

William B Mattes, PhD, DABT NCTR, FDA

The views presented do not necessarily reflect those of the FDA.

Division Staff

- Government Positions Number of Full Time Employees (FTE)
 - Research Scientists, Staff Fellows & Visiting Scientists: 23 FTE
 - Support Scientists : 11 FTE
 - Administrative : 3 FTE
 - FDA Commissioner Fellows: 0 FTE
- ORISE Post Docs, Graduate Students, etc.: 7 staff members
- Total staff members = 49

Outreach

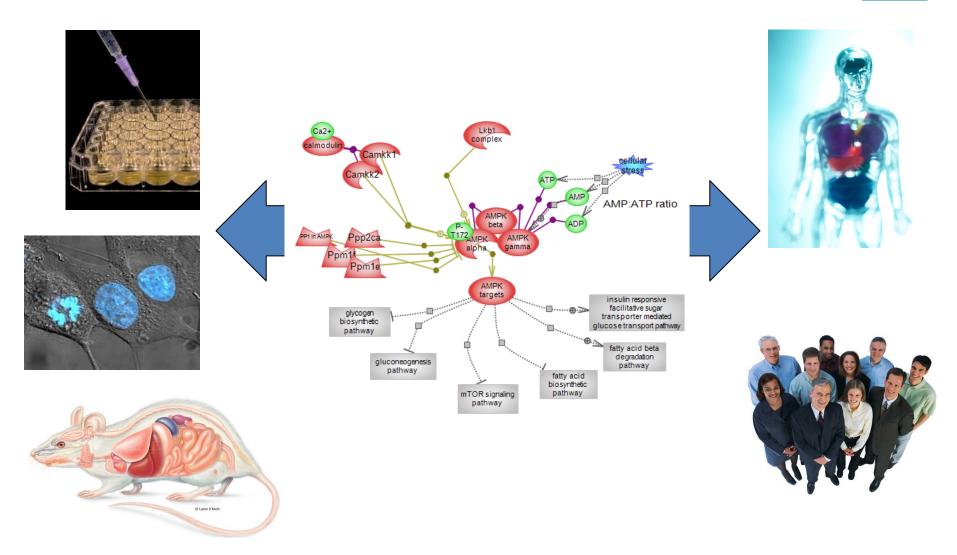
- Collaborations with :
 - NCTR divisions
 - Biochemical Toxicology, Bioinformatics and Biostatistics, Genetic and Molecular Toxicology, Microbiology, Neurotoxicology
 - FDA regulatory centers
 - CDER, CDRH, CBER, CFSAN
 - Government agencies
 - NTP, NIH, VA
 - Universities
 - UAMS, MCW, Univ. Pitt., OSU, etc

Collaborations of Note

- CDER
 - Tyrosine Kinase Inhibitor (TKI) Systems Toxicology
 - Immune cell effects in a mouse obesity model
- CDRH
 - Aptamer technology
- CFSAN
 - Listeria detection and quantitation

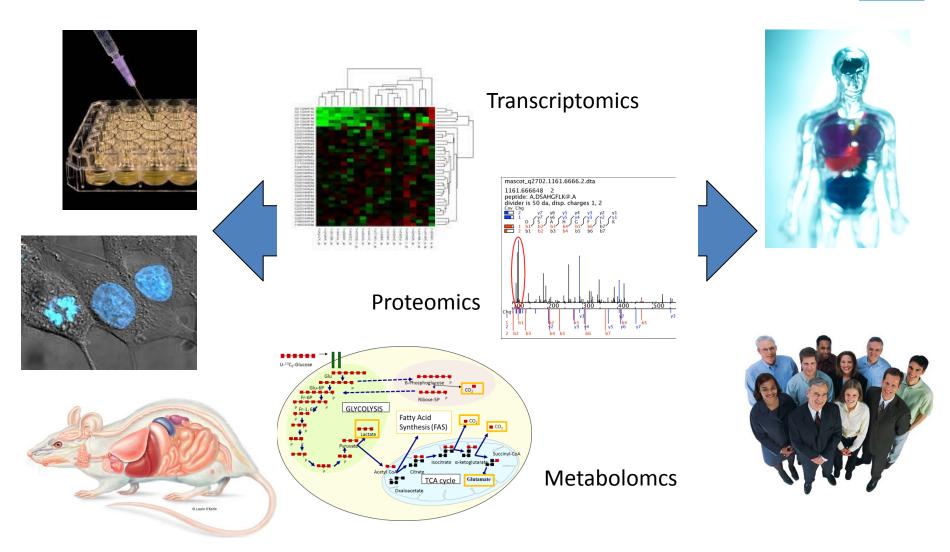
- Mission
 - To address problems of food, drug, and medical product safety using systems biology approaches and innovative technology

