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COVID-19, caused by SARS-CoV-2, canresultin acute respiratory distress syndrome
and multiple-organ failure'™, but little is known about its pathophysiology. Here, we
generated single-cell atlases of 23 lung, 16 kidney, 16 liver and 19 heart COVID-19
autopsy donor tissue samples, and spatial atlases of 14 lung donors. Integrated
computational analysis uncovered substantial remodeling in the lung epithelial,
immune and stromal compartments, with evidence of multiple paths of failed tissue
regeneration, including defective alveolar type 2 differentiation and expansion of
fibroblasts and putative TP63" intrapulmonary basal-like progenitor cells. Viral RNAs
were enriched in mononuclear phagocytic and endothelial lung cells which induced
specific host programs. Spatial analysis in lung distinguished inflammatory host
responses in lung regions with and without viral RNA. Analysis of the other tissue
atlases showed transcriptional alterations in multiple cell types in COVID-19 donor
heart tissue, and mapped cell types and genes implicated with disease severity based
on COVID-19 GWAS. Our foundational dataset elucidates the biological impact of
severe SARS-CoV-2 infection across the body, a key step towards new treatments.

The hostresponse to severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection ranges from asymptomaticinfection to severe
coronavirus disease 2019 (COVID-19) and death. The leading cause of
mortality isacute lunginjury and acute respiratory distress syndrome
(ARDS), or direct complications with multiple organ failure’ . Clinical
deterioration in acute illness leads to ineffective viral clearance and
collateral tissue damage' . Severe COVID-19 is also accompanied by an

inappropriate pro-inflammatory hostimmune response and a dimin-
ished antiviral interferon response®®,

Many molecular and cellular questions related to COVID-19 patho-
physiology remain unanswered, including: how cell compositions
and gene programs shift; which cells are infected; and, how asso-
ciated genetic loci drive disease. Autopsies are critical to under-
standing severe COVID-19 pathophysiology® 2, but comprehensive
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genomic studies are challenged by long post mortem intervals
(PMI).

Here, we developed a large cross-body COVID-19 autopsy biobank
of 420 autopsy specimens, spanning 11 organs and used it to generate
asingle cell atlas of COVID-19 lung, kidney, liver and heart and alung
spatial atlas, inasubset of 14-18 donors per organ. Our atlases provide
critical insights into the pathogenesis of severe COVID-19.

A COVID-19 autopsy cohort and biobank

We assembled anautopsy cohort of eleven male and six female donors,
of different ages (>30->89yo0), racial/ethnic backgrounds, intermittent
mandatory ventilation (IMV; 0-24 days) periods and days from symp-
tom start (S/s) to death (Fig. 1a, Supplementary Information Table 1).
From most donors, we collected at least lung, heart, and liver tissue
(Fig. 1a, Extended Data Fig. 1a, Methods), preserving specimens for
single cell and spatial analysis. We optimized single cell and single
nucleus RNA-seq (sc/snRNA-Seq) protocols for Biosafety Level 3, and
NanoString GeoMx workflows to spatially profile RNA from different
tissue compartment by cell composition or viral RNA (Methods).

COVID-19 cell atlases

We generated sc/snRNA-Seq atlases of lung (n=16 donors, k=106,792
cells/nuclei, m=23 specimens; Donors D1-8,10-17), heart (n=18,
k=40,880, m=19, D1-8,10-11,14-17, 27-28,31-32), liver (n=15, k=47,001,
m=16; D1-7,10-17) and kidney (n=16, k= 33,872, m=16; D4-8,10-12,14-
15,17,25-26,28-30). While initial tests showed some differences in cell
type proportions between snRNA-Seq and scRNA-Seq, snRNA-Seq
performed better overall® (Extended Data Fig. 1b-d and data not shown)
and was used for the remaining samples.

We developed a computational pipeline (Fig. 1b) to tackle unique
technical challenges. We used CellBender remove-background™ to
remove ambient RNA, enhancing cell distinction and marker specific-
ity (Extended Data Fig. 1e-h; Methods); we rapidly quality controlled,
pre-processed, and batch corrected data with cloud-based Cumulus®
(Extended Data Fig. 2a-g, Methods); and we automatically annotated
cells/nuclei by transferring labels from previous atlases (Fig. 2a,
Extended DataFig. 2h, Methods). We refined these labels withmanual
annotation of sub-clustersin each main lineage (Fig. 2b, Extended Data
Fig. 2i-2n, Methods). The former allowed us to compare to other data
resources (without clustering or batch correction); the latter torefine
cellidentity assignments with detailed domain knowledge.

A cell census of the COVID-19 lung

Automatic annotation defined 28 subsets of parenchymal, endothe-
lial and immune cells (Fig. 2a, Supplementary Information Table 2,
Methods), with further manual annotation withinsubgroupings (Fig.2b,
Extended DataFig. 2,4, Methods). Deconvolution of bulk RNA-Seq from
the same samples largely agreed (Extended Data Fig. 3a,b, Methods),
and our twoannotationstrategies had 94% agreement (Extended Data
Fig.3c-e).

Among immune cells we distinguished: six cell myeloid subsets:
CD14"¢"CD16"#" inflammatory monocytes with antimicrobial proper-
ties, and five macrophage subsets (Extended Data Fig. 2j, 4b) enriched
for scavenger receptors, toll-like receptor ligands, inflammatory tran-
scriptional regulators, or metabolism genes; four B and plasma cell
subsets: BLIMP-1"¢" plasma cells'®"; BLIMP-1"*™*%% plasma cells; B cells;
and,/CHAIN-expressing plasmablasts (Extended Data Fig. 2k, 4b); five
Tand NK subsets: two CD4"subsets, including T,,;and ametabolically
active subset; one CD8" subset; and two T/NK cell subsets (Extended
DataFig.2l,4b), including one with cytotoxic effector genes. The dearth
of neutrophils (Fig. 2a, 419 cells) is likely due to freezing or limitations
of droplet-based sc/snRNA-seq®.
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We identified seven endothelial subsets (Extended Data Fig. 2m,
4b)®: arterial; venous and lymphatic; capillary aerocytes; capillary
EC-1; and capillary EC-2 and amixed subset (Methods), and three stro-
malsubsets: fibroblasts; proliferative fibroblasts; and myofibroblasts”
(Extended Data Fig. 2n, Supplementary Information Table 3).

There were eight epithelial subsets including: club/secretory cells;
ATl1 cells; AT2 cells; and proliferative AT2 cells (Fig. 2b). One subset
corresponded to a previously described AT2 to AT1 transitional cell
state (KRT8' pre-alveolar type (PATS) 1 transitional cell state (PATS/
ADI/DATP)** (Fig. 2b).

Changesinlung cell composition
Compared to normal lung from a matching region (Fig. 2c, Methods),
AT2 cells were significantly decreased (FDR=2.8*10"", Dirichlet mul-
tinomial regression, Methods), possibly reflecting virally-induced cell
death®?.Dendritic cells (FDR=0.004), macrophages (FDR=3.6*10"), NK
cells (FDR=0.018), fibroblasts (FDR=0.013), lymphatic endothelial cells
(FDR=0.00058), and vascular endothelial cells (FDR=0.00011) allincreased.
Cell proportions varied between donors (Extended Data Fig. 5a-b).
While variation was not significantly correlated to PMI, age, or sex,
IMV was positively correlated with epithelial cell fraction (FDR =
0.007; Spearman p=0.765) and negatively with T and NK cell fraction
(FDR=0.041; p=-0.62). Fewer days on a ventilator may indicate a rap-
idly deteriorating condition. This is corroborated by the nominally
significant positive correlation between epithelial cell fraction and
S/sto death (p=0.671, p-value=0.004, but FDR=0.053).

