
Engineering High Confidence Medical Device Software

Arnab Ray
Fraunhofer Center for Experimental Software

Engineering
ARay@fc-md.umd.edu

Raoul Jetley Paul Jones
US Food and Drug Administration, Center for

Devices and Radiological Health
{raoul.jetley, paull.jones}@fda.hhs.gov

Abstract
The increasing complexity of medical device software has
created new challenges in ensuring that a medical device
operates correctly. This paper discusses how two technolo-
gies — model-based development and static analysis — may
be used to facilitate the successful engineering of medical
software and some possible regulatory side benefits.

Keywords model-based development, formal verification,
static analysis, instrumentation based verification

1. Introduction
The amount of software present in medical devices has
dramatically increased over the last decade. Many infusion
pumps today contain tens of thousands of lines of code.
This number can run into the millions for proton beam
therapy devices. Software is considered by many to be
easier to configure, change and re-use than hardware. It is
a technology that enables robust device designs. The need
for high-integrity software in the health-care industry has be-
come more important than ever as remote surgery, intelligent
operating rooms, autonomous assisted living environments,
and bio-feedback based prosthetics become the norm in the
not-so-distant future.

The increasing complexity of device software presents
considerable engineering challenges. In 1998, close to 8%
of device failures could be traced to software errors [5].
Currently, the number of device recalls due to software
problems is believed by some to be about 18%. It is likely
that device failures and subsequent recalls will continue to
increase until software is better engineered.

Figure 1 depicts a generalized software development
workflow process typically followed by device manufactur-
ers. The quality of the code in this workflow process is gen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
HCMDSS 2009 April 16 2009, San Francisco.
Copyright c© 2009 ACM . . . $5.00

erally ensured through verification activities such as manual
inspections, code walkthroughs and testing. Integrated sys-
tem testing typically takes place at the end of the develop-
ment lifecycle. Such verification activities, in the context of
a quality system, have historically been considered sufficient
for developing quality software. However, history has shown
that common practices within this workflow process are
insufficient for developing highly dependable software [10].
The reason for this is that these largely human resource
intensive activities simply cannot fathom, unaided, the in-
terdependencies of complex requirements and code.

Some of the limitations associated with traditional soft-
ware development techniques can be summarized as follows:

• No formal, mathematics-based verifiable relationship is
established between the design and the code

• Without a formal relationship established, it is difficult to
demonstrate that the design and the code conform to each
other structurally as well as behaviorally

• Without a formal methods foundation, rigorous verifi-
cation and validation results are difficult to demonstrate
throughout the life-cycle process

• Without the use of statistically based testing methods
code coverage is difficult to characterize objectively

• No formal relationship is established between system
property requirements (e.g., safety, security, privacy, etc),
code, and the test suite used to verify the software. As a
result, there is no reliable way to ensure that the software
addresses these property specific requirements.

The risks associated with current software development
practices will likely increase as medical device cyber-
physical systems1 such as non-homogeneous interoperable
medical devices begin to enter the health care system.
Configurations of such devices will be highly variable and
reconfigurable in order to provide support in operating
rooms, in hospital rooms, and in home care environments.
For example, during a surgical operation, a number of “off-
the-shelf” medical devices may be networked together to
monitor and safely react to a patient’s changing physiology.

1 The term cyber-physical systems refers to the tight conjoining of and
coordination between computational and physical resources

Figure 1. Traditional Software Development Workflow

Emerging medical device cyber-physical systems, such as
interoperable medical device systems and prosthetics, bring
new engineering challenges to the medical device devel-
opment space in terms of scale, security, privacy, timing,
human factors, composition, sensing, coordination, control,
and certifiable evidence based verification and validation.
Ultimately, research and development is needed to establish
cyber-physical device composition and integration technolo-
gies and certifiable tool chains that address issues of logical
and physical interoperability [8].

The remainder of this paper discusses some mathemat-
ically well-founded technologies for design, development
and verification of medical device software. These tech-
niques have been used with considerable success in other
safety-critical industries such as aerospace and automotive
engineering. In particular, we discuss model-based develop-
ment and static analysis, and discuss how these technologies
might be leveraged in a regulatory environment.

