Skip to main content

spinraza

What a Year It Was! A Look Back at Research Progress in 2017

Posted on by Dr. Francis Collins

I want to wish everyone a Happy New Year! Hope your 2018 is off to a great start.

Over the holidays, the journal Science published its annual, end-of-the-year list of research breakthroughs, from anthropology to zoology. I always look forward to seeing the list and reflecting on some of the stunning advances reported in the past 12 months. Last year was no exception. Science’s 2017 Breakthrough of the Year, as chosen by its editors, was in the field of astrophysics. Scientists were able to witness the effects of the collision of two neutron stars—large stars with collapsed inner cores—smacking into each other 130 million light years away. How cool is that!

Numbered prominently among the nine other breakthroughs were five from biomedicine: gene therapy, gene editing, cancer immunotherapy, cryo-EM, and biology preprints. All involved varying degrees of NIH support, and all drew great interest from readers. In fact, three of the top four vote-getters in the “People’s Choice” category came from biomedicine. That includes the People’s 2017 Breakthrough of the Year: gene therapy success. And so, in what has become a Director’s Blog tradition, I’ll kick off our new year of posts by taking a closer look at these biomedical breakthroughs—starting with the little girl in the collage above, and moving clockwise around the images:


Clinical Trials Bring Hope to Kids with Spinal Muscular Atrophy

Posted on by Dr. Francis Collins

Faith Fortenberry

More than a decade ago, the NIH’s National Institute of Neurological Disorders and Stroke (NINDS) launched a special project to accelerate the translation of basic scientific discoveries into new treatments for a rare and often fatal disease. Five-year-old Faith Fortenberry whom you see above is among the kids who may benefit from the success of this pioneering endeavor.

Faith was born with spinal muscular atrophy (SMA), a hereditary neurodegenerative disease that can affect movement, breathing, and swallowing. When the NIH project began, there was no treatment for SMA, but researchers had discovered that mutations in the SMN1 gene were responsible for the disorder. Such mutations cause a deficiency of SMN protein, leading to degeneration of neurons in the brain and spinal cord, and progressive muscle weakness throughout the body. The NIH effort supported research to discover ways of raising SMN levels in cells grown in lab dishes, and then worked closely with patient advocates and pharmaceutical companies to move the most promising leads into drug development and clinical testing.

Given the desperate need for SMA treatments and all of the scientific energy that’s been devoted to pursuing them, I’ve been following this field closely. So, I was very encouraged to learn recently about the promising results of human tests of not just one—but two—new treatments for SMA [1, 2].