Induced programs in epithelial cells

There were widespread, cell type specific, transcriptional changes in
lung cell types in COVID-19 (Extended Data Fig. 5¢, Methods), most
notably in CD16" monocytes (1,580 upregulated genes), lymphatic
endothelial (578), vascular endothelial (317), AT2 (309), and AT1(307)
cells. Within AT2 cells, there was higher expression (p<0.0004) of genes
associated with host viral response (Fig. 2d), including programmed
cell death (STATI), inflammation and adaptive immune response (Sup-
plementary Information Table 4). Lung surfactant genes were down-
regulated, consistent with in vitro reports®.

Failed paths for AT1cell regeneration

The PATS program signature was increased in COVID-19 pneumocytes
(p-value<2.2*10"¢, one-sided Mann-Whitney U test) (Fig. 2e, Extended
DataFig. 5d). This progenitor programis induced during lung injury?
(e.g.,idiopathic pulmonary fibrosis), consistent with fibrosis in severe
COVID-19%%, These studies also highlight fibroblast expansion, which
we also observe (Fig. 2c).

A subset of PATS program cells, distinct from KRT5*/TP63" air-
way basal cells, expressed canonical (KRT8/CLDN4/CDKNI1A) and
non-canonical (KRT5/TP63/KRT17) PATS markers (Fig. 2f, Extended
DataFig. 5d, Supplementary Information Table 3). These may be TP63*
intrapulmonary basal-like progenitor cells (IPBLP), identified in HIN1
influenzamouse models? and act as an emergency cellular reserve for
severely damaged alveoli?®. The putative IPBLP cells express interferon
viral-defense and progenitor cell differentiation genes (Supplementary
Information Table 3). Thus, multiple emergency pathways for alveolar
cell regeneration are activated in lung (Fig. 2g, Discussion).

Changed cell composition with viralload

To determine viral load and associated host responses, we analyzed
donorand cell type-specific distributions of SARS-CoV-2 reads (Fig. 3a, b,
Extended Data Fig. 6a-d, Methods). Reads spanned the entire
SARS-CoV-2 genome, with bias toward positive-sense alignments.



Afew cellshad reads aligning to all viral segments, including the negative
strand (Extended Data Fig. 6e), potentially indicating productive infec-
tion. Viral detection was not technically driven (Extended Data Fig. 6f-i),
andinter-donor variation was consistent with SARS-CoV-2 qRT-PCR on
bulk RNA (Extended Data Fig. 6j-1, Methods). Viral load was negatively
correlated with S/s to death (Fig. 3¢c), as previously reported®**. Bulk
RNA-Seqyielded nine unique complete viral genomes from nine donors
with high viral loads (Extended Data Fig. 6m, Methods); all genomes
carried the D614G allele. We identified no other common respiratory
viral co-infections (Extended DataFig. 6n). Total viral burden per sample
(including ambient RNA, Methods) positively correlated with propor-
tions of mast cells, specific macrophage subsets, venular endothelial
cells,and capillary aerocytes’ endothelial cells (Extended Data Fig. 60-u).

Genes upregulated in biopsies with high vs. low/no viral load
(Methods) included viral response and innate immune processes
(log,FC >1.4, Wald test, FDR-corrected p-value <0.05, Extended Data
Fig. 6v, Supplementary Information Table 4) and significantly over-
lapped with those in bulk RNA-Seq of other studies of post-mortem
COVID-19 lungs (FDR=3.12*10%, Kolmogorov-Smirnov test)*?. Down-
regulated genes (log,FC <1.4, Wald test, FDR-corrected p-value <0.05)
were involved in surfactant metabolism dysfunction and lamellar
bodies (secretory vesicles in AT2 cells®).

Lung cells enriched for SARS-CoV-2RNA

Myeloid cells were the cell category most enriched for SARS-CoV-2
RNA (158 cells following correction for ambient RNA, FDR<0.012,
Fig.3a, Extended DataFig. 6w-y, Methods), with particular enrichment
in CD14"e"Cp16Me" inflammatory monocytes (FDR<0.005) and
LDB2"E"OSMR"E"YAPI"E" macrophages (FDR<0.02, Extended Data
Fig. 6x, 7a,b), although enrichment scores in individual donors var-
ied. There was elevated, but non-significantly enriched, viral RNA in
endothelial cells, with the capillary 2 endothelial cells (cluster 3, FDR
<0.017) and lymphatic endothelial cells (cluster 7, FDR<0.006) enriched
compared to other endothelial subsets (Fig. 3a, Extended DataFig. 6w,y,
7¢,d). There were also SARS-CoV-2+ cells among mast cells, and Band
plasma cells, and viral RNA reads in multiple other cell types (Fig. 3a,
Extended Data Fig. 6w). Notably, SARS-CoV-2+ cells did not co-express
theentry factors ACE2and TMPRSS2, or other hypothesized entry cofac-
tors (Fig. 3b, Extended Data Fig. 7e-h).

Immune programsin SARS-CoV-2+cells

SARS-CoV-2+ cells had distinct transcriptional programs compared
to RNA- counterparts, with differentially expressed genes (FDR<0.05;
Methods) in epithelial and myeloid cells, including PPARG"®"CD15L "
macrophages and CD14"€"CD16"&" inflammatory monocytes (Sup-
plementary Information Table 5). Genes upregulated in epithelial
SARS-CoV-2+ cells were enriched for TNF, APl and chemokine/cytokine
signaling, SARS-CoV-2 driven cell responses in vitro®, and keratinization
pathways, which may reflect injury response (Extended Data Fig. 7i).
Genes upregulated in myeloid SARS-CoV-2+ cells were enriched for
chemokine and cytokine signaling, and responses to interferon, TNF,
intracellular pathogens, and viruses (Fig. 3d Extended Data Fig. 7j-m,
Supplementary Information Table 5), as previously described®**.
Cytokines and viral host response genes were upregulated in both
CD14"€"CD16"e inflammatory monocytes and PPARG""CD15L"¢" mac-
rophages (Extended DataFig. 7m, Supplementary Information Table 5),
including CXCL10 and CXCL11, which were upregulated in NP swabs™
and bronchoalveolar lavages®.

Asspatial atlas of COVID-19 lung

To provide tissue context, we used Nanostring GeoMx Digital Spa-
tial Profiling (DSP) for transcriptomic profiling from regions of

interest (ROIs) (Methods) in14 donors, including three healthy donors
(Extended Data Fig. 1a). ROIs spanned a range of anatomical struc-
tures and viral abundance based on SARS-CoV-2 RNA hybridization
signals; when possible, we segmented them to PanCK" and PanCK’, and
inflamed and normal-appearing alveoli areas of illumination (AOls)
to capture RNA (Fig. 4a, Extended Data Fig. 8a, Extended Data Fig. 9a,
Methods). We acquired high quality profiles (Extended Data Fig. 8b)
from matched AOIs based on distance to morphological landmarks
(Methods). SARS-CoV-2 RNA expression varied by donor, with elevated
levels in four donors (Extended Data Fig. 8c,d, Methods), consistent
with viral qRT-PCR and sc/snRNA-Seq. Given the good agreement
betweenatargeted1,811gene panel and awhole transcriptome (WTA)
panel (18,335 genes) (Extended Data Fig. 8e-g, Supplementary Informa-
tion Table 6), we focused our analyses on WTA data. For D8-12,18-24,
we contrasted COVID-19 and healthy donors and COVID-19 epithelial
and non-epithelial AOls; for D13-17, we focused on distinct anatomical
regions and inflamed vs. normal-appearing regions within donors.

Inflammatory activationinalveoli

Deconvolution of major cell type composition (Fig. 4b, Extended
DataFig. 8h, Supplementary Information Table 7-8, Methods) showed
inferred AT1and AT2 cells dominating the PanCK" compartments and
greater cellular diversity inthe PanCK compartment. COVID-19 PanCK
AOIs had increased fibroblast and myofibroblast scores compared to
controls, in linewith parallel spatial studies®*¥.

