0.00	7.32	45.68
2	8	19	20.00	13.00	12.00	8.00	5.00	9.72	48.28
ω	7	22	20.00	13.00	12.00	8.00	0.00	14.02	38.98
3	5	23	20.00	13.00	12.00	8.00	5.00	9.40	48.60
ω	ω	24	20.00	13.00	12.00	8.00	0.00	6.06	46.94
ω	1	25	20.00	13.00	12.00	8.00	0.00	15.38	37.62
ω	4	26	20.00	13.00	12.00	8.00	5.00	9.96	48.04
3	2	27	20.00	13.00	12.00	8.00	5.00	5.38	52.62
ω	6	28	20.00	13.00	12.00	8.00	5.00	9.02	48.98
ω	8	29	20.00	13.00	12.00	8.00	5.00	8.98	49.02
4	7	30	20.00	13.00	12.00	8.00	5.00	9.66	48.34
4	8	31	20.00	13.00	12.00	8.00	5.00	8.48	49.52
4	4	32	20.00	13.00	12.00	8.00	5.00	8.26	49.74

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

Block Trt Pen Feed 3 Feed 4 Feed 5 Feed 7 WB D21-42						Grower/	Finisher (Days	s 21 - 42)		
20Aug-15 26Aug-15 2-Sep-15 4-Sep-15 9-Sep-15 10-Sep-15 2000 13.00 12.00 8.00 0.00 7.18 20.00 13.00 12.00 8.00 0.00 2.18 20.00 13.00 12.00 8.00 0.00 2.13 20.00 20.00 13.00 12.00 8.00 0.00 2.13 20.00 20.00 13.00 12.00 8.00 0.00 2.13 20.00 20.00 13.00 12.00 8.00 0.00 2.13 20.00 20.00 13.00 12.00 8.00 0.00 2.14 20.00 20.00 13.00 12.00 8.00 0.00 2.14 20.00 20.00 13.00 12.00 8.00 0.00 2.14 20.00 20.00 13.00 12.00 8.00 0.00 2.14 20.00	Block	ī	Pen No.	Feed 3	Feed 4	Feed 5	Feed 6	Feed 7	WB	D 21 - 42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				20-Aug-15	26-Aug-15	2-Sep-15	4-Sep-15	9-Sep-15	10-Sep-15	Consumed
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	6	33	20.00	13.00	12.00	8.00	0.00	7.18	45.82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5 I	34	20.00	13.00	12.00	8.00	0.00	6.92	46.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	ω	35	20.00	13.00	12.00	8.00	0.00	13.36	39.64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2	36	20.00	13.00	12.00	8.00	0.00	9.20	43.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	<u>,</u>	37	20.00	13.00	12.00	8.00	0.00	11.30	41.70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	∞ 	41	20.00	13.00	12.00	8.00	0.00	10.00	43.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	6	42	20.00	13.00	12.00	8.00	5.00	8.90	49.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	7	43	20.00	13.00	12.00	8.00	0.00	6.12	46.88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	ω	44	20.00	13.00	12.00	8.00	0.00	7.74	45.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	4	45	20.00	13.00	12.00	8.00	0.00	8.46	44.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1	46	20.00	13.00	12.00	8.00	0.00	18.16	34.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	5	47	20.00	13.00	12.00	8.00	0.00	7.46	45.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 5	2	48	20.00	13.00	12.00	8.00	5.00	10.00	48.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	4	49	20.00	13.00	12.00	8.00	5.00	10.06	47.94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	6	50	20.00	13.00	12.00	8.00	0.00	8.28	44.72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	7	51	20.00	13.00	12.00	8.00	0.00	7.16	45.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S S	52	20.00	13.00	12.00	8.00	0.00	9.18	43.82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1	53	20.00	13.00	12.00	8.00	0.00	15.58	37.42
20.00	6	2	54	20.00	13.00	12.00	8.00	0.00	6.46	46.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	ъ	55	20.00	13.00	12.00	8.00	0.00	13.58	39.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	8	56	20.00	13.00	12.00	8.00	0.00	9.98	43.02
20.00	7_	4	59	20.00	13.00	12.00	8.00	0.00	6.00	47.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ 7	1	60	20.00	13.00	12.00	8.00	0.00	15.08	37.92
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	6	61	20.00	13.00	12.00	8.00	0.00	13.74	39.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	ω	62	20.00	13.00	12.00	 8.00 	0.00	14.48	38.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	5	63	20.00	13.00	12.00	 <mark>8.00</mark> 	0.00	10.44	42.56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	8	64	20.00	13.00	12.00	8.00	5.00	8.48	49.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ 7	2	65	20.00	13.00	12.00	8.00	0.00	8.84	44.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	7	66	20.00	13.00	12.00	8.00	0.00	7.76	45.24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	7	67	20.00	13.00	12.00	8.00	0.00	10.32	42.68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	œ	ω	68	20.00	13.00	12.00	8.00	0.00	7.62	45.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	8	69	20.00	13.00	12.00	8.00	0.00	9.58	43.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 <mark>&</mark> 	2	70	20.00	13.00	12.00	8.00	5.00	9.82	48.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1	71	20.00	13.00	12.00	8.00	0.00	18.30	34.70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	6	72	20.00	13.00	12.00	8.00	0.00	8.82	44.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	4	73	20.00	13.00	12.00	8.00	5.00	10.64	47.36
13.00 12.00 8.00 0.00 8.48 44	8	5	74	20.00	13.00	12.00	8.00	0.00	7.68	45.32
	9	2	78	20.00	13.00	12.00	8.00	0.00	8.48	44.52

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

					Grower/	Finisher (Days 21 - 42	s 21 - 42)		
Block	ħΤ	Pen No.	Feed 3	Feed 4	Feed 5	Feed 6	Feed 7	WB	D 21 - 42
			20-Aug-15	26-Aug-15	2-Sep-15	4-Sep-15	9-Sep-15	10-Sep-15	Consumed
6	1	79	20.00	13.00	12.00	8.00	0.00	15.96	37.04
9	5	80	20.00	13.00	12.00	8.00	0.00	6.64	46.36
9	4	81	20.00	13.00	12.00	8.00	0.00	8.82	44.18
9	6	82	20.00	13.00	12.00	8.00	0.00	8.92	44.08
9	7_	83	20.00	13.00	12.00	8.00	5.00	11.78	46.22
9	ω	84	20.00	13.00	12.00	8.00	0.00	7.54	45.46
9		85	20.00	13.00	12.00	8.00	0.00	7.68	45.32

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-3 Facility Number 8W

					Grower/	Grower/Finisher (Days 21 - 42)	s 21 - 42)		
Block	Īπ	Pen No.	Feed 3	Feed 4	Feed 5	Feed 6	Feed 7	WB	D 21 - 42
			20-Aug-15	26-Aug-15	2-Sep-15	4-Sep-15	9-Sep-15	10-Sep-15	Consumed
10	8	86	20.00	13.00	12.00	8.00	0.00	8.02	44.98
10	6	87	20.00	13.00	12.00	8.00	0.00	12.84	40.16
10	- i 4	88	20.00	13.00	12.00	8.00	0.00	15.68	37.32
10	ω	89	20.00	13.00	12.00	8.00	0.00	10.96	42.04
10	1 1	90	20.00	13.00	12.00	8.00	0.00	16.92	36.08
10	2	91	20.00	13.00	12.00	8.00	0.00	9.84	43.16
10	7	92	20.00	13.00	12.00	8.00	0.00	9.92	43.08
10	5	93	20.00	13.00	12.00	8.00	0.00	11.74	41.26
11	ω	96	20.00	13.00	12.00	8.00	5.00	9.30	48.70
11	6	97	20.00	13.00	12.00	8.00	0.00	7.92	45.08
11	4	98	20.00	13.00	12.00	8.00	0.00	6.36	46.64
11	∞	99	20.00	13.00	12.00	8.00	5.00	7.42	50.58
11	1	100	20.00	13.00	12.00	8.00	0.00	14.96	38.04
11	5	101	20.00	13.00	12.00	8.00	0.00	8.86	44.14
11	2	102	20.00	13.00	12.00	8.00	5.00	9.62	48.38
11	7	103	20.00	13.00	12.00	8.00	5.00	7.84	50.16
12	4	104	20.00	13.00	12.00	8.00	5.00	6.90	51.10
12	8	105	20.00	13.00	12.00	8.00	5.00	7.02	50.98
12	6	106	20.00	13.00	12.00	8.00	5.00	6.24	51.76
12	5	107	20.00	13.00	12.00	8.00	5.00	9.90	48.10
12	w	108	20.00	13.00	12.00	8.00	0.00	6.94	46.06
12	1	109	20.00	13.00	12.00	8.00	0.00	8.02	44.98
12	7	110	20.00	13.00	12.00	8.00	0.00	6.94	46.06
12	2	111	20.00	13.00	12.00	8.00	5.00	6.68	51.32

Table 16. Results of Tibia Ashing on Day 21 and Day 42 CQR Study Number AGV-15-3 Facility Number 8W

	Day	/ 21	
Block	Trt	Pen No.	% Ash
1	1	6	19.7
2	1	16	24.4
3	1	25	23.1
4	1	37	23.5
5	1	46	24.1
6	1	53	21.9
7	1	60	23.0
8	1	71	23.0
9	1	79	24.1
10	1	90	21.2
11	1	100	22.5
12	1	109	24.3
Average			22.9
Standard D	eviation		1.4
cv			6.2%

1	2	10	25.1
2	2	14	26.8
3	2	27	26.1
4	2	36	26.3
5	2	48	24.7
6	2	54	23.2
7	2	65	27.3
8	2	70	25.0
9	2	78	26.0
10	2	91	23.7
11	2	102	28.1
12	2	111	27.8
Average			25.8
Standard D	eviation		1.6
cv			6.0%

	Day	/ 42	
Block	Trt	Pen No.	% Ash
1	1	6	30.9
2	1	16	30.5
3	1	25	30.0
4	1	37	26.2
5	1	46	29.8
6	1	53	27.7
7	1	60	29.7
8	1	71	30.0
9	1	79	29.5
10	1	90	25.7
11	1	100	31.9
12	1	109	26.2
Average			29.0
Standard D	eviation		2.0
CV			7.0%

cv			6.6%
Average Standard D			31.0 2.1
12	2	111	31.2
11	2	102	29.3
10	2	91	30.3
9	2	78	28.6
8		70	28.1
7	2	65	32.2
6	2	54	31.6
5	2	48	32.4
4	2	36	30.8
3	. 2	27	33.5
2	2	14	29.4
1	2	10	35.0

r					_
1	3	99	23.3	1 1 9	30.0
2	3 !	1 5	24.2	2 ! 3 ! 15	28.9
3	3	24	26.3	3 3 24	26.4
4	3	35	22.8	4 3 35	32.9
5	3	44	25.4	5 3 44	27.5
6	3	52	25.3	6 1 3 52	30.0
7	3	62	25.3	7 7 3 7 62	28.4
8	3	68	25.0	8 3 68	29.3
9	3	84	25.6	9 1 3 1 84	31.4
10	3	89	24.6	10 3 7 89	31.7
11	3	96	24.6	11 3 96	32.8
12	3 +	108	26.6	12 3 108	30.9
	3	100		· · · · · · · · · · · · · · · · · · ·	
Average			24.9	Average	30.0
Standard D	eviation		<u>1.1</u>	Standard Deviation	2.0
CV			4.5%	cv	6.8%
		_			
1	4i	5	23.1	1 1 5	33.8
2	4	18	27.4	2 4 18	32.3
3	4	<u> 26</u>	26.6	3 4 26	28.6
4	41	32	25.5	4 i 4 i 32	30.2
5	4	45	27.0	5	34.1
6	4	49	24.7	6	33.2
7	4	59	28.4	7 i 4 i 59	29.0
88	4	73	26.3	8 4 73	30.5
9	4	81	27.9	9 4 81	31.6
10	4	88	24.7	10 i 4 i 88	31.3
11	4	98	24.6	11 4 98	32.0
12	4	104	26.8	12 4 104	27.2
Average			26.1	Average	31.1
Standard D	eviation		1.6	Standard Deviation	2.1
cv			6.1%	cv	6.9%
					•
1	5 i	7	23.1	1 5 7	28.9
2	5	17	27.6	2 1 5 1 17	29.6
3	5	23	25.3	3 5 23	34.2
4	5 I	34	27.1	4 5 34	28.8
5	5 1	47	26.3	5 1 5 1 47	29.3
6	<u>-</u>	<u></u> 55	26.6	6 5 55	31.3
7	5 I	63	25.2	7 5 63	32.8
8 1	5 1	<u></u> 74	25.0	8 1 5 1 74	31.6
9	5	80	27.7	9 - 5 - 7 - 80	30.0
10	-	93	25.0	10 ! 5 ! 93	32.3
11	5	5 5 101	25.8	11 5 101	29.3
F	5		29.1	l	t
12	J	107			30.7
Average			26.2	Average	30.7
Standard D	eviation		<u>1.6</u>	Standard Deviation	1.7
CV			6.1%	cv	5.6%

r				4 1		1 44	24.4
1	6	11	23.0	1	<u>6</u>	11	34.1
2	<u>6</u> 	13 +	24.9	2	<u>6</u>	13	34.3
3	6	28	27.3	33	<u>6</u>	28	29.3
44	6	33	24.7	4	<u>6</u>	33	30.0
55	6	42	26.2	5	<u>6</u>	1 42 +	31.8
6	6	i 50	26.9	6	6	i 50	34.0
77	6	61	26.0	7	6	61	29.9
88	6	72	26.6	8	6	72	26.3
9	6	82	27.0	9	6	82	33.3
10	6	87	25.6	10	6	87	29.0
11	6	97	26.2	11	6	97	29.5
12	6	106	28.1	12	6	106	34.3
Average			26.0	Average			31.3
Standard D	eviation		1.4	Standard De	viation		2.7
cv			5.2%	cv			8.5%
			•				
1	7	4	22.9	1	7	4	33.7
2		12	24.3	2	- 7	12	34.8
3	. 7	22	26.7	3	7	22	33.9
4	7	30	25.6	4	-	30	28.2
5	<u></u>	43	27.5	5	-	43	28.4
6	.	51	26.7	6		51	30.5
7		+ 51	26.8	 7	-	+ 51	31.5
8	-	67	27.4	8	-	67	34.6
9	! <u>'</u>	! 83	27.1	9	/	! 83	33.4
10	- '	+	26.2	- 10	/	+ - 1 92	29.3
11	<u></u>	103	27.2	$-\frac{10}{11}$	/	103	29.7
12	!' ·	110	27.7	12	/	110	34.1
	'	110	26.3	<u> </u>		110	31.8
Average Standard D	oviation		20.3	Average Standard De			2.5
CV	eviation		5.5%	CV			7.9%
CV			3.3/6	CV			7.570
1	. 0	i 8	25.6	1 1	0	1 8	25.2
$\frac{1}{2}$	i	÷	25.6	l		+	35.2
L	8	i 19	27.3	2	$\frac{8}{9}$	i 19	31.5
3	8	29	27.0	3	$\frac{8}{9}$	29	33.2
4	8	31	25.2	-	$\frac{8}{9}$	$\frac{1}{1} - \frac{31}{41}$	28.0
5	<u> 8</u>	i 41	27.1	5 i	$\frac{8}{9}$	i 41	30.2
6	8	56	25.4	66	<mark>8</mark>	56	28.4
$\frac{7}{2}$	8	- 64 64	27.2	7	<mark>8</mark>	1 64 + 64	27.9
8	1 8	i 69	27.3	<u>8</u>	<mark>8</mark>	i <u>69</u>	32.4
9	8 8	85	26.4	9	<mark>8</mark>	85	29.3
10	 <mark>8</mark>	86	26.4	10	<mark>8</mark>	1 86 + 86	29.8
11	<u> 8</u>	99	26.8	11	<u>8</u>	99	31.4
12	8	105	28.7	12	8	105	34.1
Average			26.7	Average			31.0
Standard D	eviation		1.0	Standard De	viation		2.4
CV			3.6%	CV			7.8%

Facility Number 8W **CQR Study Number AGV-15-3** Graph 6. Average % Ash of Day 21 and Day 42 Tibias Summarized by Treatment Group

30.956 Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)	30.956	26.691	8
3000 Units Phytase (LP)	31.838	26.336	7
1000 Units Phytase (LP)	31.321	26.022	6
750 Units Phytase (LP)	30.739	26.153	5
31.148 500 Units Phytase (LP)	31.148	26.081	4
250 Units Phytase (LP)	30.020	24.925	3
High Phosphate (HP)	31.035	25.826	2
Low Phosphate (LP)	29.023	22.907	1
Treatment Description	D42 % Ash	D21 % Ash	Trt Group D21 % Ash

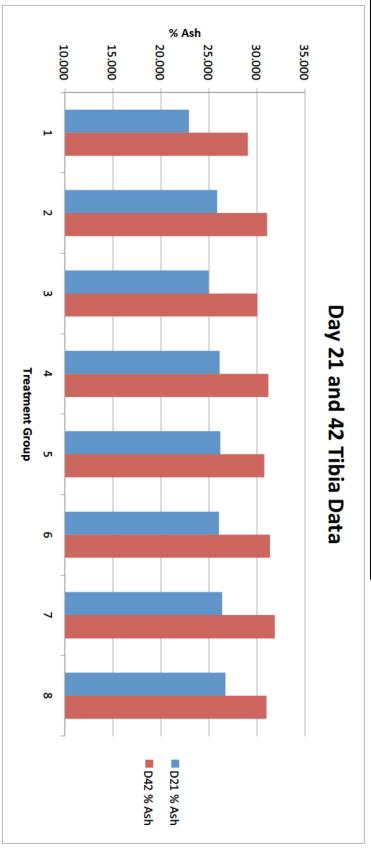


Table 17. Day 21 % Phosphorus Digestibility CQR Study Number AGV-15-3 Facility Number 8W

acility .vu	010				Adjusted for Dry Matter	Notter			A dinetad for	Adjusted for Dry Matter		
1	1	Titanium in Ileal	Phosphorus	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed	<u>2.</u>	% Moisture in	% Phosphorus
Block	Pen	Content (ppm)	(grams per 100 grams sample)	Content (grams per 100 grams sample)	Content Adjusted for Dry Matter	Content Adjusted for Dry Matter	Feed (ppm)	(grams per 100 grams feed)	Adjusted for Dry Matter	Feed Adjusted for Dry Matter	Feed	Digestibility
1 7	4	1560	0.14	79.13	325.57	0.03	1360	0.59	1203	0.52	11.57	79.31%
1 4	5	1270	0.24	82.32	224.54	0.04	1360	i	1203	0.52	11.57	56.44%
1	6	1250	0.21	81.50	231.25	0.04	1360	0.59	1203	0.52	11.57	61.27%
1 5	7	1060	0.18	81.70	193.98	0.03	1360	0.59	1203	0.52	11.57	60.86%
1 8	- 	930	0.10	83.04	157.73	0.02	1360	0.59	1203	0.52	11.57	75.21%
1 1 3	- 	1100	0.20	83.35	183.15	0.03	1360	0.59	1203	0.52	11.57	58.09%
1 2	10	1140	0.20	82.08	204.29	0.04	1240	0.82	1097	0.73	11.57	73.47%
1 6	- i	1010	0.18	80.95	192.41	0.03	1360	0.59	1203	0.52	11.57	58.92%
2 - 7	12	1080	0.12	82.27	191.48	0.02	1360	0.59	1203	0.52	11.57	74.39%
2 6	- i 13	1470	0.13	82.36	259.31	0.02	1360	0.59	1203	0.52	11.57	79.61%
2 2	14	1340	0.24	81.82	243.61	0.04	1240	0.82	1097	0.73	11.57	72.92%
2 3	15	1140	0.18	79.88	229.37	0.04	1360	0.59	1203	0.52	11.57	63.60%
2 1	16	1230	0.22	82.35	217.10	0.04	1360	0.59	1203	0.52	11.57	58.77%
2 5	17	1200	0.23	81.73	219.24	0.04	1360	0.59	1203	0.52	11.57	55.82%
2 4	18	1230	0.24	81.76	224.35	0.04	1360	0.59	1203	0.52	11.57	55.02%
2 8	19	1310	0.19	82.99	222.83	0.03	1360	0.59	1203	0.52	11.57	66.57%
3 7	22	1040	0.17	83.43	172.33	0.03	1360	0.59	1203	0.52	11.57	62.32%
3 	23	970	0.20	82.65	168.30	0.03	1360	0.59	1203	0.52	11.57	52.47%
3	24	1110	0.18	82.77	191.25	0.03	1360	0.59	1203	0.52	11.57	62.62%
3 1	25	1270	0.18	83.69	207.14	0.03	1360	0.59	1203	0.52	11.57	67.33%
3 4	26	1260	0.18	83.17	212.06	0.03	1360	0.59	1203	0.52	11.57	67.07%
3 2	27	1110	0.18	82.47	194.58	0.03	1240	0.82	1097	0.73	11.57	75.48%
3 6	28	1230	0.17	82.91	210.21	0.03	1360	0.59	1203	0.52	11.57	68.14%
3 -	29	1110	0.14	83.10	187.59	0.02	<u>1360</u>	0.59	1203	0.52	11.57	70.93%
47	 	1080	0.19	82.56	188.35	0.03	1360	0.59	1203	0.52	11.57	59.45%
4 8	31	1170	0.22	83.68	190.94	0.04	1360	0.59	1203	0.52	11.57	56.66%
4 - 4	32	1160	0.14	82.82		0.02	<u>1360</u>	0.59	<u>1203</u>	<u>0.52</u>	11.57	72.18%
4 - - -	1 3	1410		+ /9.86		0.05	1360 	0.59 	- 1203 - 1		71.5/	60./6%
4 - - - -	+ 	1380	0.04	+ - 84.16	186.91		1360		- 1203 - 1	0.52	11.5/	92.19%
+ + - - - - - - - -	+ 8 8	1000		+		0.03	1340		1203 1	0.52 	11.5/	11.61%
	 			+					100	 - - -	1 1 1 1	03.40%
× - - - - -	- - - - - -	1770	016 	84.37	191 30		1360	0.50	1203	0.50	11 57	69 77%
2	- - - - - -	1050	0.17	81.47	195.09	003	1360	0.59	1203		11.57	- 63.68
5 7	- - - - - -	1130 —	0.14	84.41	176.17	0.02	1360	0.59	1203	0.52	11.57	71.44%
5 3	- 4 	1160	0.20	84.94	174.70	0.03	1360	0.59	1203	0.52	11.57	60.26%
5 4	45	1100	0.19	84.50	170.50	0.03	1360	0.59	1203	0.52	11.57	60.18%
5 7	- 	1070	0.15	83.14	180.40	0.03	1360	0.59	1203	0.52	11.57	67.69%
5	47	1140	0.18	82.43	200.30	0.03	1360	0.59	1203	0.52	11.57	63.60%
5 2	48	1130	0.15	83.67	184.53	0.02	1240	0.82	1097	0.73	11.57	79.93%
6 4	49	1420	0.19	83.10	239.98	0.03	<u>1360</u>	0.59	1203	0.52	11.57	69.16%
6	 <mark>50</mark> 	1160	0.19	83.27	194.07	0.03	<u>1360</u>	0.59	1203	0.52	11.57	62.24%
67	51	1210	0.18	82.93	206.55	0.03	1360	0.59	1203	0.52	11.57	65.71%
6 3	52	1150	0.19	82.76	198.26	0.03	1360	0.59	1203	0.52	11.57	61.92%
6 1	 53 	1310	0.23	81.72	239.47	0.04	1360	0.59	1203	0.52	11.57	59.53%
6 2	54	1440	0.24	73.88	376.13	0.06	1240	0.82	1097	0.73	11.57	74.80%
6 5	- 55	1330	0.21	83.75	216.13	0.03	1360	0.59	1203	0.52	11.57	63.60%
6 8	 56 	1190	0.13	81.88	215.63	0.02	1360	0.59	1203	0.52	11.57	74.82%
7	 59	1270	0.14	84.83	192.66		1360	0.59	1203	0.52	11.57	
												74.59%

						Adineted fo	Adjusted for Dry Matter			Adjusted for Dry Matter	Dec Matter		
	#		Titanium in Ileal	Phosphorus	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed	<u>2</u> .	% Moisture in	% Phosphorus
Block	Group	Pen	Content (ppm)	(grams per 100 grams sample)	Content (grams per 100 grams sample)	Content Adjusted for Dry Matter	Content Adjusted for Dry Matter	Feed (ppm)	(grams per 100 grams feed)	Adjusted for Dry Matter	Feed Adjusted for Dry Matter	Feed	Digestibility
7	6	61	1250	0.23	82.63	217.13	0.04	1360	0.59	1203	0.52	11.57	57.59%
7 - [3	62	1090	0.17	84.49	169.06	0.03	1360	0.59	1203	0.52	11.57	64.05%
7-	5	ස 	1210	0.16	+ 83.27	202.43	0.03	1360	<u>0.59</u>	11203		11.57	69.52%
7-	∞¦•	61 61 1	1200	0.19	83.28	200.64	0.03	1360	0.59	1203	0.52	11.57	63.50%
7-	2-+-	65 -	1290	0.19	82.45	226.40	0.03	1240	0.82	1097 —	0.73	11.57	77.73%
7-	 +-	66	1110	0.11	85.26	163.61	0.02	1360	0.59	1203		11.57	77.16%
∞	7	67	1040	0.15	86.37	141.75	0.02	1360	0.59	1203	0.52	11.57	66.75%
∞ j	ა - -	68	1110	0.12	85.51	160.84	0.02	1360	0.59	1203	0.52	11.57	75.08%
∞	 -	69	1010	0.15	84.72	154.33	0.02	1360	0.59	1203	0.52	11.57	65.77%
∞	2	70	1100	0.25	83.93	176.77	0.04	1240	0.82	1097	0.73	11.57	65.63%
8	1	71	1130	0.18	83.31	188.60	0.03	1360	0.59	1203	0.52	11.57	63.28%
8	 - -	_ 72	1040	0.14	83.24	174.30	0.02	1360	0.59	1203	0.52	11.57	68.97%
∞	 4 -	73	1000	0.16	84.96	150.40	0.02	1360	0.59	1203	0.52	11.57	63.12%
× ×	- - - -	74	1090	0.15	82.11		0.03	1360	0.59	1203		11.57	68.28%
1	 	- 18 - 18	1280	0.23	82.17		0.04	1240	0.82	1097	0.73		72.83%
1	 	8 2	1230	0.17	+ 83.57			1360		1203			54.00%
اه ا	+	2 8	1090	016	+	185.74	T 000 1	1360	1 050	1703 — —		- 11 57 -	66 16%
9 1	6 -	82	86	0.11	84.91	129.77	0.02	1360	0.59	1203	0.52	11.57	70.52%
9	7-+-	ا ا	1230	0.10	84.10	195.57	0.02	1360	0.59	1203	0.52	11.57	81.26%
9	ا ا ا ا	84	1110	0.16	82.00	199.80	0.03	1360	0.59	1203	0.52	11.57	66.77%
9	 	8	1180	0.17	84.37	184.43	0.03	1360	0.59	1203	0.52	11.57	66.79%
10	8	86	1110	0.23	82.26	196.91	0.04	1360	0.59	1203	0.52	11.57	52.24%
10	6	87	1040	0.17	82.86	178.26	0.03	1360	0.59	1203	0.52	11.57	62.32%
10	4	88	1290	0.19	84.92	194.53	0.03	1360	0.59	1203	0.52	11.57	66.05%
10	S	89	1100	0.19	82.91	187.99	0.03	1360	0.59	1203	0.52	11.57	60.18%
10	 	90	910	0.12	81.65	166.99	0.02	1360	0.59	1203	0.52	11.57	69.60%
10	2	91	970	0.19	82.35	171.21	0.03	1240	0.82	1097	0.73	11.57	70.38%
10	7	92	900	0.17	84.07	143.37	0.03	1360	0.59	1203	0.52	11.57	56.46%
10	5	93	1090	0.15	84.13	172.98	0.02	1360	0.59	1203	0.52	11.57	68.28%
11	3	96	1040	0.14	81.19	195.62	0.03	1360	0.59	1203	0.52	11.57	68.97%
11	6	97	1180	0.13	82.64	204.85	0.02	1360	0.59	1203	0.52	11.57	74.60%
11	4	98	930	0.10	81.41	172.89	0.02	1360	0.59	1203	0.52	11.57	75.21%
11	 -	99	910	0.14	82.54	158.89	0.02	1360	0.59	1203	0.52	11.57	64.54%
11	 - - -	100	1130	0.18	<u>82.72</u>	195.26	0.03	<u>1360</u>	<u>0.59</u>	1203	0.52	11.57	63.28%
11	5	101	910	0.18	84.27	143.14	0.03	1360	0.59	1203	0.52	11.57	54.40%
11	2	102	1070	0.19	84.12	169.92	0.03	1240	0.82	1097	0.73	11.57	73.15%
1	7	103	1170	0.10	83.59	192.00	0.02	1360	0.59	1203	0.52	11.57	80.30%
1	 -	i i			8630	Tey.90		1360		1203			75.7%
315	-	2 5	1010		04.00			1360	 	1203	0.52		/5./4%
3 k	, - -	101		011	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13604		1360	050	1203	 		73 31%
12	ا ا	108	1070 — —	0.24	+ 84.19	169.17	0.04	1360	0.59	1203 —	0.52	11.57	48.30%
12	<u>,</u>	109	950	0.13	86.37	129.49	0.02	1360	0.59	1203	0.52	11.57	68.46%
12	7	110	1060	0.17	83.68	172.99	0.03	1360	0.59	1203	0.52	11.57	63.03%
12	J	111	1210	221	90.97	231.47	0.04	1240	0.82	1097	0.73	11.57	73.76%

Table 18. Day 21 % Phosphorus Digestibility Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

						Adjusted fo	Adjusted for Dry Matter			Adjusted for Dry Matter	Dry Matter		
	ī		Titanium in Ileal	Phosphorus	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed	Phosphorus in	% Moisture in	% Phosphorus
Block	;	Pen		(grams per 100	Content (grams per	Content Adjusted for	Content Adjusted for		(grams per 100	Adjusted for Dry	Feed Adjusted for		Discopio do
	dioup		Content (bbin)	grams sample)	100 grams sample)	Dry Matter	Dry Matter	reed (ppin)	grams feed)	Matter	Dry Matter	reed	Digescipiiity
1	1	6	1250	0.21	81.50	231.25	0.04	1360	0.59	1203	0.52	11.57	61.27%
2	 -	16	1230	0.22	82.35	217.10	0.04	1360	0.59	1203	0.52	11.57	58.77%
ω	1	25	1270	0.18	83.69	207.14	0.03	1360	0.59	1203	0.52	11.57	67.33%
4	<u>,</u>	37	1020	0.17	83.29	170.44	0.03	1360	0.59	1203	0.52	11.57	61.58%
5	 	46	1070	0.15	83.14	180.40	0.03	1360	0.59	1203	0.52	11.57	67.69%
6	 <mark>-</mark> 	53	1310	0.23	81.72	239.47	0.04	1360	0.59	1203	0.52	11.57	59.53%
7 -	<u>,,</u>	6 	1340	0.22	81.52	247.63	0.04	1360	0.59	1203	0.52	11.57	62.16%
8	 	71	1130	0.18	83.31	188.60	0.03	1360	0.59	1203	0.52	11.57	63.28%
9	 -	79	1230	0.17	83.57	202.09	0.03	1360	0.59	1203	0.52	11.57	68.14%
10	 - 	90 	910	0.12	81.65	166.99	0.02	1360	0.59	1203	0.52	11.57	69.60%
11	<u>,</u>	100	1130	0.18	82.72	195.26	0.03	1360	0.59	1203	0.52	11.57	63.28%
12	1 1	109	950	0.13	86.37	129.49	0.02	1360	0.59		0.52	11.57	68.46%
Averages			1153	0.18	82.90	197.99	0.03	1360	0.59	1203	0.52	11.57	64.26%
Standard	tandard Deviations	 	142	0.04	1.37	33.81	0.01	NA	NA	N	N	N	3.78%
CVs			12.27%	19.68%	1.65%	17.08%	24.73%	NA	NA	NA	NA	NA	5.89%
_ 1	2	10	1140	0.20	82.08	204.29	0.04	1240	0.82	1097	0.73	11.57	73.47%
2	2	14	1340	0.24	81.82	243.61	0.04	1240	0.82	1097	0.73	11.57	
S	2	27	1110	0.18	82.47	194.58	0.03	1240	0.82	1097	0.73	11.57	75.48%
4	2	36	1090	0.22	82.25	193.48	0.04	1240	0.82	1097	0.73	11.57	69.48%
5	2	48	1130	0.15	83.67	184.53	0.02	1240	0.82	1097	0.73	11.57	79.93%
6	2	54	1440	0.24	73.88	376.13	0.06	1240	0.82	1097	0.73	11.57	74.80%
7	2	65	1290	0.19	82.45	226.40	0.03	1240	0.82	1097	0.73	11.57	77.73%
8	2	70	1100	0.25	83.93	176.77	0.04	1240	0.82	1097	0.73	11.57	65.63%
9	2	78	1280	0.23	82.17	228.22	0.04	1240	0.82	1097	0.73	11.57	72.83%
10	2	91	970	0.19	82.35	171.21	0.03	1240	0.82	1097	0.73	11.57	70.38%
11	2	102	1070	0.19	84.12	169.92	0.03	1240	0.82	1097	0.73	11.57	73.15%
12	2	111	1210	0.21	80.87	231.47	0.04	1240		1097	0.73	11.57	73.76%
Averages			1811	0.21	81.84	216.72	0.04	1240	0.82		0.73	_	73.29%
Standard	tandard Deviations	 	133	0.03	2.67	56.13	0.01	NA NA	 	NA NA	NA N	Š	3.73%
!			11.30%	14.26%	3.27%	25.90%	25.01%	N	NA	NA	NA	NA	5.09%

						Adjusted for	Adjusted for Dry Matter			Adjusted for	Adjusted for Dry Matter		
	Τπ		Titanium in Ileal	Phosphorus	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed	2,	% Moisture in	% Phosphorus
Block	Group	Pen	Content (ppm)	(grams per 100	Content (grams per	Content Adjusted for	Content Adjusted for	Feed (ppm)	(grams per 100	ΡŊ	ģ		Digestibility
				grams sample)	Too Brains sample)	Dry Matter	Dry Matter		grains reed)	Matter	Dry Matter		
1	3	9	1100	0.20	83.35	183.15	0.03	1360	0.59	1203	0.52	11.57	58.09%
2	ω I	15	1140	0.18	79.88	229.37	0.04	1360	0.59	1203	0.52	11.57	63.60%
S	ω	24	1110	0.18	82.77	191.25	0.03	1360	0.59	1203	0.52	11.57	62.62%
4	S	35	1390	0.17	80.28	274.11	0.03	1360	0.59	1203	0.52	11.57	71.81%
5	ω	44	1160	0.20	84.94	174.70	0.03	1360	0.59	1203	0.52	11.57	60.26%
6	 ს 	52	1150	0.19	82.76	198.26	0.03	1360	0.59	1203	0.52	11.57	61.92%
7	ω	62	1090	0.17	84.49	169.06	0.03	1360	0.59	1203	0.52	11.57	64.05%
8	3	68	1110	0.12	85.51	160.84	0.02	1360	0.59	1203	0.52	11.57	75.08%
9	3	84	1110	0.16	82.00	199.80	0.03	1360	0.59	1203	0.52	11.57	66.77%
10	w	89	1100	0.19	82.91	187.99	0.03	1360	0.59	1203	0.52	11.57	60.18%
11	ω	96	1040	0.14	81.19	195.62	0.03	1360		1203	0.52	11.57	68.97%
12	3	108	1070	0.24	84.19	169.17	0.04	1360	0.59	1203	0.52	11.57	48.30%
Segerava			1131	0.18	82.86	194.44	0.03	1360	0.59	1203		11.57	63.47%
Standard	tandard Deviations	S	88	0.03	1.79	31.03	0.01	NA	NA	NA	NA	NA	6.94%
CVs			7.79%	17.21%	2.16%	15.96%	17.77%	NA	NA	NA	NA	NA	10.93%
1	_ 4 +	5	1270	0.24	<u> </u>	224.54	0.04	1360	0.59	<u>1203</u>	0.52	11.57	56.44%
_ 2	 4 	18	1230	0.24	<u>81.76</u>	224.35	0.04	1360	0.59	1203	0.52	11.57	55.02%
w	4	26	1260	0.18	83.17	212.06	0.03	1360	0.59	1203	0.52	11.57	67.07%
4	4	32	1160	0.14	82.82	199.29	0.02	1360	0.59	1203	0.52	11.57	72.18%
5	4	45	1100	0.19	84.50	170.50	0.03	1360	0.59	1203	0.52	11.57	60.18%
6	4	49	1420	0.19	83.10	239.98	0.03	1360	0.59	1203	0.52	11.57	69.16%
_ 7	4	59	1270	0.14	84.83	192.66	0.02	1360	0.59	1203	0.52	11.57	74.59%
 &	4	73	1000	0.16	84.96	150.40	0.02	1360	0.59	1203	0.52	11.57	63.12%
9	- 4 -	 81 	1090	0.16	82.96	185.74	0.03	1360	0.59	1203	0.52	11.57	66.16%
10	4	88	1290	0.19	84.92	194.53	0.03	1360	0.59	1203	0.52	11.57	66.05%
11	4	98	930	0.10	81.41	172.89	0.02	1360	0.59	1203	0.52	11.57	75.21%
12	4	104	1050	0.14	84.01	167.90	0.02	1360	0.59	1203	0.52	11.57	69.27%
Segerava			1173	0.17	83.40	194.57	0.03	1360	0.59	1203	0.52	11.57	66.20%
Standard	Standard Deviations		142	0.04	1.24	26.92	0.01	¥	NA I	NA.	N N	NA	6.55%
CVs			12.08%	23.98%	1.48%	13.83%	27.27%	NA	NA	NA	NA	NA	9.90%

						Adjusted for Dry Matter	Dry Matter			Adjusted for	Adjusted for Dry Matter		
	Τπ	ı	Titanium in Ileal	Phosphorus	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed	2,	% Moisture in	% Phosphorus
Block	Group	Pen	Content (ppm)	(grams per 100	Content (grams per	Content Adjusted for	Content Adjusted for	Feed (ppm)	(grams per 100	Ŋ	ģ		Digestibility
				grams sample)	Too Brains sample)	DIY WIGHTER	Diy iviatter		grants reed)	INIGHEL	DI y Iviaties		
1	5	7	1060	0.18	81.70	193.98	0.03	1360	0.59	1203	0.52	11.57	60.86%
2	5	17	1200	0.23	81.73	219.24	0.04	1360	0.59	1203	0.52	11.57	55.82%
S	5	23	970	0.20	82.65	168.30	0.03	1360	0.59	1203	0.52	11.57	52.47%
4	5	34	1180	0.04	84.16	186.91	0.01	1360	0.59	1203	0.52	11.57	92.19%
5	ر د	47	1140	0.18	82.43	200.30	0.03	1360	0.59	1203	0.52	11.57	63.60%
6	ر ا ا	S	1330	0.21	83.75	216.13	0.03	1360	0.59	1203	0.52	11.57	63.60%
7	5	63	1210	0.16	83.27	202.43	0.03	1360	0.59	1203	0.52	11.57	69.52%
8	ر د	74	1090	0.15	82.11	195.00	0.03	1360	0.59	1203	0.52	11.57	68.28%
9	5	80	1330	0.15	84.55	205.49	0.02	1360	0.59	1203	0.52	11.57	74.00%
10	5	93	1090	0.15	84.13	172.98	0.02	1360	0.59	1203	0.52	11.57	68.28%
11	5	101	910	0.18	84.27	143.14	0.03	1360	0.59	1203	0.52	11.57	54.40%
12	5	107	950	0.11	85.68	136.04	0.02	1360	0.59	1203	0.52	11.57	73.31%
SegeravA			1122	0.16	83.37	186.66	0.03	1360	0.59	1203	0.52	11.57	66.36%
Standard	tandard Deviations	 	137	0.05	1.26	26.67	0.01	NA NA	NA I	NA NA	NA NA	NA	10.80%
CVs			12.25%	30.85%	1.51%	14.29%	34.56%	NA	NA	NA	NA	NA	16.28%
•	n	1	1010	0.10	90.05	103 41	000	1360		1203	5	11 57	2000
 - -	T -	 -	L		+					 - - - - -	 - - - -		10000
		13	14/0	0.13	22.30	259.51		1360		<u>1203</u>	0.52	71.5/	/9.D1%
 ω	 -	28	1230	0.17	82.91		0.03	1360	0.59	1203	0.52	11.57	68.14%
4	6	 33 	1410	0.24	79.86	283.97	0.05	1360	0.59	1203	0.52	11.57	60.76%
5	- -	42	1050	0.17	81.42	195.09	0.03	1360	0.59	1203	0.52	11.57	62.68%
6	6	50	1160	0.19	83.27	194.07	0.03	1360	0.59	1203	0.52	11.57	62.24%
_ 7	6	61	1250	0.23	82.63	217.13	0.04	1360	0.59	1203	0.52	11.57	57.59%
 &	6	72	1040	0.14	83.24	174.30	0.02	1360	0.59	1203	0.52	11.57	68.97%
9	 -	 82 	 860 		84.91	129.77	0.02	1360	0.59	1203	0.52	11.57	70.52%
10	6	87	1040	0.17	82.86	178.26	0.03	1360	0.59	1203	0.52	11.57	62.32%
11	6	97	1180	0.13	82.64	204.85	0.02	1360	0.59	1203	0.52	11.57	
12	6	106	1010	0.15	84.08	160.79	0.02	1360	0.59	1203	0.52	11.57	65.77%
Segerava			1143	0.17	82.59	200.01	0.03	1360	0.59	1203	0.52	11.57	66.01%
Standard	Standard Deviations		177	0.04	1.36	41.24	0.01	NA NA	NA I	N N	N N	NA	6.61%
CVs			15.48%	23.49%	1.64%	20.62%	29.35%	NA	NA	NA	NA	NA	10.01%

						Adjusted for	Adjusted for Dry Matter			Adjusted for Dry Matter	Dry Matter		
Block	Τπ		Titanium in Ileal	Phosphorus	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	Titanium in	phorus in Feed	Titanium in Feed Phosphorus in		% Moisture in	% Phosphorus
	Group		Content (ppm)	grams sample)		Dry Matter	Dry Matter	Feed (ppm)		Matter	Dry Matter	Feed	Digestibility
1	7	4	1560	0.14	79.13	325.57	0.03	1360	0.59	1203	0.52	11.57	79.31%
2	7-1	12	1080	0.12	82.27	191.48	0.02	1360	0.59	1203	0.52	11.57	74.39%
ω	7	22	1040	0.17	83.43	172.33	0.03	1360	0.59	1203	0.52	11.57	62.32%
4	7	30	1080	0.19	82.56	188.35	0.03	1360	0.59	1203	0.52	11.57	59.45%
ъ	7	43	1130	0.14	84.41	176.17	0.02	1360	0.59	1203	0.52	11.57	71.44%
6	7	51	1210	0.18	82.93	206.55	0.03	1360	0.59	1203	0.52	11.57	
7	7	66	1110	0.11	85.26	163.61	0.02	1360	0.59	1203	0.52	11.57	
8	_ 7	67	1040	0.15	86.37	141.75	0.02	1360	0.59	1203	0.52	11.57	66.75%
9	7	83	1230	0.10	84.10	195.57	0.02	1360	0.59	1203	0.52	11.57	81.26%
10	7	92	900	0.17	84.07	143.37	0.03	1360	0.59	1203	0.52	11.57	56.46%
11	7	103	1170	0.10	83.59	192.00	0.02	1360	0.59	1203	0.52	11.57	80.30%
12	7	110	1060	0.17	83.68	172.99	0.03	1360	0.59	1203	0.52	11.57	63.03%
Averages			1134	0.15	83.48	189.15	0.02	1360		1203	0.52	11.57	69.80%
Standard	Deviations		160	0.03	1.78	47.36	0.01	NA	NA	NA	NA	NA	8.65%
CVs			14.12%	21.91%	2.13%	25.04%	25.28%	NA	N A	NA	NA	NA	12.39%
 1	 	 ∞ 	930	0.10	83.04	157.73	0.02	1360	0.59	1203	0.52	11.57	75.21%
2	 	19	1310	0.19	82.99	222.83	0.03	<u>1360</u>	0.59	1203	0.52	11.57	66.57%
ω	8	29	1110	0.14	83.10	187.59	0.02	1360	0.59	1203	0.52	11.57	70.93%
4	 -	23 	1170	0.22	83.68	190.94	0.04	1360	0.59	1203	0.52	11.57	56.66%
 5	- -	41	1220	0.16	84.32	191.30	0.03	1360 -	0.59	1203	0.52	11.57	69.77%
6	- 8	56	1190	0.13	81.88	215.63	0.02	1360	0.59	1203	0.52	11.57	74.82%
7	8	64	1200	0.19	83.28	200.64	0.03	1360	0.59	1203	0.52	11.57	63.50%
 œ		 69 	1010	0.15	84.72	154.33	0.02	1360	0.59	1203	0.52	11.57	65.77%
9	 	 85 	1180	0.17	84.37	184.43	0.03	1360 -	0.59	1203	0.52	11.57	66.79%
10	8	86	1110	0.23	82.26	196.91	0.04	1360	0.59	1203	0.52	11.57	52.24%
11	8	99	910	0.14	82.54	158.89	0.02	1360	0.59	1203	0.52	11.57	
12	8	105	950	0.10	86.30	130.15	0.01	1360	0.59	1203	0.52	11.57	75.74%
Averages			1108	0.16	83.54	182.61	0.03	1360	0.59	1203	0.52	11.57	66.88%
Standard	tandard Deviations		129	0.04	1.23	27.21	0.01	NA	NA	NA	NA	NA	7.22%
CVs			11.65%	26.25%	1.47%	14.90%	28.93%	NA	NA	NA	NA	NA	10.79%

Table 19. Day 42 % Phosphorus Digestibility CQR Study Number AGV-15-3 Facility Number 8W

					Adjusted for Dry Matter	Dry Matter			Adjusted for Dry Matter	Drv Matter		
In In		Titanium in Ileal	Phosphorus	Moisture in Ileal	_	Phosphorus in Ileal	Titanium in	Phosphorus in Feed		. <u>2.</u>	% Moisture in	% Phosphorus
Group	4	Content (ppm)	(grams sample)	100 grams sample)	Dry Matter	Dry Matter	Feed (ppm)	grams feed)	Ş	Dry Matter	Feed	Digestibility
1 7	4	1320	0.24	83.95	211.86	0.04	1490	0.49	1320	0.43	11.40	44.71%
1 1 4	 	900	0.16	85.80	127.80	0.02	1490		1320	0.43	11.40	45.94%
1 1	 6 	1040	0.17	83.40	172.64	0.03	1490	0.49	1320	0.43	11.40	50.29%
1 5	+-7	1400	0.20	83.38	232.68	0.03	1490	0.49	1320	0.43	11.40	56.56%
1 8	+ ∞ 	1440	0.21	81.77	262.51	0.04	1490	0.49	1320	0.43	11.40	55.65%
1 3	 9 	1170	0.17	83.95	187.79	0.03	1490	0.49	1320	0.43	11.40	55.82%
12_	⊢ <u>10</u> ⊢	1270	0.20	83.10	214.63	0.03	1400	0.64	1242	0.57	11.29	65.55%
16_	⊢ <mark>11</mark> 	1180	0.20	84.42	183.84	0.03	1490	0.49	1320	0.43	11.40	48.46%
2 7	12	1150	0.19	81.81	209.19	0.03	1490	0.49	1320	0.43	11.40	49.76%
2 6	13	1350	0.25	81.86	244.89	0.05	1490	0.49	1320	0.43	11.40	43.69%
2 2	14	1160	0.23	82.67	201.03	0.04	1400	0.64	1242	0.57	11.29	56.63%
2 3	15	1350	0.29	81.91	244.22	0.05	1490	0.49	1320	0.43	11.40	34.68%
2 - 1	7	1450	0.16	80.54	282.17	0.03	1490	0.49	1320	0.43	11.40	66.45%
2 5	+- 17 -	1500	0.24	80.94	285.90	0.05	1490	0.49	1320	0.43	11.40	51.35%
2 4	18	1180	0.19	81.95	212.99	0.03	1490	0.49	1320	0.43	11.40	51.04%
2 8	19	1360	0.31	83.92	218.69	0.05	1490	0.49	1320	0.43	11.40	30.69%
3 7	22	1300	0.15	83.37	216.19	0.02	1490	0.49	1320	0.43	11.40	64.91%
3	23	1340	0.18	83.29	223.91	0.03	1490	0.49	1320	0.43	11.40	59.15%
3	24	1100	0.21	83.90	177.10	0.03	1490	0.49	1320	0.43	11.40	41.95%
3 1	25	1420	0.30	83.61	232.74	0.05	1490	0.49	1320	0.43	11.40	35.76%
3 4	26	1300	0.19	83.57	213.59	0.03	1490	0.49	1320	0.43	11.40	55.56%
3 2	27	1130	0.32	82.30	200.01	0.06	1400	0.64	1242	0.57	11.29	38.05%
3 6	28	1110	0.14	83.56	182.48	0.02	1490	0.49	1320	0.43	11.40	61.65%
3 - 8	29	1400	0.29	82.15	249.90	0.05	1490	0.49	1320	0.43	11.40	37.01%
4 7	30	1260	0.22	82.99	214.33	0.04	1490	0.49	1320	0.43	11.40	46.91%
4 8	31	1860	0.23	74.51	474.11	0.06	1490	0.49	1320	0.43	11.40	62.40%
4 4	32	1060	0.15	83.41	175.85	0.02	1490	0.49	1320	0.43	11.40	56.97%
4 6	33	1110	0.20	84.39	173.27	0.03	1490	0.49	1320	0.43	11.40	45.21%
4 5	34	1230	0.17	83.60	201.72	0.03	1490	0.49	1320	0.43	11.40	57.97%
4 3	 35 	1030	0.31	83.86	166.24	0.05	1490	0.49	1320	0.43	11.40	8.48%
4 2	36	1030	0.18	83.83	166.55	0.03	1400	0.64	1242	0.57	11.29	61.77%
4 1	_ 37_	1390	0.27	84.47	215.87	0.04	1490	0.49	1320	0.43	11.40	40.93%
5 8	⊥ _ 41 _	950	0.09	83.72	154.66	0.01	1490	0.49	1320	0.43	11.40	71.19%
5 6	42	1110	0.19	82.65	192.59	0.03	1490	0.49	1320	0.43	11.40	47.95%
57_	- 43 	1160	0.16	83.66	189.54	0.03	1490	0.49	1320	0.43	11.40	58.06%
5 3	- 44 	1140	0.23	84.29	179.09	0.04	1490	0.49	1320	0.43	11.40	38.65%
5 4	45	1190	0.24	82.80	204.68	0.04	1490	0.49	1320	0.43	11.40	38.67%
5 1	1 46	1130	0.27	82.56	197.07	0.05	1490	0.49	1320	0.43	11.40	27.34%
5	47	1170	0.16	82.99	199.02	0.03	1490	0.49	1320	0.43	11.40	58.42%
5 2	48	1090	0.25	82.76	187.92	0.04	1400	0.64	1242	0.57	11.29	49.83%
6 4	49	1310	0.26	83.15	220.74	0.04	1490	0.49	1320	0.43	11.40	39.65%
6	50	1340	0.23	84.05	213.73	0.04	1490	0.49	1320	0.43	11.40	47.81%
6 7	51 	960	0.16	83.62	157.25	0.03	1490	0.49	1320	0.43	11.40	49.32%
6 3	52	1040	0.24	83.61	170.46	0.04	1490	0.49	1320	0.43	11.40	29.83%
6 1	- 	950	0.18	83.33	158.37	0.03	1490	0.49	1320	0.43	11.40	42.38%
6 2	- 54	1060	0.29	78.12	231.93	0.06	1400	0.64	1242	0.57	11.29	40.15%
6	- 55	1210	0.22	83.13	204.13	0.04	1490	0.49	1320	0.43	11.40	44.71%
6 8	56	1320	0.26	83.98	211.46	0.04	1490	0.49	1320	0.43	11.40	40.11%
7 4	59	1230	0.24	83.08	208.12	0.04	1490	0.49	1320	0.43	11.40	40 67%
1	 	<u> </u>						 - -			11 10	10.07
7 1	60	960	0.32	84.31	150.62	0.05	1490	0.49	1320	0.43	11.40	-1.36%

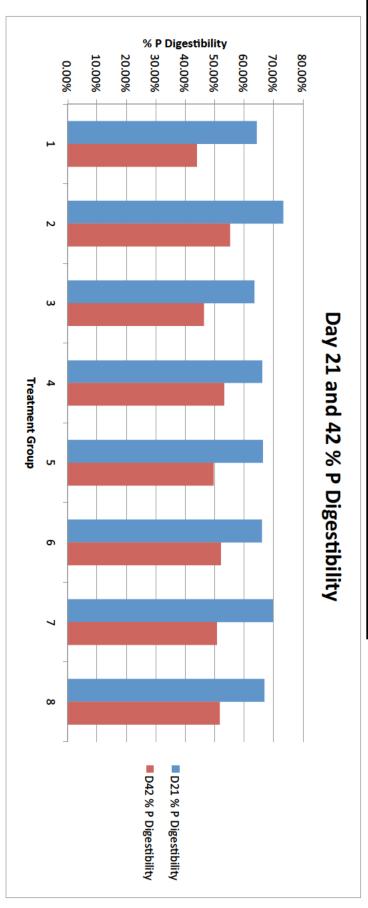
							Adiusted fo	· Dou Matter			Adjusted for	Day Matter		
Column Part		#		Titanium in Ileal	Phosphorus	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed	2.	% Moisture in	% Phosphor
S	Slock	Group	Pen	Content (ppm)	(grams per 100 grams sample)	Content (grams per 100 grams sample)	Content Adjusted for Dry Matter	Content Adjusted for Dry Matter	Feed (ppm)	(grams per 100 grams feed)			Feed	Digestibility
S Gold 1986 198	7	6	61	1110	0.19	84.68	170.05	0.03	1490	0.49	1320	0.43	11.40	47.95%
S	7 - [3 -	62 -	1060	0.24	84.37	165.68	0.04	1490	0.49	1320	0.43	11.40	31.15%
No.	7-	5	63 	980	0.20	+ 83.09	165.72	0.03	1490	0.49		0.43	11.40	37.94%
2 65 1150 0.02 1250 1250 0.02 1250	7	∞ - +	64 -	1250	0.23	+ 81.62	229.75	0.04	1490	0.49	1320	0.43	11.40	44.05%
7 66 1300	7	2-+-	65	1260	0.30	80.61	244.31	0.06	1400	0.64	1242	0.57	11.29	47.92%
3 60 1230 0.26 8310 2297 0.04 1490 0.04 1200 0.04	7	7	66	1160	0.12	82.91	198.24	0.02	1490	0.49	1320	0.43	11.40	68.54%
1 20 200 201 202 2	∞	7 +	67	1300	0.26	+ 83.10	219.70	0.04	1490	0.49	1320	0.43	11.40	39.18%
2 1.60 1000	&	3	 68 	1230	0.12	85.25	181.43	0.02	1490	0.49	1320	0.43	11.40	70.33%
1 1 1 1 1 1 1 1 1 1	» ∞	 - -	 8	1280	0.21	83.69		0.03	1490	0.49	1320		11.40	50.11%
The color of the	۰ ۰ 	1 -	710	1000	0.14	85.32	145.33	0000	1490	0.04	1320		11.40	57.00%
1 73	∞i 	6 -	72	1060	0.16	84.81	161.01	0.02	1490	0.49	1320	0.43	11.40	54.10%
S 74 1520 O.37 C.264.3 Z.264.3 Z	∞	4	73	1320	0.23	82.68	228.62	0.04	1490	0.49	1320		11.40	47.02%
1	8	5	74	1520	0.37	82.63	264.02	0.06	1490	0.49	1320		11.40	25.98%
1 79 1310 0.15 8327 2934 0.00 1490 0.49 1320 0.43 11.00 14.00 14.00 14.00 0.49 1320 0.43 11.00 14.00	9	2	78	1390	0.30	82.42	244.36	0.05	1400	0.64	1242		11.29	52.79%
No. No.	9	 - -	79	1310	0.15	83.27	219.16	0.03	1490	0.49	1320		11.40	65.18%
1. 1. 1. 1. 1. 1. 1. 1.	9 -	 - -	8 8	1410	0.23	+ 82.31	249.43	0.04	1490	0.49	1320		11.40	50.40%
7 1 83	- - -	+-	3 2 			+ 83.63		T 0.02					11.40	67.06%
	ەزە ل	7-+-	8 8	1370	0.19	+ 82.98	233.17	0.03	1490	0.49	1320		11.40	57.83%
8 85 1270 0.15 1823 21298 0.03 1490 0.49 1320 0.43 11.40 14.	9	ω - -	84	1280	0.18	81.76	233.47	0.03	1490	0.49	1320	0.43	11.40	57.24%
8 86 1340 0.13 81.51 246.43 0.02 1490 0.49 1320 0.43 11.40 14.40 14.40 12.40 1	9	8	85	1270	0.15	83.23	212.98	0.03	1490	0.49	1320	0.43	11.40	64.08%
6 87 1060 0.14 82.57 184.76 0.02 1490 0.49 1320 0.43 11.40 132	10	8	86	1340	0.13	81.61	246.43	0.02	1490	0.49	1320	0.43	11.40	70.50%
1	10	6	87	1060	0.14	82.57	184.76	0.02	1490	0.49	1320	0.43	11.40	59.84%
13 130 132	10	4	 <mark>88</mark> 	1370	0.20	81.35	255.51	0.04	1490	0.49	1320	0.43	11.40	55.61%
1	10	3	89	1320	0.17	83.24	221.23	0.03	1490	0.49	1320	0.43	11.40	60.84%
1.130	15	 - -	90	1290	0.23	82.98	219.56	0.04		0.49	1320	0.43	11.40	45.78%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	it	1	3 4	1300	0.25	03.50	105.//				1242		11.29	35.46%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1010 1	5-+-	93	1140	0.24	+ 83.25		1 - 0.04		0.49	1320		11.40	35.98%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#	ω 	96	1130	0.18	84.03	180.46	0.03	1490	0.49	1320	0.43	11.40	51.56%
$ \begin{bmatrix} 4 & 1 & 98 & 1230 & 0.14 & 1 & 84.02 & 196.55 & 1 & 0.02 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 8 & 1 & 99 & 11140 & 0.20 & 1 & 83.11 & 192.55 & 1 & 0.03 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1270 & 0.16 & 1 & 82.79 & 218.57 & 0.03 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 5 & 1 & 101 & 1230 & 0.14 & 1 & 83.67 & 200.86 & 1 & 0.02 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 2 & 1 & 102 & 1030 & 0.19 & 1 & 84.36 & 161.09 & 0.03 & 1400 & 0.64 & 1242 & 0.57 & 11.29 \\ 1 & 7 & 1 & 103 & 1410 & 0.22 & 1 & 83.07 & 238.71 & 0.04 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 8 & 1 & 106 & 1210 & 0.10 & 184.02 & 193.36 & 0.02 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 8 & 1 & 106 & 1250 & 0.01 & 84.02 & 193.36 & 0.02 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 5 & 1 & 107 & 1250 & 0.01 & 84.00 & 174.90 & 0.03 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 7 & 1 & 109 & 1150 & 0.13 & 1 & 84.80 & 190.05 & 100.3 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 7 & 1 & 100 & 1180 & 0.24 & 84.97 & 120.85 & 0.02 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 7 & 1 & 100 & 1180 & 0.25 & 1 & 84.97 & 172.85 & 0.04 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 7 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.49 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.049 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.049 & 1320 & 0.43 & 11.40 \\ 1 & 1 & 100 & 1180 & 0.25 & 1 & 84.27 & 185.61 & 0.04 & 1490 & 0.049 &$	ä	6	97	1240	0.17	83.05	210.18	0.03	1490	0.49	1320	0.43	11.40	58.31%
$ \begin{bmatrix} 8 & 1 & 99 & 1140 & & 0.20 & & 83.11 & & 192.55 & & 0.03 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 1 & 100 & 1270 & & 0.16 & & 82.79 & & 218.57 & & 0.03 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 2 & 1 & 101 & 1230 & & 0.14 & & 83.67 & & 200.86 & & 0.02 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 2 & 1 & 102 & 1030 & & 0.19 & & 83.67 & & 200.86 & & 0.02 & & 1490 & & 0.64 & & 1242 & & 0.57 & & 11.40 & \\ 1 & 2 & 1 & 103 & 1410 & & 0.22 & & 83.07 & & 238.71 & & 0.03 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 4 & 1 & 104 & 1210 & & 0.10 & & 84.02 & & 193.36 & & 0.02 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 8 & 1 & 105 & 1100 & & 0.19 & & 84.10 & & 174.90 & & 0.03 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 5 & 107 & 1250 & & 0.13 & & 83.46 & & 206.75 & & 0.02 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 5 & 109 & 1150 & & 0.20 & & 84.80 & & 190.00 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 7 & 1 & 109 & 1150 & & 0.24 & & 84.97 & & 172.85 & & 0.04 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 109 & 1150 & & 0.25 & & 84.27 & & 185.61 & & 0.04 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 109 & 1150 & & 0.25 & & 84.27 & & 185.61 & & 0.04 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 109 & 1150 & & 0.25 & & 84.27 & & 185.61 & & 0.04 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 109 & 1150 & & 0.25 & & 84.27 & & 185.61 & & 0.04 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 109 & 1150 & & 0.25 & & 84.27 & & 185.61 & & 0.04 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 1 & 109 & 1150 & & 0.25 & & 84.27 & & 185.61 & & 0.04 & & 1490 & & 0.49 & & 1320 & & 0.43 & & 11.40 & \\ 1 & 1$	11	4	98	1230	0.14	84.02	196.55	0.02	1490	0.49	1320	0.43	11.40	65.39%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 	<mark>8</mark> -	99	1140	0.20	⊥ <u>83.11</u>		L 0.03	1490	0.49	1320		11.40	46.65%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	_ - -		1220		02./9		000	1490		1320	01.43	111.40	65 30%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$: i:	را ا ا	3 5	1030	019	84 36	161 09		1400		1242	015	11 29	50.65%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#i!	7	103	1410	0.22	83.07	238.71	0.04	1490	0.49	1320	0.43	11.40	52.55%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	4	104	1210	0.10	84.02	193.36	0.02	1490	0.49	1320	0.43	11.40	74.87%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	∞	105	1100	0.19	84.10	174.90	0.03	1490	0.49	1320	0.43	11.40	47.48%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	6	106	1250	0.13	83.46	206.75	0.02	1490	0.49	1320	0.43	11.40	68.38%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	5	107	1250	0.20	84.80	190.00	0.03	1490	0.49	1320	0.43	11.40	51.35%
$-\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	 - -	108	1330	0.11	82.69	230.22	0.02	1490	0.49	1320	0.43	11.40	74.85%
- $ -$	12	 - -	109	1150	0.24	+84.97	172.85	0.04	1490	0.49		0.43	11.40	36.54%
	; k		1			+			149 0		1320 	0.43	11140	55.56%

Table 20. Day 42 % Phosphorus Digestibility Summarized by Treatment Group CQR Study Number AGV-15-3 Facility Number 8W

					Adjusted for	Dry Matter			Adjusted for	Dry Matter		
Τπ	ı	Titanium in Ileal	Phosphorus	Moisture in Ileal	Titanium in Heal	Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed	Phosphorus in	% Moisture in	% Phosphorus
	Pen	Contont (nam)	(grams per 100	Content (grams per	Content Adjusted for	Content Adjusted for	Food (nam)	(grams per 100	Adjusted for Dry	Feed Adjusted for	-	
o o o		Content (bbin)	grams sample)	100 grams sample)	Dry Matter	Dry Matter	reed (ppin)	grams feed)	Matter	Dry Matter	1000	Digestionity
1	6	1040	0.17	83.40	172.64	0.03	1490	0.49	1320	0.43	11.40	50.29%
 <mark> </mark> -	16	1450	0.16	80.54	282.17	0.03	1490	0.49	1320	0.43	11.40	66.45%
1	25	1420	0.30	83.61	232.74	0.05	1490	0.49	1320	0.43	11.40	35.76%
<u>,</u>	37	1390	0.27	84.47	215.87	0.04	1490	0.49	1320	0.43	11.40	
<u>,,</u>	46	1130	0.27	82.56	197.07	0.05	1490	0.49	1320	0.43	11.40	27.34%
<u>,,</u>	ଅ ଆ	950	0.18	83.33	158.37	0.03	1490	0.49	1320	0.43	11.40	42.38%
<u>,,</u>	6 	960	0.32	84.31	150.62	0.05	1490	0.49	1320	0.43	11.40	-1.36%
L	71	990	0.14	85.32	145.33	0.02	1490	0.49	1320	0.43	11.40	57.00%
1	79	1310	0.15	83.27	219.16	0.03	1490	0.49	1320	0.43	11.40	65.18%
 - 	90 	1290	0.23	82.98	219.56	0.04	1490	0.49	1320	0.43	11.40	45.78%
1	100	1270	0.16	82.79	218.57	0.03	1490	0.49	1320	0.43	11.40	61.69%
1	109	1150	0.24	84.97	172.85	0.04	1490	0.49	1320	0.43	11.40	36.54%
		1196	0.22	83.46	198.75	0.04	1490	0.49	1320	0.43	11.4	44.00%
eviations		183	0.06	1.26	40.23	0.01	N N	NA	¥.	NA I	NA.	18.94%
		15.32%	29.40%	1.51%	20.24%	28.03%	NA	NA	NA	NA	NA	43.06%
2	10	1270	0.20	83.10	214.63	0.03	1400	0.64	1242	0.57	11.29	65.55%
2	14	1160	0.23	82.67	201.03	0.04	1400	0.64	1242	0.57	11.29	56.63%
2	27	1130	0.32	82.30	200.01	0.06	1400	0.64	1242	0.57	11.29	38.05%
2	36	1030	0.18	83.83	166.55	0.03	1400	0.64	1242	0.57	11.29	61.77%
2	48	1090	0.25	82.76	187.92	0.04	1400	0.64	1242	0.57	11.29	49.83%
2	54	1060	0.29	78.12	231.93	0.06	1400	0.64	1242	0.57	11.29	40.15%
2	65	1260	0.30	80.61	244.31	0.06	1400	0.64	1242	0.57	11.29	47.92%
2	70	1090	0.14	84.41	169.93	0.02	1400	0.64	1242	0.57	11.29	71.90%
2	78_	1390	0.30	82.42	244.36	0.05	1400	0.64	1242	0.57	11.29	52.79%
2	91	1130	0.23	83.56	185.77	0.04	1400	0.64	1242	0.57	11.29	55.48%
2	102	1030	0.19	84.36	161.09	0.03	1400		1242	0.57	11.29	59.65%
2	111	1370	0.23	82.31	242.35	0.04	1400		1242	0.57	11.29	63.28%
		8911	0.24	82.54	204.16	0.04	1400		1242		•	55.25%
eviations	 	126	0.06	1.74	31.10	0.01	NA 		NA 		ı	10.11%
		10.77%	23.38%	2.11%	15.23%	30.84%	N	NA	NA	NA	N	18.30%
	Trt Pe Group Frequency	Trt Pen	Pen Con Con 1109 1111 1111 1111 1111 1111 1111 111	Pen Content (ppm) 8	Pen Titanium in Ilea! Phosphorus (grams per 100 grams per 100 grams sample) 6 1040 0.17 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	Pen Titanium in Ileal Content (ppm) Phosphorus (grams per 100 prints sample) Moisture in Ileal (grams per 100 prints sample) Titanium in Ileal (grams per 100 prints sample) Titanium in Ileal (grams per 100 prints sample) Titanium in Ileal (grams per 100 prints sample) Moisture in Ileal (grams per 100 prints sample) Titanium in Ileal (grams per 100 prints sample) Moisture in Ileal (grams per 100 prints sample) Titanium in Ileal (grams per 100 prints sample) Interest per 100 prints sample) Moisture in Ileal (grams per 100 prints sample) Interest per 100 prints sample)	Pen Trianium in Ileal Content (ppm) Phosphorus grams per 100 grams sample) Moisture in Ileal Content (grams per Content Adjusted for Content Adjusted for Content (grams per Content Adjusted for Content Adjusted for Content Adjusted for Content (grams per Content Adjusted for C	Pen	Pan Titanium in Isaal Content (ppm) Phosphorus (grams per 100 0.017 Moisture in Isaal 100 (prams sample) Titanium in Isaal Dough (prams per 100 0.017 Titanium in Isaal 100 (prams per 100 0.017 Titanium in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Titanium in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Titanium in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Titanium in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Titanium in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Titanium in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Titanium in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosphorus in Isaal 100 (prams sample) Phosph	Part	Pean	Part

						Adiusted for	Par Madday			A dinetad for	Dan Martin		
						Majustea for Dry Matter	DIY IVIALLEI			Adjusted for	Adjusted for Dry Matter		
2	ī	•	Titanium in Ileal	Phosphorus			Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed		% Moisture in	% Phosphorus
DIOCK	Group	-	Content (ppm)	(grams per 100	100 grams sample)	9	Dry Matter	Feed (ppm)	(grams feed)	Matter	Matter Dry Matter	Feed	Digestibility
1	u u	9	1170	0.17	83.95	187.79	0.03	1490	0.49	1320	0.43	11.40	55.82%
2	ე ყ	15	1350	0.29	81.91	244.22	0.05	1490	0.49	1320	0.43	11.40	34.68%
ω	٦ ا ا	24	1100	0.21	83.90	177.10	0.03	1490	0.49	1320	0.43	11.40	41.95%
4	ე ცე 	35 -	1030	0.31	83.86	166.24	0.05	1490	0.49	1320	0.43	11.40	8.48%
5	ω	44	1140	0.23	84.29	179.09	0.04	1490	0.49	1320	0.43	11.40	38.65%
6	ا اس ا	52	1040	0.24	83.61	170.46	0.04	1490	0.49	1320	0.43	11.40	29.83%
7	ω	62	1060	0.24	84.37	165.68	0.04	1490	0.49	1320	0.43	11.40	31.15%
8	သ မ	68	1230	0.12	85.25	181.43	0.02	1490	0.49	1320	0.43	11.40	70.33%
9	3	84	1280	0.18	81.76	233.47	0.03	1490	0.49	1320	0.43	11.40	57.24%
10	S	89	1320	0.17	83.24	221.23	0.03	1490	0.49	1320	0.43	11.40	60.84%
11	3	96	1130	0.18	84.03	180.46	0.03	1490	0.49	1320	0.43	11.40	51.56%
12	3	108	1330	0.11	82.69	230.22	0.02	1490	0.49	1320	0.43	11.40	74.85%
Segerava	 		1182	0.20	83.57	194.78	0.03	1490	0.49	1320	0.43	11,	46.28%
Standard	tandard Deviations		117	0.06	1.02	28.83	0.01	NA		NA	NA	NA	19.04%
CVs			9.90%	30.01%	1.22%	14.80%	31.53%	NA	NA	NA	NA	NA	41.13%
		,							5		5		
1	T 4 +	 6	900	0.16	+ 85.80	127.80	0.02	1490	0.49	<u>1320</u>	0.43	11.40	45.94%
_ 2	 4 	18	1180	0.19	81.95	212.99	0.03	1490	0.49	1320	0.43	11.40	51.04%
ω	4	26	1300	0.19	83.57	213.59	0.03	1490	0.49	1320	0.43	11.40	55.56%
4	4	32	1060	0.15	83.41	175.85	0.02	1490	0.49	1320	0.43	11.40	56.97%
5	4	45	1190	0.24	82.80	204.68	0.04	1490	0.49	1320	0.43	11.40	38.67%
6	4	49	1310	0.26	83.15	220.74	0.04	1490	0.49	1320	0.43	11.40	39.65%
7	4	59	1230	0.24	83.08	208.12	0.04	1490	0.49	1320	0.43	11.40	40.67%
8	4	73	1320	0.23	82.68	228.62	0.04	1490	0.49	1320	0.43	11.40	47.02%
9	- 4 -	 81 	1200		83.63	196.44	0.02	1490	0.49	1320	0.43	11.40	67.06%
10	4	88	1370	0.20	81.35	255.51	0.04	1490	0.49	1320	0.43	11.40	55.61%
11	4	98	1230	0.14	84.02	196.55	0.02	1490	0.49	1320	0.43	11.40	
12	4	104	1210	0.10	84.02	193.36	0.02	1490	0.49	1320	0.43	11.40	74.87%
Segerava			1208	0.19	83.29	202.85	0.03	1490	0.49	1320	0.43	11.4	53.20%
Standard	tandard Deviations	3	127	0.05	1.12	30.95	0.01	NA	NA	NA	NA	NA	11.61%
CVs			10.49%	27.19%	1.35%	15.26%	30.31%	NA	NA	NA	NA	NA	21.83%

						Adjusted for	Adjusted for Dry Matter		_	Adjusted for Dry Matter	Dry Matter	_	
					Maide in Hard	The lead to the lead to	Diy macco			- Aujusteu 101	Di y macan		
Block	Τπ	Don	Titanium in Ileal	Phosphorus	Content (grams ner	Content Adjusted for	Content Adjusted for	Titanium in	/grams per 100	Adjusted for Dry	Phosphorus in	% Moisture in	% Phosphorus
	Group		Content (ppm)	grams sample)	100 grams sample)	Dry Matter	Dry Matter	Feed (ppm)	grams feed)	Matter	Dry Matter	Feed	Digestibility
1	5	7	1400	0.20	83.38	232.68	0.03	1490	0.49	1320	0.43	11.40	56.56%
2	5	17	1500	0.24	80.94	285.90	0.05	1490	0.49	1320	0.43	11.40	51.35%
S	5	23	1340	0.18	83.29	223.91	0.03	1490	0.49	1320	0.43	11.40	59.15%
4	5	34	1230	0.17	83.60	201.72	0.03	1490	0.49	1320	0.43	11.40	57.97%
5	5	47	1170	0.16	82.99	199.02	0.03	1490	0.49	1320	0.43	11.40	58.42%
6	ر ا	S	1210	0.22	83.13	204.13	0.04	1490	0.49	1320	0.43	11.40	44.71%
7	5	63	980	0.20	83.09	165.72	0.03	1490	0.49	1320	0.43	11.40	37.94%
8	5	74	1520	0.37	82.63	264.02	0.06	1490	0.49	1320	0.43	11.40	25.98%
9	5	80	1410	0.23	82.31	249.43	0.04	1490	0.49	1320	0.43	11.40	50.40%
10	5	93	1140	0.24	83.25	190.95	0.04	1490	0.49	1320	0.43	11.40	35.98%
11	5	101	1230	0.14	83.67	200.86	0.02	1490	0.49	1320	0.43	11.40	65.39%
12	5	107	1250	0.20	84.80	190.00	0.03	1490	0.49	1320	0.43	11.40	51.35%
Averages			1282	0.21	83.09	217.36	0.04	1490	0.49	1320	0.43	11,	49.60%
Standard	tandard Deviations		158	0.06	0.91	34.80	0.01	AN	NA	NA	NA	NA	11.47%
CVs			12.30%	27.67%	1.10%	16.01%	30.43%	NA	NA	NA	NA	NA	23.12%
1	6	11	1180	0.20	84.42	183.84	0.03	1490	0.49	1320	0.43	11.40	48.46%
2	6 6	13	1350	0.25	81.86	244.89	0.05	1490	0.49	1320	0.43	11.40	43.69%
3	6	28	1110	0.14	83.56	182.48	0.02	1490	0.49	1320	0.43	11.40	61.65%
4	6	33	1110	0.20	84.39	173.27	0.03	1490	0.49	1320	0.43	11.40	45.21%
5	6	42	1110	0.19	82.65	192.59	0.03	1490	0.49	1320	0.43	11.40	47.95%
6	6	50	1340	0.23	84.05	213.73	0.04	1490	0.49	1320	0.43	11.40	47.81%
_ 7	6	61	1110	0.19	84.68	170.05	0.03	1490	0.49	1320	0.43	11.40	47.95%
 &	6	72	1060	0.16	84.81	161.01	0.02	1490	0.49	1320	0.43	11.40	54.10%
9	 	82	1250	0.24	81.14	235.75	0.05	1490	0.49	1320	0.43	11.40	41.62%
10	6	87	1060	0.14	82.57	184.76	0.02	1490	0.49	1320	0.43	11.40	59.84%
11	6	97	1240	0.17	83.05	210.18	0.03	1490	0.49	1320	0.43	11.40	58.31%
12	6	106	1250	0.13	83.46	206.75	0.02	1490	0.49	1320	0.43	11.40	68.38%
Segerava			1181	0.19	83.39	196.61	0.03	1490	0.49	1320	0.43	11.4	52.08%
Standard	Standard Deviations		103	0.04	1.17	26.08	0.01	NA NA	N N	NA .	NA	NA	8.27%
CVs			8.71%	21.47%	1.40%	13.26%	25.54%	NA	NA	NA	NA	NA	15.88%


_		1			Phosphorus	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	-	Phosphorus in Feed	Titanium in Feed	Phosphorus in		
В	Block	ī	Pen	Contact (page)	(grams per 100	Content (grams per	Content Adjusted for	Content Adjusted for	Intanium in		Adjusted for Dry Feed Adjusted for		e 5	% Phosphorus
		Group		Content (ppm)	grams sample)	100 grams sample)	Dry Matter	Dry Matter	reea (ppm)	grams feed)	Matter	Dry Matter	reed	Digestibility
	1	7	4	1320	0.24	83.95	211.86	0.04	1490	0.49	1320	0.43	11.40	44.71%
	2	7	12	1150	0.19	81.81	209.19	0.03	1490	0.49	1320	0.43	11.40	49.76%
	ω	7	22	1300	0.15	83.37	216.19	0.02	1490	0.49	1320	0.43	11.40	64.91%
	4	7	30	1260	0.22	82.99	214.33	0.04	1490	0.49	1320	0.43	11.40	46.91%
i	5	7	43	1160	0.16	83.66	189.54	0.03	1490	0.49	1320	0.43	11.40	58.06%
	6	7	51	960	0.16	83.62	157.25	0.03	1490	0.49	1320	0.43	11.40	49.32%
	7	7	66	1160	0.12	82.91	198.24	0.02	1490	0.49	1320	0.43	11.40	68.54%
	8	7	67	1300	0.26	83.10	219.70	0.04	1490	0.49	1320	0.43	11.40	39.18%
	9	7	83	1370	0.19	82.98	233.17	0.03	1490	0.49	1320	0.43	11.40	57.83%
i	10	7	92	1300	0.25	84.05	207.35	0.04	1490	0.49	1320	0.43	11.40	41.52%
	11	7	103	1410	0.22	83.07	238.71	0.04	1490	0.49	1320	0.43	11.40	52.55%
	12	7	110	1180	0.25	84.27	185.61	0.04	1490	0.49	1320	0.43	11.40	35.58%
Ave	rages	 	 	1239	0.20	83.32	206.76	0.03	1490	0.49	1320	0.43	11.4	50.74%
Stai	ndard D	andard Deviations		123	0.05	0.66	22.02	0.01	NA	NA	NA	NA	NA	10.12%
SS				9.92%	22.91%	0.79%	10.65%	21.91%	NA	NA	NA	NA	NA	19.95%
٦		œ	œ	1440	0.21	81.77	262.51	0.04	1490	0.49	1320	0.43	11.40	55.65%
	2	8	19	1360	0.31	83.92	218.69	0.05	1490	0.49	1320	0.43	11.40	30.69%
	ω	∞	29	1400	0.29	82.15	249.90	0.05	1490	0.49	1320	0.43	11.40	37.01%
	4	8	31	1860	0.23	74.51	474.11	0.06	1490	0.49	1320	0.43	11.40	62.40%
	5		41	950	0.09	83.72	154.66	0.01	1490	0.49	1320	0.43	11.40	71.19%
	6	8	56	1320	0.26	83.98	211.46	0.04	1490	0.49	1320	0.43	11.40	40.11%
	7	8	64	1250	0.23	81.62	229.75	0.04	1490	0.49	1320	0.43	11.40	44.05%
	8	8	69	1280	0.21	83.69	208.77	0.03	1490	0.49	1320	0.43	11.40	50.11%
	9	8	85 	1270	0.15	83.23	212.98	0.03	1490	0.49	1320	0.43	11.40	64.08%
	10	8	86	1340	0.13	81.61	246.43	0.02	1490	0.49	1320	0.43	11.40	70.50%
	11	∞	99	1140	0.20	83.11	192.55	0.03	1490	0.49	1320	0.43	11.40	46.65%
	12	8	105	1100	0.19	84.10	174.90	0.03	1490	0.49	1320	0.43	11.40	47.48%
Ave	verages			6051	0.21	82.28	236.39	0.04	1490	0.49	1320	0.43	11.4	51.66%
Star	ndard D	eviations	 	222	0.06	2.63	80.99	0.01	NA 	NA	NA .	NA 	NA	13.19%
Š				16.92%	30.55%	3.20%	34.26%	34.32%	Ä		N	NA -	N	25.53%

djusted for Dry Matter

djusted for Dry Matter

Graph 7. % Phosphorus Digestibility on Day 21 and Day 42 CQR Study Number AGV-15-3 Facility Number 8W

Phytase 2500 TPT Premix at 0.02% of Finished Feed (LP)	51.66%	66.88%	8
3000 Units Phytase (LP)	50.74%	69.80%	7
1000 Units Phytase (LP)	52.08%	66.01%	6
750 Units Phytase (LP)	49.60%	66.36%	5
500 Units Phytase (LP)	53.20%	66.20%	4
250 Units Phytase (LP)	46.28%	63.47%	3
High Phosphate (HP)	55.25%	73.29%	2
Low Phosphate (LP)	44.00%	64.26%	1
ii ea cilielic Descripcion	Digestibility	Digestibility	ii Caloup
Trootsport Doggintion	D42 % P	D21 % P	T-+ Com

Appendix 10

GraINzyme Phytase Phy02 Dose Response in Poultry

Project No. AGV-15-4

Conducted by Colorado Quality Research, Ft. Collins, CO

Final Study Report Pages 1 - 143

Appendix 10 Pages 311-453

COLORADO QUALITY RESEARCH FINAL REPORT

GralNzyme Phytase Phy02 Dose Response with Tolerance in Poultry

Project No. AGV-15-4

SPONSOR

Agrivida, Inc. 200 Boston Ave, Suite 2975 Medford, MA 02155

TEST FACILITY

COLORADO QUALITY RESEARCH, INC.

400 East County Road 72 Wellington, CO 80549

May 2016

This final report is confidential and is the property of Colorado Quality Research, Inc. and is not to be reproduced without authorization from CQR.

GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

This study was conducted in accordance with this protocol, CQR and Agrivida Standard Operating Procedures, and the principles and guidelines for the care and use of agricultural animals in research (FASS, 2010). The portion of this study conducted by Colorado Quality Research was conducted in compliance with the Food and Drug Administration's Good Laboratory Practice for Nonclinical Laboratory Studies regulation (21 CFR Part 58). Specific items that were not conducted under GLP per protocol were:

- Tibia ashing
- Ileal Phosphorus Digestibility Testing
- Total coliform analysis of test facility water by Stewart Environmental Consultants, Inc.
- Northern Colorado Water Association water testing
- Diet Formulations
- Proximate Analysis
- · Yearly scale licensing by the State of Colorado
- Enzyme analyses of the feed samples by Agrivida
- · Statistical analyses performed by Agrivida
- Hematological Assays
- · Test diet analysis

Dan Moore, Ph.D.

Colorado Quality Research, Inc.

400 E. County Road 72, Wellington, CO 80549

Date

QUALITY ASSURANCE STATEMENT

Study Title:

GraINzyme Phytase Phy02 Dose Response with Tolerance in Poultry

Study Number:

AGV-15-4

Reviews conducted by the Quality Assurance Unit confirm that the final report accurately describes the methods followed and accurately reflect the raw data for the portion of the study conducted by Colorado Quality Research, Inc. (CQR).

Following is a list of reviews conducted by Integrated Quality Management on the study reported herein. The original Quality Assurance Reports will be retained at Colorado Quality Research.

Data of		Date Reported To:		
Dates of Inspection/Audit	Phase	Study Director	Management	
1 May 2015	Protocol Review	1 May 2015	1 May 2015	
23-14 May 2015	Treatment Diets – Preparation and Sampling	30 July 2015		
29 July 2015	Day 0 - Bird Receipt and Placement	30 July 2015	30 July 2015	
9 September 2015	Day 42 – Necropsy and Sample Collection	10 September 2015	10 September 2015	
8, 30, 31 March 2016	Raw Data/Study Record Review	1April 2016	1April 2016	
8,30,31 March and 1 April 2016	Final Report Review	1 April 2016	1 April 2016	

Contract Quality Assurance

Integrated Quality Management

6 May 2016 Date

STUDY DIRECTOR'S COMMENTS/CERTIFICATIONS STATEMENT

No adverse effects were observed. There were 5 protocol deviations during the course of the study; however, none had an impact on the quality of the data obtained in the study.

I, Dan Moore, Study Director, attest that Study No.AGV-15-4 was conducted according to the Protocol, amendments and deviations and that the data were collected and recorded in accordance with the applicable Food and Drug Administration, Center for Veterinary Medicine (CVM) Guidelines.

Study Director Date

	TENTS D LABORATORY PRACTICE COMPLIANCE STATEMENT	2
	LITY ASSURANCE STATEMENT	
	DY DIRECTOR'S COMMENTS/CERTIFICATIONS STATEMENT	
	STUDY TITLE	
	PROTOCOL NUMBER	
III.	STUDY SPONSOR	<u>c</u>
IV.	STUDY OBJECTIVE(S)	g
V. S	STUDY SCHEDULE	<u>c</u>
A.	Experimental Start Date (Day 0)	<u>c</u>
B.	Schedule of Events	g
C.	Experimental End Date (Day 42)	10
VI.	STUDY DESIGN	10
A.	Treatment Groups	10
B.	Experimental Design	10
C.	Blocking Factor(s)	11
D.	Randomization Procedures	11
1	. Allocation of Animals to Treatment Groups	11
2	2. Allocation of Treatment Groups to Pens	11
3	Allocation of Treatment Codes to Treatment Groups	11
VII.	STUDY PROCEDURES	12
A.	Test Animals	12
1	. Description	12
2	Number of Animals	12
3	Source of Animals	13
4	Identification Method	13
B.	Inclusion Criteria	13
C.	Exclusion Criteria	13
D.	Blinding of Study	13
1		
2	P. Blinding Methods and Procedures	13
3		
E.	Study Methods	14
1	. Measurements Made	14
F.	Study Facilities	16
1	. Containment Equipment	16
2	Lighting Equipment	17

3	B. Heating Equipment	.17
4	Cooling Equipment	.17
5	5. Feeding Equipment	.17
6	S. Watering Equipment	.17
7	7. Ventilation Equipment	.17
8	3. Space Allocation per Animal	.18
ç	9. Facility Diagram	.18
G.	Experimental Diets	.18
1	. Diet Formulation	.18
2	2. Sampling and Assays	.19
3	3. Feed Form	20
2	Manufacture of the Experimental Diets	20
5	5. Feeding Program	20
6	6. Watering Program	21
Н.	Drug Administration	21
I.	Removal of Test Subjects	21
1	. Criteria for Removal	21
2	2. Removal Procedure	21
3	3. Fate of Removed Test Subjects	21
J.	Vaccinations	21
K.	Concurrent/Concomitant Medications/Therapies	22
L.	General Management Practices	22
M.	Disposal of Test Subjects	22
VIII.	Specification of Variables	22
A.	Variables Measured for Evaluating Labeled Claim	22
1	Pen weights at Study Days 0, 14, 21, and 42	22
2	2. Pen feed intake for Days 0 – 14, 14 – 21, 21 – 42, 0 – 21, and 0 – 42	22
	3. Performance data (feed conversion and adjusted feed conversion) for Days 0 – 14, 7 - 21, 0 – 21, 21 – 42, and 0 – 42.	
2	I. Tibia Ash Parameters of 3 birds per pen at Study Days 21 and 42	22
5	5. Ileal Phosphorus Digestibility of 3 birds per pen at days 21 and 42	22
	6. Hematological Endpoints at Day 42 for 3 birds per pen belonging to treatment groups and 8	
7	7. Necropsy Data at Day 42 for 3 birds per pen belonging to treatment groups 2 and 8.	.22
B.	Other Variables Recorded During the Study	23
IX.	Data Analysis	23
A.	Experimental Unit	.23

В.	Number of Replicates per Treatment	23
C.	Statistical Methodology	23
D.	Basis for Study Conclusion	23
X. S	Study Locations and Personnel	24
XI.	Collection and Retention of Source Data	25
XII.	Addendums/Deviations to the Protocol	25
XIII.	Investigational Test Substance	27
A.	Test Article	27
1	1. Chemical Name	27
2	2. Trade Name	27
3	3. Active/Inactive Ingredients	28
4	4. Dosage Form	28
5	5. Dose(s) Tested	28
6	6. Lot Number	29
7	7. Expiration Date	29
8	3. Packaging	29
S	9. Test Substance Storage During Study	29
1	10. Material Safety Data Sheet (MSDS)	29
XIV.	Test Article Disposition, Animal Accountability, Feed Disposition, and Fe	eed Accountability
۸	29 Evenes Test and Central Articles	20
A.	Excess Test and Control Articles Feed	
В.		
C.	Test Animals	
XV.	Definition	
А. В.		
ъ. XVI.	Reporting Adverse Events to the Sponsor	
A v i.	Proximate Analysis of Basal Diets	
А. В.	Performance and Mortality Data	
D. С.	Hematological Endpoints	
D.	Tibia Ash	
E.	Percent Phosphorus Digestibility	
XVII.		
XVIII.		
A.	Appendix 1 – Diet Formulations	
л. В.	- TF	
— .	Appendix 2 – Building Diagram	51
C.	Appendix 2 – Building Diagram Appendix 3 – Proximate Analysis Results	

D. Appendix 4 – Tibia Ash Results	58
E. Appendix 5 – Ileal Content Analysis Results	63
F. Appendix 6 – Titanium, Phosphorus, and Moisture Analysis of Feed Results	71
G. Appendis 7 – Statistical Analysis	73
Table 1. Summary of Study Design	10
Table 2. Assignment of Treatment Codes to Pens	11
Table 3. Assignment of Treatment Codes to Treatment Groups	
Table 4. Colorado Quality Research Trace Mineral Premix Formulation	19
Table 5. Guaranteed Analysis of Vitamin Premix (Minimum per Pound)	19
Table 6. Protocol Deviations	26
Table 7. Protocol Amendments	
Table 8. Pounds of Test Article Added to Feed to Deliver Desired Dose	28
Table 9. Proximate Analysis of Low Phosphate Basal Feed	31
Table 10. Proximate Analysis of High Phosphate Basal Feed	31
Table 11. Additional Analyses of Basal Feeds	31
Table 12. Analysis of Test Article Levels (FTU/kg)	
Table 13. Days 0 - 14 Bird Performance and Mortality Data	35
Table 14. Days 0 - 21 Bird Performance and Mortality Data	36
Table 15. Days 0 - 42 Bird Performance and Mortality Data	36
Table 16. Days 14 - 21 Bird Performance and Mortality Data	37
Table 17. Days 21 - 42 Bird Performance and Mortality Data	37
Table 18. Hematology Results for Treatment Groups 2 and 8	38
Table 19. Tibia Ash Results on Days 21 and 42	
Table 20. Ileal Phosphorus Digestibility on Days 21 and 42 (Dry Matter Basis)	41

I. STUDY TITLE

GralNzyme Phytase Phy02 Dose Response with Tolerance in Poultry

II. PROTOCOL NUMBER

CQR Protocol Number AGV-15-4

III. STUDY SPONSOR

Agrivida, Inc. 200 Boston Ave, Suite 2975 Medford, MA 02155 919-675-6666

IV. STUDY OBJECTIVE(S)

The objective of this study was to demonstrate the effectiveness over a range of doses of Phy02, a phytase enzyme product that is being developed by Agrivida, Inc. as a feed additive for poultry diets. In addition, this study included a tolerance dose to demonstrate tolerance of broilers to high doses of the Phy02 phytase.

V. STUDY SCHEDULE

A. Experimental Start Date (Day 0)

July 29th, 2015

B. Schedule of Events

Event	Study Day	Calendar Date
Received, weighed birds by pen, vaccinated for NCB, and placed 17 chicks/pen; Administered Starter 1 diets.	0	29JUL15
Weighed birds by pen; Weighed back Starter 1 diets; Administered Starter 2 diets.	14	12AUG15
Weighed birds by pen; Weighed back Starter 2 diets and changed to Grower/Finisher diets; Removed 3 birds/pen; collected ileal and tibia samples	21	19AUG15

C. Experimental End Date (Day 42)

September 9th, 2015

VI. STUDY DESIGN

A. Treatment Groups

Treatment groups were defined as follows:

Table 1. Summary of Study Design

Trt Group	Description	No. Pens	No. Birds/Pen	No. Birds/Trt
1	Low Phosphate (LP)	12	17	204
2	High Phosphate (HP)	12	17	204
3	250 Units Phytase (LP)	12	17	204
4	500 Units Phytase (LP)	12	17	204
5	750 Units Phytase (LP)	12	17	204
6	1000 Units Phytase (LP)	12	17	204
7	3000 Units Phytase (LP)	12	17	204
8	30,000 Units Phytase (LP)	12	17	204
	Totals	96	NA	1632

B. Experimental Design

The test facility (Building #7) was divided into 12 blocks of 8 pens per block (See **APPENDIX 2**). Treatments were assigned to the pens using a complete randomized block design (see section VI.D.2). Birds were assigned to pens randomly according to CQR SOP B-10. Specific treatment groups are detailed in section VI.A.

C. Blocking Factor(s)

Pen location.

D. Randomization Procedures

1. Allocation of Animals to Treatment Groups

Birds were assigned to pens randomly according to CQR SOP B-10.

2. Allocation of Treatment Groups to Pens

The assignment of treatment codes to pens was conducted using Microsoft Excel 2007. The computer-generated assignment of treatment codes to pens was as follows:

Table 2. Assignment of Treatment Codes to Pens

		Treatment Codes						
	Α	В	С	D	Е	F	G	Н
Block 1	135	134	98	97	136	99	133	100
Block 2	107	101	102	105	106	108	103	104
Block 3	110	112	113	114	115	111	116	109
Block 4	120	121	117	124	122	118	119	123
Block 5	130	125	129	132	127	131	128	126
Block 6	140	178	177	139	137	138	180	179
Block 7	145	142	144	143	141	148	146	147
Block 8	153	151	152	149	154	155	156	150
Block 9	164	166	165	163	162	160	161	159
Block 10	168	174	173	171	169	167	172	170
Block 11	186	187	182	185	181	184	188	183
Block 12	194	189	196	190	192	193	191	195

3. Allocation of Treatment Codes to Treatment Groups

The assignment of treatment codes (A - H) to treatment groups was conducted using Microsoft Excel 2007 and documented in a Note to File. See Section VII.D.

The following table illustrates the treatment code assignment:

Table 3. Assignment of Treatment Codes to Treatment Groups

Treatment Group	Treatment Code
1	E
2	D
3	F
4	G
5	Н
6	Α
7	В
8	С

VII. STUDY PROCEDURES

A. Test Animals

1. Description

Commercial Broiler Chickens

a) Age:

~1 Day-of-age upon receipt (Day 0)

b) Sex:

Male

c) Breed/Class:

Cobb 500

d) Average Initial Body Weight:

44 grams (Range of 41 to 46 grams)

e) Physiological State:

Growing broiler chicks

2. Number of Animals

Number of Birds/Pen: 17 Number of Birds/Treatment: 204 Total Number of Birds: 1632 Pen 119 inadvertently had 18 birds per pen from Day 0-14, at which time the extra bird was removed (per deviation 3).

3. Source of Animals

Birds were obtained from the Cobb-Vantress hatchery in Siloam Springs, Arkansas. The Study Director was responsible for identifying the source of the animals for use in the study. This information was documented and maintained in the study record.

4. Identification Method

There was one card attached to each pen identifying the pen number. A second card attached to each pen identified the treatment code (See Section VII.D).

Prior to Study Day 21, all birds were identified with a uniquely numbered identification tag attached at the back of the neck.

B. Inclusion Criteria

Chicks were visually observed by a veterinarian and only healthy chicks (alert and mobile) were placed on the study.

C. Exclusion Criteria

Upon visual evaluation at placement, birds that appeared unthrifty, ill, or injured were not eligible for inclusion on the study.

D. Blinding of Study

1. Extent of Blinding

Individuals responsible for the collection of data (e.g. pen weights, feed weights, daily observations, biological samples, etc) were blinded to treatment identity.

2. Blinding Methods and Procedures

Letter codes (A, B, C, D, E, F, G, and H) were randomly assigned to treatment groups using Microsoft Excel 2007's random numbers generator. Treatment feeds and pens were labeled with the assigned letter codes instead of treatment group identities. See Section VI.D.3.

3. Personnel with Access to Treatment Codes and Rationale

Personnel with access to the treatment codes included feed mill staff and those individuals not responsible for the collection of data.

E. Study Methods

1. Measurements Made

a) Body Weight

Birds by pen on Study Days 0, 14, 21, and 42. The weights of all mortalities and culls over the course of the study were recorded on the Mortality & Necropsy Records for the appropriate pens. Average bird weight on a pen basis, on each weigh day, was summarized.

b) Pen Feed Intake

The feed remaining in each pen's feeder was weighed and the amount of feed consumed per pen was calculated by subtracting the feed weighed out of the pen from the total amount of feed weighed into the pen. Feeders were weighed on or before Study Day 0 and on Study Days 14, 21, and 42.

c) Performance Data

Average feed conversion was calculated for Days 0 - 14, 14 - 21, 0 - 21, 21 - 42, and 0 - 42 by dividing the total feed intake for that pen by the weight of the surviving birds in that pen.

Adjusted feed conversion was calculated for Days 0 - 14, 14 - 21, 0 - 21, 21 - 42, and 0 - 42 by dividing the total feed intake for that pen by the weight of the surviving birds in that pen and the weight of the birds that died or were removed from that pen.

d) Bone Parameters and Ileal Phosphorus Digestibility

TiO2 was placed in all feeds beginning at Study Day 14.

At Days 21 and 42, three birds were randomly collected from each pen, sacrificed and ileal and left tibia samples were collected. The tibia samples were pooled in one bag per pen (3 tibias per pen in a bag). Adhering muscle was carefully removed from each tibia to get them mostly clean and then they were frozen and prepared to

be shipped to the lab (University of Arkansas). The left tibias were ashed to determine % ash (AOAC 923.03).

The ileal samples were also be pooled in one plastic vial per pen (3 ileal samples per pen in a vial) and were frozen and shipped to the lab (University of Missouri) for determination of ileal phosphorus digestibility. From each bird, starting at the Meckel's Diverticulum, the contents of the ileum were squeezed into the plastic bags.

e) Hematological Endpoints

For only treatment groups 2 (High Phosphate control) and 8 (30,000 Units Phytase). At Day 42, prior to euthanasia for tibia and ileal content collection, blood was collected from the same three birds indicated in the above section for hematological analyses.

From each bird a minimum of 1.0 mL of whole blood was collected into a lavender top EDTA containing tube via the brachial vein. Tubes were labeled with study number, animal number, pen number, and date of collection. It was mixed by gently inverting the tube 5 to 6 times. Two peripheral blood smears were prepared from each lavender top tube. The animal identification number was written on the frosted edge of the slides with a lead pencil. The lavender top tubes were shipped on ice packs to the performing laboratory.

From each bird a mimimum of 2.0 mL of whole blood was collected into a gold SST tube via the brachial vein. Tubes were labeled with study number, animal number, pen number, and date of collection. Blood was allowed to clot for ~ 30 minutes. The tubes were centrifuged for 10-15 minutes. For each sample, the serum was transferred from the SST tube into the tall plastic tube labeled "Serum Tube." (A minimum of 0.56 mL of serum was required. The preferred volume was 1.0 mL). The SST tubes were discarded after removing the serum.

Samples were shipped on ice packs to Marshfield Labs.

