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Abstract

One of the key challenges in changepoint analysis is the ability to detect multiple changes
within a given time series or sequence. The changepoint package has been developed to pro-
vide users with a choice of multiple changepoint search methods to use in conjunction with
a given changepoint method and in particular provides an implementation of the recently
proposed PELT algorithm. This article describes the search methods which are implemented
in the package as well as some of the available test statistics whilst highlighting their appli-
cation with simulated and practical examples. segmentation, break points, search methods,

bioinformatics, energy time series, R

1 Introduction

There is a growing need to be able to identify the location of multiple change points within time
series. However, as datasets increase in length the number of possible solutions to the multiple
changepoint problem increases combinatorially. Over the years several multiple changepoint search
algorithms have been proposed to overcome this challenge, most notably the binary segmentation
algorithm (Scott and Knott, 1974; Sen and Srivastava, 1975); the Segment Neighbourhood algo-
rithm (Auger and Lawrence, 1989; Bai and Perron, 1998) and more recently the PELT algorithm
(Killick et al., 2012). This paper describes the changepoint package (Killick and Eckley, 2010),
available within R (R Development Core Team, 2012), which makes each of these algorithms
available, thus enabling users to select which method they would like to use for their analysis.

We are by no means the first to develop a changepoint package for the R environment. At the
time of writing several such packages exist, including those which provide a single test statistic
e.g., sde (Iacus, 2009), bcp (Erdman and Emerson, 2007) and/or are designed for a specific (typ-
ically genomic) application e.g., cumSeg (Muggeo, 2011), DNAcopy (Seshan and Olshen, 2008).
More comprehensive R packages are also available such as strucchange (Zeileis et al., 2002) for
changes in regression and cpm (Ross, 2012) for online changepoint detection. However, all of the
aforementioned packages implement a single search method for detecting multiple changepoints.
In contrast, the changepoint package uniquely provides a choice of search algorithm for multiple
changepoint detection in addition to a variety of test statistics. In particular the package imple-
ments the search algorithms for a selection of popular changepoint and penalty types. Specifically
the methods are implemented for the change in mean and/or variance settings with a similar argu-
ment structure where each function outputs an object of class cpt. Such an approach is deliberate
to breed familiarity and ease of use. Whilst the package is driven from these core functions, part
of our philosophy is to make it easier for others to use and adapt code snippets as appropriate.
To this end we have deliberately coded each part of a method in an individual function which is
also exported.

The remainder of the paper is structured as follows. A brief background to changepoint analysis
is given in Section 2 before Section 3 describes the cpt class and its methods. Following this the
three main functions; cpt.mean, cpt.var and cpt.meanvar are described and explored using
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simulated and practical examples. In these sections particular emphasis is placed on how to
identify multiple changepoints and the difference between exact and approximate methods. The
paper is summarised in Section 7, where we provide a discussion.

2 Changepoint detection

This section begins by introducing the reader to changepoints through the single changepoint
problem before considering the extension to multiple changepoints. In its simplest form, change-
point detection is the name given to the problem of estimating the point at which the statistical
properties of a sequence of observations change. Detecting such changes is important in many dif-
ferent application areas. Recent examples include climatology (Reeves et al., 2007), bioinformatic
applications (Erdman and Emerson, 2008), finance (Zeileis et al., 2010), oceanography (Killick
et al., 2010) and medical imaging (Nam et al., 2012).

More formally, let us assume we have an ordered sequence of data, y1:n = (y1, . . . , yn). A
changepoint is said to occur within this set when there exists a time, τ ∈ {1, . . . , n− 1}, such that
the statistical properties of {y1, . . . , yτ} and {yτ+1, . . . , yn} are different in some way. Extending
this idea of a single changepoint to multiple changes, we will have a number of changepoints,
m, together with their positions, τ1:m = (τ1, . . . , τm). Each changepoint position is an integer
between 1 and n− 1 inclusive. We define τ0 = 0 and τm+1 = n, and assume that the changepoints
are ordered so that τi < τj if, and only if, i < j. Consequently the m changepoints will split
the data into m + 1 segments, with the ith segment containing y(τi−1+1):τi . Each segment will

be summarised by a set of parameters. The parameters associated with the ith segment will
be denoted {θi, φi}, where φi is a (possibly null) set of nuisance parameters and θi is the set of
parameters that we believe may contain changes. Typically we want to test how many segments
are needed to represent the data, i.e., how many changepoints are present and estimate the values
of the parameters associated with each segment.