Comparing COVID-19alveolar AOIs vs. control lungs from deceased
healthy donors (“healthy”), there was up-regulation of interferon-o
andyresponse genes and oxidative phosphorylation pathways (Fig. 4c,
Extended Data Fig. 8i-k, Supplementary Information Table 6), simi-
lar to bulk RNA-Seq of highly infected tissue (/FITLIFIT3,IDO1,GZMB
,LAG3,NKG7,PRFI) and to SARS-CoV-2+ myeloid cells (TNFAIP6,CXC
L11,CCL8,ISG1,GBPS), and consistent with PANoptosis in a COVID-19
model®. Conversely, TNFa, IL2-STATS, and TGF( signaling as well as
apical junction and hypoxia were downregulated. Decreased TNF o
signaling expression in PanCK+ alveoli contrasts with its increase in
SARS-CoV-2+epithelial cellsin snRNA-seq and with reported*® synergy
between TNF acand IFNy in COVID-19 mouse models.

Comparing inflamed and normal-appearing AOIs within the same
alveolar biopsies of COVID-19 lungs (Extended Data Fig. 9, Supplemen-
tary Information Table 9, D13-D17), upregulated genes were enriched
for innate immune and inflammatory pathways**°, including neu-
trophil degranulation (FDR=5.2*10") and IFNy (FDR=3.4*10") and
interleukin (FDR=1.4*10") signaling. TNF pathway expression was
elevated ininflamed tissue albeit not significantly (FDR=0.097). Clau-
dinsand tightjunction pathways were downregulated, corroborating
adisrupted alveolar barrier, asininfluenza**. Cilium assembly genes
were enriched when comparing bronchial epithelial AOIs and matched
normal-appearingalveoli (Extended Data Fig. 9d, Supplementary Infor-
mation Table 9).

Comparing SARS-CoV-2 high and low AOIs (Fig. 4d, e, Extended
DataFig. 8,m, Methods) revealed induction of the viral ORF1ab and S
genes and upregulation of chemokines (CXCL2,CXCL3) and immediate
early genes in the PanCK' compartment, consistent with snRNA-Seq
(Supplementary Information Table 9, Extended Data Fig. 7i). NT5C,
encodinganucleotidase with a preference for 5-dNTPs, is consistently
upregulated in SARS-CoV-2 high AOIs (Fig. 4e, Extended Data Fig. 8m,
Supplementary Information Table 9). This geneis not known to play a
roleinlung injury and should be further studied.

COVID-19 impact on heart, kidney, liver

We next profiled liver, heart, and kidney by snRNA-Seq with automated
and manual annotation of parenchymal, endothelial and immune cells
(Methods, Extended Data Fig. 10, 11). Although other studies have
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reported viral reads in COVID-19 non-lung tissues*?, we detected very
few viral RNA reads in all three tissues, most of which could not be
assigned to nuclei (Extended Data Fig. 111); this absence was confirmed
by NanoString DSP and RNAscope (data not shown).
Focusingonheart, both cellcompositionand gene programs changed
between COVID-19 and healthy heart. There was a significant reduction
inthe proportion of cardiomyocytes and pericytes, and anincreasein
vascular endothelial cells (Extended DataFig. 11e). Genes upregulated
(FDR<0.01) in cardiomyocytes, pericytes, or fibroblasts (Extended Data
Fig.11g-i, Supplementary Information Table 10) included PLCG2, whose
cardiacrole is unknown but wasinduced in allmajor heart cell subtypes
(Extended Data Fig. 11j), and AFDN, upregulated in endothelial cells
(Extended DataFig.11k), which encodes ajunction adherens complex
component* necessary for endothelial barrier function. Upregulated
pathwaysinclude oxidative stress-induced apoptosis in pericytes, cell
adhesion andimmune pathways in cardiomyocytes, and cell differentia-
tion processes in fibroblasts (Supplementary Information Table 10).

COVID-19 cell types related through GWAS

Finally, we aimed toidentify genes and cell types associated with COVID-
19risk by integrating our atlas data with GWAS* for common*® variants
associated with COVID-19 (Methods). Among 26 genes proximal to
six COVID-19 GWAS regions (Supplementary Information Table 11,
Methods), 14 genes had higher average expression in the lung
(p-value<0.05, t-test; Extended Data Fig. 12a-d), 21 had significant
(FDR < 0.05) expression specificity in at least one lung cell type,
including FOXP4 (chr 6, AT1 and AT2 cells), and CCRI and CCRL2
(chr3, macrophages) (Extended DataFig.12e, Supplementary Informa-
tion Table 11), and 18 were differentially expressed (FDR<0.05) in COVID-
19 vs. healthy lung (e.g., SLC6A20in goblet cells, CCRSin CD8 T cells and
Tees» and CCRI in macrophage and CD16 monocytes, (Extended Data
Fig.12f, Supplementary Information Table 11).

We related heritability from GWAS of COVID-19 severity traits to
either cell type programs (genes enriched in a cell type in each tis-
sue) or disease progression programs (genes differentially expressed
between COVID-19 and controls in a cell type) in each tissue using
sc-linker* (Methods). AT2 (4.8x heritability enrichment, p-value=0.04),
CDS8 T (4.4x, p-value=0.009), and ciliated cell programs in the lung,
proximal convoluted tubule and connecting tubule programs in kid-
ney, and cholangiocyte programs in liver attained nominal (but not
Bonferroni-corrected) significance (Extended Data Fig. 12g-h, Sup-
plementaryInformation Table 11). Of all disease progression programs,
only the club cell program (single-cell level model) had nominally
significant heritability enrichment (10.5x, p-value=0.04 for severe
COVID-19) (Extended Fig. 12g, Supplementary Information Table 11).

The highest number of driving genes was observed for lung AT2 cells
and spanned several loci, hinting at a polygenic architecture linking
AT2 cellswith severe COVID-19 (Methods, Supplementary Information
Table11). Implicated GWAS proximity genes include OAS3 in lung AT2
and club cells and SLC4A7 in lung CD8 T cells (Supplementary Infor-
mation Table 11), as well genes at unresolved significantly associated
GWAS loci (Extended Data Fig. 12i), such as FYCOI (AT2, ciliated, club;
chr3p), NFKBIZ (AT2; chr3q), and DPP9 (AT2; chr 19) (Supplementary
Information Table 11).

Discussion

We built a biobank of severe COVID-19 autopsy tissue and atlases of
COVID-19 lung, heart, liver, and kidney (Extended Data Fig. 12j), com-
plementing a sister lung atlas (Melms et al., companion manuscript).

Among the changesinlung cell compositionin COVID-19,isareduc-
tionin AT2 cells and the presence of PATS and IPBLP-like cells, suggesting
that multiple regenerative strategies are invoked to re-establish alveolar
epithelial cells lost to infection. A serial failure of epithelial progenitors
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to regenerate at a sufficient rate, first by secretory progenitor cells in
the nasal passages and large and small airways, followed by alveolar
AT2 cells, PATS, and IPBLP cells, may eventually lead to lung failure.

Viral RNA in the lung varied significantly, was negatively correlated
with S/s to death, and primarily detected in myeloid and endothelial
cells (as in nonhuman primates*®); spatial analysis supports high viral
levels at the earlier stages of infection®**"#°, Epithelial cells were not
enrichedin high viral RNA samples orin SARS-CoV-2+ cells, consistent
with their excessive death. Cell-associated SARS-CoV-2 UMIs may rep-
resentamix of replicating virus,immune cell engulfment, and virions
orvirally-infected cells attached to the cell surface. We did not detect
viral RNA in the heart, liver or kidney, but observed other changes,
including broad upregulation of PLCG2in heart, a target of Bruton’s
tyrosine kinase (BTK)*.

Combining our profiles with GWAS of COVID-19, we related specific
cell types to heritable risk, especially AT2, ciliated, and CD8" T cells
and macrophages, as well as genes in multi gene regions underlying
the association. This analysis canimprove as GWAS grows and atlases
expand.

