September 5, 2023

Suzhou Sniper Medical Technologies Co., Ltd % Huifang Zhao Consultant Sinow Medical AS Hoyteknologisenteret, Thormohlens gate 55 Bergen, 5006 Norway

Re: K221869

Trade/Device Name: BCR-ABL1 (p210) %IS Kit (Digital PCR Method) Regulation Number: 21 CFR 866.6060, 21 CFR 862.2570 Regulation Name: BCR-ABL quantitation test Regulatory Class: Class II Product Code: OYX, PHG Dated: April 3, 2023 Received: April 4, 2023

Dear Huifang Zhao:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's

requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801 and Part 809); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to <u>https://www.fda.gov/medical-devices/medical-device-safety/medical-device-reporting-mdr-how-report-medical-device-problems</u>.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (<u>https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance</u>) and CDRH Learn (<u>https://www.fda.gov/training-and-continuing-education/cdrh-learn</u>). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (<u>https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice</u>) for more information or contact DICE by email (<u>DICE@fda.hhs.gov</u>) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Pamela S. Ebrahimi -S Digitally signed by Pamela S. Ebrahimi -S Date: 2023.09.05 15:40:06 -04'00'

Pamela Gallagher Ebrahimi, Ph.D.
Deputy Branch Chief
Division of Molecular Genetics and Pathology
OHT7: Office of In Vitro Diagnostics
Office of Product Evaluation and Quality
Center for Devices and Radiological Health

Enclosure

Indications for Use

510(k) Number *(if known)* K221869

Device Name

BCR-ABL1 (p210) %IS Kit (Digital PCR Method)

Indications for Use (Describe)

The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is an in vitro nucleic acid amplification test for the quantitation of BCR-ABL1 and ABL1 transcripts in total RNA from whole blood of diagnosed t (9;22) positive Chronic Myeloid Leukemia (CML) adult patients expressing BCR-ABL1 fusion transcripts type e13a2 and/or e14a2. The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is a reverse transcription-quantitative PCR performed on the Sniper Digital PCR All-in-One System and is intended to measure BCR-ABL1 to ABL1, expressed as a log molecular reduction (MR value) from a baseline of 100% on the International Scale, in t (9;22) positive CML patients during monitoring of treatment with Tyrosine Kinase Inhibitors (TKIs).

The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is intended for use only on the Sniper Digital PCR All-in-One System.

The test does not differentiate between e13a2 or e14a2 fusion transcripts and does not monitor other rare fusion transcripts resulting from t (9;22). This test is not intended for the diagnosis of CML.

Type of Use	(Select one	or both.	as applicable)	

Prescription Use (Part 21 CFR 801 Subpart D)

Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff *PRAStaff@fda.hhs.gov*

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

510(k) Summary

A. Submitter:

Submitter: Suzhou Sniper Medical Technologies Co., Ltd.

Address: Unit 301, Building A6, Suzhou BioBAY, No. 218 Xinghu Street, Suzhou

Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou,

China.

Email: zhangpeng@sniper-tech.com

Contact Person: Peng Zhang

B. Device

Trade Name:	BCR-ABL1 (p210) %IS Kit (Digital PCR Method)
Common Name:	BCR-ABL1 Digital PCR Test
Type of Test	Reverse transcription, quantitative, digital droplet polymerase chain reaction (ddPCR) based nucleic acid amplification
Regulation section:	21 CFR 866.6060
	21 CFR 862.2570
Classification:	Class II
Product Code:	OYX
	PHG
Classification/Advisory Panel	Pathology (88)

C. Predicate device:

Product Name:QXDx BCR-ABL %IS Kit for use on the QXDx AutoDG ddPCR System510(k) Number:K181661Product Code:OYX, PHGManufacture:Bio-Rad Laboratories, Inc.

D. Indications for Use:

1. Indications for use:

The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is an in vitro nucleic acid amplification test for the quantitation of BCR-ABL1 and ABL1 transcripts in total RNA from whole blood of diagnosed t(9;22) positive Chronic Myeloid Leukemia (CML) adult patients expressing BCR-ABL1 fusion transcripts type e13a2 and/or e14a2. The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is a reverse transcription-quantitative PCR performed on the Sniper Digital PCR Allin-One System and is intended to measure BCR-ABL1 to ABL1, expressed as a log molecular reduction (MR value) from a baseline of 100% on the International Scale, in t(9;22) positive CML patients during monitoring of treatment with Tyrosine Kinase Inhibitors (TKIs).

The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is intended for use only on the Sniper Digital PCR All-in-One System.

The test does not differentiate between e13a2 or e14a2 fusion transcripts and does not monitor other rare fusion transcripts resulting from t(9;22). This test is not intended for the diagnosis of CML.

2. Special conditions for use statement(s):

For in vitro diagnostic use only.

For prescription use only.

3. Special instrument requirements:

Sniper Digital PCR All-in-One System

E. Device Description:

The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is designed for detection of the BCR-ABL1 fusion gene (p210) and ABL1 gene, with specific primers and specific fluorescence probes. The test process includes three parts. The first part is to extract ribonucleic acid (RNA) from peripheral blood of CML patients. The second part is to detect BCR-ABL1 fusion gene (p210) and ABL1 internal reference gene in RNA samples by RT-dPCR (Reverse Transcription-Droplet PCR) reaction solution using the Sniper Digital PCR All-in-One System (DQ24-Dx). The third part is to analyze the results.

A description of the reagents provided with the kit is described below in Table 1.

Composition	Main components	Application
One-step RT-dPCR Master Mix	One-step RT-dPCR Buffer, dNTP/dUTP Mix, MgCl ₂ , FAM Reference Dye, RNase Inhibitor, etc.	Reaction mix component of the RT reaction to generate cDNA from RNA template.

Composition	Main components	Application
BCR-ABL1 Primer Probe Mix	Primers, Probes	Provides primers and probes for ddPCR amplification and detection of target sequences.
BCR-ABL1 Enzyme Mix	Taq DNA Polymerases, Reverse Transcriptase, RNase Inhibitor, Uracil- DNA Glycosylase	Catalyzes the amplification of primers hybridized to templates from the cDNA. Enzyme exonuclease activity degrades hybridized probes to release fluorescence for the detection of amplicons in each PCR cycle.
Calibrator 10%IS	K562 cell RNA, HL60 cell RNA mixture	Per run calibrators to check against acceptance criteria for use of electronic WHO-IS CF factor and reporting of WHO-IS value results
Calibrator 0.1%IS	K562 cell RNA, HL60 cell RNA mixture	Per run calibrators to check against acceptance criteria for use of electronic WHO-IS CF factor and reporting of WHO-IS value results
Positive Control 1 (%IS of 10)	K562 cell RNA, HL60 cell RNA mixture	Control used to ensure that ddPCR steps performed properly by generating expected MR value.
Positive Control 2 (%IS of 0.01)	K562 cell RNA, HL60 cell RNA mixture	Control used to ensure that ddPCR steps performed properly by generating expected MR value.
Negative Control	HL60 cell RNA	Negative control used to ensure that RT and ddPCR steps performed properly and identify false positive results due to contamination.
Nuclease free water	DNase/RNase-Free water	Adjust volume of RT & ddPCR reactions.

Instrument:

The Sniper Digital PCR All-in-One System consists of one instrument, which can be used together with it's supporting consumables and BCR-ABL1 (p210) %IS Kit (Digital PCR Method) to complete the detection of samples.

The Sniper Digital PCR All-in-One System divides the sample into about 20000 droplets and carries out PCR amplification, read the number of positive and negative droplets through fluorescent signals, and then calculate the concentration of nucleic acid quantitatively according to the volume of the droplets and the principle of Poisson Distribution.

Software:

DQ24-Dx-Sight Software (v1.0.2) is used to control the system and analyze test results. This software is embedded in the Sniper Digital PCR All-in-One System.