2.1 Single changepoint detection

Let us briefly recap the likelihood-based framework for changepoint detection. Before consid-
ering the more general problem of identifying τ1:m changepoint positions, we first consider the
identification of a single changepoint. The detection of a single changepoint can be posed as a hy-
pothesis test. The null hypothesis, H0, corresponds to no changepoint (m = 0) and the alternative
hypothesis, H1, is a single changepoint (m = 1).

We now introduce the general likelihood-ratio based approach to test this hypothesis. The
potential for using a likelihood based approach to detect changepoints was first proposed by
Hinkley (1970) who derives the asymptotic distribution of the likelihood ratio test statistic for
a change in the mean within normally distributed observations. The likelihood based approach
was extended to changes in variance within normally distributed observations by Gupta and Tang
(1987). The interested reader is referred to Silva and Teixeira (2008) and Eckley et al. (2011) for
a more comprehensive review.

A test statistic can be constructed which we will use to decide whether a change has occurred.
The likelihood ratio method requires the calculation of the maximum log-likelihood under both null
and alternative hypotheses. For the null hypothesis the maximum log-likelihood is log p(y1:n|θ̂),
where p(·) is the probability density function associated with the distribution of the data and θ̂ is
the maximum likelihood estimate of the parameters.

Under the alternative hypothesis, consider a model with a changepoint at τ1, with τ1 ∈
{1, 2, . . . , n− 1}. Then the maximum log likelihood for a given τ1 is

ML(τ1) = log p(y1:τ1 |θ̂1) + log p(y(τ1+1):n|θ̂2). (1)

Given the discrete nature of the changepoint location, the maximum log-likelihood value under the
alternative is simply maxτ1 ML(τ1), where the maximum is taken over all possible changepoint
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locations. The test statistic is thus

λ = 2

[
max
τ1

ML(τ1)− log p(y1:n|θ̂)
]
.

The test involves choosing a threshold, c, such that we reject the null hypothesis if λ > c. If we
reject the null hypothesis, i.e., detect a changepoint, then we estimate its position as τ̂1 the value
of τ1 that maximises ML(τ1). The appropriate value for this parameter c is still an open research
question with several authors devising p-values and other information criterion under different
types of changes. We refer the interested reader to Guyon and Yao (1999); Chen and Gupta
(2000); Lavielle (2005); Birge and Massart (2007) for interesting discussions and suggestions for c.

It is clear that the likelihood test statistic can be extended to multiple changes simply by
summing the likelihood for each of the m segments. The problem becomes one of identifying
the maximum of ML(τ1:m) over all possible combinations of τ1:m. The following section explores
existing search methods that address this problem.

2.2 Multiple changepoint detection

With increased collection of time series and signal streams there is a growing need to be able
to efficiently and accurately estimate the location of multiple changepoints. This section briefly
introduces the main search methods available for identifying multiple changepoints within the
changepoint package. Arguably the most common approach to identify multiple changepoints in
the literature is to minimise

m+1∑
i=1

[
C(y(τi−1+1):τi)

]
+ βf(m) (2)

where C is a cost function for a segment e.g., negative log-likelihood and βf(m) is a penalty to
guard against over fitting (a multiple changepoint version of the threshold c). This is the approach
which we adopt in this paper and the accompanying package. A brute force approach to solve this
minimisation considers 2n−1 solutions reducing to

(
n−1
m

)
if m is known. The changepoint package

implements three multiple changepoint algorithms that minimise (2); Binary Segmentation (Ed-
wards and Cavalli-Sforza, 1965), Segment Neighbourhoods (Auger and Lawrence, 1989) and the
recently proposed Pruned Exact Linear Time (PELT) (Killick et al., 2012). Each of these algo-
rithms is briefly described in the following paragraphs, for more information see the corresponding
references.

At the time of writing Binary Segmentation is arguably the most widely used multiple change-
point search method and originates from the work of Edwards and Cavalli-Sforza (1965), Scott
and Knott (1974) and Sen and Srivastava (1975). Briefly, Binary Segmentation first applies a
single changepoint test statistic to the entire data, if a changepoint is identified the data is split
into two at the changepoint location. The single changepoint procedure is repeated on the two
new data sets, before and after the change. If changepoints are identified in either of the new
data sets, they are split further. This process continues until no changepoints are found in any
parts of the data. This procedure is an approximate minimisation of (2) with f(m) = m as any
changepoint locations are conditional on changepoints identified previously. Binary Segmentation
is thus an approximate algorithm but is computationally fast as it only considers a subset of the
2n−1 possible solutions. The computational complexity of the algorithm is O(n log n) but this
speed can come at the expense of accuracy of the resulting changepoints (see Killick et al. (2012)
for details).