Our study was limited by a modest number of donors without
pre-selection of features, the terminal time point, limited distinction
betweenviral RNA and true infection, and technical confounders such
as PMI. Nevertheless, our methods would enable studies in diverse
diseased or damaged tissues, future meta-analyses will further enhance
its power, and provide critical resources for the community studying
host-SARS-CoV-2 biology.
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Fig.4|Compositionand expressiondifferencesbetween COVID-19 and
healthy lungs and betweeninfected and uninfected regions within
COVID-19lungs. a. Example of analyzed regions. Top: RNAscope (left) and
immunofluorescentstaining (right) of donorD20 with collection ROIs and
matched areas in white rectangles. Bottom: One ROI (yellow rectangle) from
eachscan (leftand middle), and the segmented collection AOlIs (right). b. Cell
compositiondifferences between PanCK'and PanCK alveolar AOIs and
between AOIs from COVID-19 (n=9,190 AOIs) and healthy (D22-24,38 AOls)
lungs. Expression scores (color bar) of cell type signatures (rows) in PanCK*
(left) and PanCK (right) alveolar AOIs (columns) in WTA data from different
donors (top color bar).c. Differential gene expressionin COVID-19 us. healthy
lung. Left: Significance (-log,,(p-value), y axis) and magnitude
(log,(fold-change), x axis) of differential expression of each gene (dots) in WTA

databetween PanCK" alveoli AOlIs from COVID-19 (n=78) vs. healthy (n=18) lung.
Right:Significance (-log,(q-value)) of enrichment (permutation test) of
different pathways (rows). d,e. Changes in gene expressionin SARS-CoV-2 high
vs.low AOIs within COVID-19 lungs in WTA data. d. SARS-CoV-2 high and low
alveolar AOIs. PanCK+ alveolar AOIs (dots) rank ordered by their SARS-CoV-2
signature scores (yaxis) in WTA data, and partitioned to high (red), medium
(grey) and low (blue) SARS-CoV-2 AOIs. e. Significance (-log10(p-value), y axis)
and magnitude (log2(fold-change), x axis) of differential expression of each
gene (dots) in WTA databetween SARS-CoV-2 high and low AOIs for PanCK+
alveoli(AOls:17 high, 3 medium, 58 low). Horizontal dashed line: FDR = 0.05.
Vertical dashed lines: [log,(fold-change)| =2. Top 10 DE genes by fold change
marked.

Nature | www.nature.com | 9



Article

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Code availability

All samples were initially processed using Cumulus (https://github.
com/klarman-cell-observatory/cumulus), which we ran on the Terra
Cloud platform (https://app.terra.bio/). Code for all other analyses is
available on GitHub (https://github.com/klarman-cell-observatory/
covidl9-autopsy).

Data availability

Processed sequencing data (sc/snRNA-Seq and bulk) are available in
the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/) under accession no. GSE171668 and raw human sequencing datais
availableinthe controlled access repository DUOS (https://duos.broad-
institute.org/), under Dataset IDs DUOS-000126, DUOS-000127, DUOS-
000128 and DUOS-000129. Viral genome assemblies and short-read
sequencing data are publicly available on NCBI's Genbank and SRA
databases, respectively, under BioProject PRINA720544. GenBank
accessions for SARS-CoV-2 genomes are MW885875-MW885883. Data
for other tissues in the biobank will be released as they are acquired.
The processed datais available on the Single Cell Portal: Lung - https://
singlecell.broadinstitute.org/single_cell/study/SCP1052/

Heart- https://singlecell.broadinstitute.org/single_cell/study/SCP1216/
Kidney - https://singlecell.broadinstitute.org/single_cell/study/
SCP1214/

Liver - https://singlecell.broadinstitute.org/single_cell/study/SCP1213/
Nanostring GeoMx raw and normalized count matrices are available
on GEO under accession no. GSE163530. Raw images will be available
uponrequest. Source data are provided with this paper.
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Extended DataFig.1|See next page for caption.
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Extended DataFig.1|A COVID-19 autopsy cohort, data quality and ambient
RNA removal for asingle cell/nucleus lungatlas.a. COVID-19 cohort
overview.IMV:intermittent mandatory ventilation days, S/s: time from
symptomonset to death in days; PMI: post-morteminterval. b-d. Comparison
of cellcomposition by scRNA-seq and snRNA-seq in matched samples.
Proportion of cells (x axis) of each type (color code) in sc/snRNA-seq samples
fromthesame three donors (D3, D8, D12). e-h. Cellbender ‘remove-
background’ onasingle sample (D1). e. CellBenderimproves cell clustering and
expression specificity by removing ambient RNA and empty (non-cell)
droplets. UMAP plot of snRNA-seq profiles (dots) either before (left) or after
(right) CellBender processing, colored by clusters, with CellBender-
determined empty dropletsinblack (k=2,508 droplets removed, k=10,687 cells

remaining).f,g. CellBender improves specificity of individual genes and cell
type signatures. UMAP embedding of single nucleus profiles pre-CellBender
(left) and post-CellBender (right) processing, colored by expression of the
surfactant protein SFTPAI (f) or signature score (Scanpy’s®®score_genes
function, color bar) for genes sets specific to lung AT2 (g) cells. Color bar
saturation chosento emphasize low expression. h. Improved specificity of
surfactantgene expression with CellBender (same sample). Expression level
(log(average UMl count per cell), color) and percent of cells with nonzero
expression (dot size) of surfactant genes (columns) across cell clusters (rows)
before (left) and after (right) CellBender processing. Also shown, for
comparison, are the results of an alternative method, DecontX (middle).
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Extended DataFig.2|See next page for caption.
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Extended DataFig. 2| Quality control and annotationin the COVID-19 lung
cellatlas. a-d. QC metrics for 24 lung samples (n=16 donors). Number of cells/
nuclei (a, yaxis) and distributions (median and first and third quartiles) of
number of UMI per cell/nucleus (b, y axis), number of genes per cell/nucleus
(c,yaxis) and fraction of mitochondrial genes per cell/nucleus (d, y axis) across
thesamples (xaxis) inthe lung atlas. SCRNA-Seq samples are labeled by agrey
circle. e-g. Cross-sample integration corrects batch effects. e. UMAP (asin
Fig.2a) 0f106,792 sc/snRNA-Seq profiles post-Harmony® correction
(Methods) colored by sampleID. f,g. Donors and processing protocols across
clusters. Number of cells (y axis) from different donors (f) or processing
protocols (g) ineach Leiden cluster (xaxis). h. Cross validation of automatic

annotation. Percent of cells (color bar) annotated inaclass by Schiller et al.”
that we predict for each class (columns).i. Identification of main lineage
annotations by manualannotation. UMAP 0f 106,792 sc/snRNA-Seq profiles
post-Harmony® correction (as in Fig. 2a) colored by manual annotation done in
sub-clustering of eachlineage. Dashed lines: chosen compartments for sub-
clustering.j-n.Refined annotation of cell subsets within lineages. UMAP
embeddings of eachselected cell lineages with cells colored by manually
annotated sub-clusters. Color legends highlight highly expressed marker
genesforselect subsets. j. myeloid cells (k=24,417 cells/nuclei); k. Band plasma
cells (k=1,693); 1. T and NK cells (k=9,950); m. endothelial cells (k=20,366); and
n.fibroblast (k=20,925).
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Extended DataFig. 3 |See next page for caption.
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Extended DataFig. 3 |Bulk RNA-Seq deconvolution and comparison of
automatic and manual annotations in the COVID-19 lung cell atlas.
a,b.Deconvolution of bulk RNA-Seq libraries from adjacent lung tissue.
a.Mean proportion (y axis, error bars = SD estimates from bulk RNA-Seq
deconvolution (hatched bars; from MuSiC®¢) and from sc/snRNA-seq (filled
bars) for each of 11 cell subsets (x axis) in each of 16 bulk RNA-Seq lung samples
(panels) from10 random samples 0f 10,000 cells each. b. Robustness of cell
proportion estimates to the number of single cellssampled for thereference
data. Mean proportion (yaxis, from MuSiC) estimates for each of 11 cell subsets