F. Substantial Equivalence Information:

1. Predicate device name(s):

The QXDx BCR-ABL %IS Kit

QXDx Automated Droplet Generator

QXDx Droplet Reader

QXDx Software 1.2

2.Predicate 510(k) number(s):

K181661

3. Comparison with predicate:

Similarities								
Item	Subject Device	Predicate Device						
Indications	The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is an in vitro nucleic acid amplification test for the quantitation of BCR-ABL1 and ABL1 transcripts in total RNA from whole blood of diagnosed t(9;22) positive Chronic Myeloid Leukemia (CML) adult patients expressing BCR-ABL1 fusion transcripts type e13a2 and/or e14a2. The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is a reverse transcription-quantitative PCR performed on the Sniper Digital PCR All-in-One System and is intended to measure BCR-ABL1 to ABL1, expressed as a log molecular reduction (MR value) from a baseline of 100% on the International Scale, in t(9;22) positive CML patients during monitoring of treatment with Tyrosine Kinase Inhibitors (TKIs). The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is intended for use only on the Sniper Digital PCR All-in-One System. The test does not differentiate between e13a2 or e14a2 fusion transcripts and does not monitor other rare fusion transcripts resulting from t(9;22). This test is not intended for the diagnosis of CML.	The QXDx TM BCR-ABL %IS Kit is an in vitro nucleic acid amplification test for the quantitation of BCR-ABL1 and ABL1 transcripts in total RNA from whole blood of diagnosed t(9;22) positive Chronic Myeloid Leukemia (CML) patients expressing BCR- ABL1 fusion transcripts type e13a2 and/or e14a2. The QXDx BCR- ABL %IS Kit is a reverse transcription-quantitative PCR performed on the Bio-Rad QXDx TM AutoDG TM ddPCR System and is intended to measure BCR- ABL1 to ABL1, expressed as a log molecular reduction (MR value) from a baseline of 100% on the International Scale, in t(9;22) positive CML patients during monitoring of treatment with Tyrosine Kinase Inhibitors (TKIs). The test does not differentiate between e13a2 or e14a2 fusion transcripts and does not monitor other rare fusion transcripts resulting from t(9;22). This test is not intended for the diagnosis of CML.						
Measurement Type	Quantitative	Same						
Specimen Type	RNA from whole blood (EDTA)	Same						
Anti-coagulant	EDTA	Same						

Table 2: Similarity comparison

	Similarities									
Item	Subject Device	Predicate Device								
Traceability	1st WHO International Genetic Reference Panel for quantitation of BCR-ABL translocation by RQ-PCR	Same								
Reporting Units	Both %IS and Molecular Response (MR)	Same								
Fundamental Technology	Digital PCR	Same								
Calibrators	Two levels are formulated at 0.1%IS and 10%IS BCR-ABL1/ABL1.	Same								

Table 3: Different comparison

Differences										
Item	Subject Device	Predicate Device								
Measuring Range	MR 0.3 to MR 4.5	MR 0.3 to MR 4.7								
RNA Input	500 ng	1000n g								
Quality calibrators	3 levels of external control Positive control 1 (%IS of 10) Positive control 2 (%IS of 0.01) Negative Control	3 levels of external control RNA High (%IS of 18) RNA Low (%IS of 0.03) RNA Negative								
Instrument	Sniper DQ24-Dx	Bio-Rad QXDx [™] AutoDG [™] ddPCR System								
Instrument Computer Operating System	Embedded software, Ubuntu18.04.5	Microsoft Windows 10								
Degree of Automation	Same. Automated control of amplification, detection, and data analysis.	Requires manual transfer of amplification mixture to amplification/detection instrument. Automated control of detection and data analysis, except amplification functionality.								
Amplification Reaction Volume	22 μL in Sniper PCR plates.	20-25 μL in 96-well Bio- Rad PCR plates.								

G. Standard/Guidance Document Referenced (if applicable):

CLSI EP07-Ed3, Interference Testing in Clinical Chemistry

CSLI EP17-A2, Evaluation of Detection Capability for Clinical Laboratory

Measurement Procedures.

CSLI EP15-A3, User Verification of Precision and Estimation of Bias- Third Edition.

CLSI EP06-2nd Edition, Evaluation of the Linearity of Quantitative Measurement Procedures.

CLSI EP25-A Evaluation of Stability of In Vitro Diagnostic Reagents.

H. Test Principle:

The BCR-ABL1 (p210) %IS Kit quantitatively detects the RNA of fusion genes BCR-ABL1 (p210, b2a2 (e13a2) and b3a2 (e14a2)) and ABL1 in the peripheral blood of adult patients with Chronic Myeloid Leukemia (CML) by designed specific primers and probes combined with Sniper Digital PCR All-in-One System.

Total RNA is extracted from whole blood containing EDTA anticoagulant for detection. Sample RNA is mixed with One-step RT-dPCR Master Mix, BCR-ABL1 Primer Probe Mix and BCR-ABL1 Enzyme Mix to prepare a 22 μ L PCR reaction. The BCR-ABL1 primers and probes are designed to detect the breakpoint translocation of BCR-ABL1 p210 [b2a2 (e13a2) and b3a2 (e14a2)], and to detect the ABL1 sequence.

A total of 22 μ L of PCR reaction is loaded into each of 8 consecutive tubes, which is placed on the sample rack of the Sniper Digital PCR All-in-One System. The detection is conducted directly without separated reverse transcription. The supporting consumables required for the detection process include droplet generation oil, PCR four-well plate, droplet generation needle, 4 quality controls and 2 calibrators for each run. After amplification, Sniper Digital PCR All-in-One System will photograph each sample, control and calibrator according to the fluorescence channels to distinguish negative and positive droplets, and the photos are stored.

After the detection is completed, set the threshold line at 1/3 of the distance between negative and positive droplet clusters, and the ratio of BCR-ABL1 and ABL1 genes is calculated, and the %IS value and MR value of the sample are calculated according to the conversion factor (CF) of the kit. Secondly, the quality of the test results should be controlled, in which the blank control should satisfy BCR-ABL1 copy ≤ 1 and ABL1 copy ≤ 10 , the negative control should satisfy BCR-ABL1 copy ≤ 1 , the measured values of positive control 1 and calibrator 10%IS should be between MR0.5 and MR1.5, the measured value of positive control 2 should be between MR3.5 and MR4.5, and the measured value of calibrator 05-6

0.1%IS should be between MR2.5 and MR3.5. Finally the results are outputted. Interpretation of Results

The numerical value of the World Health Organization (WHO) International Scale is %IS, the ratio expressed as a percentage of BCR-ABL1 expression to the expression of a control gene (ABL1 in this instance). The International Scale (%IS) is a geometric progression and therefore repetitive detection of a sample is non-normally distributed about the mean. %IS values require log transformation prior to performing any statistical analyses that require normally-distributed data. Another value commonly reported in the literature is the Molecular Reduction, or MR value. The MR value is traditionally written as MRx.x. However, for simplicity and legibility, the BCR-ABL1 (p210) %IS Kit (Digital PCR Method) will report the value as MRx.x. The MR value is the log10 reduction from the internationally standardized baseline, defined as 100%IS. Therefore,

MRx.x = log10(100/%IS) = log10(100) - log10(%IS) = 2 - log10(%IS)The test uses MR values for the calibration standards as well as the primary specimen output, with %IS also reported. MR values with their corresponding %IS values are shown below table 4:

%IS	MR
50	0.3
32	0.5
10	1.0
1	2.0
0.32	2.5
0.1	3.0 (MMR)
0.032	3.5
0.01	4.0
0.0032	4.5
0.001	5.0
MMR: Major Molecular Resp	oonse

Table 4: %IS and MR comparison table

The results are interpreted automatically by the embedded Software DQ24-Dx-Sight from measured droplet counts, fluorescent signals, and embedded calculation algorithms. It will report out BCR-ABL1 and ABL1 copies. An indication of sample suitability is that the ABL1 copies are sufficient for the MRx.x column. International Scale Percent Ratio (%IS) is calculated as the copy number of BCR-ABL1 divided by the copy number of ABL1, then multiplied by 100 times the conversion factor (CF) of the kit, i.e.

%IS=BCR-ABL1copy / ABL1copy ×100 × CF

The test results should be interpreted according to the following standards (table5):

Test results	Report results	Explanation of test results			
Copy number of BCR-		It indicates that there is no BCR-ABL1			
ABL1 as 0.	Report: Negative	fusion gene in the test sample.			
MR > 4.5 or %IS <	Report: MR value> 4.5	BCR-ABL1 fusion gene is detected, but			
	detected or %IS value <	the results are beyond the limit of			
0.0032	0.0032 detected	quantitation.			
$MR \le 4.5 \text{ or } \%IS \ge$	Demonstra 0/IC (MD) lass	BCR-ABL1 fusion gene detected			
0.0032	Report: %IS (MR) value	and %IS (MR) value measured			
Copy number of ABL1	Denert Involid	The copy number of ABL1 gene is too			
≤10000	Report: Invalid	low.			