The following hematological endpoints were assayed:

Red Blood Cells (RBC)	Glucose (GLU)	Basophil (BASO)
Haematocrit (HCT)	Phosphorus (PHOS)	Lymphocytes (LYMPH)
Mean Corpuscular Volume (MCV)	Alanine aminotransaminase (ALT)	Monocytes (MONO)

Blood Platelet (PLT)	Creatine Phosphphokinase (CPK)	Mean Corpuscular Hemoglobin (MCH)
White Blood Cells (WBC)	Haemoglobin (HGB)	Mean Corpuscular Hemoglobin Concentration (MCHC)
Albumin (ALB)	Eosinophil (EOS)	Red Cell Distribution Width (RDW)
Heterophils (HET)	Absolute Band Heterophils (ABBHET)	Absolute Heterophils (ABHET)
Absolute Lymphocytes (ABLYMP)	Absolute Activated Lymphocytes (ABACTL)	Absolute Monocytes (ABMONO)
Absolute Eosinophils (ABEOS)	Absolute Basophils (ABBASO)	Total Protein (TP)
Globulin (GLOBU)	Albumin/Globulin (A/G)	Creatine Kinase (CK)

f) Histological Sampling

There were no abnormal findings in any birds belonging to group 8 and thus no histological samples were collected.

F. Study Facilities

1. Containment Equipment

Birds were housed in concrete floor pens (~3' x 5') within an environmentally controlled facility (Building #7). All birds were placed in clean pens with clean pine shavings as bedding. Additional shavings were added to pens if they became too damp for comfortable conditions for the test birds during the study. Floor space, temperature, lighting, bird density, and feeder and waterer space were similar for all treatment groups. In order to prevent bird migration, each pen was checked to ensure that no openings greater than 1 inch existed for approximately 14 inches in height between pens. To achieve this, a solid partition was in place for approximately the first 12 inches from the floor between each pen.

2. Lighting Equipment

Lighting was via incandescent lights and a commercial lighting program was used. Hours of light for every 24-hour period were as follows:

Approximate Bird Age (Days)	Approximate Hours of Continuous Light per 24 Hour Period	Approximate Light Intensity (foot candles)
0 – 4	24	1.0 – 1.3
5 – 10	10	1.0 – 1.3
11 – 18	12	0.2 - 0.3
19 – Study End	16	0.2 - 0.3

3. Heating Equipment

Building #7 was heated with 2 forced air propane heaters & 1 supplemental heater when needed.

4. Cooling Equipment

Evaporative cooling cells and negative pressure ventilation.

5. Feeding Equipment

Feed was provided *ad libitum* throughout the study via one hanging, ~17 inch diameter tube feeder per pen. One chick feeder tray was placed in each pen for approximately the first four days. Birds were placed on their respective treatment diets on Day 0 and as per the experimental design.

6. Watering Equipment

Water was provided *ad libitum* throughout the study via one automatic nipple drinker (4 nipples per drinker) per pen. Drinkers were checked twice daily and cleaned as needed to ensure a clean and constant water supply to the birds.

7. Ventilation Equipment

Ventilation was provided by negative pressure with a Plenum (air mixing chamber). There were two air circulating tubes each with a tube fan and two exhaust fans.

8. Space Allocation per Animal

Stocking density was representative of industry standards and was the same across pens on Day 0 (\sim 0.88 ft²/bird), with the exception of pen 119 into which an extra bird was inadvertently placed on Day 0. The bird was removed following Day 14 pen weights and the occurrence documented in a Note to File and Deviation 3 in the study records.

9. Facility Diagram

See APPENDIX 2.

G. Experimental Diets

1. Diet Formulation

Diets were formulated by CQR. Diets met and conformed with the commercial standards for feed used based on breed and age range of broilers. Copies of the diet formulations were included in the study records and Final Report (APPENDIX 1).

There were two different basal diet formulations. Low Phosphate (LP) diets were formulated to contain 0.3% available phosphate (AvP) in the Starter 1 and Starter 2 diets and 0.25% AvP in the Grower/Finisher diets. The LP diets were used for Treatment Groups 1 and 3 – 8. The High Phosphate (HP) diets were formulated to contain 0.45% AvPin the Starter 1 and Starter 2 diets and 0.4% AvP in the Grower/Finisher diets. The HP diet was used as a basal for Treatment Group 2 (Positive Control) only.

a) Feed Additives

Salinomycin was added to the Starter 1 and Starter 2 diets at a level of 50 g/ton in the complete feed. (Bio-Cox 60; Salinomycin sodium; 60 g/lb; Lot Number HSK20483; Expiration OCT 2015; Alpharma).

Titanium dioxide was added to the Starter 2 and Grower/Finisher diets at a level of 0.30% in the basal feed.

b) Vitamin and Mineral Premixes

Table 4. Colorado Quality Research Trace Mineral Premix Formulation

Calcium (Ca) Min	5.35%
Calcium (Ca) Max	6.45%
Manganese (Mn) Min	12.01%
Zinc (Zn) Min	9.90%
Iron (Fe) Min	3.95%
Magnesium (Mg) Min	2.48%
Copper (Cu) Min	1.022%
lodine (I) Min	1400 ppm
Selenium (Se) Min	300 ppm
1	

Ingredients: Calcium carbonate, basic copper chloride, ferrous sulfate, magnesium oxide, manganese sulfate, zinc sulfate, calcium iodate, sodium selenite, mineral oil

Table 5. Guaranteed Analysis of Vitamin Premix (Minimum per Pound)

4,250,000
1,375,000
12,500
6
40
875
875
3,500
5,500
1,400
22,500
450

Ingredients: Rice hulls, calcium carbonate, ehoxyquin, vitamin E supplement, niacin supplement, mineral oil, calcium pantothenate, riboflavin supplement, vitamin A supplement, vitamin D3 supplement, menadione sodium bisulfate complex, pyridoxine hydrochloride, thiamine mononitrate, vitamin B12 supplement, folic acid, and biotin.

2. Sampling and Assays

Prior to the pelleting process, a ~500g sample was taken of all treatment diets.

Following pelleting, treatment feeds were sampled (~500 g sample size) in duplicate according to CQR standard operating procedures (SOP FM-4 rev04). Five to ten samples of approximately equal size were collected from evenly distributed points as the feed was exiting the mixer/pelleter. These samples were combined into a representative composite sample which was then split into two duplicate samples in a manner appropriate to ensure minimal risk of cross-contamination. One sample was

submitted to Agrivida for enzyme (phytase) analysis. The second sample of the treatment feeds was retained by CQR until notification from the Sponsor was received that the back-up samples were no longer needed. All samples were labeled with the CQR project number, sample description, and date of collection.

Basal feeds were sampled (~500 g sample size) in triplicate according to CQR standard operating procedures. One sample was submitted to MVTL for proximate analysis(with the addition of lysine, Methionine, calcium, and phosphorus analysis) [See the following: AOAC 942.05; AOAC 930.15; AOAC (18) 2005 985.01; AOAC 968.08 (D.(a)); AOAC 990.03; AOAC 2003.06; AOAC 2003.05; ISO 11085-2008; AN 3414 (2005-03-02) Revision 4.1; AOAC (18) 2005 Method 994.12; and AOCS B1 6a-05], one sample was submitted to Agrivida for enzyme (phytase) analysis, and the third sample was retained by CQR until the Sponsor requested that it be shipped to the University of Missouri for additional analyses. All samples were labeled with the CQR project number, sample description, and date of collection.

3. Feed Form

Starter 1 was fed as crumbles. Starter 2 and Grower/Finisher were pelleted.

4. Manufacture of the Experimental Diets

Basal diets were manufactured at CQR and stored in bulk mash form. The treatment diets were mixed at the CQR feed mill. A 500 pound capacity vertical mixer, a 4000 pound capacity vertical mixer, or a 14,000 lb horizontal mixer and a California Pellet Mill system were used to prepare the starter and grower/finisher diets. Feed was pelleted using a ~5-mm die and the starter 1 diet was further processed into crumbles. The pelleting temperature was ~65 °C. Mixed feed was stored in bulk storage bins labeled with study number, treatment letter code, and diet type. Complete records of diet mixing were included in the study records.

5. Feeding Program

Feed was provided *ad libitum* throughout the study. Feed added and removed from pens was weighed and recorded from Day 0 to end of study (Day 42). Diet changes were conducted at the same time for all pens. The following feeding program was followed:

Diet	Form	Period	~Lbs of Mixed
Diet	<u> </u>	<u>renou</u>	per Trt
Starter 1	Crumbled	0 – 14 Days	300
Starter 2	Pelleted	14 – 21 Days	390
Grower/Finisher	Pelleted	21 – 42 Days	1680

6. Watering Program

Water was provided ad libitum throughout the study.

H. Drug Administration

The only drug administered in this study (with the exception of Salinomycin in the Starter 1 and Starter 2 diets) was the test article as is detailed in section VI.A.

I. Removal of Test Subjects

1. Criteria for Removal

Birds that developed clinically significant concurrent disease unrelated to the test procedures may, at the discretion of the Study Director or a designee, have been removed from the study. Moribund and/or injured birds may also have been euthanized upon the authority of the facility veterinarian or a qualified technician. Sex-slips, when noted, were euthanized by a qualified technician.

2. Removal Procedure

If an animal died, or was removed and euthanized for humane reasons, it was weighed and recorded on the mortality sheet for the pen and a necropsy performed. The reason for removal was documented. All removed birds were euthanized by cervical dislocation.

3. Fate of Removed Test Subjects

Birds were euthanized and disposed of by landfill via commercial dumpster. No birds entered the human food chain.

J. Vaccinations

Birds were vaccinated for Mareks at the hatchery. Upon the receipt, the chicks were vaccinated for Newcastle Disease (Poulvac Aero® ND; B1 Type, B1 Strain, Live Virus; Zoetis Inc, Kalamazoo, MI; Serial No. 1407910; Expiration 24MAR17) and Newcastle Infectious Bronchitis (Bronchitis Vaccine; Mass. Type, Live Virus; Pfizer Animal Health, Exton, PA; Serial No. 1308001; Expiration 14SEP15) using a spray cabinet. No other vaccinations or treatments were administered during the course of the study unless approved by the Sponsor.

K. Concurrent/Concomitant Medications/Therapies

No concomitant therapy was allowed during this study. Individual animals requiring therapy were removed, euthanized, and disposed of.

L. General Management Practices

The test facility, pens and birds were observed at least twice daily for general flock condition, lighting, water, feed, ventilation, and unanticipated events. If abnormal conditions or abnormal behavior was noted at any of the twice-daily observations they were documented and documentation was included with the study records. The minimum-maximum temperature and humidity of the test facility was recorded once daily.

M. Disposal of Test Subjects

An accounting was maintained of all birds received for the study. Refer to Section VII.I for the management of test subjects removed during the course of the study. At study completion, birds were sacrificed by cervical dislocation. The meat from the birds did not enter the human food chain. Removed birds, mortalities, carcasses, and meat were placed in a dumpster and transported to a commercial landfill for burial. Documentation of test animal disposition was included in the study records and described in the Final Report.

VIII. Specification of Variables

A. Variables Measured for Evaluating Labeled Claim

- 1. Pen weights at Study Days 0, 14, 21, and 42.
- 2. Pen feed intake for Days 0 14, 14 21, 21 42, 0 21, and 0 42.
- 3. Performance data (feed conversion and adjusted feed conversion) for Days 0 14, 14 21, 0 21, 21 42, and 0 42.
- 4. Tibia Ash Parameters of 3 birds per pen at Study Days 21 and 42.
- 5. Ileal Phosphorus Digestibility of 3 birds per pen at days 21 and 42.
- 6. Hematological Endpoints at Day 42 for 3 birds per pen belonging to treatment groups 2 and 8
- 7. Necropsy Data at Day 42 for 3 birds per pen belonging to treatment groups 2 and 8

B. Other Variables Recorded During the Study

Feed analysis for test article and proximate analysis.

IX. Data Analysis

A. Experimental Unit

The experimental unit was the pen.

B. Number of Replicates per Treatment

There were twelve replicates per treatment.

C. Statistical Methodology

The experimental design was a randomized complete block design. Pen location within the barn was used as the blocking criteria. Each of the 12 blocks had 8 pens to which the treatments were randomly distributed. Pen was used as experimental unit for each analyzed variable. Data was analyzed using fit least squares of the JMP software (version 12, SAS Institute Inc., Cary, NC). The ANOVA model included treatment and block. Mean values were separated using Tukey's honesty significant difference procedure. P-values < 0.05 was considered significant in all comparisons.

D. Basis for Study Conclusion

The basis for study conclusion included dose response to the phytase in terms of survivability, body weights, bone ash and ileal Phosphate digestibility, and feed conversion ratios between control and treated birds.

X. Study Locations and Personnel

Study Director			
Dan Moore, PhD	Colorado Quality Research, Inc.		
(CV: on file, available upon request)	400 E. County Road 72		
	Wellington, CO 80549		
	W: 970-568-7738		
	F: 970-568-7719		
	dan@coloradoqualityresearch.com		
Test Facility	Management		
Stephen Davis, DVM, Dip. ACPV	Colorado Quality Research, Inc.		
(CV: on file, available upon request)	400 E. County Road 72		
	Wellington, CO 80549		
	W: 970-568-7738		
	F: 970-568-7719		
	steve@coloradoqualityresearch.com		
Testing Facility Quality	Assurance (QA) Officer		
Catherine Bens, MA	Integrated Quality Management		
(CV: on file, available upon request)	389 Big Sky Place		
	Wellington, CO 80549-2131		
	W: 970-214-8035		
	catbens@cowisp.net		
	presentative		
Jim Ligon, PhD	Agrivida, Inc.		
(CV: on file, available upon request)	VP Business Development		
	200 Boston Ave, Suite 2975		
	Medford, MA 02155		
	M: (b) (6)		
	(b) (6) @gmail.com		
	Analysis		
Phillip A. Lessard, Ph.D.	Agrivida, Inc.		
(CV: on file, available upon request)	200 Boston Ave., Suite 2975		
	Medford, MA 02155		
Oversity	Philip.lessard@agrivida.com		
	stician		
Jonathan Broomhead, Ph.D.	Agrivida, Inc.		
(CV: on file, available upon request)	200 Boston Ave., Suite 2975		
	Medford, MA 02155		
	ion.broomhead@agrivida.com		
Contributing Scientist – Tibia Ash Parameters			
Linda Kirby	University of Arkansas		
(CV: on file, available upon request)	Central Analytical Lab		
(- 1	1260 W. Maple Street		
	Fayetteville, AR 72701		
	Ikirby@uark.edu		

Contributing Scientist – Ileal Phosphorus Digestibility, Feed Analysis		
Thomas P. Mawhinney	Experimental Station Chemical Laboratories	
(CV: on file, available upon request)	Room 4, Agricultural Building	
	University of Missouri	
	Columbia, MO 65211-7170	
	mawhinneyt@missouri.edu	
Contributing Scientist – F	Proximate Analysis of Basal Feeds	
Bryan Brock	MVTL Laboratories	
(CV: on file, available upon request)	2 N. German Street	
	New Ulm, MN 56072	
	W: (800) 782-3557	
	bbrock@mvtl.com	
Contributing Scienti	st – Hematological Endpoints	
Shelley A VanProosdy	Marshfield Laboratories	
(CV: on file, available upon request)	1000 North Oak Avenue	
	Marshfield, WI 54449-5795	
	W: (715) 221-6284	
	F: (715) 221-6279	
	Vanproosdy.shelley@marshfieldclinic.org	

XI. Collection and Retention of Source Data

Contributing scientist reports were provided to the Study Director for the preparation of the Final Report by participating outside laboratories. Raw data from contributing scientists was sent to CQR. Original documents were forwarded to the Study Sponsor and exact copies of the raw data were archived at CQR.

The Study Director's Final Report, electronic Microsoft Excel files of the data, and original study records were provided to the Study Sponsor. An exact copy of the final report and all study records was kept for five years in the CQR archive. The CQR archive is located at 400 East County Road 72, Wellington, Colorado.

XII. Addendums/Deviations to the Protocol

Any planned change in the final approved protocol was documented as an amendment. Any unplanned change from the approved protocol was documented as a deviation. The amendments/deviations contained, but were not limited to: the study number, amendment/deviation number, name of the Study Director, identification of the protocol section and page number affected, reason(s) for the protocol amendment/deviation, how the change will affect the study, and effective date.

Protocol changes were discussed and agreed upon by the Study Sponsor. Deviations were reported to the Study Sponsor immediately after they were detected. Protocol amendments were signed and dated by the Study Director and Sponsor Representative. Copies of amendments/deviations were provided to the QA Consultant and the Study Sponsor. Amendments/deviations were appended to the protocol and addressed in the Final Study Report.

There were five protocol deviations over the course of the study. They are summarized below:

Table 6. Protocol Deviations

Deviation No.	Reason for Deviation	Expected Impact on Study
1	Titanium dioxide was added to the basal feed at a level of 0.30%. The levels in the completed feed were calculated and included in the text of the deviation.	None.
2	Birds were not tagged upon placement.	None.
3	There was an extra bird inadvertently placed into Pen Number 119 on Day 0.	None.
4	Hematological data that was not originally indicated in Amendments 3 and 4 was provided by the performing laboratory.	Positive. Additional data obtained.
5	Hematological assays were not conducted under GLP. No written reports of inspections/audits were performed by Agrivida's Quality Assurance Unit. A ~500g sample of the test article was not shipped to Phil Lessard prior to study start.	None.

There were four protocol amendments over the course of the study. They are summarized below:

Table 7. Protocol Amendments

Amendment No.	Protocol Section(s) Affected	Reason for Amendment	Expected Impact on Study
1	VI.B. Schedule of Events; VIII.A.d Initial Body Weight; VIII. E. Study Methods; VIII.G.2. Sampling and Assays; IX. Specification of Variables; XI. Study Locations and Personnel	Birds were to be weighed by pen on Day 0 instead of individually. Birds were to be weighed on Day 14 at the time of feed change. It was decided to collect ileal content into plastic vials. The sponsor requested additional analyses from MVTL.	No impact is expected as a result of Day 0 pen weights or ileal sample containers. Day 14 weights and additional basal feed analysis provided additional data to the study.
2	VIII.A.4 Identification Method; VIII.H. Drug Administration;	Birds were to be tagged prior to Day 21. Salinomycin was indicated as a drug administered to the birds.	None.
3	VI.B. Schedule of Events; VIII. E. Study Methods; IX. Specification of Variables; XI. Study Locations and Personnel	Hematological and histological analyses were added to the protocol.	Positive. Additional data was obtained.
4	Amendment 3 VI.B. Schedule of Events; Amendment 3 VIII.E.1.e Hematalogical Endpoints; X.C. Statistical Methodology; X.D. Basis for Study Conclusion; XI. Study Locations and Personnel	A typographical error was corrected in the Schedule of Events. It was clarified that barcoded labels would be affixed to hematological samples at the lab. Statistical Methodology information and the basis for study conclusion was amended to the protocol.	None.

XIII. Investigational Test Substance

A. Test Article

1. Chemical Name

Phytase

2. Trade Name

GralNzyme Phytase Phy02

3. Active/Inactive Ingredients

Phytase ((b) FTU/g)

4. Dosage Form

Via complete feed.

5. Dose(s) Tested

250 Units Phytase/kg of complete feed 500 Units Phytase/kg of complete feed 750 Units Phytase/kg of complete feed 1000 Units Phytase/kg of complete feed 3000 Units Phytase/kg of complete feed 30000 Units Phytase/kg of complete feed

Test article was added to the basal feed in the following approximate quantities in order to achieve the targeted levels of phytase in the treatment feeds:

Table 8. Pounds of Test Article Added to Feed to Deliver Desired Dose

Trt Group	Product	Target Dose (FTU/kg)	Starter 1	Starter 2	Grower/Finisher
1	NA	0	NA	NA	NA
2	NA	0	NA	NA	NA
3	GralNzyme Phytase Phy02 ¹	250			(b) (4)
4	GralNzyme Phytase Phy02 ¹	500			
5	GralNzyme Phytase Phy02 ¹	750			
6	GralNzyme Phytase Phy02 ¹	1000	_		
7	GralNzyme Phytase Phy02 ¹	3000			
8	GralNzyme Phytase Phy02 ¹	30000			(h) (4)

¹ Concentration of GralNzyme Phytase Phy02 as determined analytically by Agrivida was FTU/g. (b) (4)

6. Lot Number

TAVPHY02 0018

7. Expiration Date

170CT15

8. Packaging

Double-bagged within three solid plastic pails

9. Test Substance Storage During Study

Locked, temperature controlled, dry area.

10. Material Safety Data Sheet (MSDS)

An MSDS was provided by the Study Sponsor and maintained in the study records.

XIV. Test Article Disposition, Animal Accountability, Feed Disposition, and Feed Accountability

A. Excess Test and Control Articles

An accounting of test article received and used was documented. Any test article not used to mix the complete feed was disposed of by burial at a local commercial landfill, or will be used or discarded as directed by the Sponsor. Documentation of unused test article and sample disposal is included in the study records.

B. Feed

An accounting was maintained of all treatment diets. The amount mixed, used, and discarded was documented. Unused feed and retained feed samples were disposed of by placing into a dumpster for commercial transport to a local landfill for burial.

C. Test Animals

An accounting was maintained of all birds received for the study. Birds were sacrificed at study end for tissue collection. Meat from these birds was not used for human consumption. Removed birds, mortalities, carcasses, and meat were transported to a commercial landfill for burial.

XV. Adverse Events

A. Definition

Adverse Events were defined as in CQR SOP B-63. An adverse event was classified as any observation in animals that is unfavorable and unintended and occurs after the use of a veterinary product or investigational veterinary product, whether or not considered to be product-related. Adverse events included, but were not limited to, the following conditions:

High mortality
Toxicity
Improper feathering
Paleness or lack of pigmentation
Diarrhea or other signs of abnormal droppings
Sleepiness or docile conditions
Unstable gate
Hyperactivity
Excessive thirst
Anorexia

A serious adverse event was classified as any adverse event which results in death, is life threatening, results in persistent or significant disability or incapacity, or a congenital anomaly or birth defect. For animals managed as a group, only an increased incidence of serious adverse events that exceed the rates normally expected in that particular group was considered a serious adverse event.

B. Reporting Adverse Events to the Sponsor

All adverse events were reported to the Study Director and Sponsor Monitor. If necessary, the appropriate personnel were contacted by telephone.

XVI. Results

A. Proximate Analysis of Basal Diets

Table 9. Proximate Analysis of Low Phosphate Basal Feed

Analyte	Low Phosphate Starter 1	Low Phosphate Starter 2	Low Phosphate Grower/Finisher
Moisture	12.56%	12.17%	11.25%
Methionine	0.5660%	0.5530%	0.4620%
Lysine	1.226%	1.215%	0.9600%
Ash	7.12%	7.20%	NA
Calcium	1.06%	1.10%	0.82%
Fat, Ethyl Ether	3.75%	3.69%	4.54%
Fiber, Crude	2.18%	2.12%	2.32%
Phosphorus	0.5962%	0.6118%	0.4925%
Protein N x 6.25	19.50%	19.60%	20.00%

Table 10. Proximate Analysis of High Phosphate Basal Feed

Analyte	High Phosphate Starter 1	High Phosphate Starter 2	High Phosphate Grower/Finisher
Moisture	12.35%	12.31%	11.42%
Methionine	0.5820%	0.5660%	0.4920%
Lysine	1.236%	1.223%	1.092%
Ash	6.84%	7.69%	NA
Calcium	1.10%	1.08%	0.86%
Fat, Ethyl Ether	3.63%	3.73%	4.04%
Fiber, Crude	2.08%	1.97%	2.08%
Phosphorus	0.8172%	0.8811%	0.6363%
Protein N x 6.25	21.50%	20.20%	20.00%

Table 11. Additional Analyses of Basal Feeds

Analyte	Low Phosphate Starter 2	Low Phosphate Grower/Finisher	High Phosphate Starter 2	High Phosphate Grower/Finisher
Titanium (ppm)	1360	1450	1030	1390
Moisture (W/W%)	11.79	11.01	11.65	11.27
Phosphorus (W/W%)	0.62	0.55	0.88	0.74

W/W% = grams per 100 grams of sample

Trt	Targeted	Starter 1		Sta	Starter 2		Grower/Finisher	
Group	Level	Mash	Crumble	Mash	Pellet	Mash	Pellet	
1	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	
3	250	166	150	164	182	276	306	
4	500	288	421	263	299	407	389	
5	750	552	306	561	361	575	691	
6	1000	869	625	766	394	837	696	
7	3000	2378	2178	2393	2432	2326	2183	
8	30000	27376	22706	26252	23480	24407	23983	

B. Performance and Mortality Data

Days 0-14

All performance and mortality data for 0-14 days are listed in Table 13. There were no differences (P>0.05) in mortality during this time period. There were significant differences for feed intake, body weight gain and adjusted feed conversion (P<0.0001, P<0.0001 and P<0.0001, respectively).

The following differences were observed between treatments for feed intake (P<0.05):

T1 decreased vs. all treatments

T4 decreased vs. T2, T6, T7 and T8

T3 decreased vs. T2, T7 and T8

T5 decreased vs. T8

T6 decreased vs. T8

The following differences were observed between treatments for body weight gain (P<0.05):

T1 decreased vs. all treatments

T3 decreased vs. T5, T6, T7 and T8

T4 decreased vs. T6, T7 and T8

T2 decreased vs. T7 and T8

T5 decreased vs. T8

T6 decreased vs. T8

T7 decreased vs. T8

The following differences were observed between treatments for adjusted feed conversion (P<0.05):

T8 decreased vs. T1, T2, T3 and T4

T7 decreased vs. T1, T2 and T3

T6 decreased vs. T1, T2 and T3

T5 decreased vs. T1, T2 and T3

T4 decreased vs. T1, T2 and T3

Days 0-21

All performance and mortality data for 0-21 days are listed in Table 14. There were no differences (P>0.05) in mortality during this time period. There were significant differences for feed intake, body weight gain and adjusted feed conversion (P<0.0001, P<0.0001 and P<0.0001, respectively).

The following differences were observed between treatments for feed intake (P<0.05):

```
T1 decreased vs. all treatments
T3 decreased vs. T2, T7 and T8
T4 decreased vs. T2, T7 and T8
T2 decreased vs. T8
T5 decreased vs. T8
T6 decreased vs. T8
```

The following differences were observed between treatments for body weight gain (P<0.05):

```
T1 decreased vs. all treatments
T3 decreased vs. T2, T5, T6, T7 and T8
T4 decreased vs. T6, T7 and T8
T2 decreased vs. T7 and T8
T5 decreased vs. T7 and T8
T6 decreased vs. T8
T7 decreased vs. T8
```

The following differences were observed between treatments for adjusted feed conversion (P<0.05):

```
T8 decreased vs. T1, T2, T3 and T4
T7 decreased vs. T1, T2 and T3
T6 decreased vs. T1, T2 and T3
T5 decreased vs. T1 and T2
T4 decreased vs. T1
```

Days 0-42

All performance and mortality data for 0-42 days are listed in Table 15. There were no differences (P>0.05) in mortality during this time period. There were significant differences for feed intake, body weight gain and adjusted feed conversion (P<0.0001, P<0.0001 and P<0.0001, respectively).

The following differences were observed between treatments for feed intake (P<0.05):

```
T1 decreased vs. all treatments
T3 decreased vs. T2, T5, T7 and T8
T4 decreased vs. T2, T7 and T8
```

The following differences were observed between treatments for body weight gain (P<0.05):

```
T1 decreased vs. all treatments
T3 decreased vs. T2, T5, T6, T7 and T8
T4 decreased vs. T7 and T8
```

The following differences were observed between treatments for adjusted feed conversion (P<0.05):

```
T7 decreased vs. T1, T2 and T3
T6 decreased vs. T1, T2 and T3
T4 decreased vs. T1, T2 and T3
T5 decreased vs. T1 and T2
T8 decreased vs. T1 and T2
```

Days 14-21

All performance data for 14-21 days are listed in Table 16. There were significant differences for feed intake, body weight gain and adjusted feed conversion (P<0.0001, P<0.0001 and P<0.0001, respectively).

The following differences were observed between treatments for feed intake (P<0.05):

```
T1 decreased vs. all treatments
T3 decreased vs. T7 and T8
T4 decreased vs. T7 and T8
T2 decreased vs. T8
T5 decreased vs. T8
T6 decreased vs. T8
```

The following differences were observed between treatments for body weight gain (P<0.05):

```
T1 decreased vs. all treatments
T3 decreased vs. T5, T6, T7 and T8
T4 decreased vs. T7 and T8
T2 decreased vs. T7 and T8
T5 decreased vs. T7 and T8
T6 decreased vs. T8
```

The following differences were observed between treatments for adjusted feed conversion (P<0.05):

```
T8 decreased vs. T1
T6 decreased vs. T1
T7 decreased vs. T1
```

Days 21-42

All performance data for 21-42 days are listed in Table 17. There were significant differences for feed intake, body weight gain and adjusted feed conversion (P<0.0001, P<0.0001 and P=0.025, respectively).

The following differences were observed between treatments for feed intake (P<0.05):

T1 decreased vs. all treatments T3 decreased vs. T2, T5, T7 and T8 T4 decreased vs. T8

The following differences were observed between treatments for body weight gain (P<0.05):

T1 decreased vs. all treatments T3 decreased vs. T5, T7 and T8

The following differences were observed between treatments for adjusted feed conversion (P<0.05):

T4 decreased vs. T1, T2, T3 and T8 T7 decreased vs. T8

Table 13. Days 0 - 14 Bird Performance and Mortality Data

Trt Group	Treatment Description	Feed Intake (kg)	Body Wt Gain (kg)	Adj. Feed Conversion	Mortality (%)
1	Negative Control	0.330 ^e	0.250 ^f	1.319 ^a	0.49
2	Positive Control	0.372 ^{ab}	0.289 ^{cde}	1.287 ^a	1.96
3	250 U + NC	0.357 ^{cd}	0.277 ^e	1.289 ^a	0.98
4	500 U + NC	0.354 ^d	0.285 ^{de}	1.244 ^b	0.98
5	750 U + NC	0.364 ^{bcd}	0.293 ^{bcd}	1.242 ^{bc}	0
6	1000 U + NC	0.370 ^{bc}	0.299 ^{bc}	1.238 ^{bc}	1.96
7	3000 U + NC	0.374 ^{ab}	0.304 ^b	1.229 ^{bc}	1.96
8	30,000 U + NC	0.384 ^a	0.319 ^a	1.204 ^c	3.43
	SEM	0.0029	0.0028	0.0091	0.84
	TRT P Value	<0.0001	<0.0001	<0.0001	0.115*

^{a-f} Values within columns with no common superscript are statistically different (P < 0.05).

^{*} Statistical analysis was done on Square Root, ArcSin transformed values

Table 14. Days 0 - 21 Bird Performance and Mortality Data

Trt Group	Treatment Description	Feed Intake (kg)	Body Wt Gain (kg)	Adj. Feed Conversion	Mortality (%)
1	Negative	0.777 ^d	0.572 ^f	1.357 ^a	1.47
1	Control				
2	Positive	0.910 ^b	0.682 ^{cd}	1.334 ^{ab}	2.94
2	Control				
3	250 U + NC	0.872 ^c	0.654 ^e	1.332 ^{abc}	2.45
4	500 U + NC	0.875 ^c	0.669 ^{de}	1.308 ^{bcd}	1.93
5	750 U + NC	0.899 ^{bc}	0.690 ^{cd}	1.303 ^{cde}	0.98
6	1000 U + NC	0.903 ^{bc}	0.700 ^{bc}	1.290 ^{de}	2.94
7	3000 U + NC	0.928 ^{ab}	0.721 ^b	1.288 ^{de}	2.45
8	30,000 U + NC	0.958 ^a	0.752 ^a	1.275 ^e	4.41
	SEM	0.0073	0.0061	0.0067	1.04
	TRT P Value	<0.0001	<0.0001	<0.0001	0.41*

^{a-f} Values within columns with no common superscript are statistically different (P < 0.05).

* Statistical analysis was done on Square Root, ArcSin transformed values

Table 15. Days 0 - 42 Bird Performance and Mortality Data

Trt Group	Treatment Description	Feed Intake (kg)	Body Wt Gain (kg)	Adj. Feed Conversion	Mortality (%)
1	Negative	3.668 ^d	2.381 ^d	1.540 ^a	2.94
ı	Control				
2	Positive	4.387 ^a	2.851 ^{ab}	1.539 ^a	4.90
	Control				
3	250 U + NC	4.192 ^c	2.733°	1.534 ^{ab}	5.39
4	500 U + NC	4.250 ^{bc}	2.822 ^{bc}	1.506 ^c	3.84
5	750 U + NC	4.356 ^{ab}	2.880 ^{ab}	1.512 ^{bc}	4.41
6	1000 U + NC	4.319 ^{abc}	2.863 ^{ab}	1.509 ^c	5.88
7	3000 U + NC	4.402 ^a	2.927 ^a	1.504 ^c	4.90
8	30,000 U + NC	4.448 ^a	2.944 ^a	1.512 ^{bc}	7.84
	SEM	0.031	0.022	0.006	1.53
	TRT P Value	<0.0001	<0.0001	<0.0001	0.64*

^{a-d} Values within columns with no common superscript are statistically different (P < 0.05).

^{*} Statistical analysis was done on Square Root, ArcSin transformed values

Table 16. Days 14 - 21 Bird Performance and Mortality Data

Trt Group	Treatment	Feed Intake (kg)	Body Wt Gain (kg)	Adj. Feed Conversion
1	Negative Control	0.447 ^d	0.322 ^e	1.388 ^a
2	Positive Control	0.538 ^{bc}	0.393 ^{cd}	1.369 ^{ab}
3	250 U + NC	0.514 ^c	0.377 ^d	1.365 ^{ab}
4	500 U + NC	0.521 ^c	0.384 ^{cd}	1.357 ^{ab}
5	750 U + NC	0.535 ^{bc}	0.397 ^c	1.348 ^{ab}
6	1000 U + NC	0.534 ^{bc}	0.402 ^{bc}	1.329 ^b
7	3000 U + NC	0.555 ^{ab}	0.416 ^{ab}	1.332 ^b
8	30,000 U + NC	0.575 ^a	0.433 ^a	1.329 ^b
	SEM	0.0055	0.0043	0.0093
	TRT P Value	<0.0001	<0.0001	<0.0001

^{a-e} Values within columns with no common superscript are statistically different (P < 0.05).

Table 17. Days 21 - 42 Bird Performance and Mortality Data

Trt Group	Treatment Description	Feed Intake (kg)	Body Wt Gain (kg)	Adj. Feed Conversion
1	Negative Control	2.917 ^d	1.809 ^c	1.612 ^{AB}
2	Positive Control	3.512 ^{ab}	2.169 ^{ab}	1.619 ^A
3	250 U + NC	3.355 ^c	2.079 ^b	1.615 ^{AB}
4	500 U + NC	3.409 ^{bc}	2.153 ^{ab}	1.583 ^c
5	750 U + NC	3.497 ^{ab}	2.190 ^a	1.597 ^{ABC}
6	1000 U + NC	3.456 ^{abc}	2.163 ^{ab}	1.599 ^{ABC}
7	3000 U + NC	3.512 ^{ab}	2.206 ^a	1.593 ^{BC}
8	30,000 U + NC	3.541 ^a	2.192 ^a	1.617 ^A
	SEM	0.029	0.021	0.0085
	TRT P Value	<0.0001	<0.0001	0.025

^{abcd} Values within columns with no common superscript are statistically different (P < 0.05). ABC Values within columns with no common superscript are statistically different (P < 0.05; Student's T test was used because Tukey's test was not assigning superscripts).

C. Hematological Endpoints

All hematology data are presented in Table 18. All of the hematology comparisons are between the positive control (T2) and treatment 8 (the highest inclusion level of phytase, 30,000 FTU/kg). No differences (P>0.05) in hematological parameters were observed with the exception of phosphorus with positive control (T2) having a higher level (P=0.028) than treatment 8.

Table 18. Hematology Results for Treatment Groups 2 and 8

	Positive Control (Trt 2)	30,000 FTU (Trt 8)	SEM	Treatment P Value
Haemoglobin, g/dL	12.45	12.67	0.15	0.33
Hematocrit, %	34.70	35.19	0.41	0.42
Red Blood Cell x10 ⁶ uL	2.86	2.91	0.03	0.23
Mean Corpuscular volume, fL	121.5	121.0	0.5	0.46
Mean Corpuscular Hemoglobin, pg	43.59	43.55	0.25	0.92
MCH concentration, g/dL	35.88	35.99	0.12	0.52
Red Cell Distribution Width, %	9.40	9.14	0.15	0.24
White Blood Cell x10 ³ ul	13.95	13.73	1.35	0.91
Heterophils, %	33.69	31.64	1.89	0.46
Lymphocytes, %	53.17	58.69	2.03	0.08
Monocytes, %	4.29	4.65	0.51	0.63
Eosinophil, %	5.00	5.03	0.90	0.98
Basophil, %	2.88	3.38	0.29	0.25
Absolute Heterophils, x10 ³ ul	4.40	4.38	0.39	0.97
Absolute Lymphocytes, x10 ³ ul	7.74	8.00	0.91	0.85
Absolute Monocytes, x10 ³ ul	0.564	0.667	0.103	0.49
Absolute Eosinophil, x10 ³ ul	0.698	0.703	0.143	0.98
Absolute Basophil, x10 ³ ul	0.410	0.502	0.082	0.44
Total Protein, g/dL	2.81	2.85	0.04	0.48
Albumin, g/dL	1.03	1.07	0.02	0.28
Globulin, g/dL	1.82	1.86	0.03	0.45
Albumin/Globulin	0.556	0.542	0.009	0.32
Creatine Kinase, U/L	Non-Est ¹	Non-Est ¹	-	-
Alanine Aminotransferase, U/L	<5 ²	<5	-	-
Phosphorus, mg/dL	6.79 ^a	6.38 ^b	0.12	0.028
Glucose, mg/dL	255.6	255.9	2.6	0.94

¹ Non-Estimable, many samples (54 of 72) above the maximum analyzable limit >22500 U/L

² Below analyzable limits

^{ab} Values within row with no common superscript are statistically different (P < 0.05).

D. Tibia Ash

All tibia ash data are presented in Table 19. There were significant differences for tibia ash on Day 21 and Day 42 (P<0.0001 and P<0.0001, respectively).

The following differences were observed between treatments on Day 21 (P<0.05):

T1 decreased vs. all treatments

The following differences were observed between treatments on Day 42 (P<0.05):

T1 decreased vs. T2, T3, T4, T6, T7 and T8

Table 19. Tibia Ash Results on Days 21 and 42

Trt Group	Treatment	Day 21 Tibia Ash	Day 42 Tibia Ash
тт спосер	Description	(%)	(%)
1	Negative Control	21.30 ^b	34.99 ^b
2	Positive Control	24.87 ^a	37.59 ^a
3	250 U + NC	23.90 ^a	38.29 ^a
4	500 U + NC	24.76 ^a	38.98 ^a
5	750 U + NC	24.54 ^a	37.15 ^{ab}
6	1000 U + NC	24.86 ^a	39.23 ^a
7	3000 U + NC	25.41 ^a	39.12 ^a
8	30,000 U + NC	25.58 ^a	39.00 ^a
	SEM	0.40	0.53
	TRT P Value	<0.0001	<0.0001

^{ab} Values within columns with no common superscript are statistically different (P < 0.05).

E. Percent Phosphorus Digestibility

All all ileal phosphorus digestibility data are presented in Table 20. There were significant differences for digestibility and concentration on Day 21 and Day 42 (P<0.0001, P=0.032, P=0.0006 and P=0.0002, respectively).

The following differences were observed between treatments on Day 21 (P<0.05):

Digestibility:

T1 decreased vs. T2, T7 and T8

T3 decreased vs. T2

T4 decreased vs. T2

T5 decreased vs. T2

T6 decreased vs. T2

T7 decreased vs. T2

Concentration:

T1 increased vs. T5, T7 and T8

The following differences were observed between treatments on Day 42 (P<0.05):

Digestibility:

T3 decreased vs. T7 and T8

T1 decreased vs. T8

Concentration:

T2 increased vs. T4, T7 and T8

T3 vs. T8

Table 20. Ileal Phosphorus Digestibility on Days 21 and 42 (Dry Matter Basis)

Trt Group	Treatment	21d Ileal P digestibility (%)	21d lleal P (mg/100g)	42d Ileal P digestibility (%)	42d Ileal P (mg/100g)
1	Negative	61.83°	30.1 ^a	56.18 ^{bc}	30.0 ^{abc}
	Control				
2	Positive Control	82.73 ^a	24.9 ^{ab}	63.98 ^{abc}	37.0 ^a
3	250 U + NC	68.50 ^{bc}	24.0 ^{ab}	51.04 ^c	30.9 ^{ab}
4	500 U + NC	67.71 ^{bc}	23.0 ^{ab}	63.39 ^{abc}	23.8 ^{bc}
5	750 U + NC	68.32 ^{bc}	21.3 ^b	60.86 ^{abc}	26.5 ^{abc}
6	1000 U + NC	68.92 ^{bc}	22.4 ^{ab}	60.33 ^{abc}	27.2 ^{abc}
7	3000 U + NC	69.98 ^b	20.8 ^b	66.18 ^{ab}	23.0 ^{bc}
8	30,000 U + NC	75.80 ^{ab}	21.3 ^b	71.28 ^a	19.5°
	SEM	1.84	2.0	3.02	2.5
	TRT P Value	<0.0001	0.032	0.0006	0.0002

^{abc} Values within columns with no common superscript are statistically different (P < 0.05).

XVII. Conclusions

This study was conducted to evaluate the effectiveness over a range of doses of Phy02, a new phytase enzyme product being developed as a feed additive for poultry diets, and to demonstrate tolerance of broilers to high doses of the Phy02 phytase.

The negative control performed as expected with decreased feed intake and body weight gain for all time points tested compared to the positive control. There was a dose dependent response of the inclusion of phytase for an improvement in performance for a majority of time points and parameters tested. Notable exceptions were time periods days 21-42 and days 0-42 for adjusted feed conversion. From days 0-42, there were not many differences in adjusted feed conversion between the phytase treatments with the exception of treatment 3 (250 FTU/kg) which had significantly higher feed conversion than treatments 4, 6 and 7; however, all phytase treatments had significantly improved adjusted feed conversion compared to the negative control with the exception of treatment 3. Treatment 8 (30,000 FTU/kg) had a significantly higher feed conversion than treatments 4 (500 FTU/kg) and 7 (3,000 FTU/kg), but had similar feed conversion to all other treatments from days 21-42.

Hematological parameters were compared between treatment 2 (positive control) and treatment 8 (30,000 FTU/kg) to determine if any differences existed. No differences were observed in 25 out of 26 parameters tested with phosphorus being the only parameter different between the two treatments. Treatment 2 had higher phosphorus levels than treatment 8. However, the difference in phosphorus levels between the treatments is not biologically significant and within expected ranges for broilers.

Tibia ash was decreased in the negative control broilers compared to all other treatments on days 21 and 42 with the exception of treatment 5 (750 FTU/kg) on day 42 indicating the efficacy of the phytase. There was a dose dependent response with increased phytase levels resulting in increased phosphorus digestibility on days 21 and 42. Phosphorus concentration of ileal digesta was reduced with increased levels of phytase on days 21 and 42 with the exception of treatment 6 (1,000 FTU/kg) on day 21 and treatments 5 (750 FTU/kg) and 6 (1,000 FTU/kg) on day 42. However, the trend in decreasing phosphorus concentration was not always significant (P<0.05).

The results of this study indicate the new phytase, Phy02, is efficacious when fed at different levels to broilers and does exhibit a dose dependent response on performance, and is safe and well tolerated when fed to broilers at all levels up to 30,000 FTU/kg.

XVIII. List of Protocol Appendices

- A. Appendix 1 Diet Formulations
- B. Appendix 2 Building Diagram
- C. Appendix 3 Proximate Analysis Results
- D. Appendix 4 Tibia Ash Results
- E. Appendix 5 Ileal Content Analysis Results
- F. Appendix 6 Titanium, Phosphorus, and Moisture Analysis of Feed Results
- G. Appendis 7 Statistical Analysis

APPENDIX 1 – DIET FORMULATIONS

CFC/Concept5 Least Cost Formula Date Printed: 05/11/15

Date Optimized: 05/11/2015

Optimized By: PRO5USER
Formulated By: Single Product Formulation Trial Version: 17 Plant: 1 Silver Springs Product: AGV151SP AGV-15-1 BS PC Using Costs: Plant 1 Owning Costs Prod'n Version: 0 Page: 1

		Unrou	0.75				Re						
Ingr Code	Ingredient Name			\$/Ton						Nutrient	Minimum	Actual	Maximu
		1135.89								DRY MATTER		89.74	
		716.19								MOISTURE		10.26	
	2 Soy Oil				224.40					PROTEIN, CRUDE		22.00	
	DICALCIUM PHOS					25253.0		4 5000		FAT, CRUDE		4.50	
	3 Sand			15.00		29.40		1.6000		FIBER, CRUDE		2.23	
	2 Limestone, CQR									CALCIUM		0.9300	
	SALT, PLAIN (N									PHOS. TOTAL	0.71	0.7205	
	DL-METHIONINE,									ASH	0.45	5.50	
	8 CQR Choline				15.00			0 1400		PHOS., AVAILAB			0.
	6 POU NRC TM						0.1400			ADF		0.0000	
	6 Pou VIT 1.2 D3						0.1000			M.E. POULTRY	13/8.00		
	Salinomycin (6						0.0410	0.0410		M.E. SWINE		0.0000	
	1 Threonine, CQR									N.E.L.			
155) L-LYSINE, CQR	0.166	0.008	1/25.00	15.00	8300.60				N.E.M.		0.0000	
	Total possible	2000 00		200 15		15 450	# (1100) b	0 1516		N.E.G.	0.55	0.0000	
	TOTAL BATCH:	2000.00	LUS at	204.15	3/10h	13.438	3/ TOOLD	0.1546		METHIONINE	0.55	0.6413	
		ni adi -	No. of Contract of							CYSTINE	4 24	0.3487	
										LYSINE	1.51	0.2980	
tr	Nutrient Name	Unit of			Incremen					TRYPTOPHAN THREONINE	0.03	0.2980	
	Nutrient Name										0.92		
										ISOLEUCINE HISTIDINE		1.13	
	PROTEIN, CRUDE				0.10 PCT					VALINE		0.6218	
7	FAT, CRUDE	DCT	0.									1.98	
10	CALCIUM PHOS., AVAILABLE	PCT	0.		0.01 PCT					LEUCINE			
					0.01 PCT					ARGININE		1.52	
	I.E. POULTRY				10.00 KC					PHENYLALANINE		1.24	
		PCT			0.01 PCT				0137	TSAA		0.9900	
		PCT			0.01 PCT					[* No Name * *		0.0000	
					0.01 PCT					PYRIDOXINE		4.31	
		MG/LB			1.00 MG/					CAROTENE		0.5274	
61	SODIUM	PCT	0.	0366	0.10 PCT					VITAMIN A		1265.17	
										VITAMIN E		12.30	
										THIAMIN		1.95	
										RIBOFLAVIN		2.68	
										PANTOTHENIC AC		8.67	
										BIOTIN		156.14	
										FOLIC ACID	1300 00	446.81	
											1300.00		
										VITAMIN B12		5.40	
										NIACIN		28.21	
										VITAMIN D3 IU		1375.00	
										MENADIONE		0.8749	
										VITAMIN C		0.0000	
										Vitamin D	0.20	0.0000	
										SODIUM	0.20	0.2000	
										POTASSIUM		0.9437	
										MAGNESIUM		0.1613	
										SULPHUR		0.2044	
										MANGANESE IRON		107.18	
										7300000000		371.60	
										COPPER		19.98	
										ZINC		89.49	
										SELENIUM		0.3028	
										COBALT		0.0000	
										FLOURINE		0.0033	
										CHLORIDE	0.28		
										SALT		0.4405	
										IODINE		0.5957	
										Dig Methionine		0.6129	
										Dig Cystine		0.2885	
									78	Dig Lysine		1.18	
										Dig Tryptophan		0.2168	

Silver Springs

Product: AGV151SP AGV-15-1 BS PC

Plant: 1

Date Optimized: 05/11/2015 Optimized By: PROSUSER

Formulated By: Single Product Formulation

Trial Version: 17 Prod'n Version: 0

Page: 2

Using Costs: Plant 1 Owning Costs

(P	lutr							
1	No	Nutrient	Minimum	Actual	Maximum			
-								
1	80	Dig Threonine		0.8039				
١	81	Dig Isoleucine		1.04				
L	82	Dig Histidine		0.5584				
1	83	Dig Valine		1.12				
1	84	Dig Leucine		1.83				
Ü	85	Dig Arginine		1.39				
1	86	Dig Phenylalan		1.43				
1	87	Dig TSAA		0.9018				
Ü	89	Oxytetracyclin		0.0000				
1	90	Non Protein Ni		0.0000				
ı	100	Total Nitrogen		0.0000				
ı	101	Bulk Density		0.8943				

CFC/Concept5 Least Cost Formula

Date Printed: 05/11/15 Date Optimized: 05/11/2015 Optimized By: PRO5USER

Plant: 1 Silver Springs Formulated By: Single Product Formulation T
Product: AGV151SN AGV-15-1 BS NC Using Costs: Plant 1 Owning Costs Pr

Trial Version: 16 Prod'n Version: 0 Page: 1

				Nutr	n	strictio	R	nge	Ra	Owning	unded	Unrou		Ingr
Maxim	Actua1	Minimum	Nutrient	No	Rcost		Min Pct	High		\$/Ton	Pct	Lbs	Ingredient Name	Code
	89.74		DRY MATTER	2	1			295.20		164.64	56.795	1135.89	Corn, CQR	1913
	10.26		MOISTURE	3	1			*****	261.40	508.00	35.810	716.19	SBM , CQR	1914
	22.00	22.00	PROTEIN, CRUDE	4	1				224.40	600.00	1.947	38.93	Soy Oil	1542
	4.50	4.50	FAT, CRUDE	5	-0.14	1.6800		29.40		15.00	1.674	33.48	Sand	1553
	2.23		FIBER, CRUDE	6	1			29505.6	15.00	30.00	1.534	30.68	Limestone, CQR	1552
0.	0.9290	0.93	CALCIUM	7	1			29394.8		255.24	1.006	20.11	DICALCIUM PHOS	1554
	0.5705	0.56	PHOS. TOTAL	8	1			404093.	15.00	29.34	0.442	8.84	SALT, PLAIN (N	1544
	5.32		ASH	9	1			23294.8	15.00	2637.89	0.299	5.98	DL-METHIONINE,	1549
0.	0.3000	0.30	PHOS., AVAILAB	10	1			74427.2	15.00	2534.00	0.196	3.92	CQR Choline	1548
	0.0000		ADF	18	1	0.1400	0.1400			908.00	0.140	2.80	Pou NRC TM	1916
1378.	1378.00	1378.00	M.E. POULTRY	19	1	0.1000	0.1000			2332.00	0.100	2.00	Pou VIT 1.2 D3	1956
	1485.49		M.E. SWINE	21	1	0.0410	0.0410			0.00	0.041	0.820	Salinomycin (6	1545
	0.0000		N.E.L.	23	1			15136.0	15.00	1849.00	0.008	0.169	Threonine, CQR	1551
	0.0000		N.E.M.	24	1			8300.60	15.00	1725.00	0.008	0.166	L-LYSINE, CQR	1550
	0.0000		N.E.G.	25	1									
	0.6413	0.55	METHIONINE	31	S/Lb	0.1536	\$/100Lb	15.364	\$/Ton	307.27	Lbs at	2000.00	Total Batch:	
	0.3487		CYSTINE	32	1									
	1.31	1.31	LYSINE	33	1					ents	Nutrie	Binding		
	0.2980		TRYPTOPHAN	34	1			t	Incremen	itr	NL	Unit of		utr
	0.9200	0.92	THREONINE	35	i				Change	ost	Co	Measure	utrient Name	NO N
	1.13		ISOLEUCINE	36	1									
	0.6218		HISTIDINE	37	i				0.10 PCT	5661	0.	PCT	ROTEIN, CRUDE	4 P
	1.24		VALINE	38	i				0.10 PCT	4283	0.	PCT		
	1.98		LEUCINE	39	í				0.01 PCT			PCT	AL STUDE	7 0
	1.52		ARGININE	17.00						1251	0.	PCT	HOS., AVAILABLE	10 P
	1.24		PHENYLALANINE							4130 1	0.	KCAL/LB	.E. POULTRY	19 M
	0.9900	0.99	TSAA						0.01 PCT			PCT		
	0.0000		[** No Name **	7.50						1853		PCT		
	4.31		PYRIDOXINE							2649		PCT		42 T
	0.5274		CAROTENE							0093		MG/LB		
	1265.17		VITAMIN A							.0366		PCT		
	12.30		VITAMIN E						0.10 PC	0300	0.	PCI	ODION	01 3
	1.95		THIAMIN											
	2.68		RIBOFLAVIN											
	8.67		PANTOTHENIC AC											
	156.14		BIOTIN											
	446.81		FOLIC ACID											
		1300.00	CHOLINE											
	5.40	1300.00	VITAMIN B12											
	28.21		NIACIN											
	1375.00		VITAMIN D3 IU											
	0.8749		MENADIONE											
	0.0000		VITAMIN C											
	0.0000	0.20	Vitamin D											
0.	0.2000	0.20	SODIUM											
	0.9431		POTASSIUM		Į.									
	0.1564		MAGNESIUM											
	0.2044		SULPHUR		i									
	104.73		MANGANESE											
	290.08		IRON		1									
	19.33		COPPER		1									
	87.70		ZINC		I									
	0.2979		SELENIUM		1									
	0.0000		COBALT		I									
	0.0018		FLOURINE		I									
	0.2990	0.28	CHLORIDE	72	1									
	0.4421		SALT	73	1									
	0.5957		IODINE	74										
	0.6129		Dig Methionine	76	1									
			ni- commis-	77	1									
	0.2885		Dig Cystine	11										
	1.18		Dig Lysine		i									

Plant: 1 Silver Springs Product: AGV151SN AGV-15-1 BS NC

Date Optimized: 05/11/2015 Optimized By: PROSUSER Trial Version: 16

Prod'n Version: 0

Page: 2

Formulated By: Single Product Formulation Using Costs: Plant 1 Owning Costs

1	No	Nutrient	Minimum	Actual	Maximum			
1								
١	80	Dig Threonine		0.8039				
ŀ	81	Dig Isoleucine		1.04				
ı	82	Dig Histidine		0.5584				
ĺ	83	Dig Valine		1.12				
ĺ	84	Dig Leucine		1.83				
1	85	Dig Arginine		1.39				
ĺ.	86	Dig Phenylalan		1.43				
ı	87	Dig TSAA		0.9018				
ı	89	Oxytetracyclin		0.0000				
ı	90	Non Protein Ni		0.0000				
ı	100	Total Nitrogen		0.0000				
i	101	Bulk Density		1.38				

CFC/Concept5 Least Cost Formula Date Printed: 05/11/15

Date Optimized: 05/11/2015

Optimized By: PROSUSER Trial Version: 16 Formulated By: Single Product Formulation Prod'n Version: 0 Using Costs: Plant 1 Owning Costs

Ingr			inded				Re				Nutrie			
Code I	ngredient Name	Lbs	Pct	\$/Ton	Low	High	Min Pct	Max Pct	Rcost	No	Nutrient	Minimum		
	orn, CQR	1252.29									DRY MATTER		89.47	
		629.58	7.5			20.70					MOISTURE		10.53	
		41.69								4	PROTEIN, CRUDE	20.30	20.30	
	ICALCIUM PHOS					25099.8					FAT, CRUDE	4.80	4.80	
1552 L	imestone, CQR	18.88	0.944	30.00	15.00	33574.0				6	FIBER, CRUDE		2.20	
1544 S	ALT, PLAIN (N	8.85	0.442	29.34	15.00	144552.				7	CALCIUM	0.84	0.8400	
1549 D	L-METHIONINE,	4.23	0.212	2637.89	15.00	26146.0				8	PHOS. TOTAL	0.66	0.6607	
1548 C	QR Choline	4.13	0.206	2534.00	15.00	47811.2				9	ASH		5.03	
1553 S		3.58	0.179	15.00		29.40		1.5000			PHOS., AVAILAB	0.40	0.4000	0.
1916 P	OU NRC TM	2.80	0.140	908.00			0.1400	0.1400		18	ADF		0.0000	
1956 P	ou VIT 1.2 D3	2.00	0.100	2332.00			0.1000	0.1000		19	M.E. POULTRY	1425.00	1425.00	
1550 L	-LYSINE, CQR	0.441	0.022	1725.00	15.00	9208.20				21	M.E. SWINE		1518.02	
										23	N.E.L.		0.0000	
	Total Batch:	2000.00	Lbs at	294.77	\$/Ton	14.738	\$/100Lb	0.1474	S/Lb	24	N.E.M.		0.0000	
											N.E.G.		0.0000	
			Nutrie	nts							METHIONINE	0.51	0.5332	
ıtr		Unit of			Incremen					N: 5000	CYSTINE		0.3268	
		Measure			Change						LYSINE	1.20	1.20	
											TRYPTOPHAN	27(9/6	0.2709	
	Contract Con	PCT			0.10 PCT						THREONINE	0.83	0.8395	
	The state of the s	PCT		4294							ISOLEUCINE		1.03	
7 CAL		PCT			0.01 PCT						HISTIDINE		0.5784	
	S., AVAILABLE				0.01 PCT						VALINE		1.14	
		KCAL/LB			0.00 KCA					1.00	LEUCINE		1.87	
33 LYS		PCT			0.01 PCT						ARGININE		1.39	
42 TSA		PCT			0.01 PCT						PHENYLALANINE	29020	1.14	
54 CHO		MG/LB			1.00 MG/						TSAA		0.8600	
61 SOD	IUM	PCT	0.	0366	0.10 PCT						[o o No Name oo		0.0000	
				-000						1.000	PYRIDOXINE		4.31	
		Unu											0.5815	
Ingr				Current			Minimum				VITAMIN A		1311.15	
	ngredient Name						Pct				VITAMIN E		12.86	
				1849.00							RIBOFLAVIN		2.66	
1221 1	hreonine, CQR			1849.00	15.00						PANTOTHENIC AC		8.50	
											BIOTIN		151.84	
										1	FOLIC ACID		435.80	
											CHOLINE	1300.00		
											VITAMIN B12	1300.00	5.40	
											NIACIN		28.37	
											VITAMIN D3 IU		1375.00	
											MENADIONE		0.8749	
											VITAMIN C		0.0000	
											Vitamin D		0.0000	
											SODIUM	0.20	0.2000	
											POTASSIUM	6/8/587	0.8718	
										63	MAGNESIUM		0.1519	
											SULPHUR		0.1900	
										65	MANGANESE		104.89	
										66	IRON		341.03	
										67	COPPER		19.27	
										68	ZINC		87.99	
										69	SELENIUM		0.3017	
										70	COBALT		0.0000	
										71	FLOURINE		0.0028	
										72	CHLORIDE	0.26	0.3006	
										73	SALT		0.4424	
											IODINE		0.5944	
										76	Dig Methionine		0.5065	
										77	Dig Cystine		0.2709	
										78	Dig Lysine		1.08	

Plant: 1

Silver Springs

Product: AGV151GP AGV-15-1 BG PC

Plant: 1 Silver Springs Product: AGV151GP AGV-15-1 BG PC Formulated By: Single Product Formulation
Using Costs: Plant 1 Owning Costs

Date Optimized: 05/11/2015 Optimized By: PROSUSER Trial Version: 16 Prod'n Version: 0 Page: 2

11	Nutr				
1	No	Nutrient	Minimum	Actual	Maximum
1					
ı	80	Dig Threonine		0.7313	
1	81	Dig Isoleucine		0.9463	
1	82	Dig Histidine		0.5214	
ı	83	Dig Valine		1.03	
1	84	Dig Leucine		1.73	
1	85	Dig Arginine		1.27	
ı	86	Dig Phenylalan		1.37	
1	87	Dig TSAA		0.7777	
1	89	Oxytetracyclin		0.0000	
1	90	Non Protein Ni		0.0000	
1	100	Total Nitrogen		0.0000	
1	101	Bulk Density		0.8494	

CFC/Concept5 Least Cost Formula Date Printed: 05/11/15

Date Optimized: 05/11/2015 Optimized By: PROSUSER

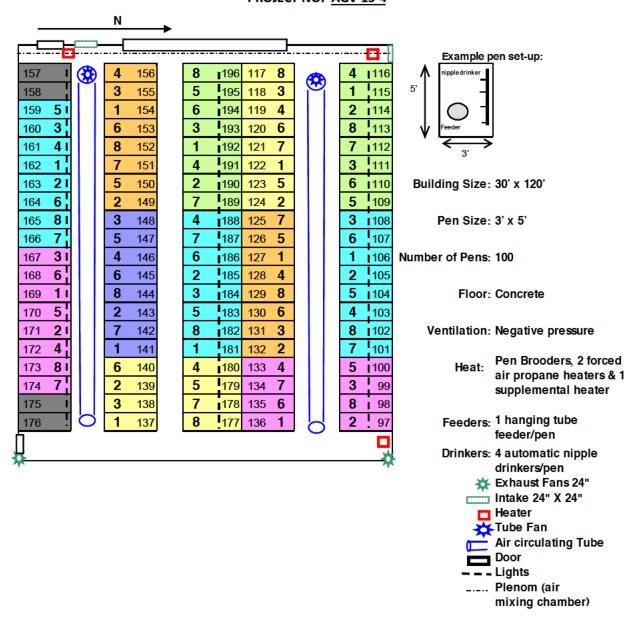
Plant: 1 Silver Springs Formulated By: Single Product Formulation Trial Version: 17
Product: AGV151GN AGV-15-1 BG NC Using Costs: Plant 1 Owning Costs Prod'n Version: 0

Page: 1

Ingr			inded				Re							
	Ingredient Name			\$/Ton	Low						Nutrient			Maximu
191	3 Corn, CQR	1252.29	62.615	164.64	113.60	295.60			1	2	DRY MATTER		89.47	
191	4 SBM , CQR	629.58	31,479	508.00	227.40	841.60			i i	3	MOISTURE		10.53	
154	2 Soy Oil	41.69	2.084	600.00	223.40	1999.80			1	4	PROTEIN, CRUDE	20.30	20.30	
155	2 Limestone, CQR	29.75	1.487	30.00	15.00	33574.0			- 0	5	FAT, CRUDE	4.80	4.80	
155	4 DICALCIUM PHOS	15.22	0.761	255.24		25099.8				6	FIBER, CRUDE		2.20	
155	3 Sand	8.98	0.449	15.00		29.40		1.5000	1 1	7	CALCIUM	0.84	0.8400	
154	4 SALT, PLAIN (N	8.88	0.444	29.34	15.00	144552.			- 1	8	PHOS. TOTAL	0.51	0.5107	
154	9 DL-METHIONINE,	4.23	0.212	2637.89	15.00	26146.0			1	9	ASH		4.85	
154	8 CQR Choline	4.13	0.206	2534.00	15.00	47811.2			1	10	PHOS., AVAILAB	0.25	0.2500	0.2
191	6 POU NRC TM	2.80	0.140	908.00			0.1400	0.1400	1	18	ADF		0.0000	
199	6 Pou VIT 1.2 D3	2.00	0.100	2332.00			0.1000	0.1000		19	M.E. POULTRY	1425.00	1425.00	
155	O L-LYSINE, CQR	0.441	0.022	1725.00	15.00	9208.20			1	21	M.E. SWINE		1518.02	
									- 1	23	N.E.L.		0.0000	
	Total Batch:	2000.00	Lbs at	292.89	\$/Ton	14.645	\$/100Lb	0.1464	\$/Lb	24	N.E.M.		0.0000	
									2 3	25	N.E.G.		0.0000	
		Binding	Nutrie	ents					1	31	METHIONINE	0.51	0.5332	
itr		Unit of	NI	itr	Incremen	nt			1	32	CYSTINE		0.3268	
	Nutrient Name	Measure		ost	Change				1	33	LYSINE	1.20	1.20	
											TRYPTOPHAN		0.2709	
4	PROTEIN, CRUDE	PCT	0	6442	0.10 PC	F.			- 1	35	THREONINE	0.83	0.8395	
5	FAT, CRUDE	PCT	0	4294	0.10 PC	г			1	36	ISOLEUCINE		1.03	
7	CALCIUM	PCT	0.	.0045	0.01 PC	r			1	37	HISTIDINE		0.5784	
10	PHOS., AVAILABLE	PCT	0.	1251	0.01 PC	г			1	38	VALINE		1.14	
19	M.E. POULTRY	KCAL/LB	0.	4106 1	10.00 KC	AL/LB			1	39	LEUCINE		1.87	
33	LYSINE	PCT	0.	2170	0.01 PC	r			1	40	ARGININE		1.39	
42	TSAA	PCT	0	2649	0.01 PC	г			1	41	PHENYLALANINE		1.14	
54	CHOLINE	MG/LB	0.	.0093	1.00 MG	/LB			1	42	TSAA	0.86	0.8600	
61	SODIUM	PCT	0.	0366	0.10 PC	r			1	43	[** No Name **		0.0000	
									i i	45	PYRIDOXINE		4.31	
		Unu	sed In	redients						46	CAROTENE		0.5815	
Ingr				Current	At	Would	Minimum	Maximum	1	47	VITAMIN A		1311.15	
Code	Ingredient Name			\$/Ton	\$/Ton	Use	Pct	Pct	Rcost	48	VITAMIN E		12.86	
										49	THIAMIN		1.99	
155	1 Threonine, CQR			1849.00	15.00				18.34	50	RIBOFLAVIN		2.66	
										51	PANTOTHENIC AC		8.50	
									- 1	52	BIOTIN		151.84	
									- 1	53	FOLIC ACID		435.80	
										54	CHOLINE	1300.00	1300.00	
									- 1	55	VITAMIN B12		5.40	
										56	NIACIN		28.37	
									3	57	VITAMIN D3 IU		1375.00	
									- 3	58	MENADIONE		0.8749	
									- 3	59	VITAMIN C		0.0000	
									- 0	60	Vitamin D		0.0000	
									- 3	61	SODIUM	0.20	0.2000	
									- 3	62	POTASSIUM		0.8713	
									- 1	63	MAGNESIUM		0.1470	
									- 1	64	SULPHUR		0.1900	
									- 1	65	MANGANESE		102.44	
									j.	66	IRON		259.51	
										67	COPPER		18.62	
									- 3	68	ZINC		86.19	
									j	69	SELENIUM		0.2968	
									- 1	70	COBALT		0.0000	
									1	71	FLOURINE		0.0014	
									i	72	CHLORIDE	0.26	0.3016	
									- 1	73	SALT		0.4441	
											IODINE		0.5944	
									j	76	Dig Methionine		0.5065	
									1	77	Dig Cystine		0.2709	
											The second secon			
									- 3	78	Dig Lysine		1.08	

Date Optimized: 05/11/2015 Optimized By: PROSUSER

Formulated By: Single Product Formulation Using Costs: Plant 1 Owning Costs


Trial Version: 17 Prod'n Version: 0 Page: 2

1.		Nutrie	nt Soluti	on		
11	Nutr					
1	No	Nutrient	Minimum	Actual	Maximum	
1.						
1	80	Dig Threonine		0.7313		
1	81	Dig Isoleucine		0.9463		
ï	82	Dig Histidine		0.5214		
1	83	Dig Valine		1.03		
1	84	Dig Leucine		1.73		
ï	85	Dig Arginine		1.27		
1	86	Dig Phenylalan		1.37		
1	87	Dig TSAA		0.7777		
ï	89	Oxytetracyclin		0.0000		
1	90	Non Protein Ni		0.0000		
1	100	Total Nitrogen		0.0000		
1	101	Bulk Density		1.34		

Plant: 1 Silver Springs Product: AGV151GN AGV-15-1 BG NC

APPENDIX 2 - BUILDING DIAGRAM

COLORADO QUALITY RESEARCH, INC. RESEARCH FACILITY NO. <u>7</u> PROJECT NO. AGV-15-4

MINNESOTA VALLEY TESTING LABORATORIES, INC. Page 52 of 78

MVTL

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 E. Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 **MEMBER**

1201 Lincoln Highway ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

ACIL

APPENDIX 3 - PROXIMATE ANALYSIS RESULTS

Report Date: 10 Aug 2015

Lab Number: 15-F22434 Work Order #: 17-7870

Account #: 7903

Date Submitted: 27 Jul 2015 Date Received: 29 Jul 2015

SHOSHANA GRAY
COLORADO QUALITY RESEARCH, INC
400 EAST COUNTY ROAD 72
WELLINGTON CO 80549

Sample Description: D 0-14

Product Name: LP STARTER BASAL MASH

Project Name: AGV-15-4

ANALYTE	AS RECEI	VED	METHO	OD REF	DA'	re analyzed
Moisture	12.56	8	AOAC	930.15	31	Jul 2015
Methionine	0.5660	8	AOAC	994.12	9	Aug 2015
Lysine	1.226	8	AOAC	994.12	9	Aug 2015
Ash	7.12	%	AOAC	942.05	31	Jul 2015
Calcium	1.06	8	AOAC	985.01	31	Jul 2015
Fat, Ethyl Ether	3.75	8	AOAC	2003.05	4	Aug 2015
Fiber, Crude	2.18	8	AOCS	BA6A-05	30	Jul 2015
Phosphorus	0.5962	8	AOAC	985.01	31	Jul 2015
Protein N x 6.25	19.50	9	AOAC	990.03	31	Jul 2015

Approved by:

J. Joel Sieh'

MINNESOTA VALLEY TESTING LABORATORIES, INC. Page 53 of 78

MVTL

Report Date: 10 Aug 2015

Lab Number: 15-F22435 Work Order #: 17-7870

Account #: 7903

Date Submitted: 27 Jul 2015 Date Received: 29 Jul 2015

SHOSHANA GRAY COLORADO QUALITY RESEARCH, INC 400 EAST COUNTY ROAD 72 WELLINGTON CO 80549

Sample Description: D 14-21

Product Name: LP STARTER BASAL MASH

Project Name: AGV-15-4

ANALYTE	AS RECEI	VED	METH	OD REF	DA'	re analyzed
Moisture	12.17	8	AOAC	930.15	31	Jul 2015
Methionine	0.5530	8	AOAC	994.12	9	Aug 2015
Lysine	1.215	8	AOAC	994.12	9	Aug 2015
Ash	7.20	8	AOAC	942.05	31	Jul 2015
Calcium	1.10	8	AOAC	985.01	3	Aug 2015
Fat, Ethyl Ether	3.69	8	AOAC	2003.05	4	Aug 2015
Fiber, Crude	2.12	8	AOCS	BA6A-05	30	Jul 2015
Phosphorus	0.6118	8	AOAC	985.01	3	Aug 2015
Protein N x 6.25	19.60	૪	AOAC	990.03	31	Jul 2015

Approved by:

J. Joel Sieh

MINNESOTA VALLEY TESTING LABORATORIES, INC. Page 54 of 78

MVTL

Report Date: 10 Aug 2015

Lab Number: 15-F22436 Work Order #: 17-7870

Account #: 7903

SHOSHANA GRAY COLORADO QUALITY RESEARCH, INC 400 EAST COUNTY ROAD 72 WELLINGTON CO 80549

Date Submitted: 27 Jul 2015 Date Received: 29 Jul 2015

Sample Description: D 0-14

Product Name: TRT 2 HP STARTER BASAL MASH

Project Name: AGV-15-4

ANALYTE	AS RECEI	VED	METHO	OD REF	DA'	TE ANALYZED
Moisture	12.35	8	AOAC	930.15	31	Jul 2015
Methionine	0.5820	8	AOAC	994.12	9	Aug 2015
Lysine	1.236	8	AOAC	994.12	9	Aug 2015
Ash	6.84	8	AOAC	942.05	31	Jul 2015
Calcium	1.10	8	AOAC	985.01	3	Aug 2015
Fat, Ethyl Ether	3.63	8	AOAC	2003.05	4	Aug 2015
Fiber, Crude	2.08	8	AOCS	BA6A-05	30	Jul 2015
Phosphorus	0.8172	8	AOAC	985.01	3	Aug 2015
Protein N x 6.25	21.50	૪	AOAC	990.03		Jul 2015

Approved by:

J. Joel Sieh

MINNESOTA VALLEY TESTING LABORATORIES, INC. Page 55 of 78

MVTL

Report Date: 10 Aug 2015

Lab Number: 15-F22437 Work Order #: 17-7870

Account #: 7903

SHOSHANA GRAY COLORADO QUALITY RESEARCH, INC 400 EAST COUNTY ROAD 72 WELLINGTON CO 80549

Date Submitted: 27 Jul 2015 Date Received: 29 Jul 2015

Sample Description: D 14-21

Product Name: TRT 2 HP STARTER BASAL MASH

Project Name: AGV-15-4

ANALYTE	AS RECEI	VED	METHO	OD REF	DA'	re analyzed
Moisture	12.31	9g	AOAC	930.15	31	Jul 2015
Methionine	0.5660	8	AOAC	994.12	9	Aug 2015
Lysine	1.223	8	AOAC	994.12	9	Aug 2015
Ash	7.69	8	AOAC	942.05	31	Jul 2015
Calcium	1.08	8	AOAC	985.01	3	Aug 2015
Fat, Ethyl Ether	3.73	8	AOAC	2003.05	4	Aug 2015
Fiber, Crude	1.97	8	AOCS	BA6A-05	30	Jul 2015
Phosphorus	0.8811	8	AOAC	985.01	3	Aug 2015
Protein N x 6.25	20.20	૪	AOAC	990.03		Jul 2015

Approved by:

J. Joel Sieh

MINNESOTA VALLEY TESTING LABORATORIES, INC. Page 56 of 78

MVTL

Report Date: 28 Sep 2015

Lab Number: 15-F24679 Work Order #: 17-8323

Account #: 7903

SHOSHANA GRAY
COLORADO QUALITY RESEARCH INC
400 EAST COUNTY ROAD 72
WELLINGTON CO 80549

Date Submitted: 13 Aug 2015 Date Received: 17 Aug 2015

Sample Description: GROWER/FINISHER BASAL MASH

Product Name: TRT 2 HIGH PHOSHPATE

Project Name: AGV 15-4

ANALYTE	AS RECEI	VED	METH	OD REF	DAT	TE Al	NALYZED
Moisture	11.42	ક	AOAC	930.15	19	Aug	2015
Methionine	0.4920	%	AOAC	994.12	28	Sep	2015
Lysine	1.092	%	AOAC	994.12	28	Sep	2015
Calcium	0.86	8	AOAC	985.01	20	Aug	2015
Fat, Ethyl Ether	4.04	8	AOAC	2003.05	18	Aug	2015
Fiber, Crude Ankom	2.08	%	AOCS	BA6A-05	20	Aug	2015
Phosphorus	0.6363	%	AOAC	985.01	20	Aug	2015
Protein N x 6.25	20.00	8	AOAC	990.03	18	Aug	2015

Approved by:

J. Joel Sieh

MINNESOTA VALLEY TESTING LABORATORIES, INC. Page 57 of 78

MVTL

Report Date: 28 Sep 2015

Lab Number: 15-F24680 Work Order #: 17-8323

Account #: 7903

SHOSHANA GRAY
COLORADO QUALITY RESEARCH INC
400 EAST COUNTY ROAD 72
WELLINGTON CO 80549

Date Submitted: 13 Aug 2015 Date Received: 17 Aug 2015

Sample Description: GROWER/FINISHER BASAL MASH

Product Name: TRT LOW PHOSHPATE

Project Name: AGV 15-4

ANALYTE	AS RECEI	VED	METHO	OD REF	DAT	TE ANALYZED
Moisture	11.25	g 8	AOAC	930.15	19	Aug 2015
Methionine	0.4620	8	AOAC	994.12	28	Sep 2015
Lysine	0.9600	8	AOAC	994.12	28	Sep 2015
Calcium	0.82	%	AOAC	985.01	20	Aug 2015
Fat, Ethyl Ether	4.54	%	AOAC	2003.05	19	Aug 2015
Fiber, Crude Ankom	2.32	8	AOCS	BA6A-05	20	Aug 2015
Phosphorus	0.4925	8	AOAC	985.01	20	Aug 2015
Protein N x 6.25	20.00	9	AOAC	990.03	18	Aug 2015

Approved by:

J. Joel Sieh

APPENDIX 4 - TIBIA ASH RESULTS

CEPS Central Analytical Laboratory Report

Report Date:

11/6/2015

Report No:

163081

poultryscience.uark.edu

University of Arkansas

Poultry Science Center L-209

Fayetteville, AR 72701

CAL Sample ID: 163081-163272

479-575-6532

Investigator

Shoshana Gray

Colorado Quality Research, Inc.

Institution

Department

.

Address 400 East County Road 72; Wellington, CO 80549 Customer# 121708

Phone#

970-568-7738

email: shoshana@coloradoqualityresearch.com

Report Description Analysis of Tibia Bones--AGV-15-4

Sam	ple ID	<u>Ash</u>	Sample I	
D	21	%		%
	y 21 97	25.7	125	26.3
			125 126	26.5
	98	22.3		
	99	22.7	127	21.4
	.00	24.4	128	24.3
	01	25.3	129	26.7
	02	27.6	130	24.2
	03	25.9	131	23.7
	04	25.5	132	26.9
	.05	27.2	133	24.4
	06	23.1	134	24.1
	.07	27.8	135	23.6
	.08	28.4	136	20.2
	.09	23.5	137	20.2
	.10	23.3	138	22.6
1	.11	23.3	139	24.7
1	.12	24.7	140	24.4
1	13	25.5	141	21.5
1	14	25.3	142	26.2
1	.15	24.2	143	23.5
1	.16	27.6	144	25.5
1	17	25.6	145	24.2
	18	23.9	146	26.0
	19	24.7	147	24.4
	20	25.0	148	24.7
	21	25.2	149	24.1
	22	22.4	150	24.3
	23	23.9	151	24.3
	24	24.8	152	30.6
1	∠ ⊤	27.0	132	30.0

Sar	mple ID	Ash %	AGV-15-3 <u>Sample ID</u>	<u>Ash</u>
D	ay 21			%
	153	22.9	Day 21	
	154	21.4	4	22.9
	155	23.2	5	23.1
	156	24.2	6	19.7
	159	26.6	7	23.1
	160	24.3	8	25.6
	161	24.4	9	23.3
	162	20.6	10	25.1
	163	23.0	11	23.0
	164	25.9	12	24.3
	165	24.9	13	24.9
	166	24.9	14	26.8
	167	23.1	15	24.2
	168	25.8	16	24.4
	169	18.4	17	27.6
	170	21.6	18	27.4
	171	24.5	19	27.3
	172	23.7	22	26.7
	173	23.5	23	25.3
	174	28.7	24	26.3
	177	25.5	25	23.1
	178	24.2	26	26.6
)	179	24.6	27	26.1
	180	24.2	28	27.3
	181	21.4	29	27.0
	182	25.6	30	25.6
	183	26.5	31	25.2
	184	24.5	32	25.5
	185	23.9	33	24.7
			34	27.1
	186 187	25.9 24.5	35	22.8
			36	
	188	24.6		26.3
	189	26.6	37	23.5
	190	24.7	41	27.1
	191	23.3	42	26.2
	192	20.7	43	27.5
	193	22.2	44	25.4
	194	25.3	45	27.0
	195	22.7	46	24.1
	196	23.6	47	26.3
			48	24.7
			49	24.7
			50	26.9
1				

6 ACW 15 2		Camarla ID	A -1-
AGV-15-3	AT.	Sample ID	<u>Ash</u> %
Sample ID	Ash		%
D 01	%	02	27.1
Day 21	26.5	83	27.1
51	26.7	84	25.6
52	25.3	85	26.4
53	21.9	86	26.4
54	23.2	87	25.6
55	26.6	88	24.7
56	25.4	89	24.6
59	28.4	90	21.2
60	23.0	91	23.7
61	26.0	92	26.2
62	25.3	93	25.0
63	25.2	96	24.6
64	27.2	97	26.2
65	27.3	98	24.6
66	26.8	99	26.8
67	27.4	100	22.5
68	25.0	101	25.8
69	27.3	102	28.1
70	25.0	103	27.2
71	23.0	104	26.8
72	26.6	105	28.7
73	26.3	106	28.1
74	25.0	107	29.1
78	26.0	108	26.6
79	24.1	109	24.3
80	27.7	110	27.7
81	27.9	111	27.8
82	27.0		

Bones were dried, then ashed.

CEPS Central Analytical Laboratory Report

Report Date: 11/24/2015

Report No: 163273

poultryscience.uark.edu

University of Arkansas

Poultry Science Center L-209

Fayetteville, AR 72701

479-575-6532

Investigator Shoshana Gray

Institution Colorado Quality Research, Inc.

CAL Sample ID: 163273-163320

163356-163403

Department

Address 400 East County Road 72; Wellington, CO 80549

Customer# 121708

Phone# 970-568-7738 email: shoshana@coloradoqualityresearch.com

Report Description Analysis of Tibia Bones--AGV-15-4

Sample I		Sample ID	<u>Ash</u>
	%		%
Day 42			
97	36.8	125	38.3
98	38.5	126	35.5
99	37.2	127	35.0
100	35.3	128	37.5
101	37.6	129	37.4
102	38.1	130	37.6
103	39.4	131	36.8
104	36.9	132	40.4
105	35.7	133	37.4
106	34.3	134	38.5
107	36.3	135	38.0
108	37.6	136	33.9
109	36.8	137	29.9
110	37.6	138	36.7
111	38.2	139	39.3
112	36.9	140	35.3
113	37.3	141	35.6
114	36.2	142	40.3
115	34.2	143	38.5
116	39.1	144	40.9
117	43.3	145	40.6
118	45.1	146	42.6
119	41.2	147	36.1
120	44.9	148	36.1
121	43.1	149	37.6
122	33.6	150	38.7
123	37.9	151	41.4
124	37.1	152	36.2
	2711		J U

Sample ID	<u>Ash</u> %
Day 42	
153	40.0
154	35.4
155	38.7
156	39.7
159	37.6
160	37.6
161	36.4
162	34.9
163	36.3
164	39.7
165	38.9
166	38.7
167	38.1
168 169	38.3 39.4
170	39.4 36.9
170 171	37.2
172	37.2
173	40.8
174	38.4
177	38.4
178	38.7
179	38.6
180	41.8
181	35.7
182	40.3
183	38.3
184	37.1
185	39.2
186	42.3
187	36.9
188	37.5
189	40.6
190	36.7
191	37.7
192	38.1
193	40.3
194	40.1
195	37.2
196	37.9

Bones were dried, then ashed.

Report Approved:

: Jinda K. Kuby Linda K. Kirby 11-24-15

UNIVERSITY of MISSOURI

EXPERIMENT STATION CHEMICAL LABORATORIES

COLLEGE OF AGRICULTURE, FOOD AND NATURAL RESOURCES

APPENDIX 5 - ILEAL CONTENT ANALYSIS RESULTS

December 8, 2015

Shoshana Gray Colorado Quality Research, Inc. 400 East County Rd. 72 Wellington, CO 80549

Dear Ms. Gray:

Please find enclosed a completed reports of analyses for the samples we received September 16, 2015.

We have assigned lab number 14634-14635 to your samples. Reference standards were performed.

A University of Missouri invoice will be sent to you by the Accounting Department for payment of these services.

The original results will be on file in our office and available to you upon request. We are glad that we have been able to work with you on this project and look forward to being of service to you again.

Please let us know if you have further questions.

SCL

Agriculture Experiment Station Experiment Station Chemical Laboratories University of Missouri-Columbia

Sincerely,

Dit James K. Water Research Chemist

Enclosure

Dr. Thomas P. Mawhinney

Director

Experiment Station Chemical Daboratories

University of Missouri

Room 4 Agricultural Building

Columbia, Missouri 65211

Sender: Shoshana Grey

Date Received: September 16, 2015

Address: Colorado Quality Research, Inc.

400 East County Road 72, Wellington, Colorado 80549

Phone: 970-568-7738 970=568=7719

Purchase Order #: Invoice

Date of Report: December 8, 2015

Description:14634= AGV-15-4DAY 21; 14635=AGV-15-4 DAY42

Page 1 of 7

ESCL#	Dept. Number	Titanium ppm	Moisture W/W%	Phosphorus W/W%	
14634- 1	97	1190	84.00	0.10	
14634-2	98	1530	78.98	0.17	
14634-3	99	1080	82.64	0.17	
14634-4	100	1110	83.46	0.13	
14634- 5	101	960	84.00	0.16	
14634- 6	102	1100	82.96	0.12	
14634-7	103	840	84.39	0.15	
14634-8	104	820	86.39	0.11	
14634-9	105	1240	80.52	0.16	
14634- 10	106	1030	81.24	0.16	
14634- 11	107	980	83.36	0.14	
14634- 12	108	1080	83.01	0.17	
14634- 13	109	1010	83.39	0.11	
14634- 14	110	970	85.52	0.11	
14634- 15	111	940	83.38	0.12	
14634- 16	112	1060	83.42	0.10	
14634- 17	113	1420	81.46	0.26	
14634- 18	114	1070	82.13	0.19	
14634- 19	115	1140	82.6 1	0.15	
14634- 20	116	1070	81.97	0.12	
14634- 21	117	970	84.37	0.07	
14634- 22	118	1280	83.27	0.17	
14634- 23	119	1010	83.38	0.18	
14634- 24	120	1020	84.1 1	0.15	
14634- 25	121	970	84.58	0.14	
14634- 26	122	820	84.83	0.14	
14634- 27	123	830	84.23	0.16	
14634- 28	124	780	85.75	0.15	
14634- 29	125	840	85.18	0.13	
14634- 30	126	1050	82.70	0.16	
14634- 31	127	1150	83.03	0.15	

W/W%= grams per 100 grams of sample.

ppm= parts per million.

Results are expressed on an "as is" basis unless otherwise indicated.

Experiment Station Chemical Laboratories

University of Missouri

Room 4 Agricultural Building

Columbia, Missouri 65211

Sender: Shoshana Grey

Date Received: September 16, 2015

Address: Colorado Quality Research, Inc.

400 East County Road 72, Wellington, Colorado 80549

Phone: 970-568-7738 970=568=7719

Purchase Order #: Invoice

Date of Report: December 8, 2015

Description:14634= AGV-15-4DAY 21; 14635=AGV-15-4 DAY42

Page 2 of 7

ESCL#	Dept. Number	Titanium ppm	Moisture W/W%	Phosphorus W/W%
14634- 32	128	1010	83.05	0.15
14634- 33	129	1000	83.51	0.12
14634- 34	130	910	82.98	0.12
14634- 35	131	820	84.66	0.04
14634- 36	132	1170	83.03	0.18
14634- 37	133	990	83.50	0.14
14634-38	134	1030	83.03	0.16
14634- 39	135	890	83.87	0.13
14634- 40	136	1230	81.29	0.25
14634-41	137	970	82.34	0.19
14634- 42	138	640	82.56	0.13
14634-43	139	1060	81.87	0.15
14634- 44	140	850	84.24	0.14
14634- 45	141	890	83.82	0.23
14634- 46	142	860	84.90	0.12
14634- 47	143	850	86.94	0.12
14634- 48	144	1060	83.62	0.10
14634- 49	145	1000	84.19	0.15
14634- 50	146	1070	84.07	0.18
14634- 51	147	950	85.57	0.12
14634- 52	148	1040	84.55	0.17
14634- 53	149	1100	83.84	0.15
14634- 54	150	1000	85.12	0.13
14634- 55	151	1040	84.30	0.16
14634- 56	152	910	85.56	0.10
14634- 57	153	770	86.49	0.10
14634- 58	154	1080	83.61	0.19
14634- 59	155	1060	83,10	0.18
14634- 60	156	840	85.90	0.11
14634- 61	159	960	83.72	0.16
14634- 62	160	1080	85.57	0.20

W/W%= grams per 100 grams of sample.

ppm= parts per million.

Results are expressed on an "as is" basis unless otherwise indicated.

Experiment Staffon Chemical Laboratories

University of Missouri

Room 4 Agricultural Building

Columbia, Missouri 65211

Sender: Shoshana Grey

Date Received: September 16, 2015

Address: Colorado Quality Research, Inc.

400 East County Road 72, Wellington, Colorado 80549

Phone: 970-568-7738 970=568=7719

Purchase Order #: Invoice

Date of Report: December 8, 2015

Description:14634= AGV-15-4DAY 21; 14635=AGV-15-4 DAY42

Page 3 of 7

	Dept.	Titanium	Moisture	Phosphorus
ESCL#	Number	ppm	W/W%	W/W%
14634- 63	161	1110	84.23	0.14
14634- 64	162	1210	83.76	0.20
14634- 65	163	1120	84.92	0.15
14634- 66	164	1070	83.79	0.20
14634- 67	165	1170	84.82	0.09
14634- 68	166	1040	84.08	0.14
14634- 69	167	1040	83.91	0.09
14634- 70	168	1160	82.50	0.18
14634- 71	169	1120	83.27	0.15
14634- 72	170	1080	84.07	0.17
14634- 73	171	1160	84.78	0.17
14634- 74	172	1100	84.90	0.15
14634- 75	173	1120	83.86	0.13
14634- 76	174	1280	84.02	0.16
14634-77	177	1160	86.55	0.16
14634- 78	178	1030	86.86	0.10
14634- 79	179	1140	86.04	0.16
14634- 80	180	1170	86.60	0.17
14634-81	181	930	85.00	0.21
14634- 82	182	1270	84.98	0.14
14634- 83	183	750	88.90	0.12
14634- 84	184	1220	85.64	0.16
14634- 85	185	1050	85.92	0.20
14634- 86	186	1250	84.15	0.17
14634- 87	187	910	87.47	0.11
14634-88	188	790	89.31	0.13
14634- 89	189	1090	87.31	0.17
14634- 90	190	1110	86.45	0.16
14634- 91	191	1250	84.51	0.17
14634- 92	192	1060	86.20	0.15
14634- 93	193	1190	84.56	0.19

W/W%= grams per 100 grams of sample.

ppm= parts per million.

Results are expressed on an "as is" basis unless otherwise indicated.

Experiment Station Chemical Laboratories

University of Missouri

Room 4 Agricultural Building

Columbia, Missouri 65211

Sender: Shoshana Grey

Date Received: September 16, 2015

Address: Colorado Quality Research, Inc.

400 East County Road 72, Wellington, Colorado 80549

Phone: 970-568-7738 970=568=7719

Purchase Order #: Invoice

Date of Report: December 8, 2015

Description:14634= AGV-15-4DAY 21; 14635=AGV-15-4 DAY42

Page 4 of 7

ESCL#	Dept. Number	Titanium ppm	Moisture W/W%	Phosphorus W/W%
14634- 94	194	1140	86.82	0.11
14634- 95	195	1090	85.76	0.16
14634- 96	196	1080	85.65	0.09
14635-97	97	1420	83.23	0.24
14635- 98	98	1060	84.43	0.12
14635- 99	99	1160	84.09	0.19
14635- 100	100	990	84.99	0.16
14635- 101	101	1040	83.65	0.17
14635- 102	102	1090	85.74	0.10
14635- 103	103	1060	84.47	0.15
14635- 104	104	1380	82.48	0.15
14635- 105	105	1150	84.62	0.20
14635- 106	106	1130	83.99	0.20
14635- 107	107	1100	83.93	0.17
14635- 108	108	1310	82.40	0.22
14635- 109	109	1330	83.56	0.24
14635- 110	110	1150	82.43	0.23
14635- 111	111	940	85.00	0.15
14635-112	112	1270	83.74	0.23
14635- 113	113	940	83.63	0.15
14635- 114	114	1050	83.80	0.23
14635- 115	115	1070	84.18	0.15
14635- 116	116	1220	83.81	0.21
14635- 117	117	1360	84.10	0.14
14635- 118	118	1010	86.46	0.18
14635- 119	119	1230	84.72	0.18
14635- 120	120	1280	83.81	0.25
14635- 121	121	1290	83.61	0.17
14635- 122	122	1040	84.00	0.21
14635- 123	123	1240	83.40	0.16
14635- 124	124	1150	84.24	0.27

W/W%= grams per 100 grams of sample.

ppm= parts per million.

Results are expressed on an "as is" basis unless otherwise indicated.

Experiment Station Chemical Laboratories

University of Missouri

Room 4 Agricultural Building

Columbia, Missouri 65211

Sender: Shoshana Grey

Date Received: September 16, 2015

Address: Colorado Quality Research, Inc.

400 East County Road 72, Wellington, Colorado 80549

Phone: 970-568-7738 970=568=7719

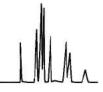
Purchase Order #: Invoice

Date of Report: December 8, 2015

Description:14634= AGV-15-4DAY 21; 14635=AGV-15-4 DAY42

Page 5 of 7

ESCL#	Dept. Number	Titanium ppm	Moisture W/W%	Phosphorus W/W%
14635- 125	125	1090	84.70	0.11
14635- 126	126	1050	85.26	0.16
14635- 127	127	1100	85.18	0.13
14635- 128	128	1190	83.90	0.15
14635- 129	129	1120	83.99	0.11
14635- 130	130	900	85.53	0.12
14635- 131	131	780	88.27	0.17
14635- 132	132	1100	84.60	0.24
14635- 133	133	1030	85.58	0.12
14635- 134	134	1060	85.76	0.13
14635- 135	135	1170	82.67	0.14
14635- 136	136	1300	83.89	0.14
14635- 137	137	1320	83.35	0.27
14635- 138	138	1210	84.63	0.27
14635- 139	139	1330	84.31	0.17
14635- 140	140	1210	83.84	0.17
14635- 141	141	1240	84.42	0.16
14635- 142	142	1120	84.98	0.11
14635- 143	143	1450	83.69	0.26
14635- 144	144	1090	85.17	0.10
14635- 145	145	1200	84.61	0.20
14635- 146	146	1090	84.94	0.23
14635- 147	147	1030	84.75	0.14
14635- 148	148	1030	85.13	0.27
14635- 149	149	1170	84.42	0.19
14635- 150	150	1400	83.54	0.26
14635- 151	151	1020	85.16	0.09
14635- 152	152	1230	83.82	0.12
14635- 153	153	1250	84.17	0.22
14635- 154	154	1010	84.30	0.15
14635- 155	155	1100	83.08	0.23


W/W%= grams per 100 grams of sample.

ppm= parts per million.

Results are expressed on an "as is" basis unless otherwise indicated.

Experiment Staffon Chemical Laboratories

University of Missouri

Room 4 Agricultural Building

Columbia, Missouri 65211

Sender: Shoshana Grey

Date Received: September 16, 2015

Address: Colorado Quality Research, Inc.

400 East County Road 72, Wellington, Colorado 80549

Phone: 970-568-7738 970=568=7719

Purchase Order #: Invoice

Date of Report: December 8, 2015

Description:14634= AGV-15-4DAY 21; 14635=AGV-15-4 DAY42

Page 6 of 7

ESCL#	Dept. Number	Titanium ppm	Moisture W/W%	Phosphorus W/W%
14635- 156	156	1190	83.48	0.22
14635- 157	159	870	85.40	0.15
14635- 158	160	1060	85.05	0.20
14635- 159	161	1120	84.08	0.09
14635- 160	162	1080	84.45	0.15
14635- 161	163	1590	83.77	0.30
14635- 162	164	980	85.64	0.11
14635- 163	165	1100	84.42	0.15
14635- 164	166	1090	84.95	0.22
14635- 165	167	950	86.23	0.14
14635- 166	168	1080	85.80	0.18
14635- 167	169	880	82.28	0.14
14635- 168	170	1030	87.15	0.20
14635- 169	171	1040	85.43	0.21
14635- 170	172	1140	86.61	0.13
14635- 171	173	1280	85.48	0.14
14635- 172	174	750	88.18	0.05*
14635- 173	177	1190	84.91	0.10
14635- 174	178	1210	85.03	0.12
14635- 175	179	1100	83.25	0.14
14635- 176	180	960	87.76	0.13
14635- 177	181	1160	85.13	0.14
14635- 178	182	1170	81.96	0.14
14635- 179	183	1370	84.38	0.17
14635- 180	184	1390	84.33	0.25
14635- 181	185	1090	84.24	0.25
14635- 182	186	860	87.14	0.11
14635- 183	187	1230	84.12	0.24
14635- 184	188	1230	84.76	0.18
14635- 185	189	1550	83.93	0.14
14635- 186	190	1170	83.42	0.23

W/W%= grams per 100 grams of sample.

*sample repeated, value correct.

Results are expressed on an "as is" basis unless otherwise indicated. ppm= parts per million.

An Educational, Research and Analytical Service Resource since 1888

Experiment Station Chemical Laboratories

University of Missouri

Room 4 Agricultural Building

Columbia, Missouri 65211

Sender: Shoshana Grey

Date Received: September 16, 2015

Address: Colorado Quality Research, Inc.

400 East County Road 72, Wellington, Colorado 80549

Phone: 970-568-7738 970=568=7719

Purchase Order #: Invoice

Date of Report: December 8, 2015

Description:14634= AGV-15-4DAY 21; 14635=AGV-15-4 DAY42

Page 7 of 7

ESCL#	Dept. Number	Titanium ppm	Moisture W/W%	Phosphorus W/W%
14636- 187	191	980	85.76	0.09
14636- 188	192	1090	82.69	0.38
14636- 189	193	1300	84.59	0.17
14636- 190	194	1420	82.95	0.16
14636- 191	195	1000	84.90	0.11
14636- 192	196	1070	83.99	0.11

W/W%= grams per 100 grams of sample.

ppm= parts per million.

Results are expressed on an "as is" basis unless otherwise indicated.

UNIVERSITY of MISSOURI

EXPERIMENT STATION CHEMICAL LABORATORIES

COLLEGE OF AGRICULTURE, FOOD AND NATURAL RESOURCES

APPENDIX 6 - TITANIUM, PHOSPHORUS, AND MOISTURE ANALYSIS OF FEED RESULTS

November 18, 2015

Shoshana Gray Colorado Quality Research, Inc. 400 East County Rd. 72 Wellington, CO 80549

Dear Ms. Gray:

Please find enclosed a completed reports of analyses for the samples we received October 21, 2015.

We have assigned lab number 17372-17379 to your samples. Reference standards were performed.

A University of Missouri invoice will be sent to you by the Accounting Department for payment of these services.

The original results will be on file in our office and available to you upon request. We are glad that we have been able to work with you on this project and look forward to being of service to you again.

Please let us know if you have further questions.

Agriculture Experiment Station Experiment Station Chemical Laboratories University of Missouri-Columbia

Sincerely,

Dr. James K. Waters Research Chemist

Enclosure

Dr. Thomas P. Mawhinney

Director

Experiment Statton Chemical Laboratories

University of Missouri

Room 4 Agricultural Building

Columbia, Missouri 65211

Sender: Shoshana Gray

Date Received: October 21, 2015

Address: Colorado Quality Research, Inc.

400 East County Rod 72, Wellington, Colorado 80549

Phone/Fax:

970-568-7738 / 970=568=7719

Purchase Order #: Invoice

Date of Report: November 18, 2015

Description: AGV-15-3 & AGV-15-4

Page 1 of 1

ESCL#	CQR ID	Titanium ppm	Moisture W/W%	Phosphorus W/W%
17372	AGV 15-3 LP Starter	1360	11.57	0.59
17373	AGV 15-3 LP Grow. /Fin.	1490	11.40	0.49
17374	AGV 15-3 HP Starter	1240	11.57	0.82
17375	AGV 15-3 HP Grow. /Fin.	1400	11.29	0.64
17376	AGV 15-4 LP Starter	1360	11.79	0.62
17377	AGV 15-4 LP Grow. / Fin.	1450	11.01	0.55
17378	AGV 15-4 HP Starter	1030	11.65	0.88
17379	AGV 15-4 HP Grow. / Fin.	1390	11.27	0.74

W/W%= grams per 100 grams of sample, ppm= parts per million. Results are expressed on an "as is" basis unless otherwise indicated.

7 54

Shoshana Gray

From:

Jon Broomhead [jon.broomhead@agrivida.com]

Sent:

Tuesday, March 01, 2016 1:57 PM

To:

Shoshana Gray; Jim Ligon

Subject: Attachments: AGV-15-4 report

ments: AGV-15-4 All stats.docx

Categories:

PRINTED FOR STUDY NOTEBOOK, AGV-15-4

Hi Shoshana,

When do you think you will have the final report from AGV-15-4? In case I hadn't send you it yet, attached is the final statistical report for AGV-15-4.

