The Mineral Fibers of Potential Concern in Talc— Geology and Mineralogy Bradley Van Gosen U.S. Geological Survey Denver, Colorado asbestiform tremolite with platy talc "transitional fibers" ## Domestic talc production and applications In 2018, total sales (domestic and export) of talc by U.S. producers were estimated to be **540,000 metric tons valued at \$117 million**. During 2018, talc produced and sold in the United States was used in: - Ceramics = 22% - Paint = 21% - Paper = 21% - Plastics = 8% - Rubber = 4% - Roofing = 4% - Cosmetics = 2% - Export, insecticides, and others = 18% **USGS National Minerals Information Center** https://www.usgs.gov/centers/nmic/talc-and-pyrophyllite-statistics-and-information Exports of talc from U.S producers were 230,000 metric tons. ## Talc imports and uses An estimated 354,000 metric tons of talc was imported in 2017. (540,000 metric tons produced domestically.) Import sources (2014 – 2017) Pakistan 40% Canada 27% China 22% Others 11% *Including imported talc and domestic production*, the U.S. end-uses, in decreasing order by tonnage: Plastics, ceramics, paint, paper, roofing, rubber, cosmetics, and other. # Talc $Mg_3Si_4O_{10}(OH)_2$ 1 on the Mohs hardness scale - Talc is usually platy, a "sheet silicate"; however, fibrous varieties exist. - Weak bonds between the layers, so that they easily slide past each other, which gives talc its greasy or slippery feel and low hardness. - Well developed crystals of talc that are visible to the naked eye are extremely rare. ## "Asbestos" ☐ Serpentines: chrysotile ☐ Five Amphiboles — the <u>asbestiform</u> varieties of: tremolite actinolite anthophyllite cummingtonite-grunerite ("amosite") riebeckite ("crocidolite") #### **Tremolite asbestos** "Asbestiform" (asbestos-like) 100 micrometers Silicate minerals that separate into fibers that are: - Very thin typically ≤1 micrometer (μm) in width - Flexible high tensile strength (bend but not easily break) - Durable resistant to heat, chemicals, and electricity - Occur in bundles that when crushed or handled readily disaggregate and release microscopic fibers ## Serpentine mineral group Chrysotile Mg₃Si₂O₅(OH)₄ - About 95% of the asbestos produced in the world so far - About 99% of the asbestos mined today 10 µm Chrysotile $Mg_3Si_2O_5(OH)_4$ $\begin{aligned} &\text{Talc} \\ &Mg_3Si_4O_{10}(OH)_2 \end{aligned}$ #### Regulated asbestos minerals of the Amphibole group Crocidolite and amosite do not occur in talc deposits Asbestiform anthophyllite \Box (Mg, Fe²⁺)₇Si₈O₂₂(OH)₂ Mg/(Mg+Fe²⁺) \geq 0.5 **Asbestiform actinolite** $\Box \text{Ca}_2(\text{Mg, Fe}^{2+})_5 \text{Si}_8\text{O}_{22}(\text{OH})_2$ $\text{Mg}/(\text{Mg+Fe}^{2+}) = 0.5 - 0.89$ Asbestiform tremolite $\Box \text{Ca}_2(\text{Mg, Fe}^{2+})_5 \text{Si}_8\text{O}_{22}(\text{OH})_2$ $\text{Mg}/(\text{Mg+Fe}^{2+}) = 0.9 - 1.0$ Anthophyllite, actinolite, and tremolite can occur in talc deposits Compositions from: Leake et al., 1997, American Mineralogist, v. 82, p. 1019–1037. 200 μm $\begin{aligned} &\text{Talc}\\ &Mg_3Si_4O_{10}(OH)_2 \end{aligned}$ Anthophyllite $\square \{Mg, Fe^{2+}\}_7 Si_8 O_{22} (OH)_2$ - Variations in amphibole morphology - Tremolite particles within a single talc deposit (Death Valley region) prismatic acicular asbestiform #### asbestiform tremolite ## "Cleavage Fragments" #### Metasomatism "The process of....capillary solution and deposition by which a new mineral....may grow in the body of an old mineral or mineral aggregate." ### To form talc this process is driven by: - •Regional metamorphism (tectonics) - •Contact metamorphism (igneous intrusion) - Circulation of hydrothermal fluids (fluids heated by magma) and you need a Magnesium-rich host rock: **Dolostone** – Mg-rich carbonate rocks **Ultramafic rock** – Mg-Fe-rich metamorphic rocks ## Regional Metamorphism of Dolostones Forming Talc #### **Metamorphosed Dolostones** Dolomite Dolomitic marble Dolomitic limestone 100% MgCO₃ — 10 to 50% MgCO₃ ocean dolomite Anthophyllite + silica + water — Talc $3Mg_7Si_8O_{22}(OH)_2 + 4SiO_2 + 4H_2O \longrightarrow 7Mg_3Si_4O_{10}(OH)_2$ Lower temperatures and pressures Higher temperatures and pressures ## Contact Metamorphism of Dolostones Forming Talc ## Generalized zonation of a Vermont talc deposit | Ultramafic rock | Talc –
Carbonate | Talc | | olite–
orite | Transitional
Country Rock | Country Rock | |---|---|--|---|-----------------|------------------------------|---| | Ultramafic | purity taic | | Actinolite–
Chlorite–
rich rock | | Altered
Country Rock | Unaltered
Country Rock | | rock Mg-Fe-rich serpentine | Talc with
Magnesite
MgCO ₃ | (little quartz
or clay) | abundant Actinolite and chlorite Talc replacing Actinolite (minor) Tremolite? | | Metamorphic texture remains | Mafic gneiss | | Chrysotile
Tremolite – Actinolite
Anthophyllite | Dolomite $CaMg(CO_3)_2$ $Calcite$ $CaCO_3$ | Anthophyllite? Actinolite? Tremolite? | | | Stubby
Ca-amphiboles | | | | Talc replacing Anthophyllite | | | | | Si source | | Mg source | | Acadian oroge
~400 Ma
590 – 645° 0
7.5 – 8.5 kb pre | \mathbb{C} | | · · | 2) American Journal
282, p. 543–616. | ## Circulation of Heated ("hydrothermal") Fluids Forming Talc Deposits that Replace Dolostones Upward circulation of hot silica-rich fluids, heated by an igneous intrusion at depth, forming large talc bodies by the massive replacement of an overlying dolostone unit (Mg-rich marble) ## Amphiboles or serpentine are not created Dolomite + silica + water Talc + calcite + carbon dioxide $$3CaMg(CO_3)_2 + 4SiO_2 + H_2O \longrightarrow Mg_3Si_4O_{10}(OH)_2 + 3CaCO_3 + 3CO_2$$ ## Primary points - The geologic conditions that formed the talc body controlled the presence or absence of intergrown mineral fibers. - General consistencies exist between the deposit types that form talc ore bodies with mineral fibers. - However, all talc deposit types can have some internal variation, which is the nature of mineral deposits. - All talc ores used in products require detailed mineralogical study so that we can fully characterize and understand them.