Skip to main content

immunotherapy

New Tool Predicts Response to Immunotherapy in Lung Cancer Patients

Posted on by Douglas M. Sheeley, Sc.D., NIH Common Fund

A purple irregular cell is releasing purple particles. It is surrounded my smoother blue cells. National Institutes of Health.
Credit: XVIVO Scientific Animation, Wethersfield, CT

With just a blood sample from a patient, a promising technology has the potential to accurately diagnose non-small cell lung cancer (NSCLC), the most-common form of the disease, more than 90 percent of the time. The same technology can even predict from the same blood sample whether a patient will respond well to a targeted immunotherapy treatment.

This work is a good example of research supported by the NIH Common Fund. Many Common Fund programs support development of new tools that catalyze research across the full spectrum of biomedical science without focusing on a single disease or organ system.

The emerging NSCLC prediction technology was developed as part of our Extracellular RNA Communication Program. The program develops technologies to understand RNA circulating in the body, known as extracellular RNA (exRNA). These molecules can be easily accessed in bodily fluids such as blood, urine, and saliva, and they have enormous potential as biomarkers to better understand cancer and other diseases.

When the body’s immune system detects a developing tumor, it activates various immune cells that work together to kill the suspicious cells. But many tumors have found a way to evade the immune system by producing a protein called PD-L1.

Displayed on the surface of a cancer cell, PD-L1 can bind to a protein found on immune cells with the similar designation of PD-1. The binding of the two proteins keeps immune cells from killing tumor cells. One type of immunotherapy interferes with this binding process and can restore the natural ability of the immune system to kill the tumor cells.

However, tumors differ from person to person, and this form of cancer immunotherapy doesn’t work for everyone. People with higher levels of PD-L1 in their tumors generally have better response rates to immunotherapy, and that’s why oncologists test for the protein before attempting the treatment.

Because cancer cells within a tumor can vary greatly, a single biopsy taken at a single site in the tumor may miss cells with PD-L1. In fact, current prediction technologies using tissue biopsies correctly predict just 20 – 40 percent of NSCLC patients who will respond well to immunotherapy. This means some people receive immunotherapy who shouldn’t, while others don’t get it who might benefit.

To improve these predictions, a research team led by Eduardo Reátegui, The Ohio State University, Columbus, engineered a new technology to measure exRNA and proteins found within and on the surface of extracellular vesicles (EVs) [1]. EVs are tiny molecular containers released by cells. They carry RNA and proteins (including PD-L1) throughout the body and are known to play a role in communication between cells.

As the illustration above shows, EVs can be shed from tumors and then circulate in the bloodstream. That means their characteristics and internal cargo, including exRNA, can provide insight into the features of a tumor. But collecting EVs, breaking them open, and pooling their contents for assessment means that molecules occurring in small quantities (like PD-L1) can get lost in the mix. It also exposes delicate exRNA molecules to potential breakdown outside the protective EV.

The new technology solves these problems. It sorts and isolates individual EVs and measures both PD-1 and PD-L1 proteins, as well as exRNA that contains their genetic codes. This provides a more comprehensive picture of PD-L1 production within the tumor compared to a single biopsy sample. But also, measuring surface proteins and the contents of individual EVs makes this technique exquisitely sensitive.

By measuring proteins and the exRNA cargo from individual EVs, Reátegui and team found that the technology correctly predicted whether a patient had NSCLC 93.2 percent of the time. It also predicted immunotherapy response with an accuracy of 72.2 percent, far exceeding the current gold standard method.

The researchers are working on scaling up the technology, which would increase precision and allow for more simultaneous measurements. They are also working with the James Comprehensive Cancer Center at The Ohio State University to expand their testing. That includes validating the technology using banked clinical samples of blood and other bodily fluids from large groups of cancer patients. With continued development, this new technology could improve NSCLC treatment while, critically, lowering its cost.

The real power of the technology, though, lies in its flexibility. Its components can be swapped out to recognize any number of marker molecules for other diseases and conditions. That includes other cancers, neurodegenerative diseases, traumatic brain injury, viral diseases, and cardiovascular diseases. This broad applicability is an example of how Common Fund investments catalyze advances across the research spectrum that will help many people now and in the future.