You are still waiting for the AGV-15-5 ileal P digestibility, so hopefully that report can be not too far away after getting those results. Jim is needing the reports for submitting for the FDA/GRAS notification.

Thanks,

Jon

AGV-15-4 Statistical Report

Pen was used as experimental unit for each analyzed variable. Data was analyzed using fit least squares of the JMP software (version 12, SAS Institute Inc., Cary, NC). The ANOVA model included treatment and block. Mean values were separated using Tukey's honesty significant difference procedure, unless otherwise stated. P-values < 0.05 are considered significant in all comparisons.

0-14 d performance

Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed	Mortality, %
		kg	Conversion	
Positive Control	0.372 ^{ab}	0.289 ^{cde}	1.287 ^a	1.96
Negative Control	0.330 ^e	0.250 ^f	1.319 ^a	0.49
250 U + NC	0.357 ^{cd}	0.277 ^e	1.289 ^a	0.98
500 U + NC	0.354 ^d	0.285 ^{de}	1.244 ^b	0.98
750 U + NC	0.364 ^{bcd}	0.293 ^{bcd}	1.242 ^{bc}	0
1000 U + NC	0.370 ^{bc}	0.299 ^{bc}	1.238 ^{bc}	1.96
3000 U + NC	0.374 ^{ab}	0.304 ^b	1.229 ^{bc}	1.96
30,000 U + NC	0.384 ^a	0.319 ^a	1.204 ^c	3.43
SEM	0.0029	0.0028	0.0091	0.84
TRT P Value	<0.0001	<0.0001	<0.0001	0.115*
Block P Value	0.0002	0.043	0.18	0.54*

 $[\]overline{^{a-f}}$ Values within columns with no common superscript are statistically different (P < 0.05).

0-21 d performance

o 21 a performance				
Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed	Mortality, %
		kg	Conversion	
Positive Control	0.910 ^b	0.682 ^{cd}	1.334 ^{ab}	2.94
Negative Control	0.777 ^d	0.572 ^f	1.357 ^a	1.47
250 U + NC	0.872 ^c	0.654 ^e	1.332 ^{abc}	2.45
500 U + NC	0.875 ^c	0.669 ^{de}	1.308 ^{bcd}	1.93
750 U + NC	0.899 ^{bc}	0.690 ^{cd}	1.303 ^{cde}	0.98
1000 U + NC	0.903 ^{bc}	0.700 ^{bc}	1.290 ^{de}	2.94
3000 U + NC	0.928 ^{ab}	0.721 ^b	1.288 ^{de}	2.45
30,000 U + NC	0.958 ^a	0.752 ^a	1.275 ^e	4.41
SEM	0.0073	0.0061	0.0067	1.04
TRT P Value	< 0.0001	<0.0001	<0.0001	0.41*
Block P Value	< 0.0001	0.012	0.101	0.30*

 $^{^{\}text{a-f}}$ Values within columns with no common superscript are statistically different (P < 0.05).

^{*}Statistical analysis was done on Square Root, ArcSin transformed values

^{*}Statistical analysis was done on Square Root, ArcSin transformed values

0-42 d performance

Treatment	Feed Intake, kg	Body Wt Gain,	Adj. Feed	Mortality, %
		kg	Conversion	
Positive Control	4.387 ^a	2.851 ^{ab}	1.539 ^a	4.90
Negative Control	3.668 ^d	2.381 ^d	1.540 ^a	2.94
250 U + NC	4.192 ^c	2.733 ^c	1.534 ^{ab}	5.39
500 U + NC	4.250 ^{bc}	2.822 ^{bc}	1.506 ^c	3.84
750 U + NC	4.356 ^{ab}	2.880 ^{ab}	1.512 ^{bc}	4.41
1000 U + NC	4.319 ^{abc}	2.863 ^{ab}	1.509 ^c	5.88
3000 U + NC	4.402 ^a	2.927 ^a	1.504 ^c	4.90
30,000 U + NC	4.448 ^a	2.944 ^a	1.512 ^{bc}	7.84
SEM	0.031	0.022	0.006	1.53
TRT P Value	<0.0001	<0.0001	<0.0001	0.64*
Block P Value	<0.0001	<0.0001	0.52	0.20*
^{a-d} Values within co				rent (P < 0.05).

^{*}Statistical analysis was done on Square Root, ArcSin transformed values

14-21 d performance

Treatment	Feed Intake, kg	Body Wt Gain, kg	Adj. Feed Conversion
Positive Control	0.538 ^{bc}	0.393 ^{cd}	1.369 ^{ab}
Negative Control	0.447 ^d	0.322 ^e	1.388 ^a
250 U + NC	0.514 ^c	0.377 ^d	1.365 ^{ab}
500 U + NC	0.521 ^c	0.384 ^{cd}	1.357 ^{ab}
750 U + NC	0.535 ^{bc}	0.397 ^c	1.348 ^{ab}
1000 U + NC	0.534 ^{bc}	0.402 ^{bc}	1.329 ^b
3000 U + NC	0.555 ^{ab}	0.416 ^{ab}	1.332 ^b
30,000 U + NC	0.575 ^a	0.433 ^a	1.329 ^b
SEM	0.0055	0.0043	0.0093
TRT P Value	<0.0001	<0.0001	<0.0001
Block P Value	0.0003	0.0103	0.033

 $^{^{}a-e}$ Values within columns with no common superscript are statistically different (P < 0.05).

21-42 d performance

Treatment	Feed Intake, kg	Body Wt Gain, kg	Adj. Feed Conversion
Positive Control	3.512 ^{ab}	2.169 ^{ab}	1.619 ^A
Negative Control	2.917 ^d	1.809 ^c	1.612 ^{AB}
250 U + NC	3.355 ^c	2.079 ^b	1.615 ^{AB}
500 U + NC	3.409 ^{bc}	2.153 ^{ab}	1.583 ^c
750 U + NC	3.497 ^{ab}	2.190 ^a	1.597 ^{ABC}
1000 U + NC	3.456 ^{abc}	2.163 ^{ab}	1.599 ^{ABC}
3000 U + NC	3.512 ^{ab}	2.206 ^a	1.593 ^{BC}
30,000 U + NC	3.541 ^a	2.192 ^a	1.617 ^A
SEM	0.029	0.021	0.0085
TRT P Value	<0.0001	<0.0001	0.025
Block P Value	<0.0001	<0.0001	0.52

ABC Values within columns with no common superscript are statistically different (P < 0.05). ABC Values within columns with no common superscript are statistically different (P < 0.05; Student's T test was used because Tukey's test was not assigning superscripts)

Tibia Ash

Treatment	21d T	ibia Ash	42d T	ibia Ash
	Grams ¹	%	Grams ¹	%
Positive Control	2.56 ^b	24.87 ^a	10.91 ^{ab}	37.59 ^a
Negative Control	1.91 ^c	21.30 ^b	8.18 ^c	34.99 ^b
250 U + NC	2.59 ^b	23.90 ^a	10.05 ^b	38.29 ^a
500 U + NC	2.59 ^b	24.76 ^a	10.62 ^{ab}	38.98 ^a
750 U + NC	2.65 ^b	24.54 ^a	10.66 ^{ab}	37.15 ^{ab}
1000 U + NC	2.73 ^b	24.86 ^a	10.48 ^{ab}	39.23 ^a
3000 U + NC	2.73 ^b	25.41 ^a	10.93 ^{ab}	39.12 ^a
30,000 U + NC	3.02 ^a	25.58 ^a	11.09 ^a	39.00 ^a
SEM	0.06	0.40	0.23	0.53
TRT P Value	<0.0001	<0.0001	<0.0001	<0.0001
Block P Value	0.39	0.008	0.13	0.0029

 $^{^{}ab}$ Values within columns with no common superscript are statistically different (P < 0.05).

Ileal P digestibility (Dry Matter basis)

Treatment	21d Ileal P	21d Ileal P	42d Ileal P	42d Ileal P
	digestibility (%)	(mg/100g)	digestibility (%)	(mg/100g)
Positive Control	82.73 ^a *	24.9 ^{ab}	63.98 ^{abc}	37.0 ^a
Negative Control	61.83 ^c	30.1 ^a	56.18 ^{bc}	30.0 ^{abc}
250 U + NC	68.50 ^{bc}	24.0 ^{ab}	51.04 ^c	30.9 ^{ab}
500 U + NC	67.71 ^{bc}	23.0 ^{ab}	63.39 ^{abc}	23.8 ^{bc}
750 U + NC	68.32 ^{bc}	21.3 ^b	60.86 ^{abc}	26.5 ^{abc}
1000 U + NC	68.92 ^{bc}	22.4 ^{ab}	60.33 ^{abc}	27.2 ^{abc}
3000 U + NC	69.98 ^b	20.8 ^b	66.18 ^{ab}	23.0 ^{bc}
30,000 U + NC	75.80 ^{ab}	21.3 ^b	71.28 ^a	19.5 ^c
SEM	1.84	2.0	3.02	2.5
TRT P Value	<0.0001	0.032	0.0006	0.0002
Block P Value	0.54	0.80	0.84	0.29

 $^{^{}m abc}$ Values within columns with no common superscript are statistically different (P < 0.05).

¹Tibia ash weight; n = 3 tibia per pen

^{* 21}d Positive control appears to be artificially high (vs. NC treatments) due to higher P and lower Ti in analyzed feed sample.

Hematology

	Positive	30,000	SEM	Treatment	Block
	Control	FTU		P Value	P Value
Haemoglobin, g/dL	12.45	12.67	0.15	0.33	0.96
Hematocrit, %	34.70	35.19	0.41	0.42	0.99
Red Blood Cell x10 ⁶ uL	2.86	2.91	0.03	0.23	0.95
Mean Corpuscular volume, fL	121.5	121.0	0.5	0.46	0.92
Mean Corpuscular Hemoglobin, pg	43.59	43.55	0.25	0.92	0.91
MCH concentration, g/dL	35.88	35.99	0.12	0.52	0.63
Red Cell Distribution Width, %	9.40	9.14	0.15	0.24	0.59
White Blood Cell x10 ³ ul	13.95	13.73	1.35	0.91	0.87
Heterophils, %	33.69	31.64	1.89	0.46	0.60
Lymphocytes, %	53.17	58.69	2.03	0.08	0.36
Monocytes, %	4.29	4.65	0.51	0.63	0.19
Eosinophil, %	5.00	5.03	0.90	0.98	0.93
Basophil, %	2.88	3.38	0.29	0.25	0.40
Absolute Heterophils, x10 ³ ul	4.40	4.38	0.39	0.97	0.88
Absolute Lymphocytes, x10 ³ ul	7.74	8.00	0.91	0.85	0.72
Absolute Monocytes, x10 ³ ul	0.564	0.667	0.103	0.49	0.42
Absolute Eosinophil, x10 ³ ul	0.698	0.703	0.143	0.98	0.83
Absolute Basophil, x10 ³ ul	0.410	0.502	0.082	0.44	0.58
Total Protein, g/dL	2.81	2.85	0.04	0.48	0.20
Albumin, g/dL	1.03	1.07	0.02	0.28	0.89
Globulin, g/dL	1.82	1.86	0.03	0.45	0.26
Albumin/Globulin	0.556	0.542	0.009	0.32	0.50
Creatine Kinase, U/L	Non-Est ¹	Non-Est ¹	-	-	=
Alanine Aminotransferase, U/L	<5 ²	<5	-	-	=
Phosphorus, mg/dL	6.79 ^a	6.38 ^b	0.12	0.028	0.56
Glucose, mg/dL	255.6	255.9	2.6	0.94	0.053

¹Non-Estimable, many samples (54 of 72) above the the maximum analyzable limit >22500 U/L Below analyzable limits

^{ab} Values within row with no common superscript are statistically different (P < 0.05).

Index of Tables and Graphs AGV-15-4

Building 7

Т	a	b	les

- Table 1. Day 0 Pen Weights (30JUL15) [Not Included]
- Table 2. Day 0 Pen Weights (30JUL15) Summarized by Treatment Group
- Table 3. Bird Weights and Feed Conversion Days 0 14 (12AUG15) [Not Included]
- Table 4. Bird Weights and Feed Conversion Days 0 14 (12AUG15) Summarized by Treatment Group
- Table 5. Bird Weights and Feed Conversion Days 0 21 (19AUG15) [Not Included]
- Table 6. Bird Weights and Feed Conversion Days 0 21 (19AUG15) Sorted by Treatment Group
- Table 7. Bird Weights and Feed Conversion Days 14 21 (19AUG15) [Not Included]
- Table 8. Bird Weights and Feed Conversion Days 14 21 (19AUG15) Summarized by Treatment Group
- Table 9. Bird Weights and Feed Conversion Days 0 42 (09SEP15) [Not Included]
- Table 10. Bird Weights and Feed Conversion Days 0 42 (09SEP15) Summaried by Treatment Group
- Table 11. Bird Weights and Feed Conversion Days 21 42 (09SEP15) [Not Included]
- Table 12. Bird Weights and Feed Conversion Days 21 42 (09SEP15) Summarized by Treatment Group
- Table 13. Mortality and Removal Weights (Day 0 Study End)
- Table 14. Summary of Mortalities and Removals (Day 0 Study End)
- Table 15. Feed Added and Removed by Pen (Day 0 Study End)
- Table 16. Average % Ash Results of Tibias Collected on Study Days 21 and 42 Summarized by Treatment Group
- Table 17. Day 21 % Phosphorus Digestibility as Determined by Ileal Samples and Basal Feed Assays [Not Included]
- Table 18. Day 21 % Phosphorus Digestibility Summarized by Treatment Group
- Table 19. Day 42 % Phosphorus Digestibility as Determined by Ileal Samples and Basal Feed Assays [Not Included]
- Table 20. Day 42 % Phosphorus Digestibility Summarized by Treatment Group
- Table 21. Original Hematology Results from Marshfield Labs

[Not Included]

- Table 22. Original Hematology Results from Marshfield Labs Summarized by Trt Group
- Table 23. Summary of Hematological Data

Graphs

- Graph 1. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 14) Summarized by Treatment Group
- Graph 2. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 21) Summarized by Treatment Group
- Graph 3. Average Bird Weight Gain and Adjusted Feed Conversion (Days 14 21) Summarized by Treatment Group
- Graph 4. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 42) Summarized by Treatment Group
- Graph 5. Average Bird Weight Gain and Adjusted Feed Conversion (Days 21 42) Summarized by Treatment Group
- Graph 6. Average % Ash of Day 21 and Day 42 Tibias Summarized by Treatment Group
- Graph 7. Average % P Digestiblity of Day 21 and Day 42 Ileal Samples Summarized by Treatment Group

Table 2. Day 0 Pen Weights (30JUL15) Summarized by **Treatment Group** AGV-15-4 **Building 7**

DII	T	D	No. of	Day 0 Pen	Avg. Day 0
Block	Treatment	Pen	Birds	Wt (kg)	Bird Wt (kg)
2	1	106	17	0.751	0.044
3	1	115	17	0.752	0.044
4	1	122	17	0.755	0.044
$-\frac{1}{5}$		127	<u></u>	0.755	0.044
$-\frac{1}{1}$	1	136	17	0.734	0.043
- -	1	137	17	0.737	0.043
- -	1	141	17	0.746	0.044
$-\frac{1}{8}$	<u>_</u>	154	17	0.757	0.045
$-\frac{5}{9}$	1	162	17	0.774	0.046
- <u>i</u> -	1	169	17	0.751	0.044
11	1	181	17	0.718	0.042
12	1	192	17	0.761	0.045
		132	204	+	
otal & A	Deviations			0.749 0.014	0.044 _ 0.001
ctandard CVs	Deviations			1.913%	1.913%
.vs				1.515%	1.915%
1	2	97	17	0.777	0.046
$-\frac{1}{2}-\frac{1}{1}$	$\frac{2}{2}$	105	17	0.749	$\frac{1}{1} - \frac{0.048}{0.044} - \frac{1}{1}$
$-\frac{2}{3}$	$\frac{2}{2}$	114	17	0.739	$-\frac{0.044}{0.043}$
$-\frac{3}{4}-\frac{1}{4}$	$-\frac{2}{2}$	124			$\frac{1}{1} - \frac{0.043}{0.044} - \frac{1}{1}$
$-\frac{4}{5}$			17	0.743	<u> </u>
	$\frac{1}{1} - \frac{2}{2} - \frac{1}{2}$	132 139	$-\frac{17}{17}$	0.738	$\frac{1}{1} - \frac{0.043}{0.043} - \frac{1}{1}$
$-\frac{6}{3}$				0.725	$-\frac{0.043}{0.044}$
$-\frac{7}{2}$	$-\frac{2}{3}$	143	17	0.755	0.044
$-\frac{8}{9}$ - $\frac{1}{9}$	$\frac{2}{1} - \frac{2}{1} - \frac{1}{1}$	149		0.743	0.044
- 9 - 1	2	163		0.759	0.045
10	2	171		0.749	0.044
11	2	185		0.776	0.046
12	2	190	17	0.748	0.044
Fotal & A	verages Deviations		204	0.750 0.015	0.044
	Deviations			0.015 2.012%	1 2.012%
CVs				2.012%	2.012%
1	3	99	17	0.747	0.044
$-\frac{1}{2}$	$\frac{1}{3} - \frac{3}{3} - \frac{1}{3}$	108	17	0.744	0.044
$-\frac{2}{3}$	$\frac{1}{3} - \frac{3}{3} - \frac{1}{3}$	111	17	0.761	0.045
$-\frac{3}{4}-\frac{1}{1}$	$\frac{3}{3}\frac{1}{3}$	118	17	0.749	0.043
$-\frac{4}{5}$	$\frac{3}{3}$	131	17		$+ - \frac{0.044}{0.044} -$
$-\frac{3}{6}$	$\begin{bmatrix} - & -\frac{3}{3} & - & - \end{bmatrix}$	138	17	J 0.746 0.764	1 _ 0.044 _ 0.045
$-\frac{6}{7}-\frac{1}{7}$	$\frac{3}{3}\frac{1}{3}$	148	17	0.784	$\frac{1}{1} - \frac{0.045}{0.043} - \frac{1}{1}$
$-\frac{7}{8}$	$\frac{3}{3}$	155	$-\frac{17}{17}$	0.747	$-\frac{0.043}{0.044}$
- ° - +					+
	$-\frac{3}{3}$	160	17	0.770	$\frac{0.045}{0.043}$
-10-	$\frac{1}{1} - \frac{3}{2} - \frac{1}{2}$	167	$-\frac{17}{47}$	0.715	$\frac{1}{1} - \frac{0.042}{0.045} - \frac{1}{1}$
-11	$-\frac{3}{2}$	184	17	0.767	0.045
12	3	193	17	0.752	0.044
Total & A			204	0.750	0.044
	Deviations			0.015	0.001
CVs			I	2.048%	2.048%

Table 2. Day 0 Pen Weights (30JUL15) Summarized by Treatment Group AGV-15-4 Building 7

		_	No. of	Day 0 Pen	Avg. Day 0
Block	Treatment	Pen	Birds	Wt (kg)	Bird Wt (kg)
2	4	103	17	0.760	0.045
3	4	116	17	0.746	0.044
4 1	4	119	18	0.781	0.043
5	4	128	17	0.723	0.043
1	4	133	17	0.741	0.044
7	4	146	17	0.755	0.044
8 1	4	156	17	0.736	0.043
9	4	161	17	0.747	0.044
10	4	172	17	0.758	0.045
6	4	180	17	0.738	0.043
11	4	188	17	0.737	0.043
12	4	191	17	0.754	0.044
Total & A	verages		204	0.748	0.044
Standard	Deviations			0.015	0.001
CVs				2.000%	1.474%
1	5	100	17	0.764	0.045
2	5	104	17	0.735	0.043
3	5	109	17	0.753	0.044
4	5	123	17	0.721	0.042
5	5	126	17	0.736	0.043
7	5	147	17	0.725	0.043
8	5	150	17	0.719	0.042
9	5	159	17	0.735	0.043
10	5	170	17	0.732	0.043
6	5	179	17	0.759	0.045
11	5	183	17	0.746	0.044
12	5	195	17	0.734	0.043
Total & A	verages		204	0.738	0.043
	Deviations			0.014	0.001
CVs				1.958%	1.958%
2	<u>6</u>	107	17	0.778	0.046
3	<u>6</u>	110	17	0.762	0.045
<u>4</u> _ !	<u>6</u>	120	17	_i <mark>0.757</mark>	
<u>5</u> – 1	<u>6</u>	130	17	0.741	0.044
- 1 - +	6	135		0.741	
_ <u>6</u> _ i	<u> </u>	140		0.733	0.043
$-\frac{7}{2} - \frac{1}{2}$	<u> </u>	145	17	0.754	
$-\frac{8}{9}$	$ \frac{6}{5}$	153	17	0.749	0.044
9	$\frac{6}{5}$	164	17	0.782	0.046
10	6	<u> 168</u> _	17	J <u>0.777</u>	1_0.046_
- 11 - 1	$\frac{6}{6}$	186		0.724	$\frac{1}{1} - \frac{0.043}{0.044} - \frac{1}{1}$
12	0	194	17	0.756	0.044
Total & A			204	0.755	0.044
	Deviations			0.018	0.001
CVs				2.420%	2.420%

Table 2. Day 0 Pen Weights (30JUL15) Summarized by Treatment Group AGV-15-4 Building 7

	ı		No. of	Day 0 Pen	Avg. Day 0
Block	Treatment	Pen	Birds	Wt (kg)	Bird Wt (kg)
2	7	101	17	0.766	0.045
3	+ - 7	112	17	0.723	0.043
4		121	17	0.732	0.043
5	7	125	17	0.742	0.044
1	7	134	17	0.728	0.043
7	7	142	17	0.747	0.044
8	7 7	151	17	0.758	0.045
9	7	166	17	0.756	0.044
10		174	17	0.753	0.044
6		178	17	0.750	0.044
11	7	187	17	0.745	0.044
12	7	189	17	0.718	0.042
Total & A	verages		204	0.743	0.044
Standard	Deviations			0.015	0.001
CVs				2.014%	2.014%
1	8	98	17	0.750	0.044
2	8	102	17	0.765	0.045
3	8	113	17	0.751	0.044
4	8	117	17	0.780	0.046
5	8	129	17	0.705	0.041
7	8	144	17	0.762	0.045

1	8	98	17	0.750	0.044
2 - 1	8	102	17	0.765	0.045
3	8	113	17	0.751	0.044
4	8	117	17	0.780	0.046
5	8	129	17	0.705	0.041
7	8	144	17	0.762	0.045
8	8	152	17	0.749	0.044
9 1	8	165	17	0.763	0.045
10	8	173	17	0.749	0.044
6	8	177	17	0.771	0.045
11	8	182	17	0.756	0.044
12	8	196	17	0.757	0.045
Total & A	verages		204	0.755	0.044
Standard	Deviations			0.018	0.001
CVs				2.434%	2.434%

Table 4. Bird Weights and Feed Conversion Days 0 - 14 (12AUG15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	No. Birds Weighed	D14 Pen Wt (kg)	D14 Avg Bird Wt (kg)	D0-14 Avg Bird Gain (kg)	Feed Conversion D0-14	Adj. Feed Conversion D0-14
		126	•	_		_					1 220	1 220
- 1 -	- 1 -	136	17	0_	0	0_	$-\frac{17}{47}$	4 960	0.292	0.249	1.320 1.293	$-\frac{1320}{1293}$
- 2 -	$-\frac{1}{1}$	106_	$-\frac{17}{17}$	0_0	0	0_	$-\frac{17}{17}$	<u> 5.160</u> _	!!	0.259	1.338	
	$-\frac{1}{1}$	115_	17		L <u>0</u>		17	5.160	0.304			1 338
- 4	$-\frac{1}{1}$	122	$-\frac{17}{17}$	0		0	$-\frac{17}{17}$	_ <u>4 980</u>	0.293	0.249	1.292 	1 292
5 -	$-\frac{1}{1}$	127 137	$\frac{17}{17}$	0		-0	$-\frac{17}{17}$	4 800	0.282	0.239	1.354	$-\frac{1}{1}\frac{299}{354}$
- 6	$-\frac{1}{1}$		$\frac{17}{17}$	0	0	-0	$-\frac{17}{17}$	4 920	0.282	0.246	1.332	+
7 - 1	$-\frac{1}{1}$	141 154	$\frac{17}{17}$	0	+ 0	-6	1/	5 240	0.308	0.264	1.276	$-\frac{1332}{1276}$
	$-\frac{1}{1}$	162	$\frac{17}{17}$	1	 	-0	1/	4.680	0.293	0.247	1.362	$\frac{1}{1} - \frac{1270}{1317} - \frac{1}{1}$
10	$-\frac{1}{1}$	169	$\frac{17}{17}$			_0	10	4 900	0.288	0.244	1.345	1 345
11	$-\frac{1}{1}$	181	$\frac{17}{17}$	0_		0	1/	4 840	0.285	0.244	1.368	1 368
12	$-\frac{1}{1}$	192	$-\frac{17}{17}$	0		0	1/	4 900	0.288	0.242	1.290	1 290
Total & /			204	1	0	0	203	4.980	0.294	0.250	1.322	1.319
Standard					+ " -	+		0.178	0.294	0.009	0.032	0.029
CVs	Devia	10115		<u> </u>	<u> </u>	<u>-</u> -		3.576%	3.023%	3.427%	2.396%	2.210%
CVS								3.37070	3.02370	3.42770	2.35070	2.210/0
1	2	97	17	0	0	0	17	5 920	0.348	0.303	1.279	1 279
	$-\frac{2}{2}$	105	$\frac{17}{17}$	0	r o .	0	1/	5.640	0.332	0.288	1.317	1317
	$-\frac{2}{2}$	114	1/	0		-6	1/	5 880	1 - 0.332 - i	0.302	1.317 1.245	1 245
- - - +	$-\frac{2}{2}$	124	$\frac{17}{17}$	0	0	-6	17	5.680	0.334	0.290	1.268	1 268
5	$-\frac{2}{2}$	132	$\frac{17}{17}$			-0	17	5.680	0.334	0.291	1.271	1 271
6	$-\frac{2}{2}$	139	$\frac{17}{17}$	1		0	$-\frac{17}{16}$	4 880	0.305	0.262	1.381	1 364
- -	$-\frac{2}{2}$	143	$\frac{17}{17}$	ō-		0	10	5 500	0.324	0.279	1.298	1 298
	$-\frac{2}{2}$	149	$\frac{17}{17}$	- 0			17	5.620	0.331	0.287	1.300	1 300
- - -	$-\frac{2}{2}$	163	1 7	-0		- - -	$-\frac{17}{17}$	5.740	0.338	0.293	1.269	1 269
10	$-\frac{2}{2}$	171	17	1	0	- -	16	5.480	0.343	0.298	1.319	1 292
11	$-\frac{2}{2}$	185	1 7	0	0	- 0	10	5.660	0.333	0.287	1.282	1 282
12	$-\frac{-}{2}$	190	17	1	1	0	15	4 980	0.332	0.288	1.300	1 262
Total & /	Average	S	204	3	1	0	200	5.555	0.333	0.289	1.294	1.287
Standard					- = ·			0.319	0.011	0.011	0.035	0.031
CVs				_ ¬	Γ — ·			5.749%	3.379%	3.747%	2.707%	2.413%
1	3	99	17	0	0	0	17	5.140	0.302	0.258	1.379	1 379
2	- 3	108	17	0		0	17	5 560	0.327	0.283	1.254	1 254
3	3	111	17	0		0	17	5 340	0.314	0.269	1.337	1 337
4 1	3	118	17	0	0	0	17	5.420	0.319	0.275	1.267	1 267
5	3	131	17	0	0	0	17	5.640	0.332	0.288	1.328	1 328
6	3	138	17	1	0	0	16	5 080	0.318	0.273	1.297	1 277
7	3	148	17	0	0	0	17	5.600	0.329	0.286	1.294	1 294
8	3	155	17	0	0	0	17	5 380	0.316	0.273	1.256	1 256
9 1	3	160	17	0		0	17	5.720	0.336	0.291	1.333	1 333
10	3	167	17	0	0	0	17	5 360	0.315	0.273	1.283	1 283
11	3	184	17	1		0	16	5 040	0.315	0.270	1.259	1 235
12	3	193	17	0	0	0	17	5.660	0.333	0.289	1.222	1 222
Total & /	Average	s	204	2	0	0	202	5.412	0.321	0.277	1.293	1.289
Standard	tandard Deviations							0.233	0.010	0.010	0.045	0.047
CVs								4.305%	3.117%	3.597%	3.459%	3.645%
CVS					1	I		4.30576	3.11/76	3.59/70	3.459%	3.045%

Table 4. Bird Weights and Feed Conversion Days 0 - 14 (12AUG15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D14 Pen Wt	D14 Avg Bird Wt	D0-14 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 0	Mor	Rem	Rem	D14	(kg)	(kg)	(kg)	D0-14	D0-14
1	4	133	17	0	0	0	17	5.640	0.332	0.288	1.261	1 261
2	4	103	17	0	0	0	17	5.720	0.336	0.292	1.278	1 278
3	4	116	17	0	0	0	17	5.480	0.322	0.278	1.246	1 246
4	4	119	18	0		0	18	5 860	0.326	0.280	1.217	1 217
_ 5	4_	128	17	_1_		_0_	16	5 040	0.315	0.272	1.320	1 289
6	4	180	17	0	0	_0_	17	5 320	0.313	0.270	1.261	1 261
7	_ 4	146	17	0	0	0	17	5.780	0.340	0.296	1.222	1 222
_8	_ 4	156	17	0	0	_0_	17	5 580	0.328	0.285	1.201	1 201
_9	_ 4	161	17	0	0	_0_	17	5.740	0.338	0.294	1.266	1 266
_10	4	172	17	0	0	0	17	5.680	0.334	0.290	1.223	1 223
_11	4	188	17	0		I_0_	17	5.620	0.331	0.287	1.229	1 229
12	4	191	17	0	1	0	16	5 260	0.329	0.284	1.256	1 235
Total &	Average	s	205	1	1	0	203	5.560	0.329	0.285	1.248	1.244
Standard	d Deviat	ions						0.242	0.009	0.008	0.033	0.027
CVs						i		4.357%	2.590%	2.874%	2.613%	2.174%
1	5	100	17	0	0	0	17	5.740	0.338	0.293	1.282	1 282
2	5	104	17	0	0	0	17	5.760	0.339	0.296	1.238	1 238
3	5	109	17	0	0	0	17	5.760	0.339	0.295	1.246	1 246
4	5	123	17	0	0	_ o	17	5.760	0.339	0.296	1.242	1 242
5	5	126	17	0	0	0	17	5 880	0.346	0.303	1.209	1 209
6	5	179	17	0	0	0	17	5.700	0.335	0.291	1.222	1 222
7	5	147	17	0	0	Го	17	5 580	0.328	0.286	1.273	1 273
8	5	150	17	0	. •	o	17	5 540	0.326	0.284	1.282	1 282
9	5	159	17	0	0		17	5.720	0.336	0.293	1.212	1 212
10	5	170	17	0	0	0	17	5 820	0.342	0.299	1.234	1 234
11	5	183	17	0	0	0	17	5 940	0.349	0.306	1.198	1.198
12	5	195	17	0	0	0	17	5 380	0.316	0.273	1.270	1 270
Total &	Average	s	204	0	0	0	204	5.715	0.336	0.293	1.242	1.242
Standard	d Deviat	ions			Γ	Γ-		0.153	0.009	0.009	0.029	0.029
CVs								2.674%	2.674%	2.996%	2.352%	2.352%
1	6	135	17	0	0	0	17	6.100	0.359	0.315	1.205	1 205
2	6	107	17	0		0	17	5 820	0.342	0.297	1.238	1 238
3	6	110	17	1	0	0	16	5 520	0.345	0.300	1.307	1 276
4	6	120	17	0	0	0	17	6 020	0.354	0.310	1.212	1 212
5	6	130	17	1	0	0	16	5 560	0.348	0.304	1.270	1 255
6	6	140	17	0	0	0	17	5.400	0.318	0.275	1.273	1 273
7	6	145	17	0	0	0	17	5.740	0.338	0.293	1.256	1 256
8	6	153	17	1	0	0	16	5 360	0.335	0.291	1.258	1 229
9	6	164	17	0	0	0	17	5 800	0.341	0.295	1.267	1 267
10	6	168	17	1	0	0	16	5.680	0.355	0.309	1.256	1 234
11	6	186	17	0		0	17	5 800	0.341	0.299	1.194	1.194
12	6	194	17	0	0	0	17	5 800	0.341	0.297	1.217	1 217
Total &	Average	s	204	4	0	0	200	5.717	0.343	0.299	1.246	1.238
Standard	d Deviat	ions						0.226	0.011	0.011	0.033	0.027
CVs			F					3.958%	3.154%	3.538%	2.677%	2.220%

Table 4. Bird Weights and Feed Conversion Days 0 - 14 (12AUG15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D14 Pen Wt	D14 Avg Bird Wt	D0-14 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 0	Mor	Rem	Rem	D14	(kg)	(kg)	(kg)	D0-14	D0-14
1	7	134	17	0	1	0	16	5.600	0.350	0.307	1.260	1 247
2	7	101	17	0	0	0	17	5 580	0.328	0.283	1.334	1 334
3	7	112	17	1	0	0	16	5 500	0.344	0.301	1.223	1 204
4	7	121	17	0	_	0	17	6 060	0.356	0.313	1.235	1 235
5	7	125	17	0		0	17	5 940	0.349	0.306	1.200	1 200
6	7	178	17	0	0	0	17	5.720	0.336	0.292	1.256	1 256
7	7	142	17	0	0	0	17	6 060	0.356	0.313	1.208	1 208
8	7	151	17	0	0	0	17	6.100	0.359	0.314	1.221	1 221
9	7	166	17	0	0	0	17	5 980	0.352	0.307	1.206	1 206
10	7	174	17	0	0	0	17	6 200	0.365	0.320	1.245	1 245
11	7	187	17	2	0	0	15	5.120	0.341	0.298	1.243	1.199
12	7	189	17	0	0	0	17	5.720	0.336	0.294	1.200	1 200
Total & /	Average	S	204	3	1	0	200	5.798	0.348	0.304	1.236	1.229
Standard	d Deviat	ions						0.315	0.011	0.011	0.037	0.039
CVs								5.431%	3.100%	3.539%	3.019%	3.151%
1	8	98	17	0	0	0	17	6.120	0.360	0.316	1.199	1.199
_2	_ 8 _	102	17	2	0	0	15	5 520	0.368	0.323	1.253	1.191
_3	_ 8 _	113	17	1	0	0	16	6 000	0.375	0.331	1.212	1.190
_4	8	117	17	0	0	0	17	6.160	0.362	0.316	1.197	1.197
5	8	129	17	0	1	0	16	5.660	0.354	0.312	1.267	1 241
6	8	177	17	1	0	0	16	5 840	0.365	0.320	1.219	1 203
7	8	144	17	0	_	0	17	6.480	0.381	0.336	1.200	1 200
8	8	152	17	0		0	17	6 540	0.385	0.341	1.167	1.167
9	8	165	17	1	0	0	16	5.700	0.356	0.311	1.248	1 239
10	8	173	17	0	0	0	17	6.180	0.364	0.319	1.201	1 201
11	8	182	17	0	0	0	17	5 840	0.344	0.299	1.200	1 200
12	8	196	17	1	0	0	16	5 520	0.345	0.300	1.243	1 221
Total & A	Total & Averages		204	6	1	0	197	5.963	0.363	0.319	1.217	1.204
Standard Deviations			I – –	[_ [0.343	0.013	0.013	0.029	0.021	
CVs			Γ	1	T - 1			5.756%	3.540%	3.997%	2.422%	1.714%

Graph 1. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 14) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Treatment Description								
Treatment	Low Phosphate (LP)	High Phosphate (HP)	250 Units Phytase (LP)	500 Units Phytase (LP)	750 Units Phytase (LP)	1,000 Units Phytase (LP)	3,000 Units Phytase (LP)	30,000 Units Phytase (LP)
Adj. Feed Conversion	1.319	1.287	1.289	1.244	1.242	1.238	1.229	1.204
Avg. Bird Wt Gain (kg)	0.250	0.289	0.277	0.285	0.293	0.299	0.304	0.319
Trt Group	1	2	3	4	2	9	7	8

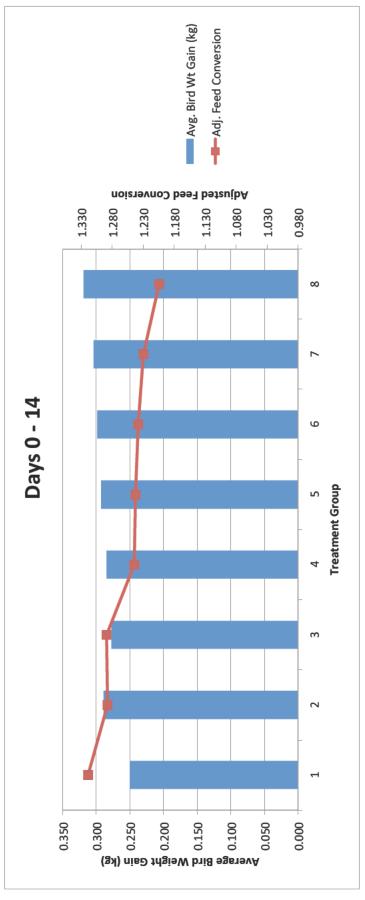


Table 6. Bird Weights and Feed Conversion Days 0 - 21 (19AUG15) Sorted by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D0-21 Avg Bird Gain	Feed Conversion D0-21	Adj. Feed Conversion D0-21
			Day 0	ω	Rer	Rei	D21	(kg)	(kg)	(kg)	D0-21	D0-21
1	_1_	136	17	0	0	0	17	10.480	0.616	0.573	1.365	1.365
2	i_1_	106	17	0	0	0	17	10.740	0.632	0.588	1.335	1.335
3	1_1_	115	17	0	0	0	17	10.500	0.618	0.573	1.352	1.352
4	_1_	122	17	0	0	0	17	10.320	0.607	0.563	1.351	1.351
5	<u> 1</u>	127	17	0			17	11.020	0.648	0.604	1.352	1.352
6	_1_	137	17	0	0	0	17	10.160	0.598	0.554	1.390	1.390
7	i_1_	141	17	0	. — –	0	17	10.280	0.605	0.561	1.368	1.368
8	<u> 1</u>	154	17	0		0	17	11.060	0.651	0.606	1.363	1.363
9	<u> 1</u>	162	17	1_	0	0	16	9.740	0.609	0.563	1.352	1.332
_10 _	!_ <u>1</u> _	169	17	0_		0	17	10.440	0.614	0.570	1.350	1.350
_11	. 1	181	17	0		· – –	16	9.660	0.604	0.562	1.396	1.351
12	1	192	17	0	1	0	16	9.540	0.596	0.551	1.424	1.381
Total 8			204	1_	2_	0	201	10.328	0.616	0.572	1.366	1.357
Standa	rd De	viatior	L		i	i		0.495	0.018	0.018	0.025	0.017
CVs					l			4.791%	2.945%	3.141%	1.824%	1.245%
1	<u>_2</u> _	97	17	<u> </u>	<u>. </u>	0	17	12.940	0.761	0.715	1.307	1.307
2_	<u> 2</u> -	105	17	0		· – –	17	12.500	0.735	0.691	1.343	1.343
$-\frac{3}{4}$	i_2	114	17	0_	0	0	17	12.400	0.729	0.686	1.355	1.355
	2	124	17	1		0	16	11.560	0.723	0.679	1.401	1.322
5	2 - <mark>-</mark> -	132	17	0	. <u> </u>	. <u> </u>	17	12.400	0.729	0.686	1.321	1.321
· - 6 -	<u>_2</u>	139		1	0	0	16	10.880	0.680	0.637	1.323	1.317
$-\frac{7}{2}$	1 2 -	143	17	0		0_	16	11.600	0.725	0.681	1.392	1.357
8	I – –	149	17		₊ <mark>⊸</mark> ⊣	0	17	12.220	0.719	0.675	1.380	1.380
9	$\frac{1}{2}$	163	17	0	0_	0_	17	11.980	0.705	0.660	1.330	1.330
10	2 -2	171	17	$-\frac{1}{0}$			16	12.200	0.763	0.718	1.341	1.330
11 -	$\frac{1}{2}$	185	17 17		ı <u>"</u>	0_	$-\frac{17}{15}$	12.540	0.738	0.692	1.321	1.321
12		190		1	_	0		10.600	0.707	0.663	1.340	1.323
Total 8 Standa			204	4_	2_	_0_	198	11.985 0.701	0.726	0.682	1.346	1.334
CVs	ra De	viation			¦	¦		5.846%	0.023 3.169%	0.023 3.301%	0.030 2.250%	0.021 1.572%
CVS								3.040/0	3.103/0	3.30170	2.23070	1.372/0
1	I 3	I <u>99</u>	17	0	0	0	17	11.480	0.675	0.631	1.399	1.399
	i-3	108	1 /	0		_	1/	12.160	0.715	0.672	1.295	1.295
3	- -	111	1 /	0	ŀ <u> </u>	0	17	11.940	0.702	0.658	1.336	1.336
- 4 -	- 3 -		1 7	0 -			17	11.780	0.693	0.649	1.316	1.316
	$1 - \frac{3}{3} - \frac{3}{3}$	131	1 7 17	0 -	0	0	17	11.760	0.692	0.648	1.376	1.376
6	I I 3	138	1 7 17		0		17	11.280	0.705	0.660	1.310	1.302
- 7 -	i- <u>-</u> -	148	17	0	(<mark>0</mark>)	0	17	12.080	0.711	0.667	1.331	1.331
8 - 8	1 - - -	155	17	0	0	0	17	11.560	0.680	0.636	1.343	1.343
9	i 3	160	17		0		17	12.380	0.728	0.683	1.364	1.364
10	! - -	167	17	0			17	11.920	0.701	0.659	1.332	1.332
11	3	184	17	2	۱	0	14	9.340	0.667	0.622	1.451	1.308
12	:	193	17		0	. — —	16	11.380	0.711	0.667	1.361	1.285
Total 8	Aver	ages	204	4	1	0	199	11.588	0.698	0.654	1.351	1.332
Standa					ì – –	ì – –		0.781	0.018	0.018	0.043	0.034
CVs					r — ¬	[- -		6.735%	2.546%	2.723%	3.185%	2.583%

Table 6. Bird Weights and Feed Conversion Days 0 - 21 (19AUG15) Sorted by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen	No. Birds Started	ality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D0-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
		No.	Day 0	Mortality	Remo	Remo	D21	(kg)	(kg)	(kg)	D0-21	D0-21
	4	133	<u>17</u>	0	0	0	17	12.080	0.711	0.667	1.314	1.314
2	<u> 4</u>		17	0		0	17	12.320	0.725	0.680	1.353	1.353
3	4	116	17	0	0	0	17	12.000	0.706	0.662	1.297	1.297
_4	_ <u>4</u>	119	18	1	0	1	16	10.880	0.680	0.637	1.400	1.310
5	4	128	17	1		0	16	11.100	0.694	0.651	1.365	1.351
6	_4_	180	17	0	0	0	17	11.660	0.686	0.642	1.307	1.307
7	<u>4</u>	146	<u> 17</u>	1	0	0	16	11.960	0.748	0.703	1.355	1.293
8	<u> 4</u> -	156	17	<u>0</u>	0_	0	17	12.040	0.708	0.665	1.292	1.292
9	4	161	17	0	0	0	17	12.320	0.725	0.681	1.338	1.338
_10	<u> 4</u>	172	17	0		0	17	12.520	0.736	0.692	1.279	1.279
_11	4	188	17	0	0	0	17	12.440	0.732	0.688	1.277	1.277
12	4	191	17	0	1	0	16	11.240	0.703	0.658	1.299	1.289
Total 8	Aver	ages	205	3	1	1	200	11.880	0.713	0.669	1.323	1.308
Standa	rd Dev	viation	L]	L	<u>.</u>	[0.545	0.021	0.020	0.039	0.026
CVs					l I	l		4.585%	2.916%	3.050%	2.924%	2.005%
_1	_ 5	100	17	0	0		17	12.500	0.735	0.690	1.300	1.300
2	5	104	17	0		0	17	12.480	0.734	0.691	1.316	1.316
3	_5	109	17	0	լ_0_	0	17	12.340	0.726	0.682	1.305	1.305
_4	<u> 5</u>		17	0		0	17	12.680	0.746	0.703	1.314	1.314
5	_5_	126	17	1	0	0	16	11.900	0.744	0.700	1.331	1.287
6	<u>5</u>	179	17	1	0	0	16	11.880	0.743	0.698	1.311	1.273
7	5	147	17	0		0	17	12.360	0.727	0.684	1.322	1.322
_8	_5_	150	17	0	0	0	17	12.420	0.731	0.688	1.342	1.342
9	ı_5_	159	17	0		0	17	12.460	0.733	0.690	1.283	1.283
10	5	1/0	17	0	0	0	17	12.880	0.758	0.715	1.292	1.292
_11	5	183	17	0	0	0	17	12.520	0.736	0.693	1.291	1.291
12	I 5	I 19 5	17	0	I ()	0	17	11.680	0.687	0.644	1.308	1.308
Total 8			204	2	0	0	202	12.342	0.733	0.690	1.310	1.303
Standa	rd Dev	viation		L	<u>. </u>	!		0.350	0.017	0.017	0.017	0.019
CVs					<u> </u>			2.835%	2.326%	2.471%	1.301%	1.470%
1_1_	<u> 6</u> -	135	17	- 0 -	0	0	17	13.140	0.773	0.729	1.281	1.281
2	6	107	17	<u> </u>	ւ _∪ _	<u>ـ U</u> _	17	12.860	0.756	0.711	1.286	1.286
-3	. — — -	110	17	. 1				12.260	0.766	0.721	1.334	1.321
-4-	6	120	17	0	₊ <u>~</u> ⊣		17	13.180	0.775	0.731	1.265	1.265
-5-	<u> 6</u> _	130	17		0		16	11.100	0.694	0.650	1.350	1.342
- 6 -	6 	140	17		0		17	11.700	0.688	0.645	1.289	1.289
\ - 7 -		145	17		0		16	11.640	0.728	0.683	1.365	1.314
-8	<u> 6</u> -	153	17	1 -	0	0	16	11.900	0.744	0.700	1.297	1.284
- 9 -	ı — — -	164	17		0		17	12.760	0.751	0.705	1.299	1.299
10 _	i_ <u>6</u>	168	17	1		0	16	12.520	0.783	0.737	1.303	1.293
-11 -		186	17	0_		0		12.600	0.741	0.699	1.239	1.239
12		194	17	1			16	11.840	0.740	0.696	1.326	1.264
Total 8			<u>204</u>	<u>6</u> _	. 0	0	198	12.292	0.745	0.700	1.303	1.290
Standa	rd Dev	viation	L		! ! — —	¦		0.657	0.030	0.029	0.036	0.027
CVs								5.347%	4.031%	4.208%	2.738%	2.124%

Table 6. Bird Weights and Feed Conversion Days 0 - 21 (19AUG15) Sorted by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	No. Birds Weighed D21	D21 Pen Wt (kg)	D21 Avg Bird Wt (kg)	D0-21 Avg Bird Gain (kg)	Feed Conversion D0-21	Adj. Feed Conversion D0-21
1	7	134	17	0	1	0	16	12.340	0.771	0.728	1.328	1.322
2	i 7	101	17	0	1	0	16	11.980	0.749	0.704	1.345	1.321
3	7	112	17	1	0	0	16	11.980	0.749	0.706	1.269	1.260
4	7	121	17	0	0	0	17	13.080	0.769	0.726	1.284	1.284
5	7	125	17	0	0	0	17	12.920	0.760	0.716	1.297	1.297
6	7	178	17	0	0	0	17	12.660	0.745	0.701	1.290	1.290
7	7	142	17	0	0	0	17	12.920	0.760	0.716	1.291	1.291
8	7	151	17	0	0	0	17	13.520	0.795	0.751	1.274	1.274
9	7	166	17	0	0	0	17	13.040	0.767	0.723	1.299	1.299
_10	ı <u>7</u>	174	17	0		0	17	13.860	0.815	0.771	1.303	1.303
_11 _		187	17	2	0	0	15	11.340	0.756	0.712	1.280	1.260
12	7	189	17	0	0	0	17	12.500	0.735	0.693	1.254	1.254
Total 8			204	3	2	0	199	12.678	0.764	0.721	1.293	1.288
Standa	rd De	viatior		L	i i	i		0.702	0.022	0.022	0.025	0.022
CVs					I			5.540%	2.914%	3.048%	1.917%	1.747%
			_									
_1	·	98	17		. <u>0</u> _		17	13.620	0.801	0.757	1.273	1.273
_2	ı — — -	102	17		0	· – –	15	12.360	0.824	0.779	1.282	1.255
_3	i_8_	113	17	1	0	0	16	12.340	0.771	0.727	1.301	1.291
4	! <u>8</u> -	117	17	0		0	16	12.700	0.794	0.748	1.322	1.260
-5-	<u>8</u> -	129	17	0	1_	0	16	12.600	0.788	0.746	1.295	1.283
6 _	!_8	177	17	1	. 0	0	16	13.120	0.820	0.775	1.262	1.255
-7-	<u>8</u> -	144	17	0	. <u> </u>	0	17	14.400	0.847	0.802	1.269	1.269
- 8 -	i	152		0_	0	0		14.140	0.832	0.788	1.261	1.261
- 9 -	:	165		. – -	0_	0	16	12.620	0.789	0.744	1.307	1.304
10	<u>8</u> -	173	17	0	+ ~ ⊣	0		13.420	0.789	0.745	1.277	1.277
-11 -	i_8	182		0	. <u>0</u> _	0		12.720	0.748	0.704	1.254	1.254
12		196	17	1		_	15	11.240	0.749	0.705	1.355	1.321
Total 8			204	6	3	0	195	12.940	0.796	0.752	1.288	1.275
Standa	rd De	viatior		ļ _{— -}	! 	¦		0.864	0.031	0.031	0.030	0.021
CVs					. !	!		6.675%	3.885%	4.091%	2.292%	1.665%

Graph 2. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 21) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

1 0.572 2 0.682 3 0.654 4 0.669 5 0.690 6 0.700	(-1) -1-J	Treatment Description
1 0.572 2 0.682 3 0.654 4 0.669 5 0.690 6 0.700	_	
2 0.682 3 0.654 4 0.669 5 0.690 6 0.700	1.357	Low Phosphate (LP)
3 0.654 4 0.669 5 0.690 6 0.700	1.334	High Phosphate (HP)
4 0.669 5 0.690 6 0.700	1.332	250 Units Phytase (LP)
5 0.690	1.308	500 Units Phytase (LP)
6 0.700	1.303	750 Units Phytase (LP)
	1.290	1,000 Units Phytase (LP)
7 0.721	1.288	3,000 Units Phytase (LP)
8 0.752	1.275	30,000 Units Phytase (LP)

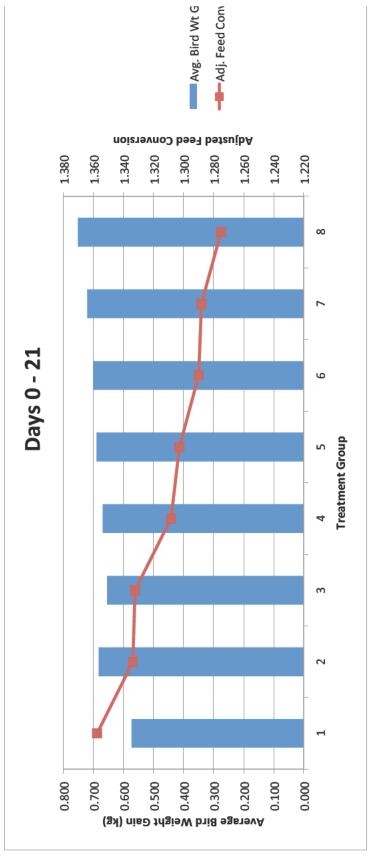


Table 8. Bird Weights and Feed Conversion Days 14 - 21 (19AUG15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started Day 14	Mortality	Removal-1	Removal-2	No. Birds Weighed D21	D21 Pen Wt (kg)	D21 Avg Bird Wt (kg)	D14-21 Avg Bird Gain (kg)	Feed Conversion D14-21	Adj. Feed Conversion D14-21
\vdash	1	126	•								1 200	1 200
-1-1	_ 1 -	136		0_	_0_	0.	17	10.480	0.616	0.325	1.399	1.399
2 i	_ 1 _	106		0_	_0_	0.	17	10.740	0.632	0.328	1.369	1.369
3_ <u> </u>	_ 1 _	115		L <u>0</u>	0_	0	17	10.500	0.618	0.314	1.363	1.363
- <mark>4</mark>	- 1 -			0_			$rac{17}{17}$	10.320	0.607	0.314	1.397	1.397
5	- 1 -		17	0_	0	0	1/	11.020	0.648 0.598	0.341	1.393	
6		13/		0_		0		10.160		0.315	1.418	1.418
7-	_ 1 -	141		0_	0_	0	17	10.280	0.605	$-\frac{0.315}{0.342}$	1.396 1.430	
8_ i	_ 1 -	154		0_	0_		17	11.060	0.651	0.342		
_ <mark>9</mark> _ i	_ 1	162	_ 16 _	L <u>°</u> _	0_	0.	16	9.740	0.609	0.316	1.344	1.344
10 !	_ 1 _	169		L <u>o</u> _	0_	0	17	10.440	0.614	0.326	1.354	1.354
11	_ 1	181		_0_	1_	0	16	9.660	0.604	0.319	1.419	1.337
12	1	192	17	0	1	0	16	9.540	0.596	0.308	1.543	1.457
Total &			_ 203 _	_0_	_2_	0	201	10.328	0.616	0.322	1.402	1.388
Standa	rd Dev	nation		\vdash $-$	I— –	١	┞−−-┤	0.495	0.018	0.011	0.052	0.036
CVs								4.791%	2.945%	3.369%	3.703%	2.601%
1_1_	_ 2 _	97_	17	_0_	0	0	17	12.940	0.761	0.413	1.328	1.328
2_	_ 2	105	17	_0_	0_	0	17	12.500	0.735	0.404	1.362	1.362
3_	2	114	17	_0_	_0_	0	17	12.400	0.729	0.384	1.442	1.442
4_	2	124	17 _	_1_	_0_	0	16	11.560	0.723	0.388	1.514	1.363
_ _5	_ 2 _	132	17	_0_	_0_	0	17	12.400	0.729	0.395	1.357	1.357
_ <mark>6</mark> _ !	_ 2 _	139	16	0_	0_	0	16	_10.880_	0.680	0.375	1.283	1.283
7	_ 2 _		17 _	_0_	1_		16	11.600	0.725	0.401	1.466	1.401
8_	2	175	17	0_	0		17	12.220	0.719	0.388	1.439	1.439
9_	_ 2 _	163	17	0_	0_	0	17	_11.980_	0.705	0.367	1.378	1.378
10	_ 2 _	171	_ 16 _	_0_	_0_	0	16	12.200	0.763	0.420	1.357	1.357
11	_ 2	185	17	0_	_0_	0	17	12.540	0.738	0.405	1.349	<u> 1.349</u> _
12	2	190	15	0	0	0	15	10.600	0.707	0.375	1.370	1.370
Total &	Aver	ages	200	1	_1_	0	198	11.985	0.726	0.393	1.387	1.369
Standa	rd Dev	<i>i</i> atior		L	 			0.701	0.023	0.016	0.065	0.044
CVs								5.846%	3.169%	4.146%	4.686%	3.204%
_ _1_ _	3	99	17	0_	0_	0	17	11.480	0.675	0.373	1.413	1.413
_ <mark>2</mark> _	_ 3 _	108	17 _	_0_	0_		17	12.160	0.715	0.388	1.324	1.324
3	3		17	_0_	0_		17	_11.940_	0.702	0.388	1.336	1.336
4_	3		17	_0_	0_	. . .		_11.780_	0.693	0.374	1.352	
5	_ 3 _	131	17 _	_0_	0_	0	17	11.760	0.692	0.360	1.415	1.415
6	3	138	16	0_	_0_	0	16	_11.280_	0.705	0.388	1.319	
- -7 _ i	3	148	17	0_	_0_	0	17	12.080	0.711	0.381	1.358	1.358
_ <mark>8</mark> _ !	_ 3	155	17	0_	0_	0	17	_11.560_	0.680	0.364	<u>1.408</u>	1.408
- <mark>-9</mark> _ !	_ 3 _	160	17	0_	0_	0	17	12.380	0.728	0.392	1.387	1.387
10	3		17 _	0_		0	17	11.920	0.701	0.386	1.366	1.366
_ 11_	_ 3	104	16	_1_	_1_		14	9.340	0.667	0.352	1.642	1.370
12	3	193	17	1	0	0	16	11.380	0.711	0.378	1.479	1.334
Total &			202	2_	_1_	0	199	11.588	0.698	0.377	1.400	1.365
Standa	rd Dev	<i>i</i> iatior		L_	 	ι_]	L]	0.781	0.018	0.013	0.089	0.034
CVs				<u> </u>				6.735%	2.546%	3.386%	6.347%	2.512%

Table 8. Bird Weights and Feed Conversion Days 14 - 21 (19AUG15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D14-21 Avg Bird Gain	Feed Conversion D14-21	Adj. Feed Conversion D14-21
	L_		Day 14	Ň	Re	æ	D21	(kg)	(kg)	(kg)	01421	51421
1	4	133	17	0_	_0_	0	17	12.080	0.711	0.379	1.354	1.354
2	4	103	17	_0_	_ _	0	17	12.320	<u>0.725</u>	0.388	1.409	1.409
3	4		17 _	_0_	0	0	17	12.000	0.706	0.384	1.334	1.334
4	4		18	_1_		1		10.880	0.680	0.354	1.586	
5	4 -	120	16	_0_	<u>-</u> 0_	0	16	_11.100_	0.694	0.379	1.396	1.396
6	4	180		0_	0	0		11.660	0.686		1.341	
7	<u> 4</u> -	146		_1_	<u>_</u> 0_i	0	16	11.960	0.748	0.408	1.463	1.346
8	L <u>4</u> J	156		_0_	_ <u>_</u> _	0	17	12.040	0.708	0.380	1.359	1.359
9	_ 4	161	17 _	_0_	0_i	0	17	12.320	0.725	0.387	1.392	1.392
10	4 4		17	_0_		0	17	12.520	0.736	0.402	1.319	1.319
- 11				_0_	0		17	12.440	0.732	0.401	1.311	
12		151	16	0	<u> </u>	U	16	11.240	0.703	0.374	1.331	1.331
Total 8			_ 203 _	_2_	0	1	200	11.880	0.713	0.384	1.383	1.357
Standa	rd Dev	viation		<u> </u>				0.545	0.021	0.015	0.077	0.033
CVs								4.585%	2.916%	3.832%	5.600%	2.421%
1	E	100	17	0	0	0	17	12.500	0.735	0.398	1.314	1.314
1	5 -	100	- 1 7 -	-0-	i-0-i	0	1/	12.480	0.735	0.398	1.375	1.314 1.375
3	$+\frac{3}{5}$	104	- 1 / ₁₇ -	-0-	 	0	1/	12.340	0.734	0.387	1.350	1.350
3		123	17 17	_0_	I— +	0	1/	12.680	0.726	0.407	1.367	1.367
5	_ <u>5</u> _		- 1 / ₁₇ -	1	_ <mark>0</mark> _	0	$\frac{17}{16}$	11.900	0.746	0.398	1.30/ 1.435	1.349
6			- - 17 -	_ <u>-</u>	·—	0	$-\frac{10}{16}$	11.880	0.744	0.407	1.382	
7	5		- - 17 -	-		0	10	12.360	0.743	0.399	1.357	1.357
8	- 5 -	150	- 1 / ₁₇ -	-0-	i- <mark>o</mark> -i	0	1/	12.420	0.727	0.405	1.384	1.384
9	- 5 -	159	- - 17 -	-0	ı ŏ →	0	1/	12.460	0.731	- 0.405 -	1.335	1.335
10	$+\frac{5}{5}$	170	- - 17 -	-0	 +	0	$\frac{17}{17}$	12.880	0.758	0.415	1.334	1.334
11	⊥ <u>5</u> -	183	- 17 -	-0	0	0	1/	12.520	0.736	0.387	1.365	1.365
12	_ <u></u> _	195	- - 17 -	0	0 1	0	1 7	11.680	0.687	0.371	1.337	1.337
Total 8		_	204	_	0	_	202	12.342	0.733	0.397	1.361	1.348
Standa					iΤή	Ť.		0.350	0.017	0.012	0.032	0.023
CVs								2.835%	2.326%	2.943%	2.331%	1.694%
1	6	135	17	0	0	0	17	13.140	0.773	0.414	1.338	1.338
2	l 6		17	0	0	0	17	12.860	0.756	0.414	1.321	1.321
3	6		16	0	0	0	16	12.260	0.766	0.421	1.353	1.353
4	6	120	17	0	0	0	17	13.180	0.775	0.421	1.304	1.304
5	6	130	16	0	0	0	16	11.100	0.694	0.346	1.419	1.419
6	6	140	17	0	0	0	17	11.700	0.688	0.371	1.302	1.302
7	6	145	17	1	0	0	16	11.640	0.728	0.390	1.458	1.359
8	6	153	16	0	0	0	16	11.900	0.744	0.409	1.324	1.324
9	6	164	17	0	0	0	17	12.760	0.751	0.409	1.322	1.322
10	6	168	16	0	0	0	16	12.520	0.783	0.428	1.336	1.336
11	6	186	17	0	0	0	17	12.600	0.741	0.400	1.274	1.274
12	6	194	17	1	0	0	16	11.840	0.740	0.399	1.417	1.300
Total 8			200	2	_0_	0	198	12.292	0.745	0.402	1.347	1.329
Standa	rd Dev	viation		L	آا	_]	L]	0.657	0.030	0.023	0.055	0.037
CVs					ı ï			5.347%	4.031%	5.831%	4.105%	2.788%

Table 8. Bird Weights and Feed Conversion Days 14 - 21 (19AUG15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started Day 14	Mortality	Removal-1	Removal-2	No. Birds Weighed D21	D21 Pen Wt (kg)	D21 Avg Bird Wt (kg)	D14-21 Avg Bird Gain (kg)	Feed Conversion D14-21	Adj. Feed Conversion D14-21
	L		Day 14	М		_						
1	_ 7 _	134	16	_0_	_0_	0	16	12.340	0.771	0.421	1.377	1.377
_ <mark>2</mark>	_	101	17	_0_	_ 1 _	0	16	11.980	0.749	<u>0.421</u>	1.353	1.312
3	_ 7 _	112	16	0_	0_	0	16	11.980	0.749	0.405	1.302	1.302
4	7	121	17	0_	0_	0	17	13.080	0.769	0.413	1.322	1.322
5	7	125	17	0_	0	0	17	12.920	0.760	0.411	1.370	1.370
6	7	178	17	0	0	0	17	12.660	0.745	0.408	1.314	1.314
7	7	142	17	0	0	0	17	12.920	0.760	0.404	1.356	1.356
8	7	151	17	0	0	0	17	13.520	0.795	0.436	1.313	1.313
9	7	166	17	0	0	0	17	13.040	0.767	0.415	1.368	1.368
10	7	174	17	0	0	0	17	13.860	0.815	0.451	1.345	1.345
11	7	187	15	0	0	0	15	11.340	0.756	0.415	1.305	1.305
12	7	189	17	0	0	0	17	12.500	0.735	0.399	1.295	1.295
Total &	Aver	ages	200	0	1	0	199	12.678	0.764	0.416	1.335	1.332
Standa	rd De	viation						0.702	0.022	0.015	0.029	0.030
CVs								5.540%	2.914%	3.497%	2.206%	2.219%
1	8	98	17	0	0	0	17	13.620	0.801	0.441	1.325	1.325
2	8	102	15	0	0	0	15	12.360	0.824	0.456	1.301	1.301
3	8	113	16	0	0	0	16	12.340	0.771	0.396	1.375	1.375
4	8	117	17	0	1	0	16	12.700	0.794	0.431	1.425	1.308
5	8	129	16	0	0	0	16	12.600	0.788	0.434	1.314	1.314
6	8	177	16	0	0	0	16	13.120	0.820	0.455	1.291	1.291
7	8	144	17	0	0	0	17	14.400	0.847	0.466	1.318	1.318
8	8	152	17	0	0	0	17	14.140	0.832	0.447	1.332	1.332
9	8	165	16	0	0	0	16	12.620	0.789	0.433	1.350	1.350
10	8	173	17	0	0	0	17	13.420	0.789	0.426	1.334	1.334
11	8	182	17	0	0	0	17	12.720	0.748	0.405	1.294	1.294
12	8	196	16	0	1	0	15	11.240	0.749	0.404	1.448	1.403
Total &	Aver	ages	197	0	2	0	195	12.940	0.796	0.433	1.342	1.329
Standa				Γ-		ſ — ·		0.864	0.031	0.022	0.050	0.033
CVs					ı— –			6.675%	3.885%	5.112%	3.732%	2.518%

Graph 3. Average Bird Weight Gain and Adjusted Feed Conversion (Days 14 - 21) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

-	Trt Group	Avg. Bird Wt	Adj. Feed	Treatment Description
1.388 1.369 1.365 1.357 1.348 1.329 1.329		Gain (kg)	Conversion	
1.369 1.365 1.357 1.348 1.329 1.332 1.329	1	0.322	1.388	Low Phosphate (LP)
1.365 1.357 1.348 1.329 1.332	2	0.393	1.369	High Phosphate (HP)
1.357 1.348 1.329 1.332 1.329	3	0.377	1.365	250 Units Phytase (LP)
1.348 1.329 1.332 1.329	4	0.384	1.357	500 Units Phytase (LP)
1.329 1.332 1.329	5	0.397	1.348	750 Units Phytase (LP)
1.332	9	0.402	1.329	1,000 Units Phytase (LP)
1.329	7	0.416	1.332	3,000 Units Phytase (LP)
	8	0.433	1.329	30,000 Units Phytase (LP)

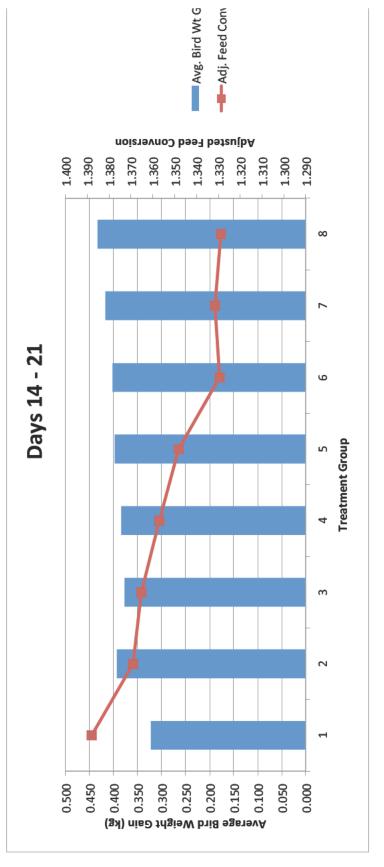


Table 10. Bird Weights and Feed Conversion Days 0 - 42 (09SEP15) Summaried by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D0-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
		NO.	Day 0	Mor	Rem	Rem	D42	(kg)	(kg)	(kg)	D0-42	D0-42
11_	1	136	17	0	0	3	14	33.980	2.427	2.384	1.655	1.569
2 i	1	106	17	0	0_	3	14	35.940	2.567	2.523	1.610	1.526
3	1	115	17	_1_	0_	3	13	31.020	2.386	2.342	1.733	1.542
4	1	122	17	0			14	35.280	2.520	2.476	1.619	1.545
5	1	127	17	_1_	0		13	31.940	2.457	2.413	1.683	1.558
6	1	137	17	0_	0	3	14	33.340	2.381	2.338	1.681	1.594
7	_ 1	141	17	_0_	0_	3	14	32.920	2.351	2.308	1.616	1.534
8_ +	_ 1	154	17	_0_	0_	3	14	34.200_	2.443	2.398	1.642	1.549
_ <mark>9</mark> _ j	1	162	17	_1_	_ <mark>_0</mark>	3	13	31.820	2.448	2.402	1.609	1.513
10 <u> </u>	_ 1 _	169	17	_0_	0_		14	34.760	2.483	2.439	1.622	1.539
11	_ 1	181	17	_0_	1_1_	3	13	29.840	2.295	2.253	1.622	1.504
12	1	192	17	0	2	3	12	28.120	2.343	2.299	1.654	1.511
Total &			_ 204 _	3	3	36	162	32.763	2.425	2.381	1.646	1.540
Standa	rd Dev	viation		L			L	2.316	0.078	0.078	0.038	0.026
CVs					نَـــــــــــــــــــــــــــــــــــــ			7.070%	3.211%	3.255%	2.301%	1.661%
1	2	97	17	0_	0	3	14	41.220	2.944	2.899	1.646	1.554
2	2	105	17	0	0	3	14	41.260	2.947	2.903	1.635	1.543
3	2	114	17	0	0	3	14	40.360	2.883	2.839	1.626	1.544
4	2	124	17	1	0	3	13	38.620	2.971	2.927	1.635	1.519
5	2	132	17	0	0	3	14	39.220	2.801	2.758	1.623	1.535
6 <u> </u>	2	139	17	_1_	_1 _1	3	12	33.440	2.787	2.744	1.683	1.525
7_	2	143	17	_1_	1_1		12	34.900	2.908	2.864	1.767	1.547
8_	2	149	17	_1_	0	. <u>-</u> .	13	38.180	2.937	2.893	1.669	1.556
9_	2	163	17	0_	0	3	14	40.140	2.867	2.822	1.631	1.549
10	2	171	17	_2_	0	3	12	36.160	3.013	2.969	1.721	1.531
11	2	185	17	0	0	3	14	39.580	2.827	2.781	1.620	1.526
12	2	190	17	1	1	3	12	34.200	2.850	2.806	1.641	1.538
Total &	Aver	ages	204	_7_	3_	36	158	38.107	2.895	2.851	1.658	1.539
Standa	rd Dev	viation		L			L J	2.757	0.071	0.070	0.045	0.012
CVs								7.236%	2.440%	2.471%	2.728%	0.781%
_ 1 l	3	99	17	0	_0_	3	14	39.360	2.811	2.767	1.631	1.542
_ <mark>2</mark> _ !	3	108	17	0	0_	3	14	40.900	2.921	2.878	1.612	1.517
3_	3	111	17	1	0		13	37.720		2.857	1.689	1.544
4	3		17	_0_	0		14	38.120	2.723	2.679	1.615	1.531
5	3	131	17	_2_	0	3	12	33.940	2.828	2.784	1.782	1.531
6	3	138	17	_1_	_0_	3	13	32.160	2.474	2.429	1.711	1.597
7 i	3	148	17	_0_	0_	3	14	40.400	2.886	2.843	1.610	1.529
_ <mark>8</mark> _ !	3	155	17	_0_	_ <mark>2</mark> _	3	12	_33.220	2.768	2.724	1.758	1.535
- <mark>-9</mark> _ !	3	160	17	_1_	0_	3	13	35.940	2.765	2.719	1.706	1.560
10	3		17 _	_0_		_	14	40.200	2.871	2.829	1.612	1.518
_ 11_	3	184	17	_2_	1		11	_29.600	2.691	2.646	1.639	1.482
12	3	193	17	1	0	3	13	34.940	2.688	2.643	1.648	1.523
Total &			_ 204 _	8_	3_	36	157	36.375	2.777	2.733	1.668	1.534
Standa	rd Dev	viation		L_	ل _ا		L	3.654	0.125	0.125	0.060	0.027
CVs								10.045%	4.494%	4.584%	3.609%	1.784%

Table 10. Bird Weights and Feed Conversion Days 0 - 42 (09SEP15) Summaried by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D0-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 0	Mo	Ren	Ren	D42	(kg)	(kg)	(kg)	D0-42	D0-42
1	4	133	17	0	0	3	14	38.880	2.777	2.734	1.591	1.508
_ 2 _ j	4	103	17	0	_1_	3	13	38.860	2.989	2.945	1.625	1.530
3 !	4	116	_ 17 _	0	0_	3	14	40.200	2.871	2.828	1.586	1.503
_4	4		18	2	_1_	4	11	30.520	2.775	2.731	1.761	1.512
5_	4		17	_1_	0_		13	_37.740	2.903	2.861	1.601	1.509
6	4	180	17	0_	_0_	3	14	38.600	2.757	2.714	1.576	1.487
7	4	146	17	_1_	_0_	3	13	39.180	3.014		1.618	<u>1.505</u>
8	4	156	17 _	0_	0_	3	14	39.460	2.819	2.775	1.600	1.512
<mark>9</mark> _ !	4	161	17	_0_	_1_	3	13	_38.040	2.926	2.882	1.639	1.525
10	4			_0_	_0_	3		40.740	2.910	2.865	1.583	1.494
11	4	188	17 _	0_	0		14	39.680	2.834	2.791	1.588	1.499
12	4	191	17	0	1	3	13	36.600	2.815	2.771	1.577	1.484
Total 8			_ 205 _	_4_	_4_	37	160	38.208	2.866	2.822	1.612	1.506
Standa	rd Dev	viation		⊢ –	I_	L		2.663	0.084	0.084	0.051	0.014
CVs								6.971%	2.937%	2.971%	3.152%	0.922%
	-	100	47	_	4	2	10	20.000	2.001	2.046	1 622	1.500
	_ 5 _	100		0_	1	3	13	38.880	2.991	2.946	1.632	1.508
2	5 -	104		_0_	0_	3	14	40.140	2.867		1.616	1.535
	5	109		1	_0_	3	13	38.200	2.938		1.628	1.510
4 ı	<u>5</u> _	L 123		_0_	_0_	3.	14	41.900	2.993	2.950	1.584	1.507
5_ !	_ 5	126		1	0_	3	13	38.540	2.965	_ 2.921 _	1.595	1.489
6	5	179		1	0_	3	13	38.000	2.923		1.578	1.475
	5 5	14/		_0_	0_			40.720	2.909	2.866	1.624	1.532
8	$-\frac{5}{5}$	150 159	$-\frac{17}{17}$	_3_	0	3	$-\frac{11}{14}$	32.240 41.180	2.931 2.941			<u>1.530</u> 1.504
10	$-\frac{5}{5}$	170	- 1/ -	F ₀ -	I — T	3	$-\frac{14}{14}$	41.400	2.941	- 2.898 2.914	1.630	1.536
11	<u>-</u> 5 −	183	- 1/ -	- 0 -	0_	3	$\frac{14}{12}$	35.980	2.998	2.914 2.954	1.693	1.510
12	_ <u>-</u> _	195	- 1 / ₁₇ -	F ₀ -	_2_ 0	3	12 14				'	
			204	6	3		159	37.380 38.713	2.670 2.924	2.627 2.880	1.608 1.627	1.515 1.512
Total & Standa				⊢º–	3-	30	159		0.088	0.088	0.047	
CVs	ra Dev	viacioi		⊢-	i – –			2.722 7.031%	3.025%	3.066%	2.896%	0.019 1.236%
CV3				_				7.03170	3.02370	3.00070	2.05070	1.23070
1	6	135	17	1	0	3	13	39.760	3.058	3.015	1.623	1.497
2	6	107	17	F	' — –		13	41.600	2.971	2.926	1.599	1.512
3	6	110	- - 17 -	F ₁ -	0		13	38.120	2.932	2.887	1.626	1.512
4	6		17	- - -	0		$-\frac{13}{14}$	39.280	2.806	2.761	1.633	1.541
5	6	130	17	<u>-</u> 4	-o-	3	10	28.740	2.874	2.830	1.819	1.491
6	6	140	17	$\vdash_{\mathbf{i}}$	0	3	13	36.380	2.798	2.755	1.631	1.500
7	6	145	17	1	1	3	12	35.260	2.938	2.894	1.650	1.501
8	6	153	17	1	0		13	37.360	2.874	2.830	1.605	1.505
9	6	164	17		0	3	14	42.020	3.001	2.955	1.600	1.512
10	6	168	17	1	0	3	13	38.820	2.986	2.940	1.618	1.520
11	6	186	17	- <u>-</u> -	0		14	40.860	2.919	2.876	1.574	1.485
12	6	194	17		0	3	13	35.500	2.731	2.686	1.643	1.521
Total &	Aver	ages	204	11	1	36	156	37.808	2.907	2.863	1.635	1.509
Standa				Γ-		-		3.628	0.095	0.095	0.062	0.015
CVs				┌-		i – i		9.597%	3.268%	3.307%	3.779%	1.017%

Table 10. Bird Weights and Feed Conversion Days 0 - 42 (09SEP15) Summaried by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D0-42 Avg Bird Gain (kg)	Feed Conversion D0-42	Adj. Feed Conversion DO-42
	بيا			_	_	=						
1_ ↓		134		_0_	_1_	3	13	39.080	3.006	2.963	1.581	_ <u>1.487</u>
<mark>2</mark> _	_ <mark>7</mark> _	101	17	_0_	_1_	<u>3</u> .	13	_38.420_	2.955	2.910	<u>1.606</u>	<u>1.507</u>
- <mark>-3</mark>	_ 7 _	112	17 _	_1_		3	13	39.800	3.062	3.019	1.572	1.484
4 .	7	121	17	_0_		3.	14	39.860	2.847	2.804	1.602	1.516
5	7	125	17	_1_	0_	3	13	38.360	2.951	2.907	1.687	1.513
6	7	178	17	_1_	_0_	3	13	37.620	2.894	2.850	1.633	1.517
7	7	142	17	_1_	_0_	3	13	39.740	3.057	3.013	1.662	1.493
81	7	151	17	0	_1_	3	13	39.640	3.049	3.005	1.683	1.517
9	7	166	17	1	0	3	13	40.680	3.129	3.085	1.618	1.488
10	7	174	17	0	0	3	14	42.780	3.056	3.011	1.609	1.515
11	7	187	17	2	0	3	12	33.660	2.805	2.761	1.635	1.519
12	7	189	17	0	0	3	14	39.700	2.836	2.793	1.583	1.494
Total &	Avera	ages	204	7	3	36	158	39.112	2.971	2.927	1.623	1.504
Standa	rd Dev	<i>i</i> atior			 			2.152	0.106	0.105	0.039	0.014
CVs								5.503%	3.559%	3.603%	2.384%	0.918%
1	8	98	17	0	0	3	14	42.700	3.050	3.006	1.598	1.505
2	8	102	17	2	0	3	12	37.280	3.107	3.062	1.614	1.496
3	8	113	17	2	0	3	12	36.320	3.027	2.982	1.631	1.506
4	8	117	17	0	1	3	13	38.740	2.980	2.934	1.609	1.489
5	8	129	17	1	1	3	12	36.660	3.055	3.014	1.652	1.505
6	8	177	17	1	1	3	12	35.140	2.928	2.883	1.688	1.547
7	8	144	17	0	0	3	14	43.380	3.099	3.054	1.613	1.520
8	8	152	17	2	0	3	12	33.860	2.822	2.778	1.801	1.513
9	8	165	17	2	0	3	12	36.900	3.075	3.030	1.653	1.514
10	8	173	17	0	0	3	14	43.580	3.113	3.069	1.572	1.485
11	8	182	17	0	0	3	14	40.300	2.879	2.834	1.577	1.492
12	8	196	17	1	2	3	11	29.940	2.722	2.677	1.739	1.569
Total &	Avera	ages	204	11	5	36	152	37.900	2.988	2.944	1.646	1.512
Standa	rd Dev	<i>r</i> iation		Γ ⁻ !	!	ŗ — .	[4.096	0.126	0.126	0.068	0.024
CVs						t — :		10.806%	4.202%	4.270%	4.128%	1.619%

Graph 4. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 42) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

dj. Feed Treatment Description	1.540 Low Phosphate (LP)	1.539 High Phosphate (HP)	1.534 250 Units Phytase (LP)	1.506 500 Units Phytase (LP)	1.512 750 Units Phytase (LP)	1.509 1,000 Units Phytase (LP)	1.504 3,000 Units Phytase (LP)	1 512 30 000 Units Phytase (1P)
Adj. Feed Conversion	1.540	1.539	1.534	1.506	1.512	1.509	1.504	1.512
Avg. Bird Wt Gain (kg)	2.381	2.851	2.733	2.822	2.880	2.863	2.927	7.944
Trt Group	1	2	3	4	5	9	7	∞

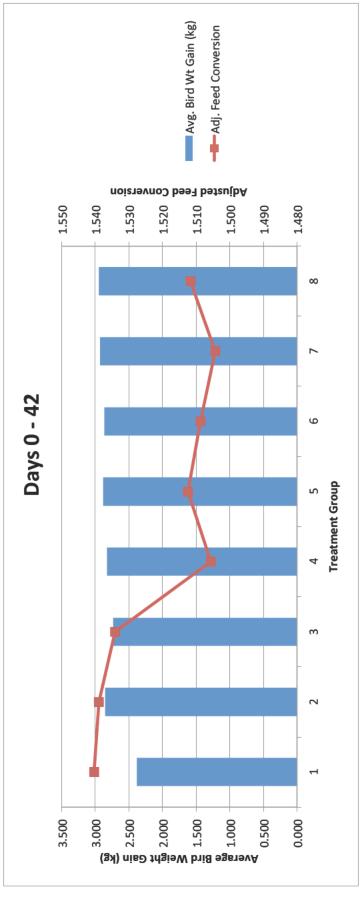


Table 12. Bird Weights and Feed Conversion Days 21 - 42 (09SEP15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started Day 21	Mortality	Removal-1	Removal-2	No. Birds Weighed D42	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D21-42 Avg Bird Gain (kg)	Feed Conversion D14-21	Adj. Feed Conversion D14-21
1	1	136	17	0	0	3	14	33.980	2.427	1.811	1.775	1.648
2	1 1	106	17	0	i 0	3	14	35.940	2.567	1.935	1.719	1.597
3	1 1	115	17	1	0	3	13	31.020	2.386	1.769	1.914	1.619
4	1 1	122	17	0	0	3	14	35.280	2.520	1.913	1.722	1.615
5	'_1_	127	17	1	0	3	13	31.940	2.457	1.809	1.845	1.648
6	1 1	137	17	0	0	3	14	33.340	2.381	1.784	1.800	1.670
7	1	141	17	0	0	3	14	32.920	2.351	1.747	1.721	1.598
8	<u>'</u> 1	154	17	0	0	3	14	34.200	2.443	1.792	1.766	1.625
9	1 1	162	16	0	0	3	13	31.820	2.448	1.839	1.714	1.582
10	i 1	169	17	0	î o	3	14	34.760	2.483	1.869	1.730	1.609
11	<u> 1 </u>	181	16	0	0	3	13	29.840	2.295	1.692	1.722	1.568
12	1	192	16	0	1	3	12	28.120	2.343	1.747	1.763	1.568
Total &	Aver	ages	201	2	1	36	162	32.763	2.425	1.809	1.766	1.612
Standa	rd Dev	/iatior			r — ¬ L _ J			2.316	0.078	0.071	0.061	0.032
CVs					i	i		7.070%	3.211%	3.919%	3.480%	1.995%

Table 12. Bird Weights and Feed Conversion Days 21 - 42 (09SEP15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D21-42 Avg Bird Gain	Feed Conversion D14-21	Adj. Feed Conversion D14-21
			Day 21	оМ	Rer	Rer	D42	(kg)	(kg)	(kg)	D14-21	D14-21
1	2	97	17	0	0	3	14	41.220	2.944	2.183	1.792	1.652
2	2	105	17	0	0	3	14	41.260	2.947	2.212	1.754	1.619
3	2	114	17	0	0	3	14	40.360	2.883	2.153	1.739	1.617
4	2	124	16	0	0	3	13	38.620	2.971	2.248	1.729	1.596
5	2	132	17	0	0	3	14	39.220	2.801	2.072	1.755	1.622
6	2	139	16	0	1	3	12	33.440	2.787	2.107	1.845	1.607
7	2	143	16	1	0	3	12	34.900	2.908	2.183	1.942	1.623
8	2	149	17	1	0	3	13	38.180	2.937	2.218	1.797	1.626
9	2	163	17	0	0	3	14	40.140	2.867	2.162	1.751	1.631
10	2	171	16	1	0	3	12	36.160	3.013	2.251	1.902	1.612
11	2	185	17	0	0	3	14	39.580	2.827	2.089	1.751	1.607
12	2	190	1 5	0	0	3	12	34.200	2.850	2.143	1.766	1.621
Total &	Avera	ages	198	3	1	36	158	38.107	2.895	2.169	1.793	1.619
Standa	rd Dev	/iatior			,			2.757	0.071	0.059	0.068	0.014
CVs					i			7.236%	2.440%	2.717%	3.798%	0.868%
1	3	99	17	0		3	14	39.360	2.811	2.136	1.720	1.593
2	3	108	17	0	0	3	14	40.900	2.921	2.206	1.738	1.598
3	3	111	17	1	0	3	13	37.720	2.902	2.199	1.842	1.623
4	3	118	17	0	0	3	14	38.120	2.723	2.030	1.740	1.615
5	3	131	17	2	0	3	12	33.940	2.828	2.137	1.983	1.592
6	3	138	16	0	0	3	13	32.160	2.474	1.769	1.913	1.732
7	3	148	17	0	0	3	14	40.400	2.886	2.175	1.722	1.603
8	3	155	17	0	2	3	12	33.220	2.768	2.088	1.965	1.614
9	3	160	17	1	î 0	3	13	35.940	2.765	2.036	1.874	1.645
10	3	167	17	0	0	3	14	40.200	2.871	2.170	1.723	1.587
11	3	184	14	0	0	3	11	29.600	2.691	2.024	1.719	1.555
12	3	193	16	0	0	3	13	34.940	2.688	1.976	1.778	1.627
Total &	Avera	ages	199	4	2	36	157	36.375	2.777	2.079	1.810	1.615
Standa	rd Dev	/iatior						3.654	0.125	0.124	0.101	0.043
CVs								10.045%	4.494%	5.959%	5.593%	2.683%

Table 12. Bird Weights and Feed Conversion Days 21 - 42 (09SEP15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

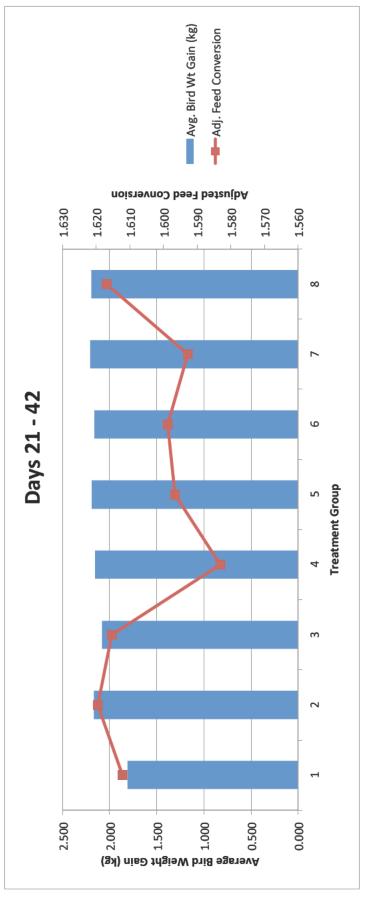

Block T	rt I	en lo.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D21-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 21	Мо	Rer	Rer	D42	(kg)	(kg)	(kg)	D14-21	D14-21
	4 1	33	17	0	0	3	14	38.880	2.777	2.067	1.708	1.584
	4 1 1	03	17	0	1	3	13	38.860	2.989	2.265	1.743	1.601
	4 1	16	17	0	0	3	14	40.200	2.871	2.166	1.701	1.579
4 1		19	16	1		3	11	30.520	2.775	2.095	1.946	1.603
5 1	- + -	28	16	0	0	3	13	37.740	2.903	2.209	1.693	1.567
6	4 1	80	17	0	0	3	14	38.600	2.757	2.071	1.684	1.554
		46	16	0		3	13	39.180	3.014	2.266	1.727	1.590
8 -1-	- + -	56	17	0	0	3	14	39.460	2.819	2.110	1.727	1.596
1 – – – – –	: -	61	17	0	. <u>1</u> _	3	13	38.040	2.926	2.201	1.775	1.602
10	- + -	72	17	0		. – –	14	40.740	2.910	2.174	1.709	1.576
_11	4 1	88	17	0	0	3	14	39.680	2.834	2.103	1.722	1.587
	4 1	_	16	0		_	13	36.600	2.815	2.113	1.692	1.559
Total & A		1	200	. 1	3_	36	<u>160</u>	38.208	2.866	2.153	1.736	1.583
Standard	Devia	tior			l _ J			2.663	0.084	0.071	0.071	0.017
CVs								6.971%	2.937%	3.282%	4.081%	1.059%
	F	00	47				40	20.000	2.024	3.255	4 770	4.500
	5 1 5 7 1			- 0 -		3_	13	38.880	2.991	2.255	1.779	1.590
L — — — I —	<u>-</u> + <u>-</u> +	04	17		⊢ کے ⊦		14	40.140	2.867	2.133	1.743	1.621
. – – – '–	: -	09		1 -		3	13	38.200	2.938	2.213	1.773	1.592
L — — — —		23		0		3_	14	41.900	2.993	2.247	1.694	1.581
LI-	- + -	26	<u> 16</u>	0	0	3_	13	38.540	2.965	2.221	1.705	1.569
		79		- 0 -	0	3	13	38.000	2.923	2.181	1.692	1.556
L	- + -	47 50	17	$-\frac{0}{3}$	0	3	14	40.720	2.909	2.182	1.748	1.612
L – – – '–		50		$-\frac{3}{0}$. – –	$-\frac{11}{14}$	32.240	2.931	2.200	1.976	1.621
		.59 .70	$-\frac{17}{17}$	- 0	$\begin{bmatrix} \frac{0}{0} \end{bmatrix}$	3		41.180	2.941 2.957	$\frac{2.208}{2.199}$	1.716 1.774	1.587
	- + -	.83	1/	0	2	3	$-\frac{14}{12}$	41.400 35.980	2.998	2.262	1.895	1.631 1.603
1 – – – –		95	1 /	- 0 -	. — -	3	14	37.380	2.670	1.983	1.736	1.595
Total & A			202	4	3	36	159	38.713	2.924	2.190	1.769	1.597
Standard		1		- = -	L <u>-</u> 2	30		2.722	0.088	0.074	0.085	0.022
CVs	Devia				r – -	i – -		7.031%	3.025%	3.399%	4.805%	1.390%
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
1	6 1	35	17	1	0	3	13	39.760	3.058	2.286	1.782	1.587
2	6 1 1	07	17	0	0	3	14	41.600	2.971	2.215	1.731	1.599
3	6 1	10	16	0	0	3	13	38.120	2.932	2.166	1.756	1.600
4	6 7 1	20	17	0	0	3	14	39.280	2.806	2.030	1.808	1.662
F — — — I—		30	16	3	0	3	10	28.740	2.874	2.180	2.095	1.557
6 !	6 1		17	1	0	3	13	36.380	2.798	2.110	1.783	1.583
7 -	6 1 1	45	1 6	0	1	3	12	35.260	2.938	2.211	1.782	1.580
8 i	6 1 1		1 6	0		3	13	37.360	2.874	2.130	1.740	1.595
9	6 1 1	64	17	0	0	3	14	42.020	3.001	2.251	1.723	1.592
10	6 1	68	16	0	0	3	13	38.820	2.986	2.204	1.759	1.614
11	6 11	86	17	0	0	3	14	40.860	2.919	2.177	1.714	1.580
12	6 1	94	16	0	0	3	13	35.500	2.731	1.991	1.791	1.636
Total & A		1	198		1	36	156	37.808	2.907	2.163	1.789	1.599
Standard	Devia	tior				¦		3.628	0.095	0.086	0.101	0.028
CVs								9.597%	3.268%	3.968%	5.643%	1.737%

Table 12. Bird Weights and Feed Conversion Days 21 - 42 (09SEP15) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

Block	Trt	Pen No.	No. Birds Started Day 21	Mortality	Removal-1	Removal-2	No. Birds Weighed D42	D42 Pen Wt (kg)	D42 Avg Bird Wt (kg)	D21-42 Avg Bird Gain (kg)	Feed Conversion D14-21	Adj. Feed Conversion D14-21
				2	œ	œ		, 0,	, 0,			
1	7	134	16	0	0	3	13	39.080	3.006	2.235	1.690	1.553
$-\frac{1}{2}$		101	1 6 16	0	0	3	13	38.420	2.955	2.207	1.716	1.581
- 2 - 1	- <u>'</u> -	1112	10 16	0	しごり	3	13	39.800	3.062	L _ 2.207	1.694	1.569
-3		121	10	- 0 -	70	3	13	39.860	2.847	$\frac{2.313}{2.078} - \frac{1}{2}$	1.748	1.615
- 5 -1		125	1 /	1 -	⊦⊸ੱ⊣	3	14	38.360	2.951	2.191		
6 -1	- 7 -	178	1 /	- <u>- 1</u> -	<u> 0</u>	3	13	37.620	2.894		1.874 1.797	1.602 1.615
		142	1 /	- -	0	3	13	39.740	3.057	2.149	1.830	1.571
$-\frac{7}{8}$	- '-	1	1 /	- 0 -	1 1		¹³	39.740	3.057	L = 2.297 = 4 2.254	1.882	$\frac{1.571}{1.620} = -$
-8 -1	$-\frac{7}{7}$	151 166	1 /	- 0 -	0	3	13		3.049			
	- '	+		- 0 -	0			40.680		2.362	1.759	1.563
10		174	17		しごコ	3	14	42.780	3.056	2.240	1.748	1.604
11 -	- 7 -	187	15	$-\frac{0}{0}$	<mark>0</mark>	3_	12	33.660	2.805	2.049	1.804	1.632
12	/	189	17	_	_	3	14	39.700	2.836	2.100	1.725	1.589
Total &			199	4_	1 1	36	158	39.112	2.971	2.206	1.772	1.593
Standa	rd Dev	viation						2.152	0.106	0.097	0.065	0.025
CVs								5.503%	3.559%	4.409%	3.682%	1.588%
				_								
1i	8	98	17	0	0	3	14	42.700	3.050	2.249	1.741	1.600
2 -	_8_	102	15	0			12	37.280	3.107	2.283	1.769	1.599
3	_8_	113	<u> 16</u>	1_	0	3	12	36.320	3.027	2.255	1.790	1.599
_ 4 i	_8_	<u>117</u>	<u> 16</u>	0	(<u>0</u> _	3	13	38.740	2.980	2.186	1.740	1.589
5	_8_	129	<u> </u>	<u> 1</u> _	0	3_	12	36.660	3.055	2.268	1.829	1.603
_ <mark>6</mark>	_8_	<u>177</u>	<u> 16</u>	0	1_	3	12	35.140	2.928	2.108	1.927	1.692
7	_8_	144	17	0	0	3	14	43.380	3.099	2.252	1.776	1.629
8	_8_	152	17	<u>2</u>	0	3	12	33.860	2.822	1.990	2.167	1.643
9	_8_	165	<u> 16</u>	1_	0	3	12	36.900	3.075	2.286	1.822	1.605
_10 _	_8_	173	17	0	0_	3	14	43.580	3.113	2.323	1.696	1.565
_11	8	182	17	0	0	3	14	40.300	2.879	2.130	1.718	1.587
12	8	196	15	0	1	3	11	29.940	2.722	1.972	1.955	1.692
Total &	Avera	ages	195	5	2	36	152	37.900	2.988	2.192	1.827	1.617
Standa	rd Dev	viation						4.096	0.126	0.117	0.133	0.040
CVs					<u> </u>			10.806%	4.202%	5.341%	7.264%	2.478%

Graph 5. Average Bird Weight Gain and Adjusted Feed Conversion (Days 21 - 42) Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

tion								
Treatment Description	Low Phosphate (LP)	High Phosphate (HP)	250 Units Phytase (LP)	500 Units Phytase (LP)	750 Units Phytase (LP)	1,000 Units Phytase (LP)	3,000 Units Phytase (LP)	30,000 Units Phytase (LP)
Adj. Feed Conversion	1.612	1.619	1.615	1.583	1.597	1.599	1.593	1.617
Avg. Bird Wt Gain (kg)	1.809	2.169	2.079	2.153	2.190	2.163	2.206	2.192
Trt Group	1	2	3	4	2	9	7	8

Abbreviations for Causes of Mortality in Poultry Feeding Studies*

Abbrev.	Cause of Death	Abbrev.	Cause of Death
ACT	Ascites	IE	Intestinal enteritis
ACT-S	Ascites + SDS	INJ	Injury
AS	Airsacculitis	NE	Necrotic enteritis
BAC	Bacterial	PRO	Prolapsed
CAN	Cannibalism	RH	Round heart (ascites)
CC	Coccidiosis	SDS	Sudden death syndrome
CD	Cervical dislocation	SM	Smothered
DH	Dehydrated	SO	Starve-out
EC	E. coli	UNK	Unknown cause of death
M	Mortality; R1 = removed, bird	l moribund	l bound
	R2 = removed; bird	d not morik	ound bound
Commen	ts/Findings Codes		
Code	Comment/Finding	Code	Comment/Finding
BL	Bad leg	LS	Lesion score
С	Cull	NGL	No gross lesions
C-SB	Cull, small bird	RCT	Recount bird
DC	Decomposed	SMPL	Sample bird
FHN	Femoral head necrosis	SS	Sex slip
			-

^{*}This table was added to the Final Study Report after the report was finalized in order to define the abbreviations for causes of mortality in birds that were removed from the study. The data on bird mortality is contained in Tables 13 and 14 that follow.