The Segment Neighbourhood algorithm was proposed by Auger and Lawrence (1989) and
further explored in Bai and Perron (1998). The algorithm minimises the expression given by
equation (2) exactly using a dynamic programming technique to obtain the optimal segmentation
for m + 1 changepoints reusing the information that was calculated for m changepoints. This
reduces the computational complexity from O(2n) for a naive search to O(Qn2) where Q is the
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maximum number of changepoints to identify. Whilst this algorithm is exact, the computational
complexity is considerably higher than that of Binary Segmentation.

The Binary Segmentation and Segment Neighbourhood algorithms would appear to indicate
a trade-off between speed and accuracy however this need not be the case. The PELT algorithm
proposed by Killick et al. (2012) is similar to that of the Segment Neighbourhood algorithm since
it provides an exact segmentation. However, due to the construction of the PELT algorithm,
it can be shown to be more computationally efficient, due to it’s use of dynamic programming
and pruning which can result in an O(n) search algorithm subject to certain assumptions being
satisfied, the majority of which are not particularly onerous. Indeed the main assumption that
controls the computational time is that the number of changepoints increases linearly as the data
set grows, i.e., changepoints are spread throughout the data rather than confined to one portion.

All three search algorithm are available within the changepoint package. The following sections
introduce the structure of the package, its S4 class - cpt and the core functions that enable quick
and efficient analysis of changepoint problems.

3 Introduction to the package and the cpt class

The changepoint package introduces a new object class called cpt to store changepoint analysis
objects. This section provides an introduction to the structure and methods associated with the
cpt class, together with examples of its specific use.

Each of the core functions outputs an object of the cpt S4 class. The class has been constructed
such that the cpt object contains the main features required for a changepoint analysis and future
summaries. Each of these is stored within a slot entry in the cpt class. The slots within the class
are,

• data.set - a time series (ts) object containing the numeric values of the data;

• cpttype - characters describing the type of changepoint sought e.g., mean, variance;

• method - characters denoting the single or multiple changepoint search method applied;

• test.stat - characters denoting the test statistic i.e., assumed distribution / distribution-
free method;

• pen.type - characters denoting the penalty type e.g., AIC, BIC, Manual;

• pen.value - the numeric value of the penalty used in the analysis;

• cpts - a numeric vector giving the estimated changepoint locations always ending in n, the
length of the time series in the data.set slot;

• ncpts.max - the numeric maximum number of changepoints searched for, e.g., 1, 5, Inf and
denoted Q in Section 2;

• param.est - a list of parameters where each element in the list is a vector of the estimated
numeric parameter values for each segment, denoted θi in Section 2;

• date - the system time/date when the analysis was performed.

Slots of an S4 object are typically accessed using the @ symbol (in contrast to the $ for S3
objects). Whilst this is still possible in the changepoint package, we have created accessor and
replacement functions to control the access and replacement of slots. The accessor functions are
simply the slot names. For example data.set(x) displays the vector of data contained within
the cpt object x. The class slots are automatically populated with the correct information ob-
tained from the completed analysis. Feedback from trials with the package users indicate that the
accessor and replacement functions aid ease-of-use for those unfamiliar with S4 classes. Further
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demonstration of how the accessor and replacement functions work in practice are given in the
examples within each section.

In addition to accessor and replacement functions, the changepoint package also contains a
couple of extra functions that a user may find useful. The first of these is the ncpts function which,
given a cpt object from a changepoint analysis, returns the number of identified changepoints.
This can be particularly useful if the number of changepoints is expected to be large and/or users
wish to quickly check whether the returned number of changepoints is equal to the maximum
searched for when using the Binary Segmentation or Segment Neighbourhood search algorithms.
Similarly the second additional function, seg.len, returns the size of the segments, i.e., how many
observations there are between consecutive changepoints. This may be useful when performing a
changepoint analysis as short segments can be used as an indicator that the penalty function may
be set too low.