Reference:

[1] An immunogold single extracellular vesicular RNA and protein (AuSERP) biochip to predict responses to immunotherapy in non-small cell lung cancer patients. Nguyen LTH, Zhang J, Rima XY, Wang X, Kwak KJ, Okimoto T, Amann J, Yoon MJ, Shukuya T, Chiang CL, Walters N, Ma Y, Belcher D, Li H, Palmer AF, Carbone DP, Lee LJ, Reátegui E. J Extracell Vesicles. 11(9):e12258. doi: 10.1002/jev2.12258.

Links:

NIH Common Fund

Video: Unlocking the Mysteries of Extracellular RNA Communication (Common Fund)

Extracellular RNA Communication Program (ERCC) (Common Fund)

Upcoming Meeting: ERCC19 Research Meeting (May 1-2, 2023)

Eduardo Reátegui Group for Bioengineering Research (The Ohio State University College of Engineering, Columbus)

Note: Dr. Lawrence Tabak, who performs the duties of the NIH Director, has asked the heads of NIH’s Institutes, Centers, and Offices to contribute occasional guest posts to the blog to highlight some of the interesting science that they support and conduct. This is the 27th in the series of NIH guest posts that will run until a new permanent NIH director is in place.


New 3D Atlas of Colorectal Cancer Promises Improved Diagnosis, Treatment

Posted on by Lawrence Tabak, D.D.S., Ph.D.

Brightly colored light microscopy showing locations for DNA, Pan-cytokeratin, alpha-SMA, CD4, CD20, CD31, Glandular, Solid, Mucinous
Caption: Tissue from a colorectal cancer. The multi-colored scale (top right) reveals layers of hidden information, including types of tissue and protein. Credit: Sorger Lab, Harvard Medical School, Cambridge, MA

This year, too many Americans will go to the doctor for tissue biopsies to find out if they have cancer. Highly trained pathologists will examine the biopsies under a microscope for unusual cells that show the telltale physical features of a suspected cancer. As informative as the pathology will be for considering the road ahead, it would be even more helpful if pathologists had the tools to look widely inside cells for the actual molecules giving rise to the tumor.

Working this “molecular information” into the pathology report would bring greater diagnostic precision, drilling down to the actual biology driving the growth of the tumor. It also would help doctors to match the right treatments to a patient’s tumor and not waste time on drugs that will be ineffective.

That’s why researchers have been busy building the needed tools and also mapping out molecular atlases of common cancers. These atlases, really a series of 3D spatial maps detailing various biological features within the tumor, keep getting better all the time. That includes the comprehensive atlas of colorectal cancer just published in the journal Cell [1].

This colorectal atlas comes from an NIH-supported team led by Sandro Santagata, Brigham and Women’s Hospital, Boston, and Peter Sorger, Harvard Medical School, Cambridge, MA, in collaboration with investigators at Vanderbilt University, Nashville, TN. The colorectal atlas joins their previously published high-definition map of melanoma [2], and both are part of the Human Tumor Atlas Network that’s supported by NIH’s National Cancer Institute.

What’s so interesting with the colorectal atlas is the team combined traditional pathology with a sophisticated technique for imaging single cells, enabling them to capture their fine molecular details in an unprecedented way.

They did it using a cutting-edge technique known as cyclic immunofluorescence, or CyCIF. In CyCIF, researchers use many rounds of highly detailed molecular imaging on each tissue sample to generate a rich collection of molecular-level data, cell by cell. Altogether, the researchers captured this fine-scale visual information for nearly 100 million cancer cells isolated from tumor samples representing 93 individuals diagnosed with colorectal cancer.

With this single-cell information in hand, they next created detailed 2D maps covering the length and breadth of large portions of the colorectal cancers under study. Finally, with the aid of first author Jia-Ren Lin, also at Harvard Medical School, and colleagues they stitched together their 2D maps to produce detailed 3D reconstructions showing the length, breadth, and height of the tumors.

This more detailed view of colorectal cancer has allowed the team to explore differences between normal and tumor tissues, as well as variations within an individual tumor. In fact, they’ve uncovered physical features that had never been discovered.