2. Model-based Development
A model can be thought of as a formal representation of a
design specification. A model can also be used to capture the
essential structure and behavior of a component or system.
Of particular interest to developing high-confidence medical
device software is the notion of ”executable modeling nota-
tions.” Executable modeling notations can be distinguished
from conventional design notations by the fact that they are
based upon a mathematically precise notion of what it means
for a model to perform a behavioral action. This means that
designs rendered in an executable modeling notation can be
simulated and debugged just like normal code that has been
written in a traditional programming language like C or C++.

The principal advantage of using executable models,
hereafter referred to simply as models, over conventional
programming languages is that they free the developer
from implementation details like pointer management and
memory allocation. This is analogous to the way program-
ming languages abstract away low-level details of processor
instruction sets, facilitating the separation of software and
hardware concerns. Modeling makes it easier for the devel-
oper to focus resources on various aspects and properties of
a particular design.

To verify models on a particular hardware platform they
must be converted to code through a process called “auto-
matic code generation.” Modeling tools are used to convert
modeling notations into code. Compilers then transform this
code into machine language that can then be executed on the
hardware.

This kind of software development, where the model
serves as the primary artifact, is often referred to as
model-based development. Over the years, model-based
development techniques have become standard practice in
the production of high-integrity embedded software in the
aerospace and automotive industries.

A major advantage of a model-based development work-
flow is that it facilitates catching and correcting errors
early in the development lifecycle. Since models can be
constructed much faster than code, designers can rapidly
create prototypes of their system and study various design
alternatives before committing to a final implementation.
Also, owing to the executable nature and formal semantics of
these models, various analytical verification and validation
(V&V) methods like model-checking [4] or instrumentation-
based verification (IBV) [1] can be used to formally prove

Figure 2. Model-checking based Verification Workflow

that the software design satisfies functional and specific
property requirements (e.g. safety, security, etc).

When using model-based V&V techniques, natural lan-
guage requirements are first converted to formal specifica-
tions, which may be expressed as either temporal logical
formulae [2] or monitor models (monitors for short) [1].
Temporal logic formulae are typically employed for model-
checking. Monitors may be thought of as encodings of
idealized system behavior that are executed concurrently
with the models to guarantee consistent results during IBV.

If model checking is used (as shown in Figure 2), then
the logical specifications (or temporal logic formulae) are
checked against finite-state representations of the design
model using either sophisticated graph traversal or equation
solving techniques. A model is said to be verified against a
set of specifications, if for all possible model executions, it is
not possible for any of the specifications to be violated. On
the other hand, if a specification is violated by an execution
trace, the model is deemed to be erroneous. (This execution
trace is often generated by the model-checker as proof of the
specification violation.)

If IBV is used as the V&V method of choice, as shown in
Figure 3, the design model is first instrumented with monitor
models. A test-generation engine is then used to check the
composite of the design model and the monitor against a
series of automatically generated tests. The aim here is to
determine whether the actual behavior of the design model
and the idealized behavior of the monitor instrumentation
diverge from each other. In other words, the test-generation
engine takes the role of a pessimistic observer and generates
tests so as to “break” the design. If it is successful in
observing a divergence between the design model and the
monitor, it outputs the relevant test case as the rationale for
why the specification is not satisfied.

The metric that specifies how extensively the model’s
behavior is covered by the tests is known as a coverage

criterion. Various coverage criteria can be used to verify the
model based on how rigorous the test cases need to be. For
example, line coverage stipulates that each model element
needs to be executed at least once for the test suite to be
complete. Decision coverage, on the other hand, enforces
that boolean expressions tested in control structures (such as
the if-statement and while-statement) must evaluate to both
true and false. The coverage criterion typically used by IBV
is known as MC/DC (modified condition decision coverage).
MC/DC stipulates that tests should be generated until each
boolean sub-expression in a conditional expression has been
shown to independently affect the outcome of the expres-
sion. MC/DC is considered by the Federal Aviation Agency
(FAA) to be the most exhaustive coverage criterion and is
used for testing the most critical type of aerospace code.

