Skip to main content

clinical research

Rice-Sized Device Tests Brain Tumor’s Drug Responses During Surgery

Posted on by Lawrence Tabak, D.D.S., Ph.D.

Determining most effective tumor-specific drug. A transparent head with a brain tumor. A zoomed in version show a small cylinder with 10 tiny holes embedded in the tumor. Each hole has a different drug leaking out.
A device implanted into a tumor during surgery delivers tiny doses of up to 20 drugs to determine each treatment’s effects. Credit: Donny Bliss, NIH

Scientists have made remarkable progress in understanding the underlying changes that make cancer grow and have applied this knowledge to develop and guide targeted treatment approaches to vastly improve outcomes for people with many cancer types. And yet treatment progress for people with brain tumors known as gliomas—including the most aggressive glioblastomas—has remained slow. One reason is that doctors lack tests that reliably predict which among many therapeutic options will work best for a given tumor.

Now an NIH-funded team has developed a miniature device with the potential to change this for the approximately 25,000 people diagnosed with brain cancers in the U.S. each year [1]. When implanted into cancerous brain tissue during surgery, the rice-sized drug-releasing device can simultaneously conduct experiments to measure a tumor’s response to more than a dozen drugs or drug combinations. What’s more, a small clinical trial reported in Science Translational Medicine offers the first evidence in people with gliomas that these devices can safely offer unprecedented insight into tumor-specific drug responses [2].

These latest findings come from a Brigham and Women’s Hospital, Boston, team led by Pierpaolo Peruzzi and Oliver Jonas. They recognized that drug-screening studies conducted in cells or tissue samples in the lab too often failed to match what happens in people with gliomas undergoing cancer treatment. Wide variation within individual brain tumors also makes it hard to predict a tumor’s likely response to various treatment options.  

It led them to an intriguing idea: Why not test various therapeutic options in each patient’s tumor? To do it, they developed a device, about six millimeters long, that can be inserted into a brain tumor during surgery to deliver tiny doses of up to 20 drugs. Doctors can then remove and examine the drug-exposed cancerous tissue in the laboratory to determine each treatment’s effects. The data can then be used to guide subsequent treatment decisions, according to the researchers.

In the current study, the researchers tested their device on six study volunteers undergoing brain surgery to remove a glioma tumor. For each volunteer, the device was implanted into the tumor and remained in place for about two to three hours while surgeons worked to remove most of the tumor. Next, the device was taken out along with the last piece of a tumor at the end of the surgery for further study of drug responses.

Importantly, none of the study participants experienced any adverse effects from the device. Using the devices, the researchers collected valuable data, including how a tumor’s response changed with varying drug concentrations or how each treatment led to molecular changes in the cancerous cells.

More research is needed to better understand how use of such a device might change treatment and patient outcomes in the longer term. The researchers note that it would take more than a couple of hours to determine how treatments produce less immediate changes, such as immune responses. As such, they’re now conducting a follow-up trial to test a possible two-stage procedure, in which their device is inserted first using minimally invasive surgery 72 hours prior to a planned surgery, allowing longer exposure of tumor tissue to drugs prior to a tumor’s surgical removal.

Many questions remain as they continue to optimize this approach. However, it’s clear that such a device gives new meaning to personalized cancer treatment, with great potential to improve outcomes for people living with hard-to-treat gliomas.

References:

[1] National Cancer Institute Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Brain and Other Nervous System Cancer.

[2] Peruzzi P et al. Intratumoral drug-releasing microdevices allow in situ high-throughput pharmaco phenotyping in patients with gliomas. Science Translational Medicine DOI: 10.1126/scitranslmed.adi0069 (2023).

Links:

Brain Tumors – Patient Version (National Cancer Institute/NIH)

Pierpaolo Peruzzi (Brigham and Women’s Hospital, Boston, MA)

Jonas Lab (Brigham and Women’s Hospital, Boston, MA)

NIH Support: National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institute of Neurological Disorders and Stroke


Clinical Center Doctors Testing 3D-Printed Miniature Ventilator

Posted on by James K. Gilman, MD, NIH Clinical Center

Small plastic device next to a thumbdrive
Caption: A USB flash drive (front) next to the 3D-printed miniature ventilator (back). Credit: William Pritchard, Clinical Center, NIH

Here at the NIH Clinical Center, we are proud to be considered a world-renowned research hospital that provides hope through pioneering clinical research to improve human health. But what you may not know is that our doctors are constantly partnering with public and private sectors to come up with innovative technologies that will help to advance health outcomes.

I’m excited to bring to you a story that is perfect example of the ingenuity of our NIH doctors working with global strategic partners to create potentially life-saving technologies. This story begins during the COVID-19 pandemic with the global shortage of ventilators to help patients breathe. Hospitals had a profound need for inexpensive, easy-to-use, rapidly mass-produced resuscitation devices that could be quickly distributed in areas of critical need.

Through strategic partnerships, our Clinical Center doctors learned about and joined an international group of engineers, physicians, respiratory therapists, and patient advocates using their engineering skills to create a ventilator that was functional, affordable, and intuitive. After several iterations and bench testing, they devised a user-friendly ventilator.