Why Systems Biology?


- Tools and approaches to bridge:
 - Non-clinical models
 - <u>adverse events</u> and <u>individual responses</u>

-- with ---

- Clinical settings
 - <u>adverse events</u> and <u>individual responses</u>
- "Translational Toxicology"
- "Precision Safety Assessment"


Systems Thinking

Systems Tools

• Goals

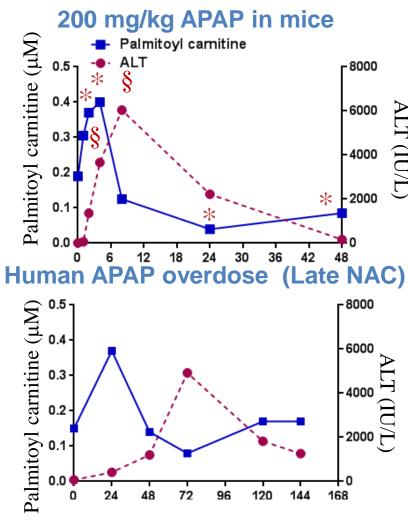
- Translational prognostic and/or predictive biomarkers of hepatotoxicity and cardiotoxicity
- Mechanistic basis for species, tissue, sex, and subpopulation specificity in drug toxicity
- In vitro models for better evaluation of reproductive, developmental, and clinical toxicity
- In silico models for predicting relevant toxicities
- Robust technologies for pathogen detection and outbreak characterization

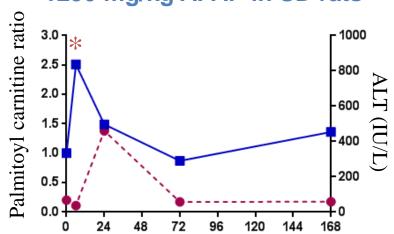
Strategies

- Explore classes of drugs with known toxicities: such as anthracyclines, acetaminophen, tyrosine kinase inhibitors
- Characterize systems biology effects with state of the art tools: mRNA and miRNA transcriptomics, epigenomics, metabolomics, proteomics (MS and aptamer arrays)
- Integrate data with systems biology informatics accounting for species, tissue, sex, and sub-population differences
- Incorporate innovative in vitro, computational and instrumental technology

- General Themes
 - Translational Safety Biomarkers and Mechanisms
 - Alternative Models to Assess Drug Safety
 - Technology to Assess Food Safety
 - Computational Modeling
 - Cross-Species Predictions
 - With an eye toward application in use and evaluation of FDA-regulated products

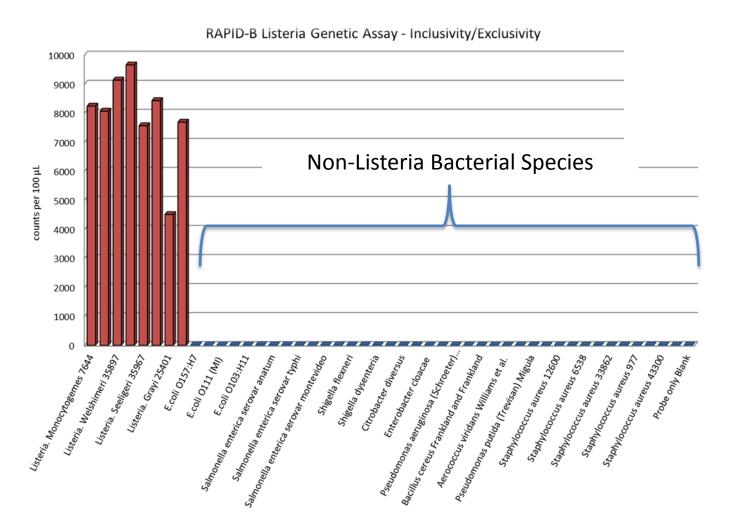
• Model Systems


- In vitro
 - Primary cell culture
 - Cell lines
 - Induced pluripotent stem cells (iPSC)
- In vivo
 - Rodents
 - Specialized mouse models
- Clinical
 - Blood, urine miRNA, protein, metabolite profiling


