Advanta Dx SARS-CoV-2 RT-PCR Assay For ${\it In\ Vitro}$ Diagnostic Use | For Use Under Emergency Use Authorization Only | Rx Only For Use Only with Biomark HD in Conjunction with Juno or IFC Controller RX ## **Contents** | Intended Use | 2 | |---|----------------------| | Product Description
Workflow and Description of Test Steps | 2 | | Materials Provided
Reagents and Consumables
Kit Components and Storage Conditions | 4
4
4 | | Materials Required but Not Provided
Reagents Not Provided
Consumables Not Provided
Equipment Not Provided | 5
5
5
5 | | Warnings, Precautions, and Best Practices
Warnings and Precautions
Best Practices | 7
7
8 | | Limitations of the Procedure | 10 | | Specimen Collection, Handling, and Storage | 12 | | Quality Control Procedures | 12 | | Prepare the Controls and Saliva Specimens
Collect the Saliva Specimens
Prepare the Negative and Positive Controls
Process the Saliva Specimens | 13
13
13
14 | | Prepare and Perform the 1-Step Reverse Transcription of Preamplification Reactions Pool and Dilute the Primer and Probe Sets for Preamplification Prepare the 1-Step Reverse Transcription and Preamplification Reactions | ion
14
15 | | Perform the 1-Step Reverse Transcription and Preamplification Reactions Dilute the Pre-amplified cDNA | 17
17 | | Prepare and Perform the Real-Time PCR Reactions
on the IFC
Prepare the Final Assay Mixes for Loading on the IF | 18
C | | Prepare the Final Sample Mixes | 18 | |---|----------------------------------| | Prepare the Advanta Dx 192.24 IFC | 20 | | Load the IFC | 22 | | Thermal-Cycle and Collect Real-Time PCR Data | 24 | | Annotate the Real-Time PCR Data | 25 | | Assay Results and Interpretation Examination and Interpretation of Control Results Interpretation of Patient Specimen Results | 28
28
28 | | Conditions of Authorizations for Labs | 30 | | Performance Evaluation Limit of Detection (LoD): Analytical Sensitivity Inclusivity (Analytical Sensitivity) Cross-Reactivity Endogenous Interference Substances Studies Clinical Evaluation FDA SARS-CoV-2 Reference Panel Testing | 32
33
34
36
37
37 | | Appendix A: Biomark HD Thermal Cycler Protocol | 38 | | Appendix B: Related Documents | 38 | | Appendix C: Symbols | 38 | | Revision History | 39 | ## **Intended Use** The Advanta Dx SARS-CoV-2 RT-PCR Assay is a real-time reverse transcription (RT) PCR test intended for the qualitative detection of nucleic acid from SARS-CoV-2 in saliva specimens collected without preservatives in a sterile container from individuals suspected of COVID-19 by their health care provider. Testing is limited to laboratories that are certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 U.S.C. §263a, and meet requirements to perform high-complexity tests. This test is also for use with saliva specimens that are self-collected at home with or without the supervision of a health care provider (HCP) with the AZOVA COVID-19 Test Collection Kit from individuals suspected of COVID-19 by their HCP. Results are for the identification of SARS-CoV-2 RNA. The SARS-CoV-2 RNA is generally detectable in saliva specimens during the acute phase of infection. Positive results are indicative of the presence of SARS-CoV-2 RNA. Clinical correlation with individual history and other diagnostic information is necessary to determine individual infection status. Positive results do not rule out bacterial infection or co-infection with other viruses. The agent detected may not be the definite cause of disease. Laboratories within the United States and its territories are required to report all results to the appropriate public health authorities. Negative results do not preclude SARS-CoV-2 infection and should not be used as the sole basis for individual management decisions. Negative results must be combined with clinical observations, individual history, and epidemiological information. Negative results for SARS-CoV-2 RNA from saliva should be confirmed by testing of an alternative specimen type if clinically indicated. The Advanta Dx SARS-CoV-2 RT-PCR Assay is intended for use by qualified clinical laboratory personnel specifically instructed and trained in the techniques of real-time PCR and *in vitro* diagnostic procedures. The Advanta Dx SARS-CoV-2 RT-PCR Assay is only for use under the Food and Drug Administration's Emergency Use Authorization. ## **Product Description** The Advanta Dx SARS-CoV-2 RT-PCR Assay is a reverse transcription (RT) and real-time polymerase chain reaction (RT-PCR) test that leverages Standard BioTools™ microfluidics technology. The SARS-CoV-2 primer and probe set is designed to detect RNA from SARS-CoV-2 in saliva specimens from patients suspected of COVID-19 by their health care providers. The Advanta Dx SARS-CoV-2 RT-PCR Assay uses N1, N2, and RNase P primers and probes for both the 1-step RT-preamplification and real-time PCR detection steps. # **Workflow and Description of Test Steps** Step 1: Specimen collection Step 2: samples. Step 3: Heat-treat 1-step RT and preamplification Step 4 and 5: Prepare assay and sample mixes. Prepare IFC. Step 6: IFC loading and sample/assay mixing Step 7: qPCR on Biomark HD Step 8: Analysis and report | Woi | rkflow Step | Run Time* | |-----|--|-------------| | 1 | Collect and prepare specimens. | _ | | 2 | Heat-treat samples. | 12 min | | 3 | Prepare and perform the 1-step reverse transcription (RT) and preamplification reactions in Applied Biosystems® Veriti™ 96-Well Thermal Cycler, then dilute sample mixes and controls. | 70 min | | 4 | Prepare the final assay mixes, final pre-amplified sample, and final control mixes (generated from output of Step 2 plus PCR reagents) for real-time PCR. | _ | | 5 | Prepare the Advanta Dx 192.24 IFC (integrated fluidic circuit) by injecting control line fluid. Pipet each assay and sample mix into the IFC inlets. | _ | | 6 | Load the IFC on Juno™ or IFC Controller RX. | 35 min | | 7 | Thermal-cycle and collect data on Biomark™ HD. | 35 min | | 8 | Analyze data. Annotate data using the Real-Time PCR Analysis software, then export results and interpret using the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software. | _ | | Tot | al run time | 2 hr 32 min | ^{*} Does not include hands-on time # **Materials Provided** ## **Reagents and Consumables** | Bundle | Component | Part Number | Quantity | |---|--|-------------|-------------| | Advanta™ Dx | Advanta Dx SARS-CoV-2 RT-PCR Assay Reagent Kit
Module 1 | 102-0354 | 1 kit | | SARS-CoV-2
RT-PCR Assay
Reagent and | Advanta Dx SARS-CoV-2 RT-PCR Assay Reagent Kit
Module 2 | 102-0370 | 1 kit | | IFC Bundle
(102-0355) | Advanta Dx 192.24 IFC (integrated fluidic circuit) | 102-0389 | 10 IFCs | | (102-0333) | Advanta Dx Control Line Fluid (150 μL each) | 102-0390 | 10 syringes | ## **Kit Components and Storage Conditions** **IMPORTANT:** Store reagents as soon as they are received, according to manufacturer's storage recommendations. #### 102-0354, Advanta Dx SARS-CoV-2 RT-PCR Assay Reagent Kit, Module 1 | Part Number | Component | | Volume | Quantity | Storage | |-------------|--------------------------------|--------------------------|---------|-----------|------------------| | 102-0349 | Advanta Dx SLR | Blue | 250 μL | 2 tubes | −15 °C to −25 °C | | 102-0350 | Advanta Dx ALR | Yellow | 120 µL | 3 tubes | −15 °C to −25 °C | | 102-0352 | Advanta Dx PF 1 | Purple | 1.5 mL | 1 tube | −15 °C to −25 °C | | 102-0346 | Advanta Dx PCR MM | Red | 1.2 mL | 4 tubes | −15 °C to −25 °C | | 102-0369 | Advanta Dx PCR Water | No color | 1.8 mL | 3 tubes | −15 °C to −25 °C | | 102-0351 | Advanta Dx PF 2 | No color | 2.04 mL | 2 bottles | −15 °C to −25 °C | | 102-0345 | Advanta Dx RT PA MM | Green | 3.3 mL | 2 bottles | −15 °C to −25 °C | | 102-0353 | Advanta Dx Dilution
Reagent | No color | 25 mL | 2 bottles | −15 °C to −25 °C | #### 102-0370, Advanta Dx SARS-CoV-2 RT-PCR Assay Reagent Kit, Module 2 | Part Number | Component | | Volume | Quantity | Storage | |-------------|--------------------------------|----------|--------|-----------|------------------| | 102-0353 | Advanta Dx Dilution
Reagent | No color | 25 mL | 5 bottles | −15 °C to −25 °C | #### 102-0389, Advanta Dx 192.24 IFC*, 10 IFC pack (microfluidic chips) | Part Number | Component | Quantity | Storage | |-------------|-----------------------|----------|------------------| | 102-0392 | Advanta Dx 192.24 IFC | 10 IFCs | +15 °C to +30 °C | ^{*} Integrated fluidic circuit #### **Advanta Dx Control Line Fluid** | Part Number | Component | Quantity | Storage | |-------------|-------------------------------|-------------|------------------| | 102-0390 | Advanta Dx Control Line Fluid | 10 syringes | +15 °C to +30 °C | # **Materials Required but Not Provided** ## **Reagents Not Provided** **IMPORTANT:** Store reagents as soon as they are received, according to manufacturer's storage recommendations. Do not use materials after the indicated expiry date. | Product Name | Source | Part Number | |--
-------------------------|-------------| | 2019-nCoV Probe & Primer Kit* | Standard BioTools | 102-0686 | | PBS, pH 7.4 | Thermo Fisher | 10010023 | | RNAsecure™ RNase Inactivation Reagent | Scientific™ | AM7005 | | Heat Inactivated 2019 Novel Coronavirus (used to prepare Positive Control) | ATCC® | VR-1986HK™ | | | Lee BioSolutions | 991-05-P | | Normal saliva from pooled human donors confirmed COVID-19 negative | Innovative™
Research | IRHUSL | ^{*}PN 102-0686 is sufficient for 10 IFCs (each assay is run in 4 replicates) #### **Consumables Not Provided** | Product Name | Source | | | |---|---------------------------------------|--|--| | Sterile container without preservatives for saliva collection | | | | | Disposable microcentrifuge tubes, polypropylene, 1.5 mL, 2 mL, and 5 mL | Account to take a street constitution | | | | 25 mL reagent reservoir | Any major laboratory supplier | | | | 96-well PCR plates* | | | | | 8-well PCR tube strips with caps | | | | | MicroAmp® Clear Adhesive Film for 96-well plates (PN 4306311) | Thermo Fisher Scientific | | | ^{*} The PCR plates selected for the workflow must be compatible with the thermal cycler used. ## **Equipment Not Provided** **IMPORTANT:** The Advanta Dx SARS-CoV-2 RT-PCR Assay Instrument Qualification Method (IQM) Protocol (SVC-00066) must be performed by a Standard BioTools Field Application Specialist using Standard BioTools -qualified SARS-CoV-2 material and meet specifications prior to reporting diagnostic results. # Standard BioTools Instruments and Authorized Software Configuration for Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1 | Product Name | Part Number | |---|-------------| | Biomark™ HD system | BMKHD-BMKHD | | Biomark Data Collection software v4.8.1 | 102-1890 | | Juno™ system | 101-6455 | | Juno system software v3.15.1 | 102-1889 | |---|----------| | IFC Controller RX | IFC-RX | | IFC Controller RX system software v2.9 | 100-4739 | | Real-Time PCR Analysis software v4.8.1 | 102-1852 | | Advanta™ Dx SARS-CoV-2 Interpretive Software v2.0.1 | 102-0952 | # Standard BioTools Instruments and Authorized Software Configuration for Advanta Dx SARS-CoV-2 EUA Interpretive Software v1.0.1 | Product Name | Part Number | |---|-------------| | Biomark™ HD system | BMKHD-BMKHD | | Biomark Data Collection software v4.7.1 | 102-0646 | | Juno™ system | 101-6455 | | Juno system software v3.14.1 | 101-9589 | | RX Interface Plate, if using Juno | 101-6114 | | IFC Controller RX | IFC-RX | | IFC Controller RX system software v2.9 | 100-4739 | | Real-Time PCR Analysis software v4.7.1 | 102-0555 | ### **Other Equipment** | Product Name | Source | Part Number | |---|--------------------------|-------------| | Applied Biosystems® Veriti™ 96-Well Thermal Cycler | Thermo Fisher Scientific | 4375786 | | 2 centrifuges: 1 for microtubes, 1 for 96-well PCR plates NOTE: Must be capable of 3,000 \times g | | _ | | Pipettes (P2-P1000) and appropriate filtered, low-retention tips | | _ | | 8-channel pipettes and appropriate filtered, low-retention tips | Any major | _ | | Vortexer | laboratory supplier | _ | | Class II biological safety cabinet for handling saliva samples | | _ | | DNA-free hood | | _ | | Cold block or ice | | _ | # Warnings, Precautions, and Best Practices ### **Warnings and Precautions** - The Advanta Dx SARS-CoV-2 RT-PCR Assay is for in vitro diagnostic use under Emergency Use Authorization only. - Federal Law restricts this device to sale by or on the order of a licensed practitioner. - For *in vitro* diagnostic use (IVD) - This product has not been FDA cleared or approved but has been authorized for emergency use by FDA under an Emergency Use Authorization (EUA) for use by authorized laboratories. - This product has been authorized only for the detection of nucleic acid from SARS-CoV-2, not for any other viruses or pathogens. - The emergency use of this product is only authorized for the duration of the declaration that circumstances exist justifying the authorization of emergency use of in vitro diagnostics for detection and/or diagnosis of COVID-19 under Section 564(b)(1) of the Federal Food, Drug, and Cosmetic Act, 21 U.S.C. § 360bbb-3(b)(1), unless the declaration is terminated or authorization is revoked sooner. - IMPORTANT: Due to the nested PCR design of this test, strict quality control and physical separation of areas with potential amplicon or positive control material contamination is critical. - Testing of saliva specimens is limited to patients suspected of COVID-19. - Negative results do not preclude infection with SARS-CoV-2 virus and should not be used as the sole basis for treatment or other patient management decisions. - Positive results are indicative of the presence of SARS-CoV-2 RNA and laboratories within the United States and its territories are required to report all results to the appropriate public health authorities. - Before collection of the saliva specimen, ensure that the person has not used oral hygiene products within at least 30 min prior to collection. - Samples and controls should always be treated as if infectious and/or biohazardous in accordance with safe laboratory procedures. - Always use pipette tips with aerosol barriers. Tips that are used must be free from DNases and RNases. - Reagents must be stored and handled as specified in Kit Components and Storage Conditions on page 4. - Do not use the kit after the indicated expiry date. - The Advanta Dx SARS-CoV-2 RT-PCR Assay workflow should be performed by qualified and trained staff to avoid the risk of erroneous results. Use separate areas for the preparation of samples and controls to prevent false positive results. Reagents may be handled under a laminar airflow hood. Use universal precautions when handling biological samples in a Class II biological safety cabinet. - Modifications to assay reagents, assay protocol, or instrumentation are not permitted, and are in violation of the product Emergency Use Authorization. - Reliable results depend on proper specimen collection, storage, and handling procedures. - Avoid contamination from positive controls and samples by following good laboratory practices. - In addition to your site-specific safety requirements, Standard BioTools recommends the following general safety guidelines in all laboratory and manufacturing areas: - Follow necessary precautions when handling specimens. Use personal protective equipment (PPE) consistent with current guidelines for the handling of potentially infectious samples. - Know the locations of all safety equipment (fire extinguishers, spill kits, eyewashes/ showers, first-aid kits, safety data sheets, etc.), emergency exit locations, and emergency/injury reporting procedures. - Do not eat, drink, smoke, or apply cosmetic products in lab areas. - Maintain clean work areas. - Wash hands before leaving the lab. - The Advanta Dx SARS-CoV-2 RT-PCR Assay is for use only with Biomark HD in conjunction with Juno or an IFC Controller RX. For complete instrument safety information, including