All the functions described above are related to the cpt class within the changepoint package.
The following section reviews the methods that act on the cpt class.

3.1 Methods within the cpt class

The methods associated with the cpt class are summary, print, plot, coef and logLik. The summary
and print methods display standard information about the cpt object. The summary function
displays a synopsis of the results from the analysis including number of changepoints and, where
this is small, the location of those changepoints. In contrast, the print function prints details
pertaining to the S4 class including slot names and when the S4 object was created.

Having performed a changepoint analysis, it is often helpful to be able to plot the changepoints
on the original data to visually inspect whether the estimated changepoints are reasonable. To
this end we include a plot method for the cpt class. The method adapts to the assumed type of
changepoint, providing a different output dependent on the type of change. For example, a change
in variance is denoted by a vertical line at the changepoint location whereas a change in mean is
indicated by horizontal lines depicting the mean value in different segments.

Similarly once a changepoint analysis has been conducted one may wish to retrieve the param-
eter values for each segment or the log likelihood for the fitted data. These can be obtained using
the standard coef and logLik generics; examples are given in the code detailed below.

The following sections explore the use of the core functions within the changepoint package.
We begin in Section 4 by demonstrating the key steps to a changepoint analysis via the cpt.mean

function. Sections 5 and 6 utilise the steps in the change in mean analysis to explore changes in
variance and both mean and variance respectively.

4 Changes in mean: The cpt.mean function

Early work on changepoint problems focused on identifying changes in mean and includes the
work of Page (1954) and Hinkley (1970) who created the Likelihood Ratio and Cumulative Sum
(CUSUM) test statistics respectively.

Within the changepoint package all change in mean methods are accessed using the cpt.mean

function. The function is structured as follows:

cpt.mean(data,penalty="SIC",pen.value=0,method="AMOC",Q=5,test.stat="Normal")

The arguments within this function are:

• data - A vector or ts object containing the data within which to find a change in mean. If
multiple datasets require analysing then this can be a matrix where each row is considered
a separate dataset.

• penalty - Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and
"Manual" penalties. If "Manual" is specified, the manual penalty is contained in pen.value.
If "Asymptotic" is specified, the theoretical type I error is contained in pen.value. The
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predefined penalties listed do NOT count the changepoint as a parameter, postfix a 1 e.g.,
"SIC1" to count the changepoint as a parameter.

• pen.value - The theoretical type I error e.g.,0.05 when using the "Asymptotic" penalty.
Alternatively when using the "Manual" penalty it is a numeric value or text which when
evaluated results in a penalty value.

• method - Single or multiple changepoint method. Choice of "AMOC" (At Most One Change),
"PELT", "SegNeigh" or "BinSeg". Default is "AMOC". See Section 2 for further details of
methods.

• Q - The maximum number of changepoints to search for using the "BinSeg" method. The
maximum number of segments (number of changepoints + 1) to search for using the "SegNeigh"
method. This is not required for the "PELT" method as this automatically selects the number
of segments.

• test.stat - The test statistic i.e., assumed distribution or distribution-free method for data.
Choice of "Normal" or "CUSUM". The test statistics behind the distributional options are
contained within Hinkley (1970) for the "Normal" option and Page (1954) for the "CUSUM"

option.

Several standard penalty functions used within changepoint analysis have been included in this
function. These are: SIC (Schwarz Information Criterion), BIC (Bayesian Information Criterion),
AIC (Akaike Information Criterion) and Hannan-Quinn. The user can also enter a manual penalty
value by numeric value or formula. Briefly the search options consist of exact methods; PELT
(O(n) if assumptions are satisfied), Segment Neighbourhoods (O(Qn2)) and approximate methods;
Binary Segmentation (O(n log n)). Further details of the search options in the method argument
are given in Section 2.

The remainder of this section gives a worked example exploring how to identify a change in
mean.

4.1 Example: Changes in mean

We now describe the general structure of a changepoint analysis using the changepoint package.
We begin by demonstrating the various possible stages within a change in mean analysis. To this
end we simulate a dataset (m.data) of length 400 with multiple changepoints at 100, 200, 300.
The sequence has four segments and the means for each segment are 0, 1, 0, 0.2.