(color dots) ineach of 16 bulk RNA-Seq lung samples (panels) when using three
independentsamples 0of1,000t010,000 cells from the single cell reference
(xaxis).c-e. Agreement between automated and manual annotations. c. High
consistency between automatic and manual annotations. The proportion
(colorintensity) and number (dot size) of cellswithagiven predicted
annotation (rows) ineach manual annotation category (columns).d,e. UMAP
embedding of myeloid (k=24,417 cells/nuclei) (d) and T and NK (k=9,950 cells),
(e) cell profiles colored by manually annotated subclusters (left) orautomated
predictions (right).
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Extended DataFig.4|Manual annotationin the COVID-19 lung cell atlas.
a,b.Identification of mainimmunelineage annotations.a. UMAP 0f 106,792 sc/
snRNA-Seq profiles post- Harmony correction (as in Fig. 2a) colored by
expression of genes (color bar, geneslisted below) used to separateimmune
cell'sub-lineages (Methods). b. Differentially expressed genes between
sub-clusters within eachlineage. Expression (color bar) of genes (rows) thatare
differentially expressed (Methods) across the sub-clusters (columns) within

each compartment. DE genes shown are a union of the following: (i) top 10 DE
genesbetween clusters, (ii) DE genes above an AUC of 0.8 and 0.75 for B/Plasma
cells, (iii) pseudo-bulk DE genes above alog(fold change) threshold (thresholds:
endothelial=4.2, T/NK=3, myeloid=4, B/plasma=2) (label on top). c. Batch
correctionwithinlineage. Fraction of cells/nuclei (y axis) from different
processing protocols (left) or different donors (right, n=17) ineach sub-cluster
(xaxis) after batch correction with Harmony® within eachlineage.
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Extended DataFig. 5| Cellintrinsic programs and epithelial regenerative

cellstatesinthe COVID-19 lung cell atlas. a,b. Differencesin cell composition

across donors. Percent of cells (y axis) from each myeloid subset (legend) in
eachdonor (xaxis). b. Percent of cells (y axis) from each mainlineage (legend)
ineach donor (xaxis), rank ordered by proportion of epithelial cells (blue).
c.Myeloid, endothelial and pneumocyte cells show substantial changesin cell
intrinsic expression profiles in COVID-19 lung. Log,(fold change) (y axis)
between COVID-19 and healthy lung for each elevated gene (dot) in each cell

subset (xaxis, by automatic annotation). Black bars: number of genes with
significantly increased expression (adjusted p-value <7.5*10°°). Computed

using asingle cell based differential expression model appliedtoa

(=) 61L-AIAOD Ul parensje sausb jo #

meta-differential expression analysis between COVID-19 and healthy samples
across 14 studies (see Methods). d. PATS and IBPLP cells in COVID-19 lung.
UMAPembeddings of 1,550 KRT8 PATS-expressing cells (top) or of1,394
airway epithelial cells (bottom) colored by IPBLPs or basal cells (orange,

leftmost panels) or characteristic markers (purple, remaining panels).
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Extended DataFig. 6 |See next page for caption.
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Extended DataFig. 6 |SARS-CoV-2-RNA+ cells distinguished by sc/snRNA-
Seq.a.Detection of SARS-CoV-2 UMIs from sc/snRNA-Seq data. SARS-CoV-2
UMIs from all cellbarcodes (top), and after ambient correction (second from
top). Number (second from bottom) and percent (bottom) of SARS-CoV-2 RNA+
cells afterambient correction (m=24 specimens). b,c.Impact of ambient RNA
on SARS-CoV-2RNA+detection. Number of SARS-CoV-2 aligning UMl per Cell
Barcode (CB) (yaxis) in healthy lung (b, black), in vitro SARS-CoV-2 infected
humanbronchial epithelial cells (HBEC)" (b, blue) or lung samples from
COVID-19 donors at autopsy either with CB with high-quality capture of human
mRNA (b, red) or after removal of cells whose viral alignments were attributed
toambient contamination (c, Methods). d. Variation in SARS-CoV-RNA+ cells
across donors. Percent of cells (yaxis) assigned as SARS-CoV-2 RNA (white),
SARS-CoV-2RNA*(red), or SARS-CoV-2 ambient (grey, Methods) across the
donors (xaxis), sorted by proportion of SARS-CoV-RNA+ cells. e-i. Viral RNA
detectiondoes not correlate with cell quality metrics. e-h. Number of SARS-
CoV-2 UMIs (prior toambient viral correction) for each cell (y axis) vs. either
number of SARS-CoV-2 genes for that cell (e, x axis), number of human
(GRCh38) genes per cell (f, x axis), number of human (GRCh38) UMl per cell

(g, xaxis), or % of human (GRCh38) mitochondrial UMIs per cell (h, x axis).

i. Number of retained high-quality cells (x axis) and number of SARS-CoV-2
RNA+ cells (y axis) in each sample (dots) following correction for ambient viral
reads. Pearson’sr=0.07,two-sided p=0.73. j-1. Agreementin viral RNA
detectionbetween qPCR and sn/scRNA-Seq. Number of SARS-CoV-2 copies
measured by CDCN1qPCRonbulk RNA extracted from matched tissue
samples (xaxis) and the number of SARS-CoV-2 aligning UMI (y axis) for each

sample (dot) from all reads (j, p<0.0001, two-sided), all reads from high-
quality cell barcodes (k, p<0.0001), and after viralambient RNA correction (I,
p=0.0042).Spearman’s &#x2374; reported, two-sided test. m. Genetic
diversity of SARS-CoV-2. Maximum likelihood phylogenetic tree of 772 SARS-
CoV-2genomes from cases in Massachusetts between January-May 2020.
Orange points: donorsin this cohort. n. Specificity of SARS-CoV-2infection.
log,o(1+reads) in each donor (columns) assigned to different viruses (rows) by
metagenomic classification using Kraken2 from bulk RNA-Seq. Asterisks
denotetargeted capture. o-u. Relation between SARS-CoV-2 RNA and different
celltypes. Number of SARS-CoV-2 aligning UMIs in each (including all CB) and
the proportion of epithelial (o), mast (p), macrophage VCAN"8"FCNI"¢"(q),
macrophages CDI163"s"MERTK"=" (r), macrophages L DB2"s"OSMR""YA P1"e" (s),
venular endothelial (t) or capillary aerocytes (u) cells in these samples (x axes).
Pearson’srdenotedinthe upper left corner withsignificance following
Bonferronicorrection (p). v.Impact of viral load on bulk RNA profiles.
Significance (-log,,(P-value), yaxis) and magnitude (log,(fold-change), xaxis) of
differential expression of each gene (dots) betweenthree donors with highest
viralload and six donors with lowest/undetectable viralload profiled by bulk
RNA-Seq.Red points: FDR<0.05. w-y. Distribution of SARS-CoV-2 RNA+ cells
across cell types and subsets. Number of SARS-CoV-2 RNA+ cells (y axis) from
each donor (color) across major categories (w, x axis), myeloid subsets
(x,inflammatory monocytes: 40 cells, 5 donors; LDB2"¢"OSMR"e"yA P1"en
macrophages: 27 cells, 5donors; x axis), or endothelial subsets (y, capillary
endothelial cells: 16 cells, 4 donors; lymphatic endothelial cells: 9 cells, 3
donors; 16 cells, 4 donors, xaxis).
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Extended DataFig.7 |Donor-specific enrichment of SARS-CoV-2 RNA+ cells
andhostresponses to viralRNA.a-d. SARS-CoV-2RNA+cellsare enriched in
specificlineages and sub-types.a,c. UMAP embeddings of either myeloid cells
(a), or endothelial cells (c) from seven donors containing any SARS-CoV-2 RNA+
cell, and colored by viral enrichment score (color bar; red: stronger enrichment)
and by SARS-CoV-2 RNA+ cells (black points). b,d. Number of SARS-CoV-2 RNA+
cells (y axis) per cell type/subset (xaxis) in myeloid (b) or endothelial (d)
subsets. Bar color: FDR (dark blue: higher significance, Methods; *FDR < 0.05.).
b.e-h.Variationacross donors. e-g. UMAP embeddings of sc/snRNA-seq
profiles from each of seven donors containing any SARS-CoV-2 RNA+cell
(columns), colored by major cell categories (e), expression of SARS-CoV-2 entry
factors (f), or SARS-CoV-2 RNA enrichment per cluster (g, red/blue colorbar;
red: high enrichment; black points: SARS-CoV-2 RNA+ cells). h. Number of

SARS-CoV-2 RNA+ cells (y axis) across major cell types (x axis) from each of
seven donors containing any SARS-CoV-2 RNA+ cell (columns). Bar color: FDR
(dark blue: higher significance).*FDR<0.05.1i,j. Normalized enrichment score
(bars, right y axis) and significance (points, FDR, left y axis) (by GSEA***,
Methods) of different functional gene sets (xaxis) in genes upregulatedin
SARS-CoV-2 RNA+ epithelial (i) or myeloid (j) cells. k. Expression of SARS-CoV-2
genomic features (log-normalized UMI counts; rows) across SARS-CoV-2 RNA+
(k=158 cells) and SARS-CoV-2 RNA- (k=790) myeloid cells (columns).