For instance, an individual tumor has regions populated with malignant cells, while other areas look less affected by the cancer. In between are transitional areas that correspond to molecular gradients of information. With this high-resolution map as their guide, researchers can now study what this all might mean for the diagnosis, treatment, and prognosis of colorectal cancer.

The atlas also shows that the presence of immune cells varies dramatically within a single tumor. That’s an important discovery because of its potential implications for immunotherapies, in which treatments aim to unleash the immune system in the fight against cancer.

The maps also provide new insights into tumor structure. For example, scientists had previously identified what they thought were 2D pools of a mucus-like substance called mucin with clusters of cancer cells suspended inside. However, the new 3D reconstruction make clear that these aren’t simple mucin pools. Rather, they are cross sections of larger intricate caverns of mucin interconnected by channels, into which cancer cells make finger-like projections.

The good news is the researchers already are helping to bring these methods into the cancer clinic. They also hope to train other scientists to build their own cancer atlases and grow the collection even more.

In the meantime, the team will refine its 3D tumor reconstructions by integrating new imaging technologies and even more data into their maps. It also will map many more colorectal cancer samples to capture the diversity of their basic biology. Also of note, having created atlases for melanoma and colorectal cancer, the team has plans to tackle breast and brain cancers next.

Let me close by saying, if you’re between the ages of 45 and 75, don’t forget to stay up to date on your colorectal cancer screenings. These tests are very good, and they could save your life.

References:

[1] Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Lin JR, Wang S, Coy S, Chen YA, Yapp C, Tyler M, Nariya MK, Heiser CN, Lau KS, Santagata S, Sorger PK. Cell. 2023 Jan 19;186(2):363-381.e19.

[2] The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Nirmal AJ, Maliga Z, Vallius T, Quattrochi B, Chen AA, Jacobson CA, Pelletier RJ, Yapp C, Arias-Camison R, Chen YA, Lian CG, Murphy GF, Santagata S, Sorger PK. Cancer Discov. 2022 Jun 2;12(6):1518-1541.

Links:

Colorectal Cancer (National Cancer Institute/NIH)

Human Tumor Atlas Network (NCI)

CyCIF-Cyclic Immunofluorescence (Harvard Medical School, Cambridge, MA)

Sandro Santagata (Brigham and Women’s Hospital, Boston)

Peter Sorger (Harvard Medical School)

Jia-Ren Lin (Harvard Medical School)

NIH Support: National Cancer Institute; National Institute of General Medical Sciences; National Institute of Diabetes and Digestive and Kidney Diseases


An Evolutionary Guide to New Immunotherapies

Posted on by Dr. Francis Collins

Credit: Dave Titensor, University of Utah, Salt Lake City

One of the best ways to learn how something works is to understand how it’s built. How it came to be. That’s true not only if you play a guitar or repair motorcycle engines, but also if you study the biological systems that make life possible. Evolutionary studies, comparing the development of these systems across animals and organisms, are now leading to many unexpected biological discoveries and promising possibilities for preventing and treating human disease.

While there are many evolutionary questions to ask, Brenda Bass, a distinguished biochemist at University of Utah, Salt Lake City, has set her sights on a particularly profound one: How has innate immunity evolved through the millennia in all living things, including humans? Innate immunity is the immune system’s frontline defense, the first responders that take control of an emerging infectious situation and, if needed, signal for backup.

Exploring the millennia for clues about innate immunity takes a special team, and Bass has assembled a talented one. It includes her Utah colleague Nels Elde, a geneticist; immunologist Dan Stetson, University of Washington, Seattle; and biochemist Jane Jackman, Ohio State University, Columbus.

With a 2020 NIH Director’s Transformative Research Award, this hard-working team will embark on studies looking back at 450 million years of evolution: the point in time when animals diverged to develop very distinct methods of innate immune defense [1]. The team members hope to uncover new possibilities encoded in the innate immune system, especially those that might be latent but still workable. The researchers will then explore whether their finds can be repurposed not only to boost our body’s natural response to external threats but also to internal threats like cancer.