R> library(changepoint)

R> set.seed(10)

R> m.data=c(rnorm(100,0,1),rnorm(100,1,1),rnorm(100,0,1),rnorm(100,0.2,1))

R> ts.plot(m.data,xlab=’Index’)

Imagine that we have been presented with this dataset and are asked to perform a changepoint
analysis. The first question we aim to answer is “Is there a change within the data?”. Our first
choice in answering this question is whether we wish to consider a single change or whether multiple
changes are plausible. From a visual inspection of the data in Figure 1(a), we suspect multiple
changes in mean may exist.

The challenge in multiple changepoint detection is identifying the optimal number and location
of changepoints as the number of solutions increases rapidly with the size of the data. In this
example where n = 400, we have 399 possible solutions for a single changepoint, for two changes
there are 79401 possible solutions and this is not taking into account that we do not know how
many changes there are! As such it is clearly desirable to use an efficient method for searching the
large solution space.

Any of the three search methods could be used to detect these changes. For this example we
will compare the PELT and Binary Segmentation search methods as this provides a comparison
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between exact and alternative algorithms (see Section 2). For now we will assume that the dataset
is independent and Normally distributed and consider an alternative towards the end of this
section.

R> m.pelt=cpt.mean(m.data,method=’PELT’)

R> plot(m.pelt,type=’l’,cpt.col=’blue’,xlab=’Index’,cpt.width=4)

R> cpts(m.pelt)

[1] 97 192 273 353 362 366

R> m.binseg=cpt.mean(m.data,method=’BinSeg’)

R> plot(m.binseg,type=’l’,xlab=’Index’,cpt.width=4)

R> cpts(m.binseg)

[1] 79 99 192 273

In this case, where we use the default SIC penalty, the cpts function returned 6 changepoints (97,
192, 273, 353, 362, 366) for PELT and 4 changepoints (79, 99, 192, 273) for Binary Segmentation.
By construction we know that there are three changepoints within the dataset. We can either
believe that there are six/four changes or consider that the method is too sensitive and try to
compensate by increasing the penalty. The choice of appropriate penalty is still an open question
and typically depends on many factors including the size of the changes and the length of segments,
both of which are unknown prior to analysis (see Guyon and Yao (1999); Lavielle (2005); Birge and
Massart (2007)). As new approaches to penalty choice become available we will seek to include
them within the changepoint package. In current practice, the choice of penalty is often assessed
by plotting the data and changepoints to see if they seem reasonable.

Figure 1(b) shows the m.pelt changepoints. Note that there are two changes towards the
end of the dataset which have very small segments. These are plausibly artefacts of the data
rather than true changes in the underlying process. In an effort to remove these seemingly spu-
rious changepoints we can increase the penalty to 1.5*log(n) rather than log(n) (SIC). This
change is achieved by changing the penalty type to ‘Manual’ and setting the value argument to
‘1.5*log(n)’. Figure 1(d) shows the result which seem more plausible.

R> m.pm=cpt.mean(m.data,penalty=’Manual’,pen.value=’1.5*log(n)’,method=’PELT’)

R> plot(m.pm,type=’l’,cpt.col=’blue’,xlab=’Index’,cpt.width=4)

R> cpts(m.pm)

[1] 97 192 273

On the other hand, if we only consider the changepoints identified by the Binary Segmentation
algorithm in Figure 1(c) then we may plausibly believe that there are four changes within the data
as the spurious segment is much larger. However, for comparison we also perform the analysis
with the increased penalty and find that the changepoints identified remain the same.

R> m.bsm=cpt.mean(m.data,’Manual’,pen.value=’1.5*log(n)’,method=’BinSeg’)

R> cpts(m.bsm)

[1] 79 99 192 273

Recall from Section 2 that both the Segment Neighbourhood and PELT algorithms are exact.
Thus, for a linear penalty, the only difference between them is their computational time. A user
can apply the below commands to their own computer to identify their personal speedup for this
example.

R> system.time(cpt.mean(m.data,method=’SegNeigh’))

R> system.time(cpt.mean(m.data,method=’PELT’))
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(d) PELT changepoints with manual penalty.

Figure 1: Plot of the simulated dataset m.data along with horizontal lines for the underlying (fitted) mean.

Using modern computers for this example PELT will return a speed of 0.001 or 0.002 seconds
compared to Segment Neighbourhoods which the authors have seen range from 0.4 to 1.1 seconds.

As a final note on this example, if the Normal assumption made at the start of the analysis is
questionable then the CUSUM method, which has no distributional assumptions, can be used by
adding the argument test.stat=’CUSUM’.