a full list of the symbols on the instrument, refer to the Juno System User Guide (100-7070) or IFC Controller RX User Guide (100-3385) and Biomark HD Data Collection User Guide (100-2451). - When handling biohazardous materials or when using biohazardous material on the instrument, use appropriate personal protective equipment and adhere to Biosafety in Microbiological and Biomedical Laboratories (BMBL), a publication from the Centers for Disease Control and Prevention, and to your lab's safety protocol to limit biohazard risks. If biohazardous materials are used, properly label the equipment as a biohazard. For more information, see the BMBL guidelines online at cdc.gov/biosafety/publications/index.htm. - The responsible individuals must take the necessary precautions to ensure that the surrounding workplace is safe and that instrument operators are not exposed to hazardous levels of toxic substances. - Read and understand the safety data sheets (SDS) before handling chemicals. To obtain SDSs for chemicals ordered from Standard BioTools, either alone or as part of this system, go to fluidigm.com/sds and search for the SDS using either the product name or the part number. Some chemicals referred to in this protocol may not have been provided with your system. Obtain the SDSs for chemicals provided by other manufacturers from those manufacturers. - Dispose of waste in compliance with local, state, and federal regulations. #### **Best Practices** #### **IFC and Control Line Fluid Handling** Use the IFC within 24 hr of opening the package. - Inspect the IFC for any signs of visible damage before use. Ensure that the barcode label is intact and the IFC surfaces are clear of particulates. - Do not evacuate air from syringes prior to injecting control line fluid. - Avoid bending the control line fluid syringe tip. - Be careful when removing the control line fluid syringe cap to prevent drips. - Before removing the syringe from the accumulator, ensure that all the control line fluid and air are purged from the syringe to avoid dripping fluid on the surface of the IFC. - Avoid getting control line fluid on the exterior of the IFC or in the inlets because this makes the IFC unusable. If this occurs, use a new IFC. - During use, take care to avoid the introduction of particulates, reagents, and fluids to the surface of the IFC. #### **Sample Handling** - To prevent the cross-contamination of samples and controls with pre-amplified amplicons: - Designate space for the preparation of controls and saliva specimens and the 1step RT and preamplification reactions that is separate from the remaining processes. - Use a
separate set of pipettes, filter tips, racks, vortexers, centrifuges, generic lab reagents and supplies at their respective areas. - Clean the work areas and pipettes with DNA-destroying surface decontaminants. - Change gloves between tasks. - To prevent cross-contamination in 96-well sample preparation: - Always change the pipette tip after each sample. - · Do not reuse plate seals. - Centrifuge the plate to collect contents before removing a plate seal. - Press the plate firmly down on a flat surface when removing a plate seal. - Ensure a secure uniform seal around all wells when sealing the plate with a plate seal. - Ensure that all samples in the 96-well plates are mixed thoroughly at every step. #### **Reagent Handling** - Use good laboratory practices to minimize contamination of samples: - Use a new pipette tip for every new sample. - Whenever possible, separate RT and preamplification activities and IFC setup from sample preparation activities. Dedicate laboratory materials to designated areas. - Ensure that lab consumables (tubes, tips, plates) used for the RNA handling steps are RNasefree. - Retrieve only the reagents required from each kit based on the number of IFCs that you will run. - Use only the reagents provided in the required kit and specified in the protocol. - Reagent kit modules (Modules 1 and 2) are lot-matched. Do not swap reagents or kit modules between kit lots. Using mixed lots of reagent modules invalidates the results generated. - Unless otherwise specified, thaw reagents at room temperature (+15 °C to +30 °C), and then use them at room temperature. - Mix and centrifuge reagents as directed. - Before use, briefly vortex reagents at medium speed for at least 5 sec, then centrifuge for at least 2 sec to ensure that all reagents are homogeneous. - Place the sample mixes on ice or in a cold block when not in use. - To reduce the number of pipetting steps, we recommend first transferring reagents into an 8-well PCR tube strip to enable transfer into a 96-well plate using an 8-channel pipette. #### **Bubble Prevention** - Vortex gently (low speed) but thoroughly (at least 5 sec) to ensure that all reagents and reagent mixes are homogeneous. - After vortexing the assay and sample mixes, centrifuge them to collect all mixes at the bottoms of the wells before pipetting into the IFC inlets. Failure to do so may result in a decrease in data quality. - Check the source plate or tube for bubbles before pipetting. - Check pipette tips for air gaps while pipetting. - Pipet reagents slowly and carefully to transfer entire volumes and to minimize bubbles. - To avoid creating bubbles in the IFC inlets, pipet into the inlets at an angle and do not go past the first stop on the pipette. If a bubble is introduced, ensure that it floats to the top of the inlet. - If necessary, remove bubbles from an IFC inlet by removing the contents of the inlet by pipette and then carefully re-pipetting the contents into the inlet. ## **Limitations of the Procedure** - The Advanta Dx SARS-CoV-2 RT-PCR Assay performance was only established using saliva specimens from patients suspected of COVID-19 by their healthcare provider. Performance of this assay in persons without signs and symptoms of respiratory infections has not been established. - Testing of saliva is limited to patients suspected of COVID-19 infection. - Oral products such as toothpaste and mouth rinse should not be used for at least 30 min prior to collecting the saliva sample. - Performance of this test was not evaluated in an asymptomatic patient population from individuals suspected of COVID-19 by their healthcare providers. - Specimens must be collected, transported, and stored using appropriate procedures and conditions. Improper collection, transport, or storage of specimens may affect the ability of the assay to perform as indicated. - Nasal gel products may interfere with the detection of low positive samples. - The impacts of vaccines, antiviral therapeutics, antibiotics, chemotherapeutic or immunosuppressant drugs, or homeopathic medications have not been evaluated. - The Advanta Dx SARS-CoV-2 RT-PCR Assay cannot rule out respiratory diseases caused by other bacterial or viral pathogens. - False positive results may arise from: - Cross-contamination during specimen handling or preparation - Cross-contamination between patient samples - Specimen mix-up - RNA contamination during product handling: please ensure that the preamplification products are handled and diluted in a separate area from the amplification on the microfluidic chip to avoid contamination with pre-amplification product. - False negative results may arise from: - · Improper specimen collection - The presence of RT-PCR inhibitors - The presence of sequence variants in the pathogen targets of the assay - Degradation of the SARS-CoV-2 RNA during shipping/storage - Use of unauthorized assay reagents - · Mutation in the SARS-CoV-2 virus - Failure to follow Instructions for Use - Analyte concentrations below the limit of detection - Negative results do not preclude infection with SARS-CoV-2 virus and should not be the sole basis of a patient management decision. - All results from this and other tests must be considered in conjunction with the clinical history, epidemiological data, and other data available to the clinician evaluating the patient. - The results of this test should not be used as the sole basis for diagnosis, treatment, or other patient management decisions. - This test is a qualitative test and the Ct values do not provide a quantitative assessment of SARS-CoV-2. The Ct values of the Real-Time PCR performed on the Biomark HD and analyzed by the Real-Time PCR analysis software do not include the pre-amplification cycles and therefore Ct results do not compare to other conventional Real-Time PCR tests. - This device may not be able to differentiate newly emerging SARS-CoV-2 subtypes. - As with any molecular test, if the virus mutates in the target region, SARS-CoV-2 RNA may not be detected or may be detected less predictably. - The performance of this test was established based on the evaluation of a limited number of clinical specimens. Clinical performance has not been established with all circulating variants but is anticipated to be reflective of the prevalent variants in circulation at the time and location of the clinical evaluation. Performance at the time of testing may vary depending on the variants circulating, including newly emerging strains of SARS-CoV-2 and their prevalence, which change over time. # Specimen Collection, Handling, and Storage The specimen collection device is not included as part of the kit. Refer to the CDC Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens for COVID-19 (cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html). Saliva specimens have been demonstrated to be stable at ambient temperature for up to 120 hr after collection and prior to heat inactivation (see Table 1 on page 14 for heat inactivation). If the interval between collection and testing is anticipated to exceed 120 hr, the specimen should be stored at -20 °C or lower. # **Quality Control Procedures** Control materials to be used with Advanta Dx SARS-CoV-2 RT-PCR Assay: - A "no template" negative control (NTC) is needed to test for amplicon contamination of reagents and instrumentation and consists of nuclease-free water in place of the sample. It is a full process control. If nonspecific amplification of any of the assays comes up in this sample, it is recommended that DNA decontamination of equipment, especially pipets, occur according to standard protocols and methods (for example, DNA AWAY™, Thermo Fisher Scientific, PN 7010). - An internal control consisting of the RNase P primer and probe assay is needed. This control is used to monitor adequate amounts of RNA in the patient specimens and its RNA quality. It also monitors adequate RNA release from host cells present in the saliva specimens during the heating step and monitors reagent failure and the efficiency of the 1-step RT-preamplification and real-time PCR detection steps. This process control also monitors for inhibitors in the specimen that may reduce amplification efficiency. Additional controls that are required but <u>not</u> provided with the test kit: - The negative extraction control (NC) consists of normal saliva pooled from human donors confirmed COVID-19 negative combined with PBS and RNAsecure. The NC is heated at +90 °C for 10 min. Human RNA is detected using the RNase P primer and probe set. - The positive template control (PC) is needed to control for adequate release of RNA and any failure in reverse transcription and amplification reagents and sample processing steps. The positive template control consists of heat-inactivated SARS-CoV-2 virus (ATCC® PN VR-1986HK) spiked into normal saliva from confirmed SARS-CoV-2 negative pooled human donors at 50 genome equivalents (GE)/µL. The positive control also serves as an extraction control because it is processed in the same manner as the saliva samples. Human RNA is detected using the RNase P primer and probe set. All 3 quality controls ["no template" control (NTC), negative extraction control (NC), and positive control (PC)] must be run on each 96-well sample processing plate along with 93 samples. Each control is treated in the same manner as the sample (diluted in PBS and RNAsecure and then heated). If the negative or positive control fails, then it invalidates the 96-well plate run. A root cause investigation should be performed and once a root cause is identified the run must be repeated with the controls and specimens first. If the controls and specimens fail upon the second run, recollection of the specimens, re-processing of the specimens, and fresh aliquots of the controls are necessary before performing the next run. # **Prepare the Controls and Saliva Specimens** #### **Collect the Saliva
Specimens** **IMPORTANT:** Use universal precautions when handling biological samples. Collect saliva specimen in a sterile container. Transport and test specimens as soon as possible after collection. Specimens are stable for up to 120 hr at ambient temperature. IMPORTANT: Due to the nested PCR design of this test, strict quality control and physical separation of areas with potential amplicon or positive control material contamination is critical. Sample receiving activities and sample and control preparation activities need to be physically separated from the area/s in which the preamplification and amplification reactions are set-up to mitigate the risk of contamination. #### **Prepare the Negative and Positive Controls** **IMPORTANT:** Prepare in the pre-PCR area of the facility. - **1** Briefly vortex and centrifuge the reagents before use. - 2 Prepare each control with PBS (Thermo Fisher Scientific, 10010023) in a new, labeled 1.5 mL tube as follows: - **No Template Control (NTC):** Mix 25 μL of water with 25 μL of PBS, then vortex and centrifuge. - **Negative Extraction Control (NC):** Mix 25 µL of negative saliva specimen with 25 µL of PBS, then vortex and centrifuge. - Positive Control (PC): Dilute heat-inactivated virus (ATCC, VR-1986HK) in 25 μL of negative saliva specimen at 50 GE/μL. Add 25 μL of PBS, then vortex and centrifuge. **IMPORTANT:** Dilute the heat-inactivated virus in saliva at the time of use. Any unused diluted positive control should be discarded. - 3 Aliquot 24 μL of each control to a new, labeled 1.5 mL tube. - **4** Add 1 μL of RNAsecure (Thermo Fisher Scientific, AM7005) to each tube, then vortex and centrifuge to mix. - **5** Set aside until ready to heat inactivate together with the saliva specimens. #### **Process the Saliva Specimens** #### **IMPORTANT:** - Prepare in the pre-PCR area of the facility. - Use universal precautions when handling biological samples. Prior to heat inactivation the saliva specimens should be handled in a BSL-2 environment. - 1 Mix each saliva specimen with an equal volume of nuclease-free PBS (Thermo Fisher Scientific, 10010023). - 2 Aliquot 24 μ L of the saliva/PBS mix and add 1 μ L of RNAsecure (Thermo Fisher Scientific, AM7005) to the mix, then briefly vortex and centrifuge. - 3 Heat-inactivate the prepared saliva specimens and the 3 controls (NTC, NC, PC) in a thermal cycler using the program in Table 1. Table 1. Heat-inactivation of saliva samples | Temperature | Time | |-------------|----------| | +90 °C | 10 min | | +4 °C | 2 min | | +4 °C | ∞ | 4 After 2 min at +4 °C, you can place samples on ice until ready to use. # Prepare and Perform the 1-Step Reverse Transcription and Preamplification Reactions This section describes the preparation of the pooled assay mixes and sample mixes for the preamplification of a single run of 192 tests in two 96-well plates. Each sample requires the preparation of a single preamplification reaction. No fluorescence data is collected from the reverse transcription and preamplification reactions. **IMPORTANT:** Assemble the 1-step pre-mix, sample mixes, and 1-step reactions in the pre-PCR area of the facility. # **Pool and Dilute the Primer and Probe Sets for Preamplification** **IMPORTANT:** Prepare in the pre-PCR area of the facility. - **1** Briefly vortex and centrifuge the reagents before use. - 2 Pool and dilute the assays (6.7 μ M primer, forward and reverse) in a new 2 mL tube, as shown in Table 2. The assay mix should be prepared and used immediately. Table 2. Pooled and diluted primer and probe mix | Component | Vol for 3 Assays/