Bass brings a unique perspective to the project. As a postdoc in the 1980s, she stumbled upon a whole new class of enzymes, called ADARs, that edit RNA [2]. Their function was mysterious at the time. It turns out that ADARs specifically edit a molecule called double-stranded RNA (dsRNA). When viruses infect cells in animals, including humans, they make dsRNA, which the innate immune system detects as a sign that a cell has been invaded.

It also turns out that animal cells make their own dsRNA. Over the years, Bass and her lab have identified thousands of dsRNAs made in animal cells—in fact, a significant number of human genes produce dsRNA [3]. Also interesting, ADARs are crucial to marking our own dsRNA as “self” to avoid triggering an immune response when we don’t need it [4].

Bass and others have found that evolution has produced dramatic differences in the biochemical pathways powering the innate immune system. In vertebrate animals, dsRNA leads to release of the immune chemical interferon, a signaling pathway that invertebrate species don’t have. Instead, in response to detecting dsRNA from an invader, and repelling it, worms and other invertebrates trigger a gene-silencing pathway known as RNA interference, or RNAi.

With the new funding, Bass and team plan to mix and match immune strategies from simple and advanced species, across evolutionary time, to craft an entirely new set of immune tools to fight disease. The team will also build new types of targeted immunotherapies based on the principles of innate immunity. Current immunotherapies, which harness a person’s own immune system to fight disease, target infections, autoimmune disorders, and cancer. But they work through our second-line adaptive immune response, which is a biological system unique to vertebrates.

Bass and her team will first hunt for more molecules like ADARs: innate immune checkpoints, as they refer to them. The name comes from a functional resemblance to the better-known adaptive immune checkpoints PD-1 and CTLA-4, which sparked a revolution in cancer immunotherapy. The team will run several screens that sort molecules successful at activating innate immune responses—both in invertebrates and in mammals—hoping to identify a range of durable new immune switches that evolution skipped over but that might be repurposed today.

Another intriguing direction for this research stems from the observation that decreasing normal levels of ADARs in tumors kickstarts innate immune responses that kill cancer cells [5]. Along these lines, the scientists plan to test newly identified immune switches to look for novel ways to fight cancer where existing approaches have not worked.

Evolution is the founding principle for all of biology—organisms learn from what works to improve their ability to survive. In this case, research to re-examine such lessons and apply them for new uses may help transform bygone evolution into a therapeutic revolution!

References:

[1] Evolution of adaptive immunity from transposable elements combined with innate immune systems. Koonin EV, Krupovic M. Nat Rev Genet. 2015 Mar;16(3):184-192.

[2] A developmentally regulated activity that unwinds RNA duplexes. Bass BL, Weintraub H. Cell. 1987 Feb 27;48(4):607-613.

[3] Mapping the dsRNA World. Reich DP, Bass BL. Cold Spring Harb Perspect Biol. 2019 Mar 1;11(3):a035352.

[4] To protect and modify double-stranded RNA – the critical roles of ADARs in development, immunity and oncogenesis. Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. Crit Rev Biochem Mol Biol. 2021 Feb;56(1):54-87.

[5] Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A, et al. Nature. 2019 Jan;565(7737):43-48.

Links:

Bass Lab (University of Utah, Salt Lake City)

Elde Lab (University of Utah)

Jackman Lab (Ohio State University, Columbus)

Stetson Lab (University of Washington, Seattle)

Bass/Elde/Jackman/Stetson Project Information (NIH RePORTER)

NIH Director’s Transformative Research Award Program (Common Fund)

NIH Support: Common Fund; National Cancer Institute


Welcoming First Lady Jill Biden to NIH!

Posted on by Dr. Francis Collins

Video Event

It was wonderful to have First Lady Jill Biden pay a virtual visit to NIH on February 3, 2021, on the eve of World Cancer Day. Dr. Biden joined me, National Cancer Institute (NCI) Director Ned Sharpless, and several NCI scientists to discuss recent advances in fighting cancer. On behalf of the entire NIH community, I thanked the First Lady for her decades of advocacy on behalf of cancer education, prevention, and research. To view the event, go to 53:20 in this video. Credit: Adapted from White House video.