I,m. Distribution of normalized expression levels (y axis) for select
significantly differentially expressed genes between SARS-CoV-2 RNA-and
SARS-CoV-2RNA+ cells from all myeloid cells or Inflammatory monocytes
CD14"eCD16 e cells.
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Extended DataFig. 8 |See next page for caption.
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Extended DataFig. 8| NanoString GeoMx experiment design and analysis.
a.Overview of spatial profiling experiments. b. Distribution of sequencing
saturation (yaxis, %) for WTA and CTA AOIs (x axis). ¢,d. SARS-CoV-2 signature
score (yaxis) foreach WTA (c) and CTA (d) AOI (dots) from each donor (x axis).
e.Overlap of WTAand CTA genes. f,g. Agreement between WTA and CTA.
f.Distribution (box:interquartile range, white point: median, violin range: min-
max) of Pearson correlation coefficients (y axis) between WTA and CTA
profiles (for common genes across 296 AOIs). g. Pearson correlation
coefficient (y axis) of WTA and CTA common genes for each AOI pair (dot) from
each donor (xaxis), sorted by distance between WTA and CTA sections (blue, 10
mm; orange, 20 mm; green, 40 mm). h. Cell composition differences between
PanCK"and PanCK alveolar AOIs and between AOIs from COVID-19 (n=9, 161
AOIs) and healthy (D22-24,40 AOls) lungs. Expressionscores (color bar) of cell
typesignatures (rows) in PanCK" (left) and PanCK (right) alveolar AOls
(columns) in CTA data from different donors (top color bar). i-k. Differential

gene expressionin COVID-19 us. healthy lung. Left: Significance (-log;,
(p-value),y axis) and magnitude (log,(fold-change), x axis) of differential
expression of each gene (dots) in WTA for PanCK (i, 112 COVID-19 vs. 20
healthy), and in CTA for PanCK" (j, 69 COVID-19 vs. 18 healthy) and PanCK

(k, 92 COVID-19 vs.22 healthy) alveoli. Horizontal dashed line: FDR=0.05,
vertical dashed lines: [log,(fold-change)| =2. Right: Significance (-log,,
(g-value)) of enrichment (permutation test) of different pathways (rows).
I,m.Changesin gene expressionin SARS-CoV-2 high vs. low AOls within
COVID-19 lungsin WTA data. . PanCK- alveolar AOIs (dots) rank ordered by
their SARS-CoV-2 signature score (yaxis) in WTA data, and partitioned to high
(red), medium (grey) and low (blue) SARS-CoV-2 AOls. m. Significance
(-log,o(p-value), y axis) and magnitude (log,(fold-change), x axis) of differential
expression of each gene (dots) in WTA databetween SARS-CoV-2 high and low
AOIs for PanCK- alveoli (ROIs: 11 high, 6 medium, 95low). Horizontal dashed
line:FDR=0.05.
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Extended DataFig.9|GeoMx WTA DSP analysis of lung biopsies reveals
region- andinflammation-specificexpression programs. a. Region
selection. Serial sections of lung biopsies (five donors, D13-17; image depicts
serial sections of D14) processed with GeoMx WTA-DSP with 4-color staining
(DNA, CD45,CD68, PanCK), RNAscope with probes against (SARS-CoV-2 S-gene
(utilized to derive semi-quantitative viral load scores), ACE2, TMPRSS2), H&E
staining, and immunohistochemistry with anti-SARS-CoV-2 S-protein. Scale
bar:100 pm. b-d. Regions and inflammation specific expression programs.

b. Thefirst two principal components (PCs, xandyaxes) fromlung ROl gene
expression profiles from donors D13-17, spanning normal-appearing alveoli

(green; D14=6 AOls, D15=2 AOls, D16=5 AOls, D17=4 AOlIs); inflamed alveoli
(magenta; D13=14 AOls, D14=18 AOls, D15=7 AOls, D16=3 AOls, D17=8 AOlIs);
bronchial epithelium (blue; D14 =2 AOls, D15 =1A0I, D16 =2 AOls, D17 =3 AOls),
and arterial blood vessels (black; D13=2 AOls, D15=3 AOls). c. GSEA score (circle
size,legend) of the enrichment of the interferon-y pathway in each normal-
appearing (green; 6 AOIs) and inflamed (magenta; 18 AOIs) alveolar AOls (dot)
fromthesectionofdonor D14 (in a), placed in their respective physical
coordinates onthe tissuesection (asina).d. Expression (color bar, log2(counts
per million)) of IFNy pathway genes (rows) from normal-appearing (green, n=6)
andinflamed alveoli (magenta, n=18) AOIs (columns) from D14 lung biopsy.
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Extended DataFig.10 | Asingle nucleus atlas of heart, kidney, and liver
COVID-19 tissues. a-c. COVID-19 heart cell atlas. UMAP embedding of 40,880
heartnuclei (dots) (n=18 donors, m=19 specimens) colored by Leiden resolution
1.5 clustering with manual post hoc annotations (a) or donors (c). b. Proportions
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Extended DataFig.11|See next page for caption.




Extended DataFig.11|Entry factorsinheart, kidney and liver COVID-19
tissues and differential gene expressioninheartcell atlas. a-c. SARS-CoV-2
entry factors are expressedin kidney, liver,and heart cells. Average expression
(dot color) and fraction of expressing cells (color, size) of SARS-CoV-2 entry
factors (rows) across cell subsets (columns) in the kidney (a), liver (b), and heart
(c).d-k. Genes and pathways differentially expressed between COVID-19 and
healthy heart cells. d. Log mean expression per cell (dot color) and fraction of
expressing cells (dot size) across cell types from healthy or COVID-19 heart
(rows) for select genes (columns) that are differentially expressed between
COVID-19 and healthy cells e. Proportions of each cell type for COVID-19 (n=15)
and healthy (n=28, 2 studies) samples (boxplots: middle line=mean, box
bounds=firstand third quartiles,whiskers=1.5x theinterquartile range,
minima=smallest observed proportion, maxima=highest observed
proportion).f.UMAP embedding of integrated COVID-19 and healthy snRNA-
seq profiles (dots) colored by major cell types. Plot limited to a subset of