Table 5: Interpretation of results

Note:

(1) When the number of ABL1 copies is $\leq 10,000$, the report is invalid. A retest should be performed with increased RNA input.

(2) In case of 10000 < ABL1 copy number $\le 32,000$, and BCR-ABL1 copy number = 0, ABL1 copy number is too low, and a retest should be performed with increased RNA input.

(3) In the case of ABL1 copy number > 140,000 and the BCR-ABL1 copy number > 0, the ABL1 copy number exceeds the linear range, which will affect the quantitative accuracy. A retest should be performed with reduced RNA input.

I. Performance Characteristics (if/when applicable):

1. Analytical Performance:

a. Precision/Reproducibility:

Precision and Reproducibility were assessed using 3 positive pools at 5 levels. The 3 positive pools were prepared by mixing 5 BCR-ABL1 positive p210(e13a2) RNA samples with an MR value of 0.3 (pool 1), 5 BCR-ABL1 positive p210(e14a2) RNA samples with an MR value of 0.3 (pool 2), and 5 BCR-ABL1 positive RNA samples (p210(e13a2) and p210(e14a2) with an MR value of 0.3) (pool 3). A negative pool was used as a diluent and was prepared by mixing 30-60 BCR-ABL1 negative RNA samples with a ratio value of 0%. The positive sample pools were diluted with the negative sample pool to generate five samples with different concentrations: MR1.0, MR2.0, MR3.0, MR4.0 and MR4.5. Each sample was stored separately at the temperature of $-20^{\circ}C\pm5^{\circ}C$.

Samples were assayed in 2 replicates per run for 2 runs per day for 3 nonconsecutive days (1st, 3rd and 5th) at 3 sites (one instrument at each site) with one reagent lot for a total of 36 replicates. Each run was performed by an independent operator (2 operators per site). The total precision (CV, %) values were required to meet the requirements shown in the following table 6.

MR value	Precision (CV, %) requirements
MR0.3-MR2.0	≤10%
MR2.1-MR3.49	≤15%
MR3.5-MR4.0	≤20%
LOQ	<i>≤</i> 20%

Table 6: Precision requirements corresponding to different concentrations

A total of 540 observations were included in a variance components analysis with random effects for site, day, and run (operator) to assess repeatability, within-day precision, within-site precision and reproducibility of measured MR level. Results of MR level indicated low variability, including between sites, and all acceptance criteria were satisfied (CVs $\leq 10\%$). Total MR and %IS precision were calculated for the assay (see table 7 and table 8) and in-kit calibrators and controls (see table 9). The acceptance criteria were met.

Table 7: Precision analysis results (MR) of samples

			MR	MR MR	Within-run R		Within-day		Between-day		Within-site		Between-site		Total	
Sample	Variant	Ν	expe cted	mean	SD	CV%	SD	CV%	SD	CV%	SD	CV%	SD	CV%	SD	CV%
	e13a2	36	1.00	1.05	0.001	0.06%	0.006	0.58%	0.012	1.12%	0.012	1.12%	0.016	1.57%	0.019	1.85%
MR1.0	e14a2	36	1.00	1.04	0.005	0.51%	0.013	1.22%	0.020	1.89%	0.020	1.96%	0.020	1.96%	0.024	2.31%
	mix	36	1.00	1.05	0.009	0.84%	0.016	1.56%	0.017	1.64%	0.019	1.84%	0.014	1.29%	0.025	2.38%
MR2.0	e13a2	36	2.00	1.99	0.008	0.40%	0.013	0.66%	0.023	1.13%	0.024	1.20%	0.023	1.14%	0.036	1.82%

			MR	MR	With	in-run	With	in-day	Betwe	een-day	With	in-site	Betw	een-site	Т	otal
Sample	Variant	Ν	expe cted	mean	SD	CV%	SD	CV%	SD	CV%	SD	CV%	SD	CV%	SD	CV%
	e14a2	36	2.00	1.98	0.016	0.80%	0.020	1.02%	0.009	0.48%	0.018	0.92%	0.021	1.04%	0.030	1.54%
	mix	36	2.00	1.98	0.008	0.41%	0.017	0.84%	0.017	0.88%	0.019	0.96%	0.017	0.87%	0.031	1.56%
	e13a2	36	3.00	2.99	0.014	0.47%	0.032	1.06%	0.007	0.24%	0.016	0.52%	0.027	0.91%	0.071	2.37%
MR3.0	e14a2	36	3.00	2.98	0.047	1.57%	0.010	0.34%	0.020	0.68%	0.050	1.69%	0.040	1.35%	0.093	3.11%
	mix	36	3.00	3.00	0.029	0.96%	0.035	1.16%	0.020	0.68%	0.035	1.16%	0.052	1.72%	0.077	2.55%
	e13a2	36	4.00	3.92	0.057	1.45%	0.044	1.12%	0.023	0.60%	0.061	1.55%	0.041	1.05%	0.135	3.43%
MR4.0	e14a2	36	4.00	3.94	0.036	0.90%	0.053	1.34%	0.026	0.65%	0.044	1.10%	0.036	0.90%	0.091	2.31%
	mix	36	4.00	3.91	0.025	0.64%	0.041	1.04%	0.025	0.64%	0.035	0.90%	0.063	1.62%	0.119	3.04%
	e13a2	36	4.50	4.66	0.049	1.05%	0.055	1.19%	0.091	1.95%	0.103	2.21%	0.194	4.18%	0.255	5.48%
MR4.5	e14a2	36	4.50	4.59	0.100	2.17%	0.099	2.14%	0.045	0.97%	0.108	2.35%	0.170	3.70%	0.261	5.68%
	mix	36	4.50	4.59	0.048	1.05%	0.121	2.64%	0.041	0.88%	0.062	1.36%	0.164	3.58%	0.227	4.95%

Table 8: Precision analysis results (%IS) of samples

Sample	Varia	N	%IS expect	%IS mean	Withi	n-run	Withi	n-day	Betwee	en-day	Withi	n-site	Betwe	en-site	To	al
	nt		ed		SD	CV%	SD	CV%	SD	CV%	SD	CV%	SD	CV%	SD	CV%
	e13a2	36	10.000	8.985	0.016	0.2%	0.123	1.4%	0.240	2.7%	0.241	2.7%	0.336	3.7%	0.397	4.4%
MR1.0	e14a2	36	10.000	9.070	0.112	1.2%	0.270	3.0%	0.409	4.5%	0.424	4.7%	0.308	3.4%	0.503	5.5%
	mix	36	10.000	9.022	0.185	2.1%	0.327	3.6%	0.356	3.9%	0.400	4.4%	0.274	3.0%	0.507	5.6%
	e13a2	36	1.000	1.017	0.019	1.9%	0.030	3.0%	0.053	5.2%	0.056	5.5%	0.054	5.3%	0.085	8.4%
MR2.0	e14a2	36	1.000	1.051	0.038	3.6%	0.049	4.7%	0.022	2.1%	0.044	4.2%	0.050	4.8%	0.073	7.0%
	mix	36	1.000	1.048	0.020	1.9%	0.037	3.6%	0.042	4.0%	0.046	4.4%	0.040	3.8%	0.072	6.9%
	e13a2	36	0.100	0.103	0.003	2.9%	0.008	7.4%	0.002	2.0%	0.004	3.5%	0.006	6.0%	0.017	16.3%
MR3.0	e14a2	36	0.100	0.107	0.010	9.6%	0.002	2.3%	0.005	5.1%	0.012	10.8%	0.009	8.7%	0.022	20.9%
	mix	36	0.100	0.101	0.006	5.6%	0.007	7.0%	0.004	3.9%	0.007	6.8%	0.011	10.6%	0.016	15.8%
	e13a2	36	0.010	0.013	0.002	12.1%	0.001	10.6%	0.001	5.2%	0.002	13.0%	0.001	9.2%	0.004	29.5%
MR4.0	e14a2	36	0.010	0.012	0.001	7.6%	0.001	11.4%	0.001	5.6%	0.001	9.4%	0.001	8.4%	0.002	20.2%
	mix	36	0.010	0.013	0.001	5.4%	0.001	10.7%	0.001	6.1%	0.001	8.1%	0.002	16.1%	0.004	29.7%
	e13a2	36	0.0032	0.0026	0.0001	5.8%	0.0004	16.3%	0.0004	16.5%	0.0004	17.5%	0.0010	40.3%	0.0015	56.6%
MR4.5	e14a2	36	0.0032	0.0030	0.0004	14.7%	0.0008	25.3%	0.0004	13.8%	0.0006	20.0%	0.0009	31.2%	0.0015	51.3%
	mix	36	0.0032	0.0029	0.0003	9.9%	0.0007	23.1%	0.0002	5.3%	0.0003	11.1%	0.0010	33.6%	0.0013	44.8%
Mix: Repre	sents a mi	xture	of e13a2 a	nd e14a2 tra	nscripts.	-		•	•	•		•	•	•		•