Fighting Cancer with Next-Gen Cell Engineering

Posted on by Dr. Francis Collins

Kole Roybal
Credit: Susan Merrell

Researchers continue to make progress with cancer immunotherapy, a type of treatment that harnesses the body’s own immune cells to attack cancer. But Kole Roybal wants to help move the field further ahead by engineering patients’ immune cells to detect an even broader range of cancers and then launch customized attacks against them.

With an eye toward developing the next generation of cell-based immunotherapies, this synthetic biologist at University of California, San Francisco, has already innovatively hacked into how certain cells communicate with each other. Now, he and his research team are using a 2018 NIH Director’s New Innovator Award to build upon that progress.

Roybal’s initial inspiration is CAR-T therapy, one of the most advanced immunotherapies to date. In CAR-T therapy, some of a cancer patient’s key immune cells, called T cells, are removed and engineered in a way that they begin to produce new surface proteins called chimeric antigen receptors (CARs). Those receptors allow the cells to recognize and attack cancer cells more effectively. After expanding the number of these engineered T cells in the lab, doctors infuse them back into patients to enhance their immune systems’s ability to seek-and-destroy their cancer.

As helpful as this approach has been for some people with leukemia, lymphoma, and certain other cancers, it has its limitations. For one, CAR-T therapy relies solely on a T cell’s natural activation program, which can be toxic to patients if the immune cells damage healthy tissues. In other patients, the response simply isn’t strong enough to eradicate a cancer.

Roybal realized that redirecting T cells to attack a broader range of cancers would take more than simply engineering the receptors to bind to cancer cells. It also would require sculpting novel immune cell responses once those receptors were triggered.

Roybal found a solution in a new class of lab-made receptors known as Synthetic Notch, or SynNotch, that he and his colleagues have been developing over the last several years [1, 2]. Notch protein receptors play an essential role in developmental pathways and cell-to-cell communication across a wide range of animal species. What Roybal and his colleagues found especially intriguing is the protein receptors’ mode of action is remarkably direct.

When a protein binds the Notch receptor, a portion of the receptor breaks off and heads for the cell nucleus, where it acts as a switch to turn on other genes. They realized that engineering a cancer patient’s immune cells with synthetic SynNotch receptors could offer extraordinary flexibility in customized sensing and response behaviors. What’s more, the receptors could be tailored to respond to a number of user-specified cues outside of a cell.

In his NIH-supported work, Roybal will devise various versions of SynNotch-engineered cells targeting solid tumors that have proven difficult to treat with current cell therapies. He reports that they are currently developing the tools to engineer cells to sense a broad spectrum of cancers, including melanoma, glioblastoma, and pancreatic cancer.

They’re also engineering cells equipped to respond to a tumor by producing a range of immune factors, including antibodies known to unleash the immune system against cancer. He says he’ll also work on adding engineered SynNotch molecules to other immune cell types, not just T cells.

Given the versatility of the approach, Roybal doesn’t plan to stop there. He’s also interested in regenerative medicine and in engineering therapeutic cells to treat autoimmune conditions. I’m looking forward to see just how far these and other next-gen cell therapies will take us.

References:

[1] Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, Lim WA. Cell. 2016 Feb 11;164(4):780-91.

[2] Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Roybal KT, Williams JZ, Morsut L, Rupp LJ, Kolinko I, Choe JH, Walker WJ, McNally KA, Lim WA. Cell. 2016 Oct 6;167(2):419-432.e16.

Links:

Car-T Cells: Engineering Patients’ Immune Cells to Treat Cancers (National Cancer Institute/NIH)

Synthetic Biology for Technology Development (National Institute of Biomedical Imaging and Bioengineering/NIH)

Roybal Lab (University of California, San Francisco)

Roybal Project Information (NIH RePORTER)

NIH Support: Common Fund; National Cancer Institute


Personalized Combination Therapies Yield Better Cancer Outcomes

Posted on by Dr. Francis Collins

Doctor consulting with patient
Credit: NIH National Cancer Institute Visuals Online/Daniel Sone

Gratifying progress has been made recently in an emerging area of cancer medicine called precision oncology. It’s a bold attempt to target treatment to the very genes and molecules driving a cancer, aiming to slow or even halt its growth. But there’s always more to learn. Now comes evidence that, while a single well-matched drug might be good, a tailored combination of drugs that attack a cancer in multiple ways at once might be even better.