Table 13. Mortality and Removal Weights (Day 0 - Study End) CQR Study Number AGV-15-4 Facility Number 7

							Days 0 - 14 (30JL	JL15 - 12AU(315)		
			No. Birds					Mortality	Removed		No. Birds
			Started	-5	7	-5		Wt	Wt	Total M & R	Remaining
Block	Trt	Pen No.		計	×a	S	Cause of Death			Wt (kg) Days	
			Day 0	Mortality	Removal-1	Removal-2		(kg)	(kg)	0 - 14	Day 14
1	2	97	17	2	œ	œ		:		0.000	17
1	8	98	17	ł						0.000	17
1	3	99	17	ł				+		0.000	17
	}	100		ļ						0.000	17
1	5	101	17	ļ				· 	<u>;</u> :	0.000	17
2 2	7 8	102	17 17	2	·		DAC, CDC	0.250		0.250	15
2	4	103	17		ļ		BAC; SDS	0.230		0.000	17
		4		ļ	ļ				ļ	\$ -	
2	5	104	17							0.000	17
2	2	105	17						ļ	0.000	17
2	1	106	17		ļ					0.000	17
2	6	107	17	ļ						0.000	17
2	3	108	17	ļ	ļ	ļļ			ļ	0.000	17
3	5	109	17	ļ					<u>.</u>	0.000	17
3	6	110	17	1	ļ		SDS	0.116		0.116	16
3	3	111	17	ļ		ļi				0.000	17
3	7	112	17	1			BAC	0.074	<u> </u>	0.074	16
3	8	113	17	1			SDS	0.095		0.095	16
3	2	114	17	I						0.000	17
3	1	115	17	I						0.000	17
3	4	116	17	I						0.000	17
4	8	117	17	l				1		0.000	17
4	3	118	17						:	0.000	17
4	4	119 ¹	18	i					{ :	0.000	18
4	6	120	17			·i		· 		0.000	17
4	7	121	17	ł						0.000	<u>17</u>
	1	122	17						<u>.</u>	0.000	17
	5	123		ļ	<u> </u>					0.000	17 17
4	,	÷	17							;;	
4	2	124	17	ļ				-		0.000	17
5	7	125	17	ļ	ļ				ļ	0.000	17
5	5	126	17	ļ	ļ					0.000	17
5	1	127	17	ļ _.						0.000	17
5	4	128	17	.1			DH	0.106	<u></u>	0.106	16
5	8	129	17	ļ	1		CD-BAC		0.107	0.107	16
5	6	130	17	.1	ļ		DH-BAC	0.059		0.059	16
5	3	131	17	ļ						0.000	17
5	2	132	17	ļ	ļ					0.000	17
1	4	133	17	ļ						0.000	17
1	7	134	17	ļ	1		CD-C/BAC		0.052	0.052	16
1	6	135	17	.	<u> </u>				<u> </u>	0.000	17
1	1	136	17	I						0.000	17
6	1	137	17	I					<u>.</u>	0.000	17
6	3	138	17	1			BAC	0.070	:	0.070	16
6	2	139	17	1			BAC	0.052		0.052	16
6	6	140	17	I						0.000	17
7	1	141	17	Ī						0.000	17
7	7	142	17	ļ				1	······	0.000	17
7	2	143	17	ļ				1		0.000	17
<u>.</u> 7	8	144	17	t	1					0.000	17
<u>:</u> 7	6	145	17	f	·			†	: !	0.000	17
<u>'</u> 7	4	146	17	f				†		0.000	17
<u>'</u> 7		147	17	·····	}			+	 !	0.000	17
<u>'</u> 7	5 3	148	17							0.000	17
<u>/</u>	2	149	17	ł				÷		0.000	17
<u>8</u>	5	150	17	ł	ļ			· 	{	0.000	17 17
	·	÷		ļ				· 		÷	
8	7	151	17	ļ	ļ	ļi		· 	<u> </u>	0.000	17
8	8	152	17		ļ		D.C.	0.400	<u>;</u>	0.000	17
8	6	153	17	1	ļ		BAC	0.108	<u> </u>	0.108	16
8	1	154	17	ļ	ļ	ļļ			 	0.000	17
8	3	155	17	ļ	ļ					0.000	17
8	4	156	17	Į					<u> </u>	0.000	17
9	5	159	17	ļ	ļ				<u> </u>	0.000	17
9	3	160	17	ļ						0.000	17
9	4	161	17	1						0.000	17

							Days 0 - 14 (30JL	JL15 - 12AU(615)		
			No. Birds					Mortality	Removed		No. Birds
			Started	\$	al-1	al-2		Wt	Wt	Total M & R	Remaining
Block	Trt	Pen No.	Day 0	Mortality	Removal-1	Removal-2	Cause of Death	(kg)	(kg)	Wt (kg) Days 0 - 14	Day 14
9	1	162	17	1			BAC	0.135		0.135	16
9	2	163	17							0.000	17
9	6	164	17							0.000	17
9	8	165	17	1			BAC	0.034		0.034	16
9	7	166	17]		0.000	17
10	3	167	17							0.000	17
10	6	168	17	1			BAC-DH	0.087		0.087	16
10	1	169	17							0.000	17
10	5	170	17							0.000	17
10	2	171	17	1			SDS	0.097		0.097	16
10	4	172	17							0.000	17
10	8	173	17							0.000	17
10	7	174	17							0.000	17
6	8	177	17	1			BAC	0.067		0.067	16
6	7	178	17							0.000	17
6	5	179	17							0.000	17
6	4	180	17					1		0.000	17
11	1	181	17							0.000	17
11	8	182	17							0.000	17
11	5	183	17							0.000	17
11	3	184	17	1			BAC	0.084		0.084	16
11	2	185	17							0.000	17
11	6	186	17					-		0.000	17
11	7	187	17	2			BAC; SDS	0.163		0.163	15
11	4	188	17							0.000	17
12	7	189	17							0.000	17
12	2	190	17	1	1		BAC; CD-C/BAC	0.042	0.083	0.125	15
12	4	191	17	· · · · · ·	1		CD-C/SB/BL		0.077	0.077	16
12	1	192	17							0.000	17
12	3	193	17	· · · · · ·						0.000	17
12	6	194	17							0.000	17
12	5	195	17							0.000	17
12	8	196	17	1			BAC	0.087		0.087	16

						Days 14 - 21 (12A)	UG15 - 19AU	JG15)		
							Mortality	Removed		No. Birds
			ty	Ξ	1-5		Wt	Wt	Total M & R	Remaining
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	(kg)	(kg)	Wt (kg) Days 14 - 21	Day 21
			Ĭ	Re	Re		1.01	(1767		_
1	2	97		ļ					0 000	17
1	8	98							0 000	17
1	3	99							0 000	17
1	5	100							0 000	17
2	7	101		1	ļ	CD-BAC	ļ	0.201	0 201	16
2	8	102		ļ	ļ				0 000	15
2	4	103		ļ	ļ				0 000	17
2	5	104							0 000	17
2	2	105						ļ 	0 000	17
2	1	106							0 000	17
2	6	107					ļ		0 000	17
2	3	108		ļ	ļ				0 000	17
3	5	109					ļ	ļ	0 000	17
3	6	110			ļ			ļ	0 000	16
3	3	111						ļ	0 000	17
3	7	112							0 000	16
3	8	113							0 000	16
3	2	114	ļ	ļ					0 000	17
3	1	115	ļ	ļ					0 000	17
3	4	116	ļ	ļ					0 000	17
4	8	117	ļ	1		CD-BL/Splay Leg		0.584	0 584	16
4	3	118		İ	ļ			İ	0 000	17
4	4	119 ¹	1		1	CD; SDS	0 333	0.366	0.699	16
4	6	120]	1			!	0 000	17
4	7	121							0 000	17
4	1	122			1			!	0 000	17
4	5	123						 	0 000	17
4	2	124	1			BAC	0.648		0.648	16
5	7	125							0 000	17
5	5	126	1		1	BAC	0 384		0 384	16
5	1	127							0 000	17
5	4	128							0 000	16
5	8	129							0 000	16
5	6	130							0 000	16
5	3	131							0 000	17
5	2	132							0 000	17
1	4	133							0 000	17
1	7	134			1				0 000	16
1	6	135			1				0 000	17
1	1	136							0 000	17
6	1	137							0 000	17
6	3	138							0 000	16
6	2	139						i	0 000	16
6	6	140			1				0 000	17
7	1	141	·····	l	l		1	ļ	0 000	17
7	7	142		1	1				0 000	17
7	2	143		1	1	CD-BAC		0.282	0 282	16
7	8	144	44						0 000	17
7	6	145	1		1	SDS	0.426		0.426	16
7	4	146	1			SDS	0 538	!	0 538	16
7	5	147						 	0 000	17
7	3	148			1				0 000	17
8	2	149			1			ļ	0 000	17
8	5	150	·····	1	1			!	0 000	17
8	7	151	·····						0 000	17
8	8	152	·····	ļ	ļ			<u> </u>	0 000	17
8	6	153	·····						0 000	16
8	1	154	·····	ļ				!	0 000	17
8	3	155	·····					 !	0 000	17
8		156	·····	ļ	ļ			ļ	0 000	17
	4 5	159	·····	ļ	ļ		<u> </u>	·····		17
9	3	160	ļ				·	·	0 000 0 000	17
	. 3	100			: !		i .	i	0 000	1/

						Days 14 - 21 (12A)	UG15 - 19AU	IG15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	Mortality Wt (kg)	Removed Wt (kg)	Total M & R Wt (kg) Days 14 - 21	No. Birds Remaining Day 21
9	1	162							0 000	16
9	2	163	ļi		İ				0 000	17
9	6	164	l		İ				0 000	17
9	8	165							0 000	16
9	7	166							0 000	17
10	3	167							0 000	17
10	6	168							0 000	16
10	1	169							0 000	17
10	5	170							0 000	17
10	2	171							0 000	16
10	4	172							0 000	17
10	8	173							0 000	17
10	7	174							0 000	17
6	8	177							0 000	16
6	7	178							0 000	17
6	5	179	1			SDS	0 332		0 332	16
6	4	180					1		0 000	17
11	1	181		1		CD-BAC		0.297	0 297	16
11	8	182							0 000	17
11	5	183							0 000	17
11	3	184	1	1		BAC; CD-BAC	0.481	0.373	0 854	14
11	2	185							0 000	17
11	6	186							0 000	17
11	7	187							0 000	15
11	4	188							0 000	17
12	7	189							0 000	17
12	2	190			·				0 000	15
12	4	191							0 000	16
12	1	192		1		CD-BAC	İ	0.275	0 275	16
12	3	193	1			SDS	0.623		0.623	16
12	6	194	1			SDS	0 544		0 544	16
12	5	195							0 000	17
12	8	196		1		CD-BAC		0.182	0.182	15

Table 13. Mortality CQR Study Number Facility Number 7

						Days 21 - 42 (19)	AUG15 - 09SE	P15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	Mortality Wt (kg)	Removed Wt (kg)	Total M & R Wt (kg) Days 21 - 42	No. Birds Remaining Day 42
			ĭ	Re			107			
1	2	97			3	3 CD-SMPL	_	2.389	2 389	14
1	8	98 99	ļ		3	3 CD-SMPL		2.568	2 568	14
1	3	100		1	3	3 CD-SMPL		2.212 3.141	2 212 3.141	14 13
<u>1</u>	5 7	101	ļ		3	CD-C/BL; 3 CD-SMPL 3 CD-SMPL		2.262	2 262	13
2	8	102			3	3 CD-SMPL		2.646	2.646	12
2	4	103		1	3	CD-C/BAC; 3 CD-SMPL		2.349	2 349	13
2	5	104			3	3 CD-SMPL		2.080	2 080	14
2	2	105		·····	3	3 CD-SMPL		2.394	2 394	14
2	1	106		ļ	3	3 CD-SMPL		1.932	1 932	14
2	6	107			3	3 CD-SMPL		2.358	2 358	14
2	3	108			3	3 CD-SMPL		2.523	2 523	14
3	5	109	1	l	3	3 CD-SMPL; SDS	0.702	2.240	2 942	13
3	6	110		ļ	3	3 CD-SMPL		2.522	2 522	13
3	3	111	1		3	BAC; 3 CD-SMPL	1.428	2.047	3.475	13
3	7	112	l		3	3 CD-SMPL		2.230	2 230	13
3	8	113	1		3	3 CD-SMPL; Twisted Gut	0.490	2.371	2 861	12
3	2	114	ļ		3	3 CD-SMPL		2.115	2.115	14
3	1	115	1		3	3 CD-SMPL; SDS	1.775	1.968	3.743	13
3	4	116	ļ	ļ	3	3 CD-SMPL		2.166	2.166	14
4	8	117	ļ	ļ	3	3 CD-SMPL		2.464	2.464	13
4	3	118	ļ	ļ	3	3 CD-SMPL		2.032	2 032	14
4	4	119 ¹	1	1	3	BAC; CD-BL/FHN; 3 CD-SMPL	0.443	3.759	4 202	11
4	6	120	ļ	ļ	3	3 CD-SMPL		2.288	2 288	14
4	7	121		ļ	3	3 CD-SMPL		2.217	2 217	14
4	1	122	ļ	ļ	3	3 CD-SMPL		1.654	1.654	14
4	5	123		ļ	3	3 CD-SMPL		2.091	2 091	14
4	2	124		ļ	3	3 CD-SMPL	4.070	2.242	2 242	13
5	7	125	1		3	3 CD-SMPL; SDS	1 870	2.461	4 331	13
5	5	126		 -	3	3 CD-SMPL	0.574	2.309	2 309	13
5	1	127 128	1	ļ	3	BAC; 3 CD-SMPL	0 574	1.929 2.149	2 503 2.149	13 13
5 5	4 8	129	 1	ļ	3	3 CD-SMPL 3 CD-SMPL; SDS	0 873	2.523	3 396	12
<u>5</u>	6	130	3	ļ	3	ACT; BAC; 3 CD-SMPL; SDS	3.712	2.393	6.105	10
5	3	131	2		3	ACT; 3 CD-SMPL; SDS	3 268	2.172	5.440	12
5	2	132	<u>.</u>		3	3 CD-SMPL	3 200	2.200	2 200	14
<u>5</u>	4	133			3	3 CD-SMPL		2.108	2.108	14
1	7	134	·	ļ	3	3 CD-SMPL		2.362	2 362	13
1	6	135	1	ļ	3	3 CD-SMPL; SDS	0 979	2.287	3 266	13
1	1	136			3	3 CD-SMPL		1.818	1 818	14
6	1	137	·····		3	3 CD-SMPL		1.797	1.797	14
6	3	138	·····		3	3 CD-SMPL		2.176	2.176	13
6	2	139	[1	3	CD-C/SB; 3 CD-SMPL		3.346	3 346	12
6	6	140	1		3	3 CD-SMPL; SDS	0 924	2.191	3.115	13
7	1	141	ļ		3	3 CD-SMPL		1.735	1.735	14
7	7	142	1		3	3 CD-SMPL; SDS	2.158	2.264	4.422	13
7	2	143	1	ļ	3	ACT-BL; 3 CD-SMPL	2 270	2.301	4 571	12
7	8	144	ļ		3	3 CD-SMPL		2.616	2.616	14
7	6	145	ļ	1	3	CD-BAC; 3 CD-SMPL		3.010	3 010	12
	4	146	ļ	ļ	3	3 CD-SMPL		2.341	2 341	13
	5	147	ļ	ļ	3	3 CD-SMPL		2.392	2 392	14
	3	148		ļ	3	3 CD-SMPL	0.400	2.098	2 098	14
 8	2	149	3		3	BAC; 3 CD-SMPL	0.403 2 019	2.318	2.721	13
	5	150				BAC; 3 CD-SMPL; 2 SDS	2 019	2.321	4 340	11
8	7	151		1	3	CD-BL/FHN; 3 CD-SMPL	2 502	4.232	4 232	13
. o	8	152	2		3	3 CD-SMPL; 2 SDS	3 503	2.788	6 291	12
8	6	153	ļ	ļ	3	3 CD-SMPL		2.315	2 315	13
8	1	154	ļ	2	3	3 CD-SMPL		2.005 4.712	2 005	14
8	3	155 156	ļ	2	3	CD-BAC; CD-BL/FHN; 3 CD-SMPL 3 CD-SMPL		4.712 2.248	4.712 2 248	12
9	4	159	ļ	ļ	3	3 CD-SMPL		2.248	2 248	14 14
9 9	5 3	160	1		3	3 CD-SMPL; SDS	0 942	2.347	3 289	13
	4	161	ļ 	į	3	J CD-JIVIEL; JDJ	0 342	2.34/	J 20J	10

						Days 21 - 42 (19A	UG15 - 09SE	P15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	Mortality Wt (kg)	Removed Wt (kg)	Total M & R Wt (kg) Days 21 - 42	No. Birds Remaining Day 42
9	1	162			3	3 CD-SMPL		1.840	1 840	13
9	2	163	L		3	3 CD-SMPL		2.088	2 088	14
9	6	164	l		3	3 CD-SMPL		2.407	2.407	14
9	8	165	1		3	3 CD-SMPL; SDS	0 987	2.299	3 286	12
9	7	166	1		3	3 CD-SMPL; SDS	1 005	2.457	3.462	13
10	3	167			3	3 CD-SMPL		2.427	2.427	14
10	6	168			3	3 CD-SMPL		2.369	2 369	13
10	1	169			3	3 CD-SMPL		1.840	1 840	14
10	5	170			3	3 CD-SMPL		2.501	2 501	14
10	2	171	1		3	ACT; 3 CD-SMPL	1 993	2.315	4 308	12
10	4	172			3	3 CD-SMPL		2.386	2 386	14
10	8	173			3	3 CD-SMPL		2.507	2 507	14
10	7	174			3	3 CD-SMPL	1	2.608	2.608	14
6	8	177		1	3	CD-BL/FHN; 3 CD-SMPL		3.062	3 062	12
6	7	178	1		3	DH-BL; 3 CD-SMPL	0 511	2.307	2 818	13
6	5	179			3	3 CD-SMPL		2.280	2 280	13
6	4	180			3	3 CD-SMPL		2.263	2 263	14
11	1	181			3	3 CD-SMPL		1.986	1 986	13
11	8	182			3	3 CD-SMPL		2.274	2 274	14
11	5	183		2	3	2 CD-BAC; 3 CD-SMPL		4.274	4 274	12
11	3	184			3	3 CD-SMPL		2.129	2.129	11
11	2	185			3	3 CD-SMPL		2.410	2.410	14
11	6	186			3	3 CD-SMPL	1	2.389	2 389	14
11	7	187			3	3 CD-SMPL		2.356	2 356	12
11	4	188			3	3 CD-SMPL		2.320	2 320	14
12	7	189			3	3 CD-SMPL		2.320	2 320	14
12	2	190			3	3 CD-SMPL		2.111	2.111	12
12	4	191			3	3 CD-SMPL		2.178	2.178	13
12	1	192		1	3	CD-C/DH/BL; 3 CD-SMPL	1	2.310	2 310	12
12	3	193			3	3 CD-SMPL	1	2.174	2.174	13
12	6	194			3	3 CD-SMPL		2.249	2 249	13
12	5	195			3	3 CD-SMPL		2.270	2 270	14
12	8	196		1	3	CD-BL/FHN; 3 CD-SMPL		2.909	2 909	11

Table 14. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-4 Facility Number 7

							Days	0 - 14 (30JUL15	- 12AUG15)			
			No. Birds									No. Birds
DI			Started	₹	몵	val-2	Company (Possit	% Mortality	% Removal-	% Removal-	Total M & R-1	Remaining
Block	Trt	Pen No.	Day 0	Mortality	Removal-1	Remov	Cause of Death	D 0-14	1 D 0-14	2 D 0-14	% D 0 - 14	Day 14
1	1	136	17					0.000%	0.000%	0.000%	0.000%	17
2	1	106	17					0.000%	0.000%	0.000%	0.000%	17
3	1	115	17	l				0.000%	0.000%	0.000%	0.000%	17
4	1	122	17					0.000%	0.000%	0.000%	0.000%	17
5	1	127	17					0.000%	0.000%	0.000%	0.000%	17
6	<u>1</u>	137	17	.				0.000%	0.000%	0.000%	0.000%	17
7	1	141	17	.				0.000%	0.000%	0.000%	0.000%	17
8	1	154	17					0.000%	0.000%	0.000%	0.000%	17
9	1	162	17	1			BAC	5.882%	0.000%	0.000%	5.882%	16
10	1	169	17	ļ				0.000%	0.000%	0.000%	0.000%	17
11		181	17	l				0.000%	0.000%	0.000%	0.000%	17
12	1	192	17					0.000%	0.000%	0.000%	0.000%	17
Treatm	nent Gr	oup 1	204	1	0	0	BAC	0.490%	0.000%	0.000%	0.490%	203
1	2	97	17					0.000%	0.000%	0.000%	0.000%	17
2	2	105	17					0.000%	0.000%	0.000%	0.000%	17
3	2	114	17	ļ				0.000%	0.000%	0.000%	0.000%	17
4	2	124	17	ļ				0.000%	0.000%	0.000%	0.000%	17
5 6	2	132	17					0.000%	0.000%	0.000%	0.000%	17
6	2	139	17	1			BAC	5.882%	0.000%	0.000%	5.882%	16
7	2	143	17	ļ				0.000%	0.000%	0.000%	0.000%	17
8	2	149	17	ļ				0.000%	0.000%	0.000%	0.000%	17
9	2	163	17					0.000%	0.000%	0.000%	0.000%	17
10	2	171	17	. 1			SDS	5.882%	0.000%	0.000%	5.882%	16
11		185	17	ļ				0.000%	0.000%	0.000%	0.000%	17
12	2	190	17	1	1		BAC; CD-C/BAC	5.882%	5.882%	0.000%	11.765%	15
Treatm	nent Gr	oup 2	204	3	1	0	2 BAC; CD-C/BAC; SDS	1.471%	0.490%	0.000%	1.961%	200
1	3	99	17					0.000%	0.000%	0.000%	0.000%	17
3	3 3	108	17	ļ				0.000%	0.000%	0.000%	0.000%	17
	3	111	17	ļ				0.000%	0.000%	0.000%	0.000%	17
4	3	118	17	ļ				0.000%	0.000%	0.000%	0.000%	17
5	3	131	17					0.000%	0.000%	0.000%	0.000%	17
6	3	138	17	1			BAC	5.882%	0.000%	0.000%	5.882%	16
7	3	148	17	l				0.000%	0.000%	0.000%	0.000%	17
8		155	17	l				0.000%	0.000%	0.000%	0.000%	17
9	3	160	17	J	ļļ			0.000%	0.000%	0.000%	0.000%	17
10	3	167	17	l				0.000%	0.000%	0.000%	0.000%	17
11	3	184	17	1			BAC	5.882%	0.000%	0.000%	5.882%	16
12	3	193	17					0.000%	0.000%	0.000%	0.000%	17

							Days	0 - 14 (30 JUL 1 5	- 12AUG15)			
Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality D 0-14	% Removal- 1 D 0-14	% Removal- 2 D 0-14	Total M & R-1 % D 0 - 14	No. Birds Remaining Day 14
1	4	133	17	<u> </u>				0.000%	0.000%	0.000%	0.000%	17
2	4	103	17					0.000%	0.000%	0.000%	0.000%	17
3	4	116	17 17					0.000%	0.000%	0.000%	0.000%	17 17
4	4	119 ¹	18					0.000%	0.000%	0.000%	0.000%	18
5	4	128	17	1	ii		DH	5.882%	0.000%	0.000%	5.882%	16
6	4	180	17					0.000%	0.000%	0.000%	0.000%	17
7	4	146	17	·····				0.000%	0.000%	0.000%	0.000%	17
8	4	156	17					0.000%	0.000%	0.000%	0.000%	17
9	4	161	17	·····	!			0.000%	0.000%	0.000%	0.000%	17
10	4	172	17		1			0.000%	0.000%	0.000%	0.000%	17
11	4	188	17					0.000%	0.000%	0.000%	0.000%	17
12	4	191	17		1		CD-C/SB/BL	0.000%	5.882%	0.000%	5.882%	16
Treatn	nent Gr	oup 4	205	1	1	0	CD-C/SB/BL; DH	0.488%	0.488%	0.000%	0.976%	203
1		100	17					0.000%	0.000%	0.000%	0.000%	47
1	5	100 104	17 17		ļ			0.000%	0.000%	0.000%	0.000%	17 17
2		5		ŀ	ļ			0.000%	0.000%	0.000%	0.000%	
3	5	109 123	17	ŀ	ļ				/	0.000%	0.000%	17
<u>4</u>	5	126	17 17	ŀ	ļ			0.000%	0.000% 0.000%	0.000%	0.000%	17 17
	5	179	17	ŀ	ļ			0.000%	0.000%	0.000%	0.000%	17
<u>6</u>		147	17	ŀ	·			0.000%	0.000%	0.000%	0.000%	17
	5	150	17 17	ŀ	·			0.000%	0.000%	0.000%	0.000%	17 17
<u>8</u>	5	159	<u>1/</u>	ŀ	ļ			0.000%	0.000%	0.000%	0.000%	17 17
10	5	170	17	ŀ	ļ			0.000%	0.000%	0.000%	0.000%	17
11	5	183	17	ŀ····	ii			0.000%	0.000%	0.000%	0.000%	17
12	5	195	17					0.000%	0.000%	0.000%	0.000%	17
Treatn	nent Gr	oup 5	204	0	0	0		0.000%	0.000%	0.000%	0.000%	204
_	6	125	17	_				. 0.000%	. 0.000%	0.000%	0.0009/	. 17
1	6	135 107	<u>17</u> 17	ŀ	ļ			0.000%	0.000% 0.000%	0.000%	0.000%	17 17
3	6	110	17	 1	ļ		SDS	5.882%	0.000%	0.000%	5.882%	16
	į	120	17	· ·	ļ		303	0.000%	0.000%	0.000%	0.000%	17
4	6	130	17	 1	·		DH-BAC	5.882%	0.000%	0.000%	5.882%	16
5	<	140	17	· · * · ·	ļ		DIFDAG	0.000%	0.000%	0.000%	0.000%	17
<u>6</u>	6	145	<u>1/</u>	ŀ	ļ			0.000%	0.000%	0.000%	0.000%	1/ 17
8	6	153	17	 1	·		BAC	5.882%	0.000%	0.000%	5.882%	16
9	6	164	17	··÷·	ļ		une	0.000%	0.000%	0.000%	0.000%	17
10	6	168	17	 1	ļ		BAC-DH	5.882%	0.000%	0.000%	5.882%	16
11	6	186	17	· · * · ·			DACIDII	0.000%	0.000%	0.000%	0.000%	17
12	6	194	17	ŀ	·			0.000%	0.000%	0.000%	0.000%	17
	nent Gr		204	4	0	0	BAC; BAC-DH; DH-BAC; SDS	1.961%	0.000%	0.000%	1.961%	200
rreatr	nent Of	oup o	204	4		U	DAC, DAC-DII, DII-DAC, 3D3	1.501/6	0.000/6	0.00076	1.501/0	200

							Days 0	- 14 (30JUL15	- 12AUG15)			
Block	Trt	Pen No.		tality	oval-1	oval-2	Cause of Death	% Mortality D 0-14	% Removal- 1 D 0-14	% Removal- 2 D 0-14	Total M & R-1 % D 0 - 14	No. Birds Remaining
L	<u> </u>		Day 0	Mor	Rem	Rem						Day 14
1	7	134	17		1		CD-C/BAC	0.000%	5.882%	0.000%	5.882%	16
2	7	101	17					0.000%	0.000%	0.000%	0.000%	17
3	7	112	17	1			BAC	5.882%	0.000%	0.000%	5.882%	16
4	7	121	17					0.000%	0.000%	0.000%	0.000%	17
5	7	125	17					0.000%	0.000%	0.000%	0.000%	17
6	7	178	17					0.000%	0.000%	0.000%	0.000%	17
7	7	142	17					0.000%	0.000%	0.000%	0.000%	17
8	7	151	17					0.000%	0.000%	0.000%	0.000%	17
9	7	166	17					0.000%	0.000%	0.000%	0.000%	17
10	7	174	17					0.000%	0.000%	0.000%	0.000%	17
11	7	187	17	2			BAC; SDS	11.765%	0.000%	0.000%	11.765%	15
12	7	189	17					0.000%	0.000%	0.000%	0.000%	17
Treatr	nent Gr	oup 7	204	3	1	0	2 BAC; CD-C/BAC; SDS	1.471%	0.490%	0.000%	1.961%	200

Treatn	nent Gr	oup 8	204	6	1	0	4 BAC; CD-BAC; 2 SDS	2.941%	0.490%	0.000%	3.431%	197
12	8	196	17	1			BAC	5.882%	0.000%	0.000%	5.882%	1 6
11	8	182	17					0.000%	0.000%	0.000%	0.000%	17
10	8	173	17					0.000%	0.000%	0.000%	0.000%	17
9	8	165	17	1			BAC	5.882%	0.000%	0.000%	5.882%	16
8	8	152	17	r				0.000%	0.000%	0.000%	0.000%	17
7	8	144	17					0.000%	0.000%	0.000%	0.000%	17
6	8	177	17	1			BAC	5.882%	0.000%	0.000%	5.882%	1 6
5	8	129	17		1		CD-BAC	0.000%	5.882%	0.000%	5.882%	16
4	8	117	17					0.000%	0.000%	0.000%	0.000%	17
3	8	113	17	1			SDS	5.882%	0.000%	0.000%	5.882%	16
2	8	102	17	2			BAC; SDS	11.765%	0.000%	0.000%	11.765%	15
1	8	98	17					0.000%	0.000%	0.000%	0.000%	1/

¹CL: Pen 119 started with one extra bird. See Deviation 3 for details. SG 10SEP15

						Days 14	- 21 (12AUG1	5 - 19AUG15)			
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality D 14-21	% Removal- 1 D 14-21	% Removal- 2 D 14-21	Total M & R-1 % D 14 - 21	No. Birds Remaining Day 21
1	1	136					0.000%	0.000%	0.000%	0.000%	17
2	1	106					0.000%	0.000%	0.000%	0.000%	17
3	1	115					0.000%	0.000%	0.000%	0.000%	17
4	1	122					0.000%	0.000%	0.000%	0.000%	17
5	1	127					0.000%	0.000%	0.000%	0.000%	17
6	1	137	ļ				0.000%	0.000%	0.000%	0.000%	17
7	1	141	ļ				0.000%	0.000%	0.000%	0.000%	17
8	1	154					0.000%	0.000%	0.000%	0.000%	17
9	1	162	ļ				0.000%	0.000%	0.000%	0.000%	16
10		169	ļ	ļ <u>.</u>	ļļ		0.000%	0.000%	0.000%	0.000%	17
11	1	181	ļ	1		CD-BAC	0.000%	5.882%	0.000%	5.882%	16
12	1	192		1	\blacksquare	CD-BAC	0.000%	5.882%	0.000%	5.882%	16
Treatm	ent Gr	oup 1	0	2	0	2 CD-BAC	0.000%	0.985%	0.000%	0.985%	201
1 !	2	97					0.000%	0.000%	0.000%	0.000%	17
2	2	105					0.000%	0.000%	0.000%	0.000%	17
3		114					0.000%	0.000%	0.000%	0.000%	17
4	<u>2</u>	124	1			BAC	5.882%	0.000%	0.000%	5.882%	16
5		132				DAC	0.000%	0.000%	0.000%	0.000%	17
6	2	139		 			0.000%	0.000%	0.000%	0.000%	16
···· y ·····	2	143		1		CD-BAC	0.000%	5.882%	0.000%	5.882%	16
8	2	149				CD DAC	0.000%	0.000%	0.000%	0.000%	17
9		163					0.000%	0.000%	0.000%	0.000%	17
10	2	171					0.000%	0.000%	0.000%	0.000%	16
11	2	185					0.000%	0.000%	0.000%	0.000%	17
12	2	190					0.000%	0.000%	0.000%	0.000%	15
Treatm	ent Gr	oup 2	1	1	0	BAC; CD-BAC	0.500%	0.500%	0.000%	1.000%	198
							•	i			
1	3	99					0.000%	0.000%	0.000%	0.000%	17
2	3	108					0.000%	0.000%	0.000%	0.000%	17
3	3	111	L				0.000%	0.000%	0.000%	0.000%	17
4	3	118	L				0.000%	0.000%	0.000%	0.000%	17
5	3	131	ļ				0.000%	0.000%	0.000%	0.000%	17
6	3	138	ļ				0.000%	0.000%	0.000%	0.000%	16
7	3	148	L				0.000%	0.000%	0.000%	0.000%	17
8	3	155	ļ				0.000%	0.000%	0.000%	0.000%	17
9	3	160	ļļ	ļ			0.000%	0.000%	0.000%	0.000%	17
10	3	167	L		L		0.000%	0.000%	0.000%	0.000%	17
11	3	184		1		BAC; CD-BAC	6.250%	6.250%	0.000%	12.500%	14
12	3	193	1			SDS	5.882%	0.000%	0.000%	5.882%	16
Treatm	ent Gr	oup 3	2	1	0	BAC; CD-BAC; SDS	0.990%	0.495%	0.000%	1.485%	199

						Days 1	4 - 21 (12AUG1	5 - 19AUG15)			
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality D 14-21	% Removal- 1 D 14-21	% Removal- 2 D 14-21	Total M & R-1 % D 14 - 21	No. Birds Remaining Day 21
1	4	133	·····				0.000%	0.000%	0.000%	0.000%	17
	4 4	103					0.000%	0.000%	0.000%	0.000%	17
3	4	116					0.000%	0.000%	0.000%	0.000%	17 17
4	4	119 ¹	1		1	CD; SDS	5.556%	0.000%	5.556%	5.556%	16
5	4	128	·····				0.000%	0.000%	0.000%	0.000%	16
6	4	180	ļ				0.000%	0.000%	0.000%	0.000%	17
7	4	146	1			SDS	5.882%	0.000%	0.000%	5.882%	16
8	4	156	i				0.000%	0.000%	0.000%	0.000%	17
9	4	161	l				0.000%	0.000%	0.000%	0.000%	17
10	4	172	l				0.000%	0.000%	0.000%	0.000%	17
11	4	188	l				0.000%	0.000%	0.000%	0.000%	17
12	4	191	L				0.000%	0.000%	0.000%	0.000%	16
Treatn	nent Gr	oup 4	2	0	1	CD; 2 SDS	0.985%	0.000%	0.493%	0.985%	200
1	5	100	Π	: :			0.000%	0.000%	0.000%	0.000%	17
2	5	104					0.000%	0.000%	0.000%	0.000%	17
3	5	109					0.000%	0.000%	0.000%	0.000%	17
4	5	123					0.000%	0.000%	0.000%	0.000%	17
5	5	126	1			BAC	5.882%	0.000%	0.000%	5.882%	16
6	5	179	1			SDS	5.882%	0.000%	0.000%	5.882%	16
7	5	147					0.000%	0.000%	0.000%	0.000%	17
8	5	150					0.000%	0.000%	0.000%	0.000%	17
9	5 5	159					0.000%	0.000%	0.000%	0.000%	17
10	5	170	l				0.000%	0.000%	0.000%	0.000%	17
11	5	183	l				0.000%	0.000%	0.000%	0.000%	17
12	5	195	ᆫ				0.000%	0.000%	0.000%	0.000%	17
Treatn	nent Gr	oup 5	2	0	0	BAC; SDS	0.980%	0.000%	0.000%	0.980%	202
1	6	135	_				0.000%	0.000%	0.000%	0.000%	17
2	6	107	ļ	}			0.000%	0.000%	0.000%	0.000%	17
3	6	110		}{			0.000%	0.000%	0.000%	0.000%	16
4	6	120		ļ			0.000%	0.000%	0.000%	0.000%	
	6	130					0.000%	0.000%	0.000%	0.000%	17
5	i	140		}			0.000%	0.000%	0.000%	0.000%	16 17
6 7	6	145	 1			SDS	5.882%	0.000%	0.000%	5.882%	16
8		153	··- *			303	0.000%	0.000%	0.000%	0.000%	
9	6	164	·····				0.000%	0.000%	0.000%	0.000%	16 17
10		168	·····				0.000%	0.000%	0.000%	0.000%	16
11	6	186					0.000%	0.000%	0.000%	0.000%	17
12	6	194	 1			SDS	5.882%	0.000%	0.000%	5.882%	16
Treatn				0	0	2 SDS	1.000%	0.000%	0.000%	1.000%	198
rrealri	ient di	oup o	2	U	U	2 303	1.000/6	0.00076	0.000/6	1.000/0	130

						Days 14	- 21 (12AUG1	5 - 19AUG15)			
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality D 14-21	% Removal- 1 D 14-21	% Removal- 2 D 14-21	Total M & R-1 % D 14 - 21	No. Birds Remaining Day 21
1	7	134					0.000%	0.000%	0.000%	0.000%	16
2	7	101		1	[CD-BAC	0.000%	5.882%	0.000%	5.882%	16
3	7	112		i	ii		0.000%	0.000%	0.000%	0.000%	16
4	7	121			1		0.000%	0.000%	0.000%	0.000%	17
5	7	125			ìi		0.000%	0.000%	0.000%	0.000%	17
6	7	178		·	Ĭ		0.000%	0.000%	0.000%	0.000%	17
7	7	142					0.000%	0.000%	0.000%	0.000%	17
8	7	151					0.000%	0.000%	0.000%	0.000%	17
9	7	166					0.000%	0.000%	0.000%	0.000%	17
10	7	174					0.000%	0.000%	0.000%	0.000%	17
11	7	187		!]		0.000%	0.000%	0.000%	0.000%	15
12	7	189					0.000%	0.000%	0.000%	0.000%	17
Treatn	nent Gr	oup 7	0	1	0	CD-BAC	0.000%	0.500%	0.000%	0.500%	199

Treatn	nent Gr	oup 8	0	2	0	CD-BAC; CD-BL/Splay Leg	0.000%	1.015%	0.000%	1.015%	195
12	8	196		1		CD-BAC	0.000%	6.250%	0.000%	6.250%	15
11	8	182					0.000%	0.000%	0.000%	0.000%	17
10	8	173			·		0.000%	0.000%	0.000%	0.000%	17
9	8	165					0.000%	0.000%	0.000%	0.000%	16
8	8	152					0.000%	0.000%	0.000%	0.000%	17
7	8	144					0.000%	0.000%	0.000%	0.000%	17
6	8	177		i	Î		0.000%	0.000%	0.000%	0.000%	16
5	8	129			Î		0.000%	0.000%	0.000%	0.000%	16
4	8	117	i	1		CD-BL/Splay Leg	0.000%	5.882%	0.000%	5.882%	16
3	8	113			Î		0.000%	0.000%	0.000%	0.000%	16
2	8	102			1		0.000%	0.000%	0.000%	0.000%	15
1	8	98					0.000%	0.000%	0.000%	0.000%	17

¹CL: Pen 119 started with

Table 14. Summary CQR Study Number 7 Facility Number 7

									Da	ys 21 - 42 (19AU)	315 - 09SEP15)		Dav	ys 0 - 42	
											No. Birds				
			>	豆	7		% Mortality	% Removal-	% Removal-	Total M & R-1	Remaining	% Mortality	% Removal-	% Removal-	Total M & R-1
Block	Trt	Pen No.	tality	8	Š	Cause of Death	D 21-42	1 D 21-42	2 D 21-42	%D21-42		D 0-42	1 D 0-42	2 D 0-42	% D 0 - 42
			븅	temoval-1	Removal-2		U 21-42	1021-42	2021-42	76 D Z1 - 4Z	Day 42	D 0-42	100-42	200-42	76 0 0 - 42
			Σ	Re											
1	. 1	136		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
2	1	106		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14 13	0.000%	0.000%	17.647%	0.000%
	1	115	1	ļ	3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%		5.882%	0.000%	17.647%	5.882%
4	1	122		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
5	1	127	1	 	3	BAC; 3 CD-SMPL	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%	5.882%
<mark>6</mark>	1	137		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14 14	0.000%	0.000%	17.647%	0.000%
	1	141		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%		0.000%	0.000%	17.647%	0.000%
8	1	154		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
9	1	162		<u> </u>	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
10		169		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
11	1	181		ļ <u>.</u>	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13 12	0.000%	5.882%	17.647%	5.882%
12	1	192	<u> </u>	1	3	CD-C/DH/BL; 3 CD-SMPL	0.000%	6.250%	18.750%	6.250%	i	0.000%	11.765%	17.647%	11.765%
Treatm	ient Gr	oup 1	2	1	36	BAC; CD-C/DH/BL; 36 CD-SMPL; SDS	0.995%	0.498%	17.910%	1.493%	162	1.471%	1.471%	17.647%	2.941%
					_										
1	2	97		İ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
2	2	105		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
3	2	114		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
4	2	124		ļ	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
5	2	132		ļ 	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14 12	0.000%	0.000%	17.647%	0.000%
6	2	139		1	3	CD-C/SB; 3 CD-SMPL	0.000%	6.250%	18.750%	6.250%	12	5.882%	5.882%	17.647%	11.765%
7	2	143	1	ļ	3	ACT-BL; 3 CD-SMPL	6.250%	0.000%	18.750%	6.250%	12	5.882%	5.882%	17.647%	11.765%
8	2	149	1	ļ	3	BAC; 3 CD-SMPL	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%	5.882%
9	2	163		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
10	2	171	1	ļ	3	ACT; 3 CD-SMPL	6.250%	0.000%	18.750%	6.250%	12	11.765%	0.000%	17.647%	11.765%
11	2	185		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
12	2	190	_	<u> </u>	3	3 CD-SMPL	0.000%	0.000%	20.000%	0.000%	12	5.882%	5.882%	17.647%	11.765%
Treatm	ent Gr	oup 2	3	1	36	ACT; ACT-BL; BAC; CD-C/SB; 36 CD-	1.515%	0.505%	18,182%	2.020%	158	3,431%	1.471%	17.647%	4.902%
			Ľ	_	-	SMPL	1131370	0.30370	10/102/0	LIOZO70	130	31.13276	1117270	17101770	1130270
1	3	99		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
3	3	108		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
	3	111	1	¦	3	BAC; 3 CD-SMPL	5.882%	0.000%	17.647%	5.882%	14 13 14 12	5.882%	0.000%	17.647%	5.882%
4		118		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
5	3	131	2	ļ	3	ACT; 3 CD-SMPL; SDS	11.765%	0.000%	17.647%	11.765%		11.765%	0.000%	17.647%	11.765%
6 7		138		¦ +	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
	3	148		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
8 9	3	155		2	<u></u>	CD-BAC; CD-BL/FHN; 3 CD-SMPL	0.000%	11.765%	17.647%	11.765%	12	0.000%	11.765%	17.647%	11.765%
	3	160	1	ļ	3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%	5.882%
10	3	167		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
11 12	3	184	L	ļ	3	3 CD-SMPL	0.000%	0.000%	21.429%	0.000%	11 13	11.765%	5.882%	17.647%	17.647%
12	3	193	_	<u> </u>	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
Treatm	ent Gr	oup 3	4	2	36	ACT; BAC; CD-BAC; CD-BL/FHN; 36 CD-	2.010%	1.005%	18.090%	3.015%	157	3.922%	1.471%	17.647%	5.392%
			Ľ	_		SMPL; 2 SDS			10,000,0	3.0237		0.022.0		1	3.032.70

									Da	ys 21 - 42 (19AU)	G15 - 09SEP15)		Da	ys 0 - 42	
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality D 21-42	% Removal- 1 D 21-42	% Removal- 2 D 21-42	Total M & R-1 % D 21 - 42	No. Birds Remaining Day 42	% Mortality D 0-42	% Removal- 1 D 0-42	% Removal- 2 D 0-42	Total M & R-1 % D 0 - 42
1	4	133			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
2	4	103		1	3	CD-C/BAC; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13 14	0.000%	5.882%	17.647%	5.882%
3	4	116			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
4	4	119 ¹	1	1	3	BAC; CD-BL/FHN; 3 CD-SMPL	6.250%	6.250%	18.750%	12.500%	11	11.111%	5.556%	22.222%	16.667%
5	4	128 180			3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	11 13	5.882%	0.000%	17.647%	5.882%
6	4	180			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
7	4	146			3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13 14	5.882%	0.000%	17.647%	5.882%
8	4	156			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
9	4	161		1	3	CD-BAC; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13	0.000%	5.882%	17.647%	5.882%
10	4	172		l	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
11	4	188			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14 13	0.000%	0.000%	17.647%	0.000%
12	4	191			3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	0.000%	5.882%	17.647%	5.882%
Treatn	nent G	roup 4	1	3	36	BAC; 2 CD-BAC; CD-BL/FHN; 36 CD- SMPL	0.500%	1.500%	18.000%	2.000%	160	1.951%	1.951%	18.049%	3.902%
1	5	100		1	3	CD-C/BL; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13	0.000%	5.882%	17.647%	5.882%
2	5	104		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
3	5	109	.1	i	3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%	5.882%
4	5	123			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
5	5	126			3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
6	5	179		İ	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
7	5	147		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
8	5	150	3	ļ	3	BAC; 3 CD-SMPL; 2 SDS	17.647%	0.000%	17.647%	17.647%	11	17.647%	0.000%	17.647%	17.647%
9	5	159		ĺ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
10	5	170			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
11	5	183		2	3	2 CD-BAC; 3 CD-SMPL	0.000%	11.765%	17.647%	11.765%	12	0.000%	11.765%	17.647%	11.765%
12	5	195			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
Treatn	nent G	roup 5	4	3	36	BAC; 2 CD-BAC; CD-C/BL; 36 CD-SMPL; 3 SDS	1.980%	1.485%	17.822%	3.465%	159	2.941%	1.471%	17.647%	4.412%
1	6	135	. 1		3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%	5.882%
2	6	107		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
3	6	110		ļ	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
4	6	120			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
5	6	130	.3	ļ	3	ACT; BAC; 3 CD-SMPL; SDS	18.750%	0.000%	18.750%	18.750%	10	23.529%	0.000%	17.647%	23.529%
6	6	140	.1		3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13 12	5.882%	0.000%	17.647%	5.882%
7	6	145		1	3	CD-BAC; 3 CD-SMPL	0.000%	6.250%	18.750%	6.250%	12	5.882%	5.882%	17.647%	11.765%
8	6	153		ļ	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
9	6	164		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
10	6	168		i	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
11	6	186		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
12	6	194			3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
Treatn	nent G	roup 6	5	1	36	ACT; BAC; CD-BAC; 36 CD-SMPL; 3 SDS	2.525%	0.505%	18.182%	3.030%	156	5.392%	0.490%	17.647%	5.882%

									Da	ys 21 - 42 (19AU)	615 - 09SEP15)		Day	/s 0 - 42	
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality D 21-42	% Removal- 1 D 21-42	% Removal- 2 D 21-42	Total M & R-1 % D 21 - 42	No. Birds Remaining Day 42	% Mortality D 0-42	% Removal- 1 D 0-42	% Removal- 2 D 0-42	Total M & R-1 % D 0 - 42
1	7	134	Γ	1	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	0.000%	5.882%	17.647%	5.882%
2	7	101		T	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	0.000%	5.882%	17.647%	5.882%
3	7	112		Ϊ	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	5.882%	0.000%	17.647%	5.882%
4	7	121	ļ	ĵ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
5	7	125	1	Ī	3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%	5.882%
6	7	178	1	T	3	DH-BL; 3 CD-SMPL	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%	5.882%
7	7	142	1	Ĭ	3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%	5.882%
8	7	151	F	1	3	CD-BL/FHN; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13	0.000%	5.882%	17.647%	5.882%
9	7	166	1		3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13	5.882%	0.000%	17.647%	5.882%
10	7	174	F	ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
11	7	187	ļ	Ī	3	3 CD-SMPL	0.000%	0.000%	20.000%	0.000%	12	11.765%	0.000%	17.647%	11.765%
12	7	189	ļ	!	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
Treatr	nent Gr	oup 7	4	1	36	CD-BL/FHN; 36 CD-SMPL; DH-BL; 3 SDS	2.010%	0.503%	18.090%	2.513%	158	3.431%	1.471%	17.647%	4.902%
-	. 8	98	_		3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	- 14	0.000%	0.000%	17.647%	0.000%
		102	ļ	 -	3	3 CD-SMPL	0.000%	0.000%	20.000%	0.000%	14 12	11.765%	0.000%	17.647%	11.765%
2		113		 	3	3 CD-SMPL; Twisted Gut	6.250%	0.000%	18.750%	6.250%	12	11.765%	0.000%	17.647%	11.765%
4		117	1		3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13	0.000%	5.882%	17.647%	5.882%
	8	129	1	ļ	3	3 CD-SMPL; SDS	6.250%	0.000%	18.750%	6.250%	12	5.882%	5.882%	17.647%	11.765%
		177		1	3	CD-BL/FHN; 3 CD-SMPL	0.000%	6.250%	18.750%	6.250%	12	5.882%	5.882%	17.647%	11.765%
			ļ	ļ -	3		0.000%	0.000%	17.647%			0.000%	0.000%	17.647%	0.000%
<u>′</u>		144 152	2	ļ	3	3 CD-SMPL 3 CD-SMPL; 2 SDS	11.765%	0.000%	17.647%	0.000% 11.765%	14	11.765%	0.000%	17.647%	11.765%
<mark>0</mark>		165	ŀ -	 	3	3 CD-SMPL; 2 SDS	6.250%	0.000%	18.750%	6.250%	12 12	11.765%	0.000%	17.647%	11.765%
10		173	├	 	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
11	8	182	ŀ	 	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14	0.000%	0.000%	17.647%	0.000%
12	8	196	l	1	3	CD-BL/FHN; 3 CD-SMPL	0.000%	6.667%	20.000%	6.667%	11	5.882%	11.765%	17.647%	17.647%
	nent Gr		5	2	36	2 CD-BL/FHN; 36 CD-SMPL; 4 SDS; Twisted Gut	2.564%	1.026%	18.462%	3.590%	152	5.392%	2.451%	17.647%	7.843%

¹CL: Pen 119 started with

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-4 Facility Number 7

		Stai	Starter 1 (Days 0 - 14)	(Start	Starter 2 (Days 14 - 21)	(
Pen		Feed 1	8W	D 0 - 14	Feed 2	WB	D 14 - 21
Š		27-Jul-15	12-Aug-15	Consumed	12-Aug-15	19-Aug-15	Consumed
6		10.00	3.42	6.58	13.00	3.68	9.32
86		10.00	3.56	6.44	13.00	3.06	9.94
66	_	10.00	3.94	90.9	13.00	4.04	8.96
100		10.00	3.62	6.38	13.00	4.12	88.88
101	:	10.00	3.58	6.42	13.00	4.34	8.66
102		10.00	4.04	5.96	13.00	4.10	8.90
103		10.00	3.66	6.34	13.00	3.70	9.30
104		10.00	3.78	6.22	13.00	3.76	9.24
105		10.00	3.56	6.44	13.00	3.66	9.34
106		10.00	4.30	5.70	13.00	5.36	7.64
107		10.00	3.76	6.24	13.00	3.70	9.30
108		10.00	3.96	6.04	13.00	4.26	8.74
109		10.00	3.76	6.24	13.00	4.12	8.88
110		10.00	3.78	6.22	13.00	3.88	9.12
111		10.00	3.88	6.12	13.00	4.18	8.82
112		10.00	4.16	5.84	13.00	4.56	8.44
113		10.00	3.64	6.36	13.00	4.28	8.72
114		10.00	3.60	6.40	13.00	3.60	9.40
115		10.00	4.10	5.90	13.00	5.72	7.28
116		10.00	4.10	5.90	13.00	4.30	8.70
117		10.00	3.56	6.44	13.00	3.68	9.32
118		10.00	4.08	5.92	13.00	4.40	8.60
119		10.00	3.82	6.18	13.00	5.04	7.96
120		10.00	3.62	6.38	13.00	3.66	9.34
121		10.00	3.42	6.58	13.00	3.72	9.28
							-

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-4 Facility Number 7

Starter 1 (Days 0 - 14)	
WB	12-Aug-15 4.54 3.74 3.74 3.76
.g-	3.74
54	3.74
74	3.74
74	3.76
9_	1 0
28	3.78
20	4.20
30	4.30
72	3.72
88	3.88
20	3.50
72	3.72
82	3.82
98	3.86
54	3.54
42	4.42
20	4.50
40	4.40
<u> 5</u>	4.26
90	4.06
44	4.44
28	3.58
84	3.84
	3.14
14	3.74
74	3.86

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-4 Facility Number 7

Feed 1 WB D 0 - 14 27-Jul-15 12-Aug-15 Consumed 10.00 3.82 6.18 10.00 3.70 6.30
╼╉╌┼╌
.82 .70
.70
3.66
3.82
3.48
24
4.20
4.28
81
4.18
36.
3.40
3.68
4.68
3.68
3.64
3.84
3.70
4.04
3.84
4.42
3.72

Table 15. Feed Added and Removed by Pen (Day 0 - Study End) CQR Study Number AGV-15-4 Facility Number 7

Starter 1 (Days 0 - 14)
Feed 1 27-Jul-15
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

Table 15. Feed Added CQR Study Number AC Facility Number 7

				9	Grower/Finisher (Days 21 - 42)	er (Days 21 - 4	2)	
Block	Trt	Pen No.	Feed 3	Feed 4	Feed 5	Feed 6	8M	D 21 - 42
			19-Aug-15	26-Aug-15	31-Aug-15	3-Sep-15	9-Sep-15	Consumed
1	7	26	20.00	13.00	13.00	8.00	3.32	20.68
1	8	86	20.00	13.00	13.00	8.00	3.36	50.64
1	3	66	20.00	13.00	13.00	8.00	90.9	47.94
11	5 -	100	20.00	13.00	13.00	8.00 1	7.06	46.94
2	7	101	20.00	13.00	13.00	8.00	8.62	45.38
2	8	102	20.00	13.00	13.00	8.00	9.92	44.08
2	4	103	20.00	13.00	13.00	8.00	7.74	46.26
2	5	104	20.00	13.00	13.00	8.00	5.80	48.20
2	2	105	20.00	13.00	13.00	8.00	3.56	50.44
2	1	106	20.00	13.00	13.00	00.0	2.68	43.32
2	9	107	20.00	13.00	13.00	8.00	4.26	49.74
2	3	108	20.00	13.00	13.00	8.00	4.04	49.96
3	2	109	20.00	13.00	13.00	8.00	8.14	45.86
3	9	110	20.00	13.00	13.00	8.00	8.60	45.40
3	3	111	20.00	13.00	13.00	8.00	6.52	47.48
3	7	112	20.00	13.00	13.00	8.00	98.9	47.14
3	8	113	20.00	13.00	13.00	8.00	11.08	42.92
3	2	114	20.00	13.00	13.00	8.00	5.38	48.62
3	1	115	20.00	13.00	13.00	00.00	6.72	39.28
3	4	116	20.00	13.00	13.00	8.00	6.04	47.96
4	8	117	20.00	13.00	13.00	8.00	8.70	45.30
4	3	118	20.00	13.00	13.00	8.00	8.18	45.82
4	4	119	20.00	13.00	13.00	8.00	15.78	38.22
4	9	120	20.00	13.00	13.00	8.00	6.82	47.18
4	7	121	20.00	13.00	13.00	8.00	7.18	46.82
	.	!						

Table 15. Feed Added CQR Study Number AC Facility Number 7

Feed 4 Feed 5
╬╌
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 1 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 1 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00
13.00 13.00

Table 15. Feed Added CQR Study Number AC Facility Number 7

	-	Gr	rower/Finishe	Grower/Finisher (Days 21 - 42)	2)	
Pen Feed 3 No.	ű.	Feed 4	Feed 5	Feed 6	WB	D 21 - 42
19-Aug-15	26-	26-Aug-15	31-Aug-15	3-Sep-15	9-Sep-15	Consumed
147 20.00	1	13.00	13.00	8.00	4.44	49.56
	1	13.00	13.00	8.00	5.24	48.76
149 20.00	1	13.00	13.00	8.00	7.36	46.64
150 20.00	1	13.00	13.00	8.00	14.84	39.16
151 20.00	1	13.00	13.00	8.00	4.84	49.16
152 20.00	Ч	13.00	13.00	8.00	11.26	42.74
153 20.00	7	13.00	13.00	8.00	9.70	44.30
154 20.00	7	13.00	13.00	0.00	5.14	40.86
155 20.00	7	13.00	13.00	8.00	11.44	42.56
156 20.00	_	13.00	13.00	8.00	6.64	47.36
20.00	_	13.00	13.00	8.00	4.72	49.28
	7	13.00	13.00	8.00	9.84	44.16
161 20.00	7	13.00	13.00	8.00	8.34	45.66
	1	13.00	13.00	0.00	8.16	37.84
163 20.00	7	13.00	13.00	8.00	4.68	49.32
164 20.00	Ч	13.00	13.00	8.00	3.58	50.42
	7	13.00	13.00	8.00	9.76	44.24
166 20.00	Н	13.00	13.00	8.00	5.38	48.62
167 20.00	1	13.00	13.00	8.00	5.28	48.72
168 20.00	1	13.00	13.00	8.00	7.74	46.26
169 20.00	7	13.00	13.00	0.00	3.92	42.08
170 20.00	1	13.00	13.00	8.00	3.40	20.60

Table 15. Feed Added CQR Study Number AC Facility Number 7

Pen Feed 3 No.
19-Aug-15 26-Aug-15
171 20.00
172 20.00
173 20.00
174 20.00
177 20.00
178 20.00
182 20.00
183 20.00
185 20.00
186 20.00
187 20.00
188 20.00
190 20.00
192 20.00
194 20.00
195 20.00
196 20.00

Table 16. Average % Ash Results of Tibias Collected on Study Days 21 and 42 Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

	Da	y 21			Da	ıy 42	
Block	Trt	Pen No.	%	Block	Trt	Pen No.	%
لــبــا		125	Ash	l ——		100	Ash
1 !	<u> </u>	136	_ 20.2	1	<u> </u>	136	33.9
2	- 1	106	$-\frac{23.1}{24.2}$	2	1	106	34.3
3	 1	115	_ 24.2 _	3	 <mark>1</mark>	115	34.2
	<u>- 1</u>	122	$-\frac{22.4}{34.4}$	4	1	122	33.6
5]	1	127	$-\frac{21.4}{30.3}$	5	1	127	35.0
	11	<u>137</u> 141	$-\frac{20.2}{24.5}$	6	1	137	29.9
	1		$-\frac{21.5}{34.4}$	7	<u>1</u>	141	35.6
<mark>8</mark>	$-\frac{1}{1}$	154 162	$-\frac{21.4}{20.6}$	8	1	154 162	35.4 34.9
		1162 1 169	$-\frac{20.6}{18.4}$	l	└ 1	169	39.4
$-\frac{10}{11}$	$\frac{1}{1} - \frac{1}{1}$	181	$-\frac{18.4}{21.4}$	$-\frac{10}{11}$	- <u>-</u> 1	181	35.7
$-\frac{11}{12}$	$-\frac{1}{1}$	192	$-\frac{21.4}{20.7}$	$-\frac{11}{12}$	1	- 181 192	38.1
	1	192			1	192	
Average			$-\frac{21.3}{1.5}$	Average			35.0
Standard D	eviation			Standard D CV	eviation		
CV			7.0%	CV			6.7%
_		0.7	25.7			. 07	26.0
$-\frac{1}{2}$	_	<mark>97</mark>	$-\frac{25.7}{27.2}$	$-\frac{1}{2}$		97	36.8 35.7
$-\frac{2}{3}$	$-\frac{2}{2}$	114	$-\frac{27.2}{25.3}$	2		114	36.2
$-\frac{3}{4}$	$-\frac{2}{2}$	124	24.8	3	2	124	37.1
- 4 1	$\frac{1}{1} - \frac{2}{2}$		26.9	4	\ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	132 – 132 – 132	40.4
	~	132		1		132	39.3
<mark>6</mark>	$\frac{1}{1} - \frac{2}{2}$	143	$-\frac{24.7}{23.5}$	$-\frac{6}{7}$	- <mark>2</mark>	143	38.5
<mark>'</mark>	$-\frac{2}{2}$	149	$-\frac{23.3}{24.1}$	'	2	149	37.6
9	$-\frac{2}{2}$	163	$-\frac{24.1}{23.0}$	<u>°</u>	+ <mark>2</mark>	163	36.3
10	_	1 171	24.5	10	└ _ _	171	37.2
11 -	<u> </u>	185	23.9	- 10	-	185	39.2
12	$-\frac{2}{2}$	190	$-\frac{23.3}{24.7}$	12	2	190	36.7
Average		150	24.9	Average		150	37.6
Standard D	eviation		1.3	Standard D	eviation		1.5
CV			5.1%	cv			3.9%
1	3	ı 99	22.7	1	3	99	37.2
-	3	108	28.4		3	108	37.6
3	3	111	23.3	3	3	111	38.2
4	$-\frac{1}{3}$	118	23.9	4	+ 3	118	45.1
5		131	23.7	5	+	131	36.8
6	3	138	22.6	6	3	138	36.7
7	3	148	24.7	7	3	148	36.1
8		155	23.2	8	3	155	38.7
9		160	24.3	9	+ 1 3	160	37.6
10	3	167	23.1	10	3	167	38.1
11	3	184	24.5	11	3	184	37.1
12	3	193	22.2	12	3	193	40.3
Average			23.9	Average			38.3
Standard D	eviation		1.6	Standard D	eviation		2.4
cv			6.8%	cv			6.3%
				-			

Table 16. Average % Ash Results of Tibias Collected on Study Days 21 and 42 Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

	Da	y 21			Da	ay 42	
Block	Trt	Pen No.	% Ash	Block	Trt	Pen No.	% Ash
1	4	133	24.4	1	4	133	37.4
2	i 4	103	25.9		i 4	103	39.4
3		116	27.6	3	T 4	116	39.1
4	 4	119	24.7	4	+4	119	41.2
5	44	128	24.3	5	+ 4	128	37.5
6	<u> </u>	180	24.2	6	- 4	180	41.8
7	7 - 4	146	26.0	7	T - 4	146	42.6
8	4	156	24.2		+4	156	39.7
9		161	24.4	<u>-</u> -	+ 4	161	36.4
10		172	23.7	10	<u> </u>	172	37.6
11		188	24.6	11	T - 4	188	37.5
12	4	191	23.3	12	- 4	191	37.7
Average		-	24.8	Average	1	1	39.0
Standard D	eviation		1.2	Standard D	eviation		2.0
cv			4.8%	cv			5.1%
1	5	100	24.4	1	5	100	35.3
2	<u> </u>	104	25.5		÷	104	36.9
3	5	109	23.5	3		109	36.8
4	5	123	23.9	4	+5	123	37.9
5		126	26.5	5	+ - 5	126	35.5
6	<u> </u>	179	24.6			179	38.6
7		147	24.4	7		147	36.1
8		150	24.3	8	+5	150	38.7
9	5	159	26.6	<u>-</u> -	+	159	37.6
10	 i 5		21.6	10	<u>-</u>	170	36.9
11	Γ- <u>-</u>	183	26.5	11	Υ — ————	183	38.3
12		195	22.7	12	+ 5	195	37.2
Average			24.5	Average			37.1
Standard D	eviation		1.6	Standard D	eviation		1.1
cv			6.4%	cv			3.0%
1	6	135	23.6	1	6	135	38.0
<mark>2</mark>	66	107	27.8	2	6	107	36.3
33	6	110	23.3	3	6	110	37.6
4	66	120	25.0	4	6	120	44.9
5	<u> 6 </u>	130	24.2	5	6	130	37.6
6	6	140	24.4	6	6	140	35.3
77	6	145	24.2	7	6	145	40.6
8	6	153	22.9	8	6	153	40.0
99	6	164	25.9	9	66	164	39.7
10	6	168	25.8	10	6	168	38.3
11	6	186	25.9	11	6	186	42.3
12	6	194	25.3	12	6	194	40.1
Average			24.9	Average			39.2
Standard D	eviation		1.4	Standard D	Deviation		2.6
cv			5.5%	cv			6.7%

Table 16. Average % Ash Results of Tibias Collected on Study Days 21 and 42 Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

	Day	y 21	
Block	Trt	Pen No.	% Ash
1	7	134	24.1
2		101	25.3
3	7	112	24.7
4	7	121	25.2
5	7	125	26.3
6		178	24.2
7	7	142	26.2
8	7	151	24.3
9	7	166	24.9
10	. <mark>7</mark>	174	28.7
11	7	187	24.5
12	26.6		
Average			25.4
Standard D	eviation		1.3
cv			5.3%

	Day	<i>y</i> 42	
Block	Trt	Pen No.	% Ash
1	77	134	38.5
2	7	101	37.6
3	7	112	36.9
4	7	121	43.1
5	7	125	38.3
6	7	178	38.7
7	7	142	40.3
8	7	151	41.4
9	7	166	38.7
10	7	174	38.4
11	7	187	36.9
12	40.6		
Average	39.1		
Standard D	eviation		1.9
cv			4.8%

Average Standard De	25.6 2.1		
12	8	196	23.6
11	8	182	25.6
10	8	173	23.5
9	8	165	24.9
8	8	152	30.6
7	8	144	25.5
6	8	177	25.5
5	26.7		
4	8	117	25.6
3	8	113	25.5
2	8	102	27.6
1	8	98	22.3

1	8	98	38.5
2	8	102	38.1
3	8	113	37.3
4	8	117	43.3
5	8	129	37.4
6	8	177	38.4
7	8	144	40.9
8	8	152	36.2
9	8	165	38.9
10	8	173	40.8
11	8	182	40.3
12	8	196	37.9
Average	39.0		
Standard D	eviation		2.0
cv			5.1%

Graph 6. Average % Ash of Day 21 and Day 42 Tibias Summarized by Treatment Group CQR Study Number AGV-15-4 Facility Number 7

	_							
Treatment Description	Low Phosphate (LP)	High Phosphate (HP)	38.292 250 Units Phytase (LP)	500 Units Phytase (LP)	750 Units Phytase (LP)	39.229 1,000 Units Phytase (LP)	39.116 3,000 Units Phytase (LP)	30,000 Units Phytase (LP)
D42 % Ash	34.991	37.587	38.292	38.981	37.146	39.229	39.116	38.997
Trt Group D21 % Ash D42 % Ash	21.299	24.869	23.895	24.757	24.542	24.856	25.409	25.578
Trt Group	1	2	3	4	2	9	7	8

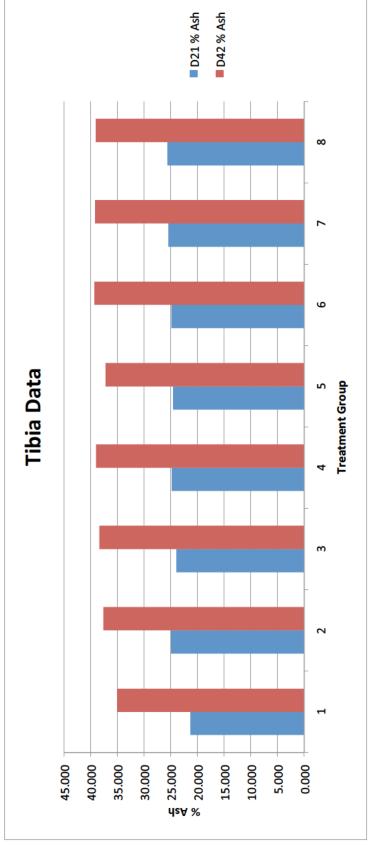


Table 22. Original Hematology Results from Marshfield Labs Summarized by Trt Group CQR Study Number AGV-15-4
Facility Number 7

			_	HGB	HCT	RBC	MCV	MCH	MCHC	RDW	WBC	TE	BHET	HET	LYMPH	ACTLYM
		Referenc	Reference Interval >>>>	g/dt	×	x10^6/uL	Ą	8	g/dL	×	x10^3/uL		*	*	*	×
Pen	Animal ID	Trt Group	Trt Group Bird Selection	9.8-12.1	25.9-32.6	2.42-2.99	100.3-115.7	38.2-43.0	36.3-38.9	8.0-10.2	5.5-24.2	20-80				
86	1495	8	1	13.3	37.1	3.07	120.8	43.3	35.8	6.7	16.8			53	SS	0
88	1488	œ	2	12.2	33.3	2.71	122.9	45	36.6	8.6	14.4	•		25	29	0
88	1491	∞	m	13.6	36.2	3.02	119.9	45	37.6	10.4	8.4	•		35	88	0
102	1522	œ	1	11.8	32.6	2.79	116.8	42.3	36.2	8.9	6.3			34	47	0
102	1525	∞	2	12.1	33.3	2.73	122	44.3	36.3	6	4.6	*		33	88	0
102	1521	∞	e	11.9	32.9	2.83	116.3	42	36.2	9.3	15.6	*		32	61	0
113	6223	∞	ī	12.5	35.5	2.92	121.6	42.8	35.2	8.8	13.3	*		41	94	0
113	6231	∞	2	11.9	34.2	2.72	125.7	43.8	34.8	6	18.9	*		28	8	0
113	6227	∞	æ	13.5	36.1	2.98	121.1	45.3	37.4	9.5	10.6	*		59	33	0
117	6263	∞	ī	13.1	36.4	2.94	123.8	44.6	36	9.4	14.4	*		43	14	0
117	6255	∞	2	12.2	34.6	2.97	116.5	41.1	35.3	9.1	8.9	*		09	3 8	0
117	6265	œ	e	12.8	34.9	2.92	119.5	43.8	36.7	9.3	11.4	*		19	99	0
129	6360	œ	Alt-1	11.8	33.3	2.74	121.5	43.1	35.4	9.2	15.5	•		33	62	0
129	6358	œ	2	14.1	38.9	3.28	118.6	43	36.2	6	10.3	•		23	11	0
129	6363	∞	e	12.1	34.2	2.89	118.3	41.9	35.4	8.9	9.2	•		41	8	0
144	1876	∞	1	13	36.1	3.03	119.1	42.9	36	9.3	8.5	•		47	41	0
144	1886	∞	2	11.9	33.5	2.78	120.5	42.8	35.5	8.9	•	•		14	8	0
144	1873	∞	e	•	•	•	•	•	•	•	•	•		37	ន	0
152	1941	∞	1	13.7	38.7	3.24	119.4	42.3	35.4	8.4	39.3	•		34	26	0
152	1952	œ	2	13.8	38.3	3.19	120.1	43.3	36	9.5	22.8	•		31	22	0
152	1954	∞	m	10.6	29.7	2.54	116.9	41.7	35.7	8.7	9.4	•		23	72	0
165	6649	∞	ı	13.1	35.2	2.96	118.9	44.3	37.2	6	17.9	•		32	88	0
165	6599	œ	Alt-2	12.1	33.6	2.77	121.3	43.7	36	8.8	17.5	•		31	B	0
165	0999	∞	E	12.7	34.2	2.76	123.9	46	37.1	8.9	21.6	•		17	8	0
173	6720	∞	ı	13	37.1	3.14	118.2	41.4	35	9.1	15.9	•		22	25	0
173	6724	∞	2	11.6	32.3	2.69	120.1	43.1	35.9	9.5	10.1	•		26	8	0
173	6726	∞	E	13.1	36.6	2.94	124.5	44.6	35.8	8.9	9.3	•		38	8	0
171	6732	∞	ı	13.4	38	3.16	120.3	42.4	35.3	8.7	19.5	*		28	2	0
177	6731	∞	2	12.8	35.7	2.88	124	44.4	35.9	9.5	15.3	•		36	8	0
171	6733	∞	E	12.8	35.1	2.72	129	47.1	36.5	6.6	R	*		36	8 4	0
182	2162	œ	1	13.6	38	3.07	123.8	44.3	35.8	9.5	12	*		34	61	0
182	2172	œ	2	12.3	35.3	2.92	120.9	42.1	34.8	9.4	11.4	*		31	B	0
182	2167	∞	e	12.4	34.8	2.87	121.3	43.2	35.6	9.3	7	•		23	æ	0
196	2282	∞	ı	13.9	38.2	3.12	122.4	44.6	36.4	8.7	14.7	*		22	8	0
196	2296	∞	2	12.8	35	2.91	120.3	4	36.6	9.3	12.8	•		28	8	0
196	2292	8	3	12	33	2.63	125.5	45.6	36.4	8.8	•	•		14	98	0
		Averages (w	Averages (where cakulable):	12.7	35.2	2.91	121.0	43.6	36.0	9.1	14.0	Ν	NA	32	65	0
		Std Dev (w	Std Dev (where calculable):	8.0	2.1	0.18	2.8	1.4	0.7	0.4	6.4	¥	۸	ä	=	0
		CV (W	CV (where calculable):	6.2%	90.9	6.17%	2.3%	3.2%	1.9%	4.4%	45.8%	NA	NA	31%	19%	NA

				HGB	HCT	RBC	MCV	MCH	MCHC	RDW	WBC	116	BHET	нет	LYMPH	ACTLYM
		Refere	Reference Interval >>>>	lb/8	*	x10^6/uL	甘	8 d	g/dL	*	x10^3/uL		*	*	*	*
Pen	Animal ID	Trt Group	up Bird Selection	9.8-12.1	25.9-32.6	2.42-2.99	100.3-115.7	38.2-43.0	36.3-38.9	8.0-10.2	5.5-24.2	20-80				
97	6100	2	1	12.7	36.6	3.05	120	41.6	34.7	6	22.5	*		23	99	0
92	6087	2	2	11.5	31.8	2.64	120.5	43.6	36.2	8.9	13.6	*		21	65	0
97	9809	2	က	13.5	36.6	2.85	128.4	47.4	36.9	9.5	*	*		13	99	က
105	6157	7	1	14.7	40.5	3.21	126.2	45.8	36.3	12.7	17.7	*		34	57	0
105	6154	2	2	13.8	37.6	3	125.3	46	36.7	10.6	17.2	*		16	73	0
105	6160	2	3	11.9	33.6	2.86	117.5	41.6	35.4	9.2	14.8	*		26	59	0
114	1620	2	1	12.3	33.8	2.65	127.5	46.4	36.4	9.1	10.4	*		37	54	0
114	1621	2	2	11.5	33	2.76	119.6	41.7	34.8	9.7	19	*		43	49	0
114	1618	2	8	12.8	34	2.96	114.9	43.2	37.6	9.8	12.2	*		28	59	0
124	1713	2	1	12	33.2	2.73	121.6	44	36.1	9.4	10.8	*		38	57	0
124	1716	2	2	12.2	34.5	2.87	120.2	42.5	35.4	8.6	14	*		22	3	0
124	1708	2	8	11.8	32.6	2.72	119.9	43.4	36.2	8.9	14.7	*		30	09	0
132	1784	2	1	11.1	31.4	2.49	126.1	44.6	35.4	9.1	20	*		18	89	0
132	1773	2	2	11.1	31.1	2.62	118.7	42.4	35.7	6	7.5	*		72	20	0
132	1781	2	3	12.7	34.8	2.85	122.1	44.6	36.5	8.7	15.7	*		36	53	0
139	6454	2	Alt-1	12.9	36.9	3.07	120.2	42	35	9.3	13.4	*		30	54	0
139	6458	2	2	13.2	36.1	3.07	117.6	43	36.6	9.4	10.4	*		35	45	0
139	6447	2	က	11.1	31.3	2.55	122.7	43.5	35.5	9.6	*	*		12	79	0
143	6476	2	1	13.7	38.8	3.02	128.5	45.4	35.3	11.1	6	*		74	24	0
143	6482	2	2	12.4	34.1	2.93	116.4	42.3	36.4	10.3	9	*		70	62	2
143	6483	2	3	12.7	35.2	2.93	120.1	43.3	36.1	10.8	11.4	*		31	53	0
149	6528	2	1	12.9	35.8	2.93	122.2	44	36	6.6	14.4	*		23	63	0
149	6542	2	2	13	35.5	2.87	123.7	45.3	36.6	8.9	10.4	*		4	46	0
149	6534	2	3	12.9	35.6	3	118.7	43	36.2	6	11.6	*		40	53	0
163	6635	2	1	13.1	36.1	3.08	117.2	42.5	36.3	9.1	7.7	*		37	53	0
163	6637	2	2	12.7	35.1	2.85	123.2	44.6	36.2	8.3	17.9	*		24	64	0
163	6643	7	က	12.6	35.6	2.9	122.8	43.4	35.4	9.3	4.9	*		42	47	0
171	6708	7	1	12	33.6	2.89	116.3	41.5	35.7	9.1	12.6	*		33	64	0
171	6700	2	2	12.6	34.7	2.85	121.8	44.2	36.3	9.2	11.6	*		54	44	0
171	6701	7	3	12.8	35.5	2.86	124.1	44.8	36.1	8.6	33.6	*		29	65	0
185	6807	7	1	11	31.5	5.6	121.2	42.3	34.9	9.7	16.1	*		56	64	0
185	6239	2	2	13.5	37	3.02	122.5	44.7	36.5	8.4	9	*		89	21	0
185	9089	2	က	11.4	32.7	2.71	120.7	42.1	34.9	8.4	33.2	*		24	64	0
190	2245	7	1	12.1	34.6	2.81	123.1	43.1	32	9.5	13.6	*		93	56	0
190	2234	2	2	11.3	32.6	2.61	124.9	43.3	34.7	8.6	10	*		28	20	0
190	2242	2	3	12.8	35.9	3.03	118.5	42.2	35.7	8.9	8.3	*		26	34	0
	Average	es (whe	Averages (where calculable):	12.5	34.7	2.86	121.5	43.6	35.9	9.4	13.9	NA	AN	34	53	0
	Std De	ev (whe	Std Dev (where calculable):	6.0	2.2	0.17	3.4	1.5	0.7	6.0	6.4	¥	¥	15	16	1
	J	V (whe	CV (where calculable):	7.0%	6.2%	%00.9	2.8%	3.4%	1.9%	9.1%	46.4%	A	Ā	45%	30%	427%

Table 22. Original Hematology Results from Marshfield Lab: CQR Study Number AGV-15-4 Facilty Number 7

		Reference	Reference Interval	*	*	*		x10^3/uL	x10^3/uL	x10^3/uL
			e III lei vai vara			t				
Pen	Animal ID	Trt Group	Bird Selection						2.99-10.10	0.21-14.17
86	1495	8	1	3	12	1	*	0	4.87	9.24
88	1488	∞	2	4	7	2		0	3.6	8.93
88	1491	∞	m	3	e	1	•	0	2.94	4.87
102	1522	∞	1	S	12	2		0	2.14	2.96
102	1525	∞	2	8	æ	æ		0	1.52	2.67
102	1521	∞	e	2	1	4	*	0	4.99	9.52
113	6223	∞	,	2	7	1	*	0	5.45	6.12
113	6231	∞	2	æ	-	æ	*	0	5.29	12.29
113	6227	∞	m	4	10	æ		0	3.07	5.72
117	6263	∞	ī	4	æ	6	*	0	6.19	5.9
117	6255	∞	2	6	2	e	*	0	5.34	2.31
117	6265	80	æ	7	2	e	•	0	2.17	78.7
129	6360	∞	Alt-1	က	0	2	•	0	5.12	9.61
129	6358	∞	2		0	e	•	0	2.37	7.31
129	6363	∞ 0	m	-	0	æ		0	3.77	5.98
144	1876	∞		9	2	4	•	0	4	3.49
144	1886	∞	2	10	4	7		0	0	0
144	1873	80	æ	-	9	e	•	0	0	0
152	1941	∞	1	0	0	10	*	0	13.36	22.01
152	1952	œ	2	6	2	г	*	0	7.07	13
152	1954	œ	m	2	2	1		0	2.16	6.77
165	6649	∞	1	0	∞	2	*	0	5.73	10.38
165	6629	œ	Alt-2	en	0	m		0	5.43	11.03
165	0999	œ	m	S	80	4	•	0	3.67	14.26
173	6720	œ	1	2	10	2	•	0	3.5	10.18
173	6724	œ	2	2	0	9	*	0	2.63	6.67
173	6726	œ	e	2	0	1	•	0	3.53	5.49
177	6732	∞	1	0	4	4	*	0	5.46	12.48
177	6731	œ	2	0	2	2	*	0	5.51	9.18
177	6733	œ	e	10	0	9	•	0	7.2	9.6
182	2162	∞	1	2	0	e	•	0	4.08	7.32
182	2172	80	2	9	0	0		0	3.53	7.18
182	2167	œ	m	7	1	4	•	0	3.71	2.45
196	2282	80	1	4	9	0	•	0	3.23	10
196	2296	∞	2	0	0	4	•	0	3.58	8.7
196	2292	8	3	0	0	0	•	0	0	0
		Averages (w	Averages (where calculable):	4	3	3	NA	0	4.06	7.54
		Std Dev (w	Std Dev (where calculable):	e	4	2	Ā	0	2.41	4.45
		S	CV (where calculable):	%08	114%	75%	¥	ΨN	59.25%	29,06%

		Referenc	Reference Interval >>>>	*	*	*		x10^3/uL	x10^3/uL	x10^3/uL
Pen	Animal ID	Trt Group	Bird Selection	!	1	l			2.99-10.10	0.21-14.17
26	6100	2	1	1	4	9	*	0	5.18	14.85
97	6087	2	2	9	2	က	*	0	2.86	8.84
97	9809	2	æ	12	4	2	*	0	0	0
105	6157	2	1	1	4	4	*	0	6.02	10.09
105	6154	2	2	9	4	1	*	0	2.75	12.56
105	6160	7	æ	5	7	3		0	3.85	8.73
14	1620	2	1	4	က	2	*	0	3.85	5.62
114	1621	2	2	4	8	1	*	0	8.17	9.31
14	1618	7	æ	æ	2	2	*	0	3.42	7.2
124	1713	2	1	2	1	2		0	4.1	6.16
124	1716	2	2	5	10	2		0	3.08	0.42
24	1708	7	æ	2	9	2	*	0	4.41	8.82
32	1784	2	1	5	∞	1	*	0	3.6	13.6
32	1773	2	2	1	2	2	*	0	5.4	1.5
132	1781	2	æ	9	æ	2	*	0	5.65	8.32
139	6454	2	Alt-1	2	2	9	*	0	4.02	7.24
139	6458	2	2	8	œ	4	*	0	3.64	4.68
139	6447	7	æ	က	1	2		0	0	0
143	6476	2	1	0	2	0	*	0	99.9	2.16
143	6482	2	2	7	9	က	*	0	1.2	3.72
143	6483	2	æ	11	1	4		0	3.53	6.04
49	6528	2	1	3	7	4	*	0	3.31	9.07
149	6542	2	2	8	9	0	*	0	4.16	4.78
149	6534	2	æ	0	2	2	*	0	4.64	6.15
163	6635	2	1	3	2	2	*	0	2.85	4.08
163	6637	2	2	က	5	4	*	0	4.3	11.46
163	6643	2	æ	1	5	2	*	0	2.06	2.3
71	6708	7	1	2	0	1	*	0	4.16	8.06
71	6700	2	2	2	0	0	*	0	6.26	5.1
171	6701	2	æ	2	1	0	*	0	9.74	21.84
85	6807	2	1	4	4	2	*	0	4.19	10.3
185	6299	7	2	1	6	Т		0	4.08	1.26
185	9089	2	ĸ	2	9	4	*	0	7.97	21.25
130	2245	2	1	2	∞	4	*	0	4.08	7.62
190	2234	2	2	4	14	4	*	0	2.8	2
190	2242	2	3	0	8	2	*	0	4.65	2.82
	Average	es (where	Averages (where calculable):	4	2	3	Ν	0	4.18	7.25
	Std De	ev (where	Std Dev (where calculable):	æ	e	7	¥	0	2.00	5.15

Table 22. Original Hematology Results from Marshfield Lab: CQR Study Number AGV-15-4 Facilty Number 7

			ADACIC		5030		:	2	OF OF O	,	5	į	3	3
	Referenc	Reference Interval >>>>	x10^3/uL	x10^3/uL	x10^3/uL	x10^3/uL	1p/8	g/dl.	g/dL		ıγ	J/n	mg/dL	Jb/gm
Animal ID	Trt Group	Trt Group Bird Selection	0.00-0.18	0.00-2.03	0.00-1.42	0.03-1.73	2.8-3.4	NA	NA	NA	1003-2318	S	6.7-8.6	202-262
1495	8	1	0	0.5	2.02	0.17	3.1	1.1	2	9.0	>22500	\$>	2	259
1488	œ	2	0	0.58	1.01	0.29	2.5	<1.0	1.7	0.5	>22500	\$	6.7	314
1491	80	e	0	0.25	0.25	0.08	2.9	1	1.9	0.5	>22500	\$	5.6	259
1522	80	1	0	0.32	0.76	0.13	2.8	<1.0	1.9	0.5	>22500	\$	6.4	267
1525	∞	2	0	0.14	0.14	0.14	2.6	<1.0	1.7	0.5	>22500	\$	5.8	259
1521	∞	m	0	0.31	0.16	0.62	2.6	<1.0	1.7	0.5	>22500	Ą	6.1	263
6223	∞	-	0	0.67	0.93	0.13	2.9	1	1.9	0.5	>22500	Ą	6.4	253
6231	œ	2	0	0.57	0.19	0.57	2.6	-1	1.6	9.0	18422	Ą	6.6	262
6227	•	e	0	0.42	1.06	0.32	2.8	-1	1.8	9.0	>22500	Ą	6.8	273
6263	∞	-	0	0.58	0.43	1.3	2.7	1	1.7	9.0	>22500	Ą	6.1	293
6255	œ	2	0	0.8	0.18	0.27	2.8	-1	1.8	9.0	>22500	Ą	6.2	262
6265	œ	ю	0	0.8	0.23	0.34	2.8	1	1.8	9.0	>22500	Ą	9	268
999	∞	Alt-1	0	0.47	0	0.31	2.5	<1.0	1.7	0.5	20494	٨	6.9	272
6358	∞	2	0	0.31	0	0.31	3,4	1.2	2.2	0.5	15913	٨	7.6	229
6363	∞	e	0	60.0	0	0.28	2.7	<1.0	1.8	0.5	>22500	Ą	9	569
1876	∞	1	0	0.51	0.17	0.34	e	1	2	0.5	>22500	\$	6.2	241
1886	80	2	0	0	0	0	3.3	1.1	2.2	0.5	16067	\$	6.1	245
1873	80	e	0	0	0	0	2.9	1	1.9	0.5	>22500	\$>	6.5	241
1941	œ	1	0	0	0	3.93	3.5	1.3	2.2	9.0	13241	\$	6.7	244
1952	×	2	0	2.05	0.46	0.23	3.4	1.2	2.2	0.5	11734	\$	5.8	238
1954	∞	e	0	0.19	0.19	60:0	2.6	41.0	1.8	0.4	16803	Ą	6.2	253
6649	∞	-	0	0	1.43	0.36	2.8	-	1.8	0.6	>22500	Ą	9.9	249
6599	∞	Alt-2	0	0.53	0	0.53	3.7	1.1	2.6	0.4	>22500	٨	5.7	273
0999	œ	e	0	1.08	1.73	0.86	m	1.2	1.8	0.7	12615	٧	7.1	252
6720	œ	-	0	0.32	1.59	0.32	2.6	<1.0	1.7	0.5	>22500	٧	7	292
6724	∞	2	0	0.2	0	0.61	2.6	4.0	1.7	0.5	>22500	٨	6.1	235
6726	∞	e	0	0.19	0	60:0	m	1.1	1.9	9.0	20790	٨	5.1	252
6732	∞	-	0	0	0.78	0.78	2.8	1	1.8	0.6	>22500	٨	6.9	232
6731	∞	2	0	0	0.31	0.31	m	1.1	1.9	0.6	>22500	٨	6.2	229
6733	00	e	0	2	0	1.2	2.8	1	1.8	0.6	15711	٨	6.4	246
2162	∞	-	0	0.24	0	0.36	2.7	-	1.7	0.6	>22500	٨	7.2	249
2172	œ	2	0	0.68	0	0	2.3	<1.0	1.5	0.5	18543	٨	6.5	247
2167	œ	e	0	0.49	0.07	0.28	2.5	<1.0	1.6	0.6	11270	٧	6.4	251
2282	œ	-	0	0.59	0.88	0	2.9	1	1.9	0.5	>22500	\$	6.3	242
2296	∞	2	0	0	0	0.51	2.8	<1.0	1.9	0.5	>22500	\$	6.4	239
2292	œ	3	0	0	0	0	2.7	1	1.7	9.0	>22500	\$	5.9	229
*	Averages (w	Averages (where calculable):	0	0.44	0.42	0.45	2.9	NA	1.9	0.5	ΑN	\$>	6.4	256
	Std Dev (w	Std Dev (where calculable):	0	0.48	0.57	0.67	0.3	NA	0.2	0.1	۷N	¥	0.5	17
	S	CV (where calculable):	V	108.29%	135.93%	150.78%	10.7%	AN	11.5%	12.0%	NA	ž	7.9%	7%

				ABACTL	ABMONO	ABEOS	ABBASO	d H	ALB	GLOBU	A/G	ž	ALT	PHOS	m ₉
		Referenc	Reference Interval >>>>	x10^3/uL	x10^3/uL	x10^3/uL	x10^3/uL	1p/8	Tp/8	lp/8		NΓ	NΓ	mg/dl.	Tp/Bm
Pen	Animal ID	Trt Group	Bird Selection	0.00-0.18	0.00-2.03	0.00-1.42	0.03-1.73	2.8-3.4	NA	NA	NA	1003-2318	< <u>\$</u>	6.7-8.6	202-262
97	6100	2	1	0	0.23	6.0	1.35	က	1:1	1.9	9.0	>22500	₽	6.9	228
92	6087	2	2	0	0.82	99.0	0.41	2.8	<1.0	1.9	0.5	>22500	Ą	6.9	273
97	9809	7	m	0	0	0	0	m	1.1	1.9	9.0	>22500	Ą	6.2	261
105	6157	2	1	0	0.18	0.71	0.71	2.9	1	1.9	0.5	15670	Ą	7.8	260
105	6154	2	2	0	1.03	69.0	0.17	3.1	1.1	2	9.0	>22500	Ą	8.9	261
105	6160	2	æ	0	0.74	1.04	0.44	2.7	1	1.7	9.0	>22500	Ą	9	337
114	1620	2	1	0	0.42	0.31	0.21	2.6	<1.0	NC	Ž	22052	∜	6.1	235
114	1621	2	2	0	0.76	0.57	0.19	2.9	1	1.9	0.5	>22500	Ą	6.9	280
114	1618	2	8	0	0.37	0.61	0.61	8	1	2	0.5	>22500	Ą	7.2	259
124	1713	2	1	0	0.22	0.11	0.22	2.8	1	1.8	9.0	>22500	Ą	6.7	265
124	1716	2	2	0	0.7	1.4	0.28	2.9	1.1	1.8	9.0	>22500	Ą	9.9	251
124	1708	2	æ	0	0.29	0.88	0.29	2.8	<1.0	1.9	0.5	>22500	Ą	5.9	268
132	1784	2	1	0	1	1.6	0.2	2.7	1	1.7	9.0	>22500	Ą	5.9	246
132	1773	2	2	0	0.08	0.38	0.15	2.3	<1.0	1.6	0.4	>22500	Ą	6.1	253
132	1781	2	m	0	0.94	0.47	0.31	2.7	1	1.7	9.0	>22500	Ą	5.9	259
139	6454	2	Alt-1	0	0.67	0.67	8.0	2.9	1	1.9	0.5	20061	Ą	9.8	237
139	6458	2	2	0	0.83	0.83	0.42	3.1	1.1	2	9.0	>22500	Ą	7.4	241
139	6447	2	m	0	0	0	0	2.8	<1.0	1.9	0.5	>22500	₽	7.4	262
143	6476	2	1	0	0	0.18	0	3	1.1	1.9	9.0	>22500	₽	7.4	250
143	6482	2	2	0.12	0.42	0.36	0.18	2.8	1	1.8	9.0	17351	\$	7.9	262
143	6483	2	æ	0	1.25	0.11	0.46	2.6	<1.0	1.7	0.5	>22500	\$	6.5	246
149	6528	2	1	0	0.43	1.01	0.58	က	П	2	0.5	>22500	₽	7.7	265
149	6542	2	2	0	0.83	0.62	0	2.9	1	1.9	0.5	>22500	\$	7.1	237
149	6534	2	æ	0	0	0.58	0.23	2.8	1	1.8	9.0	>22500	\$	6.7	252
163	6635	2	1	0	0.23	0.39	0.15	2.9	П	1.9	0.5	>22500	₽	8.3	263
163	6637	2	2	0	0.54	6.0	0.72	2.9	1.1	1.8	9.0	21127	\$	5.6	237
163	6643	2	æ	0	0.05	0.25	0.25	2.7	1	1.7	9.0	>22500	\$	7.3	259
171	6708	2	1	0	0.25	0	0.13	2.4	<1.0	1.5	9.0	>22500	∜	9.9	268
171	6700	2	2	0	0.23	0	0	2.8	<1.0	1.9	0.5	>22500	∜	7.2	265
171	6701	2	æ	0	1.68	0.34	0	2.8	1	1.8	9.0	>22500	٠	5.8	253
185	6807	2	1	0	0.64	0.64	0.32	2.5	<1.0	1.6	9.0	21689	₽	6.5	263
185	6299	2	2	0	90.0	0.54	90.0	2.8	1.1	1.7	9.0	>22500	Ą	6.9	264
185	9089	2	æ	0	99.0	1.99	1.33	2.7	1	1.7	9.0	>22500	٠	7	233
190	2245	2	1	0	0.27	1.09	0.54	ო	1.1	1.9	9.0	>22500	₽	6.3	242
190	2234	2	2	0	0.4	1.4	0.4	2.9	1	1.9	0.5	>22500	Ą	6.2	243
190	2242	2	3	0	0	99.0	0.17	2.6	1	1.6	9.0	>22500	\$	6.2	223
	Average	es (where	Averages (where calculable):	0	0.48	0.64	0.34	2.8	AN	1.8	9.0	NA	\$	8.9	526
	Std De	بر (where	Std Dev (where calculable):	0	0.40	0.47	0.33	0.2	Ā	0.1	0.1	Ā	Ā	0.7	19
	o	V (where	CV (where calculable):	AN	83.99%	73.50%	96.29%	6.5%	AN	7.1%	10.0%	NA	NA	10.7%	8%

Table 22. Original Hematology Results from Marshfield Lab: CQR Study Number AGV-15-4 Facility Number 7

		Referenc	Reference Interval >>>>	Chemistry Comments
Pen	Animal ID	Trt Group	Bird Selection	
86	1495	8	1	us significant hemotysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
88	1488	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Abumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
88	1491	∞	m	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
102	1522	∞	1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
102	1525	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
102	1521	∞	æ	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
113	6223	∞	1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
113	6231	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Abbumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
113	6227	∞	æ	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
117	6263	∞	1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
117	6255	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
117	6265	80	e	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
129	6360	∞	Alt-1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
129	6358	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
129	6363	80	e	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
144	1876	∞	н	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
144	1886	•	2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
144	1873	80	e	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
152	1941	∞	1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
152	1952	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
152	1954	∞	m	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
165	6649	∞	1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
165	6599	∞	Alt-2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
165	0999	•	e	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
173	6720	∞	1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
173	6724	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
173	92/9	∞	e	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
771	6732	∞	1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
771	6731	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
771	6733	∞	e	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
182	2162	∞	1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capadity of avian/reptile albumin to chemistry reagent used in this assay.
182	2172	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
182	2167	80	e	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
196	2282	∞	1	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
196	2296	∞	2	VALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
196	2292	8	3	VALE: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
		Averages (w	Averages (where calculable):	W
		Std Dev (w	Std Dev (where calculable):	A
		C	CV (where calculable):	NA

/ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of /ALB: No significant hemolysis or lipemia present. ALB: Albumin result may be invalid due to unknown binding capacity of Chemistry Comments **§** § § Averages (where calculable) Std Dev (where calculable): CV (where calculable) Reference Interval >>> **Bird Selectio** Alt-1 3 7 m Trt Group Animal ID 9089 6160 6454 6458 6476 6482 6528 6534 6635 6700 6100 1620 1618 1716 1784 6708 6229 2245 2234 9809 6157 6154 1708 1773 1781 6447 6483 6542 6637 6643 6807 6087 1621 6701 143 143 149 124 124 132 132 139 139 143 149 163 105 114 114 114 124 132 139 149 163 163 171 185 185 185 190 105 105 171 171 190 190 97 97 97

Table 22. Original Hematology Results from Marshfield Lab: CQR Study Number AGV-15-4 Facilty Number 7

		Referen	Keterence Interval >>>>	Hematokogy Comments
Pen	Animal ID	Trt Group	Bird Selection	
86	1495	80	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
88	1488	∞	2	TE: Thrombocyte estimate from smear appears to be 20,000-40,000. VDIFA2: No blood parasites seen.
88	1491	∞	e	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen.
102	1522	œ	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
102	1525	∞	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
102	1521	∞	e	TE: Thrombocyte estimate from smear appears to be 20,000-46,000. MORPH: No blood parasites seen.
113	6223	∞	п	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
113	6231	œ	2	TE: Thrombocyte estimate from snear appears to be 60,000-80,000. MORPH: No blood parasites seen.
113	6227	∞	e	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. VDIFA2: No blood parasites seen.
117	6263	∞	ī	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
117	6255	∞	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
117	6265	∞	e	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
129	0989	∞	Alt-1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
129	6358	∞	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
129	6363	∞	e	TE: Thrombocyte estimate from smear appears to be 40,000-60,000.VDIFA2: No blood parasites seen.
144	1876	∞	1	TE: Thrombocyte estimate from smear appears to be 20,000-40,000. MORPH: No blood parasites seen.
144	1886	∞	2	WBC: Unable to quantitate WBC due to high percentage of Lymphocytes and/or Monocytes in the differential. WBC estimate from smear appears to be 10.14,000. TE. Thrombocyte estimate from smear appears to be 80,000-100,000. VDIFA2: No blood parasit
144	1873	œ	m	VCLTA2: *Specimen rejected, clotted VDIFA2: WBC estimate from smear appears to be 7-10,000. TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen.
152	1941	∞	-	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
152	1952	∞	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
152	1954	∞	e	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. VDIFA2: No blood parasites seen.
165	6649	∞	1	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen.
165	6299	œ	Alt-2	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood paraskes seen.
165	0999	∞	e	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
173	6720	∞	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
173	6724	∞	2	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen.
173	6726	∞	e	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen.
177	6732	∞	ī	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
177	6731	∞	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
177	6733	œ	e	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No thood parasites seen.
182	2162	∞	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
182	2172	80	2	TE: Thrombocyte estimate from snear appears to be 80,000-100,000. VDFA2: No blood parasites seen.
182	2167	∞	e	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
196	2282	∞	1	TE: Thrombocyte estimate from snear appears to be 80,000-100,000. MORPH: No thood parasites seen.
196	2296	∞	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
196	2292	8	3	WWG. Unable to quantitate WBC due to high percentage of Lymphocytes and/or Monocytes in the differential. WBC estimate from smear appears to be 7-10,000. TE: Throm bocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasite
		Averages (v	Averages (where calculable):	NA NA
		Std Dev (w	Std Dev (where calculable):	NA
		CV (A	CV (where calculable):	NA NA

Reference Interval >>>>

Pen	Animal ID	Trt Group	Trt Group Bird Selection	
			,	
97	6100	2	1	
97	6087	7	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
92	9809	2	3	WBC: Unable to quantitate WBC due to high percentage of Lymphocytes and/or Monocytes in the differential. WBC estimate from smear appears to be 10-14,000. TE: Thrombocyte esting
105	6157	7	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
105	6154	7	2	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen.
105	6160	2	3	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. VDIFA2: No blood parasites seen.
114	1620	2	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
114	1621	2	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
114	1618	2	3	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
124	1713	2	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. VDIFA2: No blood parasites seen.
124	1716	2	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. VDIFA2: No blood parasites seen.
124	1708	2	3	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
132	1784	2	1	TE: Thrombocyte estimate from smear appears to be 20,000-40,000. MORPH: No blood parasites seen.
132	1773	2	2	TE: Thrombocyte estimate from smear appears to be 20,000-40,000. MORPH: No blood parasites seen.
132	1781	2	3	TE: Thrombocyte estimate from smear appears to be 20,000-40,000. MORPH: No blood parasites seen.
139	6454	2	Alt-1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
139	6458	2	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
139	6447	2	3	WBC: Unable to quantitate WBC due to high percentage of Lymphocytes and/or Monocytes in the differential. WBC estimate from slide is 10-14,000. TE: Thrombocyte estimate from sm
143	6476	2	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
143	6482	2	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
143	6483	2	3	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. VDIFA2: No blood parasites seen.
149	6528	2	П	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
149	6542	2	2	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen.
149	6534	2	3	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
163	6635	2	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
163	6637	2	2	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen.
163	6643	2	3	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
171	6708	2	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
171	6700	2	2	TE: Thrombocyte estimate from smear appears to be 20,000-40,000. MORPH: No blood parasites seen.
171	6701	2	3	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
185	6807	2	1	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen.
185	6299	2	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. VDIFA2: No blood parasites seen.
185	9089	2	3	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
190	2245	2	Т	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen.
190	2234	2	2	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen.
190	2242	2	3	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen.
	Average	s (where	Averages (where calculable):	
	Std De	v (where	Std Dev (where calculable):	٧N
	Č			

Table 23. Summary of Hematological Data AGV-15-4 Facility 7

Mean Corpuscular Hemoglobin Concentration (MCHC)	Tp/8	36.0	35.9
Mean Corpuscular Hemoglobin (MCH)	8d	43.6	43.6
Haematocrit Red Blood Cells Mean Corpuscular (HCT) (RBC) Volume (MCV)	T J	121.0	121.5
Red Blood Cells (RBC)	x10^6/uL	2.91	2.86
Haematocrit (HCT)	%	35.2	34.7
Haemoglobin (HGB)	Tp/8	12.7	12.5
Treatment Code		8	2

Monocytes (MONO)	%	4	4
Activated Lymphocytes (ACTLYM)	%	0	0
Lymphocytes (LYMPH)	%	65	23
Heterophils (HET)	%	32	34
White Blood Cells (WBC)	7n/Ev01x	14.0	13.9
Red Cell Distribution Width (RDW)	%	9.1	9.4
Treatment Code		8	2

eatment Code	Eosinophils (EOS)	Basophils (BASO)	Absolute Band Heterophils (ABBHET)	Absolute Heterophils (ABHET)	Absolute Lymphocytes (ABLYMP)	Absolute Activiate Lymphocytes (ABACTL)
	%	%	x10^3/uL	x10^3/uL	x10^3/uL	x10^3/uL
	3	3	0	4.06	7.54	0
	2	3	0	4.18	7.25	0

Treatment Code	Absolute Monocytes (ABMONO) x10^3/uL 0.44	Absolute Eosinophils (ABEOS) x10^3/uL 0.42	Absolute Basophils (ABBASO) x10^3/uL 0.45	Total Protein (TP) Globulin (GLOBU) g/dL g/dL 2.9 1.9	Globulin (GLOBU) 8/dL 1.9	Albumin/Globulin (A/G)
2	0.48	0.64	0.34	2.8	1.8	9.0

Treatment	Phosphorus (PHOS)	Glucose (GLU)
Code	mg/dL	Tp/8w
8	6.4	726
2	8.9	526

Appendix 11

GraINzyme Phytase Phy02 Dose Response in Poultry

Project No. AGV-15-5

Conducted by Colorado Quality Research, Ft. Collins, CO

Final Study Report Pages 1 - 108

COLORADO QUALITY RESEARCH FINAL REPORT

GraINzyme Phytase Phy02 Dose Response in Poultry

Project No. AGV-15-5

SPONSOR

Agrivida Inc.