Table 9: Calibrator and Control Precision Analysis Results

sample	N		M	R		%IS					
		target	mean	SD	CV	target	mean	SD	CV%		
Calibrators 10%IS	54	1.00	1.05	0.022	2.10%	10.00	8.861	0.443	5.00%		
Calibrators 0.1%IS	54	3.00	3.01	0.054	1.79%	0.10	0.098	0.012	12.20%		
Positive control 1	54	1.00	1.06	0.023	2.14%	10.00	8.766	0.454	5.18%		
Positive control 2	54	4.00	3.91	0.105	2.68%	0.01	0.013	0.003	23.86%		
Negative control	54		NA	NA	NA		0.000	0.000	NA		
Blank control	54		NA	NA	NA		NA	NA	NA		

Precision between batches

Precision between batches were assessed using 2 positive pools at 4 levels. The 2 positive pools were prepared by mixing 5 BCR-ABL1 positive p210(e13a2) RNA samples with an MR value of 0.3 (pool 1), and 5 BCR-ABL1 positive p210(e14a2) RNA samples with an MR value of 0.3 (pool 2). A negative pool was used as a diluent and was prepared by mixing 60 BCR-ABL1 negative RNA samples with a ratio value of 0%. The positive sample pools were diluted with the negative sample pool to generate four samples with different concentrations: MR1.0, MR3.0, MR4.0 and MR4.5. Each sample was stored separately at the temperature of $-20^{\circ}C\pm5^{\circ}C$.

Samples were tested in 3 replicates per run for 2 runs per day for 3 nonconsecutive days (1st, 3rd and 5th) at 1 site (2 instruments) with 3 reagent lots for a total of 108 replicates. Each run was performed by an independent operator (2 operators). The total precision (CV, %) values were required to meet the requirements shown in the following Table 10.

MR value	Precision (CV, %) requirements
MR0.3-MR2.0	≤10%
MR2.1-MR3.49	≤15%
MR3.5-MR4.0	≤20%
LOQ	≤20%

Table 10: Precision requirements corresponding to different concentrations

A total of 864 observations were included in a variance components analysis with random effects for day, run (operator), instrument, and lot to assess precision of measured MR level. Results of MR level indicated very low variability, including between lots, and all acceptance criteria were satisfied (CVs \leq 10%). Total MR and %IS precision were calculated for the assay (see table 11 and table 12) and in-kit calibrators and controls (see table 13). The acceptance criteria were met.

			MR	MR	With	in-run	I	Day	Оре	erator	Inst	ument]	Lot	Т	otal
Sample	Variant	Ν	expecte d	mean	SD	CV%	SD	CV%	SD	CV%	SD	CV%	SD	CV%	SD	CV%
MR1.0	e13a2	108	1.00	1.02	0.031	3.04%	0.006	0.62%	0.008	0.76%	0.013	1.31%	0.018	1.76%	0.031	3.06%
WIK1.0	e14a2	108	1.00	1.03	0.029	2.85%	0.006	0.55%	0.017	1.64%	0.008	0.76%	0.018	1.73%	0.030	2.86%
MR3.0	e13a2	108	3.00	2.98	0.092	3.07%	0.007	0.24%	0.025	0.85%	0.017	0.58%	0.063	2.10%	0.092	3.07%
1110.0	e14a2	108	3.00	2.99	0.085	2.84%	0.008	0.28%	0.030	1.01%	0.012	0.39%	0.059	1.96%	0.084	2.82%
MR4.0	e13a2	108	4.00	3.97	0.179	4.51%	0.017	0.42%	0.032	0.81%	0.024	0.60%	0.122	3.06%	0.179	4.52%
11114.0	e14a2	108	4.00	3.95	0.181	4.58%	0.004	0.10%	0.043	1.09%	0.066	1.67%	0.125	3.17%	0.180	4.55%
MR4.5	e13a2	108	4.50	4.35	0.202	4.65%	0.103	2.37%	0.045	1.04%	0.084	1.92%	0.141	3.24%	0.218	5.01%
111(4.5	e14a2	108	4.50	4.33	0.236	5.45%	0.007	0.17%	0.059	1.35%	0.039	0.90%	0.164	3.78%	0.235	5.41%

Table 11: Precision analysis results (MR) of samples

Table 12: Precision analysis results (%IS) of samples

Sample	Varian t	Varian t N		%IS mean	Withi	n-run	Daj	у	Ope	rator	Instru	ıment	L	ot	То	tal
			a		SD	CV%	SD	CV %	SD	CV%	SD	CV%	SD	CV%	SD	CV%
MR1.0	e13a2	108	10.000	9.4487	0.6866	7.3%	0.0836	0.9%	0.1678	1.8%	0.1905	2.0%	0.4607	4.9%	0.6892	7.3%
MR1.0	e14a2	108	10.000	9.3064	0.6392	6.9%	0.0453	0.5%	0.3642	3.9%	0.1409	1.5%	0.4326	4.6%	0.6397	6.9%
MR3.0	e13a2	108	0.100	0.1058	0.0208	19.6%	0.0030	2.8%	0.0050	4.8%	0.0050	4.7%	0.0145	13.7%	0.0207	19.6%
WIK5.0	e14a2	108	0.100	0.1043	0.0200	19.2%	0.0009	0.9%	0.0068	6.5%	0.0054	5.1%	0.0140	13.4%	0.0199	19.0%
MR4.0	e13a2	108	0.010	0.0116	0.0045	39.2%	0.0004	3.3%	0.0004	3.8%	0.0007	6.1%	0.0032	27.6%	0.0045	39.0%
MR4.0	e14a2	108	0.010	0.0122	0.0047	38.3%	0.0002	1.8%	0.0014	11.6%	0.0006	5.1%	0.0032	26.5%	0.0046	38.1%
MR4.5	e13a2	108	0.0032	0.0050	0.0020	39.6%	0.0010	19.6 %	0.0002	4.5%	0.0004	8.1%	0.0014	27.6%	0.0021	42.5%
inter.5	e14a2	108	0.0032	0.0052	0.0024	45.1%	0.0001	1.8%	0.0005	9.1%	0.0005	9.3%	0.0016	31.4%	0.0023	44.8%

Table 13: Calibrator and Control Precision Analysis Results

sample	N		M	R		%IS					
		target	mean	SD	CV	target	mean	SD	CV%		
Calibrators 10%IS	96	1.00	1.04	0.027	2.59%	10.00	9.045	0.570	6.30%		
Calibrators 0.1%IS	96	3.00	3.00	0.060	1.99%	0.10	0.101	0.014	13.90%		
Positive control 1	96	1.00	1.05	0.029	2.74%	10.00	8.998	0.600	6.66%		
Positive control 2	96	4.00	3.93	0.125	3.18%	0.01	0.012	0.003	28.07%		
Negative control	96		NA	NA	NA		0.000	0.000	NA		
Blank control	96		NA	NA	NA		NA	NA	NA		

RNA Extraction Method

The performance and sensitivity of the BCR-ABL 1 (p210) %IS Kit (Digital PCR Method) is dependent on the RNA quantity, purity and integrity. For the extraction of RNA in peripheral blood samples, Whole Blood Nucleic Acid

Extraction Reagent produced by Suzhou Sniper Medical Technologies Co., Ltd. is required.

