Skip to main content

osteoclast

Putting Bone Metastasis in the Spotlight

Posted on by Dr. Francis Collins

When cancers spread, or metastasize, from one part of the body to another, bone is a frequent and potentially devastating destination. Now, as you can see in this video, an NIH-funded research team has developed a new system that hopefully will provide us with a better understanding of what goes on when cancer cells invade bone.

In this 3D cross-section, you see the nuclei (green) and cytoplasm (red) of human prostate cancer cells growing inside a bioengineered construct of mouse bone (blue-green) that’s been placed in a mouse. The new system features an imaging window positioned next to the new bone, which enabled the researchers to produce the first series of direct, real-time micrographs of cancer cells eroding the interior of bone.


Snapshots of Life: Inside a Bone Remodeling Project

Posted on by Dr. Francis Collins

Osteoclast cells

Caption: Osteoclast cells (red) carve a path through a knee joint (purple and white), enabling a blood vessel to supply the cells (yellow) needed to build new bone.
Credit: Paul R. Odgren, University of Massachusetts Medical School

Bones are one of our body’s never-ending remodeling projects. Specialized cells, called osteoclasts, are constantly attaching to old bone and breaking it down, using acids to dissolve the calcium. In the wake of this demolition, bone-building cells, called osteoblasts, move in and deposit new minerals to patch and remodel the bone, maintaining its strength and durability.

Normally, these two types of cells strike a delicate balance between bone destruction and formation. But if this balance goes awry, it can lead to trouble. With osteoporosis, for example, bone removal exceeds formation, yielding progressively weaker bones that are prone to fracture.