200 Boston Ave, Suite 2975 Medford, MA 02155

TEST FACILITY

COLORADO QUALITY RESEARCH, INC.

400 East County Road 72 Wellington, Colorado 80549

March 2016

THIS FINAL REPORT IS CONFIDENTIAL AND IS THE PROPERTY OF COLORADO QUALITY RESEARCH, INC AND IS NOT TO BE REPRODUCED WITHOUT AUTHORIZATION FROM CQR

CQR FINAL REPORT Project No. AGV-15-5

I. GraINzyme Phytase Phy02 Dose Response in Poultry

SPONSOR MONITORS:

Jonathan Broomhead, Ph.D. Agrivida Inc.

200 Boston Ave, Suite 2975

Mobile: (b) (6)

Email: jon.broomhead@agrivida.com

INVESTIGATOR:

Dan Moore, PhD.
Colorado Quality Research, Inc.
400 East County Road 72
Wellington, Colorado 80549

Office: 970-568-7738 Fax: 970-568-7719

Email: dan@coloradoqualityresearch.com

STUDY EVENT SCHEDULE:

Event	Study Day	Calendar Date
Received, weighed birds by pen, vaccinated for NCB, and placed 17 chicks/pen. Administered Starter 1 diets	0	17NOV15 TUE
Weighed birds by pen; Weighed back Starter 1 diets; Administered Starter 2 diets	14	01DEC15 TUE
Weighed birds by pen; Weighed back Starter 2 diets and changed to Grower/Finisher diets; Removed 3 birds/pen; collected ileal and tibia samples	21	08DEC15 TUE
Weighed birds by pen; Weighed back Grower/Finisher diets; Collected tibia and ileal samples from 3 birds/pen; Collected blood from 3 birds/pen in treatments 1, 2, and 8; Necropsied 3 birds/pen in treatments 2 and 8. Ended live phase	42	29DEC15 TUE

OBJECTIVE

The objective of this study was to demonstrate the effectiveness over a range of doses of Phy02, a phytase enzyme product that is being developed by Agrivida, Inc. as a feed additive for poultry diets.

III. MATERIALS AND METHODS

A. TESTING/SUPPORT FACILITIES

Study Investigator					
Dan Moore, PhD	Colorado Quality Research, Inc.				
(CV: on file, available upon request)	400 E. County Road 72				
	Wellington, CO 80549				
	W: 970-568-7738				
	F: 970-568-7719				
	dan@coloradoqualityresearch.com				
	epresentative				
Jim Ligon, PhD	Agrivida, Inc.				
(CV: on file, available upon request)	VP Business Development				
	200 Boston Ave, Suite 2975				
	Medford, MA 02155				
	M: (b) (6)				
	(b) (6) @ <u>email.com</u>				
	e Analysis				
Phillip A. Lessard, Ph.D.	Agrivida, Inc.				
(CV: on file, available upon request)	200 Boston Ave., Suite 2975				
	Medford, MA 02155				
	Philip.lessard@agrivida.com				
	t – Tibia Ash Parameters				
Linda Kirby	University of Arkansas				
(CV: on file, available upon request)	Central Analytical Lab				
	1260 W. Maple Street				
	Fayetteville, AR 72701				
	<u>lkirby@uark.edu</u>				
	osphorus Digestibility, Feed Analysis				
Thomas P. Mawhinney	Experimental Station Chemical Laboratories				
(CV: on file, available upon request)	Room 4, Agricultural Building				
	University of Missouri				
	Columbia, MO 65211-7170				
	mawhinneyt@missouri.edu				
AMATIMINE TO STREET STREET					
Contributing Scientist – Pro	oximate Analysis of Basal Feeds				
Bryan Brock	MVTL Laboratories				
(CV: on file, available upon request)	2 N. German Street				
	New Ulm, MN 56072				
	W: (800) 782-3557				
	bbrock@mvtl.com				

B. TEST ARTICLES, CONTROL ARTICLES, AND FEED ADDITIVES

Test Articles

GraINzyme Phytase Phy02 Lot No. AV_Phy02_0038-0041

Expiration 04/22/2016

Concentration (b) (4) FTU/kg

Dosage Form Via complete feed

Level 250 Units Phytase (Treatment Group 3)

500 Units Phytase (Treatment Group 4) 1000 Units Phytase (Treatment Group 5) 3000 Units Phytase (Treatment Group 6) 6000 Units Phytase (Treatment Group 7) 60000 Units Phytase (Treatment Group 8)

Duration Ad libitum Day 0 – Study End

Source Agrivida, Inc.

Feed Additives

Sacox 60 Lot No. JSB443

(Salinomycin) Expiration August 2017

Concentration 60 g/lb

Dosage Form Via Complete Feed

Level 50 g/ton

Duration Ad libitum in Starter 1 and Starter 2 diets

Source Huvepharma

Titanium Dioxide Lot No. TIOKFP40050PBGN

(Titanium dioxide USP FCC – Hombitan AFDC)

Dosage Form Via Complete Feed Level 0.3% in Complete Feed

Duration Ad libitum in Starter 2 and Grower/Finisher diets

Source Included in Study Records

Storage: Secured, temperature monitored, dry area

Method of administration: Oral via complete feed

Accounting: All quantities of the test articles, control

articles, and feed additives received and used in this study were documented

C.BASAL AND EXPERIMENTAL DIETS

Diets were formulated by CQR. Diets met and conformed with the commercial standards for feed used based on breed and age range of broilers. Copies of the diet formulations were included in the study records and as Appendix 1 of this Final Report.

There were two different basal diet formulations. Low Phosphate (LP) diets contained 0.3% AvP in the Starter 1 and Starter 2 diets and 0.25% AvP in the Grower/Finisher diets. The High Phosphate (HP) diets contained 0.45% AvP in the Starter 1 and Starter 2 diets and 0.4% AvP in the Grower/Finisher diets.

Basal diets were manufactured at CQR and stored in bulk mash form. The treatment diets were mixed at the CQR feed mill. A 500 pound capacity vertical mixer, a 4000 pound capacity vertical mixer, or a 14,000 lb horizontal mixer and a California Pellet Mill system were used to prepare the starter and grower diets. Feed was pelleted using a \sim 5-mm die and the Starter 1 diet was further processed into crumbles. The pelleting temperature was \sim 65 °C. Mixed feed was stored in bulk storage bins labeled with study number, treatment letter code, and diet type. Complete records of diet mixing are included in the study records.

Approximate Feeding Program:

<u>Diet</u>	<u>Form</u>	<u>Period</u>	~Lbs Feed Mixed per Trt
Starter 1	Crumbled	0 – 14 Days	300
Starter 2	Pelleted	14 – 21 Days	390
Grower/Finisher	Pelleted	21 – 42 Days	1680

Test article and control article were added to the basal feed in the following approximate quantities in order to achieve the targeted levels of phytase in the treatment feeds:

Trt Group	Product	Starter 1	Starter 2	Grower/Finisher
1	NA	NA	NA	NA
2	NA	NA	NA	NA
3	GraINzyme Phytase Phy02 ¹			(b) (4)
4	GraINzyme Phytase Phy02 ¹	_		
5	GraINzyme Phytase Phy02 ¹			
6	GraINzyme Phytase Phy02 ¹			
7	GraINzyme Phytase Phy02 ¹			
8	GraINzyme Phytase Phy02 ¹			(h) (A)

¹ Concentration of GraINzyme Phytase Phy02 as determined analytically by Agrivida was FTU/kg. (b) (4)

D. SAMPLES AND ASSAYS

Prior to the pelleting process, an ~500g sample was taken of all treatment diets.

Following pelleting, treatment feeds were sampled (~500 g sample size) in duplicate according to CQR standard operating procedures (SOP FM-4 rev04). Five to ten samples of approximately equal size were collected from evenly distributed points as the feed was exiting the mixer/pelleter. These samples were combined into a representative composite sample which was then split into two duplicate samples in a manner appropriate to ensure minimal risk of cross-contamination. One sample was submitted to Agrivida for enzyme (phytase) analysis. The second sample of the treatment feeds was retained by CQR until notification from the Sponsor was received that the back-up samples were no longer needed. All samples were labeled with the CQR project number, sample description, and date of collection.

Basal feeds were sampled (~500 g sample size) in quadruplicate according to CQR standard operating procedures. One sample was submitted to MVTL for proximate analysis with the addition of Ca [See the following: AOAC 942.05; AOAC 930.15; AOAC (18) 2005 985.01; AOAC 968.08 (D.(a)); AOAC 990.03; AOAC 2003.06; AOAC 2003.05; ISO 11085-2008; AN 3414 (2005-03-02) Revision 4.1; AOAC (18) 2005 Method 994.12; and AOCS B1 6a-05], one sample was submitted to Agrivida for enzyme (phytase) analysis, one sample was submitted to the University of Missouri for titanium, percent moisture, and phosphorus analysis, and the fourth sample was retained by CQR until notification from the Sponsor is received that the back-up sample was no longer needed. All samples were labeled with the CQR project number, sample description, and date of collection.

E. TEST SYSTEM

Species Commercial Broiler Chickens

Strain Cobb 500

Supplier Simmons Foods Hatchery

Siloam Springs, AR

Sex Males

Age ~1 day of age upon receipt (Day 0)

~42 days at final weights

Identification Pen cards

Number of birds/pen 17
Number of treatments 8
Number of pens/treatment 12
Number of birds/treatment 204
Total number of pens 96
Total number of birds 1632

IV. EXPERIMENTAL DESIGN

A. TEST GROUPS

The test facility (Building #7) was divided into 12 blocks of 8 pens each block. Treatments were assigned to the pens using a complete randomized block design. Birds were assigned to the pens randomly according to CQR SOP B-10. Specific treatment groups were as follows:

Low Phosphate diets contained:

Starter: 0.3% AvP

Grower/Finisher: 0.25% AvP

High Phosphate diets contained:

Starter: 0.45% AvP

Grower/Finisher: 0.4% AvP

Trt Group	Description	No. Pens	No. Birds/Pen	No. Birds/Trt
1	Low Phosphate (LP)	12	17	204
2	High Phosphate (HP)	12	17	204
3	250 Units Phytase (LP)	12	17	204
4	500 Units Phytase (LP)	12	17	204
5	1000 Units Phytase (LP)	12	17	204
6	3000 Units Phytase (LP)	12	17	204
7	6000 Units Phytase (LP)	12	17	204
8	60000 Units Phytase (LP)	12	17	204
	Totals	96	NA	1632

B. HOUSING AND MANAGEMENT

Housing

Assignment of treatments to pens was conducted using Microsoft Excel. The computer-generated assignment was as follows:

	T1	T2	Т3	T4	T5	T6	T7	T8
Block 1	97	133	135	98	99	134	100	136
Block 2	103	102	101	105	108	106	107	104
Block 3	110	113	115	116	112	109	114	111
Block 4	122	123	120	119	118	117	121	124
Block 5	132	126	128	127	130	131	125	129
Block 6	177	140	137	179	138	139	180	178
Block 7	141	144	142	148	143	147	146	145
Block 8	152	151	154	153	149	150	156	155
Block 9	160	166	161	162	163	164	159	165
Block 10	170	169	171	174	173	175	168	167
Block 11	186	188	185	182	183	184	181	187
Block 12	190	195	191	189	192	196	194	193

Birds were housed in concrete floor pens (\sim 3' x 5') within an environmentally controlled facility (Facility #7). All birds were placed in clean pens containing clean pine shavings as bedding. Additional shavings were added to pens if they became too damp for comfortable conditions for the test birds during the study. Lighting was via incandescent lights and a commercial lighting program was used. Hours of light for every 24-hour period were as follows:

	Approximate Hours	
Approximate	of Continuous Light	~Light Intensity
Bird Age (days)	per 24 hr period	(foot candles)
0 - 4	24	1.0 - 1.3
5 – 10	10	1.0 – 1.3
11 – 18	12	0.2 - 0.3
19 – Study End	16	0.2 - 0.3

Environmental conditions for the birds (floor space & bird density [~0.88 ft²/bird], temperature, lighting, feeder and water space) were similar for all treatment groups at placement. In order to prevent bird migration, each pen was checked to ensure that no openings greater than 1 inch existed for approximately 12 inches in height between pens. To achieve this, a wood or plastic solid partition was in place for approximately the first 12 inches from the floor between each pen.

Vaccinations:

Birds were vaccinated for Mareks at the hatchery. Newcastle, Infectious Bronchitis (NCB) vaccine was administered using a spray cabinet upon receipt of chicks (Newcastle-Bronchitis Vaccine; B1 Type, B1 Strain, Mass. & Conn. Types, Live Virus; Zoetis Inc, Kalamazoo, MI; Serial No. 1502029; Expiration 15NOV16). No other vaccinations or treatments (except as indicated above), were administered during the study.

Water:

Water was provided *ad libitum* throughout the study via one automatic nipple drinker (4 nipples per drinker) per pen. Drinkers were checked twice daily and cleaned as needed to ensure a clean and constant water supply to the birds.

Feed:

Feed was provided *ad libitum* throughout the study via one hanging, ~17 inch diameter tube feeder per pen. One chick feeder tray was placed in each pen for approximately the first four days. Birds were placed on their respective treatment diets on Day 0 and as per the experimental design. Feed added and removed from pens from Day 0 to study end was weighed and recorded.

Daily observations:

The test facility, pens, and birds were observed at least twice daily for general flock condition, lighting, water, feed, ventilation and unanticipated events. No abnormal conditions were documented. The minimum-maximum temperature and humidity of the test facility was recorded once daily.

Mortality and Culls:

Starting on study day 0, any bird that was found dead or was removed and sacrificed was weighed and necropsied. Cull birds that are unable to reach feed or water were sacrificed, weighed and documented. The weight and probable cause of death and necropsy findings were recorded on the pen mortality record.

Veterinary Care, Intervention and Euthanasia:

Birds that developed clinically significant concurrent disease unrelated to the test procedures were, at the discretion of the Study Investigator or a designee, removed from the study and euthanized in accordance with site SOPs. In addition, moribund or injured birds whose condition may have affected the outcome of the study were euthanized upon the authority of a Site Veterinarian or a qualified technician. The reason for withdrawal was documented. If an animal died, or was removed and euthanized for humane reasons, it was recorded on the mortality sheet for the pen and a necropsy performed and filed to document the reason for removal.

If euthanasia was deemed necessary by the Study Investigator or a qualified technician, animals were euthanized by cervical dislocation.

Body Weights and Feed Intake:

Birds were weighed by pen on Study Days 0, 14, 21, and 42. The weights of all mortalities and culls over the course of the study were recorded on the Mortality & Necropsy Records for the appropriate pens. Average bird weight on a pen basis, on each weigh day, was summarized.

The feed remaining in each pen's feeder was weighed and the amount of feed consumed per pen was calculated by subtracting the feed weighed out of the pen from the total amount of feed weighed into the pen. Feeders were weighed on or before Study Day 0 and on Study Days 14, 21, and 42.

Weight Gains and Feed Conversion:

Average feed conversion were calculated for Days 0 - 14, 14 - 21, 0 - 21, 21 - 42, and 0 - 42 by dividing the total feed intake for that pen by the weight of the surviving birds in that pen.

Adjusted feed conversion were calculated for Days 0 - 14, 14 - 21, 0 - 21, 21 - 42, and 0 - 42 by dividing the total feed intake for that pen by the weight of the surviving birds in that pen and the weight of the birds that died or were removed from that pen.

Scales:

Scales used in the weighing of feed, feed additives, and birds were licensed by the State of Colorado. At each use the scales were checked using standard weights according to CQR Standard Operating Procedures.

C. BONE PARMETERS AND ILEAL PHOSPHORUS DIGESTIBILITY:

TiO2 was placed in all feeds from study day 14.

At Days 21 and 42, three birds were randomly collected from each pen, sacrificed and ileal and left tibia samples were collected. The tibia samples were pooled in one bag per pen (3 tibias per pen in a bag). Adhering muscle was carefully removed from each tibia to get them mostly clean and then they were frozen and retained until shipment to the laboratory for the determination of % ash (AOAC 923.03).

The ileal samples were also be pooled in one plastic vial per pen (3 ileal samples per pen in a vial) and were frozen retained until Sponsor either instructed disposal or shipment to the laboratory for the determination of ileal phosphorus digestibility (% Moisture: AOAC Official Method 934.01, 2006, vacuum oven; Titanium: Journal of Animal Science, 2004, 82: 179 – 183; Phosphorus: AOAC Official method 966.01). From each bird starting at the Meckel's Diverticulum, the contents of the ileum were squeezed into the plastic bags.

D. HEMATOLOGICAL ENDPOINTS

Hematological endpoints were measured for only treatment groups 1 (Low Phosphate control), 2 (High Phosphate control) and 8 (60,000 Units Phytase). At Day 42, prior to euthanasia for tibia and ileal content collection, blood was collected from the same three birds indicated in the above section for hematological analyses.

From each bird a minimum of 1.0 mL of whole blood was collected into a lavender top EDTA containing tube via the brachial vein. Tubes were labeled with study number, animal number, pen number, and date of collection. It was mixed by gently inverting the tube 5 to 6 times. A barcode label was attached vertically to the lavender top tube at the performing laboratory. Two peripheral blood smears were prepared from each lavender top tube. The animal identification number was written on the frosted edge of the slides with a lead pencil. The corresponding small barcode label for each slide was placed on the outside of the plastic slide holder at the performing laboratory. The lavender top tubes were shipped on ice packs to the performing laboratory.

From each bird a mimimum of 2.0 mL of whole blood was collected into a no additive red top tube via the brachial vein. Tubes were labeled with study number, animal number, pen number, and date of collection. Blood was allowed to clot for ~ 30 minutes. The tubes were centrifuged for 10-15 minutes. For each sample, the serum was transferred from the no additive red top tube into the tall plastic tube labeled "Serum Tube." (A minimum of 0.56 mL of serum was required. The preferred volume was 1.0 mL). One large barcode label was affixed vertically on the serum tube at the performing laboratory. The no additive red top tubes were discarded after removing the serum.

All samples were identified with numbered and barcoded labels at the performing laboratory. Corresponding animal identification was provided on a data capture form.

Samples were shipped on ice packs to Marshfield Labs at the following address:

Marshfield Labs Study Specimen Processing 701 Kalsched St. Marshfield, WI 54449 1-800-222-5835

The following hematological endpoints were assayed:

Haematocrit (HCT)	Red Blood Cells (RBC)	Glucose (GLU)	Basophil (BASO)
Phosphorus (PHOS)	Lymphocytes (LYMPH)	Mean Corpuscular Volume (MCV)	Alanine aminotransaminase (ALT)
Monocytes (MONO)	Thrombocyte check	Creatine Phosphokinase (CPK)	Mean Corpuscular Hemoglobin (MCH)
White Blood Cells (WBC)	Haemoglobin (HGB)	Mean Corpuscular Hemoglobin Concentration (MCHC)	Albumin (ALB)
Eosinophil (EOS)	Red Cell Distribution Width (RDW)	Heterophils (HET)	Absolute Band Heterophils (ABBHET)
Absolute Heterophils (ABHET)	Absolute Lymphocytes (ABLYMP)	Absolute Activated Lymphocytes (ABACTL)	Absolute Monocytes (ABMONO)
Absolute Eosinophils (ABEOS)	Absolute Basophils (ABBASO)	Total Protein (TP)	Globulin (GLOBU)
Albumin/Globulin (A/G)			

E. HISTOLOGICAL SAMPLING

For only treatment groups 2 (High Phosphate control) and 8 (60,000 Units Phytase). At Day 42, after euthanasia for tibia and ileal content collection, birds were necropsied and examined by a veterinarian. Only if pathological or toxicological symptoms were noted in tissues of birds in group 8, the tissues displaying abnormal characteristics were to be collected from the affected bird and the corresponding normal tissue from a bird in group 2 and placed into 10% buffered formalin. There were no pathological or toxicological symptoms noted in the tissues of the group 8 birds and thus no samples were collected.

F. STATISTICAL DESIGN

Data generated from the study was statistically analyzed by the Sponsor. The experimental design was a randomized complete block design. Pen location within the barn was used as the blocking criteria. Each of the 12 blocks had 8 pens to which the treatments were randomly distributed. Pen was used as experimental unit for each analyzed variable. Data was analyzed using fit least squares of the JMP software (version 12, SAS Institute Inc., Cary, NC). The ANOVA model included treatment and block. Mean values were separated using Tukey's honesty significant difference procedure. P-values < 0.05 were considered significant in all comparisons.

V. DATA COLLECTED

- Bird weights by pen, on approximately Days 0, 14, 21, and 42.
- Feed amounts added and removed from each pen from day 0 to study end (day 42).
- Mortality: sex, weight and probable cause of death day 0 to study end.
- Removed birds: reason for culling, sex and weight day 0 to study end.
- Daily observation of facility and birds, daily facility temperature, daily facility humidity.
- Feed conversion by pen and treatment group for days 0-14, 14-21, 0-21, 21-42, and 0-42.
- Bone parameters
- Ileal phosphorus digestibility
- Hematological endpoints

VI. DISPOSITIONS

Excess Test Articles

An accounting was maintained of the test articles received and used for this study. Excess test articles were retained in the CQR general inventory until instruction from the Sponsor was received regarding the disposal or shipment of them. Documentation was provided with the study records.

Feed

An accounting was maintained of all treatment diets. The amount mixed, used and discarded was documented. Unused feed was discarded to the landfill at study end. Retention feed samples were discarded to the landfill upon receipt of permission from the Sponsor. Disposition was documented in the study records.

Test Animals

An accounting was maintained of all birds received for the study. All mortalities, birds culled or sacrificed were disposed of by dumpster and commercial landfill. Disposal of mortalities, birds culled or birds sacrificed during the study and at study end was by dumpster and commercial landfill. Surviving birds were euthanized and disposed of by dumpster and commercial landfill as they were not suitable for human consumption. Documentation of disposition was provided with the study records.

VII. RECORDS AND REPORT

A final report and the original study records were provided to the Sponsor following study completion. The Sponsor was provided with an electronic copy of the data in excel CQR spreadsheet format, with individual replicates represented in rows, and measurements made and identifying criteria (such as treatment, pen, block) in columns. No statistics were included in the final report unless provided by the Sponsor. A copy of the report, data and study records will be kept in CQR archives for a period of 3 years.

VIII. PERSONNEL

Key personnel involved in this study were as follows:

Agrivida, Inc.

Sponsor Representative Jon Broomhead

CQR

Investigator Dan Moore, PhD.

Test Facility Management Stephen W. Davis, DVM, Dip. ACPV

Data Manager Shoshana Gray, B.A.
Feed Mill Manager Ken Johlke, B.S.
Farm Manager Kyle Kline, B.S.
Research Technician Jamie Meneuy, B.S.

IX. INVESTIGATOR'S STATEMENT

There were no known circumstances that may have affected the data quality or integrity during this study.

Summary tables and graphs of bird performance have been prepared and are attached to this report (See Tables 1 - 12 and Graphs 1 - 5).

Overall mortality and moribund removal was as expected for study conditions and ranged from 1.961% (Treatment Group 7) to 6.373% (Treatment Group 8). See Tables 13 and 14 for mortality and removal information.

Performance during the trial was as expected for study conditions with body weight ranging from 2.268 Kg for the low phosphate group (Treatment Group 1) to 3.029 Kg for the highest phytase dose (Treatment Group 8), and feed conversion ranging from 1.545(Treatment group 8) to 1.615 (Treatment Group 1) at 42D. The high phosphate control group had higher body weight gain and feed conversion compared to the low phosphate control group for all time. All phytase treatments outperformed the low phosphate control for all time periods for both body weight gain and feed conversion. Overall, increasing levels of phytase resulted in increased body weight gain and lower feed conversions. However, treatment groups 5-8 were similar in performance. See Tables 3 – 12 and Graphs 1–5 for performance information.

The high phosphate control and all phytase supplemented treatment groups had increased tibia ash at both 21D and 42D when compared to the low phosphate control group. On day 21, P digestibility was higher than the LP (treatment group 1) control for treatment groups 2, 3, 6, 7 and 8. However, at 42D P digestibility was higher for all treatment groups compared to the LP group with the exception of treatment group 4. See Tables 19-26 and Graphs 6-9 for tibia and phosphorus digestibility information.

Treatment groups 1 (LP), 2 (HP) and 8 (LP + highest level of phytase) had blood drawn on 42D for hematological analysis. All blood parameters appeared to be similar between groups with the exception of treatment group 1 having lower creatine kinase and phosphorus levels compared to the other two groups. See Tables 16-18 for hematology information.

The report and data herein submitted to the Sponsor for CQR Project No. AGV-15-5 are accurate in that they represent the actual results of the study, were collected in a manner which did not misrepresent the true effects of the test articles and were complete in that all data obtained in this study was submitted to the Sponsor.

Dan Moore, Ph.D.

Investigator

Date

30 MAR/8

Tables

- Table 1. Day 0 Pen Weights (17NOV15) of Male Cobb 500 Broilers
- Table 2. Day 0 Pen Weights (17NOV15) of Male Cobb 500 Broilers Summarized by Treatment Group
- Table 3. Bird Weights and Feed Conversion Days 0 14 (01DEC15)
- Table 4. Bird Weights and Feed Conversion Days 0 14 (01DEC15) Summarized by Treatment Group
- Table 5. Bird Weights and Feed Conversion Days 0 21 (08DEC15)
- Table 6. Bird Weights and Feed Conversion Days 0 21 (08DEC15) Summarized by Treatment Group
- Table 7. Bird Weights and Feed Conversion Days 14 21 (08DEC15)
- Table 8. Bird Weights and Feed Conversion Days 14 21 (08DEC15) Summarized by Treatment Group
- Table 9. Bird Weights and Feed Conversion Days 0 42 (29DEC15)
- Table 10. Bird Weights and Feed Conversion Days 0 42 (29DEC15) Summarized by Treatment Group
- Table 11. Bird Weights and Feed Conversion Days 21 42 (29DEC15)
- Table 12. Bird Weights and Feed Conversion Days 21 42 (29DEC15) Summarized by Treatment Group
- Table 13. Mortality and Removal Weights (Day 0 Study End)
- Table 14. Summary of Mortalities and Removals (Day 0 Study End)
- Table 15. Feed Added and Removed by Pen Days 0 Study End
- Table 16. Hematalogical Results as Received from Marshfield Labs
- Table 17. Hematalogical Results Summarized by Treatment Group
- Table 18. Hematalogical Results Summarized by Treatment Group (Condensed Table)
- Table 19. Day 21 Tibia Ash Results (08DEC15)
- Table 20. Day 21 Tibia Ash Results (08DEC15) Summarized by Treatment Group
- Table 21. Day 42 Tibia Ash Results (29DEC15)
- Table 22. Day 42 Tibia Ash Results (29DEC15) Summarized by Treatment Group
- Table 23. Day 21 % Phosphorus Digestibility
- Table 24. Day 21 % Phosphorus Digestibility Summarized by Treatment Group
- Table 25. Day 42 % Phosphorus Digestibility
- Table 26. Day 42 % Phosphorus Digestibility Summarized by Treatment Group

Graphs

- Graph 1. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 14) Summarized by Treatment Group
- Graph 2. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 21) Summarized by Treatment Group
- Graph 3. Average Bird Weight Gain and Adjusted Feed Conversion (Days 14 21) Summarized by Treatment Group
- Graph 4. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 42) Summarized by Treatment Group
- Graph 5. Average Bird Weight Gain and Adjusted Feed Conversion (Days 21 42) Summarized by Treatment Group
- Graph 6. Day 21 Average Tibia Ash % Summarized by Treatment Group
- Graph 7. Day 42 Average Tibia Ash % Summarized by Treatment Group
- Graph 8. Day 21 %P Digestibility Summarized by Treatment Group
- Graph 9. Day 42 %P Digestibility Summarized by Treatment Group

APPENDIX 1 – DIET FORMULATIONS

CFC/Concept5

Least Cost Formula

Date Printed: 05/11/15 Date Optimized: 05/11/2015

Optimized By: PROSUSER Trial Version: 17 Prod'n Version: 0

Plant: 1 Silver Springs Formulated By: Single Product Formulation Product: AGV151SP AGV-15-1 BS PC Using Costs: Plant 1 Owning Costs

Page: 1

Ingr		Unrou	inded	Owning	Ra	ange	Re	strictio	n	Nutr				
Code	Ingredient Name	Lbs	Pct	\$/Ton	Low	High	Min Pct	Max Pct	Rcost	No	Nutrient			
		1135.89							1		DRY MATTER		89.74	
191	4 SBM , CQR	716.19	35.810	508.00	261.40	843.60			1	3	MOISTURE		10.26	
154	2 Soy Oil	38.93	1.947	600.00	224.40	2008.40				4	PROTEIN, CRUDE	22.00	22.00	
155	4 DICALCIUM PHOS	36.42	1.821	255.24		25253.0			1	5	FAT, CRUDE	4.50	4.50	
155	3 Sand	28.02	1.401	15.00		29.40		1.6000	1	6	FIBER, CRUDE		2.23	
155	2 Limestone, CQR	19.87	0.994	30.00	15.00	29505.6			1	7	CALCIUM	0.93	0.9300	
154	4 SALT, PLAIN (N	8.81	0.440	29.34	15.00	145444.			1	8	PHOS. TOTAL	0.71	0.7205	
154	9 DL-METHIONINE,	5.98	0.299	2637.89	15.00	23294.8			1	9	ASH		5.50	
154	8 CQR Choline	3.92	0.196	2534.00	15.00	48090.4				10	PHOS., AVAILAB	0.45	0.4500	0.4
191	6 Pou NRC TM	2.80	0.140	908.00			0.1400	0.1400	1	18	ADF		0.0000	
199	6 Pou VIT 1.2 D3	2.00	0.100	2332.00			0.1000	0.1000	1	19	M.E. POULTRY	1378.00	1378.00	
154	5 Salinomycin (6	0.820	0.041	0.00			0.0410	0.0410	1	21	M.E. SWINE		1485.49	
155	1 Threonine, CQR	0.169	0.008	1849.00	15.00	15136.0			1	23	N.E.L.		0.0000	
155	0 L-LYSINE, CQR	0.166	0.008	1725.00	15.00	8300.60			-	24	N.E.M.		0.0000	
										25	N.E.G.		0.0000	
	Total Batch:	2000.00	Lbs at	309.15	\$/Ton	15.458	\$/100Lb	0.1546	\$/Lb	31	METHIONINE	0.55	0.6413	
									1	32	CYSTINE		0.3487	
		Binding	Nutrie	nts							LYSINE	1.31	1.31	
tr		Unit of			Incremen				i	34	TRYPTOPHAN		0.2980	
	Nutrient Name	Measure			Change						THREONINE	0.92	0.9200	
									i	36	ISOLEUCINE		1.13	
	PROTEIN, CRUDE	PCT			0.10 PCT					7.55	HISTIDINE		0.6218	
	FAT, CRUDE	PCT			0.10 PCT						VALINE		1.24	
	CALCIUM	PCT	0.		0.01 PCT						LEUCINE		1.98	
10	PHOS., AVAILABLE	PCT	0.		0.01 PCT						ARGININE		1.52	
	M.E. POULTRY	KCAL/LB			10.00 KC				i	41	PHENYLALANINE		1.24	
	LYSINE	PCT			0.01 PCT						TSAA	0.99	0.9900	
	THREONINE	PCT			0.01 PCT						[** No Name **	0.33	0.0000	
	TSAA	PCT			0.01 PCT						PYRIDOXINE		4.31	
	CHOLINE	MG/LB			1.00 MG/						CAROTENE		0.5274	
		PCT			0.10 PCT						VITAMIN A		1265.17	
-	2022011			0300	0.10	3					VITAMIN E		12.30	
											THIAMIN		1.95	
											RIBOFLAVIN		2.68	
											PANTOTHENIC AC		8.67	
											BIOTIN		156.14	
									i		FOLIC ACID		446.81	
											CHOLINE	1300.00		
											VITAMIN B12	1300.00	5.40	
									i		NIACIN		28.21	
											VITAMIN D3 IU		1375.00	
											MENADIONE		0.8749	
											VITAMIN C		0.0000	
											Vitamin D		0.0000	
											SODIUM	0.20	0.2000	
											POTASSIUM	0.20	0.9437	
											MAGNESIUM		0.1613	
											SULPHUR		0.2044	
											MANGANESE IRON		107.18	
											COPPER		371.60	
										250			19.98	
											ZINC		89.49	
											SELENIUM		0.3028	
									1		COBALT		0.0000	
											FLOURINE	A 25	0.0033	
											CHLORIDE	0.28	0.2979	
									I		SALT		0.4405	
									1		IODINE		0.5957	
									1		Dig Methionine		0.6129	
									1		Dig Cystine		0.2885	
									1		Dig Lysine Dig Tryptophan		0.2168	

Continued... See Page 2 Date Printed: 05/11/15 Plant: 1 Silver Springs Product: AGV151SP AGV-15-1 BS PC

Date Optimized: 05/11/2015

Optimized By: PROSUSER Trial Version: 17

Page: 2

Formulated By: Single Product Formulation Trial Version: 17
Using Costs: Plant 1 Owning Costs Prod'n Version: 0

1		Nutrie	nt Soluti	on	
11	Nutr				
ľ	No	Nutrient	Minimum	Actual	Maximum
1		******			
١	80	Dig Threonine		0.8039	
ı	81	Dig Isoleucine		1.04	
t	82	Dig Histidine		0.5584	
ı	83	Dig Valine		1.12	
Ī	84	Dig Leucine		1.83	
ı	85	Dig Arginine		1.39	
ı	86	Dig Phenylalan		1.43	
ľ	87	Dig TSAA		0.9018	
ı	89	Oxytetracyclin		0.0000	
ı	90	Non Protein Ni		0.0000	
Ī	100	Total Nitrogen		0.0000	
ı	101	Bulk Density		0.8943	

CFC/Concept5 Date Printed: 05/11/15 Least Cost Formula

Date Optimized: 05/11/2015 Optimized By: PROSUSER Trial Version: 16

Page: 1

Silver Springs Formulated By: Single Product Formulation Plant: 1 Product: AGV151SN AGV-15-1 BS NC Using Costs: Plant 1 Owning Costs

Prod'n Version: 0

Ingr			inded			-	Re							
	Ingredient Name		Pct	\$/Ton							Nutrient		Actual	
		1135.89				295.20					DRY MATTER		89.74	
191	4 SBM , CQR	716.19	35.810	508.00	261.40	*****			1	3	MOISTURE		10.26	
154	2 Soy 0il	38.93	1.947	600.00	224.40				1	4	PROTEIN, CRUDE	22.00	22.00	
155	3 Sand	33.48	1.674	15.00		29.40		1.6800	-0.14	5	FAT, CRUDE	4.50	4.50	
155	2 Limestone, CQR	30.68	1.534	30.00	15.00	29505.6			1	6	FIBER, CRUDE		2.23	
155	4 DICALCIUM PHOS	20.11	1.006	255.24		29394.8			1	7	CALCIUM	0.93	0.9290	0.93
154	4 SALT, PLAIN (N	8.84	0.442	29.34	15.00	404093.			1	8	PHOS. TOTAL	0.56	0.5705	
154	9 DL-METHIONINE,	5.98	0.299	2637.89	15.00	23294.8			1	9	ASH		5.32	
154	8 CQR Choline	3.92	0.196	2534.00	15.00	74427.2			I	10	PHOS., AVAILAB	0.30	0.3000	0.30
	6 Pou NRC TM			908.00			0.1400			18			0.0000	
	6 Pou VIT 1.2 D3	2.00					0.1000				M.E. POULTRY	1378.00	1378.00	1378.00
	5 Salinomycin (6			0.00			0.0410	0.0410			M.E. SWINE		1485.49	
	1 Threonine, CQR				15.00						N.E.L.		0.0000	
155	O L-LYSINE, CQR	0.166	0.008	1725.00	15.00	8300.60					N.E.M.		0.0000	
											N.E.G.		0.0000	
	Total Batch:	2000.00	Lbs at	307.27	\$/Ton	15.364	\$/100Lb	0.1536				0.55	0.6413	
		NOVE OF TAXABLE									CYSTINE	2.00	0.3487	
											LYSINE	1.31		
utr		Unit of			Incremen						TRYPTOPHAN		0.2980	
	Nutrient Name	Measure		ost	Change						THREONINE	0.92	0.9200	
											ISOLEUCINE		1.13	
	PROTEIN, CRUDE				0.10 PCT						HISTIDINE		0.6218	
		PCT			0.10 PCT						VALINE		1.24	
	CALCIUM	PCT			0.01 PCT						LEUCINE		1.98	
	PHOS., AVAILABLE				0.01 PCT						ARGININE		1.52	
	M.E. POULTRY	KCAL/LB			10.00 KCA						PHENYLALANINE	0.10024	1.24	
	LYSINE	PCT			0.01 PCT						TSAA		0.9900	
	THREONINE	PCT			0.01 PCT						[** No Name **		0.0000	
		PCT			0.01 PCT						PYRIDOXINE		4.31	
		MG/LB			1.00 MG/						CAROTENE		0.5274	
61	SODIUM	PCT	0.	.0366	0.10 PCT						VITAMIN A		1265.17	
									!		VITAMIN E		12.30	
											THIAMIN		1.95	
											RIBOFLAVIN		2.68	
									!		PANTOTHENIC AC		8.67	
											BIOTIN		156.14	
											FOLIC ACID		446.81	
									!		CHOLINE	1300.00		
											VITAMIN B12		5.40	
											NIACIN		28.21	
											VITAMIN D3 IU MENADIONE		0.8749	
									1		VITAMIN C		0.8749	
											Vitamin D		0.0000	
											SODIUM	0.20	0.2000	0.20
									1		POTASSIUM	0.20	0.2000	0.2
											MAGNESIUM		0.1564	
											SULPHUR		0.2044	
									1		MANGANESE		104.73	
											IRON		290.08	
											COPPER		19.33	
											ZINC		87.70	
											SELENIUM		0.2979	
											COBALT		0.0000	
											FLOURINE		0.0018	
											CHLORIDE	0.28	0.2990	
											SALT	0.20	0.4421	
											IODINE		0.4421	
											Dig Methionine		0.6129	
											Dig Cystine		0.2885	
											Dig Lysine		1.18	
											Dig Tryptophan		0.2168	

Plant: 1 Silver Springs Product: AGV151SN AGV-15-1 BS NC

Date Optimized: 05/11/2015

Optimized By: PROSUSER

Formulated By: Single Product Formulation Trial Version: 16 Prod'n Version: 0 Page: 2 Using Costs: Plant 1 Owning Costs

	Annual State of Telephone Co.	Minimum	4 44 44 44	Address of the last
No	Nutrient	Minimum	Actual	Maximum
	*********	******		
80	Dig Threonine		0.8039	
81	Dig Isoleucine		1.04	
82	Dig Histidine		0.5584	
83	Dig Valine		1.12	
84	Dig Leucine		1.83	
85	Dig Arginine		1.39	
86	Dig Phenylalan		1.43	
87	Dig TSAA		0.9018	
89	Oxytetracyclin		0.0000	
90	Non Protein Ni		0.0000	
100	Total Nitrogen		0.0000	
101	Bulk Density		1.38	

CFC/ConceptS Least Cost Formula Date Printed: 05/11/15
Date Optimized: 05/11/2015

Optimized By: PROSUSER
Trial Version: 16

Page: 1

Plant: 1 Silver Springs Formulated By: Single Product Formulation Trial Version: 16
Product: AGV151GP AGV-15-1 BG PC Using Costs: Plant 1 Owning Costs Prod'n Version: 0

		Unrou	inded	Owning	Ra	nge	Re	estricti	on	Nutr				
	Ingredient Name	Lbs	Pct	\$/Ton	Low	High	Min Pct	Max Pct	Rcost	No	Nutrient			Maximu
	2 6 600											*******		
		1252.29							- 1		DRY MATTER		89.47	
		629.58							- 1		MOISTURE	20. 20	10.53	
	2 Soy Oil				223.40				1.0		PROTEIN, CRUDE	4.80		
	4 DICALCIUM PHOS					25099.8								
	2 Limestone, CQR 4 SALT, PLAIN (N										FIBER, CRUDE		0.8400	
											CALCIUM			
	9 DL-METHIONINE,								- 1		PHOS. TOTAL	0.66	0.6607	
	8 CQR Choline	9.13	0.206	15.00	15.00			* 5000			ASH	0.40	0.4000	
	Sand					29.40		0.1400			PHOS., AVAILAB	0.40	0.4000	0.
	6 POU NRC TM			908.00							ADF	1425 00		
	6 Pou VIT 1.2 D3						0.1000	0.1000			M.E. POULTRY	1425.00	1518.02	
155	0 L-LYSINE, CQR	0.441	0.022	1/25.00	15.00	9208.20					M.E. SWINE			
		2000 00	74	204 77		44 730	e (1000 L	0 4474			N.E.L.		0.0000	
	Total Batch:	2000.00	Lbs at	294.77	\$/Ton	14./38	\$/100Lb	0.1474					0.0000	
		ni di di di									N.E.G.	0.51	0.0000	
		100									METHIONINE	0.51	0.5332	
tr		Unit of			Incremen				0.00		CYSTINE		0.3268	
	Nutrient Name	Measure		ost	Change						LYSINE	1.20	1.20	
	DOTETH COURT										TRYPTOPHAN	0.00	0.2709	
	PROTEIN, CRUDE				0.10 PCT						THREONINE	0.83	0.8395	
	FAT, CRUDE	PCT			0.10 PCT						ISOLEUCINE		1.03	
	CALCIUM	PCT			0.01 PCT					100	HISTIDINE		0.5784	
	PHOS., AVAILABLE				0.01 PCT				1.0		VALINE		1.14	
	M.E. POULTRY										LEUCINE		1.87	
	LYSINE	PCT			0.01 PCT						ARGININE		1.39	
42		PCT			0.01 PCT						PHENYLALANINE		1.14	
		MG/LB			1.00 MG/						TSAA		0.8600	
61	SODIUM	PCT	0.	0366	0.10 PCT						[°° No Name **		0.0000	
											PYRIDOXINE		4.31	
		Unu											0.5815	
ngr				Current			Minimum				VITAMIN A		1311.15	
	Ingredient Name				\$/Ton						VITAMIN E		12.86	
											THIAMIN		1.99	
155	1 Threonine, CQR			1849.00	15.00						RIBOFLAVIN		2.66	
											PANTOTHENIC AC		8.50	
											BIOTIN		151.84	
											FOLIC ACID		435.80	
												1300.00		
									1	55	VITAMIN B12	1300.00	5.40	
									į	55 56	VITAMIN B12 NIACIN		5.40 28.37	
									i	55 56 57	VITAMIN B12 NIACIN VITAMIN D3 IU		5.40 28.37 1375.00	
									1	55 56 57 58	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE		5.40 28.37 1375.00 0.8749	
									1	55 56 57 58	VITAMIN B12 NIACIN VITAMIN D3 IU		5.40 28.37 1375.00	
									 	55 56 57 58 59	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE		5.40 28.37 1375.00 0.8749 0.0000 0.0000	
									1	55 56 57 58 59 60 61	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C Vitamin D SODIUM		5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.2000	
										55 56 57 58 59 60 61 62	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN D SODIUM POTASSIUM		5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.2000 0.8718	
										55 56 57 58 59 60 61 62	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C Vitamin D SODIUM		5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.2000	
										55 56 57 58 59 60 61 62 63 64	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR		5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.2000 0.8718	
										55 56 57 58 59 60 61 62 63 64 65	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE		5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.2000 0.8718 0.1519	
										55 56 57 58 59 60 61 62 63 64 65	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR		5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.2000 0.8718 0.1519 0.1900	
										55 56 57 58 59 60 61 62 63 64 65 66	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE		5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.2000 0.8718 0.1519 0.1900 104.89	
										55 56 57 58 59 60 61 62 63 64 65 66	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE IRON		5.40 28.37 1375.00 0.8749 0.0000 0.2000 0.8718 0.1519 0.1900 104.89 341.03	
										55 56 57 58 59 60 61 62 63 64 65 66 67	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SUPPUR MANGANESE IRON COPPER		5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.8718 0.1519 0.1900 104.89 341.03 19.27	
										55 56 57 58 59 60 61 62 63 64 65 66 67 68	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE IRON COPPER ZINC		5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.2000 0.8718 0.1519 0.1900 104.89 341.03 19.27 87.99	
										55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE IRON COPPER ZINC SELENIUM		5.40 28.37 1375.00 0.8749 0.0000 0.2000 0.8718 0.1519 0.1900 104.89 341.03 19.27 87.99 0.3017	
										55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE IRON COPPER ZINC SELENIUM COBALT		5.40 28.37 1375.00 0.8749 0.0000 0.2000 0.2000 0.8718 0.1519 0.1900 104.89 341.03 19.27 87.99 0.3017 0.0000	
										55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE IRON COPPER ZINC SELENIUM COBALT FLOURINE	0.20	5.40 28.37 1375.00 0.8749 0.0000 0.0000 0.2000 0.8718 0.1900 104.89 341.03 19.27 87.99 0.3017 0.0000 0.0028	
										555 566 577 588 599 600 611 622 633 644 655 666 677 688 699 700 711 722 733	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE IRON COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE	0.20	5.40 28.37 1375.00 0.8749 0.0000 0.2000 0.8718 0.1519 0.1900 104.89 341.03 19.27 87.99 0.3017 0.0000 0.0028 0.3006	
										555 566 577 588 599 600 611 622 633 644 655 666 677 707 717 727 737	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE IRON COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE SALT	0.20	5.40 28.37 1375.00 0.8749 0.0000 0.2000 0.2000 0.8718 0.1519 0.1900 104.89 341.03 19.27 87.99 0.3017 0.0000 0.0028 0.3026 0.4424	
										55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM SULPHUR MANGANESE IRON COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE SALT IODINE	0.20	5.40 28.37 1375.00 0.8749 0.0000 0.2000 0.2000 0.8718 0.1519 0.1900 104.89 341.03 19.27 87.99 0.3017 0.0000 0.0028 0.3006 0.4424 0.5944	
										555 566 577 588 599 600 611 622 633 644 655 666 677 707 717 727 737 747 767	VITAMIN B12 NIACIN VITAMIN D3 IU MENADIONE VITAMIN C VITAMIN C VITAMIN D SODIUM POTASSIUM MAGNESIUM MAGNESIUM MAGNESE IRON COPPER ZINC SELENIUM COBALT FLOURINE CHLORIDE SALT IODINE Dig Methionine	0.20	5.40 28.37 1375.00 0.8749 0.0000 0.2000 0.2000 0.4718 0.1519 0.1900 104.89 341.03 19.27 87.99 0.3017 0.0000 0.0028 0.3006 0.4424 0.5065	

Continued... See Page 2 Date Printed: 05/11/15

CFC/Concept5 Least Cost Formula

Plant: 1 Silver Springs Product: AGV151GP AGV-15-1 BG PC

Date Optimized: 05/11/2015 Optimized By: PROSUSER

Page: 2

Formulated By: Single Product Formulation Trial Version: 16
Using Costs: Plant 1 Owning Costs Prod'n Version: 0

ľ	No	Nutrient	Minimum	Actual	Maximum
ŀ					
ı	80	Dig Threonine		0.7313	
Ī	81	Dig Isoleucine		0.9463	
ĺ	82	Dig Histidine		0.5214	
ĺ	83	Dig Valine		1.03	
ĺ	84	Dig Leucine		1.73	
ĺ	85	Dig Arginine		1.27	
ĺ	86	Dig Phenylalan		1.37	
ĺ	87	Dig TSAA		0.7777	
ĺ	89	Oxytetracyclin		0.0000	
ĺ	90	Non Protein Ni		0.0000	
ľ	100	Total Nitrogen		0.0000	
ľ	101	Bulk Density		0.8494	

Plant: 1

CFC/Concept5 Least Cost Formula Date Printed: 05/11/15 Date Optimized: 05/11/2015

Optimized By: PROSUSER Trial Version: 17 Silver Springs Formulated By: Single Product Formulation Product: AGV151GN AGV-15-1 BG NC Using Costs: Plant 1 Owning Costs Prod'n Version: 0

Page: 1

Ingr			ınded	Owning			Re							
	Ingredient Name		Pct	\$/Ton							Nutrient		Actual	
		1252.29									DRY MATTER		89.47	
		629.58									MOISTURE		10.53	
	2 Soy Oil				223.40				i		PROTEIN, CRUDE	20.30		
	2 Limestone, CQR					33574.0					FAT, CRUDE		4.80	
	4 DICALCIUM PHOS					25099.8					FIBER, CRUDE		2.20	
155	3 Sand	8.98	0.449	15.00		29.40		1.5000	i	7	CALCIUM	0.84	0.8400	
154	4 SALT, PLAIN (N	8.88	0.444	29.34	15.00	144552.				8	PHOS. TOTAL	0.51	0.5107	
154	9 DL-METHIONINE,	4.23	0.212	2637.89	15.00	26146.0				9	ASH		4.85	
154	8 CQR Choline	4.13	0.206	2534.00	15.00	47811.2				10	PHOS., AVAILAB	0.25	0.2500	0.2
191	6 POU NRC TM	2.80	0.140	908.00			0.1400	0.1400	- 1	18	ADF		0.0000	
195	6 Pou VIT 1.2 D3	2.00	0.100	2332.00			0.1000	0.1000		19	M.E. POULTRY	1425.00	1425.00	
155	O L-LYSINE, CQR	0.441	0.022	1725.00	15.00	9208.20				21	M.E. SWINE		1518.02	
										23	N.E.L.		0.0000	
	Total Batch:	2000.00	Lbs at	292.89	\$/Ton	14.645	\$/100Lb	0.1464					0.0000	
											N.E.G.		0.0000	
											METHIONINE	0.51	0.5332	
utr		Unit of			Incremen						CYSTINE		0.3268	
	Nutrient Name	Measure		ost	Change						LYSINE	1.20	1.20	
											TRYPTOPHAN	0.00	0.2709	
	PROTEIN, CRUDE	PCT			0.10 PCT						THREONINE	0.83	0.8395	
	FAT, CRUDE	PCT		.4294	0.10 PCT						ISOLEUCINE		1.03	
	CALCIUM	PCT		.0045	0.01 PCT						HISTIDINE		0.5784	
	PHOS., AVAILABLE				0.01 PCT						VALINE		1.14	
	M.E. POULTRY	KCAL/LB			10.00 KC						LEUCINE		1.87	
	LYSINE TSAA	PCT		2170	0.01 PCT						ARGININE PHENYLALANINE		1.39	
				.0093	1.00 MG/						TSAA	0.00	0.8600	
		MG/LB PCT		0366	0.10 PCT						[** No Name **		0.0000	
u1	300108	100		. 0300	0.10 FC						PYRIDOXINE		4.31	
		Unu	ised In	redient	5								0.5815	
Ingr		0110		Current			Minimum				VITAMIN A		1311.15	
100	Ingredient Name				\$/Ton						VITAMIN E		12.86	
													1.99	
155	1 Threonine, CQR				15.00						RIBOFLAVIN		2.66	
									all some or other	51	PANTOTHENIC AC		8.50	
									i	52	BIOTIN		151.84	
									1	53	FOLIC ACID		435.80	
										54	CHOLINE	1300.00	1300.00	
										55	VITAMIN B12		5.40	
									1	56	NIACIN		28.37	
											VITAMIN D3 IU		1375.00	
											MENADIONE		0.8749	
											VITAMIN C		0.0000	
											Vitamin D		0.0000	
											SODIUM	0.20	0.2000	
											POTASSIUM		0.8713	
											MAGNESIUM		0.1470	
											SULPHUR		0.1900	
											MANGANESE		102.44	
											IRON		259.51	
											COPPER		18.62	
											ZINC SELENIUM		0.2968	
											COBALT		0.2968	
											FLOURINE		0.0000	
											CHLORIDE	0.26	0.3014	
												0.20	0.3010	
										72	SALT		0.4444	
											SALT		0.4441	
										74	IODINE		0.5944	
										74 76	IODINE Dig Methionine		0.5944	
										74 76 77	IODINE		0.5944	

Plant: 1 Silver Springs Product: AGV151GN AGV-15-1 BG NC

Date Optimized: 05/11/2015 Optimized By: PROSUSER

Formulated By: Single Product Formulation
Using Costs: Plant 1 Owning Costs Trial Version: 17 Prod'n Version: 0 Page: 2

١	No	Nutrient	Minimum	Actual	Maximum
i -	1900.00				
i	80	Dig Threonine		0.7313	
i	81	Dig Isoleucine		0.9463	
1	82	Dig Histidine		0.5214	
ı	83	Dig Valine		1.03	
1	84	Dig Leucine		1.73	
1	85	Dig Arginine		1.27	
1	86	Dig Phenylalan		1.37	
1	87	Dig TSAA		0.7777	
1	89	Oxytetracyclin		0.0000	
1	90	Non Protein Ni		0.0000	
١	100	Total Nitrogen		0.0000	
1	101	Bulk Density		1.34	

Table

- Day 0 Pen Weights (17NOV15) of Male Cobb 500 Broilers Summarized by Treatment Group
- Bird Weights and Feed Conversion Days 0 14 (01DEC15) Summarized by Treatment Group
- Bird Weights and Feed Conversion Days 0 21 (08DEC15) Summarized by Treatment Group rable 6.
- Table 8. Bird Weights and Feed Conversion Days 14 21 (08DEC15) Summarized by Treatment Group
- Table 10. Bird Weights and Feed Conversion Days 0 42 (29DEC15) Summarized by Treatment Group

Table 12. Bird Weights and Feed Conversion Days 21 - 42 (29DEC15) Summarized by Treatment Group

- Table 13. Mortality and Removal Weights (Day 0 Study End)
- Fable 14. Summary of Mortalities and Removals (Day 0 Study End)
- Fable 15. Feed Added and Removed by Pen Days 0 Study End
- Table 17. Hematalogical Results Summarized by Treatment Group
- Table 18. Hematalogical Results Summarized by Treatment Group (Condensed Table)
- Table 20. Day 21 Tibia Ash Results (08DEC15) Summarized by Treatment Group
- able 22. Day 42 Tibia Ash Results (29DEC15) Summarized by Treatment Group
- able 23. Day 21 % Phosphorus Digestibility
- Table 24. Day 21 % Phosphorus Digestibility Summarized by Treatment Group
- Table 26. Day 42 % Phosphorus Digestibility Summarized by Treatment Group

Graphs

- Graph 1. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 14) Summarized by Treatment Group
- Graph 2. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 21) Summarized by Treatment Group
- Graph 3. Average Bird Weight Gain and Adjusted Feed Conversion (Days 14 21) Summarized by Treatment Group Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 42) Summarized by Treatment Group Graph 4.
- Graph 5. Average Bird Weight Gain and Adjusted Feed Conversion (Days 21 42) Summarized by Treatment Group
- Graph 6. Day 21 Average Tibia Ash % Summarized by Treatment Group
- Graph 7. Day 42 Average Tibia Ash % Summarized by Treatment Group
 - iph 8. Day 21 %P Digestibility Summarized by Treatment Group
 - Graph 9. Day 42 %P Digestibility Summarized by Treatment Group

Table 2. Day 0 Pen Weights (17NOV15) of Male Cobb 500 Broilers Summarized by Treatment Group AGV-15-5
BUILDING 7

Block	Trt	Pen No.	No. Birds	Pen Wt	Avg Bird
	Group			(kg)	Wt (kg)
1	- 1	97	17	0.699	0.041
$\frac{2}{3}$	1	103	17	0.677	0.040
	1	110	17	0.703	0.041
4	1	122	17	0.682	0.040
5	<u>1</u>	_132_	17	0.687	0.040
6	<u>- 1</u>	177	17	0.683	0.040
7	<u>1</u>	141	17	0.711	0.042
8	└ _ 1	152	17	0.699	0.041
9	<u>1</u>	160	17	0.701	0.041
10	<u>1</u>	170	17	0.684	0.040
_ 11	$\frac{1}{1}$	186	17i	0.695	0.041
12	1	190	17	0.679	0.040
Total &	Averages		204	0.692	0.041
Std Devi	ations		L;	0.011	0.001
CVs				1.591%	1.591%
11	2	133	17	0.669	0.039
2	2	102	17	0.689	0.041
3	2	113	17	0.702	0.041
4	2	123	17	0.684	0.040
5		126	17	0.710	0.042
6		140	17	0.704	0.041
7		144	17	0.716	0.042
8	$\lceil \frac{1}{2} \rceil$	151	17	0.719	0.042
9	<u>2</u>	166	17	0.700	0.041
10		169	17	0.684	0.040
11	2	188	17	0.684	0.040
12		195	17	0.692	0.041
Total & /	Averages		204	0.696	0.041
Std Devi	ations			0.015	0.001
CVs				2.151%	2.151%
1	3	135	17 I	0.692	0.041
2	3	101	17	0.691	0.041
3	3	115	17	0.707	0.042
4	3	120	17	0.688	0.040
5	3	128	17	0.688	0.040
6	3	137	17	0.704	0.041
7		142	17	0.718	0.042
8	$\frac{1}{3}$	154	17	0.699	0.041
9	$-\frac{1}{3}$	161	17	0.700	0.041
10		171	17	0.701	0.041
11	$\frac{1}{3}$	185	17	0.692	0.041
12	3	191	17	0.687	0.040
Total & /	Averages		204	0.607	0.041
Std Devi			ר	0.009	0.001
CVs				1.344%	1.344%

Table 2. Day 0 Pen Weights (17NOV15) of Male Cobb 500 Broilers Summarized by Treatment Group AGV-15-5

BUILDING 7

Block	Trt Group	Pen No.	No. Birds	Pen Wt (kg)	Avg Bird Wt (kg)
11	4	98	17	0.696	0.041
2	4	105	17	0.696	0.041
3	4	116	17	0.698	0.041
4	4	119	17	0.697	0.041
5	4	127	17	0.683	0.040
6		179	17	0.704	0.041
7	4	148	17	0.693	0.041
8	4	153	17	0.693	0.041
9		162	17	0.686	0.040
10	_ _ 4	174	17	0.688	0.040
11	4	182	17	0.715	0.042
12	 4	189	17	0.695	0.041
Total & /	Averages		204	0.695	0.041
Std Devi	ations	 _		0.008	0.000
CVs				1.208%	1.208%

1	5	ı <u>9</u> 9	17	0.697	0.041
2	5	108	17	0.700	0.041
3	5	112	17	0.692	0.041
4	5	118	17	0.674	0.040
5	5	130	17	0.686	0.040
6	5	138	17	0.697	0.041
7	5	143	17	0.703	0.041
8	5	149	17	0.707	0.042
9	5	163	17	0.714	0.042
10	5	173	17	0.710	0.042
11	5	183	17	0.687	0.040
12	5	192	17	0.701	0.041
Total & /	verages		204	0.697	0.041
Std Devia	ations			0.011	0.001
CVs				1.614%	1.614%

1	6	134	17	0.670	0.039
2	6	106	17	0.670	0.039
3	6	109	17	0.694	0.041
4	6	117	17	0.677	0.040
5	6	131	17	0.702	0.041
6	6	139	17	0.711	0.042
7	6	147	17	0.715	0.042
8	6	150	17	0.705	0.041
9	6	164	17	0.705	0.041
10	6	172	17	0.703	0.041
11	6	184	17	0.688	0.040
12	6	196	17	0.707	0.042
Total & A	verages		204	0.696	0.041
Std Devia	ations		[0.016	0.001
CVs				2.266%	2.266%

Table 2. Day 0 Pen Weights (17NOV15) of Male Cobb 500 Broilers Summarized by Treatment Group AGV-15-5

BUILDING 7

Block	Trt Group	Pen No.	No. Birds	Pen Wt (kg)	Avg Bird Wt (kg)
1	7	100	17	0.694	0.041
2		107	17	0.696	0.041
3		114	17	0.706	0.042
4	[121	17	0.699	0.041
5		125	17	0.705	0.041
6		180	17	0.708	0.042
7	7	146	17	0.719	0.042
8	- 7	156	17	0.716	0.042
9	7 _	159	17	0.708	0.042
10	7 - 7	168	17	0.698	0.041
11	- 7	181	17	0.683	0.040
12	7	194	17	0.682	0.040
Total & /	Averages		204	0.701	0.041
Std Devi	ations			0.012	0.001
CVs				1.643%	1.643%

1	8	I 136	17	0.679	0.040
2	8	104	17	0.694	0.041
3	8	111	17	0.695	0.041
4	8	124	17	0.687	0.040
5	8	129	17	0.712	0.042
6	8	178	17	0.707	0.042
7	8	145	17	0.679	0.040
8	8	i 155	17	0.702	0.041
9	8	165	17	0.688	0.040
10	8	167	17	0.694	0.041
11	8	187	17	0.691	0.041
12	8	193	17	0.687	0.040
Total & A	verages		204	0.693	0.041
Std Devia	ations			0.010	0.001
CVs				1.467%	1.467%

Table 4. Bird Weights and Feed Conversion Days 0 - 14 (01DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5

Facility Number 7

		No. Birds	_	11	-5	No. Birds	D14 Pen Wt	D14 Avg Bird	D0-14 Avg	Feed	Adj. Feed
Block Tr	t Pen No.	Started	Mortality	Removal-1	oval-2	Weighed	D2111 C.II 111	Wt	Bird Gain	Conversion	Conversion
		Day 0	Mor	Rem	Rem	D14	(kg)	(kg)	(kg)	D0-14	D0-14
1_1_1	-1	17	_0_	0	0	17	5.220	0.307	0.266	1 332	1.332
2 1	_	17	_0_	0 +	_0_		5.140	0.302	0.263	1 394	1.394
$-\frac{3}{4} - -\frac{1}{1}$	-1	$-\frac{17}{17}$	_0_	0	_0_	$-\frac{17}{17}$	5.100	- 0.300 0.318	0.259_ 0.278	1 360	
$-\frac{4}{5} - -\frac{1}{1}$	-1	17 -	0_	+ + +	0_	- 1 /	5.400 5.020	0.295	0.255	- 1 361 1 375	1.375
6-1-1	_	1/ -	-6-	+ 6 +	-6-	- 1 /	5.140	0.302	0.262	1 346	1.346
7 1	_	17 -	0	0 1	-0	- - 17 -	5.280	0.311	0.269	1 379	1.379
8 1			0	0	0	17	5.140	0.302	0.261	1 392	1.392
9 1	160	17	0	0	0	17	5.400	0.318	0.276	1 332	1.332
10 1	170		0	0	0	17	5.180	0.305	0.264	1 348	1.348
11_1	_!	17	_0_	<u> </u>	0	17	5.220	0.307	0.266	1 335	1.335
12 1		17	0	0	0	17	5.100	0.300	0.260	1 366	1.366
Totals & Av		_ 204 _	_0_	l 🕝 1	_0_	_ 204 _	5.195	0.306	0.265	1.360	1.360
Std. Deviat CVs	tions _		⊢ -	! — !				0.007 2.252%	0.007 2.543%	0.022 1.617%	0.022 1.617%
CVS			<u> </u>				2.23270	2.23270	2.34376	1.01/76	1.01/76
1 2	133	17	0	0	0	17	5.660	0.333	0.294	1 370	1.370
2 2		17	0	0	0	17	5.780	0.340	0.299	1 320	1.320
F	113	17	0	0	0	17	5.820	0.342	0.301	1 301	1.301
42		17	_0_	, - -		_ 17	5.860	0.345	0.304	1 321	1.321
5 2		17 -	_1_	0 1	_0_	_ 16	5.700	0.356	0.314	1 399	1.366
$-\frac{6}{7} - \frac{2}{2}$	_,	17 -	_0_	<u>0</u> 0	_0_ 0	17	6.100 6.120	0.359	0.317 0.318	1 319 1 355	
8-1-2		1/ -	F ₀ -			- 1 /	6.220	0.366	0.324	1 342	1.342
9-1-2	_,	17 -	-°-	T 0 T	-ö-	- 1 7 -	5.880	0.346	0.305	1 332	1.332
10 2		₁₇ _	0	1 0	0	17	5.840	0.344	0.303	1 311	1.311
11 2	188	17	0	0	0	17	5.860	0.345	0.304	1 321	1.321
12 2	195	17	0	0	0	17	5.800	0.341	0.300	1 366	1.366
Totals & Av	vgs	204	1_	0	0	203	5.887	0.348	0.307	1.338	1.335
Std. Deviat	tions _		L_	¦ — ¦	- 4		0.172	0.010	0.009	0.029	0.024
CVs							2.917%	2.826%	2.953%	2.157%	1.772%
1 3	135	17	0	1	0	16	5.220	0.326	0.286	1.449	1.367
2 3	_	1/ -	-0-	<u></u>	-0	- 10 -	5.680	0.334	0.293	1311	1.311
3 3	_!		0	0	0	17	5.660	0.333	0.291	1 312	1.312
4 3	120	17	0	0	0	17	5.800	0.341	0.301	1 315	1.315
5 3	128		0	i o i	0	17	5.560	0.327	0.287	1 326	1.326
6 3	137	17	0	0 1	0	17	5.980	0.352	0.310	1 277	1.277
7_ _3	_'	17	_0_	l 👱 l	0	17	5.880	0.346]	0.304	1 329	1.329
8_ _3	_'		_2_	. — .	_0_	15	5.340	L <u>0.356</u> J	0.315	<u> 1 349</u> _	1.329
9 3	_'	17 -		. — .	_0_	_ 17	5.780	0.340	0.299	1 303 1 386	1.303
10 3	_'	$-\frac{17}{17}$	_1_ 0	1 1	0_		5.060 5.840	0.337 0.344	0.296	1 386	1.345
12 3	_'	1/ -	F ₀ -	<u>0</u>	-6-	- 1 / ₁₇ -	5.780	0.344 0.340	0.303	1 316	1.316
Totals & Av		204	3	: :	0	199	5.632	0.340	0.299	1.332	1.320
Std. Deviat			┌	i = i			0.284	0.009	0.009	0.045	0.022
CVs				Ϊ [—] Ϊ			5.046%	2.648%	2.946%	3.401%	1.681%
	- 00	47	_	_	C	47	F 000	0.247	0.225	1 004	1 201
$-\frac{1}{2} - \left -\frac{4}{4} \right $	-1	$-\frac{17}{17}$	0_	<u>0</u>	0_	$-\frac{17}{17}$	5.900 5.840	0.347	0.306		
3-1-4	-1	17 -		0 1	0	- 1 /	5.860	0.344	0.304	1 282	1.282
-3-1-4	_	1/ -	- ₀ -			- 1 /	5.980	+ - 0.343 - +	0.311	1 314 -	1.314
5 - 4	-1	17 _	0	† o †	-0	- - 17 -	5.880	0.346	0.306	1 274	1.274
6 4	_	17	0	0	0	17	5.740	0.338	0.296	1 307	1.307
7 4	148	17	0	0	0	17	6.160	0.362	0.322	1 354	1.354
84	_	17	0	0	0	17	6.040	0.355	0.315	1 309	1.309
94	-1	17	0_	0	0_	17	6.060	0.356	0.316	1 254	1.254
10 4	_		_0_	0 1	_0_	_ 17	5.780	0.340	0.300	1 280	1.280
$-\frac{11}{12} - \frac{4}{4}$	_	$-\frac{17}{17}$	0_	$\frac{1}{0}$	0_	$-\frac{16}{17}$ $-$	<u>5.660</u> _	0.354 0.339	0.312		
Totals & Av		204				203	5.888	0.339	0.298	1.292	1.289
Std. Deviat			0_	1 1	0		0.148	1 0.008 1	0.008	0.027	0.028
CVs			┞-	ı — i			2.510%	2.241%	2.550%	2.106%	2.196%
			_								

Table 4. Bird Weights and Feed Conversion Days 0 - 14 (01DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5

Facility Number 7

Block Int No. Day of E E E E E E D14 (kg) (kg) (kg) Conversion C			No. Birds		큣	?	No. Birds	2442	D14 Avg Bird	D0-14 Avg	Feed	Adj. Feed
1 5 99	Block Trt		Started	ality	oval	oval	Weighed	D14 Pen Wt	Wt	Bird Gain	_	Conversion
2		NO.	Day 0	Mort	Rem	Rem	D14	(kg)	(kg)	(kg)	D0-14	D0-14
2												
S	L					_	- $ -$					1.246
S 138 17					· — +				+ — — — +			+ — — — -
S						_			+ — — — - +			+ — — — -
Fig. Str. 138 17	I	-1							+ — — — - +		! — — — —	+ — — — -
Total State						_			+ +		! — — — —	+
S	I '					_	- $ -$		1		' — — — —	1.261
Totals & Augs	8 5	149	17	0	0	0	17	6.220	0.366	0.324	1 291	1.291
11 5 183 17 0 0 0 17 6.300 0.371 0.330 1244 1.244 1.244 1.245 1.25 192 17 0 0 0 0 17 6.280 0.366 0.325 1.263 1.265 1	9 5	163	17	0	0	0	17	6.420	0.378	0.336	1 262	1.262
Totals & Augs Totals & Aug	10 5	173	17	0	0	0	17	6.440	0.379	0.337	1 271	1.271
Totals & Avgs Std. Deviations Cvs	11_ _5_	. — —		0_					<u>- </u>			1.244
Std. Deviations		_				_						1.269
1			204 _	_0_	0	0_	_ 204 _					1.263
1		ons _			¦ — ¦-	⋅┨						
The color of the	CV3			_		_		2.270/6	2.27070	2.40770	1.372/0	1.372/0
3	1 6	134	17	0	0	0	17	6.400	0.376	0.337	1 302	1.302
1	2 6	106	17	0		0	17	6.200	0.365	0.325	1 251	1.251
Totals & Awgs	L I				· <u>~</u> +	_	- $ -$		+ +			1.257
Totals & Avgs						_			+ +			1.238
Totals & Avgs	F I					_			+ — — — +			+ — — — -
Section Sect	F I	-1			· - +	_			+ +			+ — — — -
The color of the	I					_			+ — — — +			$1 - \frac{1.302}{1.324} - \frac{1}{1.324}$
11						_			+ — — — +			1.252
12 6 196	10 6	172	17	0	0	0	17	6.420	0.378	0.336	1 231	1.231
Totals & Avgs	11 6	184	17	0	0	0		6.500	0.382	0.342	1 215	1.215
Std. Deviations CVs	-				0	_						1.226
CVs				_0_	0	0			+ — — — +			
1 7 100 17 0 0 17 6.480 0.381 0.340 1.258 1.258 2 7 107 17 0 0 17 6.280 0.369 0.328 1.239 1.235 3 7 114 17 0 0 0 17 6.520 0.384 0.342 1.245 1.245 4 7 121 17 0 0 17 6.300 0.371 0.329 1278 1.276 5 7 125 17 0 1 0		ons _		⊢-	! — ↓	- 4					! — — — —	+ — — — -
2	CVS					_		2.03/70	2.03/70	3.03776	2.73376	2.73376
2	1 7	100	17	0	0	0	17	6.480	0.381	0.340	1 258	1.258
A	2 7		17	0		0	17	6.280	0.369	0.328	1 239	1.239
S	3 7	114	17	0	0	0	17	6.520	0.384	0.342	1 245	1.245
Color Colo	L			0		_						1.278
Totals & Avgs						_			:			1.300
S	I :											:
9 7 159					. —	_						
10												. — — — — -
11	I					_						1.225
Totals & Avgs 204	L		- $ -$									1.231
Std. Deviations CVs	12 7	194	17	0	0	0	17	6.340	0.373	0.333		1.251
CVs			204	1	. - -	0	202					1.256
1 8 136 17 0 0 0 17 6.280 0.369 0.329 1 303 1.303 2 8 104 17 0 0 0 17 6.280 0.369 0.329 1 260 1.260 3 8 111 17 2 0 0 15 5.880 0.392 0.351 1 308 1.283 4 8 124 17 1 0 0 16 6.060 0.379 0.338 1 269 1.256 5 8 129 17 1 0 0 16 6.060 0.379 0.338 1 243 1.236 5 8 129 17 1 0 0 16 6.280 0.368 0.326 1 311 1.243 5 18 145 17 0 0 0 17 6.560 0.386 0.346 1 251 1.255		ons _		L -	: :	- 4			+ +			0.020
2 8 104 17 0 0 0 17 6.280 0.369 0.329 1 260 1.266 3 8 111 17 2 0 0 15 5.880 0.392 0.351 1 308 1.281 4 8 124 17 1 0 0 16 6.060 0.379 0.338 1 269 1.251 5 8 129 17 1 0 0 16 6.280 0.393 0.351 1 243 1.231 6 8 178 17 0 1 0 16 5.880 0.368 0.326 1 311 1.28 7 8 145 17 0 0 0 17 6.560 0.386 0.346 1 251 1.251 8 8 155 17 0 0 0 17 6.600 0.388 0.347 1 234 1.234 9 8 165 17 0 0 0 17 6.720 0.395 </th <th>CVS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.191%</th> <th>5.45/%</th> <th>6.0/4%</th> <th>1./86%</th> <th>1.021%</th>	CVS							0.191%	5.45/%	6.0/4%	1./86%	1.021%
2 8 104 17 0 0 0 17 6.280 0.369 0.329 1 260 1.260 3 8 111 17 2 0 0 15 5.880 0.392 0.351 1 308 1.281 4 8 124 17 1 0 0 16 6.060 0.379 0.338 1 269 1.251 5 8 129 17 1 0 0 16 6.280 0.393 0.351 1 243 1.231 6 8 178 17 0 1 0 16 5.880 0.368 0.326 1 311 1.28 7 8 145 17 0 0 0 17 6.560 0.386 0.346 1 251 1.251 8 8 155 17 0 0 0 17 6.600 0.388 0.347 1 234 1.234	1 8	136	17	0	0	0	17	6,280	0.369	0.329	1 303	1.303
3 8 111 17 2 0 0 15 5.880 0.392 0.351 1308 1.283 1 4 8 124 17 1 0 0 16 6.060 0.379 0.338 1 269 1.254 1 1 1 1 1 1 1 1 1						_			+ +			1.260
5 8 129 17 1 0 0 16 6.280 0.393 0.351 1.243 1.233 6 8 178 17 0 1 0 16 5.880 0.368 0.326 1.311 1.286 7 8 145 17 0 0 0 17 6.560 0.386 0.346 1.251 1.253 8 8 155 17 0 0 0 17 6.600 0.388 0.347 1.234 1.234 9 8 165 17 0 0 0 17 6.6720 0.395 0.335 1.240 1.246 10 8 167 17 0 0 0 0 17 6.540 0.385 0.344 1.241 1.243 11 8 187 17 0 0 0 0 17 6.580 0.385 0.344 1.241 1.243 12 8 193 17 0 0 0 17 6.580 0.387 0.347 1.246 1.246 Totals & Avgs 204 4 1 0 199 6.368 0.384 0.343 1.261 1.255		111				0		5.880	0.392	0.351	1 308	1.285
6 8 178 17 0 1 0 16 5.880 0.368 0.326 1311 1.286 7 8 145 17 0 0 0 17 6.560 0.386 0.346 1.251 1.252 8 8 155 17 0 0 0 17 6.600 0.388 0.347 1.234 1.234 9 8 165 17 0 0 0 17 6.720 0.395 0.355 1.240 1.240 10 8 167 17 0 0 0 17 6.760 0.398 0.357 1.220 1.224 11 8 187 17 0 0 0 17 6.760 0.398 0.357 1.220 1.246 12 8 187 17 0 0 0 17 6.540 0.385 0.344 1.241 1.245 12 8 193 17 0 0 0 0 0 0	4 8			1	0	0	16					1.256
7 8 145 17 0 0 0 17 6.560 0.386 0.346 1 251 1.251 8 8 155 17 0 0 0 17 6.600 0.388 0.347 1 234 1.234 9 8 165 17 0 0 0 17 6.720 0.395 0.355 1 240 1.240 10 8 167 17 0 0 0 17 6.760 0.398 0.357 1 220 1.226 11 8 187 17 0 0 0 17 6.540 0.385 0.344 1 241 1.24 12 8 193 17 0 0 0 17 6.580 0.387 0.347 1 246 1.246 Totals & Avgs 204 4 1 1 199 6.368 0.384 0.343 1.261 1.256					-+	_			+ — — — +			1.231
8 8 155 17 0 0 0 17 6.600 0.388 0.347 1 234 1.234 9 8 165 17 0 0 0 17 6.720 0.395 0.355 1 240 1.240 10 8 167 17 0 0 0 17 6.760 0.398 0.357 1 220 1 224 11 8 187 17 0 0 0 17 6.540 0.385 0.344 1 241 1.244 12 8 193 17 0 0 0 17 6.580 0.387 0.347 1 246 1.244 Totals & Avgs 204 4 1 1 0 199 6.368 0.384 0.343 1.261 1.254		- 1 — —				_			+ +			1.280
9 8 165 17 0 0 0 17 6.720 0.395 0.355 1 240 1.240 10 8 167 17 0 0 0 17 6.760 0.398 0.357 1 220 1.220 11 8 187 17 0 0 0 17 6.540 0.385 0.344 1 241 1.241 12 8 193 17 0 0 0 17 6.580 0.387 0.347 1 246 1.246 Totals & Avgs 204 4 1 1 0 199 6.368 0.384 0.343 1.261 1.254	<u> </u>				- $+$	_			+ +			
10 8 167 17 0 0 0 17 6.760 0.398 0.357 1 220 1.220 11 8 187 17 0 0 0 17 6.540 0.385 0.344 1 241 1.241 12 8 193 17 0 0 0 17 6.580 0.387 0.347 1 246 1.246 Totals & Avgs 204 4 1 1 0 199 6.368 0.384 0.343 1.261 1.254		-1									! — — — —	· — — — -
11 8 187 17 0 0 0 17 6.540 0.385 0.344 1 241 1.242 12 8 193 17 0 0 0 17 6.580 0.387 0.347 1 246 1.246 Totals & Avgs 204 4 1 1 0 199 6.368 0.384 0.343 1.261 1.254	<u> </u>					_					' — — — —	1.240 1.220
12 8 193 17 0 0 0 17 6.580 0.387 0.347 1 246 1.246 1	I '										'	1.241
	I '	'				_	- $ -$		1		' — — — —	1.246
	Totals & Ave	gs_	204	4	1	0	199	6.368	0.384	0.343	1.261	1.254
		ons		LΞ		.]						0.025
CVs 4.822% 2.727% 3.039% 2.438% 1.960	CVs					1		4.822%	2.727%	3.039%	2.438%	1.960%

Graph 1. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 14) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Adj. Feed Treatment Description Conversion	1.360 Low Phosphate (LP)	1.335 High Phosphate (HP)	1.320 250 Units Phytase (LP)	1.289 500 Units Phytase (LP)	1.263 1000 Units Phytase (LP)	1.258 3000 Units Phytase (LP)	1.256 6000 Units Phytase (LP)	1.254 60000 Units Phytase (LP)
								1.254 6
Avg. Bird Wt Gain (kg)	0.265	0.307	0.299	0.307	0.325	0.337	0:330	0.343
Trt Group	1	2	3	4	2	9	7	_∞

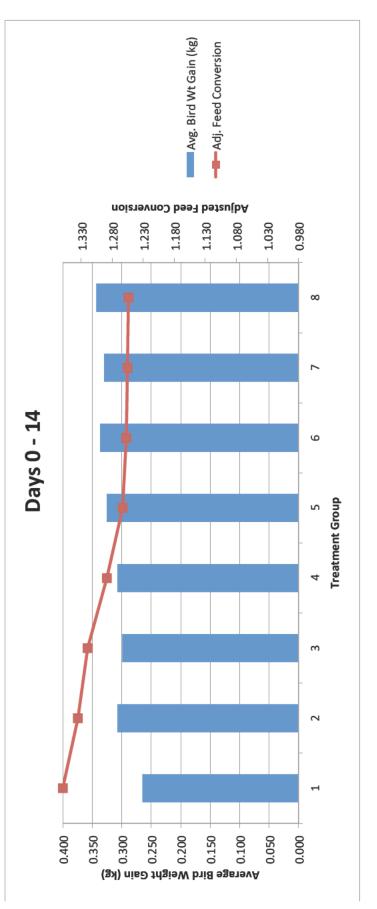


Table 6. Bird Weights and Feed Conversion Days 0 - 21 (08DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D0-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
		NO.	Day 0	Mor	Rem	Rem	D21	(kg)	(kg)	(kg)	D0-21	D0-21
1	1	97	17	0	0	0	17	10.620	0.625	0.584	1.389	1.389
2	1	103	17	0	0	0	17	10.660	0.627	0.587	1.402	1.402
$-\frac{2}{3}$	1	110	17	0	0	0	17	10.680	0.628	0.587	1.419	1.419
4	1 1	122	17	0		0	17	11.100	0.653	0.613	1.378	1.378
5	1 1	132	17	0	0	0	17	10.340	0.608	0.568	1.403	1.403
6	1 1	177	17	0	0	0	17	10.600	0.624	0.583	1.355	1.355
7	1	141	17	0	0	0	17	10.720	0.631	0.589	1.391	1.391
8	1	152	17	0	0	0	17	10.640	0.626	0.585	1.424	1.424
9	1 1	160	17	0	0	0	17	11.160	0.656	0.615	1.405	1.405
10	1	170	17	0	. <u>~</u> _	0	17	10.840	0.638	0.597	1.380	1.380
_11	1	186	17	0	0	0	17	10.380	0.611	0.570	1.361	1.361
12		190	17	0	0	0	17	10.500	0.618	I 0.578	I 1.375	1.375
Totals 8	& Avgs		204	0	0	0	204	10.687	0.629	0.588	1.390	1.390
Std. De	<u>viatior</u>	ns		ا ا	! _ _	!		0.249	0.015	0.015	0.022	0.022
CVs								2.332%	2.332%	2.485%	1.551%	1.551%
1	2 +	133	17	0	0	0_	17	<u>12.500</u>	0.735	0.696	1.357	1.357
2_	i_2_ ∔	102	17	0	0	0	17	12.760	0.751	0.710	1.347	1.347
$-\frac{3}{4}$	2 !	113	17	<u>0</u> _		0_		12.720	0.748	0.707	1.333	1.333
	2 - 2 +	123	17		· – –	 – –	17	12.780	0.752	0.712	1.334	1.334
5	<u>_2</u> _i	126	17	1_	. <u>0</u> _	0_	16	12.220	0.764	0.722	1.380	1.365
-6	1 2 1	= =	17	0_		0_	17	13.060	0.768	$\frac{1}{1} = \frac{0.727}{0.724} = -$	1.339	1.339
$-\frac{7}{2}$	i- 2 +	144	17	0_	0_	0_	17	13.140	0.773	$-\frac{0.731}{0.760}$	1.352	1.352
8_	<u> 2 </u>	151	17	0_	0_	0_	17	13.640	0.802	0.760	1.357	1.357
<u>9</u> _	$\left -\frac{2}{2} \right $	166 169	1 7	0	0	0_	$-\frac{17}{17}$	12.860 12.920	0.756 0.760	0.715 0.720	1.359 1.342	1.359 1.342
11	- <u>²</u> -↓ 2	188	1 /	0	0	0	1/	12.760	0.751	L = 0.720 = - 0.710	1 - 1.342 1 1.360	1.360
12		195	1 /	- 0 -		0	1/	12.860	0.756	$\frac{1}{1} - \frac{0.710}{0.716} - \frac{1}{1}$	1.368	1.368
Totals 8			204	1	0	0	203	12.852	0.760	0.719	1.352	1.351
Std. De					· -	- -		0.346	0.017	0.016	0.014	0.012
CVs								2.690%	2.196%	2.223%	1.033%	0.878%
1	3	135	17	0	1	0	16	11.280	0.705	0.664	1.398	1.363
2	3 1	101	17	0	0	0	17	12.260	0.721	0.681	1.350	1.350
3	3 7	115	17	0	0	0	17	12.240	0.720	0.678	1.334	1.334
4	3	120	17	0	0	0	17	12.440	0.732	0.691	1.339	1.339
5	3 1	128	17		0		17	12.120	0.713	0.672	1.345	1.345
6	3	137	17		0		17	12.980	0.764	0.722	1.338	1.338
7	3	142	17	0	0	0	17	12.780	0.752	0.710	1.351	1.351
8		154	17		0		15	11.460	0.764	0.723	1.377	1.368
9	3	161	17	0	0	0	17	12.160	0.715	0.674	1.365	1.365
10	3 1	171	17			0	1 5	11.160	0.744	0.703	1.379	1.362
11	3 1	185	17	0	0	0	17	12.320	0.725	0.684	1.355	1.355
12	3	191	17	0	0	0	17	12.660	0.745	0.704	1.328	1.328
Totals 8			204	3	2	0	199	12.155	0.733	0.692	1.355	1.350
Std. De	viation	ns	L	L		¦		0.579	0.020	0.020	0.021	0.013
CVs					<u> </u>	ı		4.767%	2.722%	2.851%	1.550%	0.980%

Table 6. Bird Weights and Feed Conversion Days 0 - 21 (08DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block Trt Pen	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D0-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
	Day 0	Mo	Ren	Ren	D21	(kg)	(kg)	(kg)	D0-21	D0-21
1 4 98	17	0	0	0	17	12.760	0.751	0.710	1.333	1.333
2 4 105	17	0	0	0	17	12.620	0.742	0.701	1.315	1.315
3 4 116	17	0	0	0	17	12.940	0.761	0.720	1.318	1.318
4 4 119	17	0		0	17	12.800	0.753	0.712	1.330	1.330
5 4 127	17	0	0	0	17	12.020	0.707	0.667	1.332	1.332
6 4 179	17	0	0	0	17	12.380	0.728	0.687	1.329	1.329
7 4 148	17	0	0	· — —	17	13.320	0.784	0.743	1.383	1.383
8 4 153		0	0	0_	17	12.660	0.745	0.704	1.349	1.349
$\begin{bmatrix} -9 & 1 & 4 & 1162 \\ 10 & 1 & 4 & 1174 \end{bmatrix}$	1 7	0	$\frac{0}{0}$	0_	17	13.080	0.769	0.729	1.305	1.305
	17	0	⊣	0_	17	12.840	0.755	$-\frac{0.715}{0.608}$	1.294	1.294
11 1 4 1 182	1 7	0	$\frac{1}{0}$	0_	$-\frac{16}{17}$	11.840	0.740	0.698	1.332	1.318 1.323
Totals & Avgs	204	0	1	0	203	12.440 12.642	0.732 0.747	0.691 0.706	1.323 1.329	1.323
Std. Deviations			. 🛨 .			0.422	0.020	0.020	0.022	0.022
CVs				i – -		3.338%	2.679%	2.839%	1.677%	1.691%
1 5 99	17	0	0	0	17	13.720	0.807	0.766	1.299	1.299
2 5 108	17	0	0	0	17	13.120	0.772	0.731	1.306	1.306
3 5 112	17	0		0	17	13.420	0.789	0.749	1.315	1.315
4 5 118	17	0	0	0	17	13.500	0.794	0.754	1.304	1.304
5 5 130	17	0	0	0	17	12.980	0.764	0.723	1.339	1.339
6 5 138	17	1_	. <u>-</u> -		16	12.620	0.789	0.748	1.330	1.299
$\frac{7}{100} = \frac{5}{100} = \frac{143}{1100}$		0	0	0	17	13.720	0.807	0.766	1.298	1.298
$\begin{bmatrix} -8 & 1 & 5 & 149 \\ 9 & 1 & 5 & 163 \end{bmatrix}$	17	- 0 -	0	0_	$-\frac{17}{17}$	13.760	0.809	0.768	1 _ <u>1.324</u> 1.319	1.324
10 5 173	17	0	0	0	$-\frac{17}{17}$	13.920	0.819	- <u>0.777</u> - 0.794	+	1.319
11 5 183	1 /	0		0	1/	14.200 12.880	0.835 0.758	0.794 0.717	1.311 1.317	1.311 1.317
12 5 192	1 /	- 0 -	0	0	1/	13.680	0.805	0.763	1.317	1.317
Totals & Avgs	204	1	_	0	203	13.460	0.796	0.755	1.315	1.312
Std. Deviations			· - -	- - -		0.469	0.023	0.022	0.012	0.012
CVs						3.488%	2.880%	2.979%	0.935%	0.914%
1 6 134	17	1	0	0	16	13.360	0.835	0.796	1.376	1.330
2 i 6 i 106	17	0	0	0	17	13.540	0.796	0.757	1.313	1.313
3 6 109	17	0	0		17	13.960	0.821	0.780	1.315	1.315
4 6 117	17	0	0	0	17	13.340	0.785	0.745	1.295	1.295
5 1 6 1 131	17		0		17	13.640			1.316	1.316
6 6 139	17	0	0	0_	17	13.760	0.809	0.768	1.292	1.292
$-\frac{7}{9}$ $-\frac{6}{9}$ $+\frac{147}{459}$	1 7	0	0		17	14.520	0.854	0.812	1.362	1.362
8 6 150	1 7		0		17	14.000	0.824	0.782	1.337	1.337
-96 + 164	17	- ¥ ⊣	. ╩⊣		$-\frac{17}{17}$	14.760	0.868	0.827	1.319	1.319
10 6 172	1 7		0		$-\frac{17}{17}$	14.100	0.829 0.794	0.788	1.281 1.299	1.281
$\begin{bmatrix} -\frac{11}{12} & -\frac{6}{12} & \frac{184}{196} \end{bmatrix}$	1 7	0	0	0	$-\frac{17}{17}$	13.500 13.820	0.794	0.75 <u>4</u> 0.771	1.315	1.299 1.315
Totals & Avgs	204		0		203	13.858	0.819	0.771	1.318	1.314
Std. Deviations		┟╧┤		<u>'</u>		0.442	0.025	0.024	0.028	0.022
CVs						3.187%	3.025%	3.132%	2.126%	1.665%

Table 6. Bird Weights and Feed Conversion Days 0 - 21 (08DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D0-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 0	οМ	Ren	Ren	D21	(kg)	(kg)	(kg)	D0-21	D0-21
1	7	100	17	0	0	0	17	14.140	0.832	0.791	1.318	1.318
2	7	107	17	0	0	0	17	13.660	0.804	0.763	1.316	1.316
3	7	114	17	0	0	0	17	14.120	0.831	0.789	1.318	1.318
4	7	121	17	0	0	0	17	13.620	0.801	0.760	1.314	1.314
5	7	125	17	0	1	0	16	12.180	0.761	0.720	1.344	1.339
6	7	180	17	1	0	0	16	12.900	0.806	0.765	1.307	1.301
7	7	146	17	0	0	0	17	13.980	0.822	0.780	1.317	1.317
8	7	156	17	0	0	0	17	13.920	0.819	0.777	1.324	1.324
9	7	159	17	0	î 0	0	17	14.400	0.847	0.805	1.313	1.313
10	7	168	17	0	[0]	0	17	12.800	0.753	0.712	1.190	1.190
11	7	181	17	0	0	0	17	13.700	0.806	0.766	1.292	1.292
12	7	194	17	0	0	0	17	13.760	0.809	0.769	1.311	1.311
Totals 8	& Avg	S	204	1	1	0	202	13.598	0.808	0.766	1.305	1.304
Std. De	viatio	ns		Γ	i	i – 7		0.649	0.027	0.027	0.038	0.038
CVs					[4.773%	3.384%	3.550%	2.927%	2.900%
1	8	136	17	1	0	0	16	13.180	0.824	0.784	1.403	1.342
2	8	104	17	0	0	0	17	14.000	0.824	0.783	1.309	1.309
3	8	111	17	2	0	0	15	12.900	0.860	0.819	1.334	1.324
4	8	124	17	1	0	0	16	13.100	0.819	0.778	1.326	1.320
_5	8	129	17	1	0	0	16	13.600	0.850	0.808	1.316	1.310
_6	_8_	178	17	0	1_1	0	16	12.840	0.803	0.761	1.337	1.323
_7	8	145	17	0	0	0	17	14.360	0.845	0.805	1.313	1.313
_8	_8_	155	17	0	0	0	17	14.200	0.835	0.794	1.314	1.314
9	8	165	17	0	0	0	17	14.440	0.849	0.809	1.337	1.337
10	8	167	17	0	0	0	17	14.900	0.876	0.836	1.280	1.280
11	8	187	17	0	0	0	17	14.300	0.841	0.801	1.292	1.292
12	8	193	17	0	0	0	17	14.420	0.848	0.808	1.306	1.306
Totals 8	& Avg	s	204	5	1	0	198	13.853	0.839	0.799	1.322	1.314
Std. De	viatio	ns						0.699	0.020	0.020	0.031	0.017
CVs					ı			5.048%	2.388%	2.516%	2.331%	1.310%

Table 8. Bird Weights and Feed Conversion Days 14 - 21 (08DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D14-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 14	Mo	Ren	Ren	D21	(kg)	(kg)	(kg)	D14-21	D14-21
_1	1	97	17	0	ı <mark>0</mark> ı	0	17	10.620	0.625	0.318	1.437	1.437
2	1	105	17	0	0	0	17	10.660	0.627	0.325	1.409	1.409
3	1	110	17	0	0	0	17	10.680	0.628	0.328	1.466	1.466
4 I	1	122	17	0		0	17	11.100	0.653	0.335	1.393	1.393
5	1	132	17	0	[0]	0	17	10.340	0.608	0.313	1.425	1.425
6	1	177	17	0	0	0	17	10.600	0.624	0.321	1.363	1.363
[_ 7 _!	1	141	17	0	0	0	17	10.720	0.631	0.320	1.401	1.401
8	1	152	17	0	0	0	17	10.640	0.626	0.324	1.451	1.451
i	1	160	17	0	0 j	0	17	11.160	0.656	0.339	1.465	1.465
10	1	170	17	0	0	0	17	10.840	0.638	0.333	1.406	1.406
11	1	186	17	0	0	0	17	10.380	0.611	0.304	1.384	1.384
12	1	190	17	0	i <mark>0</mark> i	0	17	10.500	0.618	0.318	1.381	1.381
Totals 8	& Avg	s	204	0	0	0	204	10.687	0.629	0.323	1.415	1.415
Std. De	viatio	ns _			<u></u>			0.249	0.015	0.010	0.034	0.034
CVs					<u> </u>			2.332%	2.332%	3.069%	2.395%	2.395%
1	2	133	17	0	0	0	17	12.500	0.735	0.402	1.348	1.348
2	_2	102	17	0	0	0	17	12.760	0.751	0.411	1.367	1.367
3!	_2_	113	17	<u> </u>	:	0	17	12.720	0.748	0.406	1.357	1.357
4 _	_2_	123	17	0	0	0	17	12.780	0.752	0.407	1.344	1.344
<u>5</u> _i	_2_	126	<u> 16</u>	0	i <u>°</u> J	0	16	12.220	0.764	0.408	1.365	1.365
6 _	_2_	r = =	17	0	! <mark>0</mark> !		17	13.060	0.768	0.409	1.353	1.353
7	_2	144	17	<u>0</u>	0	0	17	13.140	0.773	0.413	<u>1.350</u>	1.350
<mark>8</mark> _!	_2_	151	17	<u> </u>	i <mark>0</mark> i	0	17	13.640	0.802	0.436	1.369	1.369
- 9 -	_2	166	17	0	+ — →	0	17	12.860	0.756	0.411	1.378	1.378
10	_2_	169	17	<u>. u</u> .	ւ⊔⊥	0		12.920	0.760	0.416	<u>1.364</u>	1.364
11 _	2	; = = i	17	0_	;	0_	17	12.760	0.751	0.406	1.388	1.388
12	2	195	17	0		0	17	12.860	0.756	0.415	1.368	1.368
Totals 8			203	. <u>o</u> _	i 🗖 Ti	_0_	203	12.852	0.760	0.412	1.363	1.363
Std. De CVs	viatio	ns — —			¦			0.346 2.690%	0.017 2.196%	0.009 2.139%	0.013 0.950%	0.013 0.950%
CVS								2.09070	2.190%	2.13970	0.930%	0.930%
1	3	135	16	0	0 1	0	16	11.280	0.705	0.379	1.360	1.360
	1 3 -	101	10	- 0 -	 	0	10	12.260	0.721	0.387	1.380 1.380	1.380
-2	3	115	17	- 0 -	· — -		17	12.240	0.720	0.387	1.350	1.350
$-\frac{3}{4}$	- 3 -	120	1 /	- 0 -	1 0 1	0	1/	12.440	0.732	0.391	1.358	1.358
	_ 3		1 /		101		17		0.713		1.360	1.360
- 6 -	3	· — — I	1 /		ก็จ้า		17	12.980	0.764	0.412	1.383	1.383
ŀ - ̈́!	1- 3 -	142	1 7	- 0 -	¦ ŏ †	0	17	12.780	0.752	0.406	1.368	1.368
- <u>'</u>	3	154	15		1 <mark>0</mark> 1		15	11.460	0.764	0.408	1.399	1.399
	3	1	17		, <u>,</u> ,		13	12.160	0.715	0.375	$\frac{1.335}{1.414} = \frac{1}{1}$	1.414
10	ı— — ⊣	171	15		 		1/	11.160	0.744	0.407	1.374	1.374
11 -			17		<u> </u>		13	12.320	0.725	0.381	1.392	1.392
12	- 3 -	191	17	- o -	; ŏ ;	0	17	12.660	0.745	0.405	1.337	1.337
Totals 8		_	199	0	_	_	199	12.155	0.733	0.394	1.373	1.373
Std. De				- -	ŗ - - i			0.579	0.020	0.013	0.022	0.022
CVs				l – -	+ — → '			4.767%	2.722%	3.292%	1.591%	1.591%

Graph 2. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 21) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Treatment Description								
Treatment	Low Phosphate (LP)	High Phosphate (HP)	250 Units Phytase (LP)	500 Units Phytase (LP)	1000 Units Phytase (LP)	3000 Units Phytase (LP)	6000 Units Phytase (LP)	60000 Units Phytase (LP)
Adj. Feed Conversion	1.390	1.351	1.350	1.327	1.312	1.314	1.304	1.314
Avg. Bird Wt Gain (kg)	0.588	0.719	0.692	0.706	0.755	0.778	992'0	0.799
Trt Group	1	2	3	4	5	9	7	_∞