Once the model has been verified, using either model
checking or IBV, automatic code generation is used to derive
the core source code for the device. The generated code
typically needs to be instrumented by hand in the same
way outputs of compilers need to be optimized for certain
applications2.

There are two principal ways to perform code verification
in the model-based development process. The first is applied
using model checking techniques. In this method, the logical
specifications are first converted to assertions, the generated
code is instrumented with these assertions, and code veri-
fication tools [6] run on the modified code. In contrast to
this rather direct method of re-verifying the requirements
on the code, one may adopt an alternative strategy, where
the code and the design are shown to be behaviorally
equivalent to each other [12]. Since the design has already
been verified, we may conclude that the code also satisfies
the requirements. This alternative strategy makes use of IBV
work, wherein the test suite generated as part of the model

2 With advances in code-generators we expect to see production-level
highly-optimized code being produced directly from models in the future.

Figure 3. Instrumentation-Based Verification Workflow

verification is re-used for code. The code is verified to be
correct if outputs of the model and the code are equivalent.
If they are not, one may suspect that behavior has been
introduced in the code that may lead to the violation of a
requirement.

It should be noted that both these techniques for code ver-
ification are driven by requirements. In the case of assertion-
based verification, the code is checked against assertions that
are derived directly from the requirements. In the testing
equivalence method, the test set that is used to prove behav-
ior conformance between design and code is generated pri-
marily by referencing the requirements. In both approaches,
a direct traceable connection between the requirements and
code verification activities is established. This traceability,
base in mathematics, can help establish a convincing argu-
ment that the software has been checked with respect to its
requirements at each stage of the development life-cycle.

The use of model-based V&V techniques reduces the
dependence on testing as the principal means for verifica-
tion, while at the same time providing a means for detecting
design errors early in the development life-cycle. Clearly, the
earlier errors are detected and corrected, the greater are the
benefits in terms of time and cost; a fact expressed succinctly
by the great architect Frank Lloyd Wright — “You can use
an eraser on the drafting table or a sledge hammer on the
construction site”.

The nature of these design formalisms is such that they
could be used in a regulatory context to challenge man-
ufactured products for specific properties, such as safety,
security, etc., acting as pseudo reference standards. In the
FDA/CDRH/OSEL3 software laboratory we were able to
establish an infusion pump safety model using these meth-

3 Food and Drug Administration/Center for Devices and Radiological
Health/Office of Science and Engineering Laboratories

ods. From this model, we were able to establish a set of
alarm safety assertions and insert them in code from a real
infusion pump implementation. The Verisoft4 tool was used
to perform systematic state space exploration of the code
and check if any of these assertions were ever violated
without triggering the appropriate alarm. Several alarms
were not triggered that should have been [9]. An advantage
of using Verisoft was that the assertions could be checked
on all possible paths of the program and not just a specific
execution path, as with runtime checking.

Clearly, it is impractical for regulators to develop such
reference models for all medical devices. However, it is
eminently practical for device manufacturers to carry out
their own property-specific verification activities, and get
“regulatory credit” for the work. One way of presenting this
work is in the form of an assurance (or dependability) case
[10]. For example, the claim might be that the device is safe.
The evidence might be a test result report showing that all
safety properties are met. And, the argument might be a
safety model and an explanation of how it relates to the test
results.

3. Static Analysis
Static analysis can be defined as an analysis of software that
is performed without executing code, i.e., by analyzing some
static artifact like source code or object files. Using static
analysis facilitates detecting errors while the code is under
development, thus reducing development and maintenance
costs and the risk of expensive device recalls. In the context
of high-confidence medical software, static analysis may
be carried out for two principal purposes: a) checking the

4 Verisoft is a freely available state-space exploration tool for C programs.
The use of Verisoft for the research study does not imply FDA endorsement
of the tool.

source code to ensure that architectural constraints are not
violated, and b) discovering errors in the source code.

3.1 Checking Architectural Constraints through Static
Analysis

In the previous section, we described how assertion-based
code verification and testing equivalence aims to establish
the identical behavior of design models and code with
respect to satisfying the requirements. However, these tech-
niques do not check whether structural constraints defined
in the design architecture are actually implemented in code.
Static analysis can be used to make such checks.