Top Accomplishments

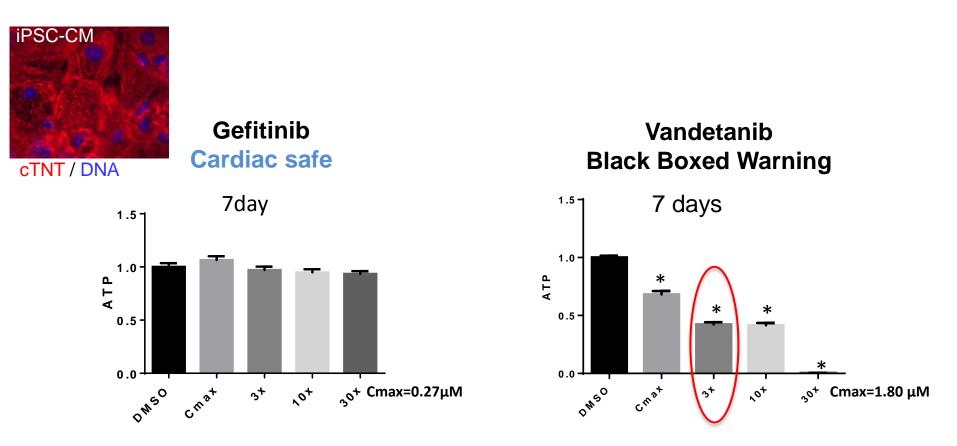
- 1. Translational biomarkers of liver injury
- 2. Rapid-B flow detection of *listeria*
- 3. Demonstration of mitochondrial injury in cardiomyocytes after tyrosine kinase inhibitor treatment
- 4. Identification of protein changes in mouse plasma very early after doxorubicin treatment
- 5. 3D-SDAR model showing that the toxicophore for phospholipidosis is similar to that hERG binding

Translational Kinetic Response of Palmitoyl Carnitine vs ALT


1250 mg/kg APAP in SD rats

Palmitoyl (16:0) carnitine peak appears before ALT peak in rodents and humans when NAC treatment is delayed.

Beger et al. Arch Toxicol (2015) 89:1497–1522


FDA

RAPID-B Listeria Detection

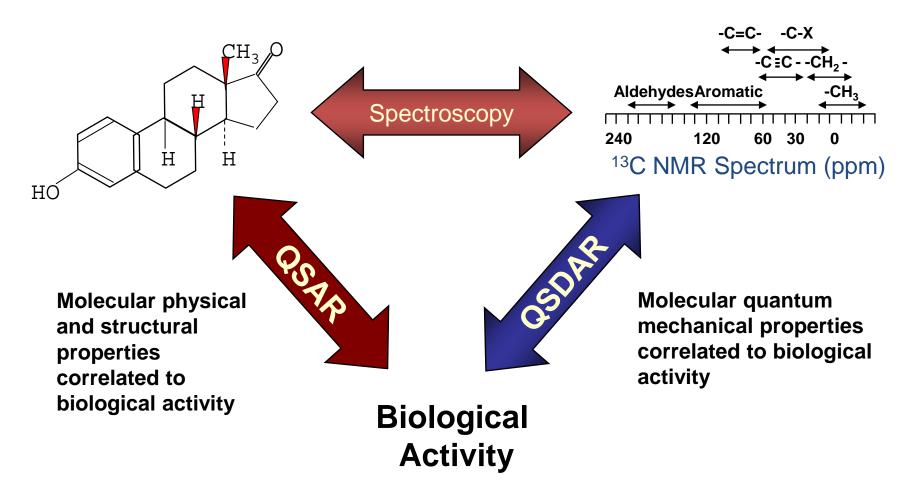
FDA

Tyrosine Kinase Inhibitor (TKI) -Induced Cardiotoxicity Using iPSC- Cardiomyocytes

Chronic treatment in human iPSC- cardiomyocytes confirm the structural cardiotoxic effects of vandetanib, consistent with previous clinical reports. Conversely, gefitinib was not cytotoxic.