151,373 high-quality cells for visualization purposes. g-i. Cell type specific
differentially expressed genesin COVID-19 us. healthy nuclei. Differential
expression (log,(fold change), x axis), and associated significance
(-log,o(P-value), y axis, Methods) for each gene (dot) between COVID-19 vs.
healthy nucleiof cardiomyocytes (g), pericytes (h), and fibroblasts (i). Dashed
line: FDR=0.01. j,k. UMAP embedding of the meta-analysis atlas (asin f) but
showing only COVID-19 (top) or healthy (bottom) nuclei profiles (dots) colored
by expression of PLCG2 (j) or AFDN (K). 1. Low levels of viral UMlIs in heart, liver
and kidney, compared to lung. Cumulative viral read counts as a function of
droplet UMI count. Inlung (red) most viral-positive droplets are empty
droplets (total UMI count ~100) with some viral-positive droplets which
containnuclei (UMIcount>-1,000), butin heart (green), liver (blue), and
kidney (orange), most of the “viral-positive” droplets have fewer than10total
UMl counts, suggesting these reads are not trustworthy.
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Extended DataFig.12 | Expression of GWAS curated genes acrosslung,
heart, liver and kidney atlases. a-d. Mean expression (dot color, log(TP10K +
1)) and proportion of expressing cells (dot size) for each of 26 curated GWAS
implicated genes (columns) in each cell subset (rows) for lung (a), heart (b),
liver (c) and kidney (d) COVID-19 autopsy atlases. Results only reported for
geneswithexpressioninatleastonecellsubsetintheunderlying tissue. Some
GWAS genes have higher expressionin the lung compared to the other three
tissues. e,f. Mean expression (e, z-score relative to all other cell types, color
bar) or differential expression (f, z-score of DE analysis of expressionin
COVID-19 us. healthy cells of the same type) of 25 out of 26 GWAS implicated
genes (rows) from 6 genomicloci associated with COVID-19 (based on summary
statistics datafrom COVID-19 HGI meta analysis* across lung cell types
(columns). ABOwas not considered as it was notreliably recoveredin

scRNA-seq data. g-h. Celltype and disease progression gene programsin the
lung (g), liver, and kidney (h) that contribute to heritability of COVID-19
severity. Magnitude (circle size, E score) and significance (color, -log,,(P-value))
ofthe enrichment of cell type programs and cell-types specific disease
programs (columns) that were significantly enriched for COVID-19 or severe
COVID-19 phenotypes (rows). All results are conditional on 86 baseline- LDv2.1
model annotations. i. Nomination of single best candidate genes at unresolved
GWAS significantlociby aggregating gene level information across program
classesand celltypes. Significance (-log,,(P-value), y-axis) of GWAS association
signal atlocus (x-axis). Blue boxes: Significantly associated loci* at agenome-
widessignificancelevel (purple horizontal bar). j. Schematic summarizing the
key findings and contributions of this study..
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
o]

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X X

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O O OO0 0O Ol

X
XX X X XX

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  no software was used for data collection

Data analysis 1. Terra, a Cloud platform for storing and sharing data and analysis, tools; https://app.terra.bio/
2. Cumulus/cellranger_workflow on Cumulus, a (cloud-based) framework for running cellranger mkfastqg and cellranger counts; used to run
cellranger counts, version run was Snapshot 10 on Terra ;Read the Docs: https://cumulus.readthedocs.io/en/latest/cellranger.html; Terra
WDL: https://portal.firecloud.org/?return=terratmethods/cumulus/cellranger_workflow/10
3. SARS-CoV-2 genome , used to align viral reads. Transcriptome reference name: BetaCov/South Korea/KCDC03/2020 based on NC_045512.2
https://github.com/hyeshik/sars-cov-2-transcriptome
4. Cumulus/cumulus workflow on Cumulus, a (cloud-based) framework for high-throughput single cell and single nucleus analysis using
Pegasus; used for quality control and clustering analysis on individual samples, version run was Snapshot 29 on Terra; Read the Docs: https://
cumulus.readthedocs.io/en/latest/cumulus.html# ; Terra WDL: https://portal.firecloud.org/?return=terratmethods/cumulus/cumulus/29
5. CellBender remove-background, removes ambient RNA and other technical artifacts from count matrices, version 0.2.0. Read the Docs:
https://cellbender.readthedocs.io; Terra WDL: cellbender/remove-background (snapshot 11) Terra WDL: https://portal.firecloud.org/
#methods/cellbender/remove-background/11
6. Scanpy, Python package for scRNA-seq data handling/processing, version 1.5.1+1.5.2.dev5+ge5d246aa; https://scanpy.readthedocs.io
7. Harmony-Pytorch, Python implementation of Harmony batch correction method, version 0.1.3; https://github.com/lilab-bcb/harmony-
pytorch
8. Pegasus, Python package for scRNA-seq data handling/processing and generating heatmaps for NanoString GeoMx data, version 0.17.2;
1.0.0; https://pegasus.readthedocs.io
9. DESeq2, R package for analysis differential gene expression,version 1.28.0 for bulk RNA seq analysis, version 1.30.0 for viral and spatial DE
analysis http://bioconductor.org/packages/release/bioc/html/DESeq2.html
10. MuSIC, R package for estimation of cell type proportions in bulk RNA-seq data, version 0.1.1; https://github.com/xuranw/MuSiC
11. GSEA, software for analyzing gene set enrichments, version 4.1.0 (run with database available as of 11/1/2020); https://www.gsea-




msigdb.org/gsea/index.jsp
12. GeoMx NGS Pipeline (DND) Processing Nanostring GeoMx NGS data for WTA and CTA assays, version 1.0.0; https://blog.nanostring.com/
geomx-online-user-manual/Content/NGS_DND/Running_DND.htm#Running3
13. Limma,R package for differential gene expression analysis for NanoString GeoMx and heart snRNA-seq data, version 3.44.3;http://
bioconductor.org/packages/release/bioc/html/limma.html
14. edgeR, R package for differential gene expression analysis for NanoString GeoMx data, version 3.28.1 or higher;https://bioconductor.org/
packages/release/bioc/html/edgeR.html
15. EnhancedVolcano, R package for generating volcano plots for differential genes for analysis on NanoString GeoMx data, version1.6.0;
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
16. fgsea, R package for gene set enrichment analysis on NanoString GeoMx and heart snRNA-seq data, version 1.14.0; http://
bioconductor.org/packages/release/bioc/html/fgsea.html
18. Viral-ngs, a collection of pipelines for viral genomic analyses including genome assembly and metagenomic classification, version 2.0.21;
https://viral-ngs.readthedocs.io/en/latest/; https://dockstore.org/organizations/Broadinstitute/collections/pgs
19. Scikit-learn, Python module for machine learning, version 0.23; https://scikit-learn.org/stable/
20. Statsmodels, Python module for statistical modeling version 0.12.1 https://www.statsmodels.org/stable/index.html
21. Idsc, Python module for GWAS heritability analysis. https://github.com/bulik/Idsc
22. MAGMA, C++ command line interface for gene-level GWAS analysis version 1.08b

https://ctg.cncr.nl/software/magma
23. scCODA, statistical testing for compositional analysis for scRNA-seq data, v0.1.1.post1,
https://github.com/theislab/scCODA/releases/tag/0.1.1.post1
24. adjusted_rand_score from sklearn.metrics.cluster was used to compute rand index for sub-clustering. https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.adjusted_rand_score.html
25. DecontX, ambient RNA removal from scRNA-seq count matrix data (part of the “celda” package) https://github.com/campbio/celda
version 1.5.11
26. GSVA,R package for gene set enrichment analysis was used to estimate the ssGSEA score for the alveoli NanoString GeoMX data. https://
www.bioconductor.org/packages/release/bioc/html/GSVA.html
27. Seurat R package for snRNA-seq data analysis v3.2.1
28. R packages ggplot2 v3.3.2, dplyr 0.8.0.1, reshape?2 v1.4.3 and cowplot v1.1.0 for visualization
29. liger R package v0.5.0 https://github.com/welch-lab/liger (Linked Inference of Genomic Experimental Relationships)
30. RSEM for bulk RNA-seq analysis , v1.2.8., https://deweylab.github.io/RSEM/
31. STAR for bulk RNA-seq alignment, v2.6.0c , https://github.com/alexdobin/STAR

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data availability

Processed sequencing data (sc/snRNA-Seq and bulk) are available in the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession no.
GSE171668 and raw human sequencing data is available in the controlled access repository DUOS (https://duos.broadinstitute.org/), under Dataset IDs
DUOS-000126, DUOS-000127, DUOS-000128 and DUOS-000129. Viral genome assemblies and short-read sequencing data are publicly available on NCBI's Genbank
and SRA databases, respectively, under BioProject PRINA720544. GenBank accessions for SARS-CoV-2 genomes are MW885875-MW®&85883. Data for other tissues
in the biobank will be released as they are acquired.