The structural constraints that designers impose on code
stem from considerations of extensibility and maintenance.
For example, in a layered protocol, a layer is only allowed to
use functions provided by its immediate subordinate so that
a layer implementation may be replaced easily with another.
However, such constraints formulated at the design phase are
often not followed in the implementation. This often leads
to spaghetti (highly-coupled) code that while perhaps still
functionally correct, is extremely difficult to maintain and
modify. In order to prevent this architectural degeneration,
the code needs to be checked for off-specification dependen-
cies. This can be done by using static analysis techniques
to extract the implemented architecture from code [11].
The extracted architecture can then be compared to the
required architectural specifications. This comparison can
help identify dependencies that are present in the code but
should not be and dependencies that should be present in the
code but are not.

As an example, consider the architecture diagrams shown
in Figure 4. Figure 4(a) shows a design architecture where
component A is expected to communicate with B and B
with C. However, after performing static analysis, we find
that even though a dependency exists between A and B
as planned, the expected dependency between B and C is
missing and an extra dependency between A and C, that was
not supposed to exist, is now present.

3.2 Detecting Runtime Errors using Static Analysis
While dependency analysis on extracted architectures may
help guard against design errors, it does not afford any
kind of protection against low-level coding errors. Coding
errors usually manifest themselves as run-time bugs, such as
null pointer dereferences, buffer overruns, arithmetic errors
and memory leaks. Until recently, the only way to detect
these errors was by means of rigorous code reviews and
dynamic testing. However, with advances in lightweight
formal methods techniques, a number of these defects can
now be detected using static analysis.

While dependency analysis on extracted architectures
may help guard against design errors, it does not afford any
kind of protection against low-level coding errors. Coding
errors usually manifest themselves as run-time bugs, such as
null pointer dereferences, buffer overruns, arithmetic errors

and memory leaks. Until recently, the only way to detect
these errors was by means of rigorous code reviews and
dynamic testing. However, with advances in lightweight
formal methods techniques, a number of these defects can
now be detected using static analysis.

There are many different types of static analysis tech-
niques for detecting run-time bugs, such as symbolic exe-
cution [7] and abstract interpretation [3]. These techniques
focus on assessing run-time bugs by evaluating intricate
interactions within the software. For example, values of
variables as they are manipulated down a path through
the code, or the relationship between how parameters of
functions are treated and the corresponding return values.
To analyze code with this level of sophistication, all possible
paths in the software are exhaustively analyzed to check for
potential software anomalies.

By searching exhaustively through all paths in the pro-
gram, these static analysis techniques can uncover bugs that
may not be caught by testing alone. Since each test case
follows only a specific path in the program, a finite number
of tests can only check a limited set of possible execution
paths. Usually these paths cover only a small fraction of the
total possible paths in the software. Static analysis, on the
other hand can evaluate all possible execution paths through
the program; subject to the constraints of the tool employed.

Despite providing greater code coverage than testing,
static analysis does have its limitations. Since the analysis
is performed at compile-time, it is impossible to ascertain
the actual values of input parameters and program variables
used during execution. Static analysis tools therefore have to
assume all possible values for these variables. This makes
the analysis computationally intensive and causes high false
positive5 rates. Alternatively, the analysis tools may use
heuristics to improve performance, yielding false negatives6

as a result. In the ideal case, static analysis tools should
have no false positives, no false negatives, and run in
approximately the same amount of time as is required for
compilation. However, this is not possible given the current
state of technology. Therefore, most effective static analysis
tools instead try to find the elusive sweet spot between false
positives, false negatives, and performance to make results
useful for every day software development.

It must be noted that static analysis is most effective
when used in combination with traditional V&V techniques.
It must be viewed as a complement to, rather than a re-
placement for, conventional V&V methodologies. Ideally,
of course, static analysis should be integrated with a man-
ufacturers’ software development life-cycle process. Using
it as code, is developed helps developers identify and repair
defects prior to adding the code to a code baseline. Similarly,

5 A false positive is any result that a static analysis tool reports that is not
actually a defect in the source code.
6 A false negative is any defect in the code that a static analysis tool does
not report.

