The Mineral Fibers of Potential Concern in Talc— Geology and Mineralogy

Bradley Van Gosen
U.S. Geological Survey
Denver, Colorado

asbestiform tremolite with platy talc

"transitional fibers"

Domestic talc production and applications

In 2018, total sales (domestic and export) of talc by U.S. producers were estimated to be **540,000 metric tons valued at \$117 million**.

During 2018, talc produced and sold in the United States was used in:

- Ceramics = 22%
- Paint = 21%
- Paper = 21%
- Plastics = 8%
- Rubber = 4%
- Roofing = 4%
- Cosmetics = 2%
- Export, insecticides, and others = 18%

USGS National Minerals Information Center

https://www.usgs.gov/centers/nmic/talc-and-pyrophyllite-statistics-and-information

Exports of talc from U.S producers were 230,000 metric tons.

Talc imports and uses

An estimated 354,000 metric tons of talc was imported in 2017. (540,000 metric tons produced domestically.)

Import sources (2014 – 2017)

Pakistan 40% Canada 27% China 22% Others 11%

Including imported talc and domestic production, the U.S. end-uses, in decreasing order by tonnage:

Plastics, ceramics, paint, paper, roofing, rubber, cosmetics, and other.

Talc $Mg_3Si_4O_{10}(OH)_2$

1 on the Mohs hardness scale

- Talc is usually platy, a "sheet silicate"; however, fibrous varieties exist.
- Weak bonds between the layers, so that they easily slide past each other,
 which gives talc its greasy or slippery feel and low hardness.
- Well developed crystals of talc that are visible to the naked eye are extremely rare.

"Asbestos"

☐ Serpentines: chrysotile

☐ Five Amphiboles — the <u>asbestiform</u> varieties of:

tremolite

actinolite

anthophyllite

cummingtonite-grunerite ("amosite")

riebeckite ("crocidolite")

Tremolite asbestos

"Asbestiform"
(asbestos-like)

100 micrometers

Silicate minerals that separate into fibers that are:

- Very thin typically ≤1 micrometer (μm) in width
- Flexible high tensile strength (bend but not easily break)
- Durable resistant to heat, chemicals, and electricity
- Occur in bundles that when crushed or handled readily disaggregate and release microscopic fibers

Serpentine mineral group

Chrysotile Mg₃Si₂O₅(OH)₄

- About 95% of the asbestos produced in the world so far
- About 99% of the asbestos mined today

10 µm

Chrysotile

 $Mg_3Si_2O_5(OH)_4$

 $\begin{aligned} &\text{Talc} \\ &Mg_3Si_4O_{10}(OH)_2 \end{aligned}$

Regulated asbestos minerals of the Amphibole group

Crocidolite and amosite do not occur in talc deposits

Asbestiform anthophyllite

 \Box (Mg, Fe²⁺)₇Si₈O₂₂(OH)₂ Mg/(Mg+Fe²⁺) \geq 0.5

Asbestiform actinolite

 $\Box \text{Ca}_2(\text{Mg, Fe}^{2+})_5 \text{Si}_8\text{O}_{22}(\text{OH})_2$ $\text{Mg}/(\text{Mg+Fe}^{2+}) = 0.5 - 0.89$

Asbestiform tremolite

 $\Box \text{Ca}_2(\text{Mg, Fe}^{2+})_5 \text{Si}_8\text{O}_{22}(\text{OH})_2$ $\text{Mg}/(\text{Mg+Fe}^{2+}) = 0.9 - 1.0$ Anthophyllite, actinolite, and tremolite can occur in talc deposits

Compositions from: Leake et al., 1997, American Mineralogist, v. 82, p. 1019–1037.

200 μm

 $\begin{aligned} &\text{Talc}\\ &Mg_3Si_4O_{10}(OH)_2 \end{aligned}$

Anthophyllite $\square \{Mg, Fe^{2+}\}_7 Si_8 O_{22} (OH)_2$

- Variations in amphibole morphology
- Tremolite particles within a single talc deposit (Death Valley region)

prismatic

acicular

asbestiform

asbestiform tremolite

"Cleavage Fragments"

Metasomatism

"The process of....capillary solution and deposition by which a new mineral....may grow in the body of an old mineral or mineral aggregate."

To form talc this process is driven by:

- •Regional metamorphism (tectonics)
- •Contact metamorphism (igneous intrusion)
- Circulation of hydrothermal fluids (fluids heated by magma)

and you need a Magnesium-rich host rock:

Dolostone – Mg-rich carbonate rocks **Ultramafic rock** – Mg-Fe-rich metamorphic rocks

Regional Metamorphism of Dolostones Forming Talc

Metamorphosed Dolostones

Dolomite Dolomitic marble Dolomitic limestone 100% MgCO₃ — 10 to 50% MgCO₃

ocean
dolomite

Anthophyllite + silica + water — Talc

 $3Mg_7Si_8O_{22}(OH)_2 + 4SiO_2 + 4H_2O \longrightarrow 7Mg_3Si_4O_{10}(OH)_2$

Lower temperatures and pressures

Higher

temperatures and

pressures

Contact Metamorphism of Dolostones Forming Talc

Generalized zonation of a Vermont talc deposit

Ultramafic rock	Talc – Carbonate	Talc		olite– orite	Transitional Country Rock	Country Rock
Ultramafic	purity taic		Actinolite– Chlorite– rich rock		Altered Country Rock	Unaltered Country Rock
rock Mg-Fe-rich serpentine	Talc with Magnesite MgCO ₃	(little quartz or clay)	abundant Actinolite and chlorite Talc replacing Actinolite (minor) Tremolite?		Metamorphic texture remains	Mafic gneiss
Chrysotile Tremolite – Actinolite Anthophyllite	Dolomite $CaMg(CO_3)_2$ $Calcite$ $CaCO_3$	Anthophyllite? Actinolite? Tremolite?			Stubby Ca-amphiboles	
	Talc replacing Anthophyllite					Si source
Mg source		Acadian oroge ~400 Ma 590 – 645° 0 7.5 – 8.5 kb pre	\mathbb{C}		· ·	2) American Journal 282, p. 543–616.

Circulation of Heated ("hydrothermal") Fluids Forming Talc Deposits that Replace Dolostones

Upward circulation of hot silica-rich fluids, heated by an igneous intrusion at depth, forming large talc bodies by the massive replacement of an overlying dolostone unit (Mg-rich marble)

Amphiboles or serpentine are not created

Dolomite + silica + water Talc + calcite + carbon dioxide

$$3CaMg(CO_3)_2 + 4SiO_2 + H_2O \longrightarrow Mg_3Si_4O_{10}(OH)_2 + 3CaCO_3 + 3CO_2$$

Primary points

- The geologic conditions that formed the talc body controlled the presence or absence of intergrown mineral fibers.
- General consistencies exist between the deposit types that form talc ore bodies with mineral fibers.
- However, all talc deposit types can have some internal variation, which is the nature of mineral deposits.
- All talc ores used in products require detailed mineralogical study so that we can fully characterize and understand them.