Skip to main content

Sweden

COVID-19 Vaccines Protect the Family, Too

Posted on by Dr. Francis Collins

Multigenerational family walks at the beach
Credit: Shutterstock

Any of the available COVID-19 vaccines offer remarkable personal protection against the coronavirus SARS-CoV-2. So, it also stands to reason that folks who are vaccinated will reduce the risk of spreading the virus to family members within their households. That protection is particularly important when not all family members can be immunized—as when there are children under age 12 or adults with immunosuppression in the home. But just how much can vaccines help to protect families from COVID-19 when only some, not all, in the household have immunity?

A Swedish study, published recently in the journal JAMA Internal Medicine, offers some of the first hard figures on this topic, and the findings are quite encouraging [1]. The data show that people without any immunity against COVID-19 were at considerably lower risk of infection and hospitalization when other members of their family had immunity, either from a natural infection or vaccination. In fact, the protective effect on family members went up as the number of immune family members increased.

The findings come from a team led by Peter Nordström, Umeå University, Sweden. Like in the United States, vaccinations in Sweden initially were prioritized for high-risk groups and people with certain preexisting conditions. As a result, Swedish families have functioned, often in close contact, as a mix of immune and susceptible individuals over the course of the pandemic.

To explore these family dynamics in greater detail, the researchers relied on nationwide registries to identify all Swedes who had immunity to SARS-COV-2 from either a confirmed infection or vaccination by May 26, 2021. The researchers identified more than 5 million individuals who’d been either diagnosed with COVID-19 or vaccinated and then matched them to a control group without immunity. They also limited the analysis to individuals in families with two to five members of mixed immune status.

This left them with about 1.8 million people from more than 800,000 families. The situation in Sweden is also a little unique from most Western nations. Somewhat controversially, the Swedish government didn’t order a mandatory citizen quarantine to slow the spread of the virus.

The researchers found in the data a rising protective effect for those in the household without immunity as the number of immune family members increased. Families with one immune family member had a 45 to 61 percent lower risk of a COVID-19 infection in the home than those who had none. Those with two immune family members enjoyed more protection, with a 75 to 86 percent reduction in risk of COVID-19. For those with three or four immune family members, the protection went up to more than 90 percent, topping out at 97 percent protection. The results were similar when the researchers limited the analysis to COVID-19 illnesses serious enough to warrant a hospital stay.

The findings confirm that vaccination is incredibly important not only for individual protection, but also for reducing transmission, especially within families and those with whom we’re in close physical contact. It’s also important to note that the findings apply to the original SARS-CoV-2 variant, which was dominant when the study was conducted. But we know that the vaccines offer good protection against Delta and other variants of concern.

These results show quite clearly that vaccines offer protection for individuals who lack immunity, with important implications for finally ending this pandemic. This doesn’t change the fact that all those who can and still need to get fully vaccinated should do so as soon as possible. If you are eligible for a booster shot, that’s something to consider, too. But, if for whatever reason you haven’t gotten vaccinated just yet, perhaps these new findings will encourage you to do it now for the sake of those other people you care about. This is a chance to love your family—and love your neighbor.

Reference:

[1] Association between risk of COVID-19 infection in nonimmune individuals and COVID-19 immunity in their family members. Nordström P, Ballin M, Nordström A. JAMA Intern Med. 2021 Oct 11.

Links:

COVID-19 Research (NIH)

Peter Nordström (Umeå University, Sweden)


UN Dialogue on Antimicrobial Resistance

Posted on by Dr. Francis Collins

It was an honor to take part in the United Nations General Assembly’s High-level Interactive Dialogue on Antimicrobial Resistance. The dialogue, held on April 29, was organized by the Office of the President of the General Assembly. I participated on an afternoon panel before the Ministers of Health from Germany, Ghana, Russia, Sweden, Fiji, and UK. The event was also live streamed on UN Web TV, and this split-screen image shows me interacting with Elizabeth Cousens, president and CEO of the United Nations Foundation.