The findings come from the I-PREDICT clinical trial, which treated people with advanced cancer who hadn’t benefited from previous therapy [1]. The NIH-funded team found that analyzing a tumor’s unique genetic and molecular profile provided enough information to recommend individualized combination therapies to patients. What’s more, patients who followed their individualized combination therapies most closely lived longer, with longer periods of progression-free disease, than did those who took fewer of the recommended drugs.

In most previous clinical trials of precision oncology, researchers have relied on a tumor’s unique profile to identify a single, well-matched drug to treat each patient. But cancer is complex, and, just as with certain infectious diseases, tumors commonly develop resistance to a single drug.

In the trial reported in Nature Medicine, researchers led by Razelle Kurzrock and Jason Sicklick, University of California, San Diego, wondered if they could improve treatment responses by tailoring combinations of cancer drugs to target as many molecular and genetic changes in a person’s cancer as possible.

To test the potential for this strategy to work, the researchers enrolled 83 people with various cancers that had advanced despite previous treatment. Tumor tissue from each patient was run through a comprehensive battery of tests, and researchers sequenced hundreds of genes to look for telltale alterations in their DNA.

They also looked for evidence that a cancer had defects affecting the DNA “mismatch repair” pathway, which causes some tumors to generate larger numbers of mutations than others. Mismatch repair defects have been shown to predict better responses to immunotherapies, which are designed to harness the immune system against cancer .

With all the data in hand, a special panel of oncologists, pharmacologists, cancer biologists, geneticists, surgeons, radiologists, pathologists, and bioinformatics experts consulted to arrive at the right customized combination of drugs for each patient.

The panel’s findings were presented to the health care team working with each patient. The physician for each patient then had the final decision on whether to recommend the treatment regimen, balancing the panel’s suggestions with other real-world factors, such as a patient’s insurance coverage, availability of drugs, and his or her treatment preference.

Ten patients decided to stick with unmatched treatment. But 73 participants received a customized combination therapy. As no two molecular profiles were identical, the customized treatment regimens varied from person to person.

Many people received designer drugs targeting particular genetic alterations. Some also received checkpoint inhibitor immunotherapies to unleash the immune system against cancer. Four people also were treated with hormone therapies in combination with molecularly targeted drugs. In all, most regimens combined two to five drugs to target each cancer profile.

Participants were followed until their cancer progressed, they could no longer take treatment, or they died. For each person, the researchers calculated a “matching score,” roughly defined as the number of molecular alterations matched to administered drug(s), with some further calculations.

The evidence showed that those with matching scores greater than 50 percent, meaning more than half of a tumor’s identified aberrations had been targeted, were more likely to have stopped the progression of their cancers. Importantly, half of patients with the higher matching scores had prolonged stable disease (six months or longer) or a complete or partial remission. Similar results were attained in only 22 percent of those with low or no matching scores.

These encouraging results suggest that customized combinations of targeted treatments will help to advance precision oncology. However, there are still many challenges. For example, many of the combinations used in the study have not yet been safety tested. The researchers managed the potential risk of toxicities by starting patients on an initial low dose and having their physicians follow them closely while the dose was increased to a level well-tolerated by each individual patient.

And indeed, they saw no evidence that those receiving a greater proportion of “matched” drugs (i.e. those with a higher matching score) were more likely to experience adverse effects than those who took fewer drugs. So, that’s an encouraging sign.

The researchers are now enrolling patients in a new version of the I-PREDICT trial. Unlike the initial plan, patients are now being enrolled prior to receiving any treatment for a recently diagnosed aggressive, often-lethal form of cancer. The hope is that treating patients with well-matched, multi-drug treatment combinations early will yield even better results than waiting until standard treatment has failed. If correct, it would mark significant progress in building the future of precision oncology.

Reference:

[1] Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Sicklick JK, Kato S, Okamura R, Schwaederle M, Hahn ME, Williams CB, De P, Krie A, Piccioni DE, Miller VA, Ross JS, Benson A, Webster J, Stephens PJ, Lee JJ, Fanta PT, Lippman SM, Leyland-Jones B, Kurzrock R. Nat Med. 2019 Apr 22.