This study was assessed using 3 positive pools at 5 levels. The 3 positive pools were prepared by mixing 6 BCR-ABL1 positive p210(e13a2) peripheral blood samples with an MR value of 0.3 (pool 1), 7 BCR-ABL1 positive p210(e14a2) peripheral blood samples with an MR value of 0.3 (pool 2), and k562 cells (pool 3). A negative pool was used as a diluent and was prepared by mixing 80 BCR-ABL1 negative peripheral blood samples with a ratio value of 0%. The positive sample pools were diluted with the negative sample pool to generate 5 samples with different concentrations: MR0.5-1.0, MR1.5-2.0, MR2.5-3.0, MR3.5-4.0 and MR4.2-4.5. The respective assigned peripheral blood samples were pretreated on Day 1 by two operators using Whole Blood Nucleic Acid Extraction Reagent, and the processed peripheral blood samples were stored at -70 °C.

Samples were extracted in 2 times for 2 operators per day for 3 nonconsecutive days (1st, 3rd and 5th) with 1 reagent lot (Whole Blood Nucleic Acid Extraction Reagent). A total of 180 results were included in RNA Extraction Method study. When following the requirements of the following table (see table 14) for RNA quality control, 5 samples of RNA quality control failed (2 samples did not meet the RNA concentration requirement and 3 samples did not meet the RNA purity requirement), and the proportion of extraction in line with the requirements was 97%, The quality control qualified RNA were tested, and the results showed that the CV% of all samples were less than 10% (see table 15).

1abic 14. KINA yu	lancy control
Category	Requirements
Peripheral blood volume	2-10 mL
RNA concentration	≥100 ng/µL
RNA purity	OD_{260}/OD_{280} ratio > 1.6

Table 14: RNA quality control

Variant	MR value	Peri	pheral blood extractio	•	Sample detection					
variant	wik value	Sample	Qualified	Qualified	Tests	MR	MR	CV, %		
		Ν	Ν	proportion	Ν	SD	Mean	, /0		
	MR0.5~1.0	12	12		12	0.016	0.81	2.04%		
	MR1.5~2.0	12	12		12	0.028	1.75	1.61%		
e13a2	MR2.5~3.0	12	11*		11*	0.043	2.50	1.70%		
	MR3.5~4.0	12	12		12	0.129	3.80	3.41%		
	MR4.2~4.5	12	12		12	0.246	4.51	5.44%		
	MR0.5~1.0	12	10*		10*	0.012	0.83	1.44%		
	MR1.5~2.0	12	12		12	0.023	1.75	1.33%		
e14a2	MR2.5~3.0	12	12	97%	12	0.040	2.52	1.58%		
	MR3.5~4.0	12	12		12	0.103	3.83	2.70%		
	MR4.2~4.5	12	12		12	0.320	4.63	6.91%		
	MR0.5~1.0	12	12		12	0.016	0.81	2.02%		
	MR1.5~2.0	12	12		12	0.033	1.74	1.88%		
K562	MR2.5~3.0	12	10*		10*	0.071	2.52	2.82%		
	MR3.5~4.0	12	12		12	0.139	3.76	3.71%		
	MR4.2~4.5	12	12	•	12	0.211	4.43	4.76%		

Table15: RNA extraction and detection

subsequent testing.

b. Linearity/Assay reportable range:

Linearity/Assay reportable range were assessed using 2 positive pools at 10 levels. The 2 positive pools were prepared by mixing 2 BCR-ABL1 positive p210(e13a2) RNA samples with an MR value of 0.3 (pool 1), and 2 BCR-ABL1 positive p210(e14a2) RNA samples with an MR value of 0.3 (pool 2). A negative pool was used as a diluent and was prepared by mixing 22 BCR-ABL1 negative RNA samples with a ratio value of 0%. The positive sample pools were diluted with the negative sample pool to generate ten samples with different concentrations: MR0.3, MR0.5, MR1.0, MR1.5, MR2.0, MR2.5,

MR3.0, MR4.0, MR4.5 and MR4.7. Each sample was stored separately at the temperature of 2-8°C.

Samples were assayed in 4 replicates for one day at 1 instrument with 1 reagent lot. The precision analysis and deviation analysis were required to meet the requirements shown in the following Table 16.

Category	Requirements
Precision	≤10%
% Deviation	≤±15%

 Table 16:
 Precision and deviation requirements

Samples with concentrations from 50%IS (MR0.3) to 0.002%IS (MR 4.7) were determined for the e13a2 and e14a2 variants. Precision analysis showed that the precision of all samples met the requirement of \leq 10%. Regression analysis showed that the appropriate type of regression analysis was a weighted least squares (WLS) linear regression analysis with no intercept (Y=AE). Based on WLS linear regression analysis, deviation analysis showed that the % deviations of all samples meet the requirement of \leq ±15% (see table 17).

	Sampl						MR values							
Vari ant	Sampl e			Precisio	n		Deviation							
		Mean Y	Expected E	SD	CV %	Acceptab le range	Predicte d y=AE	Deviati on	%Deviati on	Acceptabl e range	Pass			
	1	0.26	0.30	0.009	3.26%		0.30	-0.03	-10.91%		YES			
	2	0.46	0.50	0.013	2.76%		0.49	-0.03	-6.43%		YES			
	3	1.03	1.00	0.012	1.15%		0.98	0.05	4.72%		YES			
	4	1.45	1.50	0.014	0.94%		1.48	-0.02	-1.55%		YES			
e13a2	5	1.97	2.00	0.010	0.49%		1.97	0.00	0.08%		YES			
e15a2	6	2.53	2.50	0.070	2.77%		2.46	0.07	2.94%		YES			
	7	2.98	3.00	0.058	1.93%		2.95	0.03	1.00%		YES			
	8	3.87	4.00	0.107	2.76%	CV≤10%	3.93	-0.07	-1.71%	≤±15%	YES			
	9	4.40	4.50	0.080	1.82%		4.43	-0.02	-0.51%		YES			
	10	4.81	4.70	0.207	4.30%		4.62	0.19	4.11%		YES			
	1	0.28	0.30	0.011	4.08%		0.30	-0.02	-6.50%		YES			
	2	0.47	0.50	0.022	4.53%		0.50	-0.02	-4.65%		YES			
e14a2	3	1.05	1.00	0.016	1.53%		0.99	0.05	5.24%] [YES			
	4	1.47	1.50	0.013	0.89%		1.49	-0.02	-1.65%] [YES			
	5	1.97	2.00	0.017	0.84%		1.99	-0.02	-0.76%		YES			

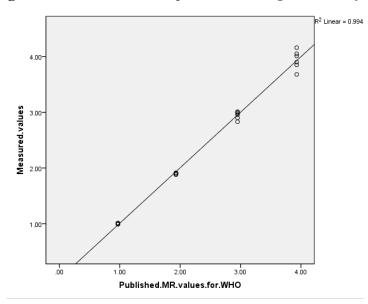
 Table 17: Precision analysis results of different samples

							MR values							
Vari ant	Sampl e			Precisio	n		Deviation							
		Mean Y	Expected E	SD	CV %	Acceptab le range	Predicte d y=AE	Deviati on	%Deviati on	Acceptabl e range	Pass			
	6	2.54	2.50	0.043	1.70%		2.49	0.05	2.17%		YES			
	7	3.03	3.00	0.035	1.16%		2.98	0.05	1.54%		YES			
	8	3.92	4.00	0.275	7.01%		3.98	-0.06	-1.61%		YES			
	9	4.45	4.50	0.222	4.98%		4.48	-0.03	-0.62%		YES			
	10	4.80	4.70	0.181	3.76%		4.68	0.13	2.74%		YES			

In addition, the linear range regression analysis of e13a2 and e14a2 types showed that R^2 and slope met the requirements (see table 18).