Antimicrobial resistance occurs when bacteria, viruses, fungi, and parasites change over time and learn to resist antibiotics and other antimicrobial medicines. Established treatments can become ineffective, and infections become increasingly difficult or impossible to treat, which increases the risk of disease spread, severe illness, and death.

During my testimony, delivered virtually, I stated that antimicrobial resistance remains a priority for the U.S. government, even during the COVID-19 pandemic. I also testified that the U.S. remains committed to progress in this area domestically, as outlined in The National Action Plan for Combating Antibiotic-Resistant Bacteria (CARB), 2020-2025, and globally through cooperation with our international partners.

Study Finds 1 in 10 Healthcare Workers with Mild COVID Have Lasting Symptoms

Posted on by Dr. Francis Collins

People showing symtoms of anosmia, fatigue, and ageusia
Credit: Getty Images

It’s become increasingly clear that even healthy people with mild cases of COVID-19 can battle a constellation of symptoms that worsen over time—or which sometimes disappear only to come right back. These symptoms are part of what’s called “Long COVID Syndrome.”

Now, a new study of relatively young, healthy adult healthcare workers in Sweden adds needed information on the frequency of this Long COVID Syndrome. Published in the journal JAMA, the study found that just over 1 in 10 healthcare workers who had what at first seemed to be a relatively mild bout of COVID-19 were still coping with at least one moderate to severe symptom eight months later [1]. Those symptoms—most commonly including loss of smell and taste, fatigue, and breathing problems—also negatively affected the work and/or personal lives of these individuals.

These latest findings come from the COVID-19 Biomarker and Immunity (COMMUNITY) study, led by Charlotte Thålin, Danderyd Hospital and Karolinska Institutet, Stockholm. The study, launched a year ago, enlisted 2,149 hospital employees to learn more about immunity to SARS-CoV-2, the coronavirus that causes COVID-19.

After collecting blood samples from participants, the researchers found that about 20 percent already had antibodies to SARS-CoV-2, evidence of a past infection. Thålin and team continued collecting blood samples every four months from all participants, who also completed questionnaires about their wellbeing.

Intrigued by recent reports in the medical literature that many people hospitalized with COVID-19 can have persistent symptoms for months after their release, the researchers decided to take a closer look in their COMMUNITY cohort. They did so last January during their third round of follow up.

This group included 323 mostly female healthcare workers, median age of 43. The researchers compared symptoms in this group following mild COVID-19 to the 1,072 mostly female healthcare workers in the study (median age 47 years) who hadn’t had COVID-19. They wanted to find out if those with mild COVID-19 coped with more and longer-lasting symptoms of feeling unwell than would be expected in an otherwise relatively healthy group of people. These symptoms included familiar things such as fatigue, muscle pain, trouble sleeping, and problems breathing.

Their findings show that 26 percent of those who had mild COVID-19 reported at least one moderate to severe symptom that lasted more than two months. That’s compared to 9 percent of participants without COVID-19. What’s more, 11 percent of the individuals with mild COVID-19 had at least one debilitating symptom that lasted for at least eight months. In the group without COVID-19, any symptoms of feeling unwell resolved relatively quickly.

The most common symptoms in the COVID-19 group were loss of taste or smell, fatigue, and breathing problems. In this group, there was no apparent increase in other symptoms that have been associated with COVID-19, including “brain fog,” problems with memory or attention, heart palpitations, or muscle and joint pain.

The researchers have noted that the Swedish healthcare workers represent a relatively young and healthy group of working individuals. Yet, many of them continued to suffer from lasting symptoms related to mild COVID-19. It’s a reminder that COVID-19 can and, in fact, is having a devastating impact on the lives and livelihoods of adults who are at low risk for developing severe and life-threatening COVID-19. If we needed one more argument for getting young people vaccinated, this is it.

At NIH, efforts have been underway for some time to identify the causes of Long COVID. In fact, a virtual workshop was held last winter with more than 1,200 participants to discuss what’s known and to fill in key gaps in our knowledge of Long COVID syndrome, which is clinically known as post-acute sequelae of COVID-19 (PASC). Recently, a workshop summary was published [2]. As workshops and studies like this one from Sweden help to define the problem, the hope is to learn one day how to treat or prevent this terrible condition. The NIH is now investing more than $1 billion in seeking those answers.