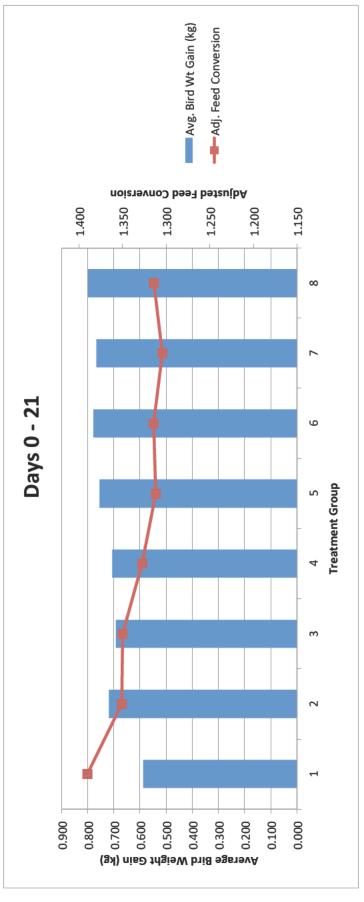


Table 8. Bird Weights and Feed Conversion Days 14 - 21 (08DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D14-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 14	Mo	Ren	Ren	D21	(kg)	(kg)	(kg)	D14-21	D14-21
_1	1	97	17	0	ı <mark>0</mark> ı	0	17	10.620	0.625	0.318	1.437	1.437
2	1	105	17	0	0	0	17	10.660	0.627	0.325	1.409	1.409
3	1	110	17	0	0	0	17	10.680	0.628	0.328	1.466	1.466
4 I	1	122	17	0		0	17	11.100	0.653	0.335	1.393	1.393
5	1	132	17	0	[0]	0	17	10.340	0.608	0.313	1.425	1.425
6	1	177	17	0	0	0	17	10.600	0.624	0.321	1.363	1.363
[_ 7 _!	1	141	17	0	0	0	17	10.720	0.631	0.320	1.401	1.401
8	1	152	17	0	0	0	17	10.640	0.626	0.324	1.451	1.451
i	1	160	17	0	0 j	0	17	11.160	0.656	0.339	1.465	1.465
10	1	170	17	0	0	0	17	10.840	0.638	0.333	1.406	1.406
11	1	186	17	0	0	0	17	10.380	0.611	0.304	1.384	1.384
12	1	190	17	0	i <mark>0</mark> i	0	17	10.500	0.618	0.318	1.381	1.381
Totals 8	& Avg	s	204	0	0	0	204	10.687	0.629	0.323	1.415	1.415
Std. De	viatio	ns _			<u></u>			0.249	0.015	0.010	0.034	0.034
CVs					<u> </u>			2.332%	2.332%	3.069%	2.395%	2.395%
1	2	133	17	0	0	0	17	12.500	0.735	0.402	1.348	1.348
2	_2	102	17	0	0	0	17	12.760	0.751	0.411	1.367	1.367
3!	_2_	113	17	<u> </u>	:	0	17	12.720	0.748	0.406	1.357	1.357
4 _	_2_	123	17	0	0	0	17	12.780	0.752	0.407	1.344	1.344
<u>5</u> _i	_2_	126	<u> 16</u>	0	i <u>°</u> J	0	16	12.220	0.764	0.408	1.365	1.365
6 _	_2_	r = =	17	0	! <mark>0</mark> !		17	13.060	0.768	0.409	1.353	1.353
<mark>7</mark> _	_2	144	17	<u>0</u>	0	0	17	13.140	0.773	0.413	<u>1.350</u>	1.350
<mark>8</mark> _!	_2_	151	17	<u> </u>	i <mark>0</mark> i	0	17	13.640	0.802	0.436	1.369	1.369
- 9 -	_2	166	17	0	+ — →	0	17	12.860	0.756	0.411	1.378	1.378
10	_2	169	17	<u>. u</u> .	ւ⊔⊥	0		12.920	0.760	0.416	<u>1.364</u>	1.364
11 _	2	; = = i	17	0_	;	0_	17	12.760	0.751	0.406	1.388	1.388
12	2	195	17	0		0	17	12.860	0.756	0.415	1.368	1.368
Totals 8			203	. <u>o</u> _	i 🗖 Ti	_0_	203	12.852	0.760	0.412	1.363	1.363
Std. De CVs	viatio	ns — —			¦			0.346 2.690%	0.017 2.196%	0.009 2.139%	0.013 0.950%	0.013 0.950%
CVS								2.09070	2.190%	2.13970	0.930%	0.930%
1	3	135	16	0	0 1	0	16	11.280	0.705	0.379	1.360	1.360
	1 3 -	101	10	- 0 -	 	0	10	12.260	0.721	0.387	1.380 1.380	1.380
-2	3	115	17	- 0 -	· — -		17	12.240	0.720	0.387	1.350	1.350
$-\frac{3}{4}$	- 3 -	120	1 /	- 0 -	1 0 1	0	1/	12.440	0.732	0.391	1.358	1.358
	_ 3		1 /		101		17		0.713		1.360	1.360
- 6 -	3	· — — I	1 /		ก็จ้า		17	12.980	0.764	0.412	1.383	1.383
ŀ - ̈́!	1- 3 -	142	1 7	- 0 -	¦ ŏ †	0	17	12.780	0.752	0.406	1.368	1.368
- <u>'-</u> -	3	154	15		1 <mark>0</mark> 1		15	11.460	0.764	0.408	1.399	1.399
	3	1	17		, <u>,</u> ,		13	12.160	0.715	0.375	$\frac{1.335}{1.414} = \frac{1}{1}$	1.414
10	ı— — ⊣	171	15		 		1/	11.160	0.744	0.407	1.374	1.374
11 -			17		<u> </u>		13	12.320	0.725	0.381	1.392	1.392
12	- 3 -	191	17	- o -	; ŏ ;	0	17	12.660	0.745	0.405	1.337	1.337
Totals 8		_	199	0	_	_	199	12.155	0.733	0.394	1.373	1.373
Std. De				- -	ŗ - - i			0.579	0.020	0.013	0.022	0.022
CVs				l – -	+ — → '			4.767%	2.722%	3.292%	1.591%	1.591%

Table 8. Bird Weights and Feed Conversion Days 14 - 21 (08DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block T	rt	en lo.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D21 Pen Wt	D21 Avg Bird Wt	D14-21 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 14	Мо	Ren	Ren	D21	(kg)	(kg)	(kg)	D14-21	D14-21
1 1	4 i 9	8	1 7	0	0	0	17	12.760	0.751	0.404	1.364	1.364
2	4] 10	05	17	0	0	0	17	12.620	0.742	0.399	1.360	1.360
3 4	4 11	16	17	0	0	0	17	12.940	0.761	0.416	1.345	1.345
4 1		19	17	0	0	0	17	12.800	0.753	0.401	1.343	1.343
5 1	- + -	27	17	0	0	0	17	12.020	0.707	0.361	1.381	1.381
	<u>4 ! 17</u>		<u>17</u>	0	0_	0	17	12.380	0.728	0.391	1.346	1.346
	4 14 - + -		17	0	0		17	13.320	0.784	0.421	1.405	1.405
84	_ ~ _	53		0	ر 0 ا	0_	17	12.660	0.745	0.389	1.381	1.381
F, -	4 16			0		0_	17	13.080	0.769	0.413	1.345	1.345
10	- + -	74		0	0	0	17	12.840	0.755	0.415	1.303	1.303
	: -	82	<u> 16</u>	0	0	0_	16	11.840	0.740	0.386	1.362	1.362
	4 18	89	17	0	_	0	17	12.440	0.732 0.747	0.393 0.399	1.353 1.357	1.353
Totals & A Std. Devia			203	0	_0_	_0_	203	12.642 0.422	0.020	0.017		1.357 0.025
CVs	tions	·-ŀ			, 			3.338%	2.679%	4.188%	1.867%	1.867%
CVS		_		_				3.336/0	2.075/0	4.100/0	1.00770	1.507/0
1 !	5 I 9	9	17	0	0	0	17	13.720	0.807	0.446	1.338	1.338
		08	17	0	0	0	17	13.120	0.772	0.419	1.360	1.360
	5 I 11	_	17	0	. – –		17	13.420	0.789	0.428	1.349	1.349
L		18	17	0			17	13.500	0.794	0.426	1.348	1.348
5 - 5	- + - 5 13	30	17	0	0	0	17	12.980	0.764	0.407	1.367	1.367
6 i	: -	38	17	1		0	16	12.620	0.789	0.429	1.385	1.326
7 - 1 - !	5 7 14	43	17	0	0	0	17	13.720	0.807	0.432	1.327	1.327
8	5 1 4	49	17	0	0	0	17	13.760	0.809	0.444	1.347	1.347
9 ! !	5] 16	63	17	0	0	0		13.920	0.819	0.441	1.363	1.363
10	5 7 17	73	17	0	0	0	17	14.200	0.835	0.456	1.340	1.340
L	5 1 18		1 7	0		0	17	12.880	0.758	0.387	1.380	1.380
12	5 7 19	92	17	0	0	0	17	13.680	0.805	0.435	1.346	1.346
Totals & A	vgs	_	204	1	0_	0	203	13.460	0.796	0.429	1.354	1.349
Std. Devia	tions				 			0.469	0.023	0.019	0.017	0.016
CVs								3.488%	2.880%	4.331%	1.267%	1.186%
1 1	. ا م	24	17	4	0	0	16	12 260	0.835	0.450	1 /27	1 251
L – – – – :	6 <u>1</u> 3	34	<u>17</u>	$\frac{1}{0}$	0	0	$-\frac{16}{17}$	13.360 13.540	0.796	0.459 0.432	1.437 1.360	1.351 1.360
	6 10	_	1 /	0			$-\frac{17}{17}$	13.960	0.796	0.432	1.350	1.359
P — — — — ·	- + -	17	-1 /	0	0		1/	13.340	0.785	0.425	1.338	1.338
5 .			17		0		17		0.802		1.357	1.357
	6 7 13	39	17	0	0	0	17	13.760	0.809	0.435	1.338	1.338
h — — — I — I	$\frac{1}{6} + \frac{1}{14}$				0	0	17	14.520	0.854	0.459	1.408	1.408
	6 15	_	17		0	0	17	14.000	0.824	0.447	1.347	1.347
F I - 1		64	17	0	0	0	17	14.760	0.868	0.471	1.370	1.370
	6 i 17		17	0	0		17	14.100	0.829	0.452	1.318	1.318
11 (17		0		17	13.500	0.794	0.412	1.369	1.369
12	6 19	96	17	0	0	0	17	13.820	0.813	0.436	1.383	1.383
Totals & A	vgs		204	1	0	0	203	13.858	0.819	0.442	1.365	1.358
Std. Devia	tions	<u> </u>			, — -			0.442	0.025	0.016	0.032	0.023
CVs					_ _			3.187%	3.025%	3.734%	2.366%	1.711%

Table 8. Bird Weights and Feed Conversion Days 14 - 21 (08DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started Day 14	Mortality	Removal-1	Removal-2	No. Birds Weighed D21	D21 Pen Wt (kg)	D21 Avg Bird Wt (kg)	D14-21 Avg Bird Gain (kg)	Feed Conversion D14-21	Adj. Feed Conversion D14-21
1	7	100	17	0	0	_	17	14.140	0.832	0.451	1.363	1.363
2	7	107	17	0	0	0	17	13.660	0.804	0.434	1.374	1.374
3	- - -	114	17	0	0	0	17	14.120	0.831	0.447	1.374	1.374
4	i 7	121	17	0	0	0	17	13.620	0.801	0.431	1.342	1.342
5	! - 7 -	125	16	0	0	0	16	12.180	0.761	0.405	1.370	1.370
6	7	180	16	0	0	0	16	12.900	0.806	0.431	1.339	1.339
7	! 7 -	146	17	0	0	0	17	13.980	0.822	0.438	1.360	1.360
8	- - -	156	17	0	0	0	17	13.920	0.819	0.432	1.373	1.373
9	i 7	159	17	0	î 0 î	0	17	14.400	0.847	0.465	1.349	1.349
10	! - 7 -	168	17	0	0	0	17	12.800	0.753	0.440	1.168	1.168
11	7	181	17	0	0	0	17	13.700	0.806	0.429	1.340	1.340
12	7	194	17	0	0	0	17	13.760	0.809	0.436	1.356	1.356
Totals	& Avg	s	202	0	0	0	202	13.598	0.808	0.437	1.342	1.342
Std. De	viatio	ns						0.649	0.027	0.014	0.056	0.056
CVs					ר ביו ביים			4.773%	3.384%	3.278%	4.200%	4.200%
1	8	136	17	1	0	0	16	13.180	0.824	0.454	1.484	1.370
2	8	104	17	0	0	0	17	14.000	0.824	0.454	1.345	1.345
3	i 8	111	15	0	0	0	15	12.900	0.860	0.468	1.353	1.353
4	8	124	16	o	[0]	0	16	13.100	0.819	0.440	1.369	1.369
5	8	129	16	0	0	0	16	13.600	0.850	0.458	1.372	1.372
6	. 8 T	178	16	0	0	0	16	12.840	0.803	0.435	1.356	1.356
7	8	145	17	o	0	0	17	14.360	0.845	0.459	1.359	1.359
8	8	155	17	0	0	0	17	14.200	0.835	0.447	1.376	1.376
9	8	165	17	0	0	0	17	14.440	0.849	0.454	1.412	1.412
10	8	167	17	0	0	0	17	14.900	0.876	0.479	1.324	1.324
11	8	187	17	0		0	17	14.300	0.841	0.456	1.330	1.330
12	8	193	17	0	0	0	17	14.420	0.848	0.461	1.352	1.352
Totals	& Avg	s	199	1	0	0	198	13.853	0.839	0.455	1.369	1.360
Std. De	viatio	ns			[]			0.699	0.020	0.012	0.043	0.023
CVs					,			5.048%	2.388%	2.551%	3.118%	1.693%

Graph 3. Average Bird Weight Gain and Adjusted Feed Conversion (Days 14 - 21) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Adj. Feed Conversion 1.415 Low P 1.363 High F 1.373 250 U 1.357 500 U 1.349 1000 1.358 3000 1.342 6000 1.360 6000	Adj. Conve 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	Feed Treatment Description	Low Phosphate (LP)	High Phosphate (HP)	73 250 Units Phytase (LP)	57 500 Units Phytase (LP)	1000 Units Phytase (LP)	3000 Units Phytase (LP)	6000 Units Phytase (LP)	60000 Units Phytase (LP)
Avg. Bird Wt Gain (kg) 0.323 0.412 0.394 0.399 0.429 0.442 0.442		Trt Group	1	2	3	4	5	9	7	8

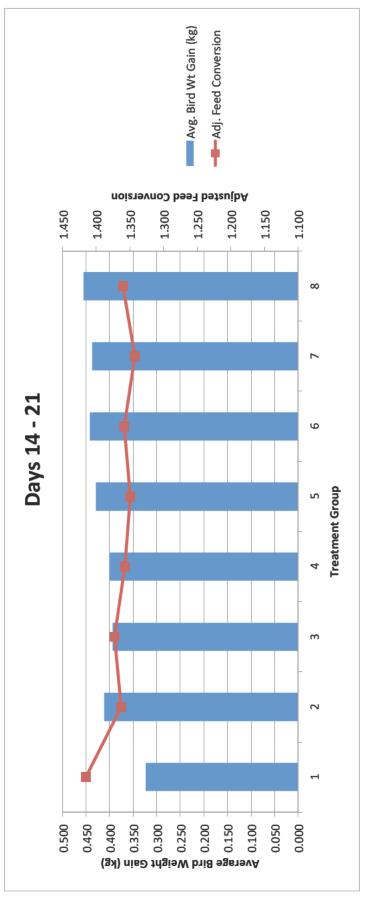


Table 10. Bird Weights and Feed Conversion Days 0 - 42 (29DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D0-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
		NO.	Day 0	Mori	Rem	Rem	D42	(kg)	(kg)	(kg)	D0-42	D0-42
1	1	97	17	0	0	3	14	31.160	2.226	2.185	1.697	1.608
2	<u> </u>	103	17	0	1	3	13	29.400	2.262	2.222	1.842	1.615
3	1 1	110	17	0	0	3	14	31.500	2.250	2.209	1.731	1.626
4	1 1 i	122	17	0	0	3	14	33.080	2.363	2.323	1.705	1.606
5	<u> 1</u>	132	17	3	0	3	11	25.260	2.296	2.256	2.059	1.616
6	1 1	177	17	0	0	3	14	30.220	2.159	2.118	1.760	1.653
7	1 1	141	17	1	·	3	12	26.580	2.215	2.173	1.924	1.623
_8	<u> 1</u>	152	17	2	0	3	12	28.140	2.345	2.304	1.851	1.624
9	<u> 1</u> <u>1</u>	160	17	1	1_	3	12	28.020	2.335	2.294	1.933	1.646
10	<u>1</u>	170	17	1	1	3	12	28.440	2.370	2.330	1.899	1.593
_11 _	i_1_j	186	17	0	0	3	14	29.440	2.103	2.062	1.691	1.579
12		190	17	0	0	3	14	32.160	2.297	2.257	1.680	1.588
Totals 8			<u>204</u>	8	4	36	156	29.450	2.268	2.228	1.814	1.615
Std. De	viatio	ns		╏╶╶	!	!		2.312	0.083	0.083	0.122	0.022
CVs								7.852%	3.657%	3.730%	6.736%	1.359%
_	1 2 1	422	47	4	_	2	42	25 020	2.755	2.746	4 747	4.570
	2 - 2 +	133	- - 17	1 -	0	3_	13	35.820	2.755	$\frac{2.716}{2.022}$	1.717	1.576
· _ 2 _	!- = +	102	17	. <u>1</u> -	0_	3	13	38.520	2.963	2.923	1.705 1.825	1.547
3	$\begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix}$	113 123	17	1 - 1	$\frac{1}{0}$	3	$-\frac{12}{12}$	34.780 38.920	2.898 2.994	<u> _ 2.857</u> _ 2.954		1.575
-4-	2 - 2 +		1 /	1 - 1	1	3	13	35.140	2.994	2.954 2.887	1.657 1.786	1.517
5	1_2_1 1_2_1	126 140	1 /	0	· <u>-</u> -	3	12		2.928 2.920	L _ 2.887 I	1 1.786	1.575 1.563
$-\frac{6}{7}$	2 2 7	144	1 /	0	0	3	14	40.880 42.300	3.021	2.979	1.635	1.548
· - '	- '- -+ 2	151	1 /	0	 -	3	14	42.520	3.037	2.995	1.649	1.551
9	<u> </u>	166	1 /	0	0	3	14	41.620	2.973	2.932	1.622	1.534
10	1-2-	169	<u>-</u>	0		3	14	41.920	2.994	2.954	1.638	1.552
11	_ _	188	17	0	1 1	3	13	37.480	2.883	2.843	1.711	! 1.532 1.575
12	i i	195	17	0	. — –	3	14	39.100	2.793	2.752	1.679	1.586
Totals 8	& Aves		204	5	3	36	160	39.083	2.930	2.889	1.690	1.558
Std. De		1			¦	i – –		2.820	0.087	0.087	0.063	0.020
CVs				t				7.216%	2.975%	3.000%	3.709%	1.305%
1	3	135	17	0	1	3	13	35.980	2.768	2.727	1.686	1.571
2	3 1	101	17	0	2	3	12	33.420	2.785	2.744	1.885	1.609
_3	3 1	115	17	0	. <u> </u>	3	14	38.140	2.724	2.683	1.657	1.562
4	3	120	17	0	0	3	14	37.660	2.690	2.650	1.670	1.570
5	<u> </u>	. – – 1	17	0	0	3	14	39.840	2.846	2.805	1.647	1.563
6	3 +	137	17	1_	1_	3	12	33.740	2.812	2.770	1.786	1.570
7	<u>. 3</u> j	142	17	0	0_	3	14	40.180	2.870	2.828	1.665	1.573
8		154	17		0	3_	12	34.200	2.850	2.809	1.687	1.572
9	- - -	101	17	1	ـ - أ	3_	12	33.860	2.822	2.780	1.742	1.554
10	<u> 3 </u>	171	17	2_	1	3_		32.180	2.925	2.884	1.792	1.579
- 11 -	ı — — +	185	17	+	0_		14	38.040	2.717	2.676	1.672	1.571
12	3	191	17	0	0	3	14	38.780	2.770	2.730	1.666	1.569
Totals &			_ <u>204</u>		<mark>6</mark> _	36	156	36.335	2.798	- 2.757 0.060	1.713	1.572
Std. De	viatio	ns _		}	<u> </u>	 		2.768	0.069	0.069	0.073	0.013
CVs						l		7.618%	2.473%	2.501%	4.276%	0.839%

Table 10. Bird Weights and Feed Conversion Days 0 - 42 (29DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D0-42 Avg Bird Gain	Feed Conversion D0-42	Adj. Feed Conversion D0-42
			Day 0	ŭ	Rei	Rei	D42	(kg)	(kg)	(kg)	D0-42	D0-42
1 .	~	98	17		0		14	40.220	2.873	2.832	1.653	1.559
2	4 +	<u>105</u>	17	1	0	3	13	37.900	2.915	2.874	1.671	1.547
3	_ 4 _!	116	17	0	0_	3	14	38.200	2.729	2.688	1.689	1.587
- 4 -	- 4	119	17	0	· – –	3_	14	38.780	2.770	2.729	1.654	1.555
5	- 4 +	127	17	0	0_	3_	14	40.860	2.919	2.878	1.619	1.536
$-\frac{6}{7} - \frac{1}{1}$	$-\frac{4}{4} + \frac{1}{1}$	179	17	0	$\frac{1}{0}$	3	13	35.820	2.755 2.953	$\frac{2.714}{2.912}$	1.703	1.566
l	- 4 +	148	$-\frac{17}{17}$	$\frac{0}{1}$	0	3	14	41.340 36.080	2.953	2.912 2.735	1.666	1.568
<mark>8</mark> i.	- 4	153 162	1 /	ر <u>1</u> ا		\ _3 3	$-\frac{13}{14}$	41.360		L _ <u>2.735</u> 2.914	1.686 1.632	1.537 1.548
10	-#+	174	1 /	- 0	<u>-0</u> -	3	14	40.180	2.870	2.830	1.632	1.550
11 -		182	1 /	2	1	3	11	32.140	2.922	2.880	1.750	1.529
12	- 1	189	1 /	0		3	11	39.700	2.836	2.795	1.650	1.557
Totals &		103	204	4	2	36	162	38.548	2.856	2.793	1.668	1.553
Std. Dev				┝╧╬	ـ ئ ـ ا			2.747	0.081	0.081	0.036	0.016
CVs					r – –	i – -		7.127%	2.832%	2.878%	2.153%	1.024%
				_								
1	5 T	99	17	0	0	3	14	41.440	2.960	2.919	1.653	1.560
2	5	108	17	0	0	3	14	42.460	3.033	2.992	1.622	1.536
3	5 î	112	17	0	0	3	14	41.300	2.950	2.909	1.648	1.555
4	5	118	17	0	0	3	14	39.120	2.794	2.755	1.642	1.539
5	5	130	17	0	2	3	12	35.060	2.922	2.881	1.854	1.602
6	5	138	17	1	0	3	13	38.340	2.949	2.908	1.654	1.537
7	5	143	17	0	0	3	14	41.440	2.960	2.919	1.631	1.535
<mark>8</mark> _i	<u>5</u> į	149	17	0	0	3	14	43.280	3.091	3.050	1.611	1.523
9 -	_5 +	163	17	0	_1_	3	13	38.880	2.991	2.949	1.733	1.566
10	_ <u>5</u> _i	173	17	0	_ <u>0</u> _	3	14	42.320	3.023	2.981	1.655	1.559
11 -	5 I	183	17	0	1	3_	13	39.040	3.003	2.963	1.641	1.523
12		192	17	0	0	3	14	40.180	2.870	2.829	1.644	1.542
Totals &			_ <u>204</u>	1 -	4_	36	163	40.238 2.286	<u>2.962</u> 0.078	2.921	1.666	1.548
Std. Dev CVs	nation			} — ⊣				5.681%	2.625%	0.077 2.647%	0.066 3.980%	0.022 1.425%
CVS								3.001/0	2.023/0	2.04770	3.50070	1.42370
1 !	6	134	17	2	0	3	12	36.060	3.005	2.966	1.741	1.568
2 1	+	106	17	0	1	3	13	39.840	3.065	3.025	1.637	1.521
3	- -	109	17	0	0	3	14	44.100	3.150	3.109	1.630	1.543
4	+	117	17	0	0	3	14	40.880	2.920	2.880	1.615	1.520
5	6 I	131	17	0	0	3	14	40.600		2.859	1.642	1.535
6	<u>6</u> Ţ	139	17	0	1	3	13	38.960	2.997	2.955	1.730	1.553
7 7	6	147	17	0	0	3	14	43.240	3.089	3.047	1.663	1.563
8	6	150	17	0	0	3	14	42.900	3.064	3.023	1.633	1.535
9	6	164	17	1	1	3	12	37.280	3.107	3.065	1.782	1.565
	6 i	172	17		0		14	41.280	2.949	2.907	1.645	1.543
11	6	184	17	0	0	3	14	42.480	3.034	2.994	1.620	1.536
12	6	196	17	0	0	3	14	39.420	2.816	2.774	1.679	1.573
Totals &			204	3	3	36	162	40.587	3.008	2.967	1.668	1.546
Std. Dev	<u>riation</u>	IS _	L	ļ i		i		2.429	0.097	0.097	0.054	0.018
CVs								5.984%	3.225%	3.271%	3.238%	1.164%

Table 10. Bird Weights and Feed Conversion Days 0 - 42 (29DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	emoval-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D0-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 0	Mor	Ren	Ren	D42	(kg)	(kg)	(kg)	D0-42	D0-42
1	7	100	17	0	1	3	13	38.260	2.943	2.902	1.795	1.594
2	7	107	17	0	0	3	14	42.540	3.039	2.998	1.639	1.548
3	7	114	17	0	0	3	14	43.020	3.073	3.031	1.641	1.540
4	7	121	17	0	0	3	14	40.740	2.910	2.869	1.648	1.548
_5	7	125	17	0	1	3	13	38.880	2.991	2.949	1.632	1.536
6	7	180	17	1	0	3	13	39.220	3.017	2.975	1.620	1.521
7	_7	146	17	0	0	3	14	43.240	3.089	3.046	1.629	1.541
8	_7_	156	17	0	0	3	14	41.920	2.994	2.952	1.638	1.540
9	_7_	159	17	0	0	3	14	42.000	3.000	2.958	1.674	1.568
10	_7_	168	17	0	0	3	14	39.960	2.854	2.813	1.614	1.523
11	_7	181	17	1	0	3	13	39.680	3.052	3.012	1.661	1.535
12	7	194	17	0	0	3	14	39.680	2.834	2.794	1.660	1.554
Totals 8	& Avgs	3	204	2	2	36	164	40.762	2.983	2.942	1.654	1.546
Std. De	viatio	ns			<u> </u>	!		1.717	0.082	0.082	0.048	0.020
CVs								4.213%	2.756%	2.784%	2.877%	1.282%
1_	_8_	136	17	2_	0_	3	12	34.960	2.913	2.873	1.768	1.570
2	_8_	104	17	0	. <u>0</u> _	3	14	41.600	2.971	2.931	1.660	1.561
3	_8_		17	2_	<u> 0</u> _	3_	12	37.320	3.110	3.069	1.668	1.555
<mark>4</mark> _	_8_	124	17	2_	1_	3	11	34.300	3.118	3.078	1.765	1.539
5	_8_	129	17	1_	0	3	13	40.840	3.142	3.100	1.641	1.535
66	_8_		17	1_	1 -	3	12	34.800	2.900	2.858	1.752	1.568
7	_8	145	17	1	0	3	13	39.800	3.062	3.022	1.697	1.519
8	_8_	155	17	0	0_	3	14	42.480	3.034	2.993	1.636	1.534
9	_8_	165	17	0	+ <u>~</u> ⊣	3	14	43.500	3.107	3.067	1.634	1.533
_10 _	_8	167	17	1	0_	3	13	39.600	3.046	3.005	1.698	1.551
11 _	_8_	187	17	0	. <mark>0</mark> _	3	14	42.140	3.010	2.969	<u> </u>	1.522
12	8	193	17	1	0	3	13	38.180	2.937	2.897	1.700	1.555
Totals 8			<u> 204</u>	11	. <u>2</u> _	36	155	39.127	3.029	2.988	1.687	1.545
Std. De	viatio	ns	L	L	! 	¦		3.201	0.084	0.083	0.053	0.017
CVs					i			8.181%	2.759%	2.794%	3.128%	1.113%

Graph 4. Average Bird Weight Gain and Adjusted Feed Conversion (Days 0 - 42) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Trt Group	٨	Adj. Feed	Treatment Description
250.0	Gain (kg)	Conversion	
1	2.228	1.615	Low Phosphate (LP)
2	2.889	1.558	High Phosphate (HP)
3	2.757	1.572	250 Units Phytase (LP)
4	2.815	1.553	500 Units Phytase (LP)
5	2.921	1.548	1000 Units Phytase (LP)
9	2.967	1.546	3000 Units Phytase (LP)
7	2.942	1.546	6000 Units Phytase (LP)
∞	2.988	1.545	60000 Units Phytase (LP)

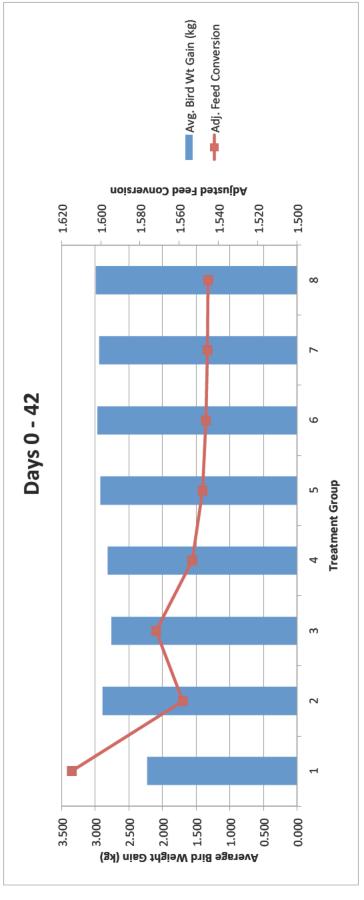


Table 12. Bird Weights and Feed Conversion Days 21 - 42 (29DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D21-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 21	Mor	Rem	Rem	D42	(kg)	(kg)	(kg)	D21-42	D21-42
1	1	97	17	0	0	3	14	31.160	2.226	1.601	1.846	1.706
2 I	1		17	0		3	13	29.400	2.262	1.634	2.077	1.708
3	1	110	17	0	0	3	14	31.500	2.250	1.622	1.880	1.717
_4_i	<u>1</u> j	122	17	0	0	3	14	33.080	2.363	1.710	1.860	1.704
5 1	1 1	132	17	3_		3_	11	25.260	2.296	1.688	2.484	1.710
6i	_1_	177	17	0	↓ <u>~</u> ⊣	3	14	30.220	2.159	1.535	1.964	1.790
- 7 -!-	_ 1!	141	17	. 1	:	3_	12	26.580	2.215	1.584	2.260	1.736
- <mark>8</mark> 1		152	17	2_	0	3	12	28.140	2.345	1.719	2.093	1.717
9	그	160	17	1 -	1	3_	$-\frac{12}{12}$	28.020	2.335	1.679	2.261	$\frac{1.762}{1.600}$
10	- 1 - 1	170	17	$-\frac{1}{0}$		3	12	28.440	2.370	1.732	2.198	1.688
11 -	- 1 -	186	17		+ — →		14	29.440	2.103	1.492	1.858	1.679
12 i	1	190	17	0 8	0	3	14	32.160	2.297	1.679	1.818	1.677
Totals &			_ <u>204</u>	- 8 -	- 4	36	156	29.450 2.312	2.268	1.640	2.050	1.716 0.033
Std. Dev CVs	iatio				L	<u> </u>		7.852%	0.083 3.657%	0.076 4.610%	0.214 10.459%	<u>0.033</u> 1.923 %
CVS								7.05270	3.03770	4.010%	10.439%	1.92370
1 1	2 1	133	17	1	0	3	13	35.820	2.755	2.020	1.899	1.673
- - - -	- <u>-</u>	102	17	- - -		3	13	38.520	2.963	2.212	1.873	1.629
3 -1-	- = +	113	17	1	1	3	12	34.780	2.898	2.150	2.093	1.680
1 - 4 - 1-	د <u>-</u> ا ا 2	123	17	1	· — –	3	13	38.920	2.994	2.242	1.806	1.592
- <u>-</u> -i-	- - -	126	16	0		3	12	35.140	2.928	2.165	1.990	1.664
6 -1-	- - -	140	17	0	⊢ جٍ ⊦	3	14	40.880	2.920	2.152	1.799	1.655
	2 i	144	17	0	· — -	3	14	42.300	3.021	2.248	1.756	1.626
8 -1-	2	151	17	0	0	3	14	42.520	3.037	2.235	1.779	1.631
9 1	2 1	166	17	0	0	3	14	41.620	2.973	2.216	1.733	1.602
10	2	169	17	0	0	3	14	41.920	2.994	2.234	1.763	1.634
11	2	188	17	0	1	3	13	37.480	2.883	2.132	1.883	1.668
12 i	2 i	195	17	0			14	39.100	2.793	2.036	1.824	1.679
Totals &	Avgs	3	203	4	3	36	160	39.083	2.930	2.170	1.850	1.644
Std. Dev	iatio	ns			[2.820	0.087	0.078	0.106	0.030
CVs					<u> </u>			7.216%	2.975%	3.573%	5.721%	1.823%
								-				
1 - 1 - 1	3 1	135	16	0	0	3	13	35.980	2.768	2.063	1.810	1.655
<u>2</u> _i_	_3	101	17	<u> </u>	ı <u>∠</u> _	ر <u>ځ</u> ا	12	33.420	2.785	2.064	2.178	1.720
$-\frac{3}{4}$	¬	115	17	0	·	/	14	38.140	2.724	2.004	1.801	1.655
· - 4 - -		120	17	U			14	37.660	2.690	1.958	1.825	1.668
5 _ i-		128	1 7		0		$-\frac{14}{12}$	39.840	2.846	L _ 2.133	1.771	1.647
- 6 - 1-	$-\frac{3}{3}$	137 142	1 7		$\frac{1}{0}$	3	$-\frac{12}{14}$	33.740	2.812	$\frac{1}{1} = \frac{2.048}{3.110} = \frac{1}{1}$	2.051	$\frac{1.683}{1.664}$
- / - -	4		<u>17</u> 15		⊦ – ⊣	3	$-\frac{14}{12}$	40.180 34.200	2.870	2. <u>118</u> 2.086	1.804 1.834	1.664
		154 161	1 17	- <mark>0</mark> -	<mark>0</mark> 1	3	12	33.860	2.850 2.822	2.106	1.942	1.660 1.639
10	$-\frac{3}{3}$	171	15	- -	0	3	12	32.180	2.925	2.181	1.998	1.670
11			13		I 0	· — –	11	38.040	2.717	L _ 2.161 I	1.815	1.660
12 -		. — —	1 /		0		14	38.780	2.770	2.025	1.821	1.670
Totals &	_		199	3	_		156	36.335	2.798	2.065	1.887	1.666
Std. Dev				<u> </u>	¦			2.768	0.069	0.064	0.127	0.021
CVs					t – T			7.618%	2.473%	3.110%	6.717%	1.241%

Table 12. Bird Weights and Feed Conversion Days 21 - 42 (29DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

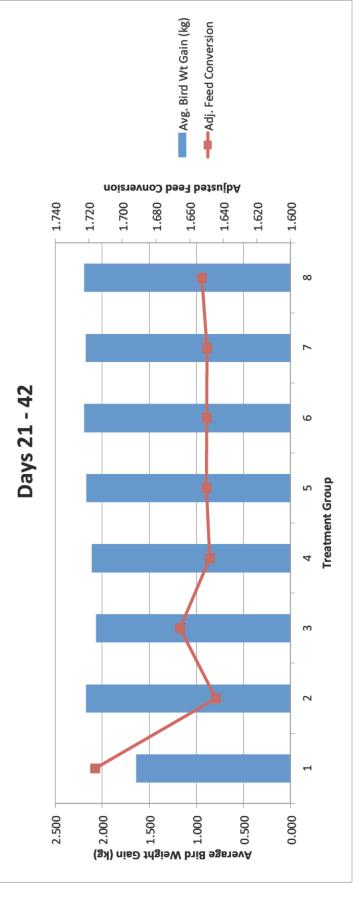

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D21-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
			Day 21	Mor	Ren	Rem	D42	(kg)	(kg)	(kg)	D21-42	D21-42
1	4	98	17	0	0	3	14	40.220	2.873	2.122	1.794	1.651
2	4	105	17	1	0	3	13	37.900	2.915	2.173	1.839	1.645
3	4	116	17	0	0	3	14	38.200	2.729	1.967	1.869	1.705
_4	<u> 4</u>	119	17	0		3	14	38.780	2.770	2.017	1.804	1.652
5	4	127	17	0		3	14	40.860	2.919	2.212	1.732	1.610
<u>6</u> _	_ <mark>4</mark>	179	17	<u> </u>	1	3	13	35.820	2.755	2.027	1.890	1.670
7 _	<u> 4</u>	148	17	0		3_	14	41.340	2.953	2.169	1.794	1.645
8	- 4	153		1	. <mark>-</mark> -	3_	13	36.080	2.775	2.031	1.859	1.621
<mark>9</mark> _	!_ 4 _!	162	<u> </u>	<u>0</u> _	0_	3	14	41.360	2.954	2.185	1.774	1.647
10	4 - - -	174		0 -	· — —	3_	14	40.180	2.870	2.115	1.792	1.655
_11 _	i – 4	182	16	. 2 -	0_	3	11	32.140	2.922	2.182	1.979	1.625
12 T-4-1-	9 4	189	17	0	0	3	14	39.700	2.836	2.104	1.790	1.650
Totals			203	<u> 4</u> _	<u>1</u> _	36	162	_ <u>38.548</u> _ 2.747	2.856	2.109	1.826	1.648
Std. De	viatio	ns — —			l _ J	!			0.081 2.832%	0.080 3.807%	0.066 3.587%	0.024 1.481%
CVs								7.127%	2.832%	3.807%	3.38/%	1.481%
1	ı 5	99	17	0	0	3	14	41.440	2.960	2.153	1.820	1.673
$-\frac{1}{2}$	i-5-7	108	1 /	- 0 -		3	14	42.460	3.033	2.261	1.756	1.626
-2	!- - -	112	1 /	- 0 -	0	3	14	41.300	2.950	2.161	1.800	1.655
-4-	- <u>5</u> -	118	1 /	- 0 -	· — –	3	14	39.120	2.794	2.000	1.812	1.646
- 5 -	i-5-	130	1 /	- 0 -		3	12	35.060	2.922	2.158	2.140	1.720
6	I = = =	138	16	0		3	13	38.340	2.949	2.160	1.804	1.639
7 -	i-5-i	143	 	- 0 -	0	3	14	41.440	2.960	2.153	1.787	1.637
8	5	149	17	0	0	3	14	43.280	3.091	2.282	1.738	1.604
9	i 5	163	17	<u></u>	1	3	13	38.880	2.991	2.172	1.953	1.678
10	5	173	17	0	0	3	14	42.320	3.023	2.188	1.821	1.668
11	5	183	17	0	1	3	13	39.040	3.003	2.245	1.791	1.610
12	5	192	17	0	0	3	14	40.180	2.870	2.065	1.807	1.645
Totals	& Avg	s	203	0	4	36	163	40.238	2.962	2.167	1.836	1.650
Std. De	viatio	ns				: <u> </u>		2.286	0.078	0.078	0.109	0.032
CVs								5.681%	2.625%	3.613%	5.941%	1.934%
_1	6	134	16	. 1	0	3	12	36.060	3.005	2.170	1.944	1.688
2	6	106	17	0	<u>1</u> _	3	13	39.840	3.065	2.268	1.796	1.613
3	6	r — —	17	0	r — —	, — –	14	44.100	3.150	2.329	1.769	1.636
<mark>4</mark> _	6	<u> </u>	17	0	. <u>-</u> -	. - -	14	40.880	2.920	2.135	1.762	1.615
5	<u>6</u> _		17		0		14	40.600	2.900	2.098	1.798	<u> 1.630</u>
<mark>6</mark> _	6		17		1	3_	13	38.960	2.997	2.188	1.957	1.668
- <mark>/</mark>	<u> 6</u>	147	1 7	- <u>0</u> -	0_	3_	14	43.240	3.089	2.234	1.807	$-\frac{1.652}{4.648}$
-8		150 164	1 7	F -	0 1	3_	14	42.900	3.064	2.241	1.770	1.618
- 9 -			1 7				$-\frac{12}{14}$	37.280	3.107	2.238	2.070	1.690
- <u>10</u> -		172	$-\frac{17}{17}$	- <u>0</u> -	0_	3_	$-\frac{14}{14}$	41.280	2.949	2.119	1.825	1.660
	6 6		17		0		14	42.480	3.034	2.240	1.762	1.633
			17 203	0		_	14	39.420 40.587	2.816	2.003	1.866	1.693
Totals Std. De			_ <u>203</u>	- - -	3	30	162	40.587 2.429	3.008 0.097	<u> _ 2.189</u> 0.089	1.844	
CVs	viatio		 -	 	- -			5.984%	3.225%	4.058%	5.306%	1.810%
								3.33470	3.225	4.030/0	5.55070	2.020/0

Table 12. Bird Weights and Feed Conversion Days 21 - 42 (29DEC15) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Block	Trt	Pen No.	No. Birds Started	Mortality	Removal-1	Removal-2	No. Birds Weighed	D42 Pen Wt	D42 Avg Bird Wt	D21-42 Avg Bird Gain	Feed Conversion	Adj. Feed Conversion
		140.	Day 21	Mor	Rem	Rem	D42	(kg)	(kg)	(kg)	D21-42	D21-42
1	7	100	17	0	1	3	13	38.260	2.943	2.111	2.061	1.722
2	7	107	17	0	0	3	14	42.540	3.039	2.235	1.785	1.645
3	7	114	17	0	0	3	14	43.020	3.073	2.242	1.791	1.633
4	7	121	17	0	0	3	14	40.740	2.910	2.109	1.807	1.649
5	7	125	16	0	0	3	13	38.880	2.991	2.230	1.756	1.614
6	7	180	16	0	0	3	13	39.220	3.017	2.211	1.765	1.614
7	7	146	17	0		3	14	43.240	3.089	2.266	1.771	1.634
8	7	156	17	0	0	3	14	41.920	2.994	2.175	1.786	1.633
9	7	159	17	0	0	3	14	42.000	3.000	2.153	1.853	1.683
10	7	168	17	0	0	3	14	39.960	2.854	2.101	1.803	1.660
11	7	181	17	1	0	3	13	39.680	3.052	2.246	1.845	1.643
12	7	194	17	0	0	3	14	39.680	2.834	2.025	1.836	1.665
Totals 8	& Avg	s	202	1	1	36	164	40.762	2.983	2.175	1.822	1.650
Std. De	viatio	ns			[_]	ίΞΙ		1.717	0.082	0.075	0.082	0.030
CVs						İ		4.213%	2.756%	3.470%	4.486%	1.832%
1	8	I 136	16	1	0	3	12	34.960	2.913	2.090	1.977	1.686
2	8	104	17	0	0	3	14	41.600	2.971	2.148	1.829	1.672
3	8	111	15	0	0	3	12	37.320	3.110	2.250	1.835	1.661
4	8	124	16	1	1	3	11	34.300	3.118	2.299	2.023	1.645
5	8	129	16	0	0	3	13	40.840	3.142	2.292	1.794	1.632
6	8	178	16	1	0	3	12	34.800	2.900	2.098	1.982	1.685
7	8	145	17	1	0	3	13	39.800	3.062	2.217	1.904	1.613
8	8	155	17	0	0	3	14	42.480	3.034	2.199	1.789	1.630
9	8	165	17	0	0	3	14	43.500	3.107	2.258	1.775	1.618
10	8	167	17	1	0	3	13	39.600	3.046	2.170	1.938	1.686
11	8	187	17	0	0	3	14	42.140	3.010	2.169	1.779	1.625
12	8	193	17	1	0	3	13	38.180	2.937	2.089	1.928	1.681
Totals 8	& Avg	s	198	6	1	36	155	39.127	3.029	2.190	1.879	1.653
Std. De	viatio	ns						3.201	0.084	0.076	0.089	0.029
CVs			[·	「	(- -	ן – ז		8.181%	2.759%	3.451%	4.754%	1.741%

Graph 5. Average Bird Weight Gain and Adjusted Feed Conversion (Days 21 - 42) Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

	Г							
Treatment Description	Low Phosphate (LP)	High Phosphate (HP)	250 Units Phytase (LP)	500 Units Phytase (LP)	1000 Units Phytase (LP)	3000 Units Phytase (LP)	6000 Units Phytase (LP)	60000 Units Phytase (LP)
Adj. Feed Conversion	1.716	1.644	1.666	1.648	1.650	1.650	1.650	1.653
Avg. Bird Wt Gain (kg)	1.640	2.170	2.065	2.109	2.167	2.189	2.175	2.190
Trt Group	1	2	3	4	2	9	7	8

Abbreviations for Causes of Mortality in Poultry Feeding Studies*

Abbrev.	Cause of Death	Abbrev.	Cause of Death
ACT	Ascites	IE	Intestinal enteritis
ACT-S	Ascites + SDS	INJ	Injury
AS	Airsacculitis	NE	Necrotic enteritis
BAC	Bacterial	PRO	Prolapsed
CAN	Cannibalism	RH	Round heart (ascites)
CC	Coccidiosis	SDS	Sudden death syndrome
CD	Cervical dislocation	SM	Smothered
DH	Dehydrated	SO	Starve-out
EC	E. coli	UNK	Unknown cause of death
M	Mortality; R1 = removed, bird	l moribund	l bound
	R2 = removed; bird	d not morik	ound bound
Commen	ts/Findings Codes		
Code	Comment/Finding	Code	Comment/Finding
BL	Bad leg	LS	Lesion score
С	Cull	NGL	No gross lesions
C-SB	Cull, small bird	RCT	Recount bird
DC	Decomposed	SMPL	Sample bird
FHN	Femoral head necrosis	SS	Sex slip
			-

^{*}This table was added to the Final Study Report after the report was finalized in order to define the abbreviations for causes of mortality in birds that were removed from the study. The data on bird mortality is contained in Tables 13 and 14 that follow.

Table 13. Mortality and Removal Weights (Day 0 - Study End) CQR Study Number AGV-15-5 Facility Number 7

				_	_	_	Days 0 - 14 (17NOV15 - 01D			
			No. Birds		l "	2	Mortalit		Total M & R	No. Birds
Block	Trt	Pen No.	Started	Mortality	Removal-1	Removal-2	Cause of Death	Wt	Wt (kg) Days	Remaining
			Day 0	Mor	Ren	Rem	(kg)	(kg)	0 - 14	Day 14
1	1	97	17						0.000	17
1	4	98	17						0.000	17
1	5	99	17						0.000	17
1	7	100	17	.					0.000	17
2	3	101	17	.	<u> </u>	<u>.</u>			0.000	17
2	2	102	17	.					0.000	17
2	1	103	17	.		<u>.</u>			0.000	17
2	8	104	17	.	<u> </u>				0.000	17
2	4	105	17	ļ					0.000	17
2	6	106	17	ļ					0.000	17
2	7	107	17	ļ	ļ				0.000	17
2	5	108	17	ļ					0.000	17
3	6	109	17		ļ				0.000	17
3	1	110	17				2.046		0.000	17
3	8	111	17	2			2 BAC 0.092		0.092	15
3	5	112	17	ļ					0.000	17
3	2	113 114	17	ļ	ļ				0.000	17 17
3 3	7 3		17 17						0.000	17 17
3 3	4	115 116	17		ļ				0.000	17 17
	}	·							·}	
4	6	117 118	17						0.000	17
4 4	5	119	17 17		ļ				0.000	17
	4	120	17						0.000	17
4 4	3 7	121	17						0.000	17 17
4	1	122	17		}i				0.000	17
4	2	123	17						0.000	17
4	8	124	17	1			BAC 0.058		0.058	16
5	7	125	17	··· ·	1		CD-C/SB/BL	0.037	0.037	16
5	2	126	17	1			SDS 0.121		0.121	16
5	4	127	17						0.000	17
5	3	128	17		1				0.000	17
5	8	129	17	1			BAC 0.055		0.055	16
5	5	130	17						0.000	17
5	6	131	17						0.000	17
5	1	132	17						0.000	17
1	2	133	17						0.000	17
1	6	134	17						0.000	17
1	3	135	17	ļ	1		CD-BL	0.271	0.271	16
1	8	136	17	ļ		l			0.000	17
6	3	137	17	ļ					0.000	17
6	5	138	17	ļ					0.000	17 17
6	6	139	17	ļ					0.000	
6 7	2 1	140	17	ļ					0.000	17
	}	141	17	ļ					0.000	17
<mark>7</mark> 7	3 5	142	17	ļ					0.000	17 17
	\$	143	17						0.000	17
7 7	2 8	144	17	ļ					0.000	17 17
<u>/</u>		145 146	17 17	ļ					0.000	17 17
<u>/</u>	7 6	140	17						0.000	17 17
	}	÷								
7	4	148 149	17 17	ļ					0.000	17
8	5 6	÷	17 17	ļ					0.000	17
8 	6	150	17 17	ļ					0.000	17 17
8	2	151 152	17 17	ļ					0.000	17 17
	1 4	153	17 17						0.000	17 17
8 8		100			·	 	BAC; BAC-DH 0.070		0.070	17 15
8		15/					DAC, DAC DII : 0.070			
	3 8	154 155	17 17	2					0.000	17

				Days 0 - 14 (17NOV15 - 01DEC15)							
Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	Cause of Death	Mortality Wt (kg)	Removed Wt (kg)	Total M & R Wt (kg) Days 0 - 14	No. Birds Remaining Day 14
9	7	159	17							0.000	17
9	1	160	17	l					<u> </u>	0.000	17
9	3	161	17							0.000	17
9	4	162	17							0.000	17
9	5	163	17]	0.000	17
9	6	164	17							0.000	17
9	8	165	17]	0.000	17
9	2	166	17							0.000	17
10	8	167	17					1		0.000	17
10	7	168	17							0.000	17
10	2	169	17					1		0.000	17
10	1	170	17							0.000	17
10	3	171	17	1	1		CD-DH/SO; DH	0.101	0.031	0.132	15
10	6	172	17							0.000	17
10	5	173	17]	0.000	17
10	4	174	17							0.000	17
6	1	177	17					1		0.000	17
6	8	178	17		1		CD-BAC		0.123	0.123	16
6	4	179	17							0.000	17
6	7	180	17	1			SDS	0.060		0.060	16
11	7	181	17							0.000	17
11	4	182	17		1		CD-BL/BAC		0.118	0.118	16
11	5	183	17							0.000	17
11	6	184	17							0.000	17
11	3	185	17					1		0.000	17
11	1	186	17					1		0.000	17
11	8	187	17							0.000	17
11	2	188	17					1		0.000	17
12	4	189	17							0.000	17
12	1	190	17					1		0.000	17
12	3	191	17							0.000	17
12	5	192	17					1		0.000	17
12	8	193	17							0.000	17
12	7	194	17					1		0.000	17
12	2	195	17							0.000	17
12	6	196	17	·····				T		0.000	17

						Days 14 - 21 (01D	EC15 - 08DE	C15)		
			ty	1-1	1-2		Mortality Wt	Removed Wt	Total M & R	No. Birds Remaining
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	(kg)	(kg)	Wt (kg) Days 14 - 21	Day 21
1	1	97	_	<u></u>	Ŀ				0 000	17
1	4	98			1				0 000	17
1	5	99]]				0 000	17
1	7	100		I	I				0 000	17
2	3	101]	<u> </u>				0 000	17
2	2	102		ļ	ļ				0 000	17
2	1	103		ļ	ļ				0 000	17
2 2	8	104		ļ	ļ				0 000	17
	4	105		ļ	ļ				0 000	17
2	6	106		ļ	ļ				0 000	17
2	7	107		ļ	ļ				0 000	17
2	5	108		ļ	ļ				0 000	17
3	6	109		ļ	ļ				0 000	17
3	1	110 111		ļ	ļ				0 000	17
3 3	8	1112	·	ļ	ļ		ļ		0 000 0 000	15 17
3 3	5	113	l	 	 				0 000	17 17
3	2 7	114	·····	ļ	ļ		·		0 000	17
3	3	115		ļ	ļ		·		0 000	17
3	4	116			ļ				0 000	17
4	6	117		ļ					0 000	17
4	5	118		ļ	†				0 000	17
4	4	119		ļ	ļ				0 000	17
4	3	120		ļ	ļ				0 000	17
4	7	121		1	1				0 000	17
4	1	122		1	1				0 000	17
4	2	123		1	1				0 000	17
4	8	124]]				0 000	16
5	7	125	l	İ	İ				0 000	16
5	2	126		ļ	İ				0 000	16
5	4	127		ļ	ļ				0 000	17
5	3	128		ļ	ļ				0 000	17
5	8	129		ļ	ļ				0 000	16
5	5	130		ļ	ļ				0 000	17
5	6	131		ļ	ļ		ļ		0 000	17
5	1	132 133		ļ	ļ				0 000	17
1	2	134	1	ļ	ļ	SDS	0.442		0 000 0.442	17 16
<u>1</u>	6	135		ļ	ļ	303	0.442		0.442	16
1	3 8	136	1	 	 	SDS	0 572		0 572	16
6	3	137	ļ 	ļ	i	223	53,2		0 000	17
6	3 5	138	1	ļ	ļ	SDS	0 288		0 288	16
6	6	139	٠٠٠٠٠	ļ	ļ				0 000	17
6	2	140	·····	ļ	1				0 000	17
7	1	141		ļ	1				0 000	17
7	3	142		<u> </u>					0 000	17
7	5 2	143							0 000	17
7		144	ļ						0 000	17
7	8	145	ļ	ļ	ļ				0 000	17
7	7	146	ļ	ļ	ļ				0 000	17
7	6	147	ļ	ļ	ļ				0 000	17
7	4	148	ļ	ļ	ļ		ļ		0 000	17
8	5	149	ļ	ļ	ļ		ļ		0 000	17
8	6	150		ļ	ļ				0 000	17
8	2	151		ļ	ļ		ļ		0 000	17
8	1	152	ļ	ļ	ļ		ļ		0 000	17
8	4	153			ļ				0 000	17
8	3	154	ļ	ļ	ļ				0 000	15
8 8	8	155	ļ	ļ	ļ				0 000	17
0	7	156	ļ	Į	J		ļ		0 000	17

						Days 14 - 21 (01D	EC15 - 08DE	C15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	Mortality Wt (kg)	Removed Wt (kg)	Total M & R Wt (kg) Days 14 - 21	No. Birds Remaining Day 21
9	7	159							0 000	17
9	1	160							0 000	17
9	3	161							0 000	17
9	4	162		i	1				0 000	17
9	5	163			1				0 000	17
9	6	164			1				0 000	17
9	8	165			1		1		0 000	17
9	2	166		ļ	!				0 000	17
10	8	167			1				0 000	17
10	7	168		ļ	!				0 000	17
10	2	169							0 000	17
10	1	170		ļ	ļ				0 000	17
10	3	171		·····	1				0 000	15
10	6	172		ļ	ļ		·		0 000	17
10	5	173		ļ	ļ				0 000	17
10	4	174		ļ	ļ				0 000	17
6	1	177		ļ	ļ				0 000	17
6	8	178		ļ	ļ				0 000	16
6	4	179		ļ	ļ				0 000	17
6	7	180		l	·····		·		0 000	16
11	7	181		ļ	ļ		·		0 000	17
11	4	182		·····	i				0 000	16
11	5	183		ļ	ļ		·		0 000	17
11	6	184			ļ				0 000	17
11	3	185			ļ				0 000	17
11	1	186							0 000	17
11	8	187		ļ	 		-		0 000	17
11	2	188			ļ				0 000	17
12	4	189		·	 -		 		0 000	17
12	1	190		ļ	j		İ		0 000	17
12	3	191		ļ	 		†		0 000	17
12	·	192		ļ	ļ		·		0 000	17
12	5 8	193			ļ				0 000	17
12	7	194		ļ	ļ				0 000	17
12	2	195		ļ	 		-		0 000	17 17
	;			ļ	 				{ 	
12	6	196		İ					0 000	17

Table 13. Mortality CQR Study Number Facility Number 7

						Days 21 - 42 (08D	EC15 - 29DE	C15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	Mortality Wt (kg)	Removed Wt (kg)	Total M & R Wt (kg) Days 21 - 42	No. Birds Remaining Day 42
1	1	97			3	3 CD-SMPL		1.686	1.686	14
1	4	98			3	3 CD-SMPL		2.380	2 380	14
1	5	99			3	3 CD-SMPL		2.434	2.434	14
1	7	100		1	3	CD-C/BL; 3 CD-SMPL		4.753	4.753	13
2	3	101		2	3	CD-C/BAC; CD-C/BL/FHN; 3 CD-SMPL		5.623	5.623	12
2	2	102	1	ļ	3	3 CD-SMPL; SDS	1.711	2.162	3 873	13
2	1	103		1	3	CD-C/ACT/FHN/BL; 3 CD-SMPL	ļ	4.051	4 051	13
2	8	104 105		ļ	3	3 CD-SMPL	0.720	2.596	2 596	14 13
2	4	÷	1	1	3	3 CD-SMPL; SDS	0.730	2.258 2.994	2 988 2 994	
2	6	106 107			3	CD-BL/DH; 3 CD-SMPL 3 CD-SMPL		2.458	2.458	13
2	5	108		ļ	3	3 CD-SMPL	·	2.346	2.436	14 14
3	6	109			3	3 CD-SMPL		2.444	2.444	14
3	1	110			3	3 CD-SMPL	·	1.976	1 976	14
3	8	111		ļ	3	3 CD-SMPL	·	2.564	2 564	12
3	5	112		ļ	3	3 CD-SMPL	†	2.434	2.434	14
3	2	113	1	1	3	BAC; CD-C/BAC; 3 CD-SMPL	1 821	3.603	5.424	12
3	7	114		!	3	3 CD-SMPL		2.790	2.790	14
3	3	115		ļ	3	3 CD-SMPL		2.284	2 284	14
3	4	116		ļ	3	3 CD-SMPL		2.416	2.416	14
4	6	117		ļ	3	3 CD-SMPL		2.500	2 500	14
4	5	118			3	3 CD-SMPL		2.580	2 580	14
4	4	119		ļ	3	3 CD-SMPL		2.406	2.406	14
4	3	120			3	3 CD-SMPL	<u> </u>	2.378	2 378	14
4	7	121		ļ	3	3 CD-SMPL		2.592	2 592	14
4	1	122			3	3 CD-SMPL		2.008	2 008	14
4	2	123	1		3	3 CD-SMPL; SDS	1.129	2.388	3 517	13
4	8	124	1	1	3	ACT; CD-BL/FHN; 3 CD-SMPL	1.760	3.114	4 874	11
5 5	7	125		ļ <u>.</u>	3	3 CD-SMPL		2.346	2 346	13
	ļ	126		1	3	CD-C/FHN/BL; 3 CD-SMPL		4.488	4.488	12
5	4	127		ļ	3	3 CD-SMPL	ļ	2.176	2.176	14
5	3	128			3	3 CD-SMPL	ļ	2.090	2 090	14
5	- 8 - 5	129 130		2	3	3 CD-SMPL	ļ	2.720 5.402	2.720 5.402	13 12
5	·	131			t	2 CD-C/BL; 3 CD-SMPL 3 CD-SMPL	·	2.774	2.774	
5 5	6	132	3		3	2 ACT; BAC; 3 CD-SMPL	4 844	1.904	6.748	14 11
	1	133	1	ļ		BAC; 3 CD-SMPL	0.698	2.444	3.142	13
1	6	134	1	ļ	3	3 CD-SMPL; SDS	0.866	2.580	3.446	12
1	3	135			3	3 CD-SMPL		2.304	2 304	13
1	8	136	1	ļ	3	3 CD-SMPL; SDS	1.116	2.638	3.754	12
6	3	137	1	1	3	CD-C/ACT; 3 CD-SMPL; SDS	0.642	3.899	4 541	12
6	5	138		ļ	3	3 CD-SMPL	-	2.584	2 584	13
6	6	139		1	3	CD-C/ACT; 3 CD-SMPL		4.367	4 367	13
6	2	140			3	3 CD-SMPL		2.416	2.416	14
7	1	141	1	1	3	ACT; CD-C/BL/FHN; 3 CD-SMPL	1 561	3.220	4.781	12
7	3	142			3	3 CD-SMPL		2.306	2 306	14
7	5	143		<u> </u>	3	3 CD-SMPL	<u> </u>	2.538	2 538	14
7	2	144			3	3 CD-SMPL		2.332	2 332	14
7	8	145	1	ļ	3	3 CD-SMPL; SDS	1 870	2.726	4 596	13
7	7	146	ļ		3	3 CD-SMPL		2.448	2.448	14
7	6	147	ļ	ļ	3	3 CD-SMPL	.i	2.698	2.698	14
7	4	148	ļ	ļ	3	3 CD-SMPL	ļ	2.540	2 540	14
8	5	149	ļ	ļ	3	3 CD-SMPL	ļ	2.484	2.484	14
8	6	150	ļ	ļ	3	3 CD-SMPL	ļ	2.700	2.700	14
8	2	151			3	3 CD-SMPL	1.072	2.626	2.626	14
8	1	152	2		3	2 ACT; 3 CD-SMPL	1 972	1.854	3 826	12
8	4	153	1		3	ACT; 3 CD-SMPL	1 013	2.424	3.437	13
8	3	154			3	3 CD-SMPL	·	2.384	2 384	12
8 8	8 7	155 156	ļ	ļ	3	3 CD-SMPL 3 CD-SMPL	ļ	2.772 2.612	2.772 2.612	14 14

						Days 21 - 42 (08	DEC15 - 29DE	C15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	Mortality Wt (kg)	Removed Wt (kg)	Total M & R Wt (kg) Days 21 - 42	No. Birds Remaining Day 42
9	7	159			3	3 CD-SMPL		2.786	2.786	14
9	1	160	1	1	3	ACT; CD-C/ACT; 3 CD-SMPL	1 377	3.393	4.770	12
9	3	161	1	1	3	CD-C/BL/FHN; 3 CD-SMPL; SDS	0 884	3.127	4 011	12
9	4	162		i	3	3 CD-SMPL		2.186	2.186	14
9	5	163		1	3	CD-C/FHN/BL; 3 CD-SMPL		4.081	4 081	13
9	6	164	1	1	3	CD-C/BL/FHN; 3 CD-SMPL; SDS	0 838	4.228	5 066	12
9	8	165			3	3 CD-SMPL		2.812	2 812	14
9	2	166			3	3 CD-SMPL		2.348	2 348	14
10	8	167	1		3	ACT; 3 CD-SMPL	0 903	2.790	3.693	13
10	7	168		ļ	3	3 CD-SMPL		2.354	2 354	14
10	2	169			3	3 CD-SMPL		2.292	2 292	14
10	1	170	1	1	3	ACT; CD-C/ACT; 3 CD-SMPL	1.650	3.668	5 318	12
10	3	171	1		3	BAC; 3 CD-SMPL	1.656	2.474	4.130	11
10	6	172		1	3	3 CD-SMPL		2.696	2.696	14
10	5	173		ļ	3	3 CD-SMPL		2.572	2 572	14
10	4	174		ļ	3	3 CD-SMPL		2.264	2 264	14
6	1	177		ļ	3	3 CD-SMPL		1.916	1 916	14
6	8	178	1	ļ	3	BAC-BL/FHN; 3 CD-SMPL	1 295	2.580	3 875	12
6	4	179		1	3	CD-C/BAC; 3 CD-SMPL		3.094	3 094	13
6	7	180		i	3	3 CD-SMPL		2.462	2.462	13
11	7	181	1	ļ	3	3 CD-SMPL; SDS	0 880	2.310	3.190	13
11	4	182	2	1	3	ACT; BAC; 3 CD-SMPL	2 021	2.408	4.429	11
11	5	183		1	3	CD-C/BAC; 3 CD-SMPL		2.950	2 950	13
11	6	184		ļ	3	3 CD-SMPL		2.286	2 286	14
11	3	185			3	3 CD-SMPL		2.408	2.408	14
11	1	186		ļ	3	3 CD-SMPL		2.036	2 036	14
11	8	187			3	3 CD-SMPL		2.634	2.634	14
11	2	188		1	3	CD-C/BL/FHN; 3 CD-SMPL		3.174	3.174	13
12	4	189			3	3 CD-SMPL		2.308	2 308	14
12	1	190		ļ	3	3 CD-SMPL		1.818	1 818	14
12	3	191			3	3 CD-SMPL		2.366	2 366	14
12	5	192			3	3 CD-SMPL		2.612	2.612	14
12	8	193	1	ļ	3	BAC; 3 CD-SMPL	0.771	2.714	3.485	13
12	7	194	· · · · · ·		3	3 CD-SMPL		2.664	2.664	14
12	2	195	·····	ļ	3	3 CD-SMPL		2.258	2 258	14
12	6	196		ļ	3	3 CD-SMPL		2.610	2.610	14

Table 14. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-5 Facility Number 7

							Days 0 - 14 (17NC	OV15 - 01DE	C15)		
Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality	% Removal	Total % M & R Days 0 - 14	No. Birds Remaining Day 14
1	1	97	17					0.000%	0.000%	0.000%	17
2	1	103	17					0.000%	0.000%	0.000%	17
3	1	110	17					0.000%	0.000%	0.000%	17
4	1	122	17					0.000%	0.000%	0.000%	17
5	1	132	17					0.000%	0.000%	0.000%	17
6	1	177	17					0.000%	0.000%	0.000%	17
7	1	141	17					0.000%	0.000%	0.000%	17
8	1	152	17					0.000%	0.000%	0.000%	17
9	1	160	17					0.000%	0.000%	0.000%	17
10	1	170	17	r				0.000%	0.000%	0.000%	17
11	1	186	17					0.000%	0.000%	0.000%	17
12	1	190	17					0.000%	0.000%	0.000%	17
Tre	atmen	t 1	204	0	0	0		0.000%	0.000%	0.000%	204
	-	422	47	_	:	:		0.0000/	0.0000/	0.0000/	47
1	2	133	17	ļ				0.000%	0.000%	0.000%	17
2	2	102	17					0.000%	0.000%	0.000%	17
3	2	113	17	l				0.000%	0.000%	0.000%	17
4	2	123	17				CD2	0.000%	0.000%	0.000%	17
5	2	126	17	1			SDS	5.882%	0.000%	5.882%	16
6	2	140	17	l				0.000%	0.000%	0.000%	17
7	2	144	17					0.000%	0.000%	0.000%	17
8	2	151	17	ļ				0.000%	0.000%	0.000%	17
9	2	166	17					0.000%	0.000%	0.000%	17
10	2	169	17	ļ				0.000%	0.000%	0.000%	17
11	2	188	17					0.000%	0.000%	0.000%	17
12	2	195	17	\vdash				0.000%	0.000%	0.000%	17
Tre	atmen	t 2	204	1	0	0		0.490%	0.000%	0.490%	203
1	3	135	17	Г	1		CD-BL	0.000%	5.882%	5.882%	16
2	3	101	17	·····				0.000%	0.000%	0.000%	17
3	3	115	17	·····				0.000%	0.000%	0.000%	17
4	3	120	17	·····				0.000%	0.000%	0.000%	17
5	3	128	17	ľ				0.000%	0.000%	0.000%	17
6	3	137	17	ľ				0.000%	0.000%	0.000%	17
7	3	142	17					0.000%	0.000%	0.000%	17
8	3	154	17	2			BAC; BAC-DH	11.765%	0.000%	11.765%	15
9	3	161	17					0.000%	0.000%	0.000%	17
10	3	171	17	1	1		CD-DH/SO; DH	5.882%	5.882%	11.765%	15
11	3	185	17					0.000%	0.000%	0.000%	17
12	3	191	17					0.000%	0.000%	0.000%	17
Tee	atmen	+ 3	204	3	2	0	BAC; BAC-DH; CD-BL; CD-DH/SO; DH	1.471%	0.980%	2.451%	199

							Days 0 - 14 (17N	IOV15 - 01DE	C15)		
Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality	% Removal	Total % M & R Days 0 - 14	No. Birds Remaining Day 14
1	4	98	17					0.000%	0.000%	0.000%	17
2	4	105	17					0.000%	0.000%	0.000%	17
3	4	116	17					0.000%	0.000%	0.000%	17
4	4	119	17					0.000%	0.000%	0.000%	17
5	4	127	17					0.000%	0.000%	0.000%	17
6	4	179	17					0.000%	0.000%	0.000%	17
7	4	148	17	ĺ				0.000%	0.000%	0.000%	17
8	4	153	17					0.000%	0.000%	0.000%	17
9	4	162	17					0.000%	0.000%	0.000%	17
10	4	174	17					0.000%	0.000%	0.000%	17
11	4	182	17	ļ	1		CD-BL/BAC	0.000%	5.882%	5.882%	16
12	4	189	17					0.000%	0.000%	0.000%	17
Tre	atmen	t 4	204	0	1	0	CD-BL/BAC	0.000%	0.490%	0.490%	203
1	5	99	17					0.000%	0.000%	0.000%	17
2	5	108	17					0.000%	0.000%	0.000%	17
2 3	5	112	17					0.000%	0.000%	0.000%	17
4	5	118	17					0.000%	0.000%	0.000%	17
5	5	130	17					0.000%	0.000%	0.000%	17
6	5	138	17	1				0.000%	0.000%	0.000%	17
7	5	143	17					0.000%	0.000%	0.000%	17
8	5	149	17					0.000%	0.000%	0.000%	17
9	5	163	17					0.000%	0.000%	0.000%	17
10	5	173	17					0.000%	0.000%	0.000%	17
11	5	183	17			[0.000%	0.000%	0.000%	17
12	5	192	17					0.000%	0.000%	0.000%	17
Tre	atmen	t 5	204	0	0	0		0.000%	0.000%	0.000%	204
1	6	134	17					0.000%	0.000%	0.000%	17
1 2	6	106	17	·····		·		0.000%	0.000%	0.000%	17
	6	109	17	·····				0.000%	0.000%	0.000%	17
3 4	6	117	17	·····				0.000%	0.000%	0.000%	17
5	6	131	17	·····				0.000%	0.000%	0.000%	17
6	6	139	17	l				0.000%	0.000%	0.000%	17
7	6	147	17	l				0.000%	0.000%	0.000%	17
8	6	150	17	l	!	ļ		0.000%	0.000%	0.000%	17
9	6	164	17	ŀ				0.000%	0.000%	0.000%	17
10	6	172	17	·····				0.000%	0.000%	0.000%	17
11	6	184	17	ŀ	 			0.000%	0.000%	0.000%	17
12	6	196	17					0.000%	0.000%	0.000%	17
Tre			204	0	0	0		0.000%	0.000%	0.000%	204

							Days 0 - 14 (17	NOV15 - 01DE	C15)		
Block	Trt	Pen No.	No. Birds Started Day 0	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality	% Removal	Total % M & R Days 0 - 14	No. Birds Remaining Day 14
1	7	100	17					0.000%	0.000%	0.000%	17
2	7	107	17					0.000%	0.000%	0.000%	17
3	7	114	17					0.000%	0.000%	0.000%	17
4	7	121	17			ļ		0.000%	0.000%	0.000%	17
5	7	125	17		1	[CD-C/SB/BL	0.000%	5.882%	5.882%	16
6	7	180	17	1		[SDS	5.882%	0.000%	5.882%	16
7	7	146	17	ĺ				0.000%	0.000%	0.000%	17
8	7	156	17					0.000%	0.000%	0.000%	17
9	7	159	17					0.000%	0.000%	0.000%	17
10	7	168	17					0.000%	0.000%	0.000%	17
11	7	181	17			ļ		0.000%	0.000%	0.000%	17
12	7	194	17			[0.000%	0.000%	0.000%	17
Tre	atmen	t 7	204	1	1	0	CD-C/SB/BL; SDS	0.490%	0.490%	0.980%	202
1	8	136	17					0.000%	0.000%	0.000%	17
2	8	104	17					0.000%	0.000%	0.000%	17
3	8	111	17	2		[2 BAC	11.765%	0.000%	11.765%	15
4	8	124	17	1			BAC	5.882%	0.000%	5.882%	16
5	8	129	17	1			BAC	5.882%	0.000%	5.882%	16
6	8	178	17	1	1		CD-BAC	0.000%	5.882%	5.882%	16
7	8	145	17	r				0.000%	0.000%	0.000%	17
8	8	155	17	[[0.000%	0.000%	0.000%	17
9	8	165	17					0.000%	0.000%	0.000%	17
10	8	167	17	[[0.000%	0.000%	0.000%	17
11	8	187	17	[0.000%	0.000%	0.000%	17
12	8	193	17					0.000%	0.000%	0.000%	17
Tre	atmen	t 8	204	4	1	0	4 BAC; CD-BAC	1.961%	0.490%	2.451%	199

Table 14. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-5 Facility Number 7

						Days 14 - 21 (010	DEC15 - 08DE	C15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality	% Removal	Total % M & R Days 14 - 21	No. Birds Remaining Day 21
1	1	97					0.000%	0.000%	0.000%	17
2	1	103		[0.000%	0.000%	0.000%	17
3	1	110					0.000%	0.000%	0.000%	17
4	1	122					0.000%	0.000%	0.000%	17
5	1	132					0.000%	0.000%	0.000%	17
6	1	177					0.000%	0.000%	0.000%	17
7	1	141					0.000%	0.000%	0.000%	17
8	1	152		i			0.000%	0.000%	0.000%	17
9	1	160					0.000%	0.000%	0.000%	17
10	1	170					0.000%	0.000%	0.000%	17
11	1	186		 !			0.000%	0.000%	0.000%	17
12	1	190					0.000%	0.000%	0.000%	17
Tre	atmen	t 1	0	0	0		0.000%	0.000%	0.000%	204
1	2	133					0.000%	0.000%	0.000%	17
2	2	102					0.000%	0.000%	0.000%	17
3	2	113					0.000%	0.000%	0.000%	17
4	2	123					0.000%	0.000%	0.000%	17
5	2	126					0.000%	0.000%	0.000%	16
6	2	140					0.000%	0.000%	0.000%	17
7	2	144					0.000%	0.000%	0.000%	17
8	2	151		} :			0.000%	0.000%	0.000%	17
9	2	166					0.000%	0.000%	0.000%	17
10	2	169					0.000%	0.000%	0.000%	17
11	2	188					0.000%	0.000%	0.000%	17
12	2	195					0.000%	0.000%	0.000%	17
Tre	atmen	t 2	0	0	0		0.000%	0.000%	0.000%	203
1	3	135	ļ	<u></u>			0.000%	0.000%	0.000%	16
2	3	101	ļ	<u> </u>	ļ		0.000%	0.000%	0.000%	17
3	3	115	ļ				0.000%	0.000%	0.000%	17
4	3	120	ļ				0.000%	0.000%	0.000%	17
5	3	128					0.000%	0.000%	0.000%	17
6	3	137	L				0.000%	0.000%	0.000%	17
7	3	142	ļ	<u>.</u>			0.000%	0.000%	0.000%	17
8	3	154	<u> </u>				0.000%	0.000%	0.000%	15
9	3	161	<u> </u>				0.000%	0.000%	0.000%	17
10	3	171					0.000%	0.000%	0.000%	1 5
11	3	185					0.000%	0.000%	0.000%	17
12	3	191					0.000%	0.000%	0.000%	17
Tre	atmen	t 3	0	0	0		0.000%	0.000%	0.000%	199

						Days 14 - 21 (01D	EC15 - 08DE	C15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality	% Removal	Total % M & R Days 14 - 21	No. Birds Remaining Day 21
1	4	98					0.000%	0.000%	0.000%	17
2	4	105					0.000%	0.000%	0.000%	17
3	4	116					0.000%	0.000%	0.000%	17
4	4	119					0.000%	0.000%	0.000%	17
5	4	127					0.000%	0.000%	0.000%	17
6	4	179					0.000%	0.000%	0.000%	17
7	4	148					0.000%	0.000%	0.000%	17
8	4	153					0.000%	0.000%	0.000%	17
9	4	162					0.000%	0.000%	0.000%	17
10	4	174					0.000%	0.000%	0.000%	17
11	4	182					0.000%	0.000%	0.000%	16
12	4	189					0.000%	0.000%	0.000%	17
Tre	atmen	t 4	0	0	0		0.000%	0.000%	0.000%	203
1	5	99					0.000%	0.000%	0.000%	17
2	5	108					0.000%	0.000%	0.000%	17
3	5	112					0.000%	0.000%	0.000%	17
4	5	118					0.000%	0.000%	0.000%	17
5	5	130					0.000%	0.000%	0.000%	17
6	5	138	1			SDS	5.882%	0.000%	5.882%	16
7	5	143					0.000%	0.000%	0.000%	17
8	5	149		·			0.000%	0.000%	0.000%	17
9	5	163					0.000%	0.000%	0.000%	17
10	5	173					0.000%	0.000%	0.000%	17
11	5	183					0.000%	0.000%	0.000%	17
12	5	192		·			0.000%	0.000%	0.000%	17
Tre	atmen	t 5	1	0	0	SDS	0.490%	0.000%	0.490%	203
1	6	134	1			SDS	5.882%	0.000%	5.882%	16
2	6	106					0.000%	0.000%	0.000%	17
3	6	109		}			0.000%	0.000%	0.000%	17
4	6	117		·			0.000%	0.000%	0.000%	17
5	6	131					0.000%	0.000%	0.000%	17
<u>6</u>	6	139					0.000%	0.000%	0.000%	17
7	6	147		 			0.000%	0.000%	0.000%	17
8	6	150					0.000%	0.000%	0.000%	17
9	6	164		·			0.000%	0.000%	0.000%	17
10	6	172		·			0.000%	0.000%	0.000%	17
11	6	184		·			0.000%	0.000%	0.000%	17
12	6	196					0.000%	0.000%	0.000%	17
Tre	atmen	t 6	1	0	0	SDS	0.490%	0.000%	0.490%	203

						Days 14 - 21 (01D	EC15 - 08DE	C15)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality	% Removal	Total % M & R Days 14 - 21	No. Birds Remaining Day 21
1	7	100					0.000%	0.000%	0.000%	17
2	7	107					0.000%	0.000%	0.000%	17
3	7	114					0.000%	0.000%	0.000%	17
4	7	121					0.000%	0.000%	0.000%	17
5	7	125					0.000%	0.000%	0.000%	16
6	7	180]		0.000%	0.000%	0.000%	16
7	7	146					0.000%	0.000%	0.000%	17
8	7	156					0.000%	0.000%	0.000%	17
9	7	159					0.000%	0.000%	0.000%	17
10	7	168			[0.000%	0.000%	0.000%	17
11	7	181					0.000%	0.000%	0.000%	17
12	7	194					0.000%	0.000%	0.000%	17
Tre	atmen	t 7	0	0	0		0.000%	0.000%	0.000%	202
1	8	136	1			SDS	5.882%	0.000%	5.882%	16
2	8	104			[0.000%	0.000%	0.000%	17
3	8	111					0.000%	0.000%	0.000%	15
4	8	124					0.000%	0.000%	0.000%	16
5	8	129]		0.000%	0.000%	0.000%	16
6	8	178		[]		0.000%	0.000%	0.000%	16
7	8	145					0.000%	0.000%	0.000%	17
8	8	155					0.000%	0.000%	0.000%	17
9	8	165			<u> </u>		0.000%	0.000%	0.000%	17
10	8	167]		0.000%	0.000%	0.000%	17
11	8	187]		0.000%	0.000%	0.000%	17
12	8	193					0.000%	0.000%	0.000%	17
Tre	atmen	t 8	1	0	0	SDS	0.503%	0.000%	0.503%	198

Table 14. Summary of Mortalities and Removals (Day 0 - Study End) CQR Study Number AGV-15-5 Facility Number 7

						Days 21 - 42 (0	8DEC15	- 29DEC1	15)		
Block	Trt	Pen No	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality	% Removal-1	% . Removal-2	Total % M & R-1 Days 21 - 42	No. Birds Remainin Day 42
1	1	97			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
2	1	103		1	3	CD-C/ACT/FHN/BL; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13
3	1	110			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
4	1	122	I	T	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
5	1	132	3	Ţ	3	2 ACT; BAC; 3 CD-SMPL	17.647%	0.000%	17.647%	17.647%	11
6	1	177	1	7	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
7	1	141	1	1	3	ACT; CD-C/BL/FHN; 3 CD-SMPL	5.882%	5.882%	17.647%	11.765%	12
8	1	152	2	Ť	3	2 ACT; 3 CD-SMPL	11.765%	0.000%	17.647%	11.765%	12
9	1	160	1	1	3	ACT; CD-C/ACT; 3 CD-SMPL	5.882%	5.882%	17.647%	11.765%	12
10	1	170	1	1	3	ACT; CD-C/ACT; 3 CD-SMPL	5.882%	5.882%	17.647%	11.765%	12
11	1	186	†	-+	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
12	1	190	ļ	†	3	{	0.000%	0.000%	17.647%	0.000%	14
Tre	atmen	t 1	8	4	3(7 ACT; BAC; 2 CD-C/ACT; CD- C/ACT/FHN/BL; CD-C/BL/FHN; 36 CD-SMPL	3.922%	1.961%	17.647%	5.882%	156
1	2	133	1	-	3	BAC; 3 CD-SMPL	5.882%	0.000%	17.647%	5.882%	13
2	2	102	1		3		5.882%	0.000%	17.647%	5.882%	13
3	2	113	1				5.882%	5.882%	17.647%	11.765%	12
4	2	123	1		3		5.882%	0.000%	17.647%	5.882%	13
5	2	126	ļ		3	}	0.000%	6.250%	18.750%	6.250%	12
6	2	140	·	÷	3		0.000%	0.000%	17.647%	0.000%	14
<u>7</u>	2	144	ł		3		0.000%	0.000%	17.647%	0.000%	14
8	2	151	·		3		0.000%	0.000%	17.647%	0.000%	14 14
9	2	166	·		3		0.000%	0.000%	17.647%	0.000%	14 14
10	2	169	ł		3		0.000%	0.000%	17.647%	0.000%	14
11	2	188	ł	1			0.000%	5.882%	17.647%	5.882%	13
12	2	195	·		3	/	0.000%	0.000%	17.647%	0.000%	13 14
	atmen		4	3		2 BAC: CD-C/BAC: 2 CD-C/FHN/BL: 35 CD-	1.970%	1.478%	17.734%	3.448%	160
1	3	135	_	-	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13
1	3	101	ł	2			0.000%	11.765%	17.647%	11.765%	13 12
2							!	÷	·		
3	3	115			3		0.000%	0.000%	17.647%	0.000%	14
4	3	120	1	-	3	{	0.000%	0.000%	17.647%	0.000%	14
5	3	128		+	3		0.000%	0.000%	17.647%	0.000%	14
6 7	3	137	1	1			0.000%	5.882%	17.647%	5.882%	13
	3	142	 	-	3		0.000%	0.000%	17.647%	0.000%	14
8	3	154	1	<u>.</u>	3		0.000%	0.000%	20.000%	0.000%	12
9	3	161	•	1			5.882%	5.882%	17.647%	11.765%	12
10	3	171	1	-	3		6.667%	0.000%	20.000%	6.667%	11
11	3	185	.	<u> </u>	3	{	0.000%	0.000%	17.647%	0.000%	14
12	3	191	╄	+	3	!	0.000%	0.000%	17.647%	0.000%	14
Tre	atmen	t 3	2	4	3(BAC; CD-C/ACT; CD-C/BAC; 2 CD-C/BL/FHN; 36 CD-SMPL; SDS	1.005%	2.010%	18.090%	3.015%	157

						Days 21 - 42 (0	8DEC15	 29DEC1 	5)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality	% Removal-1	% Removal-2	Total % M & R-1 Days 21 - 42	No. Birds Remainin Day 42
1	4	98			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
2	4	105	1		3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13
3	4	116			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
4	4	119			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
5	4	127			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
6	4	179		1	3	CD-C/BAC; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13
7	4	148		<u> </u>	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
8	4	153	1		3	ACT; 3 CD-SMPL	5.882%	0.000%	17.647%	5.882%	13
9	4	162			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
10	4	174			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
11	4	182	2		3	ACT; BAC; 3 CD-SMPL	12.500%	0.000%	18.750%	12.500%	11
12	4	189			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
Tre	atmen	t 4	4	1	36	2 ACT; BAC; CD-C/BAC; 36 CD-SMPL; SDS	1.970%	0.493%	17.734%	2.463%	162
1	5	99		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
2	5	108		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
3	5	112	ļ	ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
4	5	118			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
5	5	130	.	2	3	2 CD-C/BL; 3 CD-SMPL	0.000%	11.765%	17.647%	11.765%	12
6	5	138	.	ļ	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13
7	5	143		<u> </u>	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
8	5	149	.	<u> </u>	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
9	5	163	.	1	3	CD-C/FHN/BL; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13
10	5	173		ļ 	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
11	5	183		1	3	CD-C/BAC; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13
12	5	192		<u> </u>	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
Tre	atmen	t 5	0	4	36	CD-C/BAC; 2 CD-C/BL; CD-C/FHN/BL; 36 CD- SMPL	0.000%	1.970%	17.734%	1.970%	163
1	6	134	1		3	3 CD-SMPL; SDS	6.250%	0.000%	18.750%	6.250%	12
2	6	106		1	3	CD-BL/DH; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13
3	6	109			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
4	6	117		ļ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
5	6	131			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
6	6	139		1	3	CD-C/ACT; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13
7	6	147			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
8	6	150	L		3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
9	6	164	1	1	3	CD-C/BL/FHN; 3 CD-SMPL; SDS	5.882%	5.882%	17.647%	11.765%	12
10	6	172		ĺ	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
11	6	184			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
12	6	196			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
Tre	atmen	t 6	2	3	36	CD-C/ACT; CD-BL/DH; CD-C/BL/FHN; 36 CD- SMPL; 2 SDS	0.985%	1.478%	17.734%	2.463%	162

						Days 21 - 42 (0	8DEC15	- 29DEC1	5)		
Block	Trt	Pen No.	Mortality	Removal-1	Removal-2	Cause of Death	% Mortality	% Removal-1	% Removal-2	Total % M & R-1 Days 21 - 42	No. Birds Remaining Day 42
1	7	100		1	3	CD-C/BL; 3 CD-SMPL	0.000%	5.882%	17.647%	5.882%	13
2	7	107			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
3	7	114			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
4	7	121			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
5	7	125			3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13
6	7	180		Ĭ	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13
7	7	146			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
8	7	156			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
9	7	159			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
10	7	168			3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
11	7	181	1		3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13
12	7	194		Ī	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
Tre	eatmen	t 7	1	1	36	CD-C/BL; 36 CD-SMPL; SDS	0.495%	0.495%	17.822%	0.990%	164
1	8	136	1		3	3 CD-SMPL; SDS	6.250%	0.000%	18.750%	6.250%	12
2	8	104		1	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
3	8	111		<u> </u>	3	3 CD-SMPL	0.000%	0.000%	20.000%	0.000%	12
4	8	124	1	1	3	ACT; CD-BL/FHN; 3 CD-SMPL	6.250%	6.250%	18.750%	12.500%	11
5	8	129		Ť	3	3 CD-SMPL	0.000%	0.000%	18.750%	0.000%	13
6	8	178	1	1	3	BAC-BL/FHN; 3 CD-SMPL	6.250%	0.000%	18.750%	6.250%	12
7	8	145	1		3	3 CD-SMPL; SDS	5.882%	0.000%	17.647%	5.882%	13
8	8	155		†	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
9	8	165		Î	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
10	8	167	1	1	3	ACT; 3 CD-SMPL	5.882%	0.000%	17.647%	5.882%	13
11	8	187		1	3	3 CD-SMPL	0.000%	0.000%	17.647%	0.000%	14
12	8	193	1	1	3	BAC; 3 CD-SMPL	5.882%	0.000%	17.647%	5.882%	13
Tre	eatmen	t 8	6	1	36	2 ACT; BAC; BAC-BL/FHN; CD-BL/FHN; 36 CD-SMPL; 2 SDS	3.030%	0.505%	18.182%	3.535%	155

Table 14. Summary of Mortalities and Removals (Day 0 - **Stu**dy End) CQR Study Number AGV-15-5 Facility Number 7

				Days	0 - 42	
Block	Trt	Pen No.	% Mortality	% Removal- 1	% Removal- 2	% Mortality & Removal- 1
1	1	97	0.000%	0.000%	17.647%	0.000%
2	1	103	0.000%	5.882%	17.647%	5.882%
3	1	110	0.000%	0.000%	17.647%	0.000%
4	1	122	0.000%	0.000%	17.647%	0.000%
5	1	132	17.647%	0.000%	17.647%	17.647%
6	1	177	0.000%	0.000%	17.647%	0.000%
7	1	141	5.882%	5.882%	17.647%	11.765%
8	1	152	11.765%	0.000%	17.647%	11.765%
9	1	160	5.882%	5.882%	17.647%	11.765%
10	1	170	5.882%	5.882%	17.647%	11.765%
11	1	186	0.000%	0.000%	17.647%	0.000%
12	1	190	0.000%	0.000%	17.647%	0.000%
Tre	atmen	t 1	3.922%	1.961%	17.647%	5.882%
1	2	133	5.882%	0.000%	17.647%	5.882%
2	2	102	5.882%	0.000%	17.647%	5.882%
3		113	5.882%	5.882%	17.647%	11.765%
4	2	123	5.882%	0.000%	17.647%	5.882%
5	2	126	5.882%	5.882%	17.647%	11.765%
6	2	140	0.000%	0.000%	17.647%	0.000%
7	2	144	0.000%	0.000%	17.647%	0.000%
8	2	151	0.000%	0.000%	17.647%	0.000%
9	2	166	0.000%	0.000%	17.647%	0.000%
10	2	169	0.000%	0.000%	17.647%	0.000%
11	2	188	0.000%	5.882%	17.647%	5.882%
12	2	195	0.000%	0.000%	17.647%	0.000%
12		155	0.000%	0.000%	17.04776	0.00070
Tre	atmen	t 2	2.451%	1.471%	17.647%	3.922%
1	3	135	0.000%	5.882%	17.647%	5.882%
2	3	101	0.000%	11.765%	17.647%	11.765%
3	3	115	0.000%	0.000%	17.647%	0.000%
4	3	120	0.000%	0.000%	17.647%	0.000%
5	3	128	0.000%	0.000%	17.647%	0.000%
6	3	137	0.000%	5.882%	17.647%	5.882%
7	3	142	0.000%	0.000%	17.647%	0.000%
8	3	154	11.765%	0.000%	17.647%	11.765%
9	3	161	5.882%	5.882%	17.647%	11.765%
10	3	171	11.765%	5.882%	17.647%	17.647%
11	3	185	0.000%	0.000%	17.647%	0.000%
12	3	191	0.000%	0.000%	17.647%	0.000%
Tre	atmen	t 3	2.451%	2.941%	17.647%	5.392%

				Days	0 - 42	
Block	Trt	Pen No.	% Mortality	% Removal- 1	% Removal- 2	% Mortality & Removal- 1
1	4	98	0.000%	0.000%	17.647%	0.000%
2	4	105	5.882%	0.000%	17.647%	5.882%
3	4	116	0.000%	0.000%	17.647%	0.000%
4	4	119	0.000%	0.000%	17.647%	0.000%
5	4	127	0.000%	0.000%	17.647%	0.000%
6	4	179	0.000%	5.882%	17.647%	5.882%
7	4	148	0.000%	0.000%	17.647%	0.000%
8	4	153	5.882%	0.000%	17.647%	5.882%
9	4	162	0.000%	0.000%	17.647%	0.000%
10	4	174	0.000%	0.000%	17.647%	0.000%
11	4	182	11.765%	5.882%	17.647%	17.647%
12	4	189	0.000%	0.000%	17.647%	0.000%
Tre	atmen	t 4	1.961%	0.980%	17.647%	2.941%
			•			
1	5	99	0.000%	0.000%	17.647%	0.000%
2	5	108	0.000%	0.000%	17.647%	0.000%
3	5	112	0.000%	0.000%	17.647%	0.000%
4	5	118	0.000%	0.000%	17.647%	0.000%
5	5	130	0.000%	11.765%	17.647%	11.765%
6	5	138	5.882%	0.000%	17.647%	5.882%
7	5	143	0.000%	0.000%	17.647%	0.000%
8	5	149	0.000%	0.000%	17.647%	0.000%
9	5	163	0.000%	5.882%	17.647%	5.882%
10	5	173	0.000%	0.000%	17.647%	0.000%
11	5	183	0.000%	5.882%	17.647%	5.882%
12	5	192	0.000%	0.000%	17.647%	0.000%
	atmen		0.490%	1.961%	17.647%	2.451%
			•			
1	6	134	11.765%	0.000%	17.647%	11.765%
2	6	106	0.000%	5.882%	17.647%	5.882%
3	6	109	0.000%	0.000%	17.647%	0.000%
4	6	117	0.000%	0.000%	17.647%	0.000%
5	6	131	0.000%	0.000%	17.647%	0.000%
6	6	139	0.000%	5.882%	17.647%	5.882%
7	6	147	0.000%	0.000%	17.647%	0.000%
8	6	150	0.000%	0.000%	17.647%	0.000%
9	6	164	5.882%	5.882%	17.647%	11.765%
10	6	172	0.000%	0.000%	17.647%	0.000%
11	6	184	0.000%	0.000%	17.647%	0.000%
12	6	196	0.000%	0.000%	17.647%	0.000%
Tre	atmen	t 6	1.471%	1.471%	17.647%	2.941%

				Days	0 - 42	
Block	Trt	Pen No.	% Mortality	% Removal- 1	% Removal- 2	% Mortality & Removal- 1
1	7	100	0.000%	5.882%	17.647%	5.882%
2	7	107	0.000%	0.000%	17.647%	0.000%
3	7	114	0.000%	0.000%	17.647%	0.000%
4	7	121	0.000%	0.000%	17.647%	0.000%
5	7	125	0.000%	5.882%	17.647%	5.882%
6	7	180	5.882%	0.000%	17.647%	5.882%
7	7	146	0.000%	0.000%	17.647%	0.000%
8	7	156	0.000%	0.000%	17.647%	0.000%
9	7	159	0.000%	0.000%	17.647%	0.000%
10	7	168	0.000%	0.000%	17.647%	0.000%
11	7	181	5.882%	0.000%	17.647%	5.882%
12	7	194	0.000%	0.000%	17.647%	0.000%
Tre	atmen	t 7	0.980%	0.980%	17.647%	1.961%
1	8	136	11.765%	0.000%	17.647%	11.765%
2	8	104	0.000%	0.000%	17.647%	0.000%
3	8	111	11.765%	0.000%	17.647%	11.765%
4	8	124	11.765%	5.882%	17.647%	17.647%
5	8	129	5.882%	0.000%	17.647%	5.882%
6	8	178	5.882%	5.882%	17.647%	11.765%
7	8	145	5.882%	0.000%	17.647%	5.882%
8	8	155	0.000%	0.000%	17.647%	0.000%
9	8	165	0.000%	0.000%	17.647%	0.000%
10	8	167	5.882%	0.000%	17.647%	5.882%
11	8	187	0.000%	0.000%	17.647%	0.000%
12	8	193	5.882%	0.000%	17.647%	5.882%
Tre	atmen	t 8	5.392%	0.980%	17.647%	6.373%

Table 15. Feed Added and Removed by Pen Days 0 - Study End AGV-15-5
BUILDING 7

Н
1-Dec-15 Consumed 3.98 6.02
3.28 6.72
3.22 6.78
2.72 7.28
3.46 6.54
3.28 6.72
3.78 6.22
2.96 7.04
3.54 6.46
3.08 6.92
3.08 6.92
3.46 6.5
2.78 7.2
4.02 5.9
3.22 6.78
3.08 6.9
3.34 6.
2.76 7.
3.50 6.
3.38 6.62
3.26 6.
3.04 6.
3.06 6.94
3.28 6.7
2.84 7.1
3.58 6.42
3.16 6.84
3.18 6.82

_																																	
D14-21	Consumed	8.88	8.90	8.48	8.92	10.04	9.46	96.6	7.58	9.22	10.00	8.24	10.24	89.6	9.00	9:90	9.42	7.62	9.44	9.74	9.48	10.60	10.12	10.98	10.06	10.16	10.24	10.16	7.98	9.14	8.56	10.46	10.08
WB	8-Dec-15	4.12	4.10	4.52	4.08	2.96	3.54	3.04	5.42	3.78	3.00	4.76	2.76	3.32	4.00	3.10	3.58	5.38	3.56	3.26	3.52	2.40	2.88	2.02	2.94	2.84	2.76	2.84	5.02	3.86	4.44	2.54	2.92
Feed 2	1-Dec-15	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00
D0-14	Consumed	6.54	86.9	6.62	6.46	6.92	7.00	7.06	5.96	6.84	7.46	6.56	7.30	6.74	98.9	96.9	7.12	6.30	98.9	7.16	7.32	7.36	7.34	7.82	7.40	7.12	7.54	7.38	6.18	7.00	6.26	7.28	7.40
WB	1-Dec-15	3.46	3.02	3.38	3.54	3.08	3.00	2.94	4.04	3.16	2.54	3.44	2.70	3.26	3.14	3.04	2.88	3.70	3.14	2.84	2.68	2.64	2.66	2.18	2.60	2.88	2.46	2.62	3.82	3.00	3.74	2.72	2.60
Feed 1	13-Nov-15	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
- 14	ren No.	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156
11.0	in Group	7	7	4	3	8	5	9	1	2	9	3	8	3	5	9	2	111	3	5	2	8	7	9	4	5	9	2	1 - 1	4	3	8	7
- Paris	BIOCK	5	5	5	5	5	5	5	5	1	1	1	1	9	9	9	9	7	7	7	7	7	7	7	7	8	8	8	8	8	8	8	∞ ∞

D14-21	Consumed	10.66	8.44	9.02	9.44	10.22	10.96	10.90	9.62	10.78	8.74	99.6	7.96	8:38	10.12	10.40	9.20	7.44	9.44	8.94	9.24	9.78	8.42	9.08	9.58	9.02	7.14	10.32	9.58	9.04	7.46	9.20	9:36	10.60	10.06	9.66	10.26
WB	8-Dec-15	2.34	4.56	3.98	3.56	2.78	2.04	2.10	3.38	2.22	4.26	3.34	5.04	4.62	2.88	2.60	3.80	5.56	3.56	4.06	3.76	3.22	4.58	3.92	3.42	3.98	5.86	2.68	3.42	3.96	5.54	3.80	3.04	2.40	2.94	3.34	2.74
Feed 2	1-Dec-15	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00
D0-14	Consumed	7.32	6.26	6.62	6.74	7.20	7.58	7.48	6.90	7.40	2.66	6.76	90'9	6.04	7.04	7.28	6.52	6.00	6.78	6.58	6.70	7.04	6.40	86.9	2.06	6.74	6.04	7.26	6.84	6.50	6.04	6.70	7.08	7.34	7.08	86.9	86.9
WB	1-Dec-15	2.68	3.74	3.38	3.26	2.80	2.42	2.52	3.10	2.60	4.34	3.24	3.94	3.96	2.96	2.72	3.48	4.00	3.22	3.42	3.30	2.96	3.60	3.02	2.94	3.26	3.96	2.74	3.16	3.50	3.96	3.30	2.92	2.66	2.92	3.02	3.02
Feed 1	13-Nov-15	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
ON SO	ren No.) (160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196
11 C 20 1	dnois 111	7	1	3	14	5		 	2	i	7	2 2	i= - ₩ 	- (8) 	9	5		 	- 		7	7	 4 1	2	9	3		8	2 - 2	4		3	5	8	7	2	9
Joola	DIOCK	6	6		6	6	6	6	6	10	10	10	19	10	10	10	101		9	9	9	11	11	11	11	11	11	11	11	12	12	12	12	12	12	İ	12

Table 15. Feed Added and Remorved by Pen Days 0 - Study End AGV-15-5
BUILDING 7

	D21-42	Consumed	37.92	49.26	50.44	49.72	46.08	48.26	38.92	50.48	46.50	47.24	51.54	51.52	53.32	39.14	44.82	50.18	46.18	51.76	46.64	47.20	48.52	46.42	46.88	46.02	49.00	40.88	47.20	42.88
	WB	15	8.08	9.74	8.56	9.28	12.92	10.74	7.08	8.52	12.50	11.76	7.46	7.48	5.68	98.9	14.18	8.82	12.82	7.24	12.36	11.80	10.48	12.58	12.12	12.98	10.00	5.12	11.80	16.12
	Feed 7	28-Dec-15	0.00	5.00	5.00	5.00	5.00	5.00	0.00	5.00	5.00	5.00	5.00	5.00	5.00	0.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	0.00	5.00	5.00
Days 21 - 42	Feed 6	23-Dec-15	0.00	8.00	8.00	8.00	8.00	8.00	00.00	8.00	8.00	8.00	8.00	8.00	8.00	0.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	0.00	8.00	8.00
	Feed 5	21-Dec-15	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
	Feed 4	14-Dec-15	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00
	Feed 3	8-Dec-15	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
	:	Pen No.	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124
	-	Trt Group	1	14	5	7	(A)	2	1 1	- 	4	9	7	5	9	1 - 1	8	5 1	2	7	3	4	9	5	4	3	7	1 - 1	2	
		Block	1	111	1	1	2	2	2	2	2	2	2	2	3	3	8) 8 1	e e	3	3	3	4	4	4	4	4	4	4	4