Transparent plastic mini ventilator
Caption: The miniature ventilator connected to an oxygen line (asterisk) and the breathing tube to the patient (crosshatch). The exhaust (dagger) is recessed to prevent accidental blockage. Credit: William Pritchard, Clinical Center, NIH

Then, with the assistance of 3D-printing technology, they improved the original design and did something pretty incredible: the team created the smallest single-patient ventilator seen to date. The device is just 2.4 centimeters (about 1 inch) in diameter with a length of 7.4 centimeters (about 3 inches).

A typical ventilator in a hospital obviously is much larger and has a bellows system. It fills with oxygen and then forces it into the lungs followed by the patient passively exhaling. These systems have multiple moving parts, valves, hoses, and electronic or mechanical controls to manage all aspects of the oxygen flow into the lungs.

But our miniature, 3D-printed ventilator is single use, disposable, and has no moving parts. It’s based on principles of fluidics to ventilate patients by automatically oscillating between forced inspiration and assisted expiration as airway pressure changes. It requires only a continuous supply of pressurized oxygen.

The possibilities of this 3D-printed miniature ventilator are broad. The ventilators could be easily used in emergency transport, potentially treating battlefield casualties or responding to disasters and mass casualty events like earthquakes.

While refining a concept is important, the key is converting it to actual use, which our doctors are doing admirably in their preclinical and clinical studies. NIH’s William Pritchard, Andrew Mannes, Brad Wood, John Karanian, Ivane Bakhutashvili, Matthew Starost, David Eckstein, and medical student Sheridan Reed studied and have already tested the ventilators in swine with acute lung injury, a common severe outcome in a number of respiratory threats including COVID-19.

In the study, the doctors tested three versions of the device built to correspond to mild, moderate, and severe lung injury. The respirators provided adequate support for moderate and mild lung injuries, and the doctors recall how amazing it was initially to witness a 190-pound swine ventilated by this miniature ventilator.

The doctors believe that the 3D-printed miniature ventilator is a potential “game changer” from start to finish since it is lifesaving, small, simple to use, can be easily and inexpensively printed and stored, and does not require additional maintenance. They recently published their preclinical trial results in the journal Science Translational Medicine [1].

The NIH team is preparing to initiate first-in-human trials here at the Clinical Center in the coming months. Perhaps, in the not-too-distant future, a device designed to help people breathe could fit into your pocket next to your phone and keys.

Reference:

[1] In-line miniature 3D-printed pressure-cycled ventilator maintains respiratory homeostasis in swine with induced acute pulmonary injury. Pritchard WF, Karanian JW, Jung C, Bakhutashvili I, Reed SL, Starost MF, Froelke BR, Barnes TR, Stevenson D, Mendoza A, Eckstein DJ, Wood BJ, Walsh BK, Mannes AJ. Sci Transl Med. 2022 Oct 12;14(666):eabm8351.

Links:

Clinical Center (NIH)

Andrew Mannes (Clinical Center)

Bradford Wood (Clinical Center)

David Eckstein (Clinical Center)

Note: Dr. Lawrence Tabak, who performs the duties of the NIH Director, has asked the heads of NIH’s Institutes and Centers (ICs) to contribute occasional guest posts to the blog to highlight some of the interesting science that they support and conduct. This is the 21st in the series of NIH IC guest posts that will run until a new permanent NIH director is in place.


Understanding Long-Term COVID-19 Symptoms and Enhancing Recovery

Posted on by Walter J. Koroshetz, M.D., National Institute of Neurological Disorders and Stroke

RECOVER: Researching COVID to Enhance Recovery. An Initiative Funded by the National Institutes of Health

We are in the third year of the COVID-19 pandemic, and across the world, most restrictions have lifted, and society is trying to get back to “normal.” But for many people—potentially millions globally—there is no getting back to normal just yet.

They are still living with the long-term effects of a COVID-19 infection, known as the post-acute sequelae of SARS-CoV-2 infection (PASC), including Long COVID. These people continue to experience debilitating fatigue, shortness of breath, pain, difficulty sleeping, racing heart rate, exercise intolerance, gastrointestinal and other symptoms, as well as cognitive problems that make it difficult to perform at work or school.

This is a public health issue that is in desperate need of answers. Research is essential to address the many puzzling aspects of Long COVID and guide us to effective responses that protect the nation’s long-term health.

For the past two years, NIH’s National Heart, Lung, and Blood Institute (NHLBI), the National Institute of Allergy and Infectious Diseases (NIAID), and my National Institute of Neurological Disorders and Stroke (NINDS) along with several other NIH institutes and the office of the NIH Director, have been leading NIH’s Researching COVID to Enhance Recovery (RECOVER) initiative, a national research program to understand PASC.

The initiative studies core questions such as why COVID-19 infections can have lingering effects, why new symptoms may develop, and what is the impact of SARS-CoV-2, the virus that causes COVID-19, on other diseases and conditions? Answering these fundamental questions will help to determine the underlying biologic basis of Long COVID. The answers will also help to tell us who is at risk for Long COVID and identify therapies to prevent or treat the condition.

The RECOVER initiative’s wide scope of research is also unprecedented. It is needed because Long COVID is so complex, and history indicates that similar post infectious conditions have defied definitive explanation or effective treatment. Indeed, those experiencing Long COVID report varying symptoms, making it highly unlikely that a single therapy will work for everyone, underscoring the need to pursue multiple therapeutic strategies.