Figure 4. Architecture based comparison between design and implementation

using static analysis during code integration can provide an
integrated analysis of the entire software system at a holistic
level.

Static analysis technology can play a role in a regula-
tory context as well. In this context regulators can obtain
device code and apply this technology to expose errors,
without knowing much about the design or code. And, like
the modeling technology discussed earlier, manufacturers
could get “regulatory credit” for using this technology when
presented in an assurance case format. One could further
imagine that a verification claim would be strengthened
by arguing that both model-based development and static
analysis techniques were used in the verification process.

4. Conclusion
In this paper we have presented two complementary soft-
ware development technologies that can be used to help
develop high integrity medical device software: model-based
development, which allows the developer to check that the
design and implementation adhere to the system (software)
requirements and static analysis that helps ensure that the
implementation itself is free of errors.

Though these technologies have been used with great
success in the aerospace and automotive industries, it should
be remembered that the medical device environment has its
own idiosyncrasies to consider. This environment is based
on the practice of medicine (a rather inexact science) on
patients with widely varying physiological conditions and
with devices that rely on the notion of “competent human
intervention” as a primary means for risk control. In this
environment, the consequence of a device malfunction may
be death or serious injury.

The technologies discussed provide a glimpse of how
the development of high-confidence medical device cyber-
physical systems might begin to be realized. An open-
systems based research environment seems warranted to
facilitate broad involvement in addressing issues underlying
the composition and integration of cyber-physical medical
device and infrastructure technologies through certifiably
dependable tool chains that can represent and resolve cyber-
physical properties. At the same time, these tool chains
need to explicitly support implementation assurance claims.
A broad national research agenda is warranted that brings
academics, manufacturers, and regulators together to refine
existing technologies; and through innovation, develop new
technologies such that future implementations can be estab-
lished as certifiably dependable.

References
[1] C. Ackermann, A. Ray, R. Cleaveland, J. Heit, C. Shelton,

C. Martin. Model-Based Design Verification. A Monitor Based
Approach. Society of Automotive Engineers World Congress
2008

[2] M. Ben-Ari, A. Pnueli and Z. Manna. The temporal logic
of branching time. Proceedings of the 8th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL), 1981

[3] P. Cousot and R. Cousot. Abstract Interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. POPL 1977

[4] E. Clarke, O.Grumberg, D.Pereld. Model Checking. MIT Press.
2000

[5] General Principles of Software Validation; Final Guidance for
Industry and FDA Staff. January 11, 2002

[6] P. Godefroid. Model checking for programming languages us-
ing Verisoft. Proceedings of the 24th ACM SIGPLANSIGACT
symposium on Principles of programming languages, ACM
Press, 1997

[7] H. Hampapuram, Y. Yang, and M. Das. Symbolic path simula-
tion in path-sensitive dataflow analysis. In SIGSOFT Software
Engineering Notes, Jan 2006

[8] High-Confidence Medical Devices: Cyber-Physical Systems
for 21st Century Health Care A Research and Development
Needs Report, Prepared by the High Confidence Software
and Systems Coordinating Group of the Networking and
Information Technology Research and Development Program,
February 2009

[9] R. Jetley and P. L. Jones. Safety Requirements based Analysis
of Infusion Pump Software, Proceedings of the IEEE Real Time
Systems Symposium, Tuscon, December 2007

[10] D. Jackson, M. Thomas, and L. I. Millet editors. Software
for Dependable Systems: Sufficient Evidence? Committee on
Certifiably Dependable Software Systems, National Research
Council, National Academies Press, 2007

[11] J. Knodel, D. Muthig, M. Naab, M. Lindvall. Static Evalu-
ation of Software Architectures. 10th European Conference on
Software Maintenance and Reengineering 2006

[12] A. Ray, R. Cleaveland, S. Jiang, T. Fuhrman. Model-Based
Verification and Validation of Distributed Controller Architec-
tures. Society of Automotive Engineers Convergence 2006