Thus far we have only considered a simulated example. In the next section we apply the
cpt.mean function to some Glioblastoma data previously analysed by Lai et al. (2005).

4.2 Case study: Glioblastoma

Lai et al. (2005) compare different methods for segmenting array comparative genomic hybridiza-
tion (aCGH) data from Glioblastoma Multiforme (GBM), a type of brain tumour. These arrays
were developed to identify DNA copy number alteration corresponding to chromosomal aberra-
tions. High-throughput aCGH data are intensity ratios of diseased vs control samples indexed
by the location on the genome. Values greater than 1 indicate diseased samples have additional
chromosomes and values less than 1 indicate fewer chromosomes. Detection of these aberrations
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Figure 2: Plot of the GBM data along with horizontal lines for the underlying mean.

can aid future screening and treatments of diseases.
The example we consider is from Figure 4 in Lai et al. (2005). This GBM data from chromosome

13 the EGFR locus is replicated in the changepoint package (see Figure 2). Following Lai et al.
(2005) we fit a Normal distribution with a piecewise constant mean using a likelihood criteria. We
compare the PELT search method results with those from Lai et al. (2005) to find that PELT
(with default penalty) gives the same segmentation as the CGHseg method.

R> data(Lai2005fig4)

R> Lai.default=cpt.mean(Lai2005fig4[,5],method=’PELT’)

R> plot(Lai.default,pch=20,col=’grey’,cpt.col=’black’,type=’p’,xlab=’Index’)

R> cpts(Lai.default)

[1] 81 85 89 96 123 133

R> coef(Lai.default)

$mean

[1] 0.2468910 4.6699210 0.4495538 4.5902489 0.2079891 4.2913844 0.2291286
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5 Changes in variance: The cpt.var function

Whilst considerable research effort has been given to the change in mean problem, Chen and
Gupta (1997) observe that the detection of changes in variance has received comparatively little
attention. Much of the work in this area builds on the foundational work of Hinkley (1970) in the
change in mean setting. See for example Hsu (1979), Horvath (1993) and Chen and Gupta (1997)
who extend Hinkley’s ideas to the change in variance setting. Existing methods within the change
in variance literature find it hard to detect subtle changes in variability, see Killick et al. (2010).

Within the changepoint package all change in variance methods are accessed using the cpt.var
function. The function is structured as follows:

cpt.var(data,penalty,pen.value,know.mean=FALSE,mu=-1000,method,Q,

test.stat="Normal")

The data, penalty, pen.value, method and Q arguments are the same as for the cpt.mean function
(see Section 4). The three remaining arguments are interpreted as follows.

• know.mean - This logical argument is only required for test.stat="Normal". If TRUE then
the mean is assumed known and mu is taken as its value. If FALSE and mu=NA (default
value) then the mean is estimated via maximum likelihood. If FALSE and the value of mu is
supplied, mu is not estimated but is counted as an estimated parameter for decisions.

• mu - Only required for test.stat="Normal". Numerical value of the true mean of the data
(if known). Either single value or vector of length nrow(data). If data is a matrix and mu

is a single value, the same mean is used for each row.

• test.stat - The test statistic i.e., assumed distribution or distribution-free method for
data. Choice of "Normal" or "CSS". The test statistics behind the distributional options
are contained within Chen and Gupta (2000) for the "Normal" option and Chen and Gupta
(1997) for the "CSS" option.

The remainder of this section is a worked example considering changes in variability within
wind speeds.
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5.1 Case study: Irish wind speeds

With the increase of wind based renewables in the power grid, there has become great interest in
forecasting wind speeds. Often modellers assume a constant dependence structure when modelling
the existing data before producing a forecast. Here we conduct a naive changepoint analysis of
wind speed data which are available in the R package gstat. The data provided are daily wind
speeds from 12 meteorological stations in the Republic of Ireland. The data has previously been
analysed by several authors including Haslett and Raftery (1989) and Gneiting et al. (2007). These
analyses were concerned with a spatial-temporal model for 11 of the 12 sites. Here we consider a
single site, Claremorris depicted in Figure 3.