1 Reaction (µL)* | Vol for 3 Assays/
192 Reactions (µL)† | | |---|---------------------------------------|--|--| | 2019-nCoV Probe & Primer Kit (102-0686) | | | | | • 2019 nCoV_N1 | 0.112 | 25.0 | | | • 2019 nCoV_N2 | 0.112 | 25.0 | | | RNase P (RP) | 0.022 | 5.0 | | | Advanta Dx Dilution Reagent (102-0353 |) 6.754 | 1,509 | | | Total | 7.0 | 1,564 | | ^{*}When preparing master mixes for less than 192 reactions, include an additional 10% to the volumes for overage. Remaining volumes may not be stored and are discarded. NOTE: Volumes can be adjusted proportionally based on the number of samples to be amplified, up to 192 reactions. # **Prepare the 1-Step Reverse Transcription and Preamplification Reactions** **IMPORTANT:** Prepare in the pre-PCR area of the facility. - **1** Thaw Advanta Dx RT PA MM and keep on ice. Briefly vortex and centrifuge the reagents before use. - 2 In a DNA-free hood, combine the components shown in Table 3 in a new 5 mL tube to make the 1-step pre-mix and place on ice. Scale up appropriately for multiple runs. Table 3. 1-step pre-mix | Total | 10 | 2,120 | |---|------------------------------|-----------------------------------| | Advanta Dx RT PA MM (102-0345) | 3 | 636 | | Pooled primer and probe mix (see Table 2) | 7 | 1,484 | | Component | Vol per
Reaction
(µL)* | Vol for
192 Reactions
(μL)† | ^{*} When preparing master mixes for less than 192 reactions, include an additional 10% to the volumes for overage. [†] Includes overage [†] Includes overage - **3** Cap the tube, vortex, and centrifuge the 1-step pre-mix. - 4 Aliquot 128 μL of 1-step pre-mix into each well of two 0.2 mL 8-well strips. - 5 Using an 8-channel pipette, combine the 1-step pre-mix and the samples or controls in 2 new 96-well plates as shown in Figure 1. - a First, transfer 10.0 µL of 1-step pre-mix into each well of 2 new 96-well plates. - b Next, add 5.0 μ L of each control into wells A1 (NTC), B1 (NC), and C1 (PC) of each plate. - c Last, add 5.0 µL of sample to each remaining well of the 96-well plates. NOTE: Only 1 preamplification reaction is prepared for each sample Figure 1. 1-step reaction plates (per-well transfer volumes) 6 Tightly seal the plates using MicroAmp Clear Adhesive Film for 96-well plates (Thermo Fisher Scientific, 4306311) then gently vortex and centrifuge them at $3,000 \times g$ for 60 sec to mix the reactions. # **Perform the 1-Step Reverse Transcription and Preamplification Reactions** Place each plate in the Applied Biosystems Veriti 96-Well Thermal Cycler (Thermo Fisher Scientific, 4375786) and cycle using the program in Table 4: Table 4. 1-step reverse transcription and preamplification | Temperature | Time | Condition | | |-------------|--------------|-----------------------|--| | +50 °C | 15 min | Reverse transcription | | | +95 °C | 2 min | Hot start | | | +95 °C | 15 sec | 20 | | | +60 °C | 2 min | 20 cycles | | | +4 °C | _∞ | Hold | | ### **Dilute the Pre-amplified cDNA** **IMPORTANT:** Prepare in the post-PCR area of the facility. After cycling, dilute the pre-amplified reactions in the 96-well plates in Advanta Dx Dilution Reagent as shown in Table 5 and described as follows. - 1 Transfer 13 mL of Advanta Dx Dilution Reagent into a new 25 mL reagent reservoir. NOTE: This is sufficient for the dilution of two 96-well plates of pre-amplified samples. - 2 Use an 8-channel pipette to transfer 60 μ L of Advanta Dx Dilution Reagent into each well containing the pre-amplified cDNA or control. - NOTE: Any unused Advanta Dx Dilution Reagent dispensed in Step 1 should be discarded. - **3** Tightly seal the plates using MicroAmp Clear Adhesive Film for 96-well plates (Thermo Fisher Scientific, 4306311), then gently vortex to mix the dilutions and centrifuge them at $3,000 \times q$ for 60 sec. Set aside until ready to prepare the final sample mixes. - STOPPING POINT The diluted, pre-amplified cDNA and controls can either be assayed immediately or stored at -15 °C to -25 °C for later use. Table 5. Diluted, pre-amplified cDNA and controls | Component | Vol per
Reaction (µL) | |---|--------------------------| | Advanta Dx Dilution Reagent (102-0353) | 60.0 | | Pre-amplified cDNA or control (contained in the 96-well plates) | 15.0 | | Total | 75.0 | # **Prepare and Perform the Real-Time PCR Reactions on the IFC** **IMPORTANT:** Prepare in the post-PCR area of the facility. This section describes the preparation of the final assay mixes, sample mixes, and integrated fluidics circuit (IFC) for the collection of real-time PCR amplification results. #### **Prepare the Final Assay Mixes for Loading on the IFC** #### NOTE: - For each patient sample, each assay (N1, N2, RNase P) is automatically run in 4 replicates in each IFC. - Assemble your assays in a 96-well plate and record in a detector map. - **1** Briefly vortex and centrifuge the reagents before use. - 2 In a DNA-free hood, prepare the assay mixes using the 2019-nCoV Probe & Primer Kit (102-0686) as shown in Figure 2. NOTE: For unused assay inlets, replace the assays with 3.0 μ L of Advanta Dx PCR Water (102-0369). Figure 2. Final assay mixes plate (per-well transfer volumes) ## **Prepare the Final Sample Mixes** - **1** Thaw Advanta PCR MM and keep on ice. Briefly vortex and centrifuge the reagents before use. - 2 In a DNA-free hood, combine the components (Table 6) in a sterile 1.5 mL tube to make the sample pre-mix and place on ice. Scale up appropriately for multiple runs. NOTE: This is enough volume for the entire IFC. Table 6. Sample pre-mix | Component | Vol per Inlet
(µL)* | Sample Pre-Mix for
One 192.24 IFC (μL)† | |------------------------------|------------------------|--| | Advanta Dx PCR MM (102-0346) | 2.0 | 460.0 | | Advanta Dx SLR (102-0349) | 0.2 | 46.0 | | Total | 2.2 | 506.0 | ^{*} Includes overage - **3** Prepare the final sample mixes as shown in Figure 3. - a First, briefly vortex and centrifuge the sample pre-mix from Table 6. - b Next, aliquot 60 μL of pre-mix into each well of a new 8-well strip. - c Next, use an 8-channel pipette to transfer 2.2 μ L of sample pre-mix from the 8-well strip into
each well of 2 new 96-well plates. - d Last, remove the plates from the DNA-free hood and prepare the final sample mix by adding 1.8 μ L of each diluted, pre-amplified sample and control from Table 5 on page 17 to each well. NOTE: For unused sample inlets, replace the diluted, pre-amplified cDNA with 1.8 μ L of Advanta Dx PCR Water (102-0369). **IMPORTANT:** Before use, briefly vortex and centrifuge the plates containing the diluted, pre-amplified cDNA and controls. Figure 3. Final sample plates (per-well transfer volumes) **4** Tightly seal the plates using MicroAmp Clear Adhesive Film for 96-well plates (Thermo Fisher Scientific, 4306311), then vortex and centrifuge them at $3,000 \times g$ for 60 sec. ^{†230} reactions for ease of pipetting # **Prepare the Advanta Dx 192.24 IFC** **IMPORTANT:** When injecting control line fluid: - Follow the best practices for handling IFCs and control line fluid on page 8 of these instructions. - Only use an Advanta Dx Control Line Fluid syringe (102-0390). The syringe contains 150 µL of control line fluid. - 1 Remove the Advanta Dx Control Line Fluid syringe (102-0390) and the Advanta Dx 192.24 IFC (102-0389) from the packaging. **IMPORTANT:** Do not evacuate air from the syringe prior to injecting control line fluid (Step 4). - 2 Actuate the check valve: - a First, place the IFC on a flat surface. - a Then, use the syringe with the shipping cap in place to actuate the check valve in the top accumulator (closest to the notched A1 corner of the IFC) with gentle pressure. Ensure that the poppet can move freely up and down (Figure 4). **IMPORTANT:** The bottom accumulator is not used. Figure 4. Actuating the check valve in the top accumulator on the 192.24 IFC - **3** Hold the syringe firmly in one hand with tip facing up and away from the IFC and remove the shipping cap with the other hand. - **4** Holding the IFC at a 45° angle, insert the syringe tip into the top accumulator (Figure 5 on page 21). #### **IMPORTANT:** - Avoid bending the syringe tip. Be careful when removing the syringe cap to prevent drips. - Avoid getting control line fluid on the exterior of the IFC or in the inlets because this makes the IFC unusable. If this occurs, use a new IFC. - 5 Use the syringe tip to press down gently on the black O-ring to move it (Figure 5). Visually confirm that the O-ring has moved. #### **6** Release the control line fluid: - a First, press the syringe plunger to release the control line fluid into the accumulator while maintaining the 45° angle to allow the fluid to flow away from the O-ring. - b Next, slowly inject the control line fluid by pushing down on the syringe plunger. The control line fluid flows into the accumulator through the open check valve. Use the entire contents of the syringe. - c Last, after fully depressing the plunger, wait approximately 5 sec before withdrawing the syringe. Figure 5. Injecting control line fluid into the accumulators on the 192.24 IFC - **7** Check to ensure that the O-ring returns to its normal position after the syringe is removed. - 8 Pull the protective film down and away from the bottom of the IFC. Discard the film. ### Load the IFC For detailed instructions about using Juno, see the Juno System User Guide (100-7070). For detailed instructions about using the IFC Controller RX, see the IFC Controller RX User Guide (100-3385). #### **IMPORTANT:** - Vortex thoroughly and centrifuge all assay and sample solutions before pipetting into the IFC inlets. Failure to do so may result in a decrease in data quality. - While pipetting, do not go past the first stop on the pipette. Doing so may introduce air bubbles into inlets. Refer to Figure 6 on page 23 when pipetting final sample, control, and assay mixes, PF 1, and PF 2 into the IFC. - 1 If using Juno, ensure that the RX Interface Plate is installed in the Juno instrument. - 2 Pipet 3 µL of each final sample or control mix into the respective sample inlets on the IFC. - 3 Pipet 3 μ L of each final assay mix into the respective assay inlets on the IFC. This enables each sample to be amplified by 4 replicates of each assay on the IFC. - 4 Pipet 150 μL of Advanta Dx PF 1 (102-0352) into the P1 reservoir (on the IFC. - 5 Pipet 150 μL of Advanta Dx PF 2 (102-0351) into each of the P2 and P3 reservoirs (______) on the IFC. - 6 Pipet 20 μL of Advanta Dx PF 2 into each of the P4 and P5 inlets (①) on the IFC. - **7** Blot the IFC surface with a dry, lint-free cloth. - 8 Place the IFC into the controller: - Juno: Tap **OPEN** to open the instrument tray and align the notched corner of the IFC to the white notch on the tray. Tap **LOAD**. - RX: Press EJECT to open the instrument tray and align the notched corner of the IFC to the A1 mark. Press Load Chip. - **9** Run the Load Mix script: - Juno: Tap Load Mix 192.24 GE, then tap Run. - RX: Select Load Mix (169x) and press Run Script. **IMPORTANT:** Start the IFC run on the Biomark HD within 1 hr of completing the Load Mix script. Figure 6. Pipetting map for the 192.24 IFC # Thermal-Cycle and Collect Real-Time PCR Data - For detailed instructions about using the Data Collection software, see the Biomark HD Data Collection User Guide (100-2451). - 1 Remove the loaded IFC from Juno or IFC Controller RX. - 2 Use clear tape to remove any dust particles or debris from the IFC surface if necessary. - 3 If necessary, double-click the **Data Collection** icon () on the desktop of the Biomark HD computer to launch the software. - 4 Click Start a New Run. - **5** Confirm that the camera status indicator at the bottom of the window is green. - Ocamera Temperature: -5.0 °C - 6 Place the loaded IFC on the instrument tray and align the notched A1 corner on the IFC with the A1 label on the tray (Figure 7). In the Data Collection software, click **Load**. Figure 7. Loaded IFC on instrument tray - 7 In the Data Collection software, confirm the IFC barcode and IFC type and then click **Next**. - **8** Complete the Chip Run section by selecting either a new or a pre-defined run. NOTE: To pre-define a run, see the Biomark HD Data Collection User Guide - **9** Complete the Chip Run Name and Location section: - a Enter a run name or select the checkbox to use the IFC barcode as the run name. - b Select a file storage location for a new IFC run or browse to select a pre-defined run file and click **Next**. - **10** Complete the Application, Reference and Probes section and then click **Next**. | For | Select | |-------------------|------------------------| | Application | Gene Expression | | Passive reference | ROX™ | | Assay | Single probe | | Probes | FAM-MGB | 11 Browse to and select the thermal protocol: **GE 192x24 Fast v1.pcl.** **IMPORTANT:** For a description of the thermal protocol, see Appendix A. - **12** Confirm that **Auto Exposure** is selected. Click **Next**. - 13 Confirm that IFC run information is correct and click Start Run. 14 After the run is complete, analyze your data using the Real-Time PCR Analysis software. ## **Annotate the Real-Time PCR Data** For detailed instructions about using the Real-Time PCR Analysis software, see the Real-Time PCR Analysis Software User Guide (68000088). For detailed instructions about installing, setting up, and using the interpretive software, see the Advanta Dx SARS-CoV-2 RT-PCR Assay Interpretive Software Quick Reference Guide (FLDM-00162). You can either set up the Real-Time PCR Analysis software to export data directly through the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software or you can run the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software from a command line. - 1 Double-click the **Real-Time PCR Analysis** icon () on the desktop to launch the Real-Time PCR Analysis software. - 2 Click (Open), then browse to and select the **chiprun.bml** file to open it in the Real-Time PCR Analysis software. - 3 Annotate the samples for the first analysis of a new IFC run: - a In the **Chip Explorer** pane, click **Sample Setup**. - b In the **Task** pane, click **New**. - c For **Container Type** select **SBS Plate**, for Container Format select **SBS96**, then click **OK**. - d Annotate the samples: - Click Import to import the sample information from a plate file or a commaseparated values (CSV) file for both sample plates 1 and 2, or - In the Sample Setup pane, click Editor to annotate the samples in each plate well by well. To switch plates, select the Source (96 Wellplate #1 or 96 Wellplate #2) in the Task pane. #### **IMPORTANT:** - Annotate no template controls with type NTC and negative and positive controls with type Unknown. - Annotate all samples with type Unknown. - Any empty sample inlets must be annotated with type **Blank**. - e Click Map, select 192-Sample-SBS96-Left&Right.cdsp, then click Open. - 4 Annotate the detectors (assays) for the first analysis of a new IFC run: - a In the **Chip Explorer** pane, click **Detector Setup**. - b In the **Task** pane, click **New**. - For Container Type select SBS Plate, for Container Format select SBS96, then click OK. - d In the Detector Setup pane, click **Editor** and annotate the assays: - Detector Names: N1, N2, RNase P, or Empty. - Type: RNase P assays are type Control. Empty assay inlets are type Blank. N1 and N2 assays are type Test. **IMPORTANT:** The names **N1**, **N2**, **RNase P**, and **Empty** are case-sensitive and must be entered exactly as shown. NOTE: After you annotate the assays for the first time, you can export the detector setup as a plate file (.plt) for reuse. To reuse the exported plate file, click **Import** instead of New in Step 4b, then select the detector setup plate file (.plt). - e Click Map, select 24-Assay-SBS96-Left3.dsp, then click Open. - 5 Click **Details Views**. - **6** Set the following Analysis Settings, then click **Analyze** to analyze the IFC run. | For | Select | |---------------------|--------------------------| | Quality Threshold | 0.65 | | Baseline Correction | Linear | | Ct