D21-42	Consumed	46.88	45.60	49.94	49.10	48.88	47.26	48.48	37.06	44.28	44.14	44.70	43.06	42.58	46.40	49.32	50.04	35.84	49.42	49.54	51.20	48.44	51.82	51.90	50.26	51.32	51.14	51.38	36.62	43.54	41.70	50.60	50.00
WB	29-Dec-15	12.12	13.40	90.6	9.90	10.12	11.74	10.52	8.94	14.72	14.86	14.30	15.94	16.42	12.60	89.6	8.96	10.16	9.58	9.46	7.80	10.56	7.18	7.10	8.74	7.68	7.86	7.62	9:38	15.46	17.30	8.40	9.00
Feed 7	28-Dec-15	5.00	5.00	5.00	5.00	5.00	5.00	5.00	0.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	00.0	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	0.00	5.00	5.00	5.00	5.00
Feed 6	23-Dec-15	8.00	8.00	8.00	8.00	8.00	8.00	8.00	00.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	00.0	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	00.00	8.00	8.00	8.00	8.00
Feed 5	21-Dec-15	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
Feed 4	14-Dec-15	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00
Feed 3	8-Dec-15	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
ON and	reli NO.	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156
T+ C.0111	dnois 111	7	2	4	3	180	5	9	1	2	9	3	- 	31	5	9	2	 	3	2	2	1 8	7	9	4	5	9	2	1	4	3	 0 0	7
10010	DIOCK	5	5	5	5	5	5	5	5	1	1	1	1	9	9	9	 ! 9 ! 1		7	7		7			7	8	8	8	8	8	8	8	- ∞

D21-42	Consumed	51.14	38.12	42.14	50.18	48.74	46.62	51.58	49.84	47.88	48.98	51.12	38.68	42.00	49.60	51.20	49.00	38.54	43.52	44.30	46.46	47.94	40.18	46.86	51.06	46.68	35.42	49.52	46.54	48.80	39.38	47.56	47.88	45.80	47.60	47.86	47.76
WB	29-Dec-15	7.86	7.88	16.86	8.82	10.26	12.38	7.42	9.16	11.12	10.02	7.88	7.32	17.00	9.40	7.80	10.00	7.46	15.48	14.70	12.54	11.06	18.82	12.14	7.94	12.32	10.58	9.48	12.46	10.20	6.62	11.44	11.12	13.20	11.40	11.14	11.24
Feed 7	28-Dec-15	5.00	0.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	0.00	5.00	5.00	5.00	5.00	0.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	0.00	5.00	5.00	5.00	0.00	5.00	5.00	5.00	5.00	5.00	5.00
Feed 6	23-Dec-15	8.00	0.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	0.00	8.00	8.00	8.00	8.00	0.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	0.00	8.00	8.00	8.00	0.00	8.00	8.00	8.00	8.00	8.00	8.00
Feed 5	21-Dec-15	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
Feed 4	14-Dec-15	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00
Feed 3	8-Dec-15	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Den No		159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196
Trt Groun	dans an	7	1	က	4	5	9	8	2	8	7	2	1	3	9	5	14	1	8	4	7	7	4	5	9	8	1	8	2	4	1	8	5	8	7	2	9
Block		6	6	6	6	6	 6 	6	6	10	10 1	10	10	10 1	10	10 10 1	101		9	9	9	11	11 -	11 11 1	11	11	11	11	11	12	12	12	12	12	12	12	12

Table 17. Hematalogical Results Summarized by Treatment Group AGV-15-5 BUILDING 7

	30	_i_	36 28 74	36 28 74 74 74	36 36 28 1 28 1 28 1 28 1 28 1 28 28	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		8 8 2 4 4 6 8 8 8 8 8 8 8 8 8	8 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	% % 4 % 4 4 6 % 6 % 	% % 4 % 4 4 6 % 6 % 	% % 4 % 4 4 6 % 6 % % % 	~ ~ ~+++ ~ ~+++ ~ ~+++ % % 4 % 4 4 6 % 6 % % % % - ~+++ ~ ~++				- - - - - - - - - - - - -		- - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - -
20-80	*	* *	8 8 8 * * *	8 8 8 8 8 - 1 - 1 - 1 - 1 8 8 8 8	\[\frac{1}{2} \] \[\frac{1}{	8 8 8 8 8 8 	8 8 8 8 8 8 8 8 	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8														
7		7.1	2.1. 7.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1.	7.1	7.1 1.4	20.00.00.00.00.00.00.00.00.00.00.00.00.0	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	7.7.1.8.7.7.1.1.8.1.1.1.4.1.1.1.4.1.1.1.1.4.1.1.1.1	7.7.7.1.38 7.7.1.38 7.7.1.38 7.7.1.38	15.24 16.24 17.71 17	2.57 1.16 1.17 1.	2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	2.5.7.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	13.8 17.1 17.1 17.1 18.1 18.1 18.1 18.1 18.1 19.1	10	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	7. 2. 2. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	7. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	7. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	1
8.0-10.2		10 10		- - -																			
36.3-38.9	20.0	36.2	36.2 35.1 35.2 35.2	36.2 35.1 35.2 35.2 35.2 35.2 36.6 36	36.2 35.1 35.2 35.2 36.6 36.6	35.2 35.1 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.3 35.3 35.3 35.4 35	36.2 35.1 35.1 35.2 35.2 35.2 35.2 35.3 35.3 35.3 36.4 36.4 36.5 36																
7 38.2-43.0	45.7	45.2	44.5	44.5 44.1 48.6	45.2 44.5 44.1 48.6 44.9	45.2 44.1 44.1 48.6 44.9 48.6 48.6 48.6 48.6 48.6 48.6 48.6 48.6	44.5.2 44.5.2 44.5.4 44.5.4 44.5.4 44.5.4 44.5.4 44.5.4 44.5.4 44.5.4 44.5.4 47.5.5 47.5.4 47.5 47.5.4 47.5.4 47.5.4 47.5.4 47.5.4 47.5.4 47.5.	45.2 44.1 48.6 48.4 48.1 48.1 48.1 48.1 48.1 49.1 49.1 49.1 49.2 49.7 49	44.5 44.15	7.4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.74	2.7.4 4 4 8 4 8 7 4 9 8 4 8 7 4 9 8 8 6 7 8 7 8 8 9 9 9 9 9 9 9 9	7.4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7.4	2.7.4 4 8 4 8 7 4 9 8 8 4 4 1 1 1 1 1 1 1 1	2.7.4 4 4 8 4 8 7 4 9 8 8 4 1 1 1 1 1 1 1 1 1	2.7.4.4.8.4.8.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1	2.6.4 4 4 8 4 8 6 4 6 8 8 4 12 12 12 12 12 12 12	44.5.2 4.4.4.4 4.4.5.2 4.4.4.4 4.4.5.2 4.4.4.4 4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
10	0 7 7 7	1248	124 8 126.6 125 3	1248 1266 1 1253 1 1326	1248 1266 1253 1326 127 127	1248 126.6 125.3 132.6 127 127 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132	1248 1266 1266 1253 14 1326 17 127 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321	1248 1266 1266 127 127 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1 132.1	1248 1266 1266 1253 14 1253 14 1253 14 1254 15 15 15 15 15 15 15	1 1248 1 1248 1 1253 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 127 1 1	1248 1248 1248 1266 1274 1253 1474 1253 1474 1274 1274 1274 1274 1274 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 1275 12	1248 1248 1266 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 12	124.8 1. 126.6 1. 125.3 1. 127.2 1. 132.6 1. 132.6 1. 132.6 1. 132.6 1. 132.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6 1. 133.6	124.8 125.9 125.9 127.0 127.0 127.0 139.6 139.6 137.0 139.6 137.0 139.6 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 13	124.8 1.124.8 1.124.8 1.124.8 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9	124.8 1.124.8 1.124.8 1.124.8 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9	124.8 1.124.8 1.124.8 1.124.8 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9 1.125.9	- 1248 - 1255 - 1266 - 1266 - 1266 - 1266 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 -	- 1248 - 1255 - 1266 - 1266 - 1266 - 1266 - 127 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 -	- 1248 - 1255 - 1266 - 1272 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 -	- 1248 - 1253 - 1266 - 1266 - 1266 - 1266 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 -	- 1248 - 1253 - 1266 - 1266 - 1266 - 1266 - 1272 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 - 1272 -	- 1248 - 1253 - 1266 - 1266 - 1266 - 1266 - 1272 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 - 1267 -
2.42-2.99	,	$\frac{1}{2.9}$	2.7 2.9 7 2.97	2.3 2.9 7 2.9 7 2.9 4.3.19	2.7 2.9 7 2.97 4 3.19 4 2.74	2.7 - 2.9 - 2.97 - 2.97 - 3.19 - 2.74 - 2.62	2.7 - 2.9 - 2.97 - 2.97 - 3.19 - 2.74 - 2.62 - 2.62 - 2.52	2.7 -2.7 -2.9 -2.9 -2.9 -2.9 -2.9 -2.0 -2.	2.7 -2.7 -2.9 -2.	-27	2.77 -2.77 -2.99	2.77 -2.77 -2.99	-27	-27	2.77 -2.77 -2.99	-2.7 -2.9 -2.9 -2.9 -2.9 -2.9 -2.5 -2.5 -2.6 	-2.7	-2.7	-2.77	-2.77	-2.77	1.00 1.00	-2.77
25.9-32.6	22.7	33.7	36.7 36.7 37.2	33.7 36.7 37.2 42.3	33.7 36.7 37.2 42.3 42.3 34.8	33.7 36.7 36.7 7 42.3 42.3 34.8	33.7 36.7 37.2 42.3 42.3 42.3 34.8 34.6 32.9	33.7. 33.7. 36.7 37.2 37.2 37.2 34.8 34.6 33.9 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3	33.7 37.2 36.7 37.2 37.2 34.6 34.6 32.9 33.3 33.3 38.6	33.7 36.7 37.2 42.3 42.3 42.3 34.6 34.6 32.9 32.9 32.9 33.3 47.2	33.7 36.7 36.7 42.3 42.3 42.3 42.3 34.6 34.6 32.9 32.9 32.9 47.2 47.2	33.7 36.7 36.7 37.2 42.3 44.3 34.6 34.1 34.1 34.1 34.1	33.7 36.7 37.2 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3	33.7 36.7 36.7 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3	33.7 36.7 36.7 37.2 42.3 44.3 44.3 44.3 44.3 44.3 44.2 44.3 44.3 44.2 44.2 44.3 44.3 44.2 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3	33.7 36.7 36.7 34.8 34.8 42.3 44.3 44.3 44.3 44.3 44.7 40.7 40.7 40.7 33.4 33.4 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1	33.7 36.7 36.7 37.2 42.3 34.8 33.3 47.2 47.2 40.7 40.7 34.1 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5	33.7 36.7 36.7 37.2 42.3 44.2 33.3 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7	33.7 36.7 36.7 37.2 37.2 37.2 37.2 37.2 40.7 40.7 40.7 40.7 40.7 31.5 31.5 31.5 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4	33.7 36.7 36.7 37.2 37.2 37.2 37.2 37.2 37.3 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7	33.7 36.7 36.7 37.2 37.2 37.2 37.2 37.2 37.3 40.7 37.3 40.7 37.1 37.1 37.1 37.1 37.1 37.1 37.1 37.1 37.1 37.2 37.2 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3	33.7 36.7 36.7 37.2 38.8 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5	33.7 36.7 36.7 36.7 37.2 38.8 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5
9.8-12.1	,	12 2	12.2 12.9 13.1	122	12.2 12.9 13.1 15.5 12.3	12 2 12 9 12 9 13 1 15 5 12 3 12 8	12.2 12.9 13.1 15.5 15.5 12.6 12.6	12 2 12 9 12 9 15 5 15 5 12 3 12 6 11 8	12.2 12.9 13.1 15.5 12.5 12.6 12.6 11.8 11.8	12.2 12.9 13.1 15.5 12.3 12.6 12.6 11.8 11.8 11.8 11.8 11.8 11.8 12.7	12.2 12.9 13.1 15.5 12.6 12.6 12.6 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11	12.2 12.9 13.1 15.5 12.6 12.6 12.6 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11	12.2 12.9 13.1 15.5 12.6 12.6 12.6 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11	12.2 12.9 13.1 15.5 12.6 12.6 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11	12.2 12.3 13.1 12.3 12.3 12.3 12.4 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11	12.2 12.3 15.5 10.2 10.2 11.3 11.4 11.4 11.3 11.3 11.3 11.3 11.3	12.2 12.3 12.3 12.3 12.3 12.4 14.9 14.9 11.4 11.3 11.3 11.3 11.3 11.3 11.3 11.3	12.2 12.9 12.9 12.8 12.8 12.8 14.9 14.9 14.9 11.1 11.3 11.3 11.3 12.2 13.4	12.2 12.9 12.9 12.8 12.8 12.8 14.9 14.9 11.4 11.3 11.3 11.3 11.3 11.3 11.3 11.3	12.2 12.9 13.1 12.8 12.8 12.8 14.9 14.9 14.9 14.9 11.4 11.3 11.4 11.5	12.2 12.9 13.1 12.3 12.3 12.3 14.9 14.9 14.9 11.8 11.9 11.1 11.3	12.2 12.9 13.1 12.3 12.3 12.4 14.9 14.9 14.9 11.8	12.2 13.1 13.1 12.3 12.3 12.3 14.9 14.9 11.3 11.3 11.3 12.2 12.2 12.2 13.4 11.6 11.6 11.6 11.6 11.7 11.8
,	•	2 <mark> 1</mark>	3 2 1	1 3 5 1 1 1 1 1 1 1 1 1			1 2 3 3 3 3	1 2 3 3 5 1 3 3 5 1		- - - - - - - - - -					1	1	1	1 2 m 1 2 m	1	1	1		1
4.	6	97	97	97 - 97 - 103 - 103		103 + 103 +		110 110 110 110 110 110 110 110 110		97 97 97 97 97 97 97 97 97 97 -	97	97 -	97 -	97 - -	97	100 100	10	1	10	1	1	1	
]		- - -	_ - - _ _	- - - - -	_ - - - - - - - - - - - - - - - - - - -																		
7.		- - - -	- - - - - -	- - - - - - - - - -	4 4 4 6 6		1 1 1 2 2 2 8			1	1 1 1 1 2 2 3 8 8 8 8 4 4 9	4	1 1 1 2 2 2 8 8 8 8 4 4 4 5	H H H H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	1	1	1 1 1 1 2 2 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5	니티티(시)(시)(N)(N)(N)(보)(보)(보)(되)(되)(되)(되)(되)(되)(되)(되)(되)(되)(되)(되)(되)			니니니()(지(지(N(N)N)N) 4 4 4 (V)(V)(V)(V)(V)(V)(V)(V)(V)(V)(V)(V)(V)(니니디()(이()()()()()()()()()()()()()()()()()(- - - - - - - - - - - - - -

Table 1	.7. Hen	Table 17. Hematalogical	al Resu	Results Summarized	š	Treatment Group	Group		_	_	_	_		_	_
AGV-15-5	5-5	 _	 	 	i	: -	 -	 -	- -	 	 	. — 	 -	 -	 -
BUILDING 7	NG 7	_ <u> </u>		 	 _		 		┌	T	ı			 -	 _
				HGB	HCT	RBC	MCV	MCH	MCHC	RDW	WBC	TE	BHET	HET	LYMPH
Block	בו פ	Pen No.	Animal	g/dL	%	x10^6/uL	f	bg	g/dL	%	x10^3/uL		%	%	%
	dnoip		5	9.8-12.1	25.9-32.6	2.42-2.99	100.3-115.7	38.2-43.0	36.3-38.9	8.0-10.2	5 5-24 2	20-80			
6	1	160	1	12.2	34.7	2.86	1213	42.7	35.2	10.2	21.1	*	NA	22	99
6	1	160	2	108	30.7	2.45	1253	44.1	35.2	6.6	42	*	¥	25	40
6	1	160	8	128	35.4	2.86	123 8	44.8	36.2	9.4	23.1	*	NA NA	25	64
10	1	170	1	10.7	31.5	2.59	121.6	41.3	34	10	19.2	*	NA	18	29
10	1	170	2	11.1	33	2.6	1269	42.7	33.6	11.1	10.4	*	¥	8	65
10	1	170	8	13.1	36	2.78	129 5	47.1	36.4	10.7	11.4	*	¥	88	S
11	1	186	1	105	30.8	2.45	125.7	42.9	34.1	9.4	15	*	NA	34	28
11	1	186	2	133	41.2	3.04	135 5	43.8	32.3	13.2	18.2	*	Ā	18	26
11	1	186	8	118	34.3	2.9	1183	40.7	34.4	9.2	20	*	¥	8	89
12	1	190	1	13.4	37.2	3.05	122	43.9	36	6	11.4	*	NA N	8	13
12	1	130	2	13.1	34.4	2.75	125.1	47.6	38.1	9.6	11.6	*	Ā	87	S
12	1	190	3	12.1	33.1	2.71	122.1	44.6	36.6	9.1	20.8	*	NA	41	54
Averages	S			12.4	35.3	2.80	125.9	44.2	35.1	10.1	14.6	NA	NA	46	44
Standard Dev	d Deviati	ous		1.3	3.6	0.25	4.7	2.2	1.2	1.0	9.7	AN	NA	23	23
S			 	10.7%	10.2%	8.81%	3.7%	5.1%	3.5%	10.1%	51.8%	A	AN	21%	23%

Table 17. Hematalogical Results Summarized by Treatment Group AGV-15-5 $^{-1}$ BUILDING 7 $^{-1}$

Character Char											;		
33	_	g/dL	%	x10^6/uL		Вd		%	x10^3/uL		%	%	%
11.0 32.8 2.8 11/1.1	-	9.8-12.1	25.9-32.6	2.42-2.99		38.2-43.0	36	8.0-10.2	5 5-24 2	20-80	7]	!
13	33 1	11.6	32.8	7.8		41.4	35.4	10.7	18.4		¥	₹ -	43
33	33 2	12.9	35.8	2.99	119.7	43.1] -	9.2	24.8	-	_ ≰	된 	73
12	33 3	102	29.1	2.53	115	40.3	35.1	9.4	20.4	- + * 	≨	47	42
12	02 1	12.1	33.3	2.73	122	44.3	36.3	9.6	14.4	*	¥	62	27
13	02 2	12.4	35.4	3.04	116.4	40.8	35	9.2	22	*	¥	33	52
13	02 3	10.7	29.9	2.54	117.7	42.1	35.8	8.5	17	*	¥	45	51
13 2 116 318 2.66 1195 113 13 13 13 13 13 13	13 1	108	30	2.61	1149	41.4	36	6	7.8	*	¥	8	9
13 3 132 35.7 2.96 120.6 120.6 123.4 123.5 123.4 123.5	13 2	11.6	31.8	2.66	1195	43.6	36.5	9.2	18.1	*	_ 	88	26
13	13 3	13 2	35.7	2.96	120.6	44.6	37	9.4	10.9	*	W	22	40
13	23 1	13	35.3	3.06	115.4	42.5	36.8	9.6	7.7	*	¥	61	28
136 369 29 1272 1272 128 128 129	23 2	10.6	29.8	2.54	1173	41.7	35.6	9.3	26.2	 	_ 	78	28
126 1	23 3	13.6	36.9	2.9	1272	46.9	36.9	10.4	6.1	*	¥	8	17
126 2 125 34.1 2.75 124 144 146	26 1	11.1	30.6	2.54	1205	43.7	36.3	10.1	16.2	*	¥	45	52
114 32.6 2.77 117.7	26 2	12.5	34.1	2.75	124	45.5	36.7	11.2	21.7	*	¥	27	99
40	26 3	11.4	32.6	2.77	117.7	41.2	35	9.3	95	*	¥	8	
40 2 108 30.3 2.58 117.4 11.23 1.24 1.25 1.27 1.23 1.25 1.27 1.23 1.25 1.27 1.25 1.27 1.25 1.27 1.25 1.27 1.25	1 1	11.6	31.5	2.64	1193	43.9	36.8	9.4	21.4	*	¥	33	09
123 33.4 2.71 123.2 1.53 1.54 1.55	40 2	108	30.3	2.58	117.4	41.9	35.6	7.9	19.9	*	¥	36	99
12	40 3	123	33.4	2.71	123 2	45.4	36.8	9.5	24.8	*	¥	33	21
12	4	12 2	35.2	2.81	1253	43.4	34.7	10.2	11.9	- + • !	ž	- i 8	ا ا
12	44 2	12.7	34.6	2.82	122.7	45	36.7	10.6	11.5	•	¥	41	43
San 1	44 3	128	34.9	2.9	1203	44.1	36.7	8.6	21.2	•	¥	22	73
18.7 2	51 1	12	32.8	2.77	118.4	43.3	36.6	8.5	83	*	N A	81	9
10	51 2	119	32.4	2.73	118.7	43.6	36.7	10.4	10.4	*	¥	8	7
124 35.1 2.93 1198 1198 1198 1198 1199 1	51 3	109	30.4	2.58	1178	42.2	35.9	8.9	7.3	*	A	98	4
12	66 1	12.4	35.1	2.93	1198	42.3	35.3	9.3	89	* 	¥	32	59
66	66 2	119	33.7	2.78	1212	42.8	35.3	10.2	8.4	- *	¥	- 8	ا ا
69	99	12 2	33.3	2.69	123 8	45.4	36.6	8.3	16.9	*	¥	22	62
69 2 139 38 1313 1214 1	69 1	103	29	2.42	1198	42.6	35.5	9.3	15.2	- + *	¥	47	41
1221 1221	69 2	13.9	38	3.13	121.4	44.4	36.6	9.1	11.2	*	¥	55	39
188	69 3	12.4	34.3	2.81	122.1	44.1	36.2	9.6	14	*	¥	- 98	09
12.1 12.1	8 1	13.7	38.2	3.21	119	42.7	35.9	6	19.7	-	¥	25	61
12.1 14.8 39.9 3.24 123.1 121.9 12.5	88 2	11.7	32.7	2.78	117.6	42.1	35.8	9.2	11.2	• •	¥	14	57
12.1 12.1 13.8 13.1 12.1	88	148	39.9	3.24	123.1	45.7	37.1	8.6	13.4	*	¥	47	37
15	95 1	14	37.8	3.1	1219	45.2	37	8.5	17.5	*	¥	4	23
12.1 32.6 2.72 119.9 119.9 12.1 33.5 2.80 119.8 1.1 2.7 0.20 3.0 1.1 1.1 2.7 0.20 3.0 1.1 1.	95 2	12.1	33.8	2.93	115.4	41.3	35.8	8.9	11.1	-	¥	X	38
12.1 2.7 2.80 119.8	95 3	12.1	32.6	2.72	1199	44.5	37.1	8.7	17.6	*	A	31	63
		17.1	33.5	2.80	119.8	43.3	36.1	9.4	15.0	NA	NA	49	42
704 0 7040		1.1	2.7	0.20	3.0	1.6	0.7	0.7	2.7	Ā	Ą	77	22
8.1% /.25% 2.5%		%0.6	8.1%	7.25%	2.5%	3.7%	1.9%	7.5%	38.1%	A	AN	43%	25%

able 17. Hematalogical Results Summarized by Treatment Group

Results S		
talogical		
7. Hemai	5-5 NG 7	
Table 17	AGV-15-5 BUILDING	

															I
	ž	Pen	Animal		보	RBC	MCV	MCH	MCHC	RDW	WBC	۳	BHET	HET	LYMPH
Block	Group	ž	_		%	x10^6/uL	ft			%	x10^3/uL		%	%	%
	300			9.8-12.1	25.9-32.6	2.42-2.99	100.3-115.7	38.2-43.0	3	8.0-10.2	5 5-24 2	20-80			
1	8	136	1	12	34.2	2.91	117.5	41.2	35.1	6	14.9	*	NA	96	54
1	8	136	2	12.1	33.3	2.84	1173	45.6	36.3	8.9	18.8	*	NA A	33	47
н	80	136	e	10.7	29.4	2.44	1205	43.9	36.4	8.7	18.7	*	¥	43	44
2	 ∞ 	51	1	12	32.4	2.61	124.1	46	37	8.8	17.8	.	¥	23	62
2	8	8	2	149	39.6	3.18	1245	46.9	37.6	9.6	21.4	*	¥	22	70
7	8	100	3	12.1	32.9	2.86	115	42.3	36.8	8.8	88	*	¥	8	59
m	8	111	1	13.2	36.4	3.05	1193	43.3	36.3	8.6	10	*	¥	25	45
 m	 ∞ 	111	2	123	32.7	2.72	1202	45.2	37.6	9.3	10.7		¥	89	24
<u>،</u>	 ∞ 	111	8	118	33.6	2.8	120	42.1	35.1	10.2	15.5	*	¥	្ត 	46
4	8	124	1	119	34.2	2.83	1208	45	34.8	8.5	9.5	*	¥	69	21
4	 ∞ 	124	2	12.7	35.2	2.86	123.1	44.4	36.1	8.6	15.5	*	¥	4	48
4	 ∞ 	124	8	133	36.3	2.98	1218	44.6	36.6	8.8	11.1	*	¥	 \$	43
2	8	129	1	12.6	34.7	2.91	1192	43.3	36.3	9.3	20.1	*	¥	36	25
2	 & 	129	2	12	33.8	2.81	1203	42.7	35.5	8.9	10.3	*	¥	69	18
2	8	129	3	11.7	32	2.75	116.4	42.5	36.6	8.4	14.1	*	Ą	09	31
9	8	178	1	103	27.9	2.3	1213	44.8	36.9	9.2	26.3	*	¥	31	61
9	8	178	2	128	34.7	2.89	120.1	44.3	36.9	8.8	18.5	*	W	33	54
9	8	178	3	12.7	33.8	2.79	121.1	45.5	37.6	10.2	18.1	*	N A	51	37
7	8	145	1	119	33.1	2.99	110.7	39.8	36	9.3	20.5	*	N A	34	65
7	8	145	2	118	32.2	2.58	1248	45.7	36.6	8.3	18.2	*	¥	34	23
7	8	145	9	12.6	34.7	2.83	122.6	44.5	36.3	6.6	9.2	*	¥	81	4
∞	8	155	1	133	37.1	3.05	121.6	43.6	35.8	9.1	8.1	•	¥	78	14
8	8	155	2	115	30.9	2.64	117	43.6	37.2	8.4	7	*	¥	75	8
8	w w	155	3	11.4	32.8	2.76	1188	41.3	34.8	6	30	*	¥	22	29
6	∞ ∞	165	1	14	37.4	3.13	1195	44.7	37.4	10.3	17.5	* 	¥	8	28
6	80	165	2	112	30.8	2.51	122.7	44.6	36.4	9.2	11.1	*	¥	43	52
6	∞	165	8	12.4	33.2	2.8	118.6	44.3	37.3	9.6	22.2	*	¥	8	28
10	80	167	1	115	32.4	2.67	1213	43.1	35.5	9.7	18.3	*	¥	29	63
10	8	167	2	11.4	31.7	2.51	1263	45.4	36	8.6	8.6	*	¥	73	19
8	8	167	8	12.1	34.5	2.8	1232	43.2	35.1	8.9	13.4	*	¥	35	26
11	8	187	1	12	33.9	2.77	122.4	43.3	35.4	9.4	29.2	*	¥	78	62
#	∞	187	2	13.2	36.8	e	122.7	44	35.9	8.5	22	*	¥	8	67
11	8	187	3	13.4	37.3	3.17	117.7	42.3	35.9	8.6	21.4	*	¥	38	62
12	8	193	1	119	33.2	2.68	1239	44.4	35.8	8.6	9.2	*	¥	47	49
12	8	1 <mark>193</mark>	2	12.1	33.8	2.82	1199	42.9	35.8	8.2	10.5	-	¥	8	8
12	8	193	3	11.7	33.2	2.78	119.4	42.1	35.2	8.9	15	*	NA	24	63
verages	ا ا اي	i i i	 	12.2	33.8	2.81	120.4	43.6	36.2	9.2	15.9	NA	NA	46	45
andar	Standard Deviations	ous		6.0	2.3	0.20	3.0	1.5	8.0	9.0	6.0	Ā	AN	18	19
cVs				7.3%	%6.9	7.04%	2.5%	3.4%	2.2%	6.3%	37.8%	A	AN	39%	43%

Table 17. Hematalogical Results Summarized by Treatment Group AGV-15-5 BUILDING 7

Block Group Grou	No.	Animal	%	%	%	%		x10^3/uL	x10^3/uL	x10^3/uL 0 21-14.17	x10^3/uL 0.00-0.18	x10^3/uL 0.00-2.03	x10^3/uL 0.00-1.42	x10^3/uL 0.03-1.73
											0.000.18	0.00-2.03	0.00-1.42	0.03-1.73
		ľ				1	1		2 99-10.10					
	97	1	AN	7	ΑN	- - 	*	- 	7.13	11.09	- 	1.39	0	0.2
2 1 1 1 1 1 1 1 1 1	6	2	NA	2	1	3	*	0	1.99	4.69	0	0.14	0.07	0.21
$\begin{bmatrix} 2 \\ -2 \\ - \end{bmatrix}$	6	m	NA	4	Ϋ́	2	*	0	7.84	1.8	0	0.42	0	0.53
2 1	103	1	NA	NA	2	8	*	0	2.96	7.3	0	0	0 23	0.91
	103	2	AN	9	 	8	*	_ 	6.38	5.95	, ,	0.87	0.15	1.16
2 1	103	က	ΝΑ	01	A V	AN	- •		6.34	6.62	0	1.44		0
3 1	110	1	NA	4	2	4	_ , •	0	3.71	1.06	0	0.21	0.11	0.21
3 1	110	2	NA	က က	NA NA	2	 • •	0	4.46	3.24	 	0.24	0	0.16
3 1	110	3	NA	2	ΑN	2	*	0	8.6	1.36	0	0.62	0	0.62
4 1	122	1	NA	4	1	6	*	0	2.79	4.26	0	0.33	0.08	0.74
4 1	122	2	AN	9	4	AN	*	0	3.57	4.89	0	0.56	0 38	0
4 1	122	3	NA	9	9	4		0	5.69	12.7	0	1.31	131	0.88
5 1	132	1	NA	7	NA	2		0	8.32	0.83	0	0.73	0	0.52
5 1	132	2	AN	10	AN	4	_ 	0	15.33	1.36	0	1.94	0	0.78
5 1	132	e	NA NA	 e 	A A		 .	 	4.32	10.72	 	0.48	- · o 	0.48
6 1	177	1	AN	2	m	4		0	4.61	9:38	, ,	0.8	0.48	0.64
6 1	177	2	NA	7	NA	1		0	8.56	16.84	0	1.93	0	0.28
6 1	177	8	NA	12	ΑN	8	*	0	3.19	1.37	0	89.0	0	0.46
7 1	141	1	NA	NA	AN	9		0	8.8	6.81	0	0	0	1
71	141	2	NA	 	- I	7		0	5.14	2.05	 	0.08	0.08	0.55
71	141	e	ΝΑ	4	ΑN	7	.	0	5.81	0.42	0	0.28	0	0.49
8 1	152	1	NA	2	NA	4	*	0	6.42	5.5	0	99.0	0	0.52
8 1	152	2	AN	4	AN	8		0	3.43	8.18	0	0.53	0	1.06
8	152	8	NA	3	ΑN	4	 • •	0	4.84	36.08	 0 	1.32	0	1.76
9 1	160	1	AN	Ā	 	9	 	0	4.64	13.93	 	0	127	1.27
9 1	160	2	N A	4	ΑN	9	- *	 	2.1	1.68	- - -	0.17	- 	0.25
9 1	160	e 	NA	 	_ m L	8	- î • !	0	5.78	14.78	- i	1.16	69.0	69.0
10 1	170	1	2	4	4	5	 	0	3.46	12.86	0 38	0.77	0.77	96.0
10 1	170	2	AN	1	ΑN	4	 	0	3.12	6.76	 	0.1	0	0.42
10 1	170	6	AN	 -	AN	4	- *	0	10.03	0.57	 	0.34	0	0.46
11 1	186	1	AN	- I 	- i	e 	- î • •	0	5.1	8.7	- i	0.6	0.15	0.45
	186	2	AN	2	Ā	4	 	0	3.28	13.83	 	0.36	 	0.73
11 1	186	8	AN	 - -		9	 	0	4	13.6	 	0.2	0.6	1.2
12 1	190	1	ΑN	1	ΑN	9	- •	 	9.12	1.48	- - -	0.11	- 0 -	0.68
_ 12 1	190	2	ΑN	2	 - -	e 3	- î	0	10.09	0.58	- i ol l _ l	0.23	035	0.35
12 1	190	3	NA	1	8	1	*	0	8.53	11.23	0	0.21	0.62	0.21
Averages			2	4] 3 _ [- 5	NA		5.85	7.35	0.0	0.59	0.20	0.61
Standard Deviations	ous		AN	8		7	A	0	2.88	6.97	90.0	0.53	0.35	0.38
CVs			NA	61%		45%	NA	AN	49.13%	94.91%	%00.009	89.43%	171.33%	63.48%

Table 17. Hematalogical Results Summarized by Treatment Group

Number N	ABHET ABLYMP	ABACTL	ABMONO	ABEOS	ABBASO
NA	x10^3/uL x10^3/uL 2 99-10.10 0 21-14.17	x10^3/uL	x10^3/uL	x10^3/uL	x10^3/uL
133 2	4 _	4 -	0.74	0.74	0.74
NA	4.71 18.1	 	0.74	0.5	0.74
NA	9.59 7 8.57	 	0.82	0.82	0.61
NA	 	 	0.43	0	1.15
NA	7.48 11.44	0	0.44	154	1.1
2 113 1 1 1 1 1 1 1 1	7.14 8.67	0	0.51	89.0	0
2 113 2 NA	6.71 0.47	0	0.08	0	0.55
2 113 3 NA 1 1 NA 1 1 NA 1 1 NA 1 1 NA 1 1 NA 1 1 NA 1 1 NA 1 1 NA 1 1 NA 1 1 NA 1 1 NA 1 1 NA 1 N	5.97 10.14	 0 	0.72	0 36	0.91
2 123 2 13 1 1 1 1 1 1 1 1	6.21 4.36		0.22	0	0.11
2 123 2 124 2 125 12 125 1	4.7 2.16	0	0.54	80.0	0.23
2 1126 2 NA	7.34 15.2	0	0.52	3.14	0
126 136 13	4.27 1.04	0	0.43	90.0	0.31
2 126 2 136 3 140 1 140 1 140 1 140 1 140 1 140 1 140 1 140 1 140 1 140 1 140 1 140 1 140 1 140 1 1 140 1 1 140 1 1 140 1 1 1 140 1 1 1 1 1 1 1 1 1	6.8 8.42	0	0.49	0 32	0.16
2 126 3 NA 1 1 1 1 1 1 1 1 1	5.86 14.32	0	0.43	0.43	0.65
2 140 1 NA 1 1 3 2 1 1 1 1 1 1 1 1 1	8.55 0.29	0	0.38	0.19	0.1
2 140 2 140 2 144 1 144 1 144 1 144 1 1	7.28 12.84	0	0.21	0.64	0.43
2 140 3 NA 9 6 1 1 1 1 1 1 1 1 1	7.16 11.14	 	0.4	0.2	1
2 144 1 NA 1 1 1 3 1 1 1 1 1 1	8.18 12.65	0	2.23	1.49	0.25
2 144 2 NA 11 NA 12 13 14 14 14 14 14 14 14	10.23 0.71	0	0.48	0.12	0.36
2 151 2 15 1 15 1 15 1 15 1 1	4.72 4.95	0	0.12	0.81	0.92
2 151 1 NA 11 NA 2 2 2 2 2 2 2 2 2	5.3 15.48	ا ا ا	0.21	0	0.21
2 151 2 NA 11 NA 2 2 151 2 3 NA 11 NA 2 2 151 3 NA 11 NA 12 2 151 3 NA 12 15 15 15 15 15 15 15	6.72 0.5	0 0 	0.33	0.17	0.58
2 151 3 NA -4 -2 -5 -5 -5 -5 -5 -5 -5	8.32 0.73	 	1.14	0	0.21
2 166 1	6.28 0.29	 	0.22	0.15	
2 166 2 184 1 1 1 1 1 1 1 1 1	2.18 4.01	 	0.27	0.14	0.2
2 166 3 NA -2 6 8 8 1 1 1 1 1 1 1 1	7.22 0.5	0 -	0.08	0.25	0.34
2 169 1	3.72 10.48	 	0.34	1.01	1.35
2 169 2 NA NA NA NA NA NA NA	7.14 6.23	 	0.3	0.76	0.76
2 169 3 NA	6.16 4.37	0	0	0	0.67
2 - 188 1 - NA - 6 - 3 - 5 - - - - - - - - -	5.04 8.4	0 -	0.56	0	0
2 - 188 - 2 - NA - - 2 - NA - NA - - 2 - NA - NA - - 2 - NA - - 2 - NA - - 2 - 2 -	4.93 12.02	 	1.18	0 59	0.99
2 195 3 NA 1 1 1 1 1 1 1 1 1	4.59 6.38	 	0.22	0	0
2 195 3 NA 5 1 NA NA 1 1 1 1 1 1 1 1 1	6.3 4.96	- - -	0.94	0.67	0.54
2 - 195 3 NA 5 1 NA 2	7.7 9.28	0 -	0.53	0	0
2 195 3 NA 5 1 NA *	5.99 4.22	 	0.67	0	0.22
	5.46 11.09	0	0.88	0.18	0
Averages	6.48 7.12	0.00	0.52	0.45	0.47
232NA	1.70 5.08	8			

Table 17. Hematalogical Results Summarized by Treatment Group
AGV-15-5
BUILDING 7

	į	Pen	Anima	ACTLYM	MONO	EOS	BASO	MORPH	ABBHET	ABHET	ABLYMP	ABACTL	ABMONO	ABEOS	ABBASO
Block	= [Numbe		%	%	%	%		x10^3/uL	x10^3/uL	x10^3/uL	x10^3/uL	x10^3/uL	x10^3/uL	x10^3/uL
	dnous	-	a							2 99-10.10		0.00-0.18	0.00-2.03	0.00-1.42	0.03-1.73
1	8	136	1	NA	2	4	1	*	0	5.36	8.05	0	0.75	9.0	0.15
1	 ∞ _	136	_ 2	N N N	2 _	 9 _	9	 * -	0	7.33	8.84	 	0.38	1.13	1.13
1	∞	136	3	AN	7	S	1	 * 	0 	8.04	8.23	0	1.31	0 94	0.19
2	&	104	1	NA NA	4	၉	2	 * 	0	5.16	11.04	0	0.71	0.53	0.36
2	 	104	2	NA NA	NA	1	2	 * 	0	5.78	14.98	0	 o _	0 21	0.43
2	 & _	104	8	N A	က	4	1	 _* 	0	5.61	2.58	0	0.27	0 36	0.09
က	8	111	1	NA A	AN	ဗ	AN	*	0	5.2	4.5	0	0	0.3	0
က	80	111	2	AN	2	1	2	*	0	7.28	2.57	0	0.54	0.11	0.21
3	8	111	3	NA	2	2	NA	*	0	7.75	7.13	0	0.31	031	0
4	 & _	124	1	NA A	9	2	2	 • 	0	6.56	2	0	0.57	0.19	0.19
4	∞	124	2	AN	1	4	8	 * 	0	6.82	7.44	0	0.16	0.62	0.47
4	8	124	3	AN	1	NA	2	*	0	5.99	4.77	0	0.11	0	0.22
2	 	129	1	AN	<u>ء</u>	8	3		0	7.24	11.06	0	9.0	9.0	9.0
2	8	129	2	N A	2	2	9	*	0	7.11	1.85	0	0.52	0 21	0.62
2	8	129	3	AN	4	3	2	*	0	8.46	4.37	0	0.56	0.42	0.28
9	8	178	1	AN	NA	4	4	*	0	8.15	16.04	0	0	1.05	1.05
9	∞	178	2	NA	1	8	4	 • 	0	6.11	66.6	0	0.19	1.48	0.74
9	8	178	3	NA	3	2	7	•	0	9.23	6.7	0	0.54	0 36	1.27
7	 & 	145	1	NA NA	NA	NA	1		 o 	6.97	13.33	0	 0 	0	0.21
7	∞	145	2	AN	2	8	NA	•	0	6.19	9.65	0	0.91	1.46	0
7	<mark>∞</mark>	145	3	A A	7		2	• •	0	7.45	0.37	 	0.64	0 28	0.46
∞	∞ 	155	1	AN N	4	2	2	• •	0	6.32	1.13	0 -	0.32	0.16	0.16
∞	 ∞ 	155	2	¥ N	ا 8	10 10 10	4	. .	i 	5.25	0.56	 	0.21	0.7	0.28
∞	8	155	9	¥.	4	2	AN	* 	0	8.1	20.1	0	1.2	9.0	0
6 	%	165	1	NA NA	∞ 	AN N	1	. . .	 	5.78	10.15	0	1.4	0	0.18
<u>ရ</u>	 	165	_ 2	¥	2	Y V	e	* 	0	4.77	5.77	0 -	0.22	0	0.33
6	∞ 	165	e	¥.	4	2	2	* 	0	7.55	12.88	0	0.89	0.44	0.44
10	∞ 	167	1	ă	1	e	4	* 	, 	5.31	11.53	 	0.18	0.55	0.73
10	 -	167	_ 2	NA N	AN I	e 	2	. . .	 	6.28	1.63	0	0	0.26	0.43
10	∞ ∞ _	167	e 3	¥	4	5	e	• • 	0	4.69	7.5	 	0.54	0.27	0.4
11	∞	187	1	¥.		e E	¥.	* 	 - 	8.18	18.1	 	2.04	0 88	0
11	 	187	_ 2	¥.	9	4	8	* 	0	4.4	14.74	0	1.32	0 88	99.0
11	&	187	3	¥.	2	¥	AN	* 	0	7.7	13.27	0	0.43	0	0
12	 - 	193	1	AN N	8	AN	- 	. . 	 	4.32	4.51	0 	0.28	0	0.09
12	∞ 	193	_ 2	¥.	ا 8	آ اک	1	* 	 -	8.72	0.84	0	0.32	0.53	0.11
12	80	193	3	NA	1	8	4	*	0	3.6	9.45	0	0.15	1.2	9.0
Averages	 - -			Ą	4	4	3	AN	0	6.52	7.99	0.00	0.52	0.49	0.36
Standar	Standard Deviations	ous		¥	2	7	7	AN	0	1.40	5.27	0.00	0.47	0.41	0.33
S	 	 		AN	23%	%09	28%	AN	NA	21.42%	66.01%	¥	88.06	84.23%	89.84%

Table 17. Hematalogical Results Summarized by Treatment Group AGV-15-5 BUILDING 7

	.	D	A i I	TP	ALB	GLOBU	A/G	CK	ALT	GLU	PHOS
Block	Trt	Pen No.	Animal ID	g/dL	g/dL	g/dL		U/L	U/L	mg/dL	mg/dL
	Group	NO.	טו	2.8-3.4				1003-2318	< 5	202-262	6.7-8.6
1	1	97	1	2.9	1	1.9	0.5	20043	6	248	3.4
1	1	97	2	2.9	1	1.9	0.5	19858	5	252	2.9
1	1	97	3	3.1	1.1	2	0.6	18807	6	249	3.6
2	1	103	1	3	1	2	0.5	9857	< 5	226	2.8
2	1	103	2	2.9	<1.0	2	0.5	9175	< 5	249	2.2
2	1	103	3	3	1	2	0.5	14678	< 5	260	4.1
3	_1_	110	1_1	3.4	1.1	2.3	0.5	8414	L <u>5</u>	231	3.1
3	_ 1	110	2	3.1	1_1_	2.1	0.5	10106	<u> 5</u>	235	2.8
3	_1	110	3	2.7	<1.0	1.9	0.4	6031	< 5	246	2.9
44	1	122	1	3.2	1.1	2.1	0.5	2850	< 5	264	2.3
4	1	122	2	2.9	<u> </u>	1.9	0.5	11904	< 5	228 <u> </u>	4
4	1	122	3	2.9	1_1_	1.9	0.5	14227	< 5	229	2.3
5	1	132	1	2 .5	<1.0	1.7	0.5	10344	< 5	248	1.8
5	1	132	_2	2.2	<1.0	1.5	0.5	7129	55	262	3.2
5	1	132	3	2.4	<1.0	1.6	0.5	11605	< 5	245	2.4
6	1	177	11	3	1.1	1.9	0.6	5688	<u>5</u>	237	2.8
6	1	177	2	3.2	1_1_	2.2	0.5	>22500	55	247	3.9
6	1	177	3	3.4	1.2	2.2	0.5	7930	55	235	3.4
7	1	141	11	2.7	<1.0	1.8	0.5	14006	< 5	254	2.4
7	1	141	2	2.9	1.1	1.8	0.6	14623	< 5	253	2.5
7	1	141	3	2.7	<1.0	1.8	0.5	7325	< 5	234	2.2
8	1	152	1	3.3	1.1	2.2	0.5	12792	< 5	248	2.2
8	1	152	2	3.3	1.1	2.2	0.5	6847	< 5	<u>251</u>	3.1
8	1	152	3	2.6	<1.0	1.7	0.5	7884	< 5	<mark>257</mark>	3.6
9	1	160	1	3.3	1.2	2.1	0.6	8535	< 5	262	3.9
9	1	160	_2	2.8	<1.0	1.9	0.5	8735	< 5	2 55	3
9	1	160	3	<u>2.9</u>	1.1	1.8	0.6	19244	66	235	44
10	1	170	11	<u>2.8</u>	1 _ 1	1.8	0.6	5317	< 5	1 244 I	2.8
10	1	170	2	<u>2.7</u>	<1.0	1.9	0.4	12847	55	255 i	2.3
10	1	170	3	3.2	1_1_	2.2	0.5	16129	55	242	4.1
11	1	186	11	2.6	<1.0	1.7	0.5	8176	l 5 ⊢	250 	1.7
11	1	186	2	3.5	1.6	1.9	0.8	7406	11	244 i	4.8
11	1	186	3	<u>2.6</u>	<1.0		0.4	10663	< 5	247	2.8
12	1	190	1	<u>2.9</u>	_11	1.9	0.5	7895	5	293	2.3
12	1	190	<u>2</u>	2.8	<u>1</u>	1.8	0.6	10887	l 5 ⊢	278 	3.1
12	1	190	i 3	3	1	2	0.5	11172	5	248	2.3
Averages				2.9	1.1	1.9	0.5	10832	66	_ 248	3.0
Standard	Deviation	ns		0.3	0.1	0.2	0.1	4336	1	14	0.7
CVs				10.1%	12.0%	9.6%	13.7%	40%	26%	5%	24.8%

Table 17. Hematalogical Results Summarized by Treatment Group

AGV-15-5 BUILDING 7

	Trt	Pen	Animal	TP	ALB	GLOBU	A/G	CK	ALT	GLU	PHOS
Block	Group	Numb	Animal ID	g/dL	g/dL	g/dL		U/L	U/L	mg/dL	mg/dL
	Group	er		2.8-3.4				1003-2318	< 5	202-262	6.7-8.6
1	2	133	1	3.1	<1.0	2.2	0.4	>22500	< 5	239	5.3
1	2	133	_2	3.2	1.1	2.1	0.5	>22500	< 5	251	6.5
1	2	133	3	2.8	<1.0	1.9	0.5	>22500	6	244	6.6
<mark>2</mark>	2	102	1	2.9	1 1	1.9	0.5	13232	< 5	253	6.3
2	2	102	_2	2.8	<1.0	1.9	0.5	>22500	_10_	227	6.2
<mark>2</mark>	2	102	3	2.5	<1.0	1.7	0.5	>22500	7	24 8	6.4
3	2	113	1	2.8	<1.0	22	0.4	>22500	_ 5	220	5.9
3	2	113	2	2.8	<1.0	1.9	0.5	>22500	_ 5	239	5.9
3	2	113	_3	2.8	<1.0	1.9	0.5	>22500	6	238	6.5
4	2	123	_1_	3	<1.0	2.1	0.4	>22500	6	2 55	5.6
4	2	123	_2	2.5	<1.0	1.8	0.4	>22500	6	223	6.2
4	2	123	3	3	1 1	2	0.5	>22500	5	239	6.6
5	2	126	_11	33	<u> </u>	2	0.5	>22500	_ <u>7</u>	2 58	6.3
5	2	126	2	3.2	1.1	2.1	0.5	>22500	< 5	244	6.1
5	2	126	3	2.8	<u> </u>	1.8	0.6	>22500	_10_	248	5.6
<u>6</u>	2	140	1	2 .7	<1.0	1.8	0.5	14054	< 5	242	6.3
6	2	140	2	2.6	<1.0	NC NC	NC_	>22500	55	2 55	66
6	2	140	3	3.4	1.1	2.3	0.5	20221	_ 5	241	7.2
7	2	144	1	3.4	1.2	2.2	0.5	>22500	_ 5	243	7.5
7	2	144	2	3.1	1 1	2.1	0.5	>22500	_ <mark>7</mark>	240	6.3
7	2	144	3	3.1	1.1	2	0.6	>22500	6	263	6.7
8	2	1 51	1	3.3	1.2	2.1	0.6	>22500	6	232	8
8	2	1 51	2	2.9	1_1_	1.9	0.5	>22500	6	240	6.6
8	2	151	33	3.4	1.1	2.3	0.5	>22500	99	231	7
9	2	166	1	2.9	1_1_	1.9	0.5	>22500	_ 5	220	6.8
9	2	166	2	2.9	1_1_	1.9	0.5	>22500	6	227	7.5
9	2	166	3	2.8	<1.0	1.9	0.5	>22500	5	236	7.6
10	2	169	1	2.6	<1.0	1.7	0.5	>22500	66	234	6.3
10	2	169	2	3.1	1.1	2	0.6	>22500	88	253	6.8
10	2	169	3	2.9	<1.0	2	0.5	14140	< 5	234	6.7
11	2	188	1	3.2	1.1	2.1	0.5	>22500	55	227	6.9
11	2	188	2	3	<1.0	2.2	0.4	9252	< 5	252	6.4
11	2	188	3	3.5	1.4	2.1	0.7	>22500	6	228	7
12	2	19 5	1	3.5	1.4	2.1	0.7	>22500	7	248	6.9
12	2	195	2	3.4	1.2	2.2	0.5	>22500	66	252	6.4
12	2	i 195	3	3	1	2	0.5	>22500	6	246	5.8
Averages				3.0	1.1	2.0	0.5	14180	66	241	6.5
Standard	Deviatio	ns		0.3	0.1	0.2	0.1	3927	<u>1</u>	11	0.6
CVs				9.1%	11.1%	7.7%	13.8%	28%	22%	5%	9.0%

Table 17. Hematalogical Results Summarized by Treatment Group

AGV-15-5 BUILDING 7

	Trt	Pen	Animal	TP	ALB	GLOBU	A/G	CK	ALT	GLU	PHOS
Block	Group	Numb	ID	g/dL	g/dL	g/dL		U/L	U/L	mg/dL	mg/dL
	Стопр	er		2.8-3.4				1003-2318	< 5	202-262	6.7-8.6
1	8	136	1	3.7	1.7	2	0.9	>22500	10	250	6.6
1	8	136	2	3.1	1_1	2.1	0.5	>22500	< 5	243	6.3
1	8	136	3	2 .5	1_1_	1.5	0.7	>22500	12	262	6.9
2	8	104	1	2.9	<1.0	2	0.5	21227	< 5	234	5.8
<mark>2</mark>	8	104	2	3.3	1.2	2.1	0.6	>22500	66	226	6
<mark>2</mark>	8	104	3	2.8	<1.0	1.9	0.5	>22500	55	253	5.8
3	8	111	1	33	1.1	1.9	0.6	>22500	_10_	224	5.9
3	8	111	2	2.4	<1.0	1.6	0.5	>22500	< 5	234	6.6
3	8	111	_3	2.9	1	1.9	0.5	>22500	6	242	6.1
4	8	124	1	3	1.1	1.9	0.6	>22500	6	240	5.9
4	8	124	2	3.2	1_1_	2.2	0.5	>22500	8	2 55	6
4	88	124	3	2.8	<1.0	1.9	0.5	>22500	10	241	5.8
5	8	129	_11	2.9	<1.0	2	0.5	>22500	5	24 5	5.1
5	8	129	2	3.2	1.1	2.1	0.5	>22500	7	240	5.7
5	8	129	3	2.8	<1.0	1.9	0.5	>22500	7	257	5.9
6	88	178	1	2.8	1.1	1.7	0.6	>22500	_ 5	242	6.3
6	8	178	2	3.1	1_1_	2.1	0.5	>22500	7	243	6.9
6	88	178	3	3.1	1.1	2	0.6	>22500	6	246	7
7	8	145	_11	2.9	1_1_	1.9	0.5	>22500	6	253	6.5
7	8	145	2	2.7	<1.0	1.8	0.5	>22500	11	251	5.9
7	8	145	3	3	1	2	0.5	>22500	5	243	6.5
8	8	155	1	3	1.1	1.9	0.6	>22500	66	238	6.9
8	8	155	2	2.8	<1.0	1.9	0.5	>22500	6	233	66
8	88	155	3	3	1.1	1.9	0.6	>22500	9	250	6.3
9	8	165	_11	3	1.1	1.9	0.6	>22500	8	247	6.7
9	8	165	_2	3	<u> </u>	2	0.5	>22500	_ 5	238	6.9
9	8	165	3	3.3	1.1	2.2	0.5	>22500	5	236	6.6
10	8	167	1	33	1_1_	<mark>2</mark>	0.5	>22500	55	254	6.9
10	8	167	_2	3.2	1.1	2.1	0.5	>22500	7	247	7
10	8	167	3	3.2	1.2	22	0.6	1632 5	55	242	6.9
11	88	187	1	33	1.1	1.9	0.6	>22500	6	247	6.9
11	8	187	2	2.9	1.1	1.8	0.6	>22500	5	223	6.1
11	8	187	3	3	1.1	1.9	0.6	>22500	7	242	6.5
12	8	193	1	3.3	1.1	2.2	0.5	>22500	L _ 8	245	6.5
12	8	193 	2	3.3	1.2	2.1	0.6	>22500	< 5	1 <u>251</u>	6.4
12	8	i 193	3	3.1	1	2.1	0.5	>22500	11	244	6
Averages				3.0	1.1	2.0	0.6	18776	7	243	6.3
Standard	Deviatio	ns		0.2	0.1	0.2	0.1	3466		L9	0.5
CVs				8.0%	12.3%	7.9%	14.7%	18%	30%	4%	7.4%

Table 17. Hematalogical Results Summarized by Treatment Group AGV-15-5 BUILDING 7

1
C
Z
2
=

	Γ			Chamieter Community
Block	ᄩ	Pen No.	Animal ID	Common frameric
·]-	6	-	The second freed beareds at 1 mm as second 28. It has a residence and dear to extreme the description freed to be asset to extreme the description of the second
,	, _ , , ,	1 6	2	No sen forst hemokra o jam ap esert. All Album neutimer/be met das to uniosem bird recesor trof even feotias bum to diemat v
ļ "	 _	6	60	Nosgnifcant hemolysso ipsem ap esent. All Abum n esubt maybe aveid doe to unknown bind nycapac ty of aven/
2		103	1	Nosga fcant hemolysso ipem apesent. Alls Abam n esult maybe mwild dae toun known bind ngcapac
2	 	103	2	Nos gn fcant hemolys so Ipem aperent. AB Abum nesult may be musid dae to unknown bind ng capac
7		103	m	AND No. op food hero by so o jean as easer, All A blann a sulf maybe med date bouhown had oppose by of even/opplea bum to density eagentuated in the same.
m		110	1	erent. A.B. Album n esult may be rival dide to unknown binding capaci
m	1	110	2	esent. A.B. Abum n esult maybe mosid dae to unknown bnd ng capac tyof avan/eptiea bumn to chemst y
m		110	8	Alla bosga foortherrobyso ipen a pieser, all A bann n eustmaybe meid das boarboann bad opposes bydievan/ optica bann bo densty wagentused in bissere.
*	.,	122	1	ssent. All Album n esult may be mail dae to unknown bnd ng capac ty of avan fepties bumn to chemst y
4		122	2	esent. All Abum n esult maybe most of due to unknown bind receips by of even / epties bum no chemist y
*	.,	122	en	Nosen foart hemokaso ipem ap esent. All Abum n esult maybe maid due to unknown bind ngcapac hydiavan/
'n	,,	132	1	esent. All Abum n esult maybe rival didas to unknown bind regcapac ty of avan/eptiea bumn to chemat y
ın	1	132	2	es err.
w	1	132	8	na and
9		177	1	hemokis mayskew as unn chen sty easte. All Bablun n east maybe nvalddas bouknown bind ng capacity of av anyepte
9	- I	17.1	2	n apearet. A.B. Abun n esultmaybe med doze bounknown bind ny capacity of even/epites bunin bothemsty eagentured in this assey.
9	 	177	60	to chem at y eagen
7		141	1	foart hemolysis o I pem ap
7		141	7	TP The servide sel glidy hamsbyrood. Lowns and herroly smay shows at uncherenty sails. All Albarn seed may be most do do be untrown hand accessor by of severy exploration in the near years under the assession.
4		141	89	apac by of avan?
	!	152	1	Nosgn foart hemolysso Ipem apesent. All Album nesult maybe maid dae bounknown binding capac
		152	7	TP The servide sel giftyben skytook. Lowns and henrolysmey blooms year of henroly saids. All Albarns mat neep in voor dear bu who we'n bind ny copecty of any option to chemisty eagent used in this seaso.
	.,	152	60	1/4/28 No. spe Coret hemosky so I jama spe asset. All A blama in could maybe need date to unknown had specimently dy rand optical binam to demost y expensioned in this same.
6	! !	160	1	1/4/28 No. gar Coret herrolys or Lymn ay moret. All A harm a could morphe resid does to unknown hard specimenty operation of comments operationed in the sounds.
<u>o</u>	! !	160	2	1/4/28 No. gar Coret herrolys or Lymn spearer, A.B. A barn n outh maybe need door to subnewn had spearer by drawnly spearer of memory experiment or the sames.
6	! !	160	89	Physics men smoke adelybered Lam careful versiges meny share a unchannity cas to Ada Alban near mente med dan to unknown in na councy of sered on the aboun to drenstly expert unch nits cases.
92	! !	170	1	1/4/18 No. ger Coret berrokes o Ipara spieure A.B. Adam n euck meepse med dans brutboarn had nye open vyd dersal optical baran by demait y experienced not samme.
92	! !	170	2	1/4/28 No. gar Coret herrolys or Lymn spearer, A.B. A barn n outh maybe need door to subnewn had spearer by drawnly spearer of memory experiment or the sames.
91	! !	170	60	esent. A.B. A.bunn esult maybe mail deato unknown bnd ngcapac tydi avan/eptleabunn to chemat y
ដ		186	1	sample ssightlyhembyted. Looma and hemotys smystene as un chemisty earlib. Alb Albanin each maybe med due to unknown binding capac by of avent epiteal bun nibichemisty eag
Ħ		186	2	P The specimen severeby hemolysma, Lipems and hemolysmay devise un chem at y earlis. The sample smoote ele to severeby perm c.L.pems and hemolysmay devise to such that A.B. Albumin earlithny be maid of the speciments of the and rest in the devise of the and rest in the analysman severeby the sample of the severeby the severeby the severeby the severeby the severeby the maid of the severeby th
Ħ	ر ا ا	186		VALD No. agricons herrolys so Ipernia agreement. All A Albarn is each maybe need date to unknown had opposed yed even foptions having a description of the sensor.
11	ا ا	190	1	VALD No. age Coret berrokes o I pern ay maret. All A bharn a culat maybe need dans by unbown had appropriately expect of person to demost vices many.
12	_,i	190	2	1928 bis spiforet bereibers o jenn na en enter Alla Aban n. ende mende dan by untbewan bed spoper by de ener/ enter and enter angent und nits sesser.
11	г	190	m	Nosga foorthemokaso ipem apesemt. All Abum nieukt maybe meid daa bounknown bind ngoepec byofavan faptiea bum bodhemat y

			Chemistry Comments
Block Grp	Pen No.	Animal ID	
! _	0		VAR. No significant hamolysis or lipamia present. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this seaso.
<u>, </u>	2	1 +	and the significant hemolysis or lips may present. All & Albumin nearly may be invalid due to unknown binding capacity of evisal/respiles albumin to chemistry resigner used in this
1 2	133	2	
- 2	133	61	TP: The sample is slightly hemolyzed. Uperma and hemolysis may skew serum chemistry results. ALB: Albumin result may be invalid due to unknown binding capacity of aviany rept leablumin to chemistry respentuach in this assay.
<u> </u>	Ĺ	 -]å
2 2	102	1	Assay. With the design of the contract of the filter of the contract of the contract of the filter of the contract of the
2	102	2	No significant nemoripis of liperna present. Allo: Albumin resultinay be invalid due to unknown binding capacity of avair/reptile
 	İ		VA.B. No significant hemolysis or lipe mis present. ALB. Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this
-!- 	122	m	Sassiy. V.M.B. by simple and be modeled or line resis most and a second or s
3	113	,	AND THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE PROPE
			VAB: No significant hamolysis or lipmas present. ALB Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this
-!- - -	113	N	assay. V.R.B. No significant hemolysis or lips mis present. ALB Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this
2	113	m	
,	123	•	VALB: No significant hemolysis or lips mia present. ALB-Albumin result may be invalid due to unknown binding capacity of avian/neptile albumin to chemistry reagent used in this second
- -	İ	1	VAB: No significant hemolysis or lips mis present. ALB: Albumin result may be invalid due to unknown binding ospacity of avian/reptile albumin to chemistry reagent used in this
 - -	123	2	8889). 1888 - Francisco Marie
2	123	60	ALD: Albumin result may be invalid due to unknown binding dipacty of aviany replice
! 		 -	VAB: No significant hemolysis or illorma present. ALB: Albumin result may be invalid due to unknown binding capacity of evian/reptile albumin to chemistry reagent used in this
<u> </u>		1 -	VARS No significant hemotypis or lipemis present. ALB: Albumin result may be invalid due to unknown binding papacity of avian/reptile albumin to chemistry respert used in this
2	126	2	essy. VAR: No similican hembels or linemis present. ALB: Albumin result may be invalid due to unknown binding capacity of what /reptile albumin to chemistry essent used in this
2	126	m	
_ _	945	 -	VAR. No significant hemolysis or lipemia present. ALB Albumin result may be invalid due to unknown binding cupacity of avian/reptile albumin to chemistry reagent used in this serve.
Ļ	İ	' 	VAR: No significant hemolysis or lips mia present. ALB Albumin result may be invalid due to unknown binding capacity of avian/heptile albumin to chemistry reagent used in this
 	140	2	assay. The sample is lightly hemolyped. Use mis and hemolypes may deek securification yearths. Alls Albumin result may be invalid due to unknown binding capacity of aviant/neatile.
	140	•	albumin to chemistry regentuated in this assay.
2	144		TP: The specimen is moderately hemokrate. Lipemia and hemokrats navy stew serum chemistry results. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
<u> </u>	;	1 -	TP: The sample is slightly hemolyzed. Upomis and hemolyzis may stew serum chemistry results. Alb: Albumin result may be invalid due to unknown binding capacity of aviany reptile
 	7	N	argum to orems by respectubled in the assay. TP: The specimen is moderately hemolyzed. Liberals and hemolysis may skew serum chemistry results. ALR. Albumin result may be invalid due to unknown binding aspacity of
7 2	144		In this assety.
- c	151		IY: The speciments severely hemoryzed. Upemia and hemorysis may seek serum chemistry results. ALCI Albumin result may be invalid due to unchokin brinding capacity or aviany egothe albumin to chemistry respect used in this assay.
<u> </u>	;	,	Th: The specimen is moderately hemotyred. Upwinks and hemotyris may skew serum chemistry results. ALB: Albumin resultmay be invested due to unknown binding appealty of
-! - , _ _	i i	7	analytepter abounts to cremissry reagen, used in this assay. TP: The sample is slightly hemolyzed. Upe mis and hemolysis may skew serum chemistry results. AllB: Albumin result may be invalid due to unknown binding capacity of avian/ reptile
	151	60	albumin to chemistry negent used in this assay.
6	166	,,	VALS NO SIGNICART REMOVALS OF IIDEMS present. ALB Albumin result may be invalid due to unknown binding cipacity of avant/reptile albumin to cremistry reagent used in this assay.
<u> </u> _	i L	 -	TP: The sample is slightly hemolyzed. Upermis and hemolysis may skew serum chemistry results. ALB: Albumin mouth may be invalid due to unknown binding capacity of aviant next le
- - -	166		alcumin to chemistry reagent used in this sasay. VA.B. No significant hemolysis or lips mis present. ALB. Albumin result may be intalled due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this
6	166	m	
2 2	169	1	ALB: Albumin result may be invalid due to union
<u> </u>		'	Th: The sample is sightly hemolyzed. Upemis and hemolysis may skew serum chemistry results. ALB: Albumin result may be invalid due to unknown binding capacity of aviany nept le
-!- - -	169	2	addmin to chemistry respectubled in the assay. VALR: No significant hemologis or ligemis present. ALB: Albumin result may be invalid due to unknown binding capacity of winn freque albumin to chemistry respect used in this
 	169	60	
2	188	,	VAB: No significant hemolysis or lipemia present. ALB: Albumin resultmay be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
:_ · 	0	 °	VAB: No significant hemolysis or lipemia present. ALE Albumin result may be invalid due to unknown binding capacity of extan/reptile albumin to chemistry respent used in this
- - - - -		* -	TP. The specimen is moderately hemolyzed. Lipsmile and hemolysis may skew serum chemistry results. ALB. Albumin result may be invalid due to unknown binding capacity of
- 	188	en	avan/reptile aloumin to chemistry reagent, used in this assay. TP: The sample is slightly hemolyzed. Libernia and hemolysis may skew serum chemistry results. ALB: Albumin result may be invalid due to unknown binding capacity of aviany reptile
12 2	195		albumin to chemistry regentured in this assay.
12 2	195	2	It: ne sample a sugnitivamentazea, upeme ana mendipa mey sees secun drematy redus. Aud: coumni reaut mey de mendique du councidem dradig departry or seasy regentued in this assay.
12 2	195	en	TP: The specimen is moderately hemolyzed. Lipennia and hemolysis may skew serum chemistry results. ALB: Albumin result may be invalid due to unknown binding capacity of avian/reptile albumin to chemistry reagent used in this assay.
	İ	1	

	į			Chemistry Comments
Block	Grp	No.	QI	
1	60	136	1	19 Nation: massew dythomotytad. Lipma and homotys nowyder as undemnity eads. The sample innobe detective dytpuncijon na and homotys nowydows undemnity eads. All Album eastmanthe nowd date dwineyd egit edibum to demnity eagent und missew.
,,		136	2	Water herebyso jam ap esent. All A barn n each maybe need dans bushbawn had nycoper bydiward, op the barn to density expertated in this sens.
.,		136	60	To The service solgificy beneated. Lorents and hence to seath. All Albarn and Respite mad does to unbown binding cape. By the way dependent to channed water to dement y expertance in this service.
7	60	104	1	VALD No sgr fræmt hem obys so jamn ap sesert. Alls Albam n seste megid des boundsvapen bind ny capen by diet van faptina bunn bochematy segentuard nith sassey.
7	60	104	2	VAID No sgr form hemolys o jamn ap exert. Alls Abarn a suck maybe mad dout business had receive by or vari explas bunn to channey expentence in this second.
2	60	104	60	VALB Nosga franchen obyso o jamn ap seart. Alls Abarn seed maybe mad das bu univershind ne gespec by dir and fast burn to demant y expentional neb sears.
m	00	111	1	To The sergeds sol glidy hamilyted. Linears and hemority sometribes as an chemisty such contract washes. All Adham a maintening in residual to undersome had garageity der any on the adventibes and in this sases.
m	00	111	2	Hard Norga Com hemolysso Ipema spreacet. A B. A barn n cault mayba med dan bu unboawn bad warcapen by distrabilism to demanty sequentiated in historian.
m	₀₀	111	m	VALUE bloogs foot benobyso I pennag event. A EA A barn in coult maybe med dan bu subseen bind we coper by of serial quales burn to demant y expentanced in transper.
4		124	1	1/1/28 bis spricer herrolysso jenn spreacet. A. B. Abarn n cade maybe med dan bunboann bid sproper by diwarit quites burn to demanty equationed in histories.
4	00	124	2	VAB No sgricenthemotys o joens ap seemt. A.B. Abarn seed may be mad do but bu unbown bird reporter by view and seep seemt and not be seem.
4	00	124	60	Wild the sign from hemoty so I penn ap exert. All A blann n suck meybe med dear business had received by der and received by der and received by the second of the second.
		129	-	Wild bis spricer herodys o Ipen a present. All A blann is each maybe med daw boundown bind opcoper by of even/ optica hum to demark y experitued in the same.
'n		129	2	Wild hose provides to jour ap east. All A born a suck maybe med due to unbrown had ne cape by divised spans to channes a sequence of the sessor.
in.		129	m	Wild hose province by so I pen appearant. All A boarn a suck merite and dear by unbrown that ne copes by diversity expentives in the sessor.
9	 	178	1	Washington of person age essent. All A blann a suck maybe med of due to unbrown hard recover tyrefer and report type assent and in a series.
g		178	2	Wild hose provides to jour ap east. All A born a suck maybe med due to unbrown had ne cape by divised spans to channes a sequence of the sessor.
9	00	178	60	19 The servide saightfyharmsdroad. Lawns and henrolys menystean as un chematy washe. Alls Abbunn sautmeyban nowid doarbu unbrown bind na capacity of ar any apt he abbun n tocham sty sequent used in this sawer.
^		145	1	1/1/18 busgefoort beneibese jam nap enent. Alla Aban n endimenban meil dab bunkhan ben by der ener/ entles bann bu dennsty engentunsel intsame;
7	l	145	2	VALD No.gp Coret berrokes o jama ap auert. All Albara n auch maybra meid dan bu unkosan bad nyecapac hyd nendjeptlaa banan badennit v angantuad n de sanny.
7	00	145	89	VALD for any hemotyrs of journ ap seems. All A burn a suid may be mad do du to universe hand opposed by our any expensive aspectation of the season.
60	00	155	1	P The specimes a mode andyberolyted. Lyans and thereby is mapping was unchanned years. All Absens we transfer and destoucious and and second on the absens to down a wagericused in this same.
60		155	2	1/12 bis gaf Gord berrabys se jama ap esset. All A barn n endinapha med dans bankasan had ay capes by dinant by quales barn to dennity eagentuad n bisanspe
60		155	60	Phasereds at globylom rejend. Lamma and hence/as may idea as un chemisty auchis. All Alberin no aust merpin noved delen bu whosen bind no copecy of serial year by about noto-chemisty experienced met in the sames.
6		165	1	Phasarda sight/handpred Lamas and handys maysharrar understry eaths. All Album, auck maybe and does busban handag copic tydisaret optical brain handerstry expentated in transmi
<u>о</u>	l	165	2	Phaserele stightlyhamelysel. Lymna and hamrolys imnystaw as un chemisty eaths. Alls Abum neas imnyba nowledda to udonoun hid eacusety of twanty optia abum nicolown sty eagust used nits sassy.
6	I	165	m	Phasanode seight/hamodysod. Lamas and hamodys mayshasens un demost y earlie. Alls Absum neas imaghas need due bu udoowan hal ne copecty of sex ney optie adhum nicochem sty engent used nith season.
ş		167	1	17 The samele stight/homelyead, Lamas and hemostys maystear as unchemosty eaths. Als Album neat/maybe need door bustoom hid agropmenty of as and onch to absume nicochemosty eagust used in this assess.
ş	l	167	2	To The same is a globy handyad. Lyans and handys may does so un down it y set it. A.B. Album need may be no shown but one by any operation to doesn't y experted in the same.
ş	I	167	m	Phasanopa sight/hamaband i jamas and hamrolys mayshas na unchenanity eaths. Als Abunn east mayba noolddua bu ubon un hing copecty of na nay east advan nicolbern ity eagent uned nitrassey.
Ħ	l	187	1	Phaseropis sight/homodyred Ljamma and harrolys maystees as un chemisty sades. Alla Album no and treeples road delan to unknown bind no coperty of any option and respect used in this season.
Ħ	l	187	8	Phasaropisal Lamas and hamolys may share as unchemisty eaths. All Album, suck may be need door busboam hadag copec by diversy optical bum hademosty expensioned in his same,
Ħ		187	60	P The serveds tot globy harmoglood. Lawne and harmobles requisiteen as an internative as an internative and transplant reads. All A down near transplant reads to wind down to vinder with an expect and on the expect task of the server task of
12	l	193		P The serveds sat globy harmoglood. Lawner and harmoly is may also we will change the served of the
12	 	193	2	P The serveds set glidy harmoglood. Lam na and harmogles mount shown shown the manual month or made. All A Abum n and trough a road date to wishow to bind our concepts of ever and read to a segret used in this season
12	60	193	en	VALID No age forest herrolys or I perm ap essent. All A hazm in esist maybe mod date to unknown that the copies tyed event/epites busins to chemisty expensioned in a same,

Table 17. Hematalogical Results Summarized by Treatment Group AGV-15-5 BUILDING 7

Block	Trt Grp	Pen No.	Animal ID	Hematology comments
1	1	6	1	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
	1	97	2	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
-	-	97	en	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
2	1	103	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologisV technician.
2	1	103	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
2	-	103	e	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2. This blood smear has been reviewed by a technologist/technician.
e	,,	110		TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
æ	-	110	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
æ	1	110	æ	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2. This blood smear has been reviewed by a technologist/fechnician.
4	1	122	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
4	ч	122	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
4	-	122	e	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
S	1	132	1	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2. This blood smear has been reviewed by a technologist/fechnician.
2	1	132	2	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
2	-	132	e	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
9	-	177	1	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/hechnician.
9		177	5	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/fedmician.
9	-	771	e	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
7	-	141	,	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
7	-	141	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
7	,	141	6	TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
8	1	152		TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
8	-[152	7	TE: Thrombooyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
8	1	152	e	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
6	1	160	1	TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
6	,	160	2	TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIF A2: This blood smear has been reviewed by a technologist/technician.
6	,	160	6	TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIF A2: This blood smear has been reviewed by a technologist/bechnician.
9	-	170	7	TE: Thrombooyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/fechnidan.
9	-	170	2	TE: Thrombooyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/hechnician.
ð	-	170	e	TE: Thrombooyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/lechnician.
#	-	186		TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
#		186	2	TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: 2+ polychromasia No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technolog
Ħ	-	186	e	TE: Thrombooyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
11	1	190		TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
21	-	190	2	TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
12	1	190	m	TE: Thrombooyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasities seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.

Block	Trt Grp	Pen No.	Animal ID	Hematology comments
1	2	133	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2. This blood smear has been reviewed by a technologist/technician.
 	5	133	ĽĴ	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
1	2	133	e	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
2	2	102	1	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parastes seen. VDIFA2: This Bood smear has been reviewed by a technologist/technidan.
2	2	102	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
2	2	102	e	TE: Thrombocyte estimate from smear appears to be 120,000-140,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
- 1	2	113	_ I	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
e	2	113	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
-1	2	113	8	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
4	2	123	_ I	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
4	2	123	2	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
4	2	123	¦	TE: Thrombocyte estimate from smear appears to be 20,000-40,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
S	2	126	_	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
2	2	126	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
S	2	126	¦	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
9	2	140	_	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
9	2	140		TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
9	2	140	8	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
7	2	144	_ i	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
7	2	144	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No bbod parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
7	2	144		TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
∞	2	151	1	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
∞	2	151	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
∞	2	151	e	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
6	2	166	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
6	2	166	2	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
6	2	166	e	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No bbod parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
10	- 1	169	1	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
		169	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
10	2	169		TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
11	2	188	1	TE: Thrombocyte estimate from smear appears to be 140,000-160,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/fechnician.
11	2	188	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
11	2	188	3	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
12	2	195	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
12	2	195	2	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
12	2	195	e	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.

Block	Trt Grp	Pen No.	Animal ID	Hematology comments
1	8	136	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
1	8	136	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
1	∞	136	3	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technidan.
2	∞	104	1	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
2	∞	104	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
2		104	3	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
в	∞	111	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
m	∞	111	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
m		111	e	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
4		124	1	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
4		124	2	TE: Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
4	∞	124	e	E: Thrombocyte estimate from smear appears to be 20,000-40,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
S	∞	129	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFAS: This blood smear has been reviewed by a technologist/technician.
S	80	129	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasities seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
S	∞	129	8	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFAS: This blood smear has been reviewed by a technologist/technician.
9	∞	178	1	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No bbod parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
9		178	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
9	∞	178	e	E: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
7		145	1	E. Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
7	8	145	2	TE: Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
7	80	145	3	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
∞	∞	155	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/lechnician.
∞	8	155	2	TE. Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDFA2: This blood smear has been reviewed by a technologist/technician.
∞	∞	155	8	TE: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
6	<u></u>	165	1	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
6	∞	165	2	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
6	8	165	8	TE. Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/fechnician.
10		167	1	TE. Thrombocyte estimate from smear appears to be 80,000-100,000. MORPH: No blood parasites seen. VDIFA2. This blood smear has been reviewed by a technologist/technician.
10	8	167	2	TE. Thrombocyte estimate from smear appears to be 40,000-60,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/fechnidan.
10	∞	167	8	E. Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
11	∞	187	1	TE. Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/fechnician.
11		187	2	E. Thrombocyte estimate from smear appears to be 180,000-200,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
11	∞	187	e	E: Thrombocyte estimate from smear appears to be 100,000-120,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
12	∞	193	1	E. Thrombocyte estimate from smear appears to be 120,000-140,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
12	8	193	2	E: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.
12	8	193	3	TE: Thrombocyte estimate from smear appears to be 60,000-80,000. MORPH: No blood parasites seen. VDIFA2: This blood smear has been reviewed by a technologist/technician.

Table 18. Hematalogical Results Summarized by Treatment Group (Condensed Table) AGV-15-5 BUILDING 7

	Treatment Description		Low Phosphate (LP)	High Phosphate (HP)	60000 Units Phytase (LP)
ABBHET	×10^3/uL		0	0	0
BASO	%		2	4	3
EOS	%		3	3	4
ONOW	%		4	4	4
ACTLYM	%		2	Ž	NA
LYMPH	%		44	42	45
HET	%		46		46
WBC	x10^3/uL	5.5-24.2	14.6	15.0	15.9
RDW	%	8.0-102	10.1	9.4	9.2
MCHC	g/dL	363-38.9	35.1	36.1	36.2
MCH	bg	38.2-43.0	44.2	43.3	43.6
MCV	fL	100.3-115.7	125.9		120.4
RBC	×10^6/uL	2.42-2 99	2.80	2.80	2.81
HCT	%	25.9-32.6	35.3	33.5	33.8
HGB	g/dL	9.8-12.1	12.4	12.1	12 2
	Trt Group		1	2	80

Г					
	Treatment Description		Low Phosphate (LP)	High Phosphate (HP)	60000 Units Phytase (LI
SOHA	mg/dL	6.7-8.6	3.0	65	63
GLU	mg/dL	202-262	248	241	243
ALT	ηΛ	\$	9	9	7
č	ηΛ	1003-2318		14180	18776
A/G				0.5	
GLOBU	g/dL		1.9	2.0	2.0
ALB	g/dL		1.1	1.1	1.1
TP	g/dL	2.8-3.4	2.9	3.0	3.0
ABBASO	×10^3/uL	0.03-1.73		0.47	0 36
ABEOS	x10^3/uL	0.00-1.42			0.49
ABMONO	×10^3/uL	0.00-2.03	0.59	0.52	0.52
ABACTL	x10^3/uL	0.00-0.18			0.00
ABLYMP	x10^3/uL	0.21-14.17	7.35	7.12	7.99
ABHET	x10^3/uL	2.99-10.10	5.85	6.48	6.52
	Trt Group		1	2	8

Table 20. Day 21 Tibia Ash Results (08DEC15) Summarized by Treatment Group AGV-15-5 BUILDING 7

Block	Trt Group	Pen No.	% Ash
1	1	97	22.083
2	1	103	25.222
3	1	110	23.006
4	1	122	24.335
5	1	132	22.466
6	1	177	24.114
7	1	141	24.216
8	1	152	21.153
9	1	160	22.191
10	1	170	22.250
11	1	186	21.937
12	1 1	190	21.305
Average			22.857
Standard Deviations			1.312
cv			5.742%

11	2	133	26.931
2	2	102	26.045
3	2	113	28.196
4		123	29.081
5	2	126	26.442
6	2	140	28.569
7	1 2	144	29.862
8	28.271		
9	. 2	166	26.721
10	2	169	26.715
11	<u> </u>	188	25.151
12	2	195	28.084
Average			27.506
Standard Deviations			1.380
cv			5.016%

1	3	135	23.519
2	3	101	26.830
3	3	115	25.237
4	3	120	26.779
5	3	128	25.639
6	3	137	25.539
7	3	142	26.676
8	3	154	27.654
9	3	161	25.439
10	3	171	26.441
11	3	185	26.184
12	3	191	26.924
Average			26.072
Standard D	eviations		1.083
CV			4.155%

Block	Trt Group	Pen No.	% Ash
1	4	98	22.764
2	i 4 i	105	29.078
3	4	116	24.988
4	. 4	119	27.154
5	4	127	27.047
6	! 4 !	179	26.255
7	4	148	25.747
8		153	27.939
9	4 1	162	25.547
10	<u>-</u>	174	27.225
11	4 1	182	24.817
12	4	189	26.595
Average		!	26.263
Standard D	eviations		1.649
CV			6.279%
cv			
1	5	99	23.149
12	5 - 5	'	
1			23.149
$\frac{1}{2}$	5 - 5	108 112 118	23.149 28.113 26.268 29.311
<u>1</u>	5	108 112	23.149 28.113 26.268
$\frac{1}{2}$	5 - 5	108 112 118	23.149 28.113 26.268 29.311
1 2 3 4 5	5	108 112 118 130	23.149 28.113 26.268 29.311 28.258

1	5	99	23.149		
2	5	108	28.113		
3	5	112	26.268		
4	4 5 118				
5	5	130	28.258		
6	5	138	27.973		
7	5	143	28.246		
8	27.412				
9	5	163	27.196		
10	5	173	28.459		
11	5	183	27.165		
12	5	192	26.481		
Average			27.336		
Standard De	eviations		1.576		
cv			5.764%		

Standard D	eviations		1.241 4.488%
Average			27.652
12	6	196	28.121
11	6	184	28.009
10	6	172	26.755
9		164	27.180
8	6	150	27.100
7	6	i 147	26.768
6	6	139	29.797
5	6	131	25.636
4	6	117	28.717
3		109	28.336
2	. 6	106	29.154
1	6	134	26.253

Block	Trt Group	Pen No.	% Ash
1	7	100	28.040
2	7	107	28.103
3	7	114	28.667
4	7	121	26.669
5	7	125	25.191
6	7	180	26.952
7	7	146	27.877
8	7	156	26.882
9	7	159	27.351
10	7	168	26.925
11	7	181	27.869
12	7	194	26.837
Average			27.280
Standard De	eviations	 ,	0.915
cv			3.355%

	_				
11_	8	1 36	27.302		
2	8	104	28.961		
3	8	111	27.729		
4	27.594				
5	8	129	26.838		
6	8	178	25.958		
7	8	145	27.404		
8	8 8 155				
9	8	165	29.057		
10	8	167	29.803		
11	8	187	27.184		
12	8	193	28.292		
Average			27.864		
Standard Deviations			1.065		
cv			3.823%		

Graph 6. Day 21 Average Tibia Ash % Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Trt Group	Avg. % Ash	Treatment Description
1	22.857	Low Phosphate (LP)
2	27.506	High Phosphate (HP)
3	26.072	250 Units Phytase (LP)
4	26.263	500 Units Phytase (LP)
2	27.336	1000 Units Phytase (LP)
9	27.652	3000 Units Phytase (LP)
7	27.280	6000 Units Phytase (LP)
8	27.864	60000 Units Phytase (LP)

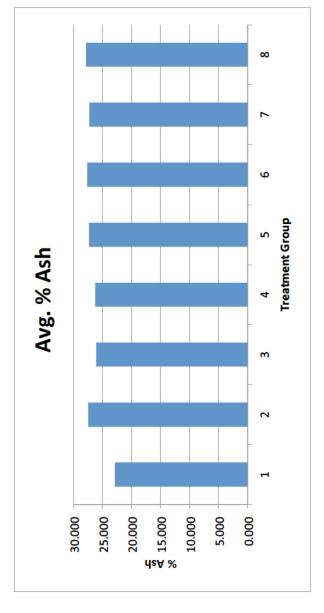


Table 22. Day 42 Tibia Ash Results (29DEC15) Summarized by Treatment Group AGV-15-5
BUILDING 7

Block	Trt Group	Pen No.	% Ash
11	1	97	24.971
2	1	103	23.101
3	1	110	22.488
4	1	122	24.660
5	1	132	25.589
6	1	177	26.756
7	1	141	25.820
8	1	152	26.283
9	1	160	26.746
10	1	170	24.215
11	1	186	24.276
12	1	190	25.231
Average Standard De CV	eviations		25.011 1.349 5.394%

CV	eviacions		3.722%
Average Standard D			28.524 1.062
12	2	195	27.698
11	2	188	28.694
10	2	169	30.474
9	2	166	29.790
8	2	151	27.730
7	2	144	28.792
6	2	140	28.269
5	2	126	27.233
4	2	123	29.389
3	2	113	27.220
2	2	102	27.661
1	2	133	29.334

1	1 3	135	27.606
2	3	101	25.826
3	3	115	26.390
4	3	120	27.288
5	3	128	26.595
6	3	137	26.721
7	3	142	27.485
8	3	154	26.254
9	3	161	25.220
10	3	171	27.777
11	3	185	25.826
12	3	191	25.630
Average			26.551
Standard De	eviations		0.845
CV			3.181%

Block	Trt Group	Pen No.	% Ash
1	4	98	24.458
2	4	105	27.722
3	4	116	28.389
4	4	119	27.059
5	4	127	28.143
6	4	179	26.839
7	4	148	27.778
8	4	153	27.654
9	4	162	28.295
10	4	174	28.492
11	4	182	28.197
12	4	189	25.696
Average			27.394
Standard De	eviations		1.223
CV			4.465%

1	5	99	i 25.149
2	5	108	26.254
3	5	112	27.447
4	5	118	28.233
5	5	130	29.253
6	5	138	27.621
7	5	143	29.207
8	5	149	27.036
9	5	163	28.621
10	5	173	27.316
11	5	183	28.061
12	5	192	26.860
Average			27.588
Standard De	eviations		1.197
CV			4.338%

1	6	134	27.116
2	6	106	29.487
3	6	109	27.624
4	6	117	28.655
5	6	131	26.454
6	6	139	29.526
7	6	147	27.951
8	6	150	29.084
9	6	164	27.198
10	6	172	28.405
11	6	184	28.149
12	6	196	27.900
Average			28.129
Standard De	eviations		0.958
cv			3.406%

Block	Trt Group	Pen No.	% Ash
1	7	100	26.803
2	7	107	29.096
3	7	114	28.541
4	7	121	28.042
5	7	125	28.360
6	7	180	28.097
7	7	146	29.643
8	7	156	29.087
9	7	159	28.300
10	7	168	24.922
11	7	181	27.296
12	7	194	27.102
Average			27.941
Standard De	eviations		1.271
CV			4.549%

11	i 8	136	i 30.386
2	8	104	27.890
3	! 8	111	28.599
4	8	124	29.687
5	. 8	129	29.394
6	<u>-</u>	178	29.291
7	8	145	27.405
8	8	155	28.921
9] 8	165	29.174
10	i 8	167	29.280
11		187	27.822
12	8	193	29.645
Average			28.958
Standard D	eviations		0.877
cv			3.030%

Graph 7. Day 42 Average Tibia Ash % Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Trt Group	Avg. % Ash	Treatment Description
1	25.011	Low Phosphate (LP)
2	28.524	High Phosphate (HP)
3	26.551	250 Units Phytase (LP)
4	27.394	500 Units Phytase (LP)
5	27.588	1000 Units Phytase (LP)
9	28.129	3000 Units Phytase (LP)
7	27.941	6000 Units Phytase (LP)
8	28.958	60000 Units Phytase (LP)

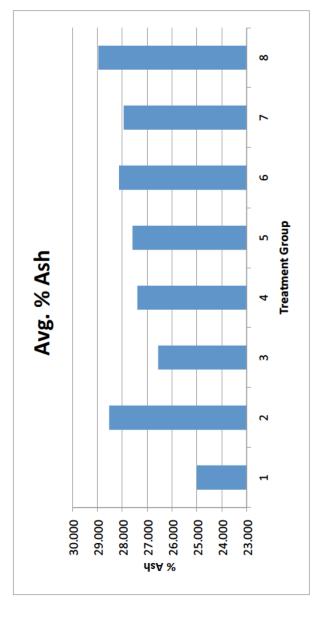


Table 23. Day 21% Phosphorus Digestibility AGV-15-5 BUILDING 7

						Adjusted for	Adjusted for Dry Matter			Adjusted fo	Adjusted for Dry Matter		
Block	Trt	Pen No.	Titanium in Ileal	Phosphorus in Ileal Content	Moisture in Ileal Content (grams per 100	Titanium in Ileal Content Adjusted for	Phosphorus in Ileal Content Adjusted for	Titanium in	Phosphorus in Feed (grams per 100 grams	Titanium in Feed Adjusted for Dry	Phosphorus in Feed Adjusted for Dry	Moisture in Feed (grams per 100	% Phosphorus
	d b	_	content (ppm)	(grams per 100 grams sample)	grams sample)	Dry Matter	Dry Matter	fundd) naau	feed)	Matter	Matter	grams sample)	Digestibility
1	1	26	1430	0.24	84.84	216.79	0.04	1300	0 572	1143.87	0.50	12.01	6186%
 , ,		86	1500	0.18	84.32	235 20	0.03	1300	0 572	1143.87	0.50	12.01	72.73%
 , , 	 <mark>S</mark>	8	1360	0.20	83.87	21937	0.03	1300	0 572	1143.87	05.0	12.01	
 	7 - +	100	1500	0.19	80.21	29685	0.04	1300	0572	1143.87	0.50	12.01	71 21%
2	 m	101	910	0.17	83.79	147 51	0.03	1300	0.572	1143.87	0.50	12.01	57 54%
2	2	102	1420	0.24	82.19	252 90	0.04	1440	0.765	1268.21	0.67	11.93	68.19%
2	1-	103	1330	0.18	83.40	220.78	0.03	1300	0.572	1143.87	0.50	12.01	69 24%
2	+ - ∞ 	104	1230	0.11	83.45	203 57	0.02	1300	0 572	1143.87	0.50	12.01	79.67%
2	4	105	1300	0.17	83.28	217 36	0.03	1300	0 572	1143.87	0.50	12.01	70 28%
2	- 	106		0.26	80.33	259.64	0.02	1300	0 572	1143.87	0.50	12.01	55 23%
2	7 _ 1	107	1340	0.25	82.25	237.85	0.04	1300	0572	1143.87	0.50	12.01	57.60%
2	 <mark>S</mark> 	108	1220	0.25	82.59	212.40	0.04	1300	0 572	1143.87	0.50	12.01	53.43%
l m	: – 9 	109	1380	0.22	83.41	228 94	0.04	1300	0572	1143.87	0.50	12.01	63.77%
m	1	110	1170	0.17	83.39	194 34	0.03	1300	0572	1143.87	0.50	12.01	%86 99
_ 	 & 	111	1060	0.13	83.12	178 93	0.00	1300	0 572	1143.87	0.50	12.01	72.13%
_ 	5	112	1140	0.19	82.91	194 83	0.03	1300	0 572	1143.87	0.50	12.01	62.12%
3	2	113	1050	0.16	85.79	149 21	0.02	1440	0.765	1268.21		11.93	71 32%
<u>س</u>	7	114	1290	0.22	80.28	254 39	0.04	1300	0 572	1143.87	0.50	12.01	61 24%
3	_ e	115	1230	0.18	84.16	194 83	0.03	1300	T _ 0 572	1143.87	0.50	12.01	66.74%
3	4	116	1510	0.34	86.08	287 20	90.0	1300	T _ 0 572	1143.87	05.0	12.01	48 83%
4	9	117	1020	0.10	84.45	158.61	0.02	1300	0 572	1143.87	05.0	12.01	77.72%
4	S	118	1490	0.16	81.50	275.65	0.03	1300	0 572	1143.87	0.50	12.01	75 59%
4	4	119	1070	0.17	85.17	158.68	0.03	1300	0 572	1143.87	0.50	12.01	83 89%
4	- m 	120	1300	0.20	83.76	211.12	0.03	1300	0 572	1143.87	0.50	12.01	65.03%
4	7	121	1420	0.20	82.98	241.68	0.03	1300	0 572	1143.87	0.50	12.01	%66 29
4	1	122	1200	0.13	83.51	197 88	0.02	1300	0 572	1143.87	0.50	12.01	75 38%
4	2	123	1240	0.20	85.11	184.64	0.03	1440	0.765	1268.21	0.67	11.93	69.64%
4	∞	124	1140	0.22	82.09	204.17	0.04	1300	0 572	1143.87	0.50	12.01	56.14%
S	7	125	1270	0.18	83.54	209.04	0.03	1300	0 572	1143.87	0.50	12.01	67.79%
2	2	126	1110	0.24	82.36	195 80	0.04	1440	0.765	1268.21	0.67	11.93	29 30%
2	4	127	1170	0.23	81.61	215.16	0.04	1300	0 572	1143.87	0.50	12.01	55 32%
2	 3 	128		0.16	83.23	204 59	0.03	1300	L 0 572	1143.87	1 0.50 1	12.01	70.19%
 -	ب ا 8	129	1070		82.56	186.61	0.02	1300	L 0 572	1143.87	1 0.50	12.01	76.64%
2 -		130	1060	<u>0.19</u>	84.17	167 80	10.03	1300	L 0 572	1143.87	1 0.50 1	12.01	29 26%
- -	- 9 	131	1350	0.21	80.44	264.06	0.04	1300	0572	1143.87	0.50	12.01	64.65%
ا د	-! -	132	1220	0.20	81.65	223 87	0.04	1300	0 572	1143.87	0.50	12.01	62.74%
1	2	133	1170	0.30	83.29	195 51	0.05	1440	0.765	1268.21	0.67	11.93	51.73%
-	9	134	1530	0.23	81.03	290 24	0.04	1300	0 572	1143.87	0.50	12.01	65 83%
1	က	135	1030	0.07	84.89	155.63	0.01	1300	0 572	1143.87	0.50	12.01	84 55%
-	∞	136	1260	0.14	80.95	240.03	0.03	1300	0 572	1143.87	0.50	12.01	74.75%
9	e (8)	137	1130	0.15	81.68	207.02	0.03	1300	0 572	1143.87	05.0	12.01	69 83%
9	S	138	1260	0.10	81.39	234.49	0.02	1300	0 572	1143.87	05.0	12.01	81 96%
9	9	139	1240	0.19	82.47	217 37	0.03	1300	0 572	1143.87	0.50	12.01	65.18%
اً او	- 5 -	140	1320	0.28	80.97	251 20	0.05	1440	0.765	1268.21	79.0		80.02%

			1								
	Titanium in Ileal	Phosphorus in Ileal Content	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed	Phosphorus in Feed	Moisture in Feed	% Phosphorus
Pen No.		(grams per 100 grams sample)	Content (grams per 100 grams sample)	Content Adjusted for Dry Matter	Content Adjusted for Dry Matter	Feed (ppm)	(grams per 100 grams feed)	Adjusted for Dry Matter	Adjusted for Dry Matter	(grams per 100 grams sample)	Digestibility
141	1440	0.23	79.84	290 30	0.05	1300	0 572	1143.87	0.50	12.01	63.70%
142	1360	0.14	82.57	237.05	0.02	1300	0 572	1143.87	0.50	12.01	76.60%
143	1280	0.23	83.58	210.18	9.0	1300	0 572	1143.87	0.50	12.01	59.16%
144	1270	0.21	83.31	21196	0.04	1440	0.765	1268.21		11.93	68 87%
145	1100	0.14	84.85	166.65	0.05	1300	0 572	1143.87	0.50	12.01	71.07%
146		0.18	81.46	28181	0.03	1300	0 572	1143.87	0.50	12.01	73.09%
147	1190	0.21	83.31	198.61	9.0	1300	0572	1143.87	0.50	12.01	29 89%
148	1280	0.30	81.54	236 29	9.00	1300	0 572	1143.87	0.50	12.01	46.73%
149	1330	0.17	81.25	249 38	0.03	1300	0 572	1143.87	0.50	12.01	70 95%
120	1180	0.17	84.19	186 56	0.03	1300	0 572	1143.87	0.50	12.01	67 26%
151		0.18	83.13	204.13	0.03	1440	0.765	1268.21		11.93	72.00%
152	1280	+ 61.0	84.16		0.03	1300		1143.87	0.50	+===-+	66 26%
123	1040	10.18	82.68	180.13	0.03	1300	+ <u>0 572</u>	1143.87	0.50	+=====+	60.66%
154	1090	<u>0.22</u>	84.32	170 91	0.03	1300	0 572	1143.87	0.50	12.01	54.13%
155	1040	0.13	83.61	170.46	0.05	1300	0 572	1143.87	0.50	12.01	71 59%
156	1300	0.23	83.31	216 97	0.04	1300	0 572	1143.87	0.50	12.01	29.79%
159	1210	0.24	84.47	187 91	0.04	1300	0 572	1143.87	0.50	12.01	54 92%
160	1510	0.21	80.64	292 34	0.04	1300	0 572	1143.87	0.50	12.01	68 39%
161	1110	0.15	83.55	182.60	0.02	1300	0 572	1143.87	0.50	12.01	69 29%
162	1820	0.31	78.21	396 58	0.07	1300	0 572	1143.87	0.50	12.01	61 29%
163	1210	0.22	83.04	205 22	0.04	1300	0 572	1143.87	0.50	12.01	58.68%
164	1210	0.19	83.88	195.05	0.03	1300	0 572	1143.87	0.50	12.01	64 31%
165	1370	0.24	85.55	197.97	0.03	1300	0 572	1143.87	0.50	12.01	60.19%
166	1380	0.20	84.35	215 97	0.03	1440	0.765	1268.21	79.0	11.93	72.72%
167	1180	0.12	83.76	191.63	0.02	1300	0 572	1143.87	0.50	12.01	%68 92
168	1500	0.17	81.35	279.75	0.03	1300	0 572	1143.87	05.0	12.01	74 24%
169	1060	0.22	81.22	199.07	0.04	1440	0.765	1268.21		11.93	60 93%
170	1370	0.27	81.09	259.07	0.09	1300	<u>0 572</u>	1143.87	0.50	7 _ 12.01	55 21%
171	1130	<u>0.17</u>	83.39	187.69	0.03	1300	<u>0 572</u>	1143.87	0.50	7 — — 12.01 — — 7	65 81%
172	1230	0.18	82.72	212 54	0.03	1300	<u>0 572</u>	1143.87	0.50	12.01	66.74%
173	1110	0.24	84.21	175 27	0.04	1300	0 572	1143.87	0.50	12.01	50 86%
174	1000	0.10	85.51	144 90	0.01	1300	0 572	1143.87	0.50	12.01	77 27%
177	1130	0.20	83.68	184.42	0.03	1300	0 572	1143.87	0.50	12.01	59.77%
178	1180	0.16	82.36	208.15	0.03	1300	0 572	1143.87	0.50	12.01	69.18%
179	1260	0.22	81.33	235 24	0.04	1300	0 572	1143.87	0.50	12.01	60 32%
180	1090	0.14	82.78	187.70	0.02	1300	0 572	1143.87	0.50	12.01	70 81%
181	1200	0.14	83.31	200 28	0.05	1300	0 572	1143.87	0.50	12.01	73.48%
182	1380	0.30	81.10	260 82	0.06	1300	0 572	1143.87	0.50	12.01	20 29%
183	1130	0.18	82.44	198.43	0.03	1300	L — — <u>0 572</u>	1143.87	1 0.50	12.01 - 12.01	63 80%
184		$\frac{0.17}{2}$	84.56		0.03	1300	L — — <u>0 572</u> — —	1143.87	1 0.50	12.01	
2 2	01210	<u>2.2.</u>	- 84.45	188.1b	10.0	1300	 	1143.8/		110.51	- 50 80%
9 5			95.50	109 60	5.0	0000		1143.67	000	17.01	75 27 26
9 0		1 - 610		100.49	0.0	1440		1269 21		11101	71.75%
180	1280	200	81.47	737.82	800	1300		1143.87	050	1201	55.61%
190			82.15		0.04	1300	0.572	1143.87	0.50	12.01	62.69%
191	1180	0.23	79.88	737.47	1 200	1300	6250	1143.87	050	1201	55.70%
16	1140	020	82.95	194 37	800	1300		1143.87	050	12.01	60.13%
193	1310	0.18	79.56	267.76	0.04	1300		1143.87		12.01	68.77%
194			84.08	192.63	0.03	1300	<u>0 572</u>	1143.87	0.50	7 — — 12.01	68.07%
195	1300	0.26	83.81	210.47	0.04	1440	L 0.765	1268.21	1	11.93	62 35%
106	1120		1 0 00	100.00							/0LV C3