	Linear range		95% confidence		Interce	A			
Variant	(%IS, MR)	Slope interval for slope		R ²	pt	R ²	95% confidence interval for slope	Pass	
e13a2	50%IS-0.002%IS MR0.3-MR4.7	1.000	0.98-1.02	0.996	-0.023			YES	
e14a2	50%IS-0.002%IS MR0.3-MR4.7	1.004	0.98-1.03	0.994	-0.011	≥0.98	0.83-1.20	YES	
e13a2 and e14a2 together	50%IS-0.002%IS MR0.3-MR4.7	1.002	0.99-1.02	0.995	-0.017			YES	

Table 18: Linear range regression analysis for variants e13A2 and e14a2


Based on the linear range, considering that the quantitation limit of the kit is MR4.5, therefore the assay reportable range for both e13a2 and e14a2 of the BCR-ABL 1 (p210) %IS Kit is 50%IS(MR0.3) -0.0032%IS(MR4.5).

c. Traceability, stability, expected values (kit, calibrators, reference or methods):

Traceability to the 1st WHO International Genetic Reference Panel for quantitation of BCR-ABL translocation by RT-qPCR was demonstrated by measuring the WHO Reference Panel with 9 independent BCR-ABL1 (p210) %IS Kit (Digital PCR Method) lots and comparing the measured values to the values published in the Reference Panel's Instructions for Use. Each of the 4 WHO Reference Panel members was tested in 6 replicates across 9 runs (1 run per lot for 9 lots). The measured MR values for each level of the WHO Reference Panel were adjusted by correction factor, CF (0.62-0.83). The measured MR values were compared to the published MR

values through a regression analysis to determine slope and intercept values. The analysis showed correlation with R^2 values of 0.989-0.997. The slope of the regression lines varied between 0.889 and 0.997, and the intercepts were between 0.011 and 0.222. An example of one kit lot is shown in Figure 1.

Figure 1: Measured MR and published MR regression analysis

d. Detection limit:

Limit of Blank

The limit of blank was determined by testing independent BCR-ABL negative samples by 1 operator using 2 kit lots. Out of 144 test results, 138 had no detectable BCR-ABL values. Six had measurements below the LoD of the test and were reported as "MR value > 4.5". Based on nonparametric analysis method, the LoB of the BCR-ABL 1 (p210) %IS Kit (Digital PCR Method) kit is 0 copy.

Limit of Detection/ Limit of Quantitation

Limit of Detection/ Limit of Quantitation were assessed using 2 positive pools at 3 levels. The 2 positive pools were prepared by marking 1 BCR-ABL1 positive p210(e13a2) RNA sample with an MR value of 0.3 (pool 1), and 3 BCR-ABL1 positive p210(e14a2) RNA samples with an MR value of 0.3 (pool 2). A negative pool was used as a diluent and was prepared by mixing 39 BCR-ABL1 negative RNA samples with a ratio value of 0%. The positive sample pools were diluted with the negative sample pool to generate three samples with different concentrations: MR4.5, MR4.7 and MR4.9. Each sample was stored separately at the temperature of $-20^{\circ}C\pm5^{\circ}C$.

Samples were assayed in 20 replicates per day for 3 days with 2 reagent lots for a total of 120 replicates. Based on Probit method and Precision analysis, the LoD and LoQ of the kit can be obtained. The hit rate and precision were required to meet the requirements shown in the following Table 19.

Category	Hit rate	CV%
LoD	≥95%	None
LoQ	100%	≤10%

Table 19: Hit rate and precision requirements

The hit rate and precision of different samples were as follows. The hit rates of MR4.5 samples were 100%, the precision was between 3.47% and 4.03%. The hit rates of MR4.7 samples were between 97% and 98%, the precision was between 4.09% and 4.79%. The hit rates of MR4.9 samples were between 78% and 90%, the precision was between 4.09% and 4.64%. When the samples concentration was MR4.7, the hit rates could meet the requirement of \geq 95%. When the samples concentration was MR4.7, the hit rates support an LoD of 4.7 and LoQ of 4.5 for the assay.

e. Analytical specificity:

Interference

A sample pool was prepared by mixing peripheral blood from CML positive patients, with an MR value around 3.0. The potential interfering substance was added to the test group and diluent was added to the control group in concentrations recommended by CLSI EP7-A2. For both the control and test samples, 2 replicate extractions were performed and each extracted sample was

tested in replicates of 3 for a total of 6 tests per sample type.

For the MR values, the mean test MR value and 95% confidence interval needed to fall within the 95% confidence interval ± 0.5 Log of the corresponding control group. In all cases, samples passed the acceptance criteria (see table 20). For the %IS data, the 95% confidence interval of the mean %IS for test samples needed to intersect the detected range of the corresponding control group. In all cases, samples passed the acceptance criteria (see table 21). The potential interfering substances evaluated were cholesterol (6.47mmoL/L), conjugated bilirubin (86µM), EDTA (7mg/mL), hemoglobin (200g/L), sodium heparin (3000U/L), triglycerides (5.6mmoL/L), unconjugated bilirubin (257µM),10x red blood cell lysis buffer, phenol, residual ethanol, 10x PBS, and genomic DNA. Results demonstrated that these endogenous and exogenous substances tested did not impact test results as compared to control. However, considering that ethanol is an organic solvent that causes fusion of the droplets during amplification testing, residual ethanol in RNA samples should be minimized.

	Mean value of MR			nfidence rval	The acceptable range of the AVG value of the	Result (if within acceptable range)	
Interfering substances	Control group	Test group	Control Test group group		test and its 95%CI (95% CI ±0.5 log of control group)		
Cholesterol	3.04	2.98	2.94-3.13	2.94-3.01	2.44-3.63	YES	
Conjugated bilirubin	3.01	2.99	2.97-3.06	2.94-3.03	2.47-3.56	YES	
EDTA	3.00	3.00	2.97-3.04	2.93-3.08	2.47-3.54	YES	
Hemoglobin	3.03	3.06	3.00-3.05	3.01-3.11	2.50-3.55	YES	
Heparin sodium	3.06	3.02	2.99-3.14	2.98-3.06	2.49-3.64	YES	
Triglyceride	2.98	3.07	2.93-3.04	3.05-3.08	2.43-3.54	YES	
Unconjugated bilirubin	2.98	3.02	2.96-3.00	2.97-3.08	2.46-3.50	YES	
10x Red blood cell lysis buffer	2.96	2.97	2.92-2.99	2.93-3.01	2.42-3.49	YES	
Phenol	2.95	2.97	2.92-2.99	2.93-3.00	2.42-3.49	YES	
Ethanol	2.95	2.95	2.91-2.99	2.92-2.97	2.41-3.49	YES	
10x PBS	2.97	3.03	2.92-3.03	2.90-3.16	2.42-3.53	YES	

Table 20: Statistical of test results (MR values) of different interfering substances

	Mean value of MR		95% confidence interval		The acceptable range of the AVG value of the	Result (if within	
Interfering substances	Control group	Test group	Control group	Test group	test and its 95%CI (95% CI ±0.5 log of control group)	within acceptable range)	
Genomic DNA	2.99	3.05	2.95-3.03	2.95-3.15	2.45-3.53	YES	

Table 21: Statistical of test results (%IS values) of different interfering substances

	Mean valu	ie of %IS	•/	%IS				
Interfering substances	Control group	Test group	Detected range of control group	%95 confidence interval of the detection	of control group intersect with the 95%CI of the detection			
Cholesterol	0.094%	0.106%	0.055%-0.112%	0.098%-0.114%	YES			
Conjugated bilirubin	0.098%	0.104%	0.088%-0.116%	0.093%-0.114%	YES			
EDTA	0.100%	0.101%	0.089%-0.113%	0.083%-0.119%	YES			
Hemoglobin	0.094%	0.088%	0.084%-0.102%	0.078%-0.098%	YES			
Heparin sodium	0.089%	0.096%	0.060%-0.114%	0.086%-0.105%	YES			
Triglyceride	0.105%	0.086%	0.087%-0.125%	0.083%-0.088%	YES			
Unconjugated bilirubin	0.106%	0.096%	0.098%-0.115%	0.083%-0.108%	YES			
10x Red blood cell lysis buffer	0.111%	0.108%	0.098%-0.121%	0.098%-0.119%	YES			
Phenol	0.112%	0.109%	0.097%-0.125%	0.100%-0.117%	YES			
Ethanol	0.112%	0.114%	0.098%-0.134%	0.106%-0.121%	YES			
10x PBS	0.108%	0.098%	0.080%-0.125%	0.074%-0.122%	YES			
Genomic DNA	0.103%	0.091%	0.089%-0.115%	0.073%-0.110%	YES			