To understand Long COVID fully, hundreds of RECOVER investigators are recruiting more than 17,000 adults (including pregnant people) and more than 18,000 children to take part in cohort studies. Hundreds of enrolling sites have been set up across the country. An autopsy research cohort will also provide further insight into how COVID-19 affects the body’s organs and tissues.

In addition, researchers will analyze electronic health records from millions of people to understand how Long COVID and its symptoms change over time. The RECOVER initiative is also utilizing consistent research protocols across all the study sites. The protocols have been carefully developed with input from patients and advocates, and they are designed to allow for consistent data collection, improve data sharing, and help to accelerate the pace of research.

From the very beginning, people suffering from Long COVID have been our partners in RECOVER. Patients and advocates have contributed important perspectives and provided valuable input into the master protocols and research plans.

Now, with RECOVER underway, individuals with Long COVID, their caregivers, and community members continue to serve a critical role in the Initiative. The National Community Engagement Group (NCEG) has been established to make certain that RECOVER meets the needs of all people affected by Long COVID. The RECOVER Patient and Community Engagement Strategy outlines all the approaches that RECOVER is using to engage with and gather input from individuals impacted by Long COVID.

The NIH recently made more than 40 awards to improve understanding of the underlying biology and pathology of Long COVID. There have already been several important findings published by RECOVER scientists.

For example, in a recent study published in the journal Lancet Digital Health, RECOVER investigators used machine learning to comb through electronic health records to look for signals that may predict whether someone has Long COVID [1]. As new findings, tools, and technologies continue to emerge that help advance our knowledge of the condition, the RECOVER Research Review (R3) Seminar Series will provide a forum for researchers and our partners with up-to-date information about Long COVID research.

It is important to note that post-viral conditions are not a new concept. Many, but not all, of the symptoms reported in Long COVID, including fatigue, post-exertional malaise, chronic musculoskeletal pain, sleep disorders, postural orthostatic tachycardia (POTS), and cognitive issues, overlap with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

ME/CFS is a serious disease that can occur following infection and make people profoundly sick for decades. Like Long COVID, ME/CFS is a heterogenous condition that does not affect everybody in the same way, and the knowledge gained through research on Long COVID may also positively impact the understanding, treatment, and prevention of POTS, ME/CFS, and other chronic diseases.

Unlike other post-viral conditions, people who experience Long COVID were all infected by the same virus—albeit different variants—at a similar point in time. This creates a unique opportunity for RECOVER researchers to study post-viral conditions in real-time.

The opportunity enables scientists to study many people simultaneously while they are still infected to monitor their progress and recovery, and to try to understand why some individuals develop ongoing symptoms. A better understanding of the transition from acute to chronic disease may offer an opportunity to intervene, identify who is at risk of the transition, and develop therapies for people who experience symptoms long after the acute infection has resolved.

The RECOVER initiative will soon announce clinical trials, leveraging data from clinicians and patients in which symptom clusters were identified and can be targeted by various interventions. These trials will investigate therapies that are indicated for other non-COVID conditions and novel treatments for Long COVID.

Through extensive collaboration across the multiple NIH institutes and offices that contribute to the RECOVER effort, our hope is critical answers will emerge soon. These answers will help us to recognize the full range of outcomes and needs resulting from PASC and, most important, enable many people to make a full recovery from COVID-19. We are indebted to the over 10,000 subjects who have already enrolled in RECOVER. Their contributions and the hard work of the RECOVER investigators offer hope for the future to the millions still suffering from the pandemic.

Reference:

[1] Identifying who has long COVID in the USA: a machine learning approach using N3C data. Pfaff ER, Girvin AT, Bennett TD, Bhatia A, Brooks IM, Deer RR, Dekermanjian JP, Jolley SE, Kahn MG, Kostka K, McMurry JA, Moffitt R, Walden A, Chute CG, Haendel MA; N3C Consortium. Lancet Digit Health. 2022 Jul;4(7):e532-e541.

Links:

COVID-19 Research (NIH)

Long COVID (NIH)

RECOVER: Researching COVID to Enhance Recovery (NIH)

NIH builds large nationwide study population of tens of thousands to support research on long-term effects of COVID-19,” NIH News Release, September 15, 2021.

Director’s Messages (National Institute of Neurological Disorders and Stroke/NIH)

Note: Dr. Lawrence Tabak, who performs the duties of the NIH Director, has asked the heads of NIH’s Institutes and Centers (ICs) to contribute occasional guest posts to the blog to highlight some of the interesting science that they support and conduct. This is the 18th in the series of NIH IC guest posts that will run until a new permanent NIH director is in place.


Biology of Aging Study Shows Why Curbing Calories Counts

Posted on by Richard J. Hodes, M.D., National Institute on Aging

Calorie reduction -- a plate with a small amount of food. More youthful thymus -- woman with a growing thymus

The NIH’s National Institute on Aging (NIA) broadly invests in research to find ways to help people live longer and healthier. As people age, they are more likely to have multiple chronic diseases, and NIA-supported research studies reflect a strong focus on geroscience. This advancing area of science seeks to understand the mechanisms that make aging a major risk factor and driver of common chronic conditions and diseases of older people.

More than 85 years ago, researchers at Cornell University, Ithaca, NY, observed that some lab rodents lived longer when fed a lower calorie diet that otherwise had the appropriate nutrients [1]. Since then, many scientists have studied calorie restriction to shed light on the various biological mechanisms that may explain its benefits and perhaps discover a way to extend healthy years of life, known as our healthspan.