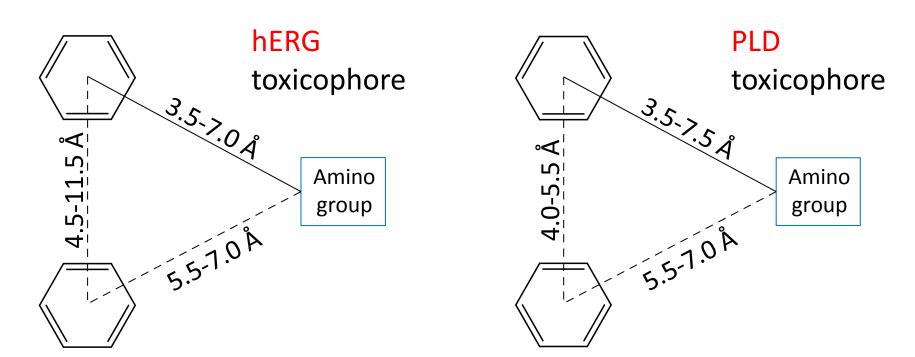
FDA

Circulating Protein Markers of DOX Toxicity


SOMA ID	Target Full Name	UniProt	Fold ratio (Dox/Sal) Doxorubicin Effect Drug expsoure in weeks (cumulative dose in mg/kg)									
								2 (6)	3 (9)	4 (12)	6 (18)	8 (24)
								No cardiotoxicity			Myocardial Injury	Pathology
			Early Injury Markers of Toxicity									
			SL005703	Neurogenic locus notch homolog protein 1	P46531	1.72	1.59	1.67	1.53	1.59		
SL000017	von Willebrand factor	P04275	1.60	1.62	1.97	1.92	2.20					
SL016563	Mitochondrial glutamate carrier 2	Q9H1K4	1.19	1.17	1.32	1.30	1.21					
SL004652	Wnt inhibitory factor 1	Q9Y5W5	1.33	1.11	1.36	1.23	1.18					
SL008909	Legumain	Q99538	1.30	1.02	1.20	1.23	1.24					
SL011049	Mannan-binding lectin serine protease 1	P48740	1.35	1.17	1.30	1.23	1.24					
Markers of Toxicity												
SL001761	Troponin I, cardiac muscle	P19429	1.61	1.52	1.95	3.50	3.59					
SL005233	Tumor necrosis factor receptor superfamily member 27	Q9HAV5	1.21	1.20	1.39	1.50	1.65					
SL003328	Complement factor I	P05156	0.96	0.88	0.86	0.82	0.83					
SL007502	Carbohydrate sulfotransferase 15	Q7LFX5	0.94	0.81	0.75	0.78	0.72					
SL003303	C-C motif chemokine 28	Q9NRJ3	0.73	1.10	0.79	0.68	0.54					
SL004857	Desmoglein-2	Q14126	0.76	0.77	0.61	0.39	0.26					
SL004791	Tumor necrosis factor receptor superfamily member 25	Q93038	0.80	0.87	0.74	0.55	0.45					
SL007464	Anti-Muellerian hormone type-2 receptor	Q16671	0.87	0.84	0.65	0.44	0.41					
SL010390	Coiled-coil domain-containing protein 80	Q76M96	1.03	0.83	0.91	0.89	0.69					
SL008178	Dermatopontin	Q07507	0.99	0.83	0.88	0.85	0.72					
SL002508	Interleukin-18-binding protein	O95998	1.16	0.98	1.12	1.23	1.38					
SL000462	Insulin-like growth factor-binding protein 1	P08833	1.23	0.85	0.96	1.10	2.81					
SL003679	Cation-independent mannose-6-phosphate receptor	P11717	1.13	0.95	0.91	0.85	0.79					
SL009324	Follistatin-related protein 3	O95633	1.02	0.86	0.85	0.86	0.77					
SL004676	Insulin-like growth factor-binding protein 5	P24593	1.13	0.94	0.94	0.96	0.83					

www.fda.gov Plasma protein measurements performed using aptamer-based technology by SOMALogic, Inc. False Discovery Rate < 0.1

