Skip to main content

cancer risk

Random Mutations Play Major Role in Cancer

Posted on by Dr. Francis Collins

Cancer OddsWe humans are wired to search for a causative agent when something bad happens. When someone develops cancer, we seek a reason. Maybe cancer runs in the family. Or perhaps the person smoked, never wore sunscreen, or drank too much alcohol. At some level, those are reasonable assumptions, as genes, lifestyle, and environment do play important roles in cancer. But a new study claims that the reason why many people get cancer is simply just bad luck.

This bad luck occurs during the normal process of cell division that is essential to helping our bodies grow and remain healthy. Every time a cell divides, its 6 billion letters of DNA are copied, with a new copy going to each daughter cell. Typos inevitably occur during this duplication process, and the cell’s DNA proofreading mechanisms usually catch and correct these typos. However, every once in a while, a typo slips through—and if that misspelling happens to occur in certain key areas of the genome, it can drive a cell onto a pathway of uncontrolled growth that leads to cancer. In fact, according to a team of NIH-funded researchers, nearly two-thirds of DNA typos in human cancers arise in this random way.

The latest findings should help to reassure people being treated for many forms of cancer that they likely couldn’t have prevented their illness. They also serve as an important reminder that, in addition to working on better strategies for prevention, cancer researchers must continue to pursue innovative technologies for early detection and treatment.


Hereditary Breast and Ovarian Cancers: Moving Toward More Precise Prevention

Posted on by Dr. Francis Collins

Homologous Hope sculpture

Caption: “Homologous Hope” sculpture at University of Pennsylvania depicting the part of the BRCA2 gene involved in DNA repair.
Credit: Dan Burke Photography/Penn Medicine

Inherited mutations in the BRCA1 gene and closely related BRCA2 gene account for about 5 to 10 percent of all breast cancers and 15 percent of ovarian cancers [1]. For any given individual, the likelihood that one of these mutations is responsible goes up significantly in the presence of  a strong family history of developing such cancers at a relatively early age. Recently, actress Angelina Jolie revealed that she’d had her ovaries removed to reduce her risk of ovarian cancer—news that follows her courageous disclosure a couple of years ago that she’d undergone a prophylactic double mastectomy after learning she’d inherited a mutated version of BRCA1.

As life-saving as genetic testing and preventive surgery may be for certain individuals, it remains unclear exactly which women with BRCA1/2 mutations stand to benefit from these drastic measures. For example, it’s been estimated that about 65 percent of women born with a BRCA1 mutation will develop invasive breast cancer over the course of their lives—which means approximately 35 percent will not. How can women in this situation be provided with more precise, individualized guidance on cancer prevention? An international team, led by NIH-funded researchers at the University of Pennsylvania, recently took an important first step towards answering that complex question.