Although there have been many studies of calorie restriction since the Cornell findings, the NIA-supported clinical trial CALERIE, which stands for Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy, provided critical data on the impact of this intervention in people. Completed in 2012, CALERIE was the first carefully controlled study to test whether study participants undergoing moderate calorie restriction would display any of the benefits observed in animal studies.

Volunteers for the CALERIE study were healthy, non-obese adults ages 25 to 45. People in one group were randomly assigned to continue their customary dietary choices, and those in the second group were trained by an expert team of psychologists and dietitians to restrict calories through specific strategies, such as eating smaller servings of food.

In addition to demonstrating that people could sustain moderate calorie restriction for two years, the CALERIE study also showed that this intervention could diminish risk factors for age-related cardiovascular and metabolic diseases [2]. The CALERIE investigators also made their data and biological samples available for other research teams to study further.

Recently, a team led by Vishwa Dixit, Yale University, New Haven, CT, examined CALERIE data to investigate the effects of calorie restriction on immune function. The findings, published in the journal Science, suggest that calorie restriction may improve immune function and reduce chronic inflammation [3,4].

As people age, the size of the thymus, which is part of the immune system, tends to become smaller. As this organ shrinks, its output of T cells declines, which hampers the ability of the immune system to combat infectious diseases. This deficiency of T cells is one of the reasons people over age 40 are at increased susceptibility for a range of diseases.

Dixit’s team noted that MRI scans showed the thymus volume increased among people who reduced their calories for the two-year CALERIE study but was not significantly different in the control group. The increase in thymus size in the group restricting calories was accompanied by an increase in indicators of new T cell production.

Next, the team analyzed immune system effects in belly fat samples from people in the CALERIE study. The team discovered that the PLA2G7 gene—which codes for a protein involved in fat metabolism that is made by immune cells such as T cells—was suppressed after calorie restriction, with evidence that the suppression occurred in immune cells present in fat. They hypothesized that the PLA2G7 gene could have played a role in the improved thymus function resulting from calorie restriction.

To test this hypothesis, the team suppressed the Pla2g7 gene in lab mice. When these mice were two years old, which is equivalent to a human age of about 70, the thymus had not decreased in volume. In addition, the mice had decreased fat mass and lower levels of certain inflammation-promoting substances. These findings suggest that mice without the Pla2g7 gene might have been protected from age-related chronic inflammation, which has been linked to many conditions of old age.

Taken together, the findings extend our understanding of the power of calorie restriction and suggest that it might also improve immune function and reduce chronic inflammation in people. The results also indicate interventions that influence PLA2G7 gene function might have favorable health effects. Additional research is still needed to assess the health effects and to determine whether calorie restriction extends lifespan or healthspan in humans. The NIA is funding more studies to determine the benefits and risks of calorie restriction, as well as the mechanisms that account for its effects.

References:

[1] The effect of retarded growth upon the length of life span and upon the ultimate body size. McCay CM, Crowell MF, Maynard LA. J. Nutr. 1935 July 10(1): 63–79.

[2] A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. Ravussin E, Redman LM, Rochon J, Das SK, Fontana L, Kraus WE, Romashkan S, Williamson DA, Meydani SN, Villareal DT, Smith SR, Stein RI, Scott TM, Stewart TM, Saltzman E, Klein S, Bhapkar M, Martin CK, Gilhooly CH, Holloszy JO, Hadley EC, Roberts SB; CALERIE Study Group. J Gerontol A Biol Sci Med Sci. 2015 Sep;70(9):1097-104.

[3] Caloric restriction in humans reveals immunometabolic regulators of health span. Spadaro O, Youm Y, Shchukina I, Ryu S, Sidorov S, Ravussin A, Nguyen K, Aladyeva E, Predeus AN, Smith SR, Ravussin E, Galban C, Artyomov MN, Dixit VD. Science. 2022 Feb 11;375(6581):671-677.

[4] Caloric restriction has a new player. Rhoads TW and Anderson RM. Science. 2022 Feb 11;375(6581):620-621.

Links:

Dietary Restriction (National Institute on Aging, NIH)

What Do We Know About Healthy Aging? (NIA)

Calorie Restriction and Fasting Diets: What Do We Know? (NIA)

Live Long in Good Health: Could Calorie Restriction Mimetics Hold the Key? (NIA)

Geroscience: The Intersection of Basic Aging Biology, Chronic Disease, and Health (NIA)

Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE) (NIA)

CALERIE Intensive Intervention Database (NIA)

Research Highlights (NIA)

Vishwa Deep Dixit (Yale University, New Haven, CT)

CALERIE Research Network (Duke University, Durham, N.C.)

[Note: Acting NIH Director Lawrence Tabak has asked the heads of NIH’s Institutes and Centers (ICs) to contribute occasional guest posts to the blog to highlight some of the cool science that they support and conduct. This is the fourth in the series of NIH IC guest posts that will run until a new permanent NIH director is in place.]


Preventing Glaucoma Vision Loss with ‘Big Data’

Posted on by Dr. Francis Collins

Credit: University of California San Diego

Each morning, more than 2 million Americans start their rise-and-shine routine by remembering to take their eye drops. The drops treat their open-angle glaucoma, the most-common form of the disease, caused by obstructed drainage of fluid where the eye’s cornea and iris meet. The slow drainage increases fluid pressure at the front of the eye. Meanwhile, at the back of the eye, fluid pushes on the optic nerve, causing its bundled fibers to fray and leading to gradual loss of side vision.