Threshold Method | Auto By Control (Global) | NOTE: To set Linear and Auto By Control (Global) as the default settings, select **Tools** > **Options** > **Analysis Parameters**. Check the checkbox for **Customize Default Baseline Correction Method** and select **Linear**. Check the checkbox for **Customize Default Ct Threshold Method** and select **Auto By Control (Global)**. Click **OK** to save the changes. - 7 After analyzing the data, click [(Save), then click [(Export) and use the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software to interpret the Ct results and save the interpretation as a CSV file. - 8 Review the interpreted data. If any of the controls fail, review the Ct threshold to ensure that it resides within the exponential phase of the amplification curve. If the Ct threshold falls outside of the exponential phase, adjust the Ct threshold manually as follows: - a In the Real-Time PCR Analysis software, open the IFC run. - b In the Details Views pane, show the **Heat Map View**, then select all rows with assays (RNase P, N1, N2). - c Click (Expand/Collapse) in the secondary toolbar to expand the Normalized Intensity and Amplification plots. - d Click **Threshold** to show the threshold line in the Amplification plot, then click **Log Graph** to show more detail. - e Confirm that the Ct threshold needs to be adjusted by visually confirming that the horizontal Ct Threshold line is in the baseline in the Amplification plot. - f In the Analysis Settings pane, change the Ct Threshold Method to **User (Global)**. - g In the Details Views pane, click **Edit**, then click and drag the threshold line so that it falls above the background signal and within the exponential phase of the fluorescence curves. Ct threshold in the baseline in the Amplification plot Ct threshold adjusted manually - h In the Task pane, click **Analyze** to analyze the data with the updated Ct Threshold Method. - i Export the interpretative report and review control expected interpretations, confirm most samples are not called inconclusive. # **Assay Results and Interpretation** All test controls must be examined prior to interpretation of patient results. If the positive or negative controls are not valid, the patient results cannot be interpreted, and all patient specimens should be retested after a root cause has been identified and eliminated. #### **Examination and Interpretation of Control Results** The 3 quality controls referenced in Quality Control Procedures on page 12 are included on each 96-well sample plate generated (3 controls and 93 samples). Two 96-well sample plates are used to load each integrated fluidic circuit (IFC). Therefore, there are 6 controls in one IFC run, 3 per 96-well sample plate. The definitions of positive (+) and negative (–) results are in Table 7. Control results are interpreted manually on a per-plate basis when using the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software v1.0.1. Control results are interpreted automatically on a per-plate basis when using the Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1. Therefore, if the controls in one 96-well sample plate fail to meet the expectation, it will only affect the samples in the same plate. Table 7. Expected control results from Standard BioTools Biomark HD | Control Description | N1
Result | N2
Result | RNase P
Result | Interpretation | Control Result | |----------------------------------|--------------|--------------|-------------------|----------------|----------------| | Positive control (PC) | + | + | + | Positive | Pass | | Negative extraction control (NC) | _ | _ | + | Negative | Pass | | No template control (NTC) | _ | _ | _ | No Template | Pass | If the NTC, NC, or PC fail to meet expected control results for a given 96-well plate, then it invalidates the plate and the results are not reportable. A root cause investigation shall be completed prior to repeating the test. Upon elimination of the root cause, a retest may be performed. If the controls and specimens fail upon the second run, recollection of the samples, re-processing of the samples and fresh aliquots of the controls and reagents are necessary before performing the next run. If the NTC fails to meet expected control results, it is recommended that standard laboratory DNA decontamination procedures are implemented and/or additional training of test operators. ## **Interpretation of Patient Specimen Results** Interpretation of specimen results is performed using the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software based on a Ct of 32 as the cutoff and according to Table 8 on page 29. NOTE: Ct values of the Real-Time PCR step performed on the Biomark HD do not include the pre-amplification cycles, and therefore results do not compare to other conventional Real-Time PCR tests. For detailed instructions about using the interpretive software, see the Advanta Dx SARS-CoV-2 RT-PCR Assay Interpretive Software Quick Reference Guide (FLDM- Table 8. Patient sample interpretation from assay N1, N2 and RNase P results. NOTE: + = Positive, - = Negative, ? = Inconclusive | N1
Result | N2
Result | RNase P
Result | Sample
Interpretation | Action | | | |--------------|--------------|-------------------|--------------------------|--|--|--| | + | + | + | Positive | | | | | + | + | _ | Positive | | | | | + | + | ? | Positive | Report as positive for SARS-CoV-2. | | | | + | _ | + | Positive | | | | | + | ? | + | Positive | Report result to public health authorities. | | | | _ | + | + | Positive | ricaltif authorities. | | | | ? | + | + | Positive | | | | | - | _ | + | Negative | Report as negative for SARS-CoV-2. Report result to public health authorities. | | | | _ | _ | _ | No Template | | | | | _ | ? | _ | Inconclusive | | | | | _ | + | _ | Inconclusive | | | | | ? | _ | _ | Inconclusive | | | | | ? | ? | _ | Inconclusive | | | | | ? | + | _ | Inconclusive | | | | | + | _ | _ | Inconclusive | | | | | + | ? | _ | Inconclusive | Retest. | | | | _ | _ | ? | Inconclusive | If the result of the | | | | _ | ? | ? | Inconclusive | retest repeats as No Template or as | | | | _ | + | ? | Inconclusive | Inconclusive, | | | | ? | _ | ? | Inconclusive | obtain a new specimen. | | | | ? | ? | ? | Inconclusive | ' | | | | ? | + | ? | Inconclusive | | | | | + | _ | ? | Inconclusive | | | | | + | ? | ? | Inconclusive | | | | | _ | ? | + | Inconclusive | | | | | ? | _ | + | Inconclusive | | | | | ? | ? | + | Inconclusive | | | | ## **Conditions of Authorizations for Labs** The Advanta Dx SARS-CoV-2 RT-PCR Assay Letter of Authorization, along with the authorized Fact Sheet for Healthcare Providers, the authorized Fact Sheet for Patients, and authorized labeling, are available on the FDA website: fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas. To assist clinical laboratories using the Advanta Dx SARS-CoV-2 RT-PCR Assay ("your product" in the conditions below), the relevant Conditions of Authorization are listed below: - A Authorized laboratories using this product¹ must include with test result reports, all authorized Fact Sheets. Under exigent circumstances, other appropriate methods for disseminating these Fact Sheets may be used, which may include mass media. - **B** Authorized laboratories using this product must use this product as outlined in the authorized labeling. Deviations from the authorized procedures, including the authorized instruments, authorized extraction methods, authorized clinical specimen types, authorized control materials, authorized other ancillary reagents, and authorized materials required to use this product, are not permitted. - **C** Authorized laboratories that receive this product must notify the relevant public health authorities of their intent to run this product prior to initiating testing. - **D** Authorized laboratories using this product must have a process in place for reporting test results to healthcare providers and relevant public health authorities, as appropriate. - Authorized laboratories must collect information on the performance of this product and report to DMD/OHT7-OIR/OPEQ/CDRH (via email: CDRH-EUA-Reporting@fda.hhs.gov) and Standard BioTools (via email: techsupport@fluidigm.com) any suspected occurrence of false positive or false negative results and significant deviations from the established performance characteristics of your product of which they become aware. - **F** All laboratory personnel using your product must be appropriately trained in RT-PCR techniques and the specific processes and instruments used in the Advanta Dx SARS-CoV-2 RT-PCR Assay, use appropriate laboratory and personal protective equipment when handling this kit, and use your product in accordance with the authorized labeling. - **G** Standard BioTools Inc., authorized distributors, and authorized laboratories using this product must ensure that any records associated with this EUA are maintained until otherwise notified by FDA. Such records will be made available to FDA for inspection upon request. ^{1 &}quot;This product" refers to the Standard BioTools Advanta Dx SARS-CoV-2 RT-PCR Assay. The letter of authorization refers to, "Laboratories certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 U.S.C. §263a, that meet requirements to perform high complexity tests" as "authorized laboratories." **H** Authorized laboratories testing specimens self-collected using the AZOVA COVID-19 Test Collection Kit must have in place a suitable specimen receipt and accessioning SOP. ## **Performance Evaluation** All performance data were collected and analyzed using the Fluidigm Real-Time PCR Analysis software and interpreted using the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software. #### **Limit of Detection (LoD): Analytical Sensitivity** To determine the
limit of detection (LoD), 3 independent SARS-CoV-2 negative saliva sample pools from 2 different commercial suppliers were used for this study to test the impact of natural saliva variation on the test's sensitivity. Heat-inactivated SARS-CoV-2 virus (ATCC PN VR-1986HK, 3.75×10^5 genome equivalents (GE)/ μ L Lot 70035039) was spiked into the negative saliva pools with a starting concentration of 50 GE/ μ L and then serially diluted in the negative saliva pools in decreasing 2-fold dilutions down to 0.391 GE/ μ L. After the dilutions were performed, samples were processed as described in this Instructions for Use, including all pre-processing and inactivation steps. Two Standard BioTools Advanta Dx 192.24 IFCs loaded from the same pre-amplified material and one each was processed on the IFC Controller RX and the Juno instrument. The results are shown in the Table 9 and Table 10. 95% or higher positive detection rate of the SARS-CoV-2 amplicons led to an LoD of 3.125 GE/ μ L for Saliva Pools 2 and 3 and 6.25 GE/ μ L for Saliva Pool 1. Thus, the final LoD for the Advanta Dx SARS-CoV-2 RT-PCR Assay was determined to be 6.25 GE/ μ L. The LoD results were independent of the controller used to load the IFC with samples and assays. Table 9. Summary table of IFC loaded with IFC Controller RX (Saliva Pools 1, 2, and 3) | Target | Valid | Detected
Replicates | SARS-CoV-2 N1
Positive | | SARS-CoV-2 N2
Positive | | | Internal Control
Positive | | | | |----------------|----------------------|---------------------------|---------------------------|------------|---------------------------|----|------------|------------------------------|----|------------|-------------------| | Level
GE/µL | Tested
Replicates | per Result Interpretation | n | Mean
Ct | Detection
Rate | n | Mean
Ct | Detection
Rate | n | Mean
Ct | Detection
Rate | | 50 | 60 | 60 (100%) | 60 | 20.2 | 100% | 60 | 22.2 | 100% | 60 | 18.4 | 100% | | 25 | 60 | 60 (100%) | 60 | 20.8 | 100% | 60 | 23.1 | 100% | 60 | 18.4 | 100% | | 12.5 | 60 | 60 (100%) | 60 | 22.1 | 100% | 60 | 24.2 | 100% | 60 | 18.4 | 100% | | 6.25 | 60 | 59 (98%) | 57 | 23.1 | 95% | 54 | 25.6 | 90% | 60 | 18.4 | 100% | | 3.125 | 60 | 56 (93%) | 52 | 23.4 | 87% | 43 | 25.6 | 72% | 60 | 17.8 | 100% | | 1.563 | 60 | 44 (73%) | 32 | 24.0 | 53% | 29 | 26.0 | 48% | 60 | 17.9 | 100% | | 0.781 | 60 | 24 (40%) | 20 | 24.2 | 33% | 9 | 25.8 | 15% | 60 | 17.7 | 100% | | 0.391 | 60 | 16 (27%) | 10 | 24.2 | 17% | 11 | 25.8 | 18% | 60 | 17.8 | 100% | | 0 | 84 | 0 (0%) | 0 | UD* | 0% | 0 | UD | 0% | 84 | 18.0 | 100% | ^{*} UD = Undetected SARS-CoV-2 N2 SARS-CoV-2 N1 Internal Control Detected Positive Positive Positive Target Valid Replicates Tested Level per Result Mean Detection Mean Detection Mean Detection Replicates Interpretation Rate Rate Rate GE/µL Ct Ct Ct n n n 50 60 60 (100%) 60 20.1 100% 60 22.0 100% 60 18.3 100% 25 60 60 (100%) 60 20.8 100% 60 23.0 100% 60 18.3 100% 60 (100%) 12.5 60 60 22.1 100% 60 100% 60 18.4 100% 24.2 6.25 60 59 (98%) **57** 23.2 95% 54 25.6 90% 60 18.4 100% 3.125 60 52 23.6 87% 43 25.7 72% 60 18.0 100% 56 (93%) 1.563 60 32 24.1 53% 29 26.0 48% 60 18.0 100% 44 (73%) 33% 17% 0% 9 11 26.1 26.1 UD 15% 18% 0% 60 60 84 17.9 18.0 18.0 100% 100% 100% Table 10. Summary table of IFC loaded with Juno (Saliva Pools 1, 2, and 3) 60 60 84 0.781 0.391 0 ### **Inclusivity (Analytical Sensitivity)** An *in silico* analysis was performed using the RADx ROSALIND DXM online tool (https://radx.onramp.bio) to compare the assay primers and probes to all published SARS-CoV-2 sequences as of January 16th, 2022. The sequences used in the comparison are updated weekly from the GISAID Initiative by the ROSALIND tool. 20 10 0 24.3 24.5 UD* Table 11 and Table 12 list the results of the in silico analysis. 24 (40%) 16 (27%) 0 (0%) Table 11: Number of US sequences with mismatches to the test's N1 primers and probes | | N1
Forward Primer | N1
Reverse Primer | N1
Probe | |--------------------------|----------------------|----------------------|-------------| | Total primer length (nt) | 20 | 24 | 24 | | Total strains | 12846 | 12846 | 12846 | | 100% match | 12548 | 12774 | 11906 | | 1 mismatch | 298 | 72 | 935 | | 2 mismatches | 0 | 0 | 5 | | 3 mismatches | 0 | 0 | 0 | | >3 mismatches | 0 | 0 | 0 | Table 12: Number of US sequences with mismatches to the test's N2 primers and probes | | N2
Forward Primer | N2
Reverse Primer | N2
Probe | |--------------------------|----------------------|----------------------|-------------| | Total primer length (nt) | 20 | 18 | 23 | | Total strains | 12846 | 12846 | 12846 | | 100% match | 12736 | 12846 | 12794 | | 1 mismatch | 110 | 0 | 50 | | 2 mismatches | 0 | 0 | 2 | | 3 mismatches | 0 | 0 | 0 | | >3 mismatches | 0 | 0 | 0 | ^{*} UD = Undetected #### **Cross-Reactivity** An *in silico* analysis was performed for the authorized CDC 2019-nCoV Real-Time RT-PCR Diagnostic Panel that determined that the primer and probe sequences used in the Advanta Dx SARS-CoV-2 RT-PCR Assays do not have significant homology to other respiratory pathogens. CDC has granted right-of-reference for the data in the authorized CDC 2019-nCoV Real-Time RT-PCR Diagnostic Panel EUA. Given the use of a direct saliva lysate in the Advanta Dx SARS-CoV-2 RT-PCR wet testing was conducted for the organisms, listed in Table 13 on page 35. High priority microorganisms provided by Microbiologics Respiratory (21 Targets) Control Panel PN 8217 were spiked into 3 independent negative saliva sample pools from 2 different commercial suppliers and were each tested in triplicates. As a positive control for SARS-CoV-2, heat-inactivated SARS-CoV-2 virus (ATCC PN VR-1986HK) diluted in the negative saliva pools in the absence of the other high priority microorganisms was tested. Negative controls (unspiked saliva sample pools) were run in parallel. Cross-reactive organisms were spiked into the negative background saliva pool in large excess of SARS-CoV-2. All samples were processed according to the Instructions for Use, including the heat treatment using both controllers, the IFC Controller RX and the Juno instrument. As seen in Table 13, none of the high priority microorganisms tested generated a detectable response. All positive control replicates were positive for both the N1 and N2 SARS-CoV-2 targets (3 out of 3 replicates), and all negative controls were positive for RNase P and negative for the SARS-CoV-2 targets (8 out of 8 replicates). No detectable amplification for the SARS-CoV-2 N1 and N2 targets as well as RNase P occurred for the NTCs (32 out of 32 replicates were negative). No difference between the controllers or between the different saliva pools was observed. Table 13. Cross-reactivity results | Virus/Bacteria/Parasite | Strain | Source/Sample Type | Minimum