Links:

Precision Medicine in Cancer Treatment (National Cancer Institute/NIH)

Study of Molecular Profile-Related Evidence to Determine Individualized Therapy for Advanced or Poor Prognosis Cancers (I-PREDICT) (Clinicaltrials.gov)

Razelle Kurzrock (University of California, San Diego)

Jason Sicklick (University of California, San Diego)

NIH Support: National Cancer Institute


New Target for Cancer Immunotherapy: Exosomes

Posted on by Dr. Francis Collins

It was once a central tenet of biology that RNA molecules did their work inside the cell. But it’s now clear that RNA molecules are also active outside the cell, with potentially major implications for our health. To learn more about these unrecognized roles, the NIH Common Fund has launched the Extracellular RNA (exRNA) Communication Program.

This month, members of this research consortium described their latest progress in unraveling the secrets of exRNA in a group of 18 papers in the Cell family of journals. And it’s not just RNA that the consortium is studying, it’s also proteins. Among the many exciting results just published is the serendipitous discovery that proteins carried inside tiny, bubble-like vesicles, called exosomes, may influence a cancer’s response to immunotherapy [1]. The work sheds light on why certain cancers are resistant to immunotherapy and points to new strategies for unleashing the immune system in the fight against cancer.

The new findings center on a type of immunotherapy drugs known as checkpoint inhibitors. They are monoclonal antibodies produced by industry that can boost the immune system’s ability to attack and treat cancer.

One of those antibodies specifically targets a protein, called PD-1, on the surface of certain immune cells. When PD-1 binds a similarly named protein, called PD-L1, on the surface of another cell, the interaction prevents immune cells from attacking. Some tumors seem to have learned this and load up on PD-L1 to evade the immune system.

That’s where checkpoint inhibitors come in. By blocking the interaction between PD-1 and PD-L1, the treatment removes a key check on the immune system, allowing certain immune cells to wake up and attack the tumor.

Checkpoint inhibitors work better in some cancer types than in others. In melanoma, for example, up to about 30 percent of patients respond to checkpoint inhibitor therapy. But in prostate cancer, response rates are in the single digits.

Researchers led by Robert Blelloch, a member of the exRNA consortium and a scientist at the University of California, San Francisco, wanted to know why. He and his team looked for clues in RNA within the cells taken from immunotherapy-resistant prostate cancers.

As published in Cell, the researchers got their first hint of something biologically intriguing in an apparent discrepancy in their data. As they expected from prior work, PD-L1 protein was present in the treatment-resistant cancers. But the PD-L1 messenger RNAs (mRNA), which serve as templates for producing the protein, told an unexpected story. The resistant cancer cells made far more PD-L1 mRNAs than needed to produce the modest levels of PD-L1 proteins detected inside the cells.

Where was the missing PD-L1? Blelloch’s team found it in exosomes. The cancer cells were packaging large quantities of the protein inside exosomes and secreting them out of the cell to other parts of the body.

In additional studies with a mouse model of prostate cancer, the researchers found that those PD-L1-packed exosomes travel through the blood and lymphatic systems to lymph nodes, the sites where immune cells become activated. Once there, PD-L1-laden exosomes put the immune system to sleep, preventing certain key cells from locating and attacking the cancer, including the primary tumor and places where it may have spread.

In important follow up studies, the researchers edited two genes in cancer cells to prevent them from producing exosomes. And, in the absence of exosomes, the cells no longer formed tumors. Importantly, both edited and unedited cells still produced PD-L1, but only those that exported PD-L1 in exosomes disarmed the immune system. Studies in a mouse model of immunotherapy-resistant colorectal cancer yielded similar results.

The new evidence suggests that blocking the release of PD-L1 in exosomes, even temporarily, might allow the immune system to launch a successful and sustained attack against a cancer.

Blelloch notes that many intriguing questions remain. For example, it’s not yet clear why antibodies that target PD-L1 on cancer cells don’t disable PD-L1 found in exosomes. The good news is that the new findings suggest it may be possible to find small molecules that do target PD-L1-packed exosomes, unleashing the immune system against cancers that don’t respond to existing checkpoint inhibitors. In fact, Blelloch’s team is already screening for small molecules that might fit the bill.