For many, the eye drops help to lower intraocular pressure and prevent vision loss. But for others, the drops aren’t sufficient and their intraocular pressure remains high. Such people will need next-level care, possibly including eye surgery, to reopen the clogged drainage ducts and slow this disease that disproportionately affects older adults and African Americans over age 40.

Sally Baxter
Credit: University of California San Diego

Sally Baxter, a physician-scientist with expertise in ophthalmology at the University of California, San Diego (UCSD), wants to learn how to predict who is at greatest risk for serious vision loss from open-angle and other forms of glaucoma. That way, they can receive more aggressive early care to protect their vision from this second-leading cause of blindness in the U.S..

To pursue this challenging research goal, Baxter has received a 2020 NIH Director’s Early Independence Award. Her research will build on the clinical observation that people with glaucoma frequently battle other chronic health problems, such as high blood pressure, diabetes, and heart disease. To learn more about how these and other chronic health conditions might influence glaucoma outcomes, Baxter has begun mining a rich source of data: electronic health records (EHRs).

In an earlier study of patients at UCSD, Baxter showed that EHR data helped to predict which people would need glaucoma surgery within the next six months [1]. The finding suggested that the EHR, especially information on a patient’s blood pressure and medications, could predict the risk for worsening glaucoma.

In her NIH-supported work, she’s already extended this earlier “Big Data” finding by analyzing data from more than 1,200 people with glaucoma who participate in NIH’s All of Us Research Program [2]. With consent from the participants, Baxter used their EHRs to train a computer to find telltale patterns within the data and then predict with 80 to 99 percent accuracy who would later require eye surgery.

The findings confirm that machine learning approaches and EHR data can indeed help in managing people with glaucoma. That’s true even when the EHR data don’t contain any information specific to a person’s eye health.

In fact, the work of Baxter and other groups have pointed to an especially important role for blood pressure in shaping glaucoma outcomes. Hoping to explore this lead further with the support of her Early Independence Award, Baxter also will enroll patients in a study to test whether blood-pressure monitoring smart watches can add important predictive information on glaucoma progression. By combining round-the-clock blood pressure data with EHR data, she hopes to predict glaucoma progression with even greater precision. She’s also exploring innovative ways to track whether people with glaucoma use their eye drops as prescribed, which is another important predictor of the risk of irreversible vision loss [3].

Glaucoma research continues to undergo great progress. This progress ranges from basic research to the development of new treatments and high-resolution imaging technologies to improve diagnostics. But Baxter’s quest to develop practical clinical tools hold great promise, too, and hopefully will help one day to protect the vision of millions of people with glaucoma around the world.

References:

[1] Machine learning-based predictive modeling of surgical intervention in glaucoma using systemic data from electronic health records. Baxter SL, Marks C, Kuo TT, Ohno-Machado L, Weinreb RN. Am J Ophthalmol. 2019 Dec; 208:30-40.

[2] Predictive analytics for glaucoma using data from the All of Us Research Program. Baxter SL, Saseendrakumar BR, Paul P, Kim J, Bonomi L, Kuo TT, Loperena R, Ratsimbazafy F, Boerwinkle E, Cicek M, Clark CR, Cohn E, Gebo K, Mayo K, Mockrin S, Schully SD, Ramirez A, Ohno-Machado L; All of Us Research Program Investigators. Am J Ophthalmol. 2021 Jul;227:74-86.

[3] Smart electronic eyedrop bottle for unobtrusive monitoring of glaucoma medication adherence. Aguilar-Rivera M, Erudaitius DT, Wu VM, Tantiongloc JC, Kang DY, Coleman TP, Baxter SL, Weinreb RN. Sensors (Basel). 2020 Apr 30;20(9):2570.

Links:

Glaucoma (National Eye Institute/NIH)

All of Us Research Program (NIH)

Video: Sally Baxter (All of Us Research Program)

Sally Baxter (University of California San Diego)

Baxter Project Information (NIH RePORTER)

NIH Director’s Early Independence Award (Common Fund)

NIH Support: Common Fund


Discussing the Long Arc of Discovery with NIH’s Newest Nobelist

Posted on by Dr. Francis Collins

Discussion with Dr. Harvey Alter

It’s been a tough year for our whole world because of everything that’s happening as a result of the coronavirus disease 2019 (COVID-19) pandemic. Yet there are bright spots that still shine through, and this week brought some fantastic news about NIH-supported researchers being named 2020 Nobel Prize Laureates for their pioneering work in two important fields: Chemistry and Physiology or Medicine.

In the wee hours of Wednesday morning, NIH grantee Jennifer A. Doudna, a biochemist at the University of California, Berkeley, got word that she and Emmanuelle Charpentier, a microbiologist at the Max Planck Institute for Infection Biology, Berlin, Germany, had won the 2020 Nobel Prize in Chemistry for developing the CRISPR/cas approach to genome editing. Doudna has received continuous NIH funding since 1997, mainly from the National Institute of General Medical Sciences and National Human Genome Research Institute.