References:

[1] Symptoms and functional impairment assessed 8 Months after mild COVID-19 among health care workers. Havervall S, Rosell A, Phillipson M, Mangsbo SM, Nilsson P, Hober S, Thålin C. JAMA. 2021 Apr 7.

[2] Toward understanding COVID-19 recovery: National Institutes of Health workshop on postacute COVID-19. Lerner A, et al. Ann Intern Med, 2021 March 30.

Links:

COVID-19 Research (NIH)

Charlotte Thålin (Karolinska Institutet, Stockholm, Sweden)


Ceremonial Nobel Presentation

Posted on by Dr. Francis Collins

Ceremonial Nobel Presentation for Harvey Alter
It’s been such a strange year this 2020. For the first time since World War II, the 2020 Nobel Laureates didn’t receive their Nobel prizes at special presentations in Stockholm and Oslo on December 10. Because of the COVID-19 pandemic, the December 10 award presentations were held ceremonially at a number of small virtual gatherings around the world. At NIH, we streamed a ceremonial presentation in the Natcher Building for our own Harvey Alter, a senior scholar in the NIH Clinical Center’s Transfusion Medicine Department. Dr. Alter is a co-recipient of the 2020 Nobel Prize in Physiology or Medicine for his contributions in discovering the hepatitis C virus. He shares the prize with Michael Houghton, University of Alberta, Calgary; and Charles Rice, Rockefeller University, New York. Presenting the Nobel Prize medal to Dr. Alter on behalf of the King of Sweden was Swedish Ambassador to the United States, Karin Olofsdotter. In this photo, Dr. Alter (center) displays his Nobel medal, flanked by Ambassador Olafsdotter (left) and me (right). Credit: NIH

Celebrating 2018 Nobel Laureates

Posted on by Dr. Francis Collins

Drs. Francis Collins, Peter WT Pisters, and Jim Allison

It was an honor to attend the Nobel Symposium hosted by the Embassy of Sweden in the U.S. on November 13, 2018. The symposium was held at the House of Sweden in Washington, D.C. to celebrate the 2018 American Nobel Laureates. Four of this year’s six Nobel Laureates were in attendance. Here, I’m standing with Peter WT Pisters (middle), president of the University of Texas M.D. Anderson Cancer Center, Houston; and Jim Allison (right), also with MD Anderson and a co-recipient of the 2018 Nobel Prize in Physiology or Medicine. Dr. Allison played a leading role in developing cancer immunotherapy. Credit: @ppisters


Cardiometabolic Disease: Big Data Tackles a Big Health Problem

Posted on by Dr. Francis Collins

Cardiometabolic risk loci

More and more studies are popping up that demonstrate the power of Big Data analyses to get at the underlying molecular pathology of some of our most common diseases. A great example, which may have flown a bit under the radar during the summer holidays, involves cardiometabolic disease. It’s an umbrella term for common vascular and metabolic conditions, including hypertension, impaired glucose and lipid metabolism, excess belly fat, and inflammation. All of these components of cardiometabolic disease can increase a person’s risk for a heart attack or stroke.

In the study, an international research team tapped into the power of genomic data to develop clearer pictures of the complex biocircuitry in seven types of vascular and metabolic tissue known to be affected by cardiometabolic disease: the liver, the heart’s aortic root, visceral abdominal fat, subcutaneous fat, internal mammary artery, skeletal muscle, and blood. The researchers found that while some circuits might regulate the level of gene expression in just one tissue, that’s often not the case. In fact, the researchers’ computational models show that such genetic circuitry can be organized into super networks that work together to influence how multiple tissues carry out fundamental life processes, such as metabolizing glucose or regulating lipid levels. When these networks are perturbed, perhaps by things like inherited variants that affect gene expression, or environmental influences such as a high-carb diet, sedentary lifestyle, the aging process, or infectious disease, the researchers’ modeling work suggests that multiple tissues can be affected, resulting in chronic, systemic disorders including cardiometabolic disease.