Primer Specificity

Primer Specificity was assessed using 4 positive samples at 4 levels. 1 BCR-ABL1 positive p190(e1a2) RNA sample with a ratio of approximately 50%, 1 BCR-ABL1 positive p230(e19a2) RNA sample with a ratio of approximately 50%, 1 BCR-ABL1 positive p210(e13a2) RNA sample with an MR value of about 0.3, and 1 BCR-ABL1 positive p210(e14a2) RNA sample with an MR

value of about 0.3. A negative pool was used as a diluent and was prepared by mixing 5 BCR-ABL1 negative RNA samples with a ratio value of 0%. The p190(e1a2) and p230(e19a2) samples were diluted with the negative sample pool to generate four samples with different concentrations: 50%, 10%, 0.1%, and 0.005%. The p210 samples were diluted with the negative sample pool to generate four samples with different concentrations: MR0.3, MR1.0, MR3.0 and MR4.5. Each sample was stored separately at the temperature of 2-8 °C. Samples were assayed in 4 replicates per run with 1 reagent lot. For p190 and p230 samples, the negative specificity should be \geq 95%. For p210 samples, the positive specificity should be 100% and the CV% should be \leq 10%. The test results showed that for p190 and p230 samples, the negative specificity

was 100%, for p210 samples, positive specificity and precision could meet the requirements. The results are shown in the Table 22 and Table 23 below.

Variant	N		1	Acceptable range	Pass		
variant		Targeted value	Detected mean value	CV% of Detected mean value	Negative specificity	Negative specificity	1 455
	4	50%	0.00%	0.00%	100		YES
p190	4	10%	0.00%	0.00%	100		YES
(e1a2)	4	0.1%	0.00%	0.00%	100		YES
	4	0.005%	0.00%	0.00%	100	≥95%	YES
	4	50%	0.00%	0.00%	100	<i>2937</i> 0	YES
p230	4	10%	0.00%	0.00%	100		YES
(e19a2)	4	0.1%	0.00%	0.00%	100		YES
	4	0.005%	0.00%	0.00%	100		YES

Table 22: Primer specificity results for p190 and p230

 Table 23: Primer specificity results for p210(e13a2) and p210(e14a2)

				Acceptable					
Variant	Ν	Targeted value	Mean value	SD	CV, %	Positive specificity	Positive specificity	CV, %	Pass
	4	0.3	0.32	0.003	0.81%	100%			YES
p210	4	1.0	1.02	0.006	0.60%	100%		≤10%	YES
(e13a2)	4	3.0	2.97	0.045	1.51%	100%	100%	_1070	YES
	4	4.5	4.46	0.100	2.24%	100%	10070		YES

				Acceptable range					
Variant	Ν	Targeted value	Mean value	SD	CV, %	Positive specificity	Positive specificity	CV, %	Pass
	4	0.3	0.33	0.009	2.85%	100%			YES
p210	4	1.0	1.02	0.011	1.07%	100%			YES
(e14a2)	4	3.0	3.00	0.039	1.31%	100%			YES
	4	4.5	4.58	0.269	5.89%	100%			YES

Carryover Contamination

Carryover contamination was assessed using 1 pool of high positive samples and 1 pool of negative samples. The positive pool was prepared by mixing K562 cells RNA and HL60 cells RNA with an MR value of 0.3 (pool 1). The negative pool was prepared by mixing BCR-ABL1 negative RNA samples with a ratio value of 0% (pool 1). Each sample was stored separately at the temperature of 2-8°C.

Eight 8-well PCR plates were set up with high positive and negative wells in alternating rows. A total of 2 rows each containing possible 4 carryover contamination wells were tested per plate. Two plates were tested on each of 2 instruments (Sniper Digital PCR All-in-One System) for a total test sample size of 64. Of the 64 replicates used in the analysis, no signal was measured in the 32 negative wells. Acceptance criteria were met which demonstrates that the device does not generate significant carryover between wells.

<u>RNA Input</u>

RNA input was assessed using 2 positive pools at 4 levels. The 2 positive pools were prepared by mixing 2 BCR-ABL1 positive p210(e13a2) RNA samples with an MR value of 0.3 (pool 1), and 2 BCR-ABL1 positive p210(e14a2) RNA samples with an MR value of 0.3 (pool 2). A negative pool was used as a diluent and was prepared by mixing 35 BCR-ABL1 negative RNA samples with a ratio value of 0%. The positive sample pools were diluted with the negative sample pool to generate four samples with different concentrations: MR1.0, MR2.0, MR3.0 and MR3.5. Each sample was stored separately at the

temperature of 2-8 °C.

By adjusting the samples volume, the amount of RNA input was controlled at 30 ng, 150 ng, 300 ng, 500 ng, 800 ng and 1000 ng, respectively. Samples were assayed in 3-5 replicates per run with 1 reagent lot. When the RNA input of the samples was 500ng, the positive detection rate was 100%, the deviation between the measured values and the theoretical values were within ± 0.5 , and the precision were $\leq 10\%$. Therefore, the RNA input of the kit is set to 500ng.

f. Stability Studies:

Real-Time Stability (kit, calibrators)

Real-time stability was assessed using 1 positive pool at 3 levels. The positive pool was prepared by mixing 5 BCR-ABL1 positive p210(e14a2) RNA samples with an MR value of 0.3. A negative pool was used as a diluent and was prepared by mixing 10 BCR-ABL1 negative RNA samples with a ratio value of 0%. The positive sample pool was diluted with the negative sample pool to generate three samples with different concentrations: MR2.0, MR3.0 and MR4.0. Each sample was stored separately at the temperature of $-20^{\circ}C\pm5^{\circ}C$.

Reagent real-rime stability studies were conducted using 3 lots with testing ongoing at T0 (baseline), T3 (3 months), T6 (6 months), T9 (9 months), T11 (11 months), T12 (12 months), and T13 (13 months). Three samples along with calibrators and controls were tested by thawing reagents stored at $-20^{\circ}C\pm5^{\circ}C$ at each time point.

The kit performance met the following acceptance criteria:

- Controls, calibrators, and samples values must be within pre-established ranges (the deviation between the measured value and the expected value(controls (MR1.0/4.0), calibrators (MR1.0/3.0) and samples (MR2.0/3.0/4.0))were within ±0.5 log).
- 2. The CV% of samples must meet the requirement ($CV \le 10\%$).
- 3. The mean value of MR detected by the samples, controls, and calibrators and their 95% confidence intervals were all within the range of ± 0.5 Log

of the MR value detected by the kit on T0.

The results showed that when the storage time of the kits reached the T3, T6, T9, T11, T12 and T13, the MR measured value of samples, controls, and calibrators and their 95% confidence interval were all within ± 0.5 log of the result of T0 (baseline). Besides, the precision of the measured MR values was between 0.56% and 5.95%, acceptance criteria were met. Therefore, these results support the conclusion that reagents are stable under the storage conditions for 12 months at the temperature of $-20^{\circ}C\pm5^{\circ}C$.

Freeze-thaw Stability Kit (kit, calibrators)

A study was conducted to determine the allowable number of freeze-thaw cycles for the components of the BCR-ABL 1 (p210) %IS Kit. In this study, the same samples as real-time stability were used. The study was conducted by cycling kit contents from -20°C to ambient temperature multiple times and assessing the performance of the kit in response to freeze-thaw cycling. 1 lot of kit was used in this study. The kits were fully thawed at ambient temperature for 15 minutes, all kits component caps were removed, components were held uncapped for 2 minutes, components were capped and materials were returned to $-20^{\circ}C\pm5^{\circ}C$ for a minimum of 8 hours prior to the next temperature cycle. This cycle was repeated 3, 5 and 6 times, the controls, calibrators, and samples were tested by kit.

The acceptance criteria were that after each freeze-thaw cycle, controls , calibrators, and samples values must be within pre-established ranges (the deviation between the measured value and the expected value (controls (MR1.0/4.0), calibrators (MR1.0/3.0) and samples (MR2.0/3.0/4.0)) were within $\pm 0.5 \log$)and the CV% of samples must meet the requirement (CV $\leq 10\%$) and the mean value of MR detected by the sample, controls, and calibrators and their 95% confidence intervals were all within the range of $\pm 0.5 \log$ of the MR value detected by the kit on the 0 time.