The CRISPR/cas system, which consists of a short segment of RNA attached to the cas enzyme, provides the ability to make very precise changes in the sequence, or spelling, of the genetic instruction books of humans and other species. If used to make non-heritable edits in relevant tissues, such technology holds enormous potential to treat or even cure a wide range of devastating diseases, including thousands of genetic disorders where the DNA misspelling is precisely known.

Just two days before Doudna learned of her big award, a scientist who’s spent almost his entire career at the NIH campus in Bethesda, MD, received news that he too was getting a Nobel—the 2020 Nobel Prize in Physiology or Medicine. Harvey Alter, a senior scholar in the NIH Clinical Center’s Transfusion Medicine Department, was recognized for his contributions in identifying the potentially deadly hepatitis C virus. He shares this year’s prize with Michael Houghton, now with University of Alberta, Edmonton, and Charles M. Rice, The Rockefeller University, New York, who’s received continuous NIH funding since 1987, mainly from the National Institute of Allergy and Infectious Diseases.

In a long arc of discovery rooted in basic, translational, and clinical research that spanned several decades, Alter and his colleagues doggedly pursued biological clues that at first led to tests, then life-saving treatments, and, today, the very real hope of eradicating the global health threat posed by hepatitis C infections.

We at NIH are particularly proud of the fact that Alter is the sixth Nobel Prize winner—and the first in 26 years—to have done the entirety of his award-winning research in our Intramural Research Program. So, I jumped at the opportunity to talk with Harvey on NIH’s Facebook Live and Twitter chats just hours after he got the good news on Monday. Here’s a condensed version of our conversation, which took place on the NIH campus, but at a safe physical distance to minimize the risk of COVID-19 spread.

Collins: Harvey, let me start off by asking, how did you find out you’d won the Nobel Prize?

Alter: At 4:15 this morning. I was asleep and heard the telephone ringing. I ignored it. Five minutes later, I got another call. Now, I’m getting kind of perturbed. But I ignored it, thinking the call must be some kind of solicitation. Then, the phone rang a third time. I answered it, prepared to tell the person on the other end not to call me anymore. I heard a man’s voice say, “I’m the Secretary General of the Nobel Prize, calling you from Stockholm.” At that point, I just froze.

Collins: Did you think it might be a hoax?

Alter: No, I didn’t think it was a hoax. But I wasn’t expecting to win the prize. I knew about three years ago that I’d been on a Nobel list. But it didn’t happen, and I just forgot about it. Truthfully, I didn’t know that today was the day that the announcement was being made. The news came as a complete shock.

Collins: Please say a few words about viral hepatitis. What is it?

Alter: Sure. Viral hepatitis is an infection of the liver that causes inflammation and can lead to scarring, or cirrhosis. Early in my career, two viruses were known to cause the disease. One was the hepatitis A virus. You got it from consuming contaminated water or food. The second was the hepatitis B virus, which has a blood-borne transmission, typically from blood transfusions. In the 1970s, we realized that some other agent was causing most of the hepatitis from blood transfusions. Since it wasn’t A and it wasn’t B, we cleverly decided to call it: non-A, non-B. We did that because we hadn’t yet proven that the causative agent was a virus.

Collins: So, even though you screened donor units for the hepatitis B virus to eliminate tainted blood, people were still getting hepatitis from blood transfusions. How did you go about trying to solve this mystery?

Alter: The main thing was to follow patients prospectively, meaning forward in time. We drew a blood sample before they were transfused, and then serially afterwards. We saved those samples and also the donor samples to compare them. Using a liver function test, we found that 30 percent of patients who had open heart surgery at NIH prior to 1970 developed liver abnormalities indicative of hepatitis. That’s 1 in 3 people.

We then looked for the reasons. We found the main one was our source of blood. We were buying blood, which was then in short supply, from commercial laboratories. It turned out that their paid donors were engaging in high-risk behaviors [Note: like IV drug users sharing hypodermic needles]. We immediately stopped using these laboratories, and, through various other measures, we got the rate down to around 4 percent in 1987.

That’s when Michael Houghton, then at Chiron Corp. and a co-recipient of this year’s prize, cloned the virus. Think about it, he and his colleagues looked at 6 million clones and found just one that reacted with the convalescent serum of a patient with non-A, non-B. In other words, having contracted the virus, the patient already made antibodies against it that were present in the serum. If that one clone came from the virus, the antibodies in the serum would recognize it. They did, and Chiron then developed an assay to detect antibodies to the virus.

Collins: And that’s when they contacted you.

Alter: Yes, they wanted to use our panel of patient blood samples that had fooled a lot of people who claimed to have developed a non-A, non-B assay. Nobody else had “broken” this panel, but the Chiron Corp. did. We found that every case of non-A, non-B was really hepatitis C, the agent that they had cloned. Hepatitis C was the missing piece. As far as we could tell, there were no other agents beside hepatitis B and C that would result in transfusion transmission of the disease.

Collins: This story is clearly one of persistence. So, say something about persistence as an important characteristic of a scientist. You’re a great example of someone who was always looking out for opportunities that might not have seemed so promising at first.