Copies/Reaction | Saliva Pool 1
Results | Saliva Pool 2
Results | Saliva Pool 3
Results | |-----------------------------------|--------------------|----------------------------------|----------------------------|--------------------------|--------------------------|--------------------------| | Virus | | | | | | | | Adenovirus | Type 6 | Inactivated virus | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | | 229E | Inactivated virus | 1000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | | HKU1, recombinant | Inactivated recombinant bacteria | 1000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Human coronavirus | NL63, recombinant | Inactivated recombinant bacteria | 1000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | | OC43 Strain 1 | Inactivated recombinant bacteria | 1000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | | OC43 Strain 2 | Inactivated recombinant bacteria | 1000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Human metapneumovirus | | Inactivated recombinant bacteria | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Human parainfluenza virus 1 | | Inactivated virus | 1000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Human parainfluenza virus 2 | | Inactivated virus | 1000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Human parainfluenza virus 3 | | Inactivated virus | 1000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Human parainfluenza virus 4a | 4a,
recombinant | Inactivated recombinant bacteria | 1000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Human respiratory syncytial virus | | Inactivated virus | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Human rhinovirus | | Inactivated virus | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | | | Inactivated virus | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | | Subtype H1 | Inactivated virus | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Influenza A | Subtype
H1-2009 | Inactivated virus | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | | Subtype H3 | Inactivated virus | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Influenza B | | Inactivated virus | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Bacteria | | | | | | | | Bordetella parapertussis | | Inactivated bacteria | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Bordetella pertussis | | Inactivated bacteria | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Chlamydia pneumoniae | | Inactivated bacteria | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | | Mycoplasma pneumoniae | | Inactivated bacteria | 10000 | 0/3 reps detected | 0/3 reps detected | 0/3 reps detected | ### **Endogenous Interference Substances Studies** An endogenous interference study was performed to determine interference substances that could
be found in saliva samples and to evaluate the extent, if any, of potential Advanta Dx SARS-CoV-2 RT-PCR Assay inhibition or interference. Three saliva pools were tested with 3 replicates each using both controllers, generating a total of 18 replicates per interfering substance. Saliva pools without interfering substances were included as experimental sample controls. The results of this study are presented in Table 14. Table 14. Testing of potentially interfering substances | _ | | _ | | | | | | |--|--------------------------------------|--|----------------------------|------------------|------------------|------------------|------------------| | | | | Samples at I
LoD (18.75 | | Negative Samples | | | | Potential
Interfering | Concentration | | Detected | | Detected | | | | Substances
for Saliva | of Interfering Substance | Saliva
Pool 1 | Saliva
Pool 2 | Saliva
Pool 3 | Saliva
Pool 1 | Saliva
Pool 2 | Saliva
Pool 3 | | Mucin: bovine
submaxillary
gland, type I-S | 2.5 mg/mL | 6/6* | 6/6 | 6/6 | 0/6 | 0/6 | 0/6 | | White blood cells/
leukocytes | 1 to 5 × 10 ⁶
cells/mL | 6/6 | 6/6 | 6/6 | 0/6 | 0/6 | 0/6 | | Afrin® Original nasal spray | 15% v/v | 6/6 | 6/6 | 6/6 | 0/6 | 0/6 | 0/6 | | NeilMed®
NasoGel® | 1.25% | 6/6 | 6/6 | 4/6 | 0/6 | 0/6 | 0/6 | | Cepacol®
(benzocaine/
menthol lozenges) | 3 mg/mL | 6/6 | 6/6 | 6/6 | 0/6 | 0/6 | 0/6 | | Chloraseptic®
Sore Throat
spray/solution | 5% v/v | 6/6 | 6/6 | 6/6 | 0/6 | 0/6 | 0/6 | | Toothpaste
(Colgate®) | 0.5% v/v | 6/6 | 6/6 | 4/6 | 0/6 | 0/6 | 0/6 | | Crest mouthwash | 5% v/v | 2/6 | 6/6 | 6/6 | 0/6 | 0/6 | 0/6 | | Nicotine | 0.03 mg/mL | 6/6 | 6/6 | 6/6 | 0/6 | 0/6 | 0/6 | | Human genomic
DNA | 10 ng/μL | 6/6 | 6/6 | 6/6 | 0/6 | 0/6 | 0/6 | | | | Positive Samples at No More than 3x LoD (18.75 GE/µL) Negative Samples | | | oles | | | | Experimental sample control without inhibitors | | | 64/66 | | 0/8 | | | ^{* 3} replicates on each of 2 controllers None of the interfering substances caused false positives in this study. However, 3 substances were found to potentially interfere with detection of low positive samples: NeilMed NasoGel, Crest mouthwash, and Colgate toothpaste. #### **Clinical Evaluation** A total of 77 retrospective, blinded saliva specimens (43 positive and 34 negative) collected at one clinical site were tested with the Advanta Dx SARS-CoV-2 RT-PCR Assay. These specimens had matching nasopharyngeal (NP) test results with FDA EUA SARS-Cov-2 Real-Time PCR tests authorized for use with NP swabs. These 77 specimens were processed per this Instructions for Use document including interpretation of results based on a Ct 32 cutoff as described in the result interpretation section (above). Results are summarized in Table 15. | T 11 45 C | C 11 C 111 1 | | 1 1 | | |-------------------|---------------------------|----------------------------------|---------------------|--------------------------| | Table 15 Summan | / of results for blinded | d clinical samples comparing | nasonharyngeal ang | i saliva samnle tynes | | Tubic 13. Summing | y of results for billiace | a ciii iicai bairipicb companiig | masophar yngcar and | a Julia a Juliipic types | | | EUA Comparator with Nasopharyngeal Swab | | | | Swab | | |---------------------------------------|---|-----------------------------|--------------------|--------------|-----------|--| | | | Positive (#) | Inconclusive (#) | Negative (#) | Total (#) | | | Saliva samples | Positive (#) | 43 | 0 | 0 | 43 | | | tested with | Inconclusive (#) | 0 | 0 | 0 | 0 | | | Advanta [™] Dx
SARS-CoV-2 | Negative (#) | 0 | 0 | 34 | 34 | | | RT-PCR Assay | Total (#) | 43 | 0 | 34 | 77 | | | Positive percent agreement (PPA) | | 100% (95% CI: 91.8% - 100%) | | | | | | Negative agreement (%) | | 100% (9 | 5% CI: 89.9% - 100 | %) | | | Mean Ct values for saliva and nasopharyngeal swab specimens showed no trend between Ct values from different samples from the same patient. The results support saliva as a specimen type for use with the Advanta Dx SARS-CoV-2 RT-PCR Assay. ## **FDA SARS-CoV-2 Reference Panel Testing** The evaluation of sensitivity and MERS-CoV cross-reactivity was performed using reference material (T1), blinded samples and a standard protocol provided by the FDA. The study included a range finding study and a confirmatory study for LoD. Blinded sample testing was used to establish specificity and to confirm the LoD. The instruments used were IFC Controller RX and Biomark HD. The results are summarized in Table 16. Table 16. Summary of LoD confirmation result using the FDA SARS-CoV-2 reference panel | Reference
Materials Provided
by FDA | Specimen Type | Product LoD | Cross-Reactivity | |---|---------------|--------------------------|------------------| | SARS-CoV-2 | Calina | 5.4×10^4 NDU/mL | N/A | | MERS-CoV | Saliva | N/A | ND | NDU/mL = RNA NAAT detectable units/mL N/A: Not applicable ND: Not detected # **Appendix A: Biomark HD Thermal Cycler Protocol** #### **GE 192x24 Fast v1 thermal cycling parameters** | Temperature | Time | Cycles | Description | | |-------------|--------|--------|-------------|--------------| | +95 °C | 60 sec | 1 | Hot start | | | +96 °C | 5 sec | 25 | DCD | Denaturation | | +60 °C | 20 sec | 35 | PCR | Annealing | # **Appendix B: Related Documents** Go to fluidigm.com to download these related documents. | Title | Document Number | |--|-----------------| | Juno System User Guide | 100-7070 | | IFC Controller RX User Guide | 100-3385 | | Biomark HD Data Collection User Guide | 100-2451 | | Real-Time PCR Analysis Software User Guide | 68000088 | | Advanta Dx SARS-CoV-2 RT-PCR Assay Interpretive Software Quick Reference Guide | FLDM-00162 | # **Appendix C: Symbols** | Symbol | Indicates | |--------|------------------------------------| | | Medical device manufacturer | | | Use-by date | | LOT | Manufacturer's batch code | | REF | Manufacturer's catalog number | | SN | Manufacturer's serial number | | IVD | In vitro diagnostic medical device | | Symbol | Indicates | |------------------------|--| | & | Biological risks | | $\bigcap_{\mathbf{i}}$ | Consult Instructions for Use | | <u></u> | Caution | | +15 °C - | Indicates ambient temperature to which the <i>in vitro</i> diagnostic medical device can safely be exposed | | -25 °C - 15 °C | Indicates frozen temperature to which the <i>in vitro</i> diagnostic medical device can safely be exposed | # **Revision History** | Revision | Date | Description of Change | |----------|---------|--| | 12 | 05/2022 | Updated company name and branding. | | 11 | 01/2022 | Updated assay products. Clarified authorized software configurations. Updated <i>in silico</i> analysis. | | 10 | 02/2021 | Updated Intended Use for home collection. Referenced Instrument Qualification Method in the Equipment Not Provided section. | | 09 | 12/2020 | Updated assay products. Added clarification for PCR plate selection. Clarified controls and control interpretation. Corrected typo in 2019-nCoV_N1-P sequence. | | 08 | 11/2020 | Software instructions for Biomark Data Collection and Real-Time PCR Analysis software updated to v4.7.1. IFC Controller RX system software updated to v2.9. Updated warnings and precautions to remove need for use of sterile pipette tips. Revised positive control instructions. Corrected typos. | | 07 | 09/2020 | Updated cap color for Advanta Dx PCR MM (102-0346). Added instructions for sample and assay (detector) annotation in the Real-Time PCR Analysis software for ease of use. Added FDA SARS-CoV-2 Reference Panel Testing section. Corrected typos. | | 06 | 08/2020 | Updated regulatory information, changed IDT product procurement. | | 05 | 08/2020 | Revised IDT part number and corrected typos. | | 04 | 08/2020 | Updated regulatory information, updated IDT part number, added interfering substances table. | | 03 | 06/2020 | Updated regulatory information, added detailed control line fluid loading procedure, removed reference to 68000132, and updated cross-references. | | 02 | 06/2020 | Updated regulatory language and corrected figures. | | 01 | 06/2020 | Initial release. | #### For technical support visit fluidigm.com/tech-support. #### For *In Vitro* Diagnostic Use. For Emergency Use Authorization Only. Information in this publication is subject to change without notice. Patent and license information: www.standardbiotools.com/legal/notices. Trademarks: Fluidigm, the Fluidigm logo, Standard BioTools, the Standard BioTools logo, Advanta, Biomark, and Juno are trademarks and/or registered trademarks of Standard BioTools Inc. or its affiliates in the United States and/or other countries. All other trademarks are the sole property of their respective owners. © 2022 Standard BioTools Inc. All rights reserved. 05/2022 # **Advanta Dx SARS-CoV-2 RT-PCR Assay Interpretive Software** For *In Vitro* Diagnostic Use | For Use with the Advanta Dx SARS-CoV-2 RT-PCR Assay Under Emergency Use Authorization Only | Rx Only The Advanta[™] Dx SARS-CoV-2 RT-PCR Assay interpretive software v1.0.1 and Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1 are used on datasets that are derived from the Biomark[™] HD system and IFC Controller RX or Juno[™] controllers, which are non-cleared instruments operated with RUO software that have
been validated as part of the EUA-authorized Advanta Dx SARS-CoV-2 RT-PCR Assay. Please note: - This product has not been FDA cleared or approved but has been authorized by FDA under an Emergency Use Authorization (EUA) for use by authorized laboratories. - This product has been authorized only for the detection of nucleic acid from SARS-CoV-2, not for any other viruses or pathogens. - The emergency use of this product is only authorized for the duration of the declaration that circumstances exist justifying the authorization of emergency use of *in vitro* diagnostics for detection and/or diagnosis of COVID-19 under Section 564(b)(1) of the Federal Food, Drug, and Cosmetic Act, 21 U.S.C. § 360bbb-3(b)(1), unless the declaration is terminated or authorization is revoked sooner. - Existing customers who are using the **Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software v1.0.1** with Biomark HD Data Collection software v4.7.1, Real-Time PCR Analysis software v4.7.1, and Juno system software v3.14.1, go to page 2 for installation and use instructions. - Existing customers who are using the **Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1**, Biomark HD Data Collection software v4.8.1, Real-Time PCR Analysis software v4.8.1, and Juno system software v3.15.1, go to page 8 for installation and use instructions. ## **Contents** | Advanta Dx SARS-CoV-2 RT-PCF | R Assay | |-------------------------------|---------| | Interpretive Software v1.0.1 | 2 | | Advanta Dx SARS-CoV-2 Interpr | etive | | Software v2.0.1 | 8 | | Revision History | 18 | # Advanta Dx SARS-CoV-2 RT-PCR Assay Interpretive Software v1.0.1 ### **About the Software** The Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software is a command-line software tool used to interpret real-time PCR data generated by Biomark HD and the Real-Time PCR Analysis software. The Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software is for use only with Table Results exported from the Real-Time PCR Analysis software v4.7.1. The Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software can either be initiated within the Real-Time PCR Analysis software as a post export command or run separately from a command line. The Detector Setup must be annotated in the Real-Time PCR Analysis software using the names **N1**, **N2**, **RNase P**. The Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software uses those 3 assays to interpret results. Unused assay wells must be annotated with the name **Empty**. # **Computer Requirements** The minimum computer requirements for running the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software are: - Operating system: Microsoft® Windows® 10 (32- or 64-bit) - CPU: Intel® Core™ i5 or later - Memory: 4 GB of RAM # **Software and Input File Requirements** The Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software v1.0.1 is authorized to interpret files exported as **Table Results (*.csv)** from the Real-Time PCR Analysis software version v4.7.1 only. #### **Authorized Software Configuration** | Interpretive | Biomark HD Data Collection and | Juno System | Software | |---|---|-------------|--| | Software Version | Real-Time PCR Analysis Software Version | Software | Availability | | Advanta Dx SARS-CoV-2