Since its launch about five years ago, the exRNA Communication Program has published an impressive 480 peer-reviewed papers, including the latest work in the Cell family of journals. I’d encourage readers to click on some of the other excellent work. I hear that another batch of papers will be published later this year.

Reference:

[1] Suppression of exosomal PD-L induces systemic anti-tumor immunity and memory. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R. Cell. 2019 Apr 4;177(2):414-427.

Links:

Video: Unlocking the Mysteries of RNA Communication (Common Fund/NIH)

Immunotherapy to Treat Cancer (National Cancer Institute/NIH)

Blelloch Lab (University of California, San Francisco)

NIH Support: Common Fund; National Cancer Institute; National Center for Advancing Translational Sciences; National Heart, Lung, and Blood Institute; National Institute on Drug Abuse


Fighting Cancer with Natural Killer Cells

Posted on by Dr. Francis Collins

GIF of immune cells attacking

Credit: Michele Ardolino, University of Ottawa, and Brian Weist, Gilead Sciences, Foster City, CA

Cancer immunotherapies, which enlist a patient’s own immune system to attack and shrink developing tumors, have come a long way in recent years, leading in some instances to dramatic cures of widely disseminated cancers. But, as this video highlights, new insights from immunology are still being revealed that may provide even greater therapeutic potential.

Our immune system comes equipped with all kinds of specialized cells, including the infection-controlling Natural Killer (NK) cells. The video shows an army of NK cells (green) attacking a tumor in a mouse (blood vessels, blue) treated with a well-established type of cancer immunotherapy known as a checkpoint inhibitor. What makes the video so interesting is that researchers didn’t think checkpoint inhibitors could activate NK cells.


Optimizing Radio-Immunotherapy for Cancer

Posted on by Dr. Francis Collins

Zachary Morris

Zachary Morris
Credit: Alan Leon

Zachary Morris has certainly done some memorable things. As a Rhodes Scholar, he once attended an evening reception at Buckingham Palace, played a game of pick-up football with former President Bill Clinton, and traveled to South Africa to take a Robben Island Prison tour, led by the late Nelson Mandela. But something the young radiation oncologist did during his medical residency could prove even more momentous. He received a special opportunity from the American Board of Radiology to join others in studying how to pair radiation therapy with the emerging cancer treatment strategy of immunotherapy.

Morris’s studies in animals showed that the two treatments have a unique synergy, generating a sustained tumor-specific immune response that’s more potent than either therapy alone. But getting this combination therapy just right to optimize its cancer-fighting abilities remains complicated. Morris, now a researcher and clinician at the University of Wisconsin School of Medicine and Public Health, Madison, has received a 2017 NIH Director’s Early Independence Award to look deeper into this promising approach. He and his collaborators will use what they learn to better inform their future early stage clinical trials of radio-immunotherapy starting with melanoma, head and neck cancers, and neuroblastoma.


What a Year It Was! A Look Back at Research Progress in 2017

Posted on by Dr. Francis Collins

I want to wish everyone a Happy New Year! Hope your 2018 is off to a great start.

Over the holidays, the journal Science published its annual, end-of-the-year list of research breakthroughs, from anthropology to zoology. I always look forward to seeing the list and reflecting on some of the stunning advances reported in the past 12 months. Last year was no exception. Science’s 2017 Breakthrough of the Year, as chosen by its editors, was in the field of astrophysics. Scientists were able to witness the effects of the collision of two neutron stars—large stars with collapsed inner cores—smacking into each other 130 million light years away. How cool is that!

Numbered prominently among the nine other breakthroughs were five from biomedicine: gene therapy, gene editing, cancer immunotherapy, cryo-EM, and biology preprints. All involved varying degrees of NIH support, and all drew great interest from readers. In fact, three of the top four vote-getters in the “People’s Choice” category came from biomedicine. That includes the People’s 2017 Breakthrough of the Year: gene therapy success. And so, in what has become a Director’s Blog tradition, I’ll kick off our new year of posts by taking a closer look at these biomedical breakthroughs—starting with the little girl in the collage above, and moving clockwise around the images:


Next Page