Alter: I first learned persistence from Dr. Baruch Blumberg, my first NIH mentor who discovered the hepatitis B virus in 1967. [Note: Other NIH researchers identified the hepatitis A virus in 1977] The discovery started when we found this “Australian antigen,” a molecular structure that the immune system recognizes as foreign and attacks. It was a serendipitous finding that could have been easily just dropped. But he just kept at it, kept at it, kept at it. He had this famous wall where he diagrammed his hypotheses with all the contingencies if one worked or failed. Then, all of a sudden, the antigen was associated with hepatitis B. It became the basis of the hepatitis B vaccine, which is highly effective and used throughout the world. Dr. Blumberg won the Nobel Prize for his work on the hepatitis B virus in 1976.

Collins: Sometimes people look at NIH and ask why we don’t focus all of our efforts on curing a particular disease. I keep answering, ‘Wait a moment, we don’t know enough to know how to do that.’ What’s the balance that we ought to be seeking between basic research and clinical applications?

Alter: There is this tendency now to pursue highly directed research to solve a problem. That’s certainly how biopharma works. They want a payoff. The NIH is different. It’s a place where you can pursue your scientific interests, wherever they lead. The NIH leadership understands that the details of a problem often aren’t obvious at first. Researchers need to be allowed to observe things and then to pursue their leads as far as possible, with the understanding that not everything will work out. I think it’s very important to keep this basic research component in parallel with the more clinical applications. In the case of hepatitis C, it started as a clinical problem that led to a basic research investigation, which led back to a clinical problem. It was bedside-to-bench-to-bedside.

Collins: Are people still getting infected with hepatitis C?

Alter: Yes, hepatitis C remains a global problem. Seventy million people have contracted the virus, though the majority are generally asymptomatic, meaning they don’t get sick from it. Instead, they carry around the virus for decades without knowing it. That’s because the hepatitis C virus likes to persist, and our immune system doesn’t seem to be able to get rid of it easily.

However, some of those infected will have bad outcomes, such as cirrhosis or cancer of the liver. But there’s no way of knowing who will and who won’t get sick over time. The trick now is to identify people when they’re asymptomatic and without obvious disease.

That involves testing. We’re in a unique position with hepatitis C, where we have great tests that are highly sensitive and very specific to the virus. We also have great treatments. We can cure everybody who is tested and found to be positive.

Collins: People may be surprised to hear that. Here is a chronic viral illness, for which we actually have a cure. That’s come along fairly recently. Say a bit more about that—it’s such a great story of success.

Alter: For many years, the only treatment for hepatitis C was interferon, a very difficult treatment that initially had only about a 6 percent cure rate. With further progress, it got up to around 50 percent. But the big breakthrough came in the late 1990s when Gilead Corp., having the sequenced genome of the hepatitis C virus, deduced what it needs to replicate. If we know what it needs and we interfere with that, we can stop the replication. Gilead came out with a blockbuster drug that, now in combination with another drug, aims at two different sites on the virus and cures at least 98 percent of people. It’s an oral therapy taken for only 12 weeks, sometimes as little as 8 weeks, and with virtually no side-effects. It’s like a miracle drug.

Collins: What would you say to somebody who is thinking about becoming a scientist? How do you pick an area of research that will be right for you?

Alter: It’s a tough question. Medical research is very difficult, but there’s nothing more rewarding than doing something for patients and to see a good outcome like we had with hepatitis C.

The best path forward is to work for somebody who’s already an established investigator and a good teacher. Work in his or her lab for a few years and get involved in a project. I’ve learned not get into a lot of projects. Get into something where you can become the expert and pursue it.

The other thing is to collaborate. There’s no way that one person can do everything these days. You need too much technology and lots of different areas of expertise.

Collins: You took on a high-risk project in which you didn’t know that you’d find the answer. What’s the right balance between a project that you know will be productive, and something that might be risky, but, boy, if it works, could be transformative? How did you decide which of those paths to go?

Alter: I don’t think I decided. I just went! But there were interim rewards. Finding that the paid donors were bad was a reward and it had a big impact. And the different donor testing, decreasing the amount of blood [transfused], there were all kinds of steps along the way that gave you a reward. Now, did I think that there would be a treatment, an eradication of post-transfusion hepatitis at the end of my line? No, I didn’t.

And it wouldn’t have happened if it was only me. I just got the ball rolling. But it needed Houghton’s group. It needed the technology of Charlie Rice, a co-recipient of this year’s Nobel Prize. It needed joint company involvement. So, it required massive cooperation, and I have to say that here at NIH, Bob Purcell did most of the really basic work in his lab. Patrizia Farci, my closest collaborator, does things that I can’t do. You just need people who have a different expertise.

Collins: Harvey, it’s been maybe six hours since you found out that you won the Nobel Prize. How are you going to spend the rest of your day?

Alter: Well, I have to tell you a story that just happened. We had a press conference earlier today at NIH. Afterwards, I wanted to return to my NIH office and the easiest route was through the parking garage across the street from where we held the press conference. When I entered the garage, a security guard said, “You can’t come in, you haven’t been screened for COVID.” I assured him that I had been screened when I drove onto the NIH campus. He repeated that I had to go around to the front of the building to get screened.

Finally, I said to him, “Would it make any difference if I told you that I won the Nobel Prize today?” He replied, ‘That’s nice, but you must go around to the front of the building.’” So, winning the Nobel doesn’t give you immediate rewards!

Collins: Let me find that security guard and give him a bonus for doing a good job. Well, Harvey, will there be that trip to Stockholm coming up in December?

Alter: Not this year. I’ve heard that they will invite us to Stockholm next year to receive the award. But there’s going to be something in the US. I don’t know what it will be. I’ll invite you.