EUA Interpretive Software,
v1.0.1
(102-0323) | v4.7.1 | v.3.14.1 | Existing customers
only. Refer to
FLDM-00162 | **IMPORTANT:** Do not use the interpretive software v1.0.1 with other versions of the Biomark HD Data Collection software, Real-Time PCR Analysis software, and Juno system software. NOTE: Existing customers who want to upgrade to the Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1, Biomark HD Data Collection software v4.8.1, Real-Time PCR Analysis software v4.8.1, and Juno system software v3.15.1, go to the Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1 section on page 8. # **Install the Advanta Dx SARS-CoV-2 RT-PCR Assay Interpretive Software** - 1 Download the software installer file from go.fluidigm.com/covid-19-diagnostics_eua. - 2 Double-click the Advanta Dx SARS-CoV-2 EUA Interpretive Software Setup icon (). - **3** Follow the wizard prompts to accept the license agreement and install the software. **IMPORTANT:** The Advanta Dx SARS-CoV-2 EUA Interpretive Software Setup application is for use only in installing or uninstalling the software. Double-clicking the icon does not run the software. You can delete the setup application after the software is installed. You can either set up the Real-Time PCR Analysis software to export data directly through the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software or you can run the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software from a command line to interpret the Ct results and save the interpretation as a CSV file. # **Use the Advanta Dx SARS-CoV-2 RT-PCR Assay Interpretive Software** Before using the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software, annotate the real-time PCR data as described in the Advanta Dx SARS-CoV-2 RT-PCR Assay Instructions for Use (FLDM-00161). Run the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software from the Real-Time PCR Analysis software. The Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software can also be run from a command line (see Appendix A on page 15 for instructions). - **1** Set up the post export command in the Real-Time PCR Analysis software: - NOTE: Setting up the post export command is only required before the first analysis unless settings for this option have been changed between analyses. - a In the Real-Time PCR Analysis software, select **Tools** > **Options**. - b Click the **Results Export in the Output** section (Figure 1 on page 4). - c (Optional) Specify a default folder for the exported results files. - d Select the **Use Post Export Command** checkbox, then browse to: C:\Program Files (x86)\Fluidigm\Advanta Dx SARS-CoV-2 EUA Interpretive Software NOTE: If you are running the 32-bit version of the Windows operating system, browse to: - C:\Program Files\Fluidigm\Advanta Dx SARS-CoV-2 EUA Interpretive Software - e Select the **AdvantaDxSC2** application. - f In the Additional Arguments field, enter -re NOTE: Entering "-re" in the Additional Arguments field of the Real-Time PCR Analysis software enables the software to display a message when the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software encounters an error. g Confirm that the **Prompt for confirmation before execution** checkbox is checked, then click **OK**. Figure 1. Results Export options - 2 After annotating the real-time PCR data, export the analysis results as type **Table Results (*.csv)** to interpret the Ct results and save them to the designated CSV file. - **3** Click **OK** when prompted to execute the post export command. # Interpretation $|\mathbf{i}|$ For more information about the interpretation of results, see the Advanta Dx SARS-CoV-2 RT-PCR Assay Instructions for Use (FLDM-00161). ### **Specifications** Maximum positive Ct: A Ct of 32 is the maximum value allowed to call a reaction positive. Number of positives: Requires 2 or more positive replicate reactions to call an assay positive. Interpretive assays: Must be named N1, N2, RNase P. N1 and N2 must be of type **Test.** RNase P assay must be of type **Control**. Empty assays: Must be named as **Empty** and must be of type **Blank**. Test samples: Must be of type Unknown. Control samples: No template control must be of type **NTC**. Negative and positive control must be of type **Unknown**. Empty samples: Must be of type Blank. • Quality Threshold: Must be **0.65**. Baseline Correction: Must be set to Linear*. • Ct Threshold Method: Must be set to **Auto By Control (Global)***. #### **Manual Interpretation of Control Results** NOTE: + = Positive, - = Negative; Results must match table below to be considered passing | Control Description | N1
Result | N2
Result | RNase P
Result | Interpretation | Control Result
(Manual) | |---------------------------|--------------|--------------|-------------------|----------------|----------------------------| | Positive control (PC) | + | + | + | Positive | Pass | | Negative control (NC) | _ | _ | + | Negative | Pass | | No template control (NTC) | - | - | _ | No Template | Pass | ### **Software Interpretation of Patient Specimen Results** NOTE: + = Positive, - = Negative, ? = Inconclusive | N1 Result | N2 Result | RNase P Result | Sample
Interpretation | Action | |-----------|-----------|----------------|--------------------------|--| | + | + | + | Positive | | | + | + | _ | Positive | Donort as positivo | | + | + | ? | Positive | Report as positive for SARS-CoV-2. | | + | _ | + | Positive | Report result to | | + | ? | + | Positive | public health | | _ | + | + | Positive | authorities. | | ? | + | + | Positive | | | - | - | + | Negative | Report as negative for SARS-CoV-2. Report result to public health authorities. | | _ | _ | _ | No Template | | | _ | ? | _ | Inconclusive | | | _ | + | _ | Inconclusive | | | ? | _ | _ | Inconclusive | | | ? | ? | _ | Inconclusive | Retest. | | ? | + | _ | Inconclusive | If the result of the | | + | _ | _ | Inconclusive | retest repeats | | + | ? | _ | Inconclusive | as No Template of as Inconclusive, | | _ | _ | ? | Inconclusive | obtain a new | | _ | ? | ? | Inconclusive | specimen. | | _ | + | ? | Inconclusive | | | ? | _ | ? | Inconclusive | | | ? | ? | ? | Inconclusive | | | ? | + | ? | Inconclusive | | ^{*} You can set these as the default selections in the Real-Time Analysis PCR software. Output File Format | + | _ | ? | Inconclusive | |---|---|---|--------------| | + | ? | ? | Inconclusive | | _ | ? | + | Inconclusive | | ? | _ | + | Inconclusive | | ? | ? | + | Inconclusive | #
Output File Format The interpretive output file format is a comma-separated values (CSV) file with the following information: Line 1: File format name and version Line 2: IFC barcode Line 3: Biomark scan date and time Line 4: Biomark system ID Line 5: Real-Time PCR Analysis software version Line 6: Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software version Lines 7–8: Positive parameters used by the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software Lines 9–11: Analysis parameters used by the Real-Time PCR Analysis software. Line 13: Samples for successful interpretation or errors, if encountering errors Line 14: (Headers) Sample Name: Name entered in the Sample Setup (in the Real-Time PCR Analysis software) IFC Inlet Location: Sample inlet ID (IFC inlet map) N1: N1 assay resultN2: N2 assay result RNase P: RNase P assay result Interpretation: Interpretation according to the assay results. Lines 15–: Results for each sample. ### **Example of a (Successful) Output File** | Advanta Dx SARS-CoV-2 EUA Interpretive Software Output (Rev A) | | | | | | |--|--------------------------|-----|----|---------|----------------| | IFC Barcode | 1691235149 | | | | | | Biomark Scan Date and Time | 10/7/2020 11:52 | | | | | | Biomark System ID | BIOMARKHD058 | | | | | | Real-Time PCR Analysis Software Version | 4.7.1 | | | | | | Advanta Dx SARS-CoV-2 EUA Interpretive Software Version | 1.0.1 | | | | | | Maximum Ct for Detected | 32 | | | | | | Number of Positives | 2 | | | | | | Quality Threshold | 0.65 | | | | | | Baseline Correction Method | Linear | | | | | | Ct Threshold Method | Auto By Control (Global) | | | | | | Samples | | | | | | | Sample Name | IFC Inlet Location | N1 | N2 | RNase P | Interpretation | | Negative Control | S025 | - | - | + | Negative | | No Template Control | S001 | - | | - | No Template | | Positive Control | S049 | + | + | + | Positive | | LIMS_ID_10001 | S002 | - | - | + | Negative | | LIMS_ID_10002 | S026 | | - | + | Negative | | LIMS_ID_10003 | S050 | - | - | + | Negative | | LIMS_ID_10004 | S074 | - | - | + | Negative | | LIMS_ID_10005 | S098 | - | - | + | Negative | | LIMS_ID_10006 | 5097 | - | - | + | Negative | | LIMS_ID_10007 | S122 | • . | - | + | Negative | | LIMS_ID_10008 | S121 | + | + | + | Positive | | LIMS_ID_10009 | S146 | - | - | + | Negative | | LIMS ID 10010 | S145 | | - | + | Negative | #### **Example of an Error** | Advanta Dx SARS-CoV-2 EUA Interpretive Software Output (Rev A) | | |---|-----------------| | IFC Barcode | 1691235149 | | Biomark Scan Date and Time | 10/7/2020 21:52 | | Biomark System ID | BIOMARKHD058 | | Real-Time PCR Analysis Software Version | 4.7.1 | | Advanta Dx SARS-CoV-2 EUA Interpretive Software Version | 1.0.1 | | Maximum Ct for Detected | 32 | | Number of Positives | 2 | | Quality Threshold | | | Baseline Correction Method | | | Ct Threshold Method | | | Errors | | | Export type Heatmap Results: Inlet-based View is not supported. | | # Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1 ### **About the Software** The Advanta Dx SARS-CoV-2 Interpretive Software is a command-line software tool used to interpret real-time PCR data generated by Biomark HD and the Real-Time PCR Analysis software. The Advanta Dx SARS-CoV-2 Interpretive Software is for use only with Table Results exported from the Real-Time PCR Analysis software v4.8.1. The Advanta Dx SARS-CoV-2 Interpretive Software can either be initiated within the Real-Time PCR Analysis software as a post export command or run separately from a command line. The Detector Setup must be annotated in the Real-Time PCR Analysis software using the names **N1**, **N2**, **RNase P**. The Advanta Dx SARS-CoV-2 Interpretive Software uses those 3 assays to interpret results. Unused assay wells must be annotated with the name **Empty**. # **Computer Requirements** The minimum computer requirements for running the Advanta Dx SARS-CoV-2 Interpretive Software are: - Operating system: Microsoft® Windows® 10 (32- or 64-bit) - CPU: Intel® Core™ i5 or later - Memory: 4 GB of RAM # **Software and Input File Requirements** The Advanta Dx SARS-CoV-2 Interpretive Software is authorized to interpret files exported as **Table Results (*.csv)** from the Real-Time PCR Analysis software version v4.8.1 only. #### **Authorized Software Configuration** | Interpretive
Software Version | Biomark HD Data Collection
and Real-Time PCR Analysis
Software Version | Juno System
Software | Software Availability | |---|--|-------------------------|--| | Advanta Dx SARS-CoV-2
Interpretive Software,
v2.0.1
(102-0952) | v4.8.1 | v.3.15.1 | New customers and existing customers who want to upgrade | **IMPORTANT:** Do not use the interpretive software v2.0.1 with other versions of the Biomark HD Data Collection software, Real-Time PCR Analysis software, and Juno system software. NOTE: Existing customers who are using interpretive software v1.0.1 with Biomark HD Data Collection software v4.7.1, Real-Time PCR Analysis software v4.7.1, and Juno system software v3.14.1 prior to 12/2021 may continue to use that configuration. # **Install the Advanta Dx SARS-CoV-2 Interpretive Software** - 1 Download the software installer file from go.fluidigm.com/covid-19-diagnostics_eua. - 2 Double-click the Advanta Dx SARS-CoV-2 Interpretive Software Setup icon (). - **3** Follow the wizard prompts to accept the license agreement and install the software. **IMPORTANT:** The Advanta Dx SARS-CoV-2 Interpretive Software Setup application is for use only in installing or uninstalling the software. Double-clicking the icon does not run the software. You can delete the setup application after the software is installed. You can either set up the Real-Time PCR Analysis software to export data directly through the Advanta Dx SARS-CoV-2 Interpretive Software or you can run the Advanta Dx SARS-CoV-2 Interpretive Software from a command line to interpret the Ct results and save the interpretation as a CSV file. # **Use the Advanta Dx SARS-CoV-2 Interpretive Software** Before using the Advanta Dx SARS-CoV-2 Interpretive Software, annotate the real-time PCR data as described in the Advanta Dx SARS-CoV-2 RT-PCR Assay Instructions for Use (FLDM-00161). Run the Advanta Dx SARS-CoV-2 Interpretive Software from the Real-Time PCR Analysis software. The Advanta Dx SARS-CoV-2 Interpretive Software can also be run from a command line (see Appendix B on page 16 for instructions). - **1** Set up the post export command in the Real-Time PCR Analysis software: - NOTE: Setting up the post export command is only required before the first analysis unless settings for this option have been changed between analyses. - a In the Real-Time PCR Analysis software, select **Tools** > **Options**. - b Click the **Results Export in the Output** section (Figure 2 on page 10). - c (Optional) Specify a default folder for the exported results files. - d Select the **Use Post Export Command** checkbox, then browse to: C:\Program Files (x86)\Fluidigm\Advanta Dx SARS-CoV-2 Interpretive Software NOTE: If you are running the 32-bit version of the Windows operating system, browse to: - C:\Program Files\Fluidigm\Advanta Dx SARS-CoV-2 Interpretive Software - e Select the **AdvantaDxSC2** application. - f In the Additional Arguments field, enter -re NOTE: Entering "-re" in the Additional Arguments field of the Real-Time PCR Analysis software enables the software to display a message when the Advanta Dx SARS-CoV-2 Interpretive Software encounters an error. g Confirm that the **Prompt for confirmation before execution** checkbox is checked, then click **OK**. Figure 2. Results Export options - 2 After annotating the real-time PCR data, export the analysis results as type **Table**Results (*.csv) to interpret the Ct results and save them to the designated CSV file. - **3** Click **Yes** when prompted to execute the post export command. # **Interpretation** For more information about the interpretation of results, see the Advanta Dx SARS-CoV-2 RT-PCR Assay Instructions for Use (FLDM-00161). ### **Specifications** Maximum positive Ct: A Ct of 32 is the maximum value allowed to call a reaction positive. Number of positives: Requires 2 or more positive replicate reactions to call an assay positive. Interpretive assays: Must be named N1, N2, RNase P. N1 and N2 must be of type **Test.** RNase P assay must be of type **Control**. Empty assays: Must be named as Empty and must be of type Blank. • Test samples: Must be of type **Unknown**. Control samples: Must be named PC, NC, NTC. No template control must be of type **NTC**. Negative and positive control must be of type **Unknown**. • Empty samples: Must be of type **Blank**. • Quality Threshold: Must be **0.65**. • Baseline Correction: Must be set to **Linear***. • Ct Threshold Method: Must be set to **Auto By Control (Global)***. $[\]ensuremath{^{*}}\xspace\ensuremath{^{Vou}}\xspace$ can set these as the default selections in the Real-Time Analysis PCR software. ### **Interpretation of Control Results** NOTE: + = Positive, - = Negative; Results must match table below to be considered passing | Control Description | N1
Result | N2
Result | RNase P