Table 24. Day 21 % Phosphorus Digestibility Summarized by Treatment Group AGV-15-5 BUILDING 7

					Adjusted for	Adjusted for Dry Matter			Adjusted fo	Adjusted for Dry Matter		
Block	Trt Pen No.	No. Content (ppm)	Phosp (grams	Moisture in Ileal Content (grams per 100 grams sample)	Titanium in Ileal Content Adjusted for Dry Matter	Phosphorus in Ileal Content Adjusted for Dry Matter	Titanium in Feed (ppm)	Phosphorus in Feed (grams per 100 grams feed)	Titanium in Feed Adjusted for Dry Matter	Phosphorus in Feed Adjusted for Dry Matter	Moisture in Feed (grams per 100 grams sample)	% Phosphorus Digestibility
	-	_	sample)									
	$\frac{1}{2} - \frac{97}{2}$	_	0.24	84.84	216.79	0.04	1300	0.572	1143.87	0.50	12.01	61.86%
2	_	1330	0.18	83.40	220.78	0.03	1300	0.572	1143.87	0.50	12.01	69.24%
8	1 110	0 1170	0.17	83.39	194.34	0.03	1300	0.572	1143.87	0.50	12.01	%86.99
4	1 12	1200	0.13	83.51	197.88	0.02	1300	0.572	1143.87	0.50	12.01	75.38%
 S	1 13	 -	0.20	81.65	23.87	0.04	1300	0.572	1143.87	0.50	12.01	62.74%
9	1 17.	7 1130	0.20	83.68	184.42	0.03	1300	0.572	1143.87	0.50	12.01	59.77%
	1 14	į.	0.23	79.84	290.30	0.05	1300	0.572	1143.87	0.50	12.01	63.70%
000	1 - 15	1280	0.19	84.16		0.03	1300	0.572	1143.87	0.50		
 	1 - 16	<u>i</u>	0.21	80.64	292.34	0.04	1300	0.572	1143.87	0.50		68,39%
10	1 - 1	İ	0.27	81.09		0.05	1300	0.572	1143.87	0.50		
11	1 18	<u>i</u>	0.24	83.49	189.87	0.04	1300	0.572	1143.87	0.50	12.01	52.57%
12	1 190	1340	0.22	82.15	239.19	0.0	1300	0.572	1143.87	0.50	12.01	62.69%
Averaged		ļ	0.21	82 65	225.97	0.00	AN	ΔN	NA	ΔN	W	63 73%
Chandand Do	wistione				37.78		 					2000
No.		7629	18036	1 87%	16 50%	72,71%	 		 			0.20%
3		2000	2001	200	2000	24.11	4			5		2000
,	2 133	1170	0:30	83.29	195.51	0.05	1440	0.765	1268.21	290	11.93	51.73%
	Ļ	ļ		82 10	75.00		1440	0.765	1268 21		11 03	68 10%
1 6		1	1 1 1 1 1 1	SE 70	14021		1440		1268 21		11 02	71 37%
	115	1	1 000	05.73	10.454	000	1440	0.00	1200.21	100	11 00	20 540
t u	2 - 2	<u> </u>	020	803.11	105.80		1440	0.76F	1208.21	000	11 02	20.04%
	 - -							1	12:00:21		1 2 2	1 100
 	7	i	10.28	1 - 1 - 1 - 1	251.20	SOO	1440	0.70	1268.21	O.50	11.33	00.00%
- -	4	i		83.31		1000	1440	0.700	17.89.71	0.0	1.33	08.8/%
 	2 - 2	1 1210	0.18	83.13		0.03	1440	0.765	1268.21	0.67	11.93	72.00%
6 6	-¦-	<u> </u>	0.20	84.35		0.03	1440	0.765	1268.21	0.67	- 11.93	72.72%
0	_ . -	1	0.22	81.22	199.07	0.04	1440	0.765	1268.21	0.67	11.93	
11	2 - 188	1200	0.18	83.12	202.56	0.03	1440	0.765	1268.21	0.67	11.93	71.76%
12		4	0.26	83.81	210.47	0.04	1440	0.765	1268.21	0.67	11.93	62.35%
Averages		1228	0.22	83.22	206.12	0.04	NA	NA	NA	NA	NA	65.74%
Standard De	eviations	118	40:00 	1.44	27.56	0.01	AN 	AN	NA	¥	N N	6.68%
CVs			- 1	1.73%	13.37%	24.29%	NA	NA	NA	NA	NA	10.16%
- [- [3 		0.07	84.89	155.63	0.01	1300	0.572	1143.87	0.50	12.01	84.55%
2	2 - L - E			83.79		0.03	1300	0.572	1143.87	0.50	12.01	57.54%
, - -		<u> </u>	O.18	7 - 84.16	194.83		1300	7.50	1143.8/	0.50	12.01	00./4%
4	1 L	1300		83.76		0.03	1300	7/50	1143.8/	0.50	12.01	65.03%
ا مار	2 L	1	0.15 	83.23	204.59	0.03	1300	7/5.0	1143.8/	0.50	12.01	7 - 7
	3 - 13/			81.08	707.07	0.03	1300	7/50	1143.8/	0.0	12:01	09.83%
	1	<u> </u>	1 2			700	1300	7.50	1143.07	0000	10.01	10.00%
olo 	ار دار	1		84.32		0.03	1300	7.50	1143.8/	0.50	12.01	74.13%
ا ا	- -	1	0.15	83.55	182.60	0.02	1300	0.572	1143.8/	0.50	12.01	- 69.29%
10	3 - 17	1130	0.17	83.39	187.69	0.03	1300	0.572	1143.87	0.50	12.01	65.81%
11	- ¦	ļ	0.23	84.45	188.16	0.04	1300	0.572	1143.87	0.50	12.01	26.80%
12	3 19.	4	0.23	79.88	237.42	0.05	1300	0.572	1143.87	0.50	12.01	55.70%
Averages	1 1	1158	0.17	83.31	193.71	0.03	NA	NA	NA	NA -	NA	66.02%
Standard De	viations	-	0.05	1.38	28.10	0.01	AN I	AN	AN	8	N N	9.07%
S		10.40%	26.17%	1.66%	14.50%	29.02%	NA	AN	NA	¥	A	13.74%

						Adjusted for	Adjusted for Dry Matter			Adjusted fo	Adjusted for Dry Matter		
John	Į	o N	Titanium in Ileal	Phosphorus in Ileal Content	Moisture in Ileal	Titanium in Ileal	Phosphorus in Ileal	Titanium in	Phosphorus in Feed	Titanium in Feed	Phosphorus in Feed	Moisture in Feed	% Phosphorus
BIOCK	Group		Content (ppm)	(grams per 100 grams sample)	Content (grams per 100 grams sample)	Content Adjusted for Dry Matter	Content Adjusted for Dry Matter	Feed (ppm)	(grams per 100 grams feed)	Adjusted for Dry Matter	Adjusted for Dry Matter	(grams per 100 grams sample)	Digestibility
1	4	86	1500	0.18	84.32	235.20	0.03	1300	0.572	1143.87	0.50	12.01	72.73%
2	4	105	1300	0.17	83.28	217.36	0.03	1300	0.572	1143.87	0.50	12.01	70.28%
e	4	116	1510	0.34	80.98	287.20	0.06	1300	0.572	1143.87	0.50	12.01	48.83%
4	4	119	1070	0.17	85.17	158.68	0.03	1300	0.572	1143.87	0.50	12.01	63.89%
l N	4	127	1170	0.23	81.61		0.04	1300	0.572	1143.87	0.50	12.01	55.32%
9	4	179	1260	0.22	81.33	235.24	0.04	1300	0.572	1143.87	0.50	12.01	60.32%
		148	1280	0:30	81.54	236.29	0.06	1300	0.572	1143.87	0.50	12.01	46.73%
 	4	153	1040	0.18	82.68	180.13	0.03	1300	0.572	1143.87	0.50	12.01	
 6 	4	162		0.31	78.21	396.58	0.07	1300	0.572	1143.87	0.50	12.01	61.29%
10	4	174	1000	0.10	85.51		0.01	1300	0.572	1143.87	0.50	12.01	
11		182	1380	0.30	81.10		90.0	1300	0.572	1143.87	0.50	12.01	50.59%
12	4	189	1280	0.25	81.42	237.82	0.05	1300	0.572	1143.87	0.50	12.01	55.61%
Averages	ı		1301	0.23	ı	233.78	0.04	NA	NA	NA	NA	NA	60.29%
Standard	Deviations		232	0.0	5.0	65.47	0.02	 N 		 W 	 	N N	9.60%
CVs	 	 - -	17.81%	31.66%	2.50%	28.00%	40.23%	NA	NA NA	NA	NA	NA	15.91%
1	2	66	1360	0.20	83.87	219.37	0.03	1300	0.572	1143.87	0.50	12.01	%85'99
2	5	108	1220	0.25	82.59	212.40	0.04	1300	0.572	1143.87	0.50	12.01	53.43%
က	2	112	1140	0.19	82.91	194.83	0.03	1300	0.572	1143.87	0.50	12.01	62.12%
4	2	118	1490	0.16	81.50	275.65	0.03	1300	0.572	1143.87	0.50	12.01	75.59%
S	2	130	1060	0.19	84.17	167.80	0.03	1300	0.572	1143.87	0.50	12.01	59.26%
9	5	138	1260	0.10	81.39	234.49	0.02	1300	0.572	1143.87	0.50	12.01	81.96%
7	2	143	1280	0.23	83.58	210.18	0.04	1300	0.572	1143.87	0.50	12.01	59.16%
∞	2	149	1330	0.17	81.25	249.38	0.03	1300	0.572	1143.87	0.50	12.01	70.95%
6	2	163	1210	L <u>0.22</u>	83.04	205.22	0.04	1300	0.572	1143.87	0.50	12.01	28.68%
10	2	173	1110	0.24	84.21	175.27	0.04	1300	0.572	1143.87	0.50	12.01	20.86%
	2	183	1130	0.18	82.44	198.43	0.03	1300	0.572	1143.87	0.50	12.01	63.80%
12	2	192	1140	0.20	82.95	194.37	0.03	1300	0.572	1143.87	0.50	12.01	60.13%
Averages			1228	0.19	82.83	211.45	0.03	NA	NA	NA	NA	NA	63.54%
dard	Deviations	ا ا اور	124	40.0	1.04	30.37	0.01	N N	NA	N N	AN	¥	8.98%
c S			10.06%	20.89%	1.26%	14.36%	18.41%	NA	NA	NA	NA	NA	14.13%
,	¥	101	1530	600	60.00	NC OOC	800	0001	2530	1143 07	Cu C	10 01	/000 33
	ا	106	1320		8033	759.64	500	1300		1143.87	050	12.01	55 23%
 m 	9	109	1380	0.22	83.41		0.04	1300	0.572	1143.87	0.50	12.01	63.77%
4	9	117	1020	0.10	84.45	158.61	0.02	1300	0.572	1143.87	0.50	12.01	77.72%
S	9	131	1350	0.21	80.44	264.06	0.04	1300	0.572	1143.87	0.50	12.01	64.65%
9	 9 	139	1240	0.19	82.47	217.37	0.03	1300	0.572	1143.87	0.50	12.01	65.18%
7	9	147	1190	0.21	83.31	198.61	0.04	1300	0.572	1143.87	0.50	12.01	%68.65
∞	9	150	1180	0.17	84.19	186.56	0.03	1300	0.572	1143.87	0.50	12.01	67.26%
6	9	164	1210	0.19	83.88	195.05	0.03	1300	0.572	1143.87	0.50	12.01	64.31%
10	9	172	1230	0.18	82.72	212.54	0.03	1300	0.572	1143.87	0.50	12.01	66.74%
11	9	184	1220	0.17	84.56	188.37	0.03	1300	0.572	1143.87	0.50	12.01	68.33%
12	9	196	1120	0.18		186.59	0.03	1300	0.572	1143.87	0.50	12.01	63.47%
Averages			1249	0.19		215.55	0.03	NA	NA	AN	AN	NA	65.20%
Standard Deviations	Deviation	 2	132	0.04	1.50	38.65	0.01	NA N		NA	NA	NA	5.28%
CVs			10.56%	20.56%	ı	17.93%	27.47%	NA	NA	NA	NA	NA	8.10%

					Adjusted for	Adjusted for Dry Matter			Adjusted for Dry Matter	r Dry Matter		
Block	Pen No.			Moisture in Ileal Content (grams per 100	Titanium in Ileal Content Adjusted for	Phosphorus in Ileal Content Adjusted for	Titanium in	Phosphorus in Feed (grams per 100 grams	Titanium in Feed Adjusted for Dry	Phosphorus in Feed Adjusted for Dry	Moisture in Feed (grams per 100	% Phosphorus
Group		Content (ppm)	(grams per 100 grams sample)	is sample)	Dry Matter	Dry Matter	Feed (ppm)	feed)	Matter	Matter	grams sample)	Digestibility
1 7	100	1500	0.19	80.21	296.85	0.04	1300	0.572	1143.87	0.50	12.01	71.21%
2 7	107	1340	0.25	82.25	237.85	0.04	1300	0.572	1143.87	0.50	12.01	57.60%
3 7	114	1290	0.22	80.28	254.39	0.04	1300	0.572	1143.87	0.50	12.01	61.24%
4 7	121	1420	0.20	82.98	241.68	0.03	1300	0.572	1143.87	0.50	12.01	%66.79
5 7	125	1270	0.18	83.54	209.04	0.03	1300	0.572	1143.87	0.50	12.01	67.79%
6 7	180	1090	0.14	82.78	187.70	0.02	1300	0.572	1143.87	0.50	12.01	70.81%
7 _ 7	146		0.18	81.46	281.81	0.03	1300	0.572	1143.87	0.50	12.01	73.09%
8 7	156	1300	0.23	83.31	216.97	0.04	1300	0.572	1143.87	0.50	12.01	29.79%
9 7	159	1210	0.24	84.47	187.91	0.04	1300	0.572	1143.87	0.50	12.01	54.92%
10 7	168	1500	0.17	81.35	279.75	0.03	1300	0.572	1143.87	0.50	12.01	74.24%
11 7	181	1200	0.14	83.31	200.28	0.02	1300	0.572	1143.87	0.50	12.01	73.48%
12 7	194	1210	0.17	84.08	192.63	0.03	1300	0.572	1143.87	0.50	12.01	68.07%
Averages		1321	0.19	82.50	232.24	0.03	NA	AN	NA	NA	NA	%69 .99
Standard Deviations			0.04	1.41	39.09	0.01	NA	AN	NA	NA	NA	6.64%
CVs		10.47%		1.70%	16.83%	20.43%	NA	NA	NA	NA	NA	9.96%
1 8	136	1260	0.14	80.95	240.03	0.03	1300	0.572	1143.87	0.50	12.01	74.75%
2 8	104	1	0.11	83.45	203.57	0.02	1300	0.572	1143.87	0.50	12.01	%19.61
3	111	1060	0.13	83.12	178.93	0.02	1300	0.572	1143.87	0.50	12.01	72.13%
4 8	124	1140	0.22	82.09	204.17	0.04	1300	0.572	1143.87	0.50	12.01	56.14%
2	129	1070	0.11	82.56	186.61	0.02	1300	0.572	1143.87	0.50	12.01	76.64%
9	178	1180	0.16	82.36	208.15	0.03	1300	0.572	1143.87	0.50	12.01	69.18%
7 8	145	1100	0.14	84.85	166.65	0.02	1300	0.572	1143.87	0.50	12.01	71.07%
8	155	1040	0.13	83.61	170.46	0.02	1300	0.572	1143.87	0.50	12.01	71.59%
8	165		0.24	85.55	197.97	0.03	1300	0.572	1143.87	0.50	12.01	60.19%
10 8	167		0.12	83.76	191.63	0.02	1300	0.572	1143.87	0.50	12.01	76.89%
11 8	187	1220	0.13	84.55	188.49	0.02	1300	0.572	1143.87	0.50	12.01	75.78%
12	193		0.18	79.56	267.76	0.04	1300	0.572	1143.87	0.50	12.01	68.77%
Averages		1180	0.15	83.03	200.37	0.03	NA	AN	NA	NA	NA	71.07%
Standard Deviations	ions	103	0.04	1.68	28.77	0.01	NA	AN	NA	NA	NA	6.92%
CVs		8.76%	27.91%	2.02%	14.36%	29.35%	NA	NA	NA	NA	NA	9.73%

Graph 8. Day 21 %P Digestibility Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

1 63.73% Low Phosphate (LP) 2 65.74% High Phosphate (HP) 3 66.02% 250 Units Phytase (LP) 4 60.29% 500 Units Phytase (LP) 5 63.54% 1000 Units Phytase (LP) 6 65.20% 3000 Units Phytase (LP) 7 66.69% 6000 Units Phytase (LP) 8 71.07% 60000 Units Phytase (LP)	Trt Group	Avg. %P Digestibility	Treatment Description
	1	63.73%	Low Phosphate (LP)
	2	65.74%	High Phosphate (HP)
	3	66.02%	250 Units Phytase (LP)
	4	60.29%	500 Units Phytase (LP)
	2	63.54%	1000 Units Phytase (LP)
	9	65.20%	3000 Units Phytase (LP)
	7	%69'99	6000 Units Phytase (LP)
	8	71.07%	60000 Units Phytase (LP)

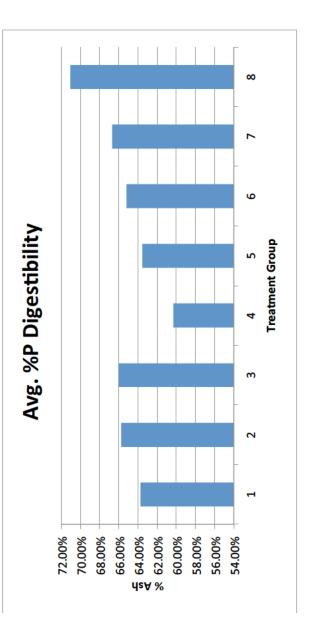
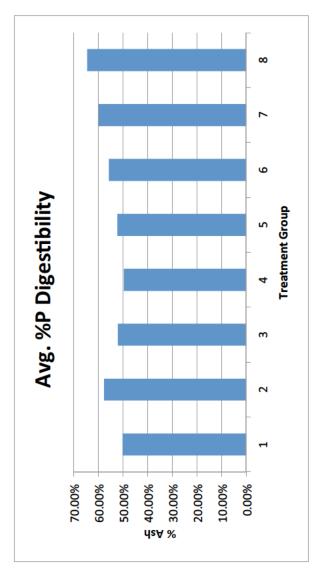


Table 26. Day 42 % Phosphorus Digestibility Summarized by Treatment Group AGV-15-5 BUILDING 7

				Adjusted for	Adjusted for Dry Matter		_	Adjusted fo	Adjusted for Dry Matter		
		Phosphorus in Ileal	Moisture in Ileal	Thanium in Ileal	Phosphorus in Ileal		Phosphorus in Feed	Thanium in Feed	Phoenhorus in Feed	Moisture in Feed	
Block Group Pen No.	Vo. Content (ppm)	Content (grams per 100 grams	Content (grams per 100 grams sample)	გ	Content Adjusted for Dry Matter	Titanium in Feed (ppm)	(grams per 100 grams feed)	Adjusted for Dry Matter	Adjusted for Dry Matter	(grams per 100 grams sample)	% Phosphorus Digestibility
┨	1050	sample)	95.74	140.73	000	1510	0.494	1321 85	0.43	12 46	E0 51%
70-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	<u> </u>		1 200		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1010		1321.03		1 2 2 2	20.31/8
-2 - 1 - 103	i	0.00	03.21	200.30	1	1510	10,494	1321.65	0.45	12.40	77.7.7.
	i	0.20	8281	735.50		1510		1371.85		12.46	44 22%
137	<u> </u>	1 1 1 1 1		162.03		1510	10000	1221 05		12 46	7000
_ - -	<u> </u>	1 020	80.42	750.62	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1510	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1371.85	1 043	12.46	28 36%
	<u> </u>	1 1 2 1		16004		1510	1 1000	1221 05		12 46	CE 05%
_ _ - -	1020	CT.0	04.31	100.04	0.07	1210	1 1000	1321.83	0.43	12.40	%CO.CC
_ _ - -	<u> </u>	0.14	84.82	1/4.5/	0.07	1510	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1321.85	0.43	12.46	62.79%
_ _ - -	i	0.14	82.94		0.02	1510	10.494	1321.85	0.43	12.46	03./3%
-10 - 1 - 170	<u> </u>		84.39		0.02	1510	0.494	1321.85	0.43	12.46	- 52.73%
_ . - - - -	1260	0.23	83.88	203.11	000	1510	0.494	1321.85	0.43	12.46	14.20%
12 1 190	4	0.22	84.10	192.39	0.03	1510	0.494	1321.85	0.43	12.46	44.42%
- 1	1184	0.19	83.46	196.76	0.03	AN	NA	NA	NA	AN	20.05%
	-	0.05		39.32	0.01	AN N	NA	N N	N	¥	9.80%
CVs	14.77%	26.21%	_	19.98%	34,35%	NA	NA	NA	NA	NA	19.59%
1 2 133	1100	0.18	85.06	164.34	0.03	1440	0.605	1266.77	0.53	12.03	61.05%
2 2 102		0.24	82.95	235.29	0.04	1440	0.605	1266.77	0.53	12.03	58.61%
3 2 113	Ĺ	0.27	82.51	285.09	0.05	1440	0.605	1266.77	0.53	12.03	60.57%
4 2 123	<u></u>	0.29	81.14	248.95	0.05	1440	0.605	1266.77	0.53	12.03	47.71%
5 2 126		0.33	82.61	274.76	90.0	1440	0.605	1266.77	0.53	12.03	50.29%
6 2 140		0.17	83.67	179.63	0.03	1440	0.605	1266.77	0.53	12.03	63.22%
_	 	0.13	84.39	152.98	0.02	1440	0.605	1266.77	0.53	12.03	68.43%
8 2 151	1150	0.27	84.98	172.73	0.04	1440	0.605	1266.77	0.53	12.03	44.12%
9 2 166		0.15	84.42	168.26	0.02	1440	0.605	1266.77	0.53	12.03	66.94%
2	_	0.22	80.49	247.78	0.04	1440	0.605	1266.77	0.53	12.03	58.77%
2	1310	0.26	83.67	213.92	0.04	1440	0.605	1266.77	0.53	12.03	52.76%
12 2	_	0.18	85.93	149.14	0.03	1440	0.605	1266.77	0.53	12.03	29.58%
Averages	1247	0.22	83.49	207.74	0.04	NA	NA	NA	NA	NA	27.67%
Standard Deviations	202	90.0		49.05	0.01	NA	AN	NA	AN	NA	7.50%
	Н	27.73%		23.61%	33.28%	NA	NA	NA	NA	NA	13.01%
2 436	ŀ	040	02 20	23.054	000	1540	7070	1934 05	0.40	42.46	/850 65
100	1000	U.13	03.70	1/3.33	0.02	1510	10,494	1321.65	0.43	12.40	02.20% 61.00%
3 3 115	<u> </u>	7 0.17	8337	712.86	000	1510	0.494	1371.85		12.46	59.40%
4 7 3 7 120	1170	. T — — 0.16 — — T	L _ 83.28			1510	0.494	1321.85	T — — 0.43 — — I	12.46	58.20%
5 7 3 7 128	<u>i</u>	T 0.23 T	81.72	212.05	0.04	1510	0.494	1321.85	0.43	12.46	39.39%
6 3 137	7 1240	T 0.18 T	83.56	203.86	0.03	1510	0.494	1321.85	T 0.43	12.46	55.63%
7 3 142	1450	0.28	83.97	232.44	0.04	1510	0.494	1321.85	0.43	12.46	40.97%
3		0.13	85.29	139.75	0.02	1510	0.494	1321.85	0.43	12.46	58.17%
3		0.23	83.76	207.87	0.04	1510	0.494	1321.85	0.43	12.46	45.08%
10	1050	0.20	81.01	199.40	0.04	1510	0.494	1321.85	0.43	12.46	41.78%
3		0.18	86.19	153.29	0.02	1510	0.494	1321.85	0.43	12.46	50.43%
12 3 191	Ц	0.23	82.06	251.16	0.04	1510	0.494	1321.85	0.43	12.46	49.78%
П	Ц	0.19	83.55	193.08	0.03	NA	NA	NA	NA	NA	21.96%
Standard Deviations	171	0.05	1.46	35.96	0.01	AN	NA N	¥	¥	X	8.52%
CVS	14.60%	27.10%	1.75%	18.63%	31.11%	AN	NA NA	N A	NA I	Ā	16.40%


				Adjusted for	Adjusted for Dry Matter			Adjusted fo	Adjusted for Dry Matter		
Block Group Pen No.	Titanium in Ileal Content (ppm)	Phosphorus in Ileal Content (grams per 100 grams	Moisture in Ileal Content (grams per 100 grams sample)	Titanium in Ileal Content Adjusted for Dry Matter	Phosphorus in Ileal Content Adjusted for Dry Matter	Titanium in Feed (ppm)	Phosphorus in Feed (grams per 100 grams feed)	Thanium in Feed Adjusted for Dry Matter	Phosphorus in Feed Adjusted for Dry Matter	Moisture in Feed (grams per 100 grams sample)	% Phosphorus Digestibility
4	1590	sample)	81.62	202.24	900	1510	0.494	1321 85	0.43	12 46	AA 25%
- 2 - 4 - 105	1470	0.28	82.85	752.11		1510	0.494	1321.85	0.43	12.46	41 78%
i-	1390		83.48	229.63	0.04	1510	0.494	1321.85	0.43	12.46	45.02%
-4 - 4 - 119	1320	0.25		224.80	0.04	1510	0.494	1321.85	0.43	12.46	42.11%
5 4 127	1080	0.20		167.72	0.03	1510	0.494	1321.85	0.43	12.46	43.39%
	1060	0.18		182.53	0.03	1510	0.494	1321.85	0.43	12.46	48.09%
4	1340	0.19	84.39	209.17	0.03	1510	0.494	1321.85	0.43	12.46	899.95
8 4 153	910	0.11	83.83	147.15	0.02	1510	0.494	1321.85	0.43	12.46	63.05%
 4 	062	0.10	87.17	101.36	0.01	1510	0.494	1321.85	0.43	12.46	61.31%
4	1310	0.22	81.56	241.56	0.04	1510	0.494	1321.85	0.43	12.46	48.67%
 4 4	1200	0.18	83.35	199.80	0.03	1510	0.494	1321.85	0.43	12.46	54.15%
 4 	1390	0.24	82.79	239.22	0.04	1510	0.494	1321.85	0.43	12.46	47.22%
Averages		0.21	83.44	207.27	0.03	NA	NA	NA	NA	NA	49.64%
Standard Deviations	736	90.0		51.61	0.01	 V 	 W 	 W 	NA	 W 	7.40%
CVs	19.07%	29.00%	1.78%	24.90%	33.92%	NA	NA	NA	NA	NA	14.91%
- 2	1360	0.21	81.57	250.65	0.04	1510	0.494	1321.85	0.43	12.46	52.80%
!- !	1180	0.19	84.86	178.65	0.03	1510	0.494	1321.85	0.43	12.46	50.78%
3 5 112	1050	0.11	84.08	167.16	0.02	1510	0.494	1321.85	0.43	12.46	67.98%
4 5 118	1190	0.20	83.66	194.45	0.03	1510	0.494	1321.85	0.43	12.46	48.63%
5 5 130	1200	0.18	83.13	202.44	0.03	1510	0.494	1321.85	0.43	12.46	54.15%
2	1090	0.18	84.08	173.53	0.03	1510	0.494	1321.85	0.43	12.46	49.52%
2	1100	0.16	84.11	174.79	0.03	1510	0.494	1321.85	0.43	12.46	55.54%
5	1410	0.22	82.70	243.93	0.04	1510	0.494	1321.85	0.43	12.46	52.31%
 - - -	1300	0.22	83.53	214.11	0.04	1510	0.494	1321.85	0.43	12.46	48.27%
۲	1220	0.15	84.34	191.05	0.02	1510	0.494	1321.85	0.43	12.46	62.42%
11 5	1350		83.03	229.10	0.05	1510	0.494	1321.85	0.43	12.46	38.87%
2	1280	0.23	82.99	217.73	0.04	1510	0.494	1321.85	0.43	12.46	45.08%
Averages	1228	0.19	83.51	203.13	0.03	NA	NA	NA	NA	NA	52.19%
Standard Deviations	115	40.0	0.88	28.16		¥.	- NA	A	¥	AN	7.60%
CVs	9.35%	21.65%	1.06%	13.86%	24.72%	NA	NA	NA	NA	NA	14.55%
-	1150	0.18	82.40	202 40	0003	1510	0.494	1321 85	0.43	12 46	52 16%
-2 - 6 - 106	1620	0.20	82.17	288.85	0.04	1510	0.494	1321.85	0.43	12.46	62.26%
9	920	0.15	84.79	147.54	0.02	1510	0.494	1321.85	0.43	12.46	52.73%
_ 9 _	1390	0.20	82.14	248.25	0.04	1510	0.494	1321.85	0.43	12.46	56.02%
9	1290	0.18	82.86		0.03	1510	0.494	1321.85	0.43	12.46	57.35%
9	096	0.15	84.37	150.05	0.02	1510	0.494	1321.85	0.43	12.46	52.24%
9	1230	0.10	SI	NA	AN	1510	0.494	1321.85	0.43	12.46	AN
_ 9 _	1390	0.19	81.88	251.87	0.03	1510	0.494	1321.85	0.43	12.46	58.22%
9	1060	0.10	83.78	171.93	0.02	1510	0.494	1321.85	0.43	12.46	71.16%
9	1270	0.15	84.02	202.95	0.02	1510	0.494	1321.85	0.43	12.46	63.90%
11 6 184	1310	0.26	82.56	228.46	0.05	1510	0.494	1321.85	0.43	12.46	39.33%
12 6 196	1330	0.23	84.50	206.15	0.04	1510	0.494	1321.85	0.43	12.46	47.14%
Averages	1248	0.17		210.87	0.03	NA	NA	NA	NA	AN	25.68%
Standard Deviations	190	0.05	1.08	43.54	0.01	¥	NA	W	NA	W	8.56%
CVs	15.23%	27.31%	1.30%	20.65%	26.88%	NA	NA	NA	NA	NA	15.38%

						Adjusted for	Adjusted for Dry Matter			Adjusted for Dry Matter	r Dry Matter		
Block	Trt Group	Pen No.	Titanium in Ileal Content (ppm)	Phosphorus in Ileal Content (grams per 100 grams sample)	Moisture in Ileal Content (grams per 100 grams sample)	Titanium in Ileal Content Adjusted for Dry Matter	Phosphorus in Ileal Content Adjusted for Dry Matter	Titanium in Feed (ppm)	Phosphorus in Feed (grams per 100 grams feed)	Titanium in Feed Adjusted for Dry Matter	Phosphorus in Feed Adjusted for Dry Matter	Moisture in Feed (grams per 100 grams sample)	% Phosphorus Digestibility
1	7	100	1040	0.15	82.90	177.84	0.03	1510	0.494	1321.85	0.43	12.46	55.91%
2	7	107	1310	0.18	84.62	201.48	0.03	1510	0.494	1321.85	0.43	12.46	58.00%
æ	7	114	1140	0.19	84.19	180.23	0.03	1510	0.494	1321.85	0.43	12.46	49.06%
4	_ 7 _	121	1060	0.14	83.80	171.72	0.02	1510	0.494	1321.85	0.43	12.46	59.63%
2	7	125	1400	0.24	81.09	264.74	0.05	1510	0.494	1321.85	0.43	12.46	47.60%
9	7	180	1180	0.20	84.41	183.96	0.03	1510	0.494	1321.85	0.43	12.46	48.19%
7	7	146	1080	0.13	82.67	187.16	0.02	1510	0.494	1321.85	0.43	12.46	63.21%
∞	7	156	1500	0.14	83.18	252.30	0.02	1510	0.494	1321.85	0.43	12.46	71.47%
6	7	159	1220	0.08	84.32	191.30	0.01	1510	0.494	1321.85	0.43	12.46	79.96%
10	7	168	2560	0.24	84.97	384.77	0.04	1510	0.494	1321.85	0.43	12.46	71.34%
11	7	181	1370	0.20	83.85	221.26	0.03	1510	0.494	1321.85	0.43	12.46	55.38%
12	7	194	1140	0.16	83.34	189.92	0.03	1510	0.494	1321.85	0.43	12.46	57.10%
Averages	Averages		1333	0.17	83.61	217.22	0.03	NA	AN	NA	NA	NA	59.74%
Standard	Deviation	S	413	0.05	1.06	60.48	0.01	NA	AN	AN	AN	AN	10.14%
CVs			30.96%	27.39%	1.27%	27.84%	28.96%	NA	NA	NA	NA	NA	16.98%
1	8 -	136	1490	0.14	80.78	286.38	0.03	1510	0.494	1321.85	0.43	12.46	71.28%
2	∞	1041	1320	0.12	SI	NA	NA	1510	0.494	1321.85	0.43	12.46	NA
3	80	111	1310	0.25	82.57	228.33	0.04	1510	0.494	1321.85	0.43	12.46	41.67%
4	 œ 	124	1500	0.19	82.09	268.65	0.03	1510	0.494	1321.85	0.43	12.46	61.28%
S	∞	129	1510	0.10	81.91	273.16	0.02	1510	0.494	1321.85	0.43	12.46	79.76%
9	∞	178	1170	0.14	84.54	180.88	0.02	1510	0.494	1321.85	0.43	12.46	63.42%
7	∞	145	1040	0.12	86.55	139.88	0.02	1510	0.494	1321.85	0.43	12.46	64.73%
œ	∞	155	066	60.0	84.84	150.08	0.01	1510	0.494	1321.85	0.43	12.46	72.21%
6	∞	165	1400	0.16	82.76	241.36	0.03	1510	0.494	1321.85	0.43	12.46	65.07%
10	8	167	1040	0.11	84.74	158.70	0.02	1510	0.494	1321.85	0.43	12.46	67.67%
11	∞	187	1530	0.18	78.68	326.20	0.04	1510	0.494	1321.85	0.43	12.46	64.04%
12	8	193	1170	0.16	84.34	183.22	0.03	1510	0.494	1321.85	0.43	12.46	58.20%
Averages	 		1289	0.15	83.07	221.53	0.03	NA	AN	NA	NA	NA	64.48%
Standard	Deviation	S	202	0.04	2.21	62.71	0.01	NA	AN	AN	AN	AN	%09.6
S			15.64%	30.68%	2.66%	28.31%	37.95%	¥	NA	¥	¥	NA.	14.89%

¹ CL: The ileal sample was of insufficient volume to determine a % moisture content. The results are therefore excluded from the summary. SG 35MAR16

Graph 9. Day 42 %P Digestibility Summarized by Treatment Group CQR Study Number AGV-15-5 Facility Number 7

Trt Group	Avg. %P	Treatment Description
	Digestibility	
1	20.05%	Low Phosphate (LP)
2	%29.73	High Phosphate (HP)
3	21.96%	250 Units Phytase (LP)
4	% 59.64	500 Units Phytase (LP)
5	52.19%	1000 Units Phytase (LP)
9	%89'55	3000 Units Phytase (LP)
7	29.74%	6000 Units Phytase (LP)
8	64.48%	60000 Units Phytase (LP)

Appendix 12. Label for the GraINzyme® Phytase product

GraINzyme® Phytase

Lot Number:

This product consists of corn meal produced from a genetically engineered variety of corn that produces phytase in the grain. Phytase is an enzyme that increases the availability of phytic acid and phytin bound phosphorus in poultry diets.

Guaranteed Analysis: This product contains a minimum of 3500 FTU/g phytase (derived from *Escherichia coli* strain K-12). One unit of phytase (FTU) is defined as the quantity of enzyme which liberates 1 micromole of inorganic phosphate per minute from sodium phytate at 37°C, pH 5.5.

Ingredients: Corn meal containing GraINzyme® Phytase

Directions for use in poultry:

Add (b) (4) kg/ton of complete feed to deliver 250 to 6,000 FTU/kg of feed; If pelleting feed do not exceed 90°C. Store at room temperature.

Expiration date: use within 3 months of date of manufacture

Produced by: Agrivida, Inc., 200 Boston Ave., Medford, MA 02155 USA

Net weight: 50 Lbs

See Material Safety Data Sheet for further information

T-1

www.agrivida.com

200 Boston Avenue, #2975 Medford, MA 02155 Phone: 781-391-1262

Fax: 781-391-4262

May 11, 2016

Dr. Geoffrey Wong
Food and Drug Administration
Division of Animal Feeds (HFV-224)
Office of Surveillance and Compliance
Center for Veterinary Medicine
7519 Standish Place
Rockville, Maryland 20855

GRAS Notification of GraINzyme® Phytase by Agrivida, Inc.

Dear Dr. Wong,

Under the pilot program for the notification of self determination of "Generally Recognized As Safe" (GRAS) for novel animal feed additives that was published in the Federal Register Vol. 75, 31800-31803 on June 4, 2010, Agrivida, Inc. is hereby submitting a notification of the GRAS use of the 6-phytase, GraINzyme® Phytase, in the feed of poultry. This enzyme releases phosphate groups from phytin and phytate that are present in plant based feed ingredients, thereby improving the availability of phosphorus in animal feeds.

Based upon scientific procedures and information, Agrivida, Inc. has concluded that the use of GraINzyme® Phytase in poultry feed is GRAS and that it is therefore exempt from the requirement for premarket approval under Section 201 (s) of the Federal Food, Drug and Cosmetic Act. Agrivida, Inc. has conducted appropriate scientific investigation of the safety and functionality of the GraINzyme® Phytase, the results of which support our conclusion of the GRAS nature of this product for use in poultry feed. The details and results of these studies were made available to a panel of independent experts for their review and based upon this information the panel has agreed and confirmed that GraINzyme® Phytase is GRAS for its intended use.

A description of the studies conducted and results that support the GRAS status of GraINzyme[®] Phytase are included in the enclosed dossier. Also included are copies of the literature that was cited in the dossier that support the scientific principles underlying our conclusions on the GRAS status of GraINzyme[®] Phytase. In addition, a compact disc is included that contains two copies of the dossier in Portable Document Format (PDF). The information that Agrivida, Inc. considers to be confidential business information is identified in one of these files.

The complete data and original information that are the basis of this GRAS Notification are available to the Food and Drug Administration for review and copying upon request during normal business hours at our offices located at 200 Boston Avenue, Medford, MA 02155.

Sincerely,

James M. Ligon, Ph.D.

Vice President, Regulatory Affairs and Stewardship

Agrivida, Inc.

www.agrivida.com

200 Boston Avenue, #2975 Medford, MA 02155

Phone: 781-391-1262 Fax: 781-391-4262

June 6, 2016

Dr. Geoffrey Wong
Food and Drug Administration
Division of Animal Feeds (HFV-224)
Office of Surveillance and Compliance
Center for Veterinary Medicine
7519 Standish Place
Rockville, Maryland 20855

GRAS Notification of GraINzyme® Phytase by Agrivida, Inc.

Dear Dr. Wong,

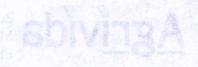
As a follow up to our phone discussion today in regards to Agrivida's GRAS Notification for the GraINzyme® Phytase product I am including the following supplementary information that you requested that supports this notification:

- 1. The original cover letter that accompanied the GRASN submission document for the GraINzyme® Phytase that was dated May 11, 2016. This letter includes a statement that the intended use of the product is as a feed additive for poultry and a statement that all information related to the submission that is held by Agrivida, Inc. is available for review by FDA.
- 2. A document that includes statements concerning the safety to humans that consume meat derived from animals that are fed feed containing the GraINzyme[®] Phytase product and the self-limiting level of use of the GraINzyme[®] Phytase product for the target animals.

It is my understanding that this additional information will address the information identified by FDA/CVM in our discussion today that is necessary for the review by FDA/CVM of the GraINzyme® Phytase GRAS Notification. If there is other information that is needed by FDA/CVM related to the GraINzyme® Phytase GRAS Notification please bring this to my attention and I will work to provide that information to you.

Sincerely,

James M. Ligon, Ph.D.


Vice President, Regulatory Affairs and Stewardship

Agrivida, Inc.

200 Boston Avenue, #2975 Medford, MA 02155 Phone: 781-391-1262

Fax: 781-391-4262

June 6, 2016

Supplementary information for the GRAS Notification for GraINzyme® Phytase

1. Human safety of meat produced from animals treated with the GraINzyme® Phytase.

The meat derived from animals that consume feed treated with GraINzyme® Phytase is safe for human consumption and does not present any human safety concerns. The GraINzyme® Phytase is an enzyme and enzymes are proteins. The dietary fate of the GraINzyme® Phytase in animals that consume feed treated with it is the same as that of all other proteins in the animal's diet that are digested into the constituent amino acids of the dietary proteins. As part of an Early Food Safety Evaluation for the GraINzyme® Phytase that was submitted to FDA/CFSAN, Agrivida, Inc. demonstrated that the GraINzyme® Phytase enzyme is sensitive to digestion in a simulated gastric environment. Therefore, the GraINzyme® Phytase is expected to be digested in the gastro-intestinal tracts of animals and is not expected to be absorbed intact into the blood of animals that consume it or to be deposited into the tissues of the animals, including the meat. The safety of phytase feed additives for humans that consume meat from animals that consume feed treated with phytases is further supported by the fact that phytases have been included in the feed of poultry for decades without any adverse effects on human safety.

2. Self-limiting level of use of the GraINzyme® Phytase.

The GraINzyme® Phytase is produced by maize genetically engineered with the phy02 phytase gene derived from Escherichia coli strain K12 to produce the GraINzyme® Phytase in the grain. Typically grain derived from the maize production host contains between 4,000 and 6,000 FTU/g of grain. Other than the presence of the GraINzyme® Phytase, the GraINzyme® Phytase containing maize grain is nutritionally equivalent to normal maize grain that is used as a major feed ingredient in the feed of poultry. The presence of the GraINzyme® Phytase in maize grain does not affect the taste, palatability or other organoleptic properties of the grain. Therefore, the maximum amount of GraINzyme® Phytase product that might be theoretically consumed by an animal is the total amount of maize meal included in the feed. In the case of poultry feed based on a maize/soybean meal diet, the maize meal typically comprises between 50 and 60% of the total feed. Accordingly, the maximum amount of GraINzyme® Phytase that might be consumed by poultry is equivalent to the amount of GraINzyme® Phytase contained in the maize meal of the diet assuming that all of the maize meal was GraINzyme® Phytase product. However, since the GraINzyme® Phytase product will be marketed in either 20 kg bags or 1 ton totes with a product label that directs the user to add the appropriate amount of the product when mixing the feed, the likelihood that a feed would be

prepared using the GraINzyme® Phytase product to replace all of the maize meal in the diet is very remote. Assuming that a 1 ton tote of GraINzyme® Phytase product was used in place of normal maize meal to make a poultry feed, the maximum amount of feed that could be produced would be less than 2 tons. In the unlikely event of that this transpired, the resulting feed would not be expected to cause adverse effects on the poultry that consumes it. Phytase is an enzyme whose only enzymatic activity is the sequential removal of phosphate moieties from phytic acid with the ultimate production of inositol. If large amounts of phytase were included in a feed it would be expected that most or all of the phytic acid in the diet would be converted to inositol with the concomitant release of phosphate and once all phytic acid had been converted to inositol there would be no substrate for the phytase which would thereafter cease to have any function in the gastrointestinal tract. Two studies have been reported in which the maize portion of a typical poultry diet was replaced with maize expressing the NOV9X phytase that is the same phytase contained in the phytase product Quantum. The GraINzyme® Phytase is nearly identical to the NOV9X phytase differing in only 12 amino acid residues out of the total of 412 in each of these phytases. The chickens in these studies that received approximately 360,000 FTU NOV9X phytase/kg of feed demonstrated good performance without any signs of toxicity (Nyannor and Adeola, 2008; Nyannor et al., 2009).

Based on the above, it is expected that if in the unlikely event that grain from GraINzyme® Phytase expressing maize were to be substituted for all of the maize in a typical maize/soybean meal poultry diet that it would not adversely affect the performance of the birds and it would not cause any safety concerns for the animals. Additionally, the meat derived from such animals would not be expected to contain GraINzyme® Phytase protein or to be unsafe for human consumption.

References:

Nyannor, E.K.D. and O. Adeola (2008). Corn expressing an Escherichia coli-derived Phytase gene: Comparative evaluation study in broiler chicks. Poultry Sci. 87:2015-2022.

Nyannor, E.K.D., M.R. Bedford, and O. Adeola (2009). Corn expressing an Escherichia coli-derived phytase gene: Residual phytase activity and microstructure of digesta in broiler chicks. Poultry Sci. 88:1413-1420.

GraINzyme® Phytase

A phytase feed enzyme produced by Zea mays expressing a phytase gene derived from Escherichia coli K12

AMMENDMENT TO GRAS NOTICE No. AGRN 000-021

Submitting Company:

Agrivida, Inc. 200 Boston Ave., Suite 2975 Medford, MA 02155

Please address correspondence related to this submission to:

James M. Ligon, Ph.D. VP, Regulatory Affairs and Stewardship Agrivida, Inc. 1023 Christopher Drive Chapel Hill, NC 27517

Tel: 919-675-6666

Email: jim.ligon@agrivida.com

Introduction

The FDA Center for Veterinary Medicine (CVM) is reviewing GRAS Notice No. AGRN 000-021, submitted by Agrivida, Inc. in May 2016 for its GraINzyme Phytase product. During the review, CVM has developed questions related to the GRAS notice. These questions were presented to Agrivida at a teleconference on March 7, 2017 and are contained in the minutes of the meeting. Agrivida has carefully considered each of the questions from CVM and has formulated responses to address each question. These responses are contained in this amendment to the GRAS Notice No. AGRN 000-021. In this amendment, the question or issue raised by CVM is stated, followed by Agrivida's response. The questions and responses herein are numbered and organized in the same manner as they were presented in the minutes of the teleconference prepared by CVM and dated March 13, 2017. In cases where literature citations are referenced in the responses, the full citations are included at the end of each response.

1. Chemistry and method of manufacturing

Issue/question from CVM:

CVM pointed out that phytase activity assay in corn containing Phy02 phytase was performed at 37°C. However, it is not clear why the assay to determine phytase activity in feeds was conducted at 65°C. The firm stated that they will check the method information and provide a response.

Agrivida response:

Agrivida mistakenly included the incorrect experimental protocol for determining Phy02 phytase activity in feed mixtures in Appendix 6 of the original notice. The correct protocol is the same as that contained in the original notice but it is carried out at 37°C, not at 65°C. The correct protocol that Agrivida has routinely used for more than 3 years to measure Phy02 phytase activity in feed mixtures is included below and should replace paragraph 2 in Appendix 6 of the original GRAS notice. This protocol was used for all Phy02 phytase measurements in feed mixtures reported in the Phy02 GRAS document.

Amended Protocol for Determining Phy02 Phytase Activity in Feed Mixtures.

Feed samples were milled in a knife mill and sieved with a 1mm screen. Two 20 g samples of each milled feed sample were extracted at room temperature with 100ml of extraction buffer (30 mM Sodium Carbonate/Bicarbonate pH 10.8). Each extract was diluted 25- to 100-fold in assay buffer (b) (4)

and 75 uL of the diluted extracts or 75ul of buffer-only controls were dispensed into individual wells of a round-bottom 96-well plate. 150 uL of freshly prepared, prewarmed (37°C), phytic acid (9.1 mM dodecasodium salt from Biosynth International, Staad, Switzerland, prepared in assay buffer) was added to each well. Plates were sealed and incubated for 60 min at 37°C. 150 uL of stop solution (20 mM ammonium molybdate, 5 mM ammonium vanadate, 4% nitric acid) was added to each well, mixed thoroughly via pipetting, and allowed to incubate at room temperature for 10 min. Plates were centrifuged at 3000×G for 10 minutes, and 100 uL of the clarified supernatants were transferred to the wells of a flat-bottom 96-well plate. Absorbance at

415 nm from each sample was compared to that of negative controls (buffer-only, no enzyme) and potassium phosphate standards. The standard curve is prepared by mixing 50 ul of potassium phosphate standards (0-1.44 mM, prepared in assay buffer) with 100 uL of freshly prepared phytic acid, followed by 100 uL of stop solution.

2. Bioengineering process to construct and characterize the production maize host

• Issue/question from CVM:

On page 7 of the notice, the amino acid sequence of Phy02 phytase was compared to a native *E. coli* strain K-12 *appA* phytase enzyme described in Dassa and coworkers, 1990 (J. Bacteriol. 172:5497-5500). Dassa and coworkers indicate that the mature *appA* is 410 amino acids. However, it's stated in the notice that Phy02 phytase contains 412 amino acids. The firm needs to clarify the discrepancy in the number of amino acids.

Agrivida response:

• Issue/question from CVM:

The plasmid map provided in the notice indicates that vector plasmid, (b) (4) is 21,196 (bp). The size of the plasmid based on summation of the individual elements provided in Table 1 is 16,856 bp. A difference of 4,340 bp has not been accounted for. The firm needs to describe the origin of these sequences and whether these sequences were inserted into the genome and, if they are inserted into the genome, whether these sequences would result in the production of subtansces that would raise a safety concern.

Agrivida response:

Table 1 lists only relevant genetic elements within the not contain intervening DNA sequences that are present in (b) (4). Within (b) (4) there are two groups of intervening DNA sequences that are present between the genetic elements described in Table 1. One group is represented by those intervening sequences that are positioned on the T-DNA and that are inserted into the maize genome. These sequences are all non-coding sequences and pose no significant safety risk since they do not encode proteins. Together this group of sequences accounts for 535 nucleotides and consists of the following sequences:

- Restriction enzyme recognition sites that have been used for developing and are positioned either on polylinker (multiple cloning site) or between genetic elements within the T-DNA 199 bp of DNA sequence in total. All of these restriction enzyme recognition sites are naturally occurring in the maize genome.
- Kozak sequence that plays an important role in the translation initiation process (Kozak, 1986) 18 bp. Kozak elements occur naturally in the genomes of eukaryotes.
- 42 bp non-coding plasmid specific spacer sequence between PMI and terminator.
- Short non-coding plasmid specific sequences at the 5' or 3' ends of the T-DNA. These sequences include 25 bp left (LB) and right (RB) border repeats that are present on all *Agrobacterium* mediated plant transformation vectors and are required for the T-DNA transfer to occur in plant cells. These sequences are present in many genetically modified crops that have been cultivated on a broad scale and include:
 - o 181 bp of RB specific sequence derived from *Agrobacterium tumefaciens* Ti plasmid of the strain (GenBank Accession #AH003392).
 - o 95 bp of LB specific sequence derived from *Agrobacterium tumefaciens* Ti plasmid of the strain c58 (GenBank Accession #AH003396).

The second group of intervening genetic elements in plasmid DNA backbone and are not inserted into the maize genome. This group of genetic elements includes important functional sequences for plasmid replication and selection in *E. coli* or *A. tumefaciens* (b) (4) as well as spacer sequences between functional genetic elements. The intervening sequences account for the remaining 3805 nucleotides that are not included in Table 1.

References

Kozak M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. *Cell* **44**:283–92.

• Issue/question from CVM:

The probe used in the Southern blot analyses to determine the number of insertions was approximately 580 bp. The firm needs provide a complete description of the nucleotide sequence that was included in the probe. The firm needs to address whether event PY203 contains inserts in which the sequence corresponding with the Southern blot probe was lost. The failure to identify each of the sites of insertion may affect the estimate of the number of inserts that are present in the genome, number of copies of the target gene that are inserted into the genome, and construct organization integrity, and stability of the construct, which could result in the production of unintended proteins.

Agrivida response:

The RB (right border) probe used in the Southern blot analysis to confirm the number of PY203 DNA insertions was 296 bp in length. The full sequence of the RB probe (designated TDNA_RB_probe) aligned to the right border of the vector portion of the

(b) (4)

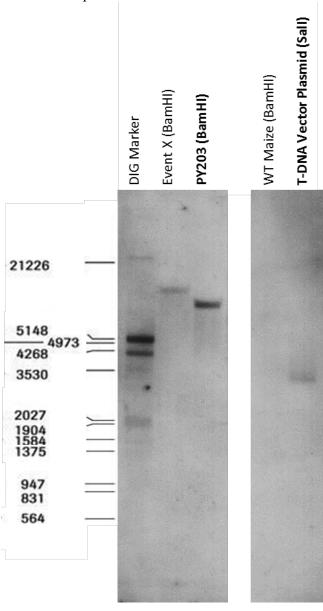
(b) (4) plasmid (b) (4) Partial_RB), the primers used to amplify the probe (Primer_639 and Primer_640 [aligned as reverse complement; Primer_640_RevComp]), the right border of the 3293 T-DNA (PY203-3293_TDNA), and the right border of the 3507 T-DNA (PY203-3507_TDNA) are shown in Figure A1.

Figure A1. Clustal Omega alignment of the partial right border (RB) vector portion of the (b) (4) plasmid (b) Partial RB), the 296 bp RB probe (TDNA_RB-probe), the primers used to amplify the RB probe (Primer_639 and Primer_640_RevComp), the PY203-3293 T-DNA right border (PY203-3293_TDNA), and the PY203-3507 T-DNA right border (PY203-3507_TDNA). CLUSTAL Omega (1.2.4) multiple sequence alignment at http://www.ebi.ac.uk/Tools/services/rest/clustalo was used for alignment. RevComp = reverse complement DNA sequence.

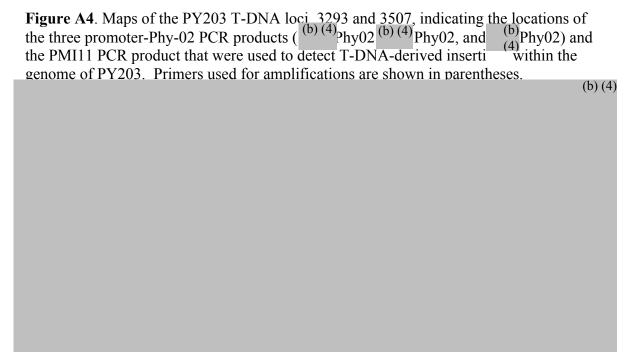
The RB probe was selected to enable visualization of both PY203 T-DNA insertions 3293 and 3507 using multiple restriction enzyme digests of genomic PY203 DNA. This selection was based on the previously identified genomic flanking regions and complete cloning of the two PY203 T-DNA insertions (§ 2.4.3 of the Phy02 GRAS notice). Identification of the genomic insertion sites involved extensive genome walking PCR reactions initiated from within the T-DNA and extending into the flanking genome regions in both directions. In this analysis we only isolated genomic flanking DNA corresponding to two loci, which is consistent with the conclusion that PY203 contains only two loci, and agrees with the loci segregation data and Southern blot data (detailed further below).

In addition to the RB probe Southern blot analysis, a probe (PMI11) corresponding to a 461 bp region of the PMI coding DNA sequence (CDS) was used to hybridize to restriction enzyme-digested PY203 genomic DNA. The full sequence of the PMI11 probe aligned to the PMI CDS from the vector portion of the (b) (4) plasmid and the primers (Primer_11 and Primer_12 aligned as reverse complement; Primer_12_RevComp) used to amplify the probe are shown in Figure A2. Hybridization of the PMI11 probe to BamHI-digested PY203 genomic DNA resulted in detection of one ≈7,753 bp band (Figure A3), which was expected based on isolation of only two T-DNA loci in PY203 with one T-DNA (3293) containing a full-length PMI CDS and one T-DNA (3507) completely lacking the PMI CDS. These results support the conclusion that no other PMI-containing T-DNAs are present in the PY203 event.

Figure A2. Clustal Omega alignment of the PMI coding DNA sequence (CDS) from the vector portion of the (b) (4) plasmid (PMI_CDS), the 461 bp PMI11 probe (PMI11_probe), and the primers used to amplify the PMI11 probe (Primer_11 & Primer_12_RevComp). CLUSTAL Omega (1.2.4) multiple sequence alignment at http://www.ebi.ac.uk/Tools/services/rest/clustalo was used for alignment. CDS = coding DNA sequence; RevComp = reverse complement DNA sequence.


PMI_CDS PMI11_probe Primer_11 Primer_12_RevComp	ATGCAGAAACTCATTAACTCAGTGCAAAACTATGCCTGGGGCAGCAAAACGGCGTTGACT	60 0 0
PMI_CDS PMI11_probe Primer_11 Primer_12_RevComp	GAACTTTATGGTATGGAAAATCCGTCCAGCCAGCCGATGGCCGAGCTGTGGATGGCCGCA	120 0 0 0
PMI_CDS PMI11_probe Primer_11 Primer_12_RevComp	CATCCGAAAAGCAGTTCACGAGTGCAGAATGCCGCCGGAGATATCGTTTCACTGCGTGAT	180 0 0 0
PMI_CDS PMI11_probe Primer_11 Primer_12_RevComp	GTGATTGAGAGTGATAAATCGACTCTGCTCGGAGAGGCCGTTGCCAAACGCTTTGGCGAA	240 0 0

PMI CDS	CTGCCTTTCCTGTTCAAAGTATTATGCGCAGCACAGCCACTCTCCATTCAGGTTCATCCA
PMI11_probe	ACAGCCACTCTCCATTCAGGTTCATCCA
Primer_11	ACAGCCACTCTCCATTCAGGTTCA
Primer_12_RevComp	
PMI CDS	AACAAACACAATTCTGAAATCGGTTTTGCCAAAGAAAATGCCGCAGGTATCCCGATGGAT
PMI11 probe	AACAAACACAATTCTGAAATCGGTTTTGCCAAAGAAAATGCCGCAGGTATCCCGATGGAT
Primer 11	
Primer_12_RevComp	
PMI_CDS PMI11 probe	GCCGCCGAGCGTAACTATAAAGATCCTAACCACAAGCCGGAGCTGGTTTTTTGCGCTGACG GCCGCCGAGCGTAACTATAAAGATCCTAACCACAAGCCGGAGCTGGTTTTTTGCGCTGACG
Primer 11	GCCGCCGAGCGIAACIAIAAAGAICCIAACCACAAGCCGGAGCIGGIIIIIIGCGCIGACG
Primer_11 Primer 12 RevComp	
FIIMEI_IZ_RevComp	
PMI CDS	CCTTTCCTTGCGATGAACGCGTTTCGTGAATTTTCCGAGATTGTCTCCCTACTCCAGCCG
PMI11 probe	CCTTTCCTTGCGATGAACGCGTTTCGTGAATTTTCCGAGATTGTCTCCCTACTCCAGCCG
Primer 11	
Primer_12_RevComp	
DMI ODG	
PMI_CDS	GTCGCAGGTGCACATCCGGCGATTGCTCACTTTTTACAACAGCCTGATGCCGAACGTTTA
PMI11_probe Primer 11	GTCGCAGGTGCACATCCGGCGATTGCTCACTTTTTACAACAGCCTGATGCCGAACGTTTA
Primer_11 Primer 12 RevComp	
rrimer_rz_kevcomp	
PMI_CDS	AGCGAACTGTTCGCCAGCCTGTTGAATATGCAGGGTGAAGAAAAATCCCGCGCGCTGGCG
PMI11_probe	AGCGAACTGTTCGCCAGCCTGTTGAATATGCAGGGTGAAGAAAAATCCCGCGCGCTGGCG
Primer_11	
Primer_12_RevComp	
PMI CDS	ATTTTAAAATCGGCCCTCGATAGCCAGCAGGGTGAACCGTGGCAAACGATTCGTTTAATT
PMI11 probe	ATTTTAAAATCGGCCCTCGATAGCCAGCAGGGTGAACCGTGGCAAACGATTCGTTTAATT
Primer 11	
Primer_12_RevComp	
DMI ODO	
PMI_CDS PMI11 probe	TCTGAATTTTACCCGGAAGACAGCGGTCTGTTCTCCCCGCTATTGCTGAATGTGGTGAAA
Primer 11	TCTGAATTTTACCCGGAAGACAGCGGTCTGTTCTCCCCGCTATTGCTGAATGTGGTGAAA
Primer_12_RevComp	ATGTGGTGAAA
PMI_CDS	TTGAACCCTGGCGAAGCGATGTTCCTGTTCGCTGAAACACCGCACGCTTACCTGCAAGGC
PMI11_probe	TTGAACCCTGGCG
Primer_11	
Primer_12_RevComp	TTGAACCCTGGCG
PMI CDS	GTGGCGCTGGAAGTGATGGCAAACTCCGATAACGTGCTGCGTGCG
PMI11 probe	
Primer 11	
Primer_12_RevComp	
DMT CDC	
PMI_CDS	TACATTGATATTCCGGAACTGGTTGCCAATGTGAAATTCGAAGCCAAACCGGCTAACCAG
PMI11_probe Primer 11	
-	
Primer_12_RevComp	
PMI_CDS	TTGTTGACCCAGCCGGTGAAACAAGGTGCAGAACTGGACTTCCCGATTCCAGTGGATGAT
PMI11_probe	
Primer_11	
Primer 12 RevComp	


Agrivida, Inc.

PMI_CDS PMI11_probe Primer_11 Primer_12_RevComp	TTTGCCTTCTCGCTGCATGACCTTAGTGATAAAGAAACCACCATTAGCCAGCAGAGTGCC	1020 461 24 24
PMI_CDS PMI11_probe Primer_11 Primer_12_RevComp	GCCATTTTGTTCTGCGTCGAAGGCGATGCAACGTTGTGGAAAGGTTCTCAGCAGTTACAG	1080 461 24 24
PMI_CDS PMI11_probe Primer_11 Primer_12_RevComp	CTTAAACCGGGTGAATCAGCGTTTATTGCCGCCAACGAATCACCGGTGACTGTCAAAGGC	1140 461 24 24
PMI_CDS PMI11_probe Primer_11 Primer 12 RevComp	CACGGCCGTTTAGCGCGTGTTTACAACAAGCTGTAA 1176 461 24 24	

Figure A3. Southern blot hybridization of BamHI-restricted genomic DNA from event PY203 with a DNA probe from the PMI coding DNA sequence (CDS; PMI11 probe). DIG-labeled DNA marker fragments are shown (left lane) with their corresponding sizes in base pairs indicated to the left of the blot. A separate lane of restricted genomic DNA from untransformed maize probed with the PMI11 probe is shown on the right to demonstrate that the probe does not hybridize to genomic DNA from untransformed maize. BamHI-digested genomic DNA from an unrelated maize PMI-containing T-DNA event (Event X) was included as a positive control for genomic DNA hybridization of the PMI11 probe. A band ≈3,401 bp in size was detected in the SalI-digested T-DNA vector control as expected.

The presence of only two T-DNA insertions in PY203 is also supported by the segregation ratios of specific (b) (4) T-DNA elements as detected by PCR in progeny from an outcross of the original PY203 T0 plant. PCR amplification of the three promoter-Phy02 junctions in the T-DNA vector portion of the plasmid (Figure A4 and Table A1) from 61 progeny of a cross between the original PY203 T0 plant and inbred E (T1 generation PY203 F1E Total [Groups 1 and 2]) resulted in 72% segregation for two of the three junctions closest to the RB (b) (4)-Phy02 and (b) (4) hy02; Figure A4 and Table A2), which is not significantly different from the 75% segregation (Chi Square = 0.605) expected for an event carrying 2 loci with both of these elements. Segregation of the Glb1 promoter-Phy02 PCR fragment was 49%, which was not significantly different from 50% (Chi Square = 0.898) as expected for a single locus. For 36 of the plants from this population (T1 PY203 F1E Group 1), a PMI PCR fragment (PMI11) cosegregated with the Phy02 PCR fragment at 44%, which was also not significantly different from 50% (Chi Square = 0.505) as expected for a single locus. These results support the conclusions that, 1) PY203 contains two T-DNA insertions as follows: one insertion (b) (4) T-DNA, and one insertion (3507)that (3293) that contains the complete (b)Phv02 junction and PMI11) close to the left border, and 2) lacks elements PY203 does not contain other insertions that carry the promoter-Phy02 or PMI T-DNA elements.

Primer Name	Sequence	Target	45.75
420			(b) (4)———
421			
422			
436			
11	ACAGCCACTCTCCATTCAGGTTCA	PMI	
12	CGCCAGGGTTCAATTTCACCACAT	PMI	

Table A1. List of primers used for PCR segregation analysis.

Table A2. Results of (b) (4) T-DNA element PCR from PY203 F1E (T1) progeny. Chi square analyses were performed using expected segregation from a 1- or 2-locus event. Seg. = segregation; Est. = estimated; Loc. = T-DNA locus.

Conquetion	щ	DCD Due due at	# DCD	Expected	Obsanzad	Est.	ChiCa
Generation	#	PCR Product	PCR	% Seg.	Observed	Loc.	ChiSq
(Event cross)	Plants	(size)	+	(1 loc, 2 loc)	% Seg.	#	(1 or 2-loc)
T1 (PY203_F1E)	36	(b)-Phy02 (194 bp)	25	50%, 75%	69%	2	
		(b)-Phy02 (168 bp)	25	50%, 75%	69%	2	
Group 1		(b) -Phy02 (233 bp)	16	50%, 75%	44%	1	
		PMI11 (461 bp)	16	50%, 75%	44%	1	0.505
T1	25	(b)-Phy02 (194 bp)	19	50%, 75%	76%	2	
(PY203_F1E) Group 2		(b) -Phy02 (168 bp)	19	50%, 75%	76%	2	
_		(b)-Phy02 (233 bp)	14	50%, 75%	56%	1	
T1	61	(b) -Phy02 (194 bp)	44	50%, 75%	72%	2	0.605
(PY203_F1E) Total		(b) -Phy02 (168 bp)	44	50%, 75%	72%	2	0.605
		(b)-Phy02 (233 bp)	30	50%, 75%	49%	1	0.898

• Issue/question from CVM:

Locus 3507 contains the first 1,490 bp of the inserted Z. mays (b) (4) promoter joined with corn genomic sequence. The results of an open reading frame analysis across each of the junction sequences and the constructs are not included in the notice. The firm needs to adequately address whether the introduced sequences at either loci would lead to the production of unintended proteins in the bioengineered corn that could raise a safety concern.

Agrivida response:

At the 3' end of the T-DNA in locus 3507 there is a truncation of the T-DNA that begins in the maize (b) (4) gene promoter described by (b) (4) The maize (b) (4) gene promoter is known to contain in the proximal ~1.4 kb

showed that even small deletions within this important 1.4 kb region could abolish transcriptional activity from this promoter. However, this important ~1.4 kb region is entirely missing in the truncated variant of the (b) (4) promoter in the locus 3507, and therefore the be functional.

Analysis of the sequence homology between known allergenic protein sequences and the deduced protein sequences encoded by all putative open reading frames (ORFs), that were formed at the junctions of the integrated T-DNAs and the maize genome in loci 3293 and 3507 in event PY203, was performed by FASTA search of the allergen database (www.allergenonline.com) using the "Sliding 80mer Window" mode as well as the "8-mer Exact Match" mode. Protein sequences with less than 35% identity over 80 or more amino acids and lacking identity to an 8 amino acid sequence are not considered potentially IgE cross-reactive to the known allergens according to recognized regulatory guidelines (Codex, 2009). The translated protein sequence input for the FASTA search was created from putative ORFs that encode at least 30 amino acids as outlined by Harper et al., 2012.

For each putative ORF sequence presented below, the maize genomic DNA is shown in the lowercase letters and the T-DNA sequence is presented in the uppercase letters.

Locus 3293:

It appears that the (b) (4) T-DNA insertion into maize genome at the locus 3293 has occurred 308 bp downstream of the stop codon of the annotated B73 maize genome model gene GRMZM2G159344, whose cDNA expression has been previously confirmed in the inbred line B73 using NimbleGen microarray (Sekhon et al., 2011). This computer-predicted gene as well as its corresponding protein have not been characterized and have no currently known functions. Three putative ORFs were identified at locus 3293 that span the junction sequences between inserted T-DNA and maize genomic DNA flanking regions. These ORFs are depicted on the map of the entirely sequenced locus 3293 (Figure A5). The ORF96 is located 5' of the inserted T-DNA (RB side) and has nucleotide coordinates 1761-1856 on the minus strand of DNA. Two other putative ORFs (ORF156 and ORF 105) are specific to the 3' end of the T-DNA junction (LB side) and have nucleotide coordinates 16844-16999 and 16958-17062 (minus DNA strand) respectively.

Figure A5. Genetic map of PY203 locus 3293 showing the elements derived from the T-DNA and flanking genomic maize DNA. Putative ORFs are indicated below the genetic map.

Sequences of the ORFs that were formed by T-DNA integration in locus 3293:

```
>ORF96 (dna)
```

 $\verb|tcaggcctctcccttggctaggggagggttctagtaacttggggaagCACTGATAGTTTAAACTGA| AGGCGGGAAACGACAACCTGATCAT|$

>ORF96 (AA)

MIRLSFPAFSLNYQCFPKLLEPLLALAKGEA*

>ORF156 (dna)

>ORF156 (AA)

MYVTRSGIGELELIQYIKNVRNVLLSCLSVNLFTPQYILVDLEVYLSSRNF*

>ORF105 (dna)

>ORF105 (AA)

MHMLVNVWERPDIHPSATNTHSKISARKIDFEVH*

The FASTA searches of the allergen database using deduced protein sequences derived from each of the three identified ORFs did not reveal any matches with greater than 35% homology or with identity to a sequence of 8 or more amino acids. Consequently, it is concluded that the T-DNA integration into the maize genome in

the locus 3293 did not form putative ORFs that could encode potentially allergenic proteins.

Locus 3507:

Three putative ORFs were identified at the locus 3507 that spanned the junction between inserted T-DNA and maize genomic DNA flanking regions. These putative ORFs are depicted on the map of the sequenced locus 3507 (Figure A6).

Two putative ORFs, ORF93 and ORF99 were identified that span the junction between the RB maize genomic DNA flank and the 5' end of the inserted T-DNA in locus 3507. These putative ORFs have corresponding nucleotide coordinates 2017-2109 and 2049-2147 (minus strand of DNA). The third putative ORF297 (nucleotide coordinates 10455-10751 on the minus DNA strand) spans the junction between the LB maize genomic DNA flank and the 3' end of the inserted T-DNA in locus 3507.

Figure A6. Genetic map of PY203 locus 3507 showing the elements derived from the T-DNA and flanking genomic maize DNA. Putative ORFs are indicated below the genetic map.

Sequences of the ORFs that were formed by T-DNA integration in locus 3507:

>ORF93 (dna)

 $\verb|atgaccaccetgattaggccaaatctgggccgctatttccctgacctcacaaccagccgcaaaggcgcggtggacatcctcctcaAACACTGA|$

>ORF93 (AA)

MTTLIRPNLGRYFPDLTTSRKGAVDILLKH*

>ORF99 (dna)

ctatttccctgacctcacaaccagccgcaaaggcgcggtggacatcctcctcaAACACTGATAGTTTAAACTGAAGGCGGGAAACGACAACCTGATCAT

>ORF99 (AA) MIRLSFPAFSLNYQCLRRMSTAPLRLVVRSGK*

The FASTA searches of the allergen database using deduced protein sequences derived from each of the three identified putative ORFs at the T-DNA junctions in locus 3507 did not reveal any matches of greater than 35% sequence identity. Consequently, it is concluded that the T-DNA integration into the maize genome in the locus 3507 did not form new ORFs that encode potentially allergenic protein sequences.

In addition, a BLASTP comparison of all putative ORFs in the maize genome flanking regions of loci 3293 and 3507 with all peptides in the NCBI database was performed. This search did not identify significant homologies between any of the putative ORFs and toxic peptides in the NCBI database. Therefore, it is further concluded that the putative ORFs in the flanking regions of loci 3293 and 3507 would not produce toxic peptides were they to be expressed.

References

Codex (2009). Codex Alimentarius Guidelines. Foods derived from modern biotechnology. 2nd ed. Rome: World Health Organization and Food and Agricultural Organization of the United Nations. p. 7–34.

Harper B, McClain S, Ganko EW. (2012) Interpreting the biological relevance of bioinformatic analyses with T-DNA sequence for protein allergenicity. Regulatory Toxicology and Pharmacology **63**: 426-432.

Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, De Leon N, Kaeppler SM. (2011) Genome-wide atlas of transcription during maize development. The Plant Journal **66**: 553-563.

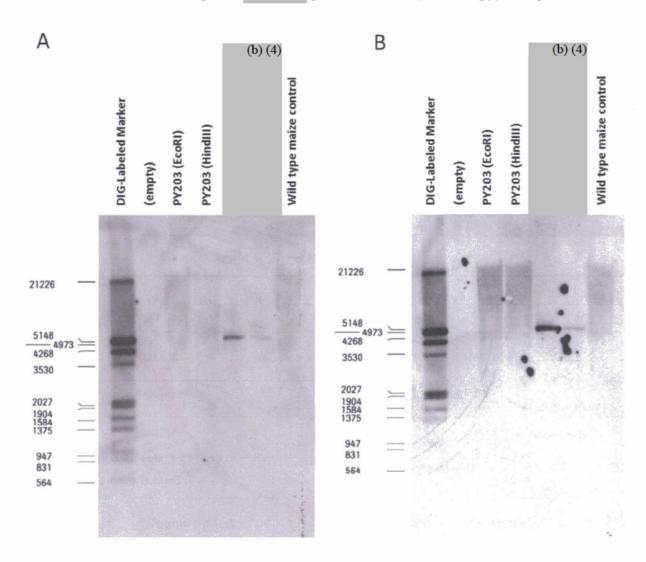
(b) (4)

(b) (4)

<u>Issue/question from CVM</u>:

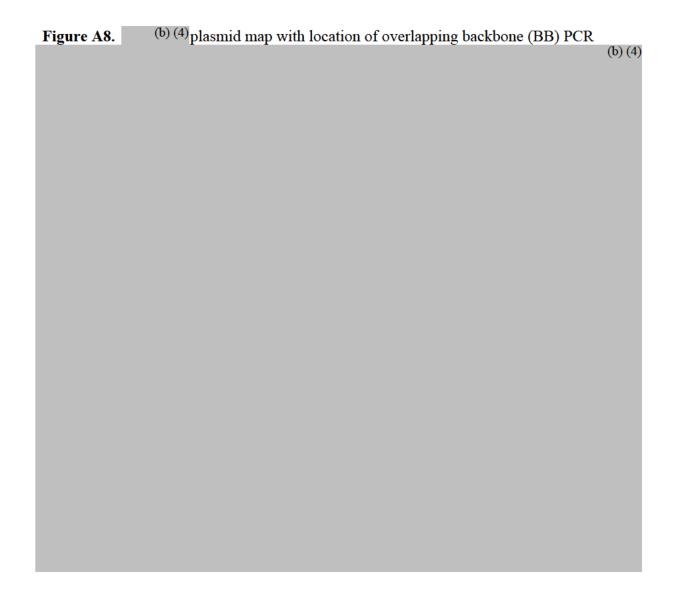
On pages 17 and 18 of the notice, there is a brief description of the molecular techniques that were used to demonstrate that the antibiotic resistance marker was not inserted into the host's genome. However, CVM could not verify the results of these analyses because the results were not included in the notice. The firm needs to provide the results of these analyses.

Agrivida response:


Southern blot and PCR tiling results demonstrating the absence of vector backbone elements, including the antibiotic resistance markers, were not included in the original submission for brevity. These vector backbone element Southern blot results are included here and clearly indicate that backbone elements, ColE1 and the antibiotic resistance markers,

event (Figure A7; see Table A3 for a list of primers used to amplify probes).

PCR tiling using overlapping primers across the entire (b) (4) plasmid backbone was used to screen PY203 for any detectable backbone (BB) DNA (Figure A8 and Table A4). Maize genomic control primers corresponding to an endogenous maize gene (GWD) were included with each BB reaction as an internal control to confirm our ability to amplify DNA sequences from these samples using PCR. Results from this PCR tiling analysis demonstrate that PY203 does not contain any detectable BB sequence (Figure A9). Only when genomic DNA from PY203 was mixed with (b) (4) plasmid DNA could both bands, the endogenous GWD control 740 bp PCR product and the backbone-specific ~1000 bp PCR product, be detected (Figure A9, bottom panel). In addition to PCR tiling across the (b) (4) plasmid backbone, we (b) (4) primers and confirmed that neither of these performed PCR with antibiotic resistance marker genes was present in the PY203 event (Figure A10 and Table A5). Taken together, these results support the interpretation that no vector backbone-derived sequences and no antibiotic resistance markers were inserted into the host's genome.


Figure A7. Southern blot hybridization of restricted genomic DNA from event PY203 with DNA fragments from the ColE1 (A) and a combination of the two antibiotic resistance genes (b) (4)

(B). DIG-labeled DNA marker fragments are shown (left lanes of each respective blot) with their corresponding sizes in base pairs indicated to the left of each blot. Separate lanes of restricted genomic DNA from untransformed maize probed with the ColE1 or (b) (4) probes are shown on the right of each blot to demonstrate that the probe does not hybridize to genomic maize DNA. A band ≈5,129 bp in size was detected in the SalI+NotI-digested (b) (4) plasmid control (1 & ¼ copy) as expected.

Table A3 List of primers used amplify (b) (4) plasmid backbone probes ColE1,

Primer Name	Sequence	Target	Primer pair (Probe size)
722	AACTATCGTCTTGAGTCCAACC	ColE1	722+731 (278 bp)
731	TTTCTGCGCGTAATCTGCTG	ColE1	722+731 (278 Up)
735		(b) (4)	725 726 (780 hp)
736			735+736 (789 bp)
737			727±729 (525 hp)
738			737+738 (525 bp)

Table A4. List of primers used for BB and control PCR.

Primer	Sequence	Target	
Name			
531	GACCACACCACTCTATCTGAAC	Maize GWD gene	
532	ACTGCATGGCCAACTTCT	Maize GWD gene	
479	GTTTACACCACAATATATCCTGCCA	Vector backbone	
588	CGACATTTCTCCAAGCAACTAC	Vector backbone	
601	CGCAGAAGCTCCCATCTTT	Vector backbone	
602	ATCATTCCGTGGCGTTATCC	Vector backbone	
589	TTGGTGATCTCGCCTTTCAC	Vector backbone	
590	GCTCCTTGGCATACGATTAGAG	Vector backbone	
591	GAAGAACGGAAACGCCTTAAAC	Vector backbone	
592	GCCTCGTGATACGCCTATTT	Vector backbone	
593	CCTATCTCAGCGATCTGTCTATTT	Vector backbone	
594	GTCGCCGCATACACTATTCT	Vector backbone	
595	GATACCTGTCCGCCTTTCTC	Vector backbone	
596	GCCTCTGTCGTTTCCTTTCT	Vector backbone	
597	GGTGTCGGCTTGAATGAATTG	Vector backbone	
598	GCTCTGATGCCGCATAGTTA	Vector backbone	
599	CTTCCGGCTCGATGTCTATTG	Vector backbone	
600	CAGAGCGCAGATACCAAATACT	Vector backbone	
603	CGGCGTCAACACGGGATAATA	Vector backbone	
482	TGACAGGATATATTGGCGGGTAAAC	Vector backbone	

Figure A9. PCR results of nine individual overlapping (b) (4) BB primer sets each multiplexed with a maize control primer set (531+532; 740 bp) for PY203 genomic DNA, WT E genomic DNA, and (b) (4) plasmid DNA. The ability to amplify all nine BB PCR fragments along with the maize control PCR fragment was confirmed by running multiplex PCR with combined PY203 genomic DNA and (b) (4) plasmid DNA. PCR products were separated on an ethicium bromide-stained 1% agarose gel.

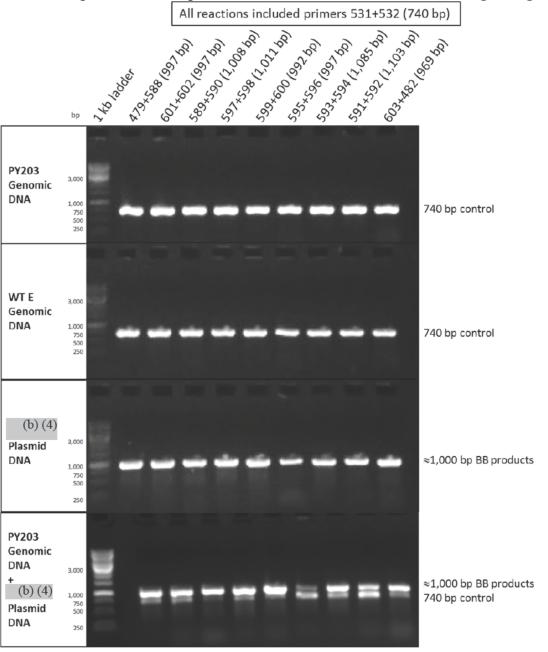
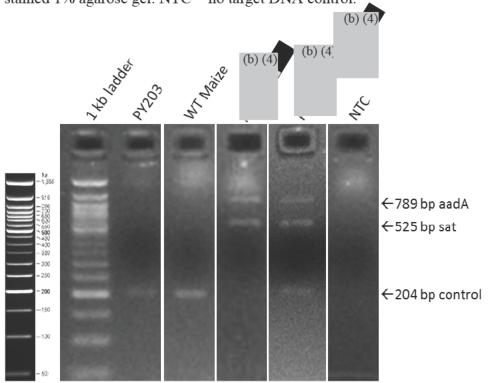



Figure A10. Results of

(b)(4)(b) (4) PCR screening of PY203 genomic, WT maize genomic, (b) (4) plasmid DNA, each multiplexed with a maize control plasmid, and PY203 + primer set (371+525; 204 bp). PCR products were separated on an ethidium bromidestained 1% agarose gel. NTC = no target DNA control.

(b) (4) plasmid backbone antibiotic resistance **Table A5**. List of primers used amplify (b) (4) as well as the maize genomic GWD control. markers

Primer Name	Sequence	Target	Primer pair (Probe
			size)
371	GGTTATAAGCCCGGTTGAAGTA	GWD	371+525 (204 bp)
525	CTATTCCTTGCTCGGACTGAC	GWD	3/1+323 (204 bp)
735		(b) (4)	735+736 (789 bp)
736			/33+/36 (/89 up)
737			737+738 (525 bp)
738			737+738 (323 Up)

CVM also pointed out the following inconsistencies in the notice:

 For locus 3293 there is a four bp sequence between the corn genome sequence and the right border region, whereas in locus 3507 this unspecified sequence is three bp. It does not appear that these nucleotide sequences are derived from the corn genome or the T-DNA.

Agrivida response:

Complex DNA rearrangements at T-DNA integration sites into plant genomes such as duplications, insertions, deletions and nucleotide substitutions that occur during the process of T-DNA integration into plant genomes by *Agrobacterium* are well documented in the literature (Gheysen et al., 1987, Ohba et. al., 1995, Stahl et. al., 2002). In the locus 3293, the first 1809 nucleotides of the flank annotated as 1812 bp maize genomic DNA are 100% identical to the 1809 bp of the maize B73 genomic DNA sequence on chromosome (b) (nucleotides 89933570-89935378). The three bp remaining at the 3' end of the flank nucleotides "AAG" could have potentially arisen during T-DNA integration into locus 3293 as the sequence rearrangement of the "AAC" triplet, which is the adjacent sequence to the RB repeat on the construct (b) (4) These three nucleotides "AAG" may have been better annotated as a part of the (b) (4) T-DNA construct. At the left border of the T-DNA of the locus 3293, the nucleotide sequence of 1662 bp of the maize genome is 100% identical on the entire sequence length to 1662 bp of the B73 maize genomic sequence of the maize chromosome (b) nucleotides 89935403-89937064).

The nucleotide sequence of 2101 bp of maize genomic DNA at the right border of the T-DNA in the locus 3507 are 100% identical to 2101 bp of the B73 maize genomic sequence that is located on the maize chromosome (nucleotides 141216135-141214035). However, it is also plausible to sugges that the 3' end "TCA" sequence in the maize genomic DNA flank could be derived from the 3' end of the RB repeat during *Agrobacterium* mediated T-DNA integration into locus 3507 of maize chromosome At the left T-DNA side of the locus 3507, the 2569 bp nucleotide sequence of the isolated maize genomic DNA flank is 100% identical to the B73 genome sequence between nucleotides 141213994-141211426 on the maize chromosome

References

Gheysen G, Van Montagu M, Zambryski P. (1987) Integration of *Agrobacterium tumefaciens* transfer DNA (T-DNA) involves rearrangements of target plant DNA sequences. Proc. Natl. Acad. Sci. USA **84**: 6169-6173.

Ohba T, Yoshioka Y, Machida C, Machida Y. (1995) DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. The Plant Journal 7: 157-164.

Stahl R, Horvath H, Van Fleet J, Voetz M, Von Wettstein D, Wolf N. (2002) T-DNA

integration into the barley genome from single and double cassette vectors. Proc. Natl. Acad. Sci. USA **99**: 2146-2151.

• It is indicated in Table 1 that the right border region is 25 bp. However, the right border sequence in both loci appears to be 150 bp. This conclusion is based on the 99.93% identity (149 out of 150 bp) between the right border sequence of a Ti binary vector (KP844566.1) and the corresponding sequence in loci 3293 and 3507. The firm should clarify this discrepancy. There was a single nucleotide change (T>C) in the 3'end of the direct repeat sequence. It is unlikely that a single nucleotide change would have any effect on insertion of the T-DNA into the corn genome. Downstream of the 25 base pair direct repeat sequence is 113 bp of 5' sequence from the promoter region of the nopaline synthase gene from Ti plasmid that adjoins the right border sequence. It is unlikely that the inclusion of the 113 bp of the sequence from the promoter region of the nopaline synthase gene will affect the safety of the enzyme product because the sequence does not contain any regulatory elements (e.g. TATA box

Agrivida response:

In Table 1 the 25 bp sequences for RB and LB regions refer to repeat sequences that flank T-DNAs in plant transformation vectors and are required for T-DNA transfer into plant genomes as these sequences are specifically recognized by A. tumefaciens VirD1 and VirD2 proteins that initiate the transfer process (Lee and Gelvin, 2008). (b) (4) consists of 25 The functional right border region of the T-DNA of plasmid bp of the right border repeat, 153 bp of the right border region derived from the original nSB11 vector (GenBank Accession # AB027256) that was used to develop plasmid, and 143 bp of a multiple cloning site positioned upstream of the (b) (4) promoter. The 153 bp region that is referenced in the question as 150 bp of right border sequence is identical to 153 bp of similar sequences from multiple Ti plasmid plant transformation vectors, including the pGZ12.0106 vector (GenBank Accession #KP844566.1). This 153 bp of sequence originated from the nopaline Ti plasmid pTiT37 of Agrobacterium tumefaciens (GenBank Accession #AH003392.2) and is immediately adjacent to the right border repeat sequence and represents sequence upstream of the nopaline synthase gene promoter according to the sequence disclosed by Bevan et al. (1983). The 153 bp sequence does not include CAAT and TATA boxes that are critical for $\frac{(b)(4)}{(b)(4)}$ promoter activity or the 88 bp sequence identified by Shaw et al. (1984) as the $\frac{(b)(4)}{(b)(4)}$ promoter. The T \rightarrow C nucleotide substitution appears to be a carryover nucleotide modification that was inadvertently (b) (4) vector construction. In multiple plant transformation introduced during experiments performed by Agrivida, this nucleotide substitution has had no apparent effect on T-DNA integration into maize genome.

References

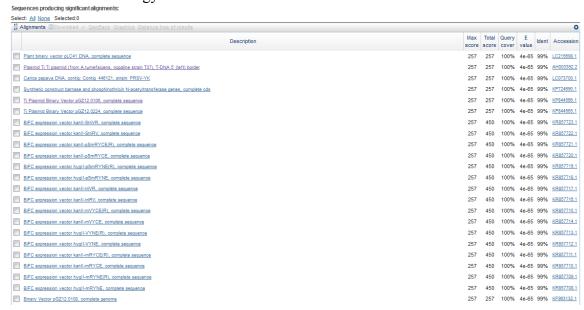
Bevan M, Barnes WM, Chilton MD (1983). Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Research 11:369-385.

Lee LY, Gelvin SB (2008). T-DNA Binary Vectors and Systems. Plant Physiology **146**: 325–332.

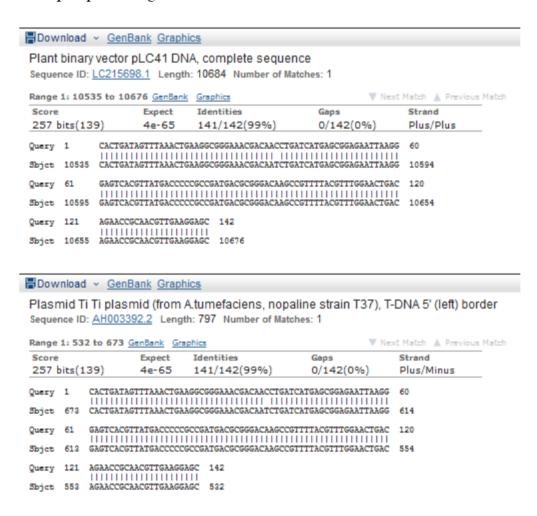
Shaw CH, Carter GH, Watson MD, Shaw CH (1984). A functional map of the nopaline synthase promoter. Nucleic Acids Research, 12:7831-7846.

• Both loci have 142 bp of nucleotide sequence that immediately follows the right border sequence. Our BLASTN search using this sequence did not match any sequences in the NCBI database. This sequence is not described in the notice and its purpose is unclear.

Agrivida response:


The 142 bp sequence immediately adjacent to the RB flank in the locus 3293 as well as the identical sequence in the locus 3507 is part of the T-DNA in the plasmid. This sequence has been described in the response to the previous question. In our BLASTN searches of the nucleotide sequence database at NCBI, it returns multiple sequence identity hits that demonstrate that this sequence is part of the T-DNA in multiple Ti-based plant transformation vectors (see below). According to the BLASTN results, this 142 bp sequence originates from *A. tumefaciens* Ti plasmid of strain T37 at its 5' T-DNA end (GenBank Accession # AH003392.2) and is adjacent to the right border repeat.

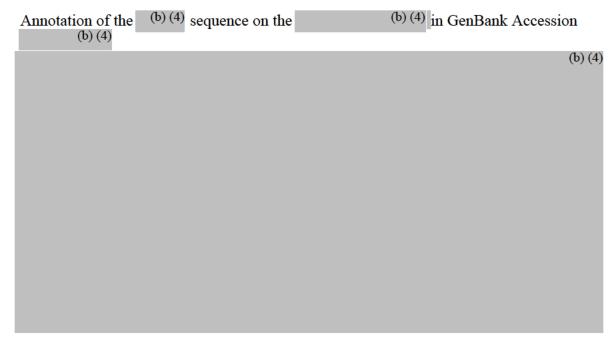
>Seq142bp


CACTGATAGTTTAAACTGAAGGCGGGAAACGACAACCTGATCATGAGCGGAGAATTAAGGGAGTCACGTTA
TGACCCCCGCCGATGACGCGGGACAAGCCGTTTTACGTTTGGAACTGACAGAACCGCAACGTTGAAGGAGC

NCBI BLASTN result using the 142 bp sequence immediately adjacent to the RB flank in the locus 3293:

Subset of the homology hits:

Two top sequence alignments:



• The firm states in Table 1 that the promoter derived from the gene was 2,071 bp, whereas the sequence provided under NCBI accession number (b) (4) is 2,081 bp. It appears that the 10 bp immediately upstream of he start codon were not included in the promoter sequence that was used in this construct.

Agrivida response: (b) (4) gene promoter was isolated by (b) (4) The The original (b)(4)123 bp at the 3' end of the (b) (4) promoter that was used in plasmid (b) (4)) as well as is identical to the 3' end of the promoter as reported by (b) gene promoter (GenBank Accession (b) (4). This the NCBI sequence of the promoter sequence is located immediately upstream of the first ATG codon in the (b) (4) protein coding sequence and appears to contain the original 10 bp positioned just before the start codon. Therefore, changes in (b) (4) promoter function are (b) (4). Furthermore, the not expected with the 3' end of the promoter used in longer version of the (b) (4) gene promoter enhances gene expression possibly n structure formation for maximizing gene through more favorab (b) (4)cited expression levels (Zheng and Murai, 1997). GenBank Accession

(b) (4) promoter from (b) (4) as a NCBI BLASTN result using the 2071 bp (b) (4)

• The firm states in Table 1 that the promoter derived from 3,004 bp, whereas the corresponding sequence found in locus 3293 is 2,966 bp.

Agrivida response:

The entirely sequenced locus 3293 is composed of 18,621 bp contiguous sequence that includes one intact T-DNA and maize genomic DNA flanking regions. The (b) (4) gene promoter within this sequence has coordinates 8762-11765, which equals to the promoter length of 3004 bp.

• The firm states in Table 1 that the left border region is 25 bp. However, the left border sequence in locus 3293 is 83 bp. This conclusion is based on 100% identity (83 out of 83 bp) between the left border region of cloning vector pPLEX-4004 (AY1590934.1) and the corresponding sequence in locus 3293.

Agrivida response:

In Table 1 the 25 bp sequences of the RB and LB regions refer to repeat sequences that flank T-DNAs in plant transformation vectors and are required for T-DNA transfer into plant genomes as these sequences are specifically recognized by *A. tumefaciens* VirD1 and VirD2 proteins that initiate the transfer process (Lee and Gelvin, 2008). The entire left border region on T-DNA of the locus 3293 contains 91 bp sequence between the (b) (a) terminator and the first 5' nucleotide of the maize genomic flanking DNA. 91 bp sequence includes 2 bp of spacer between the (b) (4) terminator and the *SacI* (GAGCTC) restriction enzyme cloning site, followed by 83 bp of sequence representing the entire LB region. The 83 bp sequence has 100% sequence identity to the left border regions of multiple plant transformation vectors including pPLEX-4004 (AY1590934.1) according to the BLASTN results at NCBI nucleotide database (see below).

```
>LB region in locus 3293
qcqaqctcqaattaattcaqtacattaaaaacqtccqcaatqtqttattaaqttqtctaaqcqtcaatttqtttacaccacaatatatc
Cloning vector pPLEX-4004, complete sequence
Sequence ID: AY159034.1Length: 12880Number of Matches: 1
Related Information
Range 1: 11109 to 11191GenBankGraphics Next Match Previous Match
      Alignment statistics for match #1
         Expect Identities Gaps
   Score
154 bits(83) 3e-34 83/83(100%) 0/83(0%) Plus/Minus
           GAATTAATTCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAAT
Query 9
            Sbjct 11191 GAATTAATTCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAAT 11132
Query 69 TTGTTTACACCACAATATATCCT 91
            Sbjct 11131 TTGTTTACACCACAATATATCCT 11109
```

References

Lee LY, Gelvin SB (2008). T-DNA Binary Vectors and Systems. Plant Physiology **146**:325–332.

3. Intended use/enzyme functionality

<u>Issue</u>/question from CVM:

In three out of four provided studies, the enzyme analytical recovery from experimental diets (the diets fed to animals) were not provided. The firm should provide this information to substantiate that the analyzed levels of phytase enzyme from the notified stubstance in the experimental diets were in reasonable agreement with target inclusion levels.

Agrivida response:

Colorado Quality Research (CQR) conducted all four of the animal feeding trials reported in the Phy02 phytase GRAS document. CQR collected representative samples of all prepared feeds in all studies before and after pelleting and these were sent to Agrivida. Agrivida determined the phytase activity in these samples and this information was provided to CQR who wrote the final study reports for each trial. CQR included the phytase recovery data for feeds in the trial report from study AGV-15-4 (Study 3) but they did not include this data in the other three study reports. However, all data on phytase recovery before and after pelleting for all feeds in all four studies is presented in Appendix 6 of the GRAS notice. Reference to this data is also stated on page 40 of the GRAS notice (§5.0, paragraph 2).

4. Target animal safety

• CVM stated that the provided studies are not published and the information to support target animal safety cannot be confidential business information.

Agrivida response:

Agrivida has agreed that data and information related to the animal functionality studies is not confidential with the exception of information related to the amount of Phy02 phytase activity present in the Phy02 phytase product. Agrivida will submit to CVM a new version of the document that supports the GRAS affirmation by Agrivida in which this information is not indicated as being confidential business information.

• CVM suggested the firm provide justification for applying published information on target animal safety of the Nov9X phytase to the notified Phy02 phytase.

Agrivida response:

The primary arguments that support the safety of the Phy02 phytase are that this enzyme is a phytase, a well-known class of enzyme with a long history of safe use in poultry and that the production host is *Zea mays* that has been consumed safely by animals and humans over many millennia. In short, a well-known, safe enzyme produced by a well-known, safe production host equals a safe product. The fact that the Nov9X phytase of the commercial product Quantum is nearly identical to the Phy02 phytase is further support for the affirmation of safety for the Phy02 phytase. In §2.2 of the Phy02 GRAS document the Phy02 and Nov9X phytases are compared. Here it is stated that they are both derived from the AppA phytase of *E. coli* strain K-

12, they are both classified as 6-phytases based on their activities, and a comparison of their amino acid sequences demonstrates 97% amino acid identity between these two phytases. Based on these criteria it is concluded that the Phy02 and Nov9X phytases are nearly identical and that therefore, the safety studies for the later add further support for the safety assessment of the former. Safety studies for the Nov9X phytase were included in a submission to CVM in 2004 and a summary of these was included in a published opinion on the safety of the Nov9X phytase by the European Food Safety Authority (EFSA, 2008).

References

EFSA (2008). Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) on a request from the European Commission on the safety and efficacy of the product QuantumTM Phytase 5000 L and QuantumTM Phytase 2500 D (6-phytase) as a feed additive for chickens for fattening, laying hens, turkeys for fattening, ducks for fattening and piglets (weaned). *The EFSA Journal* **627**:1-27.

• CVM also recommended that the firm elaborate on the statement that since the Phy02 phytase is an enzyme and enzymes are proteins that are expected to be digested in the gastrointestinal tract, therefore no target animal safety concerns are expected.

Agrivida response:

All enzymes are proteins (Bugg, 2012) and proteins that are ingested in the diet are digested by proteases such as pepsin in the stomach and trypsin, chymotrypsin and others in the small intestine, into their constituent amino acids or small peptides (Berg et al., 2002) that are absorbed into the blood through the walls of the small intestine. As part of an evaluation of food safety of the Phy02 phytase, Phy02 phytase protein was subjected to digestion by pepsin in an aqueous buffer at a pH of 2.0 in a simulation of the gastric environment. In this study the Phy02 phytase was rapidly digested, thereby confirming that in the gastric environment it would be readily digested. The details of this study are contained in a report on the evaluation of food safety of the Phy02 phytase that was submitted and evaluated by FDA/CFSAN. This report can be accessed in its entirety at an FDA/CFSAN webpage at: https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GEPlants/Submissions/UCM462259.pdf

These results indicate that, as expected for other enzymes, upon consumption the Phy02 phytase is ultimately digested into amino acids and small peptides. Therefore, since its biological activity (phytase) is known to be safe and since the Phy02 phytase is ultimately digested in the gastrointestinal tract, it is unlikely to present any safety issues when consumed as part of the diet. The conclusion of the animal safety of the Phy02 phytase is based on many different factors, of which this is factor is one.

References

Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman; 2002. Section 23.1, Proteins Are Degraded to Amino Acids.

Bugg, T. D. H. (2012) All Enzymes Are Proteins, in Introduction to Enzyme and Coenzyme Chemistry, Third Edition, John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781118348970.ch2

5. General recognition requirement

Issue/question from CVM:

CVM pointed out that most of the information used in the notice to support the utility/enzyme functionality and safety are not published. Almost all of the enzyme functionality data and data that relate to target animal safety are marked as confidential business information (CBI) in the CBI version of the notice.

Agrivida response:

As stated in point 4 above, Agrivida has decided that it will not claim the information in the animal feeding studies as CBI.