Spectral Data Activity Relationships


SAR and SDAR* are Fundamentally Different

*Patented

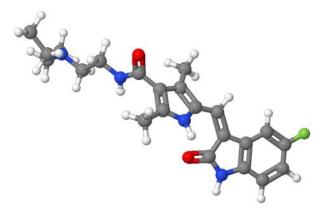
SDAR Modeling of hERG and PLD

hERG and PLD toxicophores. The PLD toxicophore is a subset of the hERG toxicophore!

Examples of Current Projects

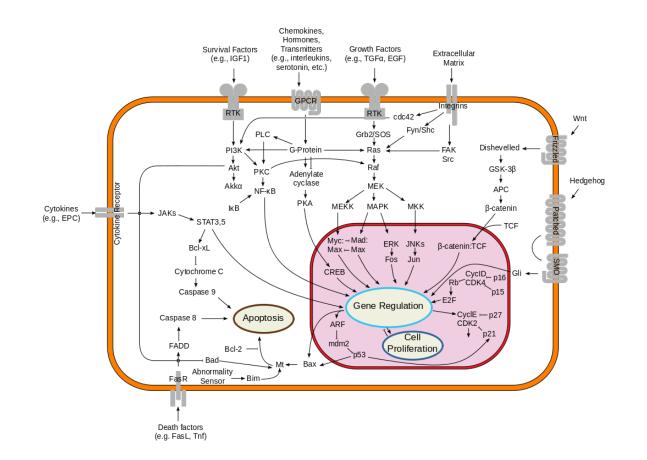
- 1. Evaluation of potential serum metabolic biomarkers that predict severity of acute kidney injury (AKI) in critically ill patients
- 2. Cell free microRNA (miRNA) as improved clinical biomarkers of druginduced liver injury
- 3. Evaluation of an *in vitro* testis organ system as an alternative model for male reproductive toxicology
- 4. Comprehensive examination of tyrosine kinase inhibitor toxicity

Details of Projects


- Clinical AKI biomarkers
 - Collaboration with Univ. of Virginia Medical School
 - Examining plasma using SomaLogic aptamer technology
- Clinical miRNA DILI biomarkers
 - Examining urine miRNAs in patients from Acute Liver Failure
 Study Group
 - Results are suggestive for prognostic miRNAs

Details of Projects

- Comprehensive examination of tyrosine kinase inhibitors (TKIs)
 - Data mining of mouse, rat and human kinome for species, sex, and organ differences in targets
 - In vitro comparisons of hepatotoxicity in primary hepatocytes and iPSC derived cardiomyocytes
 - In vivo systems biology study of sunitinib in a mouse model of cardiomyopathy


Sunitinib Sutent, SU11248

Details of Projects

• TKIs – multiple targets and pathways

Future Directions

- Stem cell models for hepatocytes and cardiomyocytes
 - Collaboration with outside laboratories (e.g., MCW, Stanford)
 - Potential for monitoring inter-individual variability
- Adaptation in DILI
 - In vivo and in vitro studies to investigate models for adaptation to therapeutic doses of APAP

Feedback Requested

- I have considered the area of TKI toxicity as a good "systems biology" problem:
 - Is this truly relevant to FDA regulation?
 - What aspects might I consider?
 - What toxicities are relevant?

Feedback Requested

- Clinical collaborations:
 - How important are these?
 - I have considered the non-clinical <> clinical connection important for biomarkers and mechanistic work – is this correct?
 - What other directions might be considered?

Feedback Requested

- How might interactions between Systems Biology and other FDA Centers be enhanced?
- What emerging sciences/technologies can you advise me to pursue?
- What future directions do you recommend for this division that would impact the FDA?