Result | Interpretation | Control Result | |---------------------------|--------------|--------------|-------------------|----------------|----------------| | Positive control (PC) | + | + | + | Positive | Pass | | Negative control (NC) | _ | _ | + | Negative | Pass | | No template control (NTC) | _ | _ | _ | No Template | Pass | ### **Interpretation of Patient Specimen Results** NOTE: The IFC QC results that are reported in the interpretive software do not modify the
interpretations. If any control on the IFC fails, patient results are not reportable. NOTE: + = Positive, - = Negative, ? = Inconclusive | N1 Result | N2 Result | RNase P Result | Sample
Interpretation | Action | |-----------|-----------|----------------|--------------------------|--| | + | + | + | Positive | | | + | + | _ | Positive | | | + | + | ? | Positive | Report as positive for | | + | _ | + | Positive | SARS-CoV-2. Report result to public | | + | ? | + | Positive | health authorities. | | _ | + | + | Positive | | | ? | + | + | Positive | | | - | _ | + | Negative | Report as negative for SARS-CoV-2. Report result to public health authorities. | | _ | _ | _ | No Template | | | _ | ? | _ | Inconclusive | | | _ | + | _ | Inconclusive | | | ? | _ | _ | Inconclusive | | | ? | ? | _ | Inconclusive | | | ? | + | _ | Inconclusive | | | + | _ | _ | Inconclusive | | | + | ? | _ | Inconclusive | Retest. | | _ | _ | ? | Inconclusive | If the result of the | | _ | ? | ? | Inconclusive | retest repeats as No Template or as | | _ | + | ? | Inconclusive | Inconclusive, | | ? | _ | ? | Inconclusive | obtain a new specimen. | | ? | ? | ? | Inconclusive | | | ? | + | ? | Inconclusive | | | + | _ | ? | Inconclusive | | | + | ? | ? | Inconclusive | | | _ | ? | + | Inconclusive | | | ? | _ | + | Inconclusive | | | ? | ? | + | Inconclusive | | # **Output File Format** The interpretive output file format is a comma-separated values (CSV) file with the following information: Line 1: File format name and version Line 2: IFC barcode Line 3: Biomark scan date and time Line 4: Biomark system ID Line 5: Real-Time PCR Analysis software version Lines 6–8: Analysis parameters used by the Real-Time PCR Analysis software Line 9: Advanta Dx SARS-CoV-2 Interpretive Software version Line 10: Assay names Lines 11–13: Positive parameters used by the Advanta Dx SARS-CoV-2 Interpretive Software Line 15: Controls for successful interpretation or errors, if encountering errors Line 16: (Headers) Control Name: Name of the control entered in the Sample Setup (in the Real-Time PCR Analysis software) IFC Inlet Location: Sample inlet ID (IFC inlet map) Plate Name: Name of the sample plate Plate Barcode: Barcode of the sample plate • Plate Position: Position of the sample in the plate N1: N1 assay result N2: N2 assay result RNase P: RNase P assay result Result: Interpretation according to the assay results. Lines 17–22: Results for each control The number of lines needed for the control results depends on the number of controls that are defined. For example, if only 3 controls are defined (Lines 17–19), the following line numbers will shift accordingly (Lines 21, 22, 23–). Line 24: Samples for successful interpretation or errors, if encountering errors Line 25: (Headers) Sample Name: Name entered in the Sample Setup (in the Real-Time) PCR Analysis software) IFC Inlet Location: Sample inlet ID (IFC inlet map) Plate Name: Name of the sample plate Plate Barcode: Barcode of the sample plate • Plate Position: Position of the sample in the plate N1: N1 assay resultN2: N2 assay result • RNase P: RNase P assay result Interpretation: Interpretation according to the assay results. Plate QC Result: Quality control results for the plate Lines 26–: Results for each sample. #### **Example of a Successful Output File** | A | Α | В | С | D | E | F | G | Н | l I | J | K | |----|---|--------------------------|--------------|---------------|----------------|----|----|---------|----------------|----------|--------| | 1 | Advanta Dx Interpretive Software Output (| Rev B) | | | | | | | | | | | 2 | IFC Barcode | 1691225052 | | | | | | | | | | | 3 | Biomark Scan Date and Time | 10/19/2020 1:13 | | | | | | | | | | | 4 | Biomark System ID | BIOMARKHD041 | | | | | | | | | | | 5 | Real-Time PCR Analysis Software Version | 4.8.1 | | | | | | | | | | | 6 | Quality Threshold | 0.65 | | | | | | | | | | | 7 | Baseline Correction Method | Linear | | | | | | | | | | | 8 | Ct Threshold Method | Auto By Control (G | Global) | | | | | | | | | | 9 | Advanta Dx Interpretive Software Version | 2.0.1 | | | | | | | | | | | 10 | Assays | N1 | N2 | RNase P | | | | | | | | | 11 | Maximum Positive Ct | 32 | 32 | 32 | | | | | | | | | 12 | Number of Positives | 2 | 2 | 2 | | | | | | | | | 13 | Positive and Negative Rules | Defined Positives | All Negative | es . | | | | | | | | | 14 | | | | | | | | | | | | | 15 | Controls | | | | | | | | | | | | 16 | Control Name | IFC Inlet Location | Plate Name | Plate Barcode | Plate Position | N1 | N2 | RNase P | Result | | | | 17 | NTC | S001 | Plate1 | 12345678 | A1 | - | - | - | Pass | | | | 18 | NC | S025 | Plate1 | 12345678 | B1 | - | - | + | Pass | | | | 19 | PC | S049 | Plate1 | 12345678 | C1 | + | + | + | Pass | | | | 20 | NTC | S007 | Plate2 | 12345679 | A1 | - | - | - | Pass | | | | 21 | NC | S031 | Plate2 | 12345679 | B1 | - | - | + | Pass | | | | 22 | PC | S055 | Plate2 | 12345679 | C1 | + | + | + | Pass | | | | 23 | | | | | | | | | | | | | 24 | Samples | | | | | | | | | | | | 25 | Sample Name | IFC Inlet Location | Plate Name | Plate Barcode | Plate Position | N1 | N2 | RNase P | Interpretation | Plate QC | Result | | 26 | S1 | S002 | Plate 1 | 12345678 | A2 | + | + | + | Positive | Pass | | | 27 | S2 | S003 | Plate 1 | 12345678 | A3 | + | + | + | Positive | Pass | | | 28 | S5 | S006 | Plate 1 | 12345678 | A6 | + | + | + | Positive | Pass | | | 29 | S4 | S005 | Plate 1 | 12345678 | A5 | + | + | + | Positive | Pass | | | 30 | S3 | S004 | Plate 1 | 12345678 | A4 | + | + | + | Positive | Pass | | #### **Example of an Output with a Failed Control** NOTE: If any control fails, all rows in the Plate QC Result column are marked Fail. #### **Example of an Error** | di | A | В | С | D | |----|---|--------------------------|------------|---------| | 1 | Advanta Dx Interpretive Software Output (| Rev B) | | | | 2 | IFC Barcode | 1691225052 | | | | 3 | Biomark Scan Date and Time | 10/19/2020 1:13 | | | | 4 | Biomark System ID | BIOMARKHD041 | | | | 5 | Real-Time PCR Analysis Software Version | 4.8.1 | | | | 6 | Quality Threshold | 0.65 | | | | 7 | Baseline Correction Method | Linear | | | | 8 | Ct Threshold Method | Auto By Control (G | ilobal) | | | 9 | Advanta Dx Interpretive Software Version | 2.0.1 | | | | 10 | Assays | N1 | N2 | RNase P | | 11 | Maximum Positive Ct | 32 | 32 | 32 | | 12 | Number of Positives | 2 | 2 | 2 | | 13 | Positive and Negative Rules | Defined Positives | All Negati | ves | | 14 | | | | | | 15 | Errors | | | | | | The input data file doesn't contain the | | | | | 16 | following interpretive assays | RNase P | | | # Appendix A: Run the Advanta Dx SARS-CoV-2 RT-PCR Assay Interpretive Software v1.0.1 from a Command Line **IMPORTANT:** Do not use the interpretive software v1.0.1 with Biomark HD Data Collection software v4.8.1, Real-Time PCR Analysis software v4.8.1, and Juno system software v3.15.1. - **1** Export the analysis results as type Table Results (*.csv) to interpret the Ct results and save it to the designated CSV file. - 2 In the Windows taskbar, select Start button > Windows System > Command Prompt. - 3 In the **Command Prompt** window, change the directory to the C drive, if necessary: - 4 Navigate to the folder that contains the Advanta Dx SARS-CoV-2 RT-PCR Assay interpretive software: cd "\Program Files (x86)\Fluidigm\Advanta Dx SARS-CoV-2 EUA Interpretive Software" - NOTE: If you are running the 32-bit version of the Windows operating system, enter: cd "\Program Files\Fluidigm\Advanta Dx SARS-CoV-2 EUA Interpretive Software" - **5** Run the command: AdvantaDxSC2 [input filename] [output filename] - NOTE: Do not include the brackets ([]) when entering the filenames; they are not part of the command. This command interprets the input .csv file (exported from Real-Time PCR Analysis software) and saves it to the output .csv filename. Include the directory information when entering the filename. **IMPORTANT:** If the output filename is not specified, the input file will be overwritten with the interpretive results. NOTE: To display the name, version, and build number for the Advanta Dx SARS-CoV-2 RT PCR Assay interpretive software, enter: AdvantaDxSC2 -nvb # **Appendix B: Run the Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1 from a Command Line** **IMPORTANT:** Do not use the interpretive software v2.0.1 with Biomark HD Data Collection software v4.7.1, Real-Time PCR Analysis software v4.7.1, and Juno system software v3.14.1. - 1 Export the analysis results as type Table Results (*.csv) to interpret the Ct results and save it to the designated CSV file. - 2 In the Windows taskbar, select **Start** button > **Windows System** > **Command Prompt**. - 3 In the **Command Prompt** window, change the directory to the C drive, if necessary: C: - 4 Navigate to the folder that contains the Advanta Dx SARS-CoV-2 Assay Interpretive Software: cd "\Program Files (x86)\Fluidigm\Advanta Dx SARS-CoV-2 Interpretive Software" NOTE: If you are running the 32-bit version of the Windows operating system, enter: cd "\Program Files\Fluidigm\Advanta Dx SARS-CoV-2 Interpretive Software" - **5** Run the command: AdvantaDxSC2 [input filename] [output filename] NOTE: Do not include the brackets ([]) when entering the filenames; they are not part of the command. This command interprets the input .csv file (exported from Real-Time PCR Analysis software) and saves it to the output .csv filename. Include the directory information when entering the filename. **IMPORTANT:** If the output filename is not specified, the input file will be overwritten with the interpretive results. NOTE: To display the name, version, and build number for the Advanta Dx SARS-CoV-2 Interpretive Software, enter: AdvantaDxSC2 -nvb # **Appendix C: Reporting Ct Values** You can configure the Advanta Dx
SARS-CoV-2 Interpretive Software v2.0.1 to include the Ct values in the output file for detected assay replicates by entering **-ct** in the Additional Arguments field or at the end of the command line. NOTE: If you are entering -ct after -re, separate the 2 arguments with a space (-re -ct). In the output file, the control Ct values appear after the Results column and the sample Ct values appear after the Plate QC Results column, with the following headings: N1 # of Detected: Number of detected N1 assay replicates N2 # of Detected: Number of detected N2 assay replicates • RNase P # of Detected: Number of detected RNase P assay replicates N1 Ct: Average Ct value for the detected N1 assay replicates N2 Ct: Average Ct value for the detected N2 assay replicates • RNase P Ct: Average Ct value for the detected RNase P assay replicates NOTE: The Ct values are only reported for positive results. Negative results are not reported (NA). #### **Example of a Successful Output File with exported Ct values** | A | A | В | С | D | E | F | G | H | 1 | J | K | L | M | N | 0 | Р | |----|---|--------------------------|--------------|------------------|-------------------|----|----|---------|----------|--------------------|-------------------|---------------------|-----------|-------|---------------|---------| | 1 | Advanta Dx Interpretive Software Output (| Rev B) | | | | | | | | | | | | | | | | 2 | IFC Barcode | 1691225052 | | | | | | | | | | | | | | | | 3 | Biomark Scan Date and Time | 10/19/2020 1:13 | | | | | | | | | | | | | | | | 4 | Biomark System ID | BIOMARKHD041 | | | | | | | | | | | | | | | | 5 | Real-Time PCR Analysis Software Version | 4.8.1 | | | | | | | | | | | | | | | | 6 | Quality Threshold | 0.65 | | | | | | | | | | | | | | | | 7 | Baseline Correction Method | Linear | | | | | | | | | | | | | | | | 8 | Ct Threshold Method | Auto By Control (G | ilobal) | | | | | | | | | | | | | | | 9 | Advanta Dx Interpretive Software Version | 2.0.1 | | | | | | | | | | | | | | | | 10 | Assays | N1 | N2 | RNase P | | | | | | | | | | | | | | 11 | Maximum Positive Ct | 32 | 32 | 32 | | | | | | | | | | | | | | 12 | Number of Positives | 2 | 2 | 2 | | | | | | | | | | | | | | 13 | Positive and Negative Rules | Defined Positives | All Negative | s | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | | | | | 15 | Controls | | | | | | | | | | | | | | | | | | Control Name | IFC Inlet Location | | Plate
Barcode | Plate
Position | N1 | N2 | RNase P | Result | N1#of
Detected | N2#of
Detected | | N1 Ct | N2 Ct | RNase P
Ct | | | | NTC | S001 | Plate1 | 12345680 | | - | - | - | Pass | 0 | 0 | (| NA NA | NA | NA | | | 18 | NC | S025 | Plate1 | 12345680 | B1 | - | - | + | Pass | 0 | 0 | 4 | 1 NA | NA | 18.34 | | | 19 | | S049 | Plate1 | 12345680 | | + | + | + | Pass | 4 | 4 | | 18.83 | | | | | 20 | NTC | S007 | Plate2 | 12345681 | | - | - | - | Pass | 0 | 0 | (| NA NA | NA | NA | | | 21 | | S031 | Plate2 | 12345681 | | - | - | + | Pass | 0 | 0 | 4 | 1 NA | NA | 18.26 | | | 22 | PC | S055 | Plate2 | 12345681 | C1 | + | + | + | Pass | 4 | 4 | . 4 | 19.3 | 22.14 | 18 | | | 23 | | | | | | | | | | | | | | | | | | 24 | Samples | | | | | | | | | | | | | | | | | | Sample Name | | Plate Name | | Plate
Position | N1 | N2 | RNase P | | Plate QC
Result | | N2 # of
Detected | RNase P # | | N2 Ct | RNase P | | 26 | | S002 | Plate 1 | 12345680 | A2 | + | + | + | Positive | Pass | 4 | . 4 | 1 4 | 19.48 | | | | 27 | | S003 | Plate 1 | 12345680 | A3 | + | + | + | Positive | Pass | 4 | . 4 | 1 4 | 19.22 | 22.73 | 18.74 | | 28 | | S006 | Plate 1 | 12345680 | A6 | + | + | + | Positive | Pass | 4 | . 4 | 1 4 | 19.09 | 22.37 | 18.64 | | 29 | S4 | S005 | Plate 1 | 12345680 | A5 | + | + | + | Positive | Pass | 4 | . 4 | 1 4 | 18.69 | 22.61 | 18.76 | | 30 | S3 | S004 | Plate 1 | 12345680 | A4 | + | + | + | Positive | Pass | 4 | | 1 4 | 19.12 | 23.18 | 18.78 | # **Revision History** | Revision | Date | Description of Change | |----------|---------|---| | 07 | 04/2022 | Updated company name and branding. | | 06 | 01/2022 | Clarified authorized software configuration. Updated link to the COVID-19 Dx page on the Fluidigm website. Moved command line instructions to an appendix. Added instructions for Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1. | | 05 | 12/2020 | Updated control interpretation information. Removed file extensions from application names. Clarified -re argument description. | | 04 | 11/2020 | Software instructions for Real-Time PCR Analysis software and example outputs updated to v4.7.1. | | 03 | 09/2020 | Removed instructions for sample and assay (detector) annotation in the Real-Time PCR Analysis software in favor of referencing IFU (FLDM-00161). | | 02 | 08/2020 | Clarified software name and updated regulatory and interpretation information. | | 01 | 06/2020 | Initial release. | #### For technical support visit fluidigm.com/tech-support. #### For *In Vitro* Diagnostic Use. For Emergency Use Authorization Only. Information in this publication is subject to change without notice. . Patent and license information: www.standardbiotools.com/legal/notices. Trademarks: Fluidigm, the Fluidigm logo, Standard BioTools, the Standard BioTools logo, Advanta, Biomark, and Juno are trademarks and/or registered trademarks of Standard BioTools Inc. or its affiliates in the United States and/or other countries. All other trademarks are the sole property of their respective owners. © 2022 Standard BioTools Inc. All rights reserved. 05/2022 # Advanta[™] Dx SARS-CoV-2 RT-PCR Assay Instrument Qualification Method (IQM) Protocol #### For in vitro diagnostic use #### **Rx Only** For use under Emergency Use Authorization (EUA) only | Instrument | Serial Number | |--|------------------| | Biomark [™] HD System
With Biomark Data Collection software v4.5.2 or v4.8.1