R> library(gstat)

R> data(wind)

R> ts.plot(wind[,11],xlab=’Index’)

The variability of the data appears smaller in some sections and larger in others, this motivates
a search for changes in variability. Wind speeds are by nature diurnal and thus have a periodic
mean. The change in variance approaches within the cpt.var function require the data to have
a fixed value mean over time and thus this periodic mean must be removed prior to analysis.
Whilst there are a range of options for removing this mean, we choose to take first differences as
this does not require any modelling assumptions. Following this we assume that the differences
follow a Normal distribution with changing variance and thus use the cpt.var function. Again
we compare the analyses provided by the PELT and Binary Segmentation algorithms.

R> wind.pelt=cpt.var(diff(wind[,11]),method=’PELT’)

R> plot(wind.pelt,xlab=’Index’)

R> logLik(wind.pelt)

-like -likepen

37124.16 37642.81

R> wind.bs=cpt.var(diff(wind[,11]),method=’BinSeg’)

R> ncpts(wind.bs)

[1] 5

Note that unlike the PELT algorithm, the Binary Segmentation algorithm has only found 5 change-
points. This is because we used the default value of the parameters that set Q=5 which results in a
maximum of 5 changepoints identified. When performing an analysis using Binary Segmentation
this should always be checked and the default increased if necessary.

R> wind.bs=cpt.var(diff(wind[,11]),method=’BinSeg’,Q=60)

R> plot(wind.bs,xlab=’Index’)

R> logLik(wind.bs)

-like -likepen

37793.84 37855.38

As we are considering the negative log-likelihood the smaller value provided by PELT is pre-
ferred. Even when eye-balling the results, it would appear that the PELT segmentation is more
appropriate than that of the Binary Segmentation analysis, see Figure 3.

6 Changes in mean and variance: The cpt.meanvar function

The changepoint package contains four distributional choices for a change in both the mean and
variance; Exponential, Gamma, Poisson and Normal. The Exponential, Gamma and Poisson
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Figure 3: (a) Republic of Ireland hourly wind speeds, (b) and (c) show the first differences of (a) with vertical

lines depicting changepoints identified by (b) PELT (c) Binary Segmentation.

distributional choices only require a change in a single parameter to change both the mean and
the variance. In contrast, the Normal distribution requires a change in two parameters. The
multiple parameter changepoint problem has been considered by many authors including Horvath
(1993) and Picard et al. (2005).

Each distributional option is available within the cpt.meanvar function which has a similar
structure to the cpt.mean and cpt.var functions from previous sections. The basic call format is
as follows:

cpt.meanvar(data,penalty,value,method,Q,test.stat="Normal",shape=0)

The data, penalty, value, method and Q arguments are the same as those described for the
cpt.mean function (see Section 4). The remaining arguments are interpreted as follows.

• test.stat - The test statistic i.e., assumed distribution of data. Choice of "Normal",
"Gamma", "Exponential" or "Poisson".

• shape - Value of the known shape parameter required when test.stat="Gamma".

Following the format of previous sections we briefly describe a case study using data on notable
inventions / discoveries.

6.1 Case study: Discoveries

This section considers the dataset called discoveries available within the datasets package in R.
The data are the counts of the number of “great” inventions and/or scientific discoveries in each
year from 1860 to 1959. Our approach models each segment as following a Poisson distribution with
its own rate parameter. Again we compare the results for both PELT and Binary Segmentation
search methods.

R> data(discoveries)

R> dis.pelt=cpt.meanvar(discoveries,test.stat=’Poisson’,method=’PELT’)

R> plot(dis.pelt,cpt.width=3)

R> cpts.ts(dis.pelt)

[1] 1883 1888 1932 1952
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R> dis.bs=cpt.meanvar(discoveries,test.stat=’Poisson’,method=’BinSeg’)

R> cpts.ts(dis.bs)

[1] 1883 1888 1932 1952
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Figure 4: Discoveries dataset with identified changepoints.

The number and year of the changepoints identified by both methods is the same. Here we have
used the cpts.ts function to return the date of the changepoints rather than their position within
the sequence of data.

7 Summary

The unique contribution of the changepoint package is that the user has the ability to select
the multiple changepoint search method for analysis. The package contains three such meth-
ods: Segment Neighbourhood; Binary Segmentation and PELT and this paper has described and
demonstrated some differences between these approaches. The multiple changepoint search meth-
ods are available both for changes in mean and/or variance using distributional or distribution-free
assumptions utilising both established and novel methods. As such the changepoint package is
useful both for practitioners to implement existing methods and for researchers to compare the
performance of new approaches against the established literature. The changepoint package can
be obtained from CRAN at http://cran.r-project.org/.
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