The processed data is available on the Single Cell Portal:

Lung - https://singlecell.broadinstitute.org/single_cell/study/SCP1052/
Heart - https://singlecell.broadinstitute.org/single_cell/study/SCP1216/
Kidney - https://singlecell.broadinstitute.org/single_cell/study/SCP1214/
Liver - https://singlecell.broadinstitute.org/single_cell/study/SCP1213/

Nanostring GeoMx raw and normalized count matrices are available on GEO under accession no. GSE163530. Raw images will be available upon request.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We generated sc/snRNA-Seq atlases of:

o)
Q
=:
C
=
D
=
D
w
D
Q
=
(@)
>
=
(D
i}
[©}
=
=
«
(%)
C
3
3
Q
=
=




Sample size lung (n=16 donors, k=106,792 cells/nuclei, x=23 specimens; Donors=D1-8, 10-17)
heart (n=18, k=40,880, x=19 specimens, D1-8, 10-11,14-17, 27-28, 31-32)
liver (n=15, k=47,001, x=16 specimens; D1-7,10-17)
kidney (n=16, k= 33,872, x=16 specimens;D4-8,10-12,14-15,17,25-26,28-30)

We generated spatial data on the following:

lung(n= 17 donors, x= 17 samples, Donors=D8-17,22-24)

heart(n=1 donor, x= 1 sample, Donor =D20

heart(n=1 donor, x= 1 sample, Donor =D20)

Because these are samples from human COVID-19 autopsy donors, we collected samples from as many donors that would consent over the

collection period. We did not perform any power analyses prior to this.

Data exclusions  CellBender was used to remove ambient RNA and other technical artifacts from the count matrices. Following CellBender, individual samples
were processed using Cumulus, including filtering out cells/nuclei with fewer than 400 UMI, 200 genes, or greater than 20% of UMIs mapped
to mitochondrial genes.

Replication These are samples from human COVID-19 autopsy donors, so we could not replicate samples

Randomization  These are samples from human COVID-19 autopsy donors, so we could not randomize

Blinding These are samples from human COVID-19 autopsy donors, so this was not applicable to our study

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

NXOXNXX[] s
OOXOOOX

Dual use research of concern

Antibodies

Antibodies used Immune Cell Profiling Panel (Core); Nanostring Inc; GMX-PROCONCT-HICP-12, Item 121300101, Lot# 0474026
10 Drug Target Panel; GMX-PROMODNCT-HIODT-12, Item 121300102, Lot# 0474029
Immune Activation Status Panel; Nanostring Inc; GMX-PROMODNCT-HIAS-12, Item 121300103, Lot# 0474032
Immune Cell Typing Panel; Nanostring Inc; GMX-PROMODNCT-HICT-12, Item 121300104, Lot# 0474035
Cell Death Panel; Nanostring Inc; GMX-PROMOD-NCTHCD-12, Lot# 0474050
MAPK Signaling Panel; Nanostring Inc; GMX-PROMOD-NCTHMAPK-12, Lot# 0474047
PI3K/AKT Signaling Panel; Nanostring Inc; GMX-PROMOD-NCTHPI3K-12, Lot# 0474053
Covid-19 GeoMx-formatted Antibody Panel including (TMPRSS2, clone EPR3861; ACE2, clone EPR4436; Cathepsin L/V/K/H, clone
EPR8011; DDXS5, clone EPR7239; and SARS-CoV-2 spike glycoprotein, polyclonal) ; Abcam; ab273594, Lot# GR3347471-1
GeoMx Solid Tumor TME Morphology Kit; Nanostring Inc; GMX-PRO-MORPH-HST-12; Item 121300310
Alexa Fluor® 647 alpha-Smooth Muscle Actin Antibody, clone 1A4 ; Novus Bio; IC1420R
CD68 antibody,KP1 clone from Santa Cruz (sc-20060 AF594)

Validation Nanostring morphological and staining panels are pre-validated by the manufacturer: https://www.nanostring.com/wp-content/
uploads/2020/12/GeoMx_Antibody_Validation_White_Paper-3.pdf
Morphological markers were previously demonstrated in human tissue in https://doi.org/10.1101/2020.08.25.267336

Human research participants

Policy information about studies involving human research participants

Population characteristics Extended Data Table 1 - Patient metadata table

Recruitment For BWH: Subjects were recruited who had died with positive SARS-CoV-2 NP swab test prior to death, and were consented
for autopsy to be performed at BWH less than 24 hours from the time of death. No decisions were influenced by subject age,
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race/ethnicity, sex/gender, pre-mortem treatments, or co-morbidities.

For MGH: All patients at the Massachusetts General Hospital (MGH) who succumbed from SARS-CoV-2 infection, as
confirmed by the qRT-PCR assays performed on nasopharyngeal swab specimens, were eligible for clinical autopsy upon
consent by their healthcare proxy or next of kin. A subset of these patients were also enrolled in the MGH Rapid Autopsy
Protocol if they had a history of known or suspected malignancy. Their clinical data and research specimens were collected in
accordance with Dana Farber/Harvard Cancer Center Institutional Review Board-approved protocol 13-416.

For BIDMC: The COVID rapid autopsy program was active at BIDMC from April 23, 2020 through May 6, 2020. An email was
sent to all physicians caring for COVID patients notifying them about the existence of the program and that participation in
the research autopsy program could be offered to families of deceased patients. The decision to offer participation in the
autopsy research program to the next of kin of decedents was at the discretion of their treating physicians. In total, five
autopsies were performed, representing a small fraction of the patients treated at BIDMC during the initial COVID surge of
Spring 2020. No efforts were made to specifically include or exclude subjects based on any demographic data or pre-existing
medical condition.

For NYP: Inclusion criteria for autopsies from COVID-19 donors cared for at New York Presbyterian Hospital/Columbia
University Medical Center included real-time reverse transcription polymerase chain reaction (RT-PCR) confirmed infection,
consent to perform rapid autopsy and post mortem intervals <10 hours. Appropriate consent was obtained from donors or
the donors' next of kin. All procedures performed on donor samples were in accordance with the ethical standards of the IRB
and the Helsinki Declaration and its later amendments. Frozen control tissues were assessed by a pulmonary pathologist and
represent “uninvolved” regions of biobanked tumor resections. Donor characteristics reflect the age, gender, and race
representation of patients admitted to New York Presbyterian Hospital/Columbia University Medical Center with COVID-19.
Control samples were selected to reflect median age distribution of COVID-19 cases included in the study and match the
gender distribution.
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Ethics oversight Secondary analysis of samples at the Broad Institute was covered under Massachusetts Institute of Technology (MIT) IRB
protocols 1603505962 and 1612793224, or the NHSR (not-involving-human-subjects research) protocol ORSP-3635. No
subject recruitment or ascertainment was performed as part of the Broad protocol. Samples added to this protocol also
underwent IRB review and approval at the institutions where the samples were originally collected. Specifically, Dana-Farber
Cancer Institute approved the protocol 13-416, Partners/Massachusetts General Hospital and Brigham and Women's
Hospital approved the following protocols: 2020P000804, 2020P000849, 2015P002215; Beth Israel Deaconess approved
protocol 2020P000406.224. No subject recruitment or ascertainment was performed as part of the Broad protocol. All tissue
specimens of lethal COVID-19 and controls collected at New York Presbyterian Hospital/Columbia University Medical Center
were under IRB approved protocols (IRB-AAATO785 and IRB-AAAB2667). Appropriate consent was obtained from patients or
the patients' next of kin. All procedures performed on patient samples at New York Presbyterian Hospital/Columbia
University Medical Center were in accordance with the ethical standards of the IRB and the Helsinki Declaration and its later
amendments.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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