and Real Time PCR Analysis software v4.5.2 or v4.8.1 | S/N: | | IFC Controller RX | ☐ N/A or S/N: | | Juno™ System
With Juno system software v3.15.1 | ☐ N/A or S/N: | | Company Name: | | | Date of IQM Execution: Wo | rk Order Number: | | Test performed by FAS (Print): | FAS Initials: | | FAS Signature: | | # **Contents** | 1 | Warnings | 3 | |---|----------------------------------|---| | 2 | Using this Protocol | 3 | | 3 | Roles | 3 | | 4 | Customer Protocol Approval | 4 | | 5 | Required Materials and Equipment | 4 | | 6 | Procedure | 4 | | 7 | Results of Protocol Execution | 6 | | 8 | Instrument Labeling | 7 | | 9 | Final Approval | 7 | # 1 Warnings - This product has not been FDA cleared or approved, but has been authorized for emergency use by FDA under an EUA for use by authorized laboratories; - This product has been authorized only for the detection of nucleic acid from SARS-CoV-2, not for any other viruses or pathogens; and - The emergency use of this product is only authorized for the duration of the declaration that circumstances exist justifying the authorization of emergency use of in vitro diagnostics for detection and/or diagnosis of COVID-19 under Section 564(b)(1) of the Federal Food, Drug, and Cosmetic Act, 21 U.S.C. § 360bbb-3(b)(1), unless the declaration is terminated, or authorization is revoked sooner. # 2 Using this Protocol - A. Use this IQM Protocol to verify the performance of the Biomark™ HD system in combination with the Juno™ System or the IFC Controller RX (RX Controller) and the Advanta Dx SARS-CoV-2 RT-PCR Assay to ensure that the criteria for acceptance in this procedure are met prior to use for diagnostic purposes. - B. Documents including test results generated during the execution of this protocol must be attached as objective evidence. - C. Record exceptions and resolutions in the exceptions section. - D. Only the authorized customer can adequately determine whether this IQM meets their company's regulatory requirements. As such, the customer is responsible for performing such assessment. Standard BioTools makes no claims that this IQM Protocol satisfies any requirement of any governing, regulating, or tracking body, including the United States Food and Drug Administration (FDA). ### 3 Roles #### Standard BioTools Field Application Specialist (FAS) - A. Maintain records of the protocol execution by making comments in appropriate sections. - B. Record each exception and provide description of each resolution. - C. Sign and date the Instrument Qualification Method (IQM) Final Approval section upon completion of this protocol. #### **Authorized Customer** - A. Approve the use of this protocol prior to its execution. - B. Sign and date the Instrument Qualification Method (IQM) Final Approval section upon completion of this protocol. # 4 Customer Protocol Approval | The Biomark HD System Instrument Qualification Method (IC | QM) Protocol is understood by the customer and is | |---|---| | approved to be performed. | | | | | | | | | Authorized Customer Name and Signature | Date: | # 5 Required Materials and Equipment **NOTE** See the Advanta Dx SARS-CoV-2 RT-PCR Assay Instructions for Use (FLDM-00161) for required materials and equipment. #### 6 Procedure This procedure is intended to follow the IFU while utilizing samples contrived by diluting heat-inactivated virus (ATCC, Part Number VR-1986HK) in negative pooled saliva (Innovative Research, Part Number IR100044P or Lee BioSolutions, Part Number 991-05-P) at two concentrations and a negative pooled saliva sample to assess assay performance. **NOTE** Prior to beginning this
procedure, ensure all consumables used adhere to the materials list provided in the Advanta™ Dx SARS-CoV-2 RT-PCR Assay Instructions for Use (FLDM-00161). 1 Locate the concentration of ATCC viral particles on the Lot Specific CoA provided by ATCC. Attach a copy of the CoA to this record. | Concentration: | genome copies (GC)/μL* | |----------------|---------------------------------| | | *GC/uL and GE/uL are equivalent | 2 Use the concentration of ATCC viral particles to determine the dilution factor required to prepare Dilution 1 (100,000 GE/μL). For example: a. **Assuming** that the concentration of the ATCC viral particles is 375,000 GE/ μ L, the calculation of dilution factor to achieve 100,000 GE/ μ L is: (375,000 GE/µL) / (100,000 GE/µL) = 3.75 The calculation for dilution 1 is dependent upon the concentration of the ATCC viral particles provided in the Lot Specific CoA (see step 1 of this procedure) NOTE Perform the following steps in a Class II Biological Safety Cabinet. - 3 Clean the area and pipettes thoroughly with DNA destroying surface decontaminants then change gloves. - 4 Label eight microcentrifuge tubes as Dilution 1, Dilution 2, Dilution 3, Dilution 4, Dilution 5, Dilution 6, negative saliva, and positive stock. - 5 Remove negative pooled saliva from storage and thaw. Mix thoroughly by vortexing and aliquot 1.5 mL into the tube labeled negative pooled saliva for use in preparation of Dilutions. Return the bulk negative saliva to frozen storage. - 6 Remove ATCC viral particles from storage and thaw on ice. It is recommended to use a fresh vial of ATCC viral particles that has never been previously thawed. Mix thoroughly by vortexing and aliquot 5μL into the tube labeled positive stock for use in preparation of Dilution 1 (step 8, below). Aliquot the remainder into single use volumes prior to returning to frozen storage. - 7 Clean the prep area and pipettes thoroughly with DNA destroying surface decontaminants then change gloves. - 8 Prepare the initial dilution of the ATCC viral particles (Dilution 1) according to the table below. | Dilution | Final
Volume
Required | ATCC Vial
Particles
Concentration | Dilution
Factor | Final
Concentration | ATCC Viral Particle
Volume Required
(µL) | Negative Saliva
Volume Required
(μL) | |----------|-----------------------------|---|--------------------|------------------------|--|---| | 1 | 10 μL | See Step 1 | See step
2a | 100,000 GE/μL | = 10 μL ÷ Dilution
Factor
μL | = 10 µL – ATCC
Viral Particle
Volume Required
µL | **9** Prepare a serial dilution series (Dilutions 2, 3, 4, 5, and 6) using Dilution 1 prepared in step 8 as the starting material, according to the table below. Store on ice following each preparation. **NOTE**: Following the preparation of each dilution, mix by vortexing to ensure a homogenous mixture followed by a brief centrifugation before proceeding to preparing the next dilution. | Dilution | Final
Volume
Required | Previous Dilution
Concentration | Dilution
Factor | Final
Concentration | Volume of
Previous Dilution
Required (μL) | Negative Saliva
Volume Required
(μL) | |----------|-----------------------------|------------------------------------|--------------------|------------------------|---|--| | 2 | 20 μL | 100,000 GE/μL | 10 | 10,000 GE/μL | 2.0 | 18.0 | | 3 | 50 μL | 10,000 GE/μL | 10 | 1,000 GE/μL | 5.0 | 45.0 | | 4 | 400 μL | 1,000 GE/μL | 10 | 100 GE/μL | 40.0 | 360.0 | | 5 | 600 μL | 100 GE/μL | 2 | 50 GE/μL | 300.0 | 300.0 | | 6 | 600 μL | 50 GE/μL | 2.67 | 18.75 GE/μL | 225.0 | 375.0 | - 10 Dilution 5 and Dilution 6 will be used as positive saliva specimens in the Advanta Dx SARS-CoV-2 RT-PCR Assay at 8x LoD (50 GE/uL) and 3x LoD (18.75 GE/uL), respectively. Pooled, negative saliva will be used as negative saliva specimens. - 11 Process 10 replicates of Dilution 5, 20 replicates of Dilution 6 and 10 replicates of pooled, negative saliva following the Advanta™ Dx SARS-CoV-2 RT-PCR Assay Instructions for Use, beginning with the "Process the Saliva Specimens" section. Any remaining volume of the Dilutions should be discarded as biohazardous waste according to the laboratory's procedures. # 7 Results of Protocol Execution | Parameter Specification | | Results | | | |--|--|--|--------|--| | Run validity | All controls meet expected control results per the | ☐ Controls Meet
Expectations | □ Pass | | | , | Instructions for Use | ☐ Controls Do Not
Meet Expectations | □ Fail | | | Dilution 5: 8x LoD Sample – | All 10 replicates are positive based upon Interpretive | ☐ 10 / 10 replicates are positive | ☐ Pass | | | (50 GE/μL) | Software result | ☐ < 10 replicates are positive | □ Fail | | | Dilution 6: 3x LoD Sample – | At least 19 of 20 replicates are positive based upon | ☐ ≥ 19 replicates are positive | ☐ Pass | | | (18.75 GE/μL) | Interpretive Software result | □ < 19 replicates are positive | □ Fail | | | SARS-CoV-2 Negative Saliva | All 10 replicates are negative based upon Interpretive | ☐ 10 / 10 replicates are negative | □ Pass | | | SAKS-COV-2 Negative Saliva | Software result | ☐ < 10 replicates are negative | □ Fail | | | NOTE The qualification passes | if the results for each parameter i | n the table above pass. | | | | Exceptions: \square No, line through | n the exceptions box below and i | nitial/date 🛚 Yes, see be | low | | | Exceptions: | # 8 Instrument Labeling Following successful completion of this protocol and meeting the specifications in section 6, apply the label below to each Standard BioTools instrument included in the execution of this Instrument Qualification Method. **Emergency Use Only** This instrument is authorized for use with the Advanta Dx SARS-CoV-2 RT-PCR Assay # 9 Final Approval | I certify the results obtained from the execution of this Instrument Qualification Method are valid and demonstrate acceptable performance of the Standard BioTools Research Use Only instruments for use the Advanta Dx SARS-CoV-2 RT-PCR Assay. | | | |---|--|--| | FAS Name and Signature | Date: | | | Customer Acceptance | | | | The results from the execution of this protocol have been a tested meets the intended performance requirements for the laboratory may use Standard BioTools' Research Use Only patient results while using the Advanta Dx SARS-CoV-2 RT | ne Advanta Dx SARS-CoV-2 RT-PCR Assay and the instruments tested in this qualification to report | | | Authorized Customer Name and Signature |
Date: | | #### **Revision History** | Rev | Author | CO Number | Change Description | |-----|----------------|------------|---| | 02 | Jason Erickson | CHG-007001 | Updated company name throughout document. | | 01 | Jason Erickson | CHG-003617 | Initial release | #### For technical support visit fluidigm.com/tech-support. North America +1 650 266 6100 | Toll-free (US/CAN): 866 358 4354 | techsupport@fluidigm.com Latin America +1 650 266 6100 | techsupportlatam@fluidigm.com Europe/Middle East/Africa/Russia +33 1 60 92 42 40 | eu.support@fluidigm.com China (excluding Hong Kong/Macau) +86 21 3255 8368 | techsupportchina@fluidigm.com Japan +81 3 3662 2150 | techsupportjapan@fluidigm.com All other Asia-Pacific countries/India/Australia +1 650 266 6100 | techsupportasia@fluidigm.com For *In Vitro* Diagnostic Use. For Emergency Use Authorization Only. RX only. This product has not been FDA cleared or approved but has been authorized by FDA under an EUA for use by authorized laboratories. This product has been authorized only for the detection of nucleic acid from SARS-CoV-2, not for any other viruses or pathogens. The emergency use of this product is only authorized for the duration of the declaration that circumstances exist justifying the authorization of emergency use of *in vitro* diagnostics for detection and/or diagnosis of COVID-19 under Section 564(b)(1) of the Act, 21 U.S.C. § 360bbb-3(b)(1), unless the declaration is terminated, or authorization is revoked sooner. Information in this publication is subject to change without notice. Patent and license information: www.standardbiotools.com/legal/notices. Trademarks: Fluidigm, the Fluidigm logo, Standard BioTools, the Standard BioTools logo, Advanta, Biomark, and Juno are trademarks and/or registered trademarks of Standard BioTools Inc. or its affiliates in the United States and/or other countries. © 2022 Standard BioTools Inc. All rights reserved. 05/2022 # Instruments and Software Used with the Advanta Dx SARS-CoV-2 RT-PCR Assay For *In Vitro* Diagnostic Use | For Use with the Advanta Dx SARS-CoV-2 RT-PCR Assay Under Emergency Use Authorization Only | Rx Only The following **RUO** Standard BioTools™ instruments and software were validated for use with the IVD Advanta™ Dx SARS-CoV-2 RT-PCR Assay and are therefore acceptable to be used for diagnostic testing for COVID-19. #### Instruments | Product Name | Part Number | |--------------------------|-------------| | Biomark™ HD system | ВМКНО-ВМКНО | | Juno [™] system | 101-6455 | | IFC Controller RX | IFC-RX | #### Authorized Software Configuration for Advanta Dx SARS-CoV-2 Interpretive Software v2.0.1 |
Product Name | Part Number | |--|-------------| | Biomark Data Collection software v4.8.1 | 102-1890 | | Juno system software v3.15.1 (if using Juno) | 102-1889 | | IFC Controller RX system software v2.9 (if using RX) | 100-4739 | | Real-Time PCR Analysis software v4.8.1 | 102-1852 | #### Authorized Software Configuration for Advanta Dx SARS-CoV-2 EUA Interpretive Software v1.0.1 | Product Name | Part Number | |--|-------------| | Biomark Data Collection software v4.7.1 | 102-0646 | | Juno system software v3.14.1 (if using Juno) | 101-9589 | | IFC Controller RX system software v2.9 (if using RX) | 100-4739 | | Real-Time PCR Analysis software v4.7.1 | 102-0555 | # **Revision History** | Revision | Date | Description of Change | |----------|---------|---| | 04 | 05/2022 | Updated company name and branding. | | 03 | 02/2022 | Clarified authorized software configuration. | | 02 | 11/2020 | Separated system software from instrument in the table. | | 01 | 06/2020 | Initial release. | #### For technical support visit fluidigm.com/tech-support. For *In Vitro* Diagnostic Use. For Emergency Use Authorization Only. RX only. This product has not been FDA cleared or approved but has been authorized by FDA under an EUA for use by authorized laboratories. This product has been authorized only for the detection of nucleic acid from SARS-CoV-2, not for any other viruses or pathogens. The emergency use of this product is only authorized for the duration of the declaration that circumstances exist justifying the authorization of emergency use of *in vitro* diagnostics for detection and/or diagnosis of COVID-19 under Section 564(b)(1) of the Act, 21 U.S.C. § 360bbb-3(b)(1), unless the declaration is terminated, or authorization is revoked sooner. Information in this publication is subject to change without notice. Patent and license information: www.standardbiotools.com/legal/notices. Trademarks: Fluidigm, the Fluidigm logo, Standard BioTools, the Standard BioTools logo, Advanta, Biomark, and Juno are trademarks and/or registered trademarks of Standard BioTools Inc. or its affiliates in the United States and/or other countries. © 2022 Standard BioTools Inc. All rights reserved. 05/2022 The Advanta™ Dx SARS-CoV-2 RT-PCR Assay is: IVD, Rx Only, For use under the Emergency Use Authorization (EUA) only - 1 Please contact techsupport@fluidigm.com if you require a printed copy of the complete instructions free of charge. - 2 This is not the complete instructions. All product documentation may be found at fluidigm.com/covid-19-dx. - 3 Note the following statements from the Letter of Authorization: - a This product has not been FDA cleared or approved, but has been authorized for emergency use by FDA under an EUA for use by authorized laboratories: - b This product has been authorized only for the detection of nucleic acid from SARS-CoV-2, not for any other viruses or pathogens; and - C The emergency use of this product is only for authorized for the duration of the declaration that circumstances exist justifying the authorization of emergency use of in vitro diagnostics for detection and/or diagnosis of COVID-19 under Section 564(b)(1)of the Federal Food, Drug and Cosmetic Act, 21 U.SC. § 360bbb-3 (b)(1), unless the declaration is terminated, or authorization is revoked sooner. FLDM-00435 Rev 02