The results showed that when the freeze-thaw cycle of the kits reached the 3,

05-24

5 and 6 times, the measured value of MR and 95% confidence interval were all within ± 0.5 log of the result of 0 time. Besides, the precision of the measured MR values was between 0.83% and 5.95%, acceptance criteria were met. Therefore, these results support that all components of the BCR-ABL1 (p210) %IS Kit (Digital PCR Method) demonstrated stable performance for at least 5 freeze-thaw cycles.

Specimen Stability (Peripheral blood)

Specimen stability was assessed using 3 fresh peripheral blood samples of BCR-ABL1 positive, (p210(e14a2), approximately 10mL which were collected within 24 hours and stored in a vacuum blood collection tube containing EDTA). MR values of the samples were 0.3, 3.0, and 4.0 respectively. Each blood sample equally into 3 portions. Each portion should not be less than 2mL. The peripheral blood samples should be stored at 2-8°C. RNA was extracted from blood samples on the 0, 1, and 2 days after collection. Each extracted RNA sample was tested 6-8 replicates by using one lot of the kit.

The acceptance criteria were that the CV% of samples must meet the requirement (CV \leq 10%) and the mean value of MR detected by the sample and their 95% confidence intervals were all within the range of ±0.5Log of the MR value detected by the kit on the 0 day.

The results showed that when the peripheral blood samples were stored in 2-8°C for 1 and 2 days, the measured value of MR and 95% confidence interval were all within the range of ± 0.5 log of the result of 0 day. Besides, the precision of the measured MR values was between 0.92% and 5.75%, acceptance criteria were met. Therefore, peripheral blood samples stored for 1 day at 2-8°C are stable and produce reliable results with the BCR-ABL1 (p210) %IS Kit (Digital PCR Method).

2. Comparison studies:

a. Method comparison with predicate device:

A method comparison study was designed to evaluate the performance of the BCR-ABL1 (p210) %IS Kit (Digital PCR Method) (Sniper kit) compared to the predicate device QXDx BCR-ABL %IS Kit (Bio-Rad Laboratories, registration number K181661) (Bio-Rad kit) in RNA derived from peripheral blood samples obtained from individuals previously diagnosed with t(9;22) positive chronic myeloid leukemia (CML).

Clinical samples of 127 were collected from 2 hospitals for analysis retrospectively. 127 samples were screened, and 15 samples were excluded since they did not meet the sample screening conditions. Finally, 112 samples (MR value were distributed between 0.32 and 4.47) could be included in the statistics. The 112 samples cover the intended use and linear range of both kits.

1) Subject inclusion criteria:

Over 18 years of age.

Previously diagnosed with t(9;22) positive CML (p210).

2) Sample requirements:

Peripheral blood stored in blood collection tube containing EDTA anticoagulant, and stored at 4°C for no more than 24 hours.

3) Sample extraction requirements:

RNA from the patient's peripheral blood samples were extracted by the Whole Blood Nucleic Acid Extraction Reagent and stored at -80°C after the RNA extraction were completed.

4) Sample size requirements:

A single sample could meet the requirement of detection by the Bio-Rad kit and the Sniper kit (RNA $\geq 3\mu g$).

5) Sample exclusion criteria:

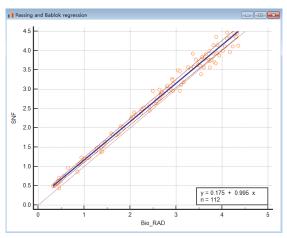
Samples that did not meet inclusion criteria.

Specimen type other than peripheral blood.

Extracted RNA concentration and purity not meeting the assay 05-26

requirements.

Insufficient sample for testing.


The clinical samples in the method comparison study were selected to span the testing as shown in the table below in Table 24:

Bin	Bio-rad	Sniper
Lowest- < 1.5	29	26
1.5- < 2.5	19	19
2.5- < 3.5	31	29
3.5-4.5	33	38

Table 24: Sample MR value distribution

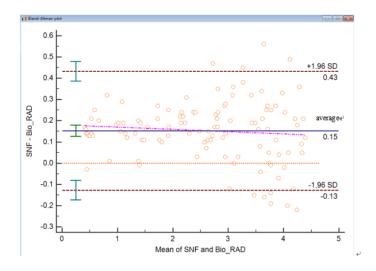

The outlier test by the ESD method showed that 112 test results had no outliers. Passing-Bablok regression (Figure 2) showed that the intercept A (95% CI): 0.17 (0.13-0.22), the slope B (95% CI): 0.99 (0.97-1.01), and the Spearman correlation coefficient: 0.988(P<0.0001) were greater than 0.95.

Figure 2: Passing-Bablok regression result

The mean bias using Bland-Altman (figure 3) was 0.15 (95% CI: 0.13–0.18, p<0.0001). The limits of agreement (0.43 to -0.13) represent the interval that was expected to contain 95% of the data from an approximately normal distribution. The slope of the regression line was -0.01 with a 95% CI of - 0.032, 0.012 (p = 0.3426, not significant) and the intercept was 0.1806 (95% CI: 0.117–0.244, p<0.0001).

Figure 3: Bland-Altman result

Results from the method comparison study demonstrate that over the assay measurement range of MR0.3-MR4.5 and the predicted biases and their 95% confidence intervals from regression analysis as blew (see table 23). The BCR-ABL1 (p210) %IS Kit (Digital PCR Method) is substantially equivalent to the predicate.

 Table 25: Predicted biases and their 95% confidence intervals of different transcripts

			transcripts			
Variant	Predicated Bias MR0.3	Predicated Bias MR1.0	Predicated Bias MR2.0	Predicated Bias MR3.0	Predicated Bias MR4.0	Predicated Bias MR4.5
	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023
e13a2	95% CI					
	[-0.08, 0.03]	[-0.07, 0.02]	[-0.06, 0.01]	[-0.06, 0.01]	[-0.07, 0.02]	[-0.08, 0.03]
	-0.010	-0.007	-0.003	0.001	0.005	0.007
e14a2	95% CI					
	[-0.08, 0.06]	[-0.06, 0.05]	[-0.04, 0.04]	[-0.04, 0.04]	[-0.05, 0.06]	[-0.06, 0.07]
e13a2 & e14a2	-0.016	-0.015	-0.013	-0.011	-0.009	-0.008
	95% CI					
together	[-0.09, 0.05]	[-0.08, 0.05]	[-0.06, 0.04]	[-0.06,0.04]	[-0.07, 0.05]	[-0.08,0.06]

b. Matrix comparison:

Not applicable

- 3. Clinical studies:
 - a. Clinical Sensitivity:

Not applicable

b. Clinical specificity:

Not applicable

c. Other clinical supportive data (when a. and b. are not applicable): Not applicable

4. Clinical cut-off:

Not applicable

J. Instrument Name:

Sniper Digital PCR All-in-One System

K. System Descriptions:

1. Modes of Operation:

Does the applicant's device contain the ability to transmit data to a computer,

webserver, or mobile device?

Yes X or No

Does the applicant's device transmit data to a computer, webserver, or mobile

device using wireless transmission?

Yes or No X

2. Software:

FDA has reviewed applicant's Hazard Analysis and software development processes for this line of product types:

Yes X or No

3. Calibration & Quality Controls:

The assay uses calibrators by which the BCR-ABL1/ABL1 is calculated. The instrument and assay employ both in-process QC Checks and physical controls. See description in traceability section for calibrator value assignments.

L. Other Supportive Instrument Performance Characteristics Data Not Covered

in The "Performance Characteristics" Section above:

Not applicable

M. Proposed Labeling:

The labeling is sufficient and it satisfies the requirements of 21 CFR Parts 801 and 809, as applicable

N. Conclusion:

The data presented in the analytical and clinical sections support the safety and effectiveness of the Sniper Digital PCR All-in-One System. A comparison of the Intended Use, device features, non-clinical and clinical data support that the Sniper Digital PCR All-in-One System is substantially equivalent to the predicate QXDx BCR-ABL %IS Kit.