Collins: I will be glad to take part in the celebration. Well, Harvey, I really want to thank you for taking some time on this special day to reflect on your career and how the Nobel Committee came calling at 4:30 this morning. We’re really proud of you!

Alter: Thank you.

Links:

Hepatitis C (National Institute of Diabetes and Digestive and Kidney Diseases/NIH)

The Nobel Assembly at Karolinska Institutet has today decided to award the 2020 Nobel Prize in Physiology or Medicine jointly to Harvey J. Alter, Michael Houghton and Charles M. Rice for the discovery of Hepatitis C virus,” Nobel Prize announcement, October 5,2020.

Harvey Alter (Clinical Center/NIH)

The Road Not Taken, or How I Learned to Love the Liver: A Personal Perspective on Hepatitis History” Alter HJ, Hepatology. 2014 Jan;59(1):4-12.

Reflections on the History of HCV: A Posthumous Examination.” Alter HJ, Farci P, Bukh J, Purcell RH. Clinical Liver Disease, 15:1, Feb 2020.

Is Elimination of Hepatitis B and C a Pipe Dream or Reality?” Alter HJ, Chisari FV. Gastroenterology. 2019 Jan;156(2):294-296.

Michael Houghton (University of Alberta, Edmonton)

Charles Rice (The Rockefeller University, New York)

What is genome editing? (National Human Genome Research Institute/NIH)

Jennifer Doudna (University of California, Berkeley)

Emmanuelle Charpentier (Max Planck Institute for Infection Biology, Berlin, Germany)


2018 Collins Scholars

Posted on by Dr. Francis Collins

Francis Collins poses with awardees at Francis Collins Scholars Scientific Symposium

Here are the 2018 Collins Scholars: Ina Ly (left), Massachusetts General Hospital and the Dana Farber Cancer Institute, Boston; and Shruti Garg, (right), Royal Manchester Children’s Hospital, United Kingdom. These young physician-scientists will receive three years of support and training through the Francis S. Collins Scholars Program in Neurofibromatosis Clinical and Translational Research. The program, now in its fifth year, is helping to create a community of outstanding clinician-scientists with expertise in research and clinical care for neurofibromatosis type I. The photo was taken at the Francis Collins Scholars Orientation Day, held at Rock Creek Mansion in Bethesda, MD on August 3, 2018. Credit: Lizzy Lees Photos


Got a Great Research Idea? “All of Us” Wants to Hear It!

Posted on by Dr. Francis Collins

PeopleOne of the boldest undertakings that NIH has ever attempted, the All of Us Research Program has been hard at work in a “beta” testing phase, and is now busy gearing up for full recruitment in the spring. This historic effort will enroll 1 million or more people in the United States to share information about their health, habits, and what it’s like where they live. This information will be part of a resource that scientists can use to accelerate research and improve health. How? By taking into account individual differences in lifestyle, environment, and biology, researchers will uncover paths toward realizing the full potential of precision medicine.

Before embarking on this adventure, All of Us is reaching out to prospective researchers, community organizations, and citizen scientists—including people just like you—to get their input. Imagine that the project has already enrolled 1 million participants from all over the country and from diverse backgrounds. Imagine that they have all agreed to make available their electronic health records, to put on wearable sensors that can track body physiology and environmental exposures, and to provide blood samples for lab testing, including DNA analysis. Is there a particular research question that you think All of Us could help answer? Possible topics include risks of disease, factors that promote wellness, and research on human behavior, prevention, exercise, genetics, environmental health effects, health disparities, and more. To submit an idea, just go to this special All of Us web page.


Sharing a Story of Hope

Posted on by Dr. Francis Collins

Whether by snail mail, email, or social media, it’s the time of year for catching up with family and friends. As NIH Director, I’m also fortunate to hear from some of the amazing people who’ve been helped by NIH research. Among the greetings to arrive in my inbox this holiday season is this incredible video from a 15-year-old named Aaron, who is fortunate enough to count two states—Alabama and Colorado—as his home.

As a young boy, Aaron was naturally athletic, speeding around the baseball diamond and competing on the ski slopes in freestyle mogul. But around the age of 10, Aaron noticed something strange. He couldn’t move as fast as usual. Aaron pushed himself to get back up to speed, but his muscles grew progressively weaker.


How Can You Take Part in Clinical Research? Looking Beyond “First in Human”

Posted on by Dr. Francis Collins


For a remarkable journey through the front lines of clinical research, I’d like to invite you to join me in viewing First in Human, which premieres tonight at 9 p.m. ET on the Discovery Channel. This three-part docuseries, to be aired August 10, 17, and 24, provides an unprecedented look inside the NIH Clinical Center here in Bethesda, MD, following four of the many brave patients who’ve volunteered to take part in the clinical trials that are so essential to medical breakthroughs.

You’ll learn about what it’s like to take part in an experimental trial of a new treatment, when all standard options have failed. You’ll see that the NIH Clinical Center and its staff are simply amazing. But keep in mind that you don’t have to travel all the way to Bethesda to be part of outstanding, NIH-funded clinical research. In fact, we support clinical trials all across the country, and it’s often possible to find one at a medical institution near your home. To search for a clinical trial that might be right for you or a loved one with a serious medical problem, try going to ClinicalTrials.gov, a web